WorldWideScience

Sample records for breath condensate biomarkers

  1. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children.

    Science.gov (United States)

    Robroeks, Charlotte M H H T; Rosias, Philippe P R; van Vliet, Dillys; Jöbsis, Quirijn; Yntema, Jan-Bart L; Brackel, Hein J L; Damoiseaux, Jan G M C; den Hartog, Gertjan M; Wodzig, Will K W H; Dompeling, Edward

    2008-11-01

    Chronic airway inflammation is present in cystic fibrosis (CF). Non-invasive inflammometry may be useful in disease management. The aim of the present cross-sectional study was to investigate: (i) the ability of fractional exhaled nitric oxide and inflammatory markers (IM) [exhaled breath condensate (EBC) acidity, nitrite, nitrate, hydrogen peroxide (H(2)O(2)), 8-isoprostane, Th1/Th2 cytokines] to indicate (exacerbations of) CF; and (ii) the ability of these non-invasive IM to indicate CF disease severity. In 98 children (48 CF/50 controls), exhaled nitric oxide was measured using the NIOX, and condensate was collected using a glass condenser. In CF interferon (IFN-gamma) and nitrite concentrations were significantly higher, whereas exhaled nitric oxide levels were significantly lower compared with controls (3.3 +/- 0.3 pg/ml, 2.2 +/- 0.2 microM, 10.0 +/- 1.2 p.p.b. vs. 2.6 +/- 0.2 pg/ml, 1.4 +/- 0.1 microM, 15.4 +/- 1.4 p.p.b. respectively). Using multivariate logistic regression models, the presence of CF was best indicated by 8-isoprostane, nitrite and IFN-gamma [sensitivity 78%, specificity 83%; area under receiver operating characteristic curve (AUC) 0.906, p < 0.001]. An exacerbation of CF was best indicated by 8-isoprostane and nitrite (sensitivity 40%, specificity 97%, AUC curve 0.838, p = 0.009). Most indicative biomarkers of CF severity were exhaled nitric oxide, and condensate acidity (sensitivity 96%, specificity 67%; AUC curve 0.751, p = 0.008). In this cross-sectional study, the combination of different exhaled IM could indicate (exacerbations of) CF, and severity of the disease in children. Longitudinal data are necessary to further confirm the role of these markers for the management of CF in children.

  2. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics.

    Science.gov (United States)

    López-Sánchez, Laura M; Jurado-Gámez, Bernabé; Feu-Collado, Nuria; Valverde, Araceli; Cañas, Amanda; Fernández-Rueda, José L; Aranda, Enrique; Rodríguez-Ariza, Antonio

    2017-10-01

    We explored whether the proteomic analysis of exhaled breath condensate (EBC) may provide biomarkers for noninvasive screening for the early detection of lung cancer (LC). EBC was collected from 192 individuals [49 control (C), 49 risk factor-smoking (S), 46 chronic obstructive pulmonary disease (COPD) and 48 LC]. With the use of liquid chromatography and tandem mass spectrometry, 348 different proteins with a different pattern among the four groups were identified in EBC samples. Significantly more proteins were identified in the EBC from LC compared with other groups (C: 12.4 ± 1.3; S: 15.3 ± 1; COPD: 14 ± 1.6; LC: 24.2 ± 3.6; P = 0.0001). Furthermore, the average number of proteins identified per sample was significantly higher in LC patients, and receiver operating characteristic curve (ROC) analysis showed an area under the curve of 0.8, indicating diagnostic value. Proteins frequently detected in EBC, such as dermcidin and hornerin, along with others much less frequently detected, such as hemoglobin and histones, were identified. Cytokeratins (KRTs) were the most abundant proteins in EBC samples, and levels of KRT6A, KRT6B, and KRT6C isoforms were significantly higher in samples from LC patients (P = 0.0031, 0.0011, and 0.0009, respectively). Moreover, the amount of most KRTs in EBC samples from LC patients showed a significant positive correlation with tumor size. Finally, we used a random forest algorithm to generate a robust model using EBC protein data for the diagnosis of patients with LC where the area under the ROC curve obtained indicated a good classification (82%). Thus this study demonstrates that the proteomic analysis of EBC samples is an appropriated approach to develop biomarkers for the diagnosis of lung cancer. Copyright © 2017 the American Physiological Society.

  3. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children.

    NARCIS (Netherlands)

    Robroeks, C.M.; Rosias, P.P.; Vliet, D van; Jobsis, Q.; Yntema, J.L.; Brackel, H.J.; Damoiseaux, J.G.; Hartog, GM den; Wodzig, W.K.; Dompeling, E.

    2008-01-01

    Chronic airway inflammation is present in cystic fibrosis (CF). Non-invasive inflammometry may be useful in disease management. The aim of the present cross-sectional study was to investigate: (i) the ability of fractional exhaled nitric oxide and inflammatory markers (IM) [exhaled breath condensate

  4. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  5. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    Science.gov (United States)

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  6. Exhaled breath condensate pH as a biomarker of COPD severity in ex-smokers

    Directory of Open Access Journals (Sweden)

    Alchanatis Manos

    2011-05-01

    Full Text Available Abstract Endogenous airway acidification, as assessed by exhaled breath condensate (EBC pH, is present in patients with stable COPD. The aim of this study was to measure EBC pH levels in a large cohort of COPD patients and to evaluate associations with functional parameters according to their smoking status. EBC was collected from 161 patients with stable COPD and 112 controls (current and ex-smokers. EBC pH was measured after Argon deaeration and all subjects underwent pulmonary function testing. EBC pH was lower in COPD patients compared to controls [7.21 (7.02, 7.44 vs. 7.50 (7.40, 7.66; p Endogenous airway acidification is related to disease severity and to parameters expressing hyperinflation and air trapping in ex-smokers with COPD. The possible role of EBC pH in COPD needs to be further evaluated in longitudinal studies.

  7. Collecting exhaled breath condensate (EBC) with two condensers in series: a promising technique for studying the mechanisms of EBC formation, and the volatility of selected biomarkers.

    Science.gov (United States)

    Corradi, Massimo; Goldoni, Matteo; Caglieri, Andrea; Folesani, Giuseppina; Poli, Diana; Corti, Marina; Mutti, Antonio

    2008-03-01

    Exhaled breath condensate (EBC) consists mainly of water, but also contains semivolatile and nonvolatile compounds. The aim of this study was to develop a system in which two condensers are simultaneously used in series to clarify the mechanisms of EBC condensation. Two aliquots of EBC (EBC1 and EBC2) were collected from 20 asymptomatic smokers and 20 healthy young nonsmokers using a specifically designed device having two condensers in series in which total volume, hydrogen peroxide (H(2)O(2)), ammonium (NH(4)(+)), and conductivity before and after lyophilization were measured. Water, NH(4)(+) levels and conductivity before lyophilization were significantly lower in the EBC2 than in the EBC1 of smokers and nonsmokers; the contrary was true for H(2)O(2) levels. Almost all nonvolatile salts were collected in the first condenser, because more than 50% of postlyophilization conductivity was below the detection limit in EBC2. The recovery of volatile molecules and their derivatives (water and NH(4)(+)) was partial in the first condenser, but appreciable amounts of both were measured in the second; however, the condenser immediately in contact with exhaled air was more efficient in terms of water, NH(4)(+) and conductivity before lyophilization. On the contrary, nonvolatile ions (conductivity after lyophilization) were mainly collected in the first condenser. Finally, the behavior of H(2)O(2) cannot be explained on the basis of its chemical and physical properties, and the most probable explanation is that some was byproduced by a radical reaction in the gas phase or during the condensation process in water.

  8. Effect of continuous positive airway pressure and upper airway surgery on exhaled breath condensate and serum biomarkers in patients with sleep apnea.

    Science.gov (United States)

    Lloberes, Patricia; Sánchez-Vidaurre, Sara; Ferré, Àlex; Cruz, María Jesús; Lorente, Juan; Sampol, Gabriel; Morell, Ferran; Muñoz, Xavier

    2014-10-01

    Studies on inflammation biomarkers in serum and in exhaled breath condensate (EBC) in obstructive sleep apnea (OSA) have shown conflicting results. The objective of this study is to assess EBC and serum biomarkers in OSA patients at baseline and after continuous positive airway pressure (CPAP) or upper airway surgery (UAS). Nine OSA patients referred for UAS were matched for anthropometric characteristics and apnea-hypopnea index with 20 patients receiving CPAP. pH, nitrite (NO2(-)), nitrate and interleukin 6 in EBC and NO2(-), nitrate, leukotriene B4 and interleukin 6 in serum were determined. EBC and serum samples were collected at baseline and 3 months after CPAP or UAS. Patients' mean body mass index was 30 (range 24.9-40) kg/m(2). EBC biomarker levels at baseline were within normal range and did not differ significantly after CPAP or UAS. No significant changes were observed in the serum concentration of the biomarkers determined after CPAP but the serum concentration of NO2(-) increased significantly at 3 months after UAS (P=.0078). In mildly obese OSA patients, EBC biomarkers of inflammation or oxidative stress were normal at baseline and remained unchanged 3 months after UAS or CPAP. Although UAS was not effective in terms of reducing OSA severity, it was associated with an increase in serum NO2(-). Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  9. VOC breath biomarkers in lung cancer.

    Science.gov (United States)

    Saalberg, Yannick; Wolff, Marcus

    2016-08-01

    This review provides an overview of volatile organic compounds (VOCs) which are considered lung cancer biomarkers for diagnostic breath analysis. It includes results of scientific publications from 1985 to 2015. The identified VOCs are listed and ranked according to their occurrence of nomination. The applied detection and sampling methods are specified but not evaluated. Possible reasons for the different results of the studies are stated. Among the most frequently emerging biomarkers are 2-butanone and 1-propanol as well as isoprene, ethylbenzene, styrene and hexanal. The outcome of this review may be helpful for the development of a lung cancer screening device. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Assessment of hydrogen peroxide in breath condensate as an ...

    African Journals Online (AJOL)

    Ehab

    Assessment of hydrogen peroxide in breath condensate as an inflammatory marker in asthmatic children. INTRODUCTION. Asthma is a leading cause of chronic illness in childhood. As many as 10-15% of boys and 7-10% of girls may have asthma at sometime during childhood. Current data support the hypothesis that ...

  11. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube(™) and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  12. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    Science.gov (United States)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  13. Online trapping and enrichment ultra performance liquid chromatography-tandem mass spectrometry method for sensitive measurement of 'arginine-asymmetric dimethylarginine cycle' biomarkers in human exhaled breath condensate

    Energy Technology Data Exchange (ETDEWEB)

    Di Gangi, Iole Maria, E-mail: giordano@pediatria.unipd.it [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Pirillo, Paola [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Carraro, Silvia [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Gucciardi, Antonina; Naturale, Mauro [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Baraldi, Eugenio [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Giordano, Giuseppe [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy)

    2012-11-19

    Highlights: Black-Right-Pointing-Pointer Simultaneous quantification of 'arginine-ADMA cycle' metabolites developed in EBC. Black-Right-Pointing-Pointer EBC is a non-invasive matrix highly useful in patients with respiratory diseases. Black-Right-Pointing-Pointer Method, fast, precise and accurate, is suitable in the pediatric clinical studies. Black-Right-Pointing-Pointer Sensitivity is increased using on-line trapping and enrichment-UPLC-MS/MS method. Black-Right-Pointing-Pointer EBC measurements in asthmatic adolescents confirm that ADMA is increased in asthma. - Abstract: Background: Exhaled breath condensate (EBC) is a biofluid collected non invasively that, enabling the measurement of several biomarkers, has proven useful in the study of airway inflammatory diseases, including asthma, COPD and cystic fibrosis. To the best of our knowledge, there is no previous report of any analytical method to detect ADMA in EBC. Objectives: Aim of this work was to develop an online sample trapping and enrichment system, coupled with an UPLC-MS/MS method, for simultaneous quantification of seven metabolites related to 'Arginine-ADMA cycle', using the isotopic dilution. Methods: Butylated EBC samples were trapped in an online cartridge, washed before and after each injection with cleanup solution to remove matrix components and switched inline into the high pressure analytical column. Multiple reaction monitoring in positive mode was used for analyte quantification by tandem mass spectrometry. Results: Validation studies were performed in EBC to examine accuracy, precision and robustness of the method. For each compound, the calibration curves showed a coefficient of correlation (r{sup 2}) greater than 0.992. Accuracy (%Bias) was <3% except for NMMA and H-Arg (<20%), intra- and inter-assay precision (expressed as CV%) were within {+-}20% and recovery ranged from 97.1 to 102.8% for all analytes. Inter-day variability analysis on 20 EBC of adult subjects did

  14. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.

    Science.gov (United States)

    Hüttmann, Eva-Maria; Greulich, Timm; Hattesohl, Akira; Schmid, Severin; Noeske, Sarah; Herr, Christian; John, Gerrit; Jörres, Rudolf A; Müller, Bernd; Vogelmeier, Claus; Koczulla, Andreas Rembert

    2011-01-01

    Analysis of exhaled breath condensate (EBC) is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC. EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC) was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV) were calculated. Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%. EBC pH and (to a lesser extent) EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies.

  15. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hüttmann

    Full Text Available Analysis of exhaled breath condensate (EBC is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC.EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV were calculated.Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%.EBC pH and (to a lesser extent EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies.

  16. Metallic elements in exhaled breath condensate and serum of patients with exacerbation of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Corradi, Massimo; Acampa, Olga; Goldoni, Matteo; Andreoli, Roberta; Milton, Donald; Sama, Susan R; Rosiello, Richard; de Palma, Giuseppe; Apostoli, Pietro; Mutti, Antonio

    2009-01-01

    Biomarkers in exacerbated chronic obstructive pulmonary disease may be useful in aiding diagnosis, defining specific phenotypes of disease, monitoring the disease and evaluating the effects of drugs. The aim of this study was the characterization of metallic elements in exhaled breath condensate and serum as novel biomarkers of exposure and susceptibility in exacerbated chronic obstructive pulmonary disease using reference analytical techniques. C-Reactive protein and procalcitonin were assessed as previously validated diagnostic and prognostic biomarkers which have been associated with disease exacerbation, thus useful as a basis of comparison with metal levels. Exhaled breath condensate and serum were obtained in 28 patients at the beginning of an episode of disease exacerbation and when they recovered. Trace elements and toxic metals were measured by inductively coupled plasma-mass spectrometry. Serum biomarkers were measured by immunoassay. Exhaled manganese and magnesium levels were influenced by exacerbation of chronic obstructive pulmonary disease, an increase in their concentrations--respectively by 20 and 50%--being observed at exacerbation in comparison with values obtained at recovery; serum elemental composition was not modified by exacerbation; serum levels of C-reactive protein and procalcitonin at exacerbation were higher than values at recovery. In outpatients who experienced a mild-moderate chronic obstructive pulmonary disease exacerbation, manganese and magnesium levels in exhaled breath condensate are elevated at admission in comparison with values at recovery, whereas no other changes were observed in metallic elements at both the pulmonary and systemic level.

  17. Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    Matteo Sofia

    2011-01-01

    Full Text Available There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.

  18. Hydrogen peroxide in exhaled breath condensate: A clinical study

    Directory of Open Access Journals (Sweden)

    C Nagaraja

    2012-01-01

    Full Text Available Objectives: To study the ongoing inflammatory process of lung in healthy individuals with risk factors and comparing with that of a known diseased condition. To study the inflammatory response to treatment. Background: Morbidity and mortality of respiratory diseases are raising in trend due to increased smokers, urbanization and air pollution, the diagnosis of these conditions during early stage and management can improve patient′s lifestyle and morbidity. Materials and Methods: One hundred subjects were studied from July 2010 to September 2010; the level of hydrogen peroxide concentration in exhaled breath condensate was measured using Ecocheck. Results: Of the 100 subjects studied, 23 were healthy individuals with risk factors (smoking, exposure to air pollution, and urbanization; the values of hydrogen peroxide in smokers were 200-2220 nmol/l and in non-smokers 340-760 nmol/l. In people residing in rural areas values were 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. In chronic obstructive pulmonary disease cases, during acute exacerbations values were 540-3040 nmol/l and 240-480 nmol/l following treatment. In acute exacerbations of bronchial asthma, values were 400-1140 nmol/l and 100-320 nmol/l following treatment. In cases of bronchiectasis, values were 300-340 nmol/l and 200-280 nmol/l following treatment. In diagnosed pneumonia cases values were 1060-11800 nmol/l and 540-700 nmol/l following treatment. In interstitial lung diseases, values ranged from 220-720 nmol/l and 210-510 nmol/l following treatment. Conclusion: Exhaled breath condensate provides a non-invasive means of sampling the lower respiratory tract. Collection of exhaled breath condensate might be useful to detect the oxidative destruction of the lung as well as early inflammation of the airways in a healthy individual with risk factors and comparing the inflammatory response to treatment.

  19. An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate.

    NARCIS (Netherlands)

    Beurden, W.J.C van; Harff, G.A.; Dekhuijzen, P.N.R.; Bosch, M.J. van den; Creemers, J.P.H.M.; Smeenk, F.J.M.W.

    2002-01-01

    We investigated the sensitivity and reproducibility of a test procedure for measuring hydrogen peroxide (H202) in exhaled breath condensate and the effect of storage of the condensate on the H2O2 concentration, and compared the results to previous studies.Twenty stable COPD patients breathed into

  20. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  1. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  2. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  3. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits.

    Science.gov (United States)

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  4. The Validity of Exhaled Nitric Oxide (NO) in Breath Condensate in ...

    African Journals Online (AJOL)

    The Validity of Exhaled Nitric Oxide (NO) in Breath Condensate in the Evaluation of Controlled Asthma. Ahmed Elsayed Elhefny, Sahar Mohammad Mourad, Tamer Saeed Morsy, Maher Abdelnbi Kamel, Haydi Moustafa Mohamed ...

  5. Conductivity in Exhaled Breath Condensate from Subjects with Emphysema and Type ZZ alpha-1-Antitrypsin Deficiency.

    Science.gov (United States)

    Stolk, Jan; Fumagalli, Marco; Viglio, Simona; Iadarola, Paolo

    2015-05-01

    The assessment of biomarkers in biological samples from the lung has long been employed. Upon cooling water vapor present in exhaled breath, variable amounts of droplets of condensate (EBC) containing volatile and non-volatile compounds may be easily and non-invasively obtained from patients of any age.Objective of the present study was to compare the level of EBC conductivity determined for cohorts of individuals with different inflammatory lung disorders with that of healthy never-smoking individuals.The conductivity in EBC of PiZZ-Alpha-1-antitrypsin deficiency patients with a diagnosis of emphysema (PiZZ-AATD) was 3 fold lower than in spouse controls (54.5 ± 11.6 vs 165.3 ± 10.7 μS/cm). Non-PiZZ emphysema patients had conductivity in EBC of 59.6 ± 5.8 μS/cm and patients with sarcoidosis without airflow obstruction had EBC conductivity of 178,8 ± 6,2 μS/cm, 
not significantly different (p = 0.5) from healthy controls. Conductivity in serial EBC samples from patients with PiZZ-AATD emphysema and healthy controls was stable in 6 different samples collected over a period of 14 months. We conclude that conductivity values in EBC can be used as a correction factor for dilution of non-volatile components in EBC.

  6. Hydrogen peroxide in breath condensate during a common cold

    NARCIS (Netherlands)

    R.Q. Jöbsis (Rijn); S.L. Schellekens; A. Fakkel-Kroesbergen (Anoeska); R.H. Raatgeep (Rolien); J.C. de Jongste (Johan)

    2001-01-01

    textabstractBackground: Hydrogen peroxide (H2O2) in exhaled air condensate is elevated in inflammatory disorders of the lower respiratory tract. It is unknown whether viral colds contribute to exhaled H2O2. Aim: To assess exhaled H2O2during and after a common cold. Methods: We examined H2O2in the

  7. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    Science.gov (United States)

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  8. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    Science.gov (United States)

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  9. Metabolic Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by H Magnetic Resonance Spectroscopy: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2016-01-01

    Full Text Available Objectives Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1 H magnetic resonance spectroscopy (MRS of sputum and exhaled breath condensate (EBC, as a noninvasive tool, can identify metabolic biomarkers of lung cancer. Materials and Methods Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer ( n = 10 and patients with benign respiratory conditions ( n = 10. Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1 H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. Results In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM than in patients with benign conditions (0.067 mM; P = 0.028. In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N -acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88% as well as in the cytologically confirmed sputum samples (86% of lung cancer patients. Conclusion Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1 H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence.

  10. Characterization of a portable method for the collection of exhaled breath condensate and subsequent analysis of metal content.

    Science.gov (United States)

    Fox, Julie R; Spannhake, Ernst W; Macri, Kristin K; Torrey, Christine M; Mihalic, Jana N; Eftim, Sorina E; Lees, Peter S J; Geyh, Alison S

    2013-04-01

    Using exhaled breath condensate (EBC) as a biological media for analysis of biomarkers of exposure may facilitate the understanding of inhalation exposures. In this study, we present method validation for the collection of EBC and analysis of metals in EBC. The collection method was designed for use in a small scale longitudinal study with the goal of improving reproducibility while maintaining economic feasibility. We incorporated the use of an Rtube with additional components as an assembly, and trained subjects to breathe into the apparatus. EBC was collected from 8 healthy adult subjects with no known elevated exposures to Mn, Cr, Ni, and Cd repeatedly (10 times) within 7 days and analyzed for these metals via ICP-MS. Method detection limits were obtained by mimicking the process of EBC collection with ultrapure water, and resulted in 46-62% of samples falling in a range less than the method detection limit. EBC metal concentrations were found to be statistically significantly associated (p < 0.05) with room temperature and relative humidity during collection, as well as with the gender of the subject. The geometric mean EBC metal concentrations in our unexposed subjects were 0.57 μg Mn per L, 0.25 μg Cr per L, 0.87 μg Ni per L, and 0.14 μg Cd per L. The overall standard deviation was greater than the mean estimate, and the major source in EBC metals concentrations was due to fluctuations in subjects' measurements over time rather than to the differences between separate subjects. These results suggest that measurement and control of EBC collection and analytical parameters are critical to the interpretation of EBC metals measurements. In particular, rigorous estimation of method detection limits of metals in EBC provides a more thorough evaluation of accuracy.

  11. Acute Response to Cigarette Smoking Assessed in Exhaled Breath Condensate in Patients with Chronic Obstructive Pulmonary Disease and Healthy Smokers.

    Science.gov (United States)

    Maskey-Warzęchowska, M; Nejman-Gryz, P; Osinka, K; Lis, P; Malesa, K; Górska, K; Krenke, R

    2017-01-01

    The effect of acute exposure to cigarette smoke (CS) on the respiratory system has been less extensively studied than the long term effects of smoking. The aim of the present study was to evaluate the acute response to CS in smokers suffering from chronic obstructive pulmonary disease (COPD) and in healthy smokers. Nineteen stable COPD patients and 19 young healthy smokers were enrolled. Tumor necrosis factor alpha (TNF-α), IL-1β, and malondialdehyde (MDA) were measured in exhaled breath condensate (EBC) before and 60 min after smoking a cigarette. When pre- and post-CS levels of the evaluated biomarkers were compared, no differences were found in either group. However, the post-CS MDA was significantly greater in healthy smokers than that in COPD patients; 20.41 vs. 16.81 nmol/L, p = 0.01, respectively. Post-CS TNF-α correlated inversely with FEV 1 /FVC in healthy smokers. We conclude that CS does not acutely increase the EBC concentration of the inflammatory markers either in COPD patients or healthy smokers. The short term CS-induced oxidative stress is higher in young smokers than in COPD patients, which what may indicate a higher susceptibility to CS content of the former.

  12. Effects of bronchoconstriction, minute ventilation, and deep inspiration on the composition of exhaled breath condensate.

    Science.gov (United States)

    Debley, Jason S; Ohanian, Arpy S; Spiekerman, Charles F; Aitken, Moira L; Hallstrand, Teal S

    2011-01-01

    Exhaled breath condensate (EBC) is composed of droplets of airway surface liquid (ASL) diluted by water vapor. The goal of this study was to determine if the composition of EBC is affected by changes in airway caliber, minute ventilation, or forceful exhalation, factors that may differ among subjects with asthma in cross-sectional studies. In a group of subjects with asthma, we measured the effects of the following: (1) a series of three deep-inspiration and forceful-exhalation maneuvers; (2) a doubling of minute ventilation; and (3) acute bronchoconstriction induced by methacholine on EBC volume, dilution of ASL, and concentration of cysteinyl leukotrienes (CysLTs). With the exception of an increase in EBC volume with increased minute ventilation, there were no significant changes in the volume, dilution, or levels of CysLTs in EBC introduced by each of these factors. The CIs surrounding the differences introduced by each factor showed that the maximum systematic errors due to these factors were modest. These results indicate that changes in airway caliber, minute ventilation, or breathing pattern among subjects with asthma do not significantly alter the measurements of mediator concentrations in EBC.

  13. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses

    Directory of Open Access Journals (Sweden)

    Maes Piet

    2011-03-01

    Full Text Available Abstract Background Exhaled breath condensate (EBC sampling has been considered an inventive and novel method for the isolation of respiratory viruses. Methods In our study, 102 volunteers experiencing upper airway infection were recruited over the winter and early spring of 2008/2009 and the first half of the winter of 2009/2010. Ninety-nine EBCs were successfully obtained and screened for 14 commonly circulating respiratory viruses. To investigate the efficiency of virus isolation from EBC, a nasal swab was taken in parallel from a subset of volunteers. The combined use of the ECoVent device with the RTube™ allowed the registration of the exhaled volume and breathing frequency during collection. In this way, the number of exhaled viral particles per liter air or per minute can theoretically be estimated. Results Viral screening resulted in the detection of 4 different viruses in EBC and/or nasal swabs: Rhinovirus, Human Respiratory Syncytial Virus B, Influenza A and Influenza B. Rhinovirus was detected in 6 EBCs and 1 EBC was Influenza B positive. We report a viral detection rate of 7% for the EBCs, which is much lower than the detection rate of 46.8% observed using nasal swabs. Conclusion Although very promising, EBC collection using the RTube™ is not reliable for diagnosis of respiratory infections.

  14. Comparison of exhaled breath condensate pH using two commercially available devices in healthy controls, asthma and COPD patients

    NARCIS (Netherlands)

    Koczulla, R.; Dragonieri, S.; Schot, R.; Bals, R.; Gauw, S.A.; Vogelmeier, C.; Rabe, K.F.; Sterk, P.J.; Hiemstra, P.S.

    2009-01-01

    ABSTRACT: BACKGROUND: Analysis of exhaled breath condensate (EBC) is a non-invasive method for studying the acidity (pH) of airway secretions in patients with inflammatory lung diseases. Aim: To assess the reproducibility of EBC pH for two commercially available devices (portable RTube and

  15. Analysis of exhaled breath condensate in a mixed population of psittacine birds.

    Science.gov (United States)

    Foldenauer, Ulrike; Simova-Curd, Stefka; Nitzl, Dagmar; Bogdanova, Anna; Zollinger, Eveline; Hatt, Jean-Michel

    2010-09-01

    Collection of exhaled breath condensate (EBC) and the measurement of inflammatory markers contained therein (eg, hydrogen peroxide [H2O2], leukotriene B4 [LTB4], and pH) have been reported to be noninvasive tools for the investigation of respiratory disease in various species. In this study, the EBC of clinically healthy psittacine birds (n = 15) and psittacine birds with respiratory tract disease (n = 19) was examined, and inflammatory markers contained in the EBC were analyzed and compared. Awake birds were placed in an acrylic container from which the outflow passed through a condensation system that collected the EBC. All samples were analyzed for pH, H2O2, and LTB4. The mean values for each of these components, as well as the mean volume of the total EBC, measured from the apparently healthy birds did not differ significantly from those measured in birds with signs of respiratory tract disease. However, LTB4 in the EBC of diseased birds was higher than that of the apparently healthy birds and showed a trend toward significance. The study demonstrated the establishment of a standardized method for collecting and analyzing EBC in psittacine birds and a measurement protocol for pH, H2O2, and LTB4.

  16. Exhaled breath condensate pH is influenced by respiratory droplet dilution.

    Science.gov (United States)

    Bikov, Andras; Galffy, Gabriella; Tamasi, Lilla; Lazar, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2012-12-01

    Several studies support that airway acid stress plays a role in the pathophysiology of asthma. Exhaled breath condensate pH (EBC pH) was suggested as a surrogate marker of airway acidification. The dilution of airway lining fluid (ALF) acids and bases by alveolar water may influence condensate pH, but it has not been studied yet. The aim of our study was to investigate the relationship between EBC pH and ALF dilution in EBC samples obtained from asthmatic and healthy subjects. EBC was collected from 55 asthmatic and 57 healthy subjects for pH and conductivity measurements. Fractional exhaled nitric oxide (FE(NO)) and lung function tests were also performed in asthmatic patients. EBC pH was determined after 10 min of argon deareation and the dilution was estimated by the measurement of conductivity in vacuum-treated samples. There was no difference either in EBC pH or dilution between the two groups. However, a significant relationship was found between EBC pH and dilution in both groups (p healthy groups, respectively). Our results suggest important methodological aspect indicating that EBC pH is affected by respiratory droplet dilution, and this effect should be taken into consideration when interpreting EBC pH data.

  17. Manganese in exhaled breath condensate: a new marker of exposure to welding fumes.

    Science.gov (United States)

    Hulo, Sébastien; Chérot-Kornobis, Nathalie; Howsam, Mike; Crucq, Sébastien; de Broucker, Virginie; Sobaszek, Annie; Edme, Jean-Louis

    2014-04-07

    To evaluate manganese in exhaled breath condensate (Mn-EBC) as an indicator of exposure to fumes from metal inert gas welding process. We collected EBC and urine from 17 welders and 16 unexposed control subjects after 5 days exposure. Concentrations of manganese (Mn), nickel (Ni), iron (Fe) and chromium (Cr) were measured in EBC and urine samples and correlated with cumulative exposure indices for the working week (CIW) and for the total welding years (WY), based on duration of welding activity and atmospheric metal measurements. Concentrations of Mn and Ni in EBC were significantly higher among welders than controls whereas this difference was not significant for Mn in urine. Levels of Mn and Ni in EBC were not correlated with their respective levels in urine. The linear regressions found significant positive coefficients between Mn-EBC, Ni-EBC, Ni-U and Cr-U concentrations and the cumulative exposure indices. Taking into account tobacco use, statistical analysis showed the same trends except for the relationship between Mn-U and CIW. This pilot study showed that Mn-EBC, as well as Ni-EBC, can serve as reliable indices of occupational exposure to welding fumes and provide complimentary toxicokinetic information to that provided by urine analyses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Analysis of aldehydes in human exhaled breath condensates by in-tube SPME-HPLC.

    Science.gov (United States)

    Wang, ShuLing; Hu, Sheng; Xu, Hui

    2015-11-05

    In this paper, polypyrrole/graphene (PPy/G) composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless steel (SS) tube. Based on the coating tube, a novel online in-tube solid-phase microextraction -high performance liquid chromatography (IT-SPME-HPLC) was developed and applied for the extraction of aldehydes in the human exhaled breath condensates (EBC). The hybrid PPy/G nanocomposite exhibits remarkable chemical and mechanical stability, high selectivity, and satisfactory extraction performance toward aldehyde compounds. Moreover, the proposed online IT-SPME-HPLC method possesses numerous superiorities, such as time and cost saving, process simplicity, high precision and sensitivity. Some parameters related to extraction efficiency were optimized systematically. Under the optimal conditions, the recoveries of the aldehyde compounds at three spiked concentration levels varied in the range of 85%-117%. Good linearity was obtained with excellent correlation coefficients (R(2)) being larger than 0.994. The relative standard deviations (n = 5) of the method ranged from 1.8% to 11.3% and the limits of detection were between 2.3 and 3.3 nmol L(-1). The successful application of the proposed method in human EBC indicated that it is a promising approach for the determination of trace aldehyde metabolites in complex EBC samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Serum but not exhaled breath condensate periostin level is increased in competitive athletes.

    Science.gov (United States)

    Kurowski, Marcin; Jurczyk, Janusz; Jarzębska, Marzanna; Wardzyńska, Aleksandra; Krysztofiak, Hubert; Kowalski, Marek L

    2018-01-08

    Periostin is a matricellular protein expressed by many tissues. Its release may be enhanced, among others, through mechanical stimulation of muscles and bones as well as by cytokines of allergic inflammation. Our aim was to assess periostin levels in serum and exhaled breath condensate (EBC) of professional athletes, asthmatics and healthy controls. We also sought to determine whether acute treadmill exercise influences serum and EBC periostin. Study groups included 9 competitive swimmers, 10 mild-to-moderate asthmatics and 7 healthy controls. Athletes were assessed twice (in- and off-training period) while asthmatics and controls in one time-point. Data on demographics, allergy symptoms and exercise load were acquired through Allergy Questionnaire for Athletes (AQUA) and International Physical Activity Questionnaire (IPAQ). Serum and EBC were collected before and after treadmill exercise challenge. Baseline serum periostin in swimmers during training period was significantly higher (5- to 7-fold) than in asthmatics (P = .01) and controls (P training as compared with off-training period (P load leading to stimulation, injury and regeneration of musculoskeletal tissues. Periostin may be considered marker of long-term exercise overload after confirmation in larger groups. © 2018 John Wiley & Sons Ltd.

  20. Viral colonization in exhaled breath condensate of lung cancer patients: Possible role of EBV and CMV.

    Science.gov (United States)

    Carpagnano, Giovanna E; Lacedonia, Donato; Natalicchio, Maria Iole; Cotugno, Grazia; Zoppo, Luigi; Martinelli, Domenico; Antonetti, Raffaele; Foschino-Barbaro, Maria Pia

    2016-07-16

    Today, an increasing interest is being addressed to the viral etiology of lung tumors. As a consequence, research efforts are currently being directed to the identification of the new viruses involved in lung carcinogenesis toward which the screening programs could be directed. The aim of this study was to investigate the airways colonization by the Epstein-Barr virus (EBV) and Citomegalovirus (CMV) in patients affected by lung cancer using, as a respiratory non-invasive sample, the exhaled breath condensate (EBC). About 70 lung-cancer patients and 40 controls were enrolled. All subjects underwent bronchial brushing and EBC collection. EBV-DNA and CMV-DNA were evaluated in both samples by real-time PCR assay. They were able to detect EBV and CMV in the EBC. An increase of the EBV positivity in non-small cell lung cancer (NSCLC) patients compared with controls and of the CMV in advanced stages of lung cancer were observed. The association of the positivity of the cytology and the CMV test (in EBC or brushing) slightly increased the sensitivity of malignant diagnosis. EBV and CMV resulted detectable in the EBC. In consideration of the potential involvement of these viruses in lung cancer, which was confirmed in this study, future studies in this direction were supported. © 2016 John Wiley & Sons Ltd.

  1. Metabolomics analysis of exhaled breath condensate for discrimination between lung cancer patients and risk factor individuals.

    Science.gov (United States)

    Peralbo-Molina, A; Calderón-Santiago, M; Priego-Capote, F; Jurado-Gámez, B; Luque de Castro, M D

    2016-02-11

    The search for new clinical tests aimed at diagnosing chronic respiratory diseases is a current research line motivated by the lack of efficient screening tools and the severity of some of these pathologies. Alternative biological samples can open the door to new screening tools. A promising biofluid that is rarely used for diagnostic purposes is exhaled breath condensate (EBC), the composition of which has been inadequately studied. In this research, untargeted analysis of EBC using gas chromatography time-of-flight mass spectrometry has been applied to a cohort of patients with lung cancer (n  =  48), risk factor individuals (active smokers and ex-smokers, n  =  130) and control healthy individuals (non-smokers without respiratory diseases, n  =  61). An identical protocol was applied to the two EBC fractions provided by the sampling device (upper and central airways and distal airway) from each individual, which allowed the compositional differences between the two EBC fractions to be detected. Tentative compounds that contribute to discrimination between the three groups were identified, and a relevant role for lipids such as monoacylglycerols and squalene was found. These results could support the ability of metabolomics to go inside the study of lung cancer.

  2. Magnesium and calcium in exhaled breath condensate of children with asthma and gastroesophageal reflux disease.

    Science.gov (United States)

    Dodig, Slavica; Vlasić, Zeljka; Cepelak, Ivana; Zrinski Topić, Renata; Turkalj, Mirjana; Nogalo, Boro

    2009-01-01

    Magnesium and calcium physiologic functions are closely related. Magnesium is primarily an intracellular cation, the action of which also involves maintenance of cellular ionic balance, while influencing calcium homeostasis by blocking calcium channels. The aim of this study was to compare the concentrations of magnesium and calcium in exhaled breath condensate (EBC) of children with asthma and gastroesophageal reflux disease (GERD). EBC was collected from 66 children aged 7-14 years (23 children with acute asthma, 17 children with GERD, and 26 healthy children). Determination of magnesium and calcium concentrations was preceded by optimization and validation for low concentrations. No difference was recorded for either magnesium or calcium concentration between study groups. However, the magnesium to calcium ratio was statistically significantly lower in both GERD and asthma children as compared with control group. Study results showed the magnesium to calcium ratio to be a statistically significantly better indicator of certain pathologic changes than absolute concentration of either ion. Copyright 2009 Wiley-Liss, Inc.

  3. Prognostic Role of Exhaled Breath Condensate pH and Fraction Exhaled Nitric Oxide in Systemic Sclerosis Related Interstitial Lung Disease.

    Science.gov (United States)

    Guillen-Del Castillo, Alfredo; Sánchez-Vidaurre, Sara; Simeón-Aznar, Carmen P; Cruz, María J; Fonollosa-Pla, Vicente; Muñoz, Xavier

    2017-03-01

    Interstitial lung disease (ILD) is one of the major causes of death in systemic sclerosis (SSc). This study investigated exhaled breath (EB) and exhaled breath condensate (EBC) biomarkers in patients with SSc and analyzed their role as a prognostic tool in SSc-related ILD. Fraction exhaled nitric oxide (FeNO) and exhaled carbon monoxide (eCO) measured in EB, together with pH, nitrite, nitrate and interleukin-6 levels measured in EBC were prospectively analyzed in 35 patients with SSc. Twelve patients had established ILD by chest high-resolution computed tomography (HRCT), and 23 patients showed no evidence of ILD. EB and EBC biomarkers were determined at inclusion, and pulmonary function tests were annually performed during 4 years of follow-up. No differences at baseline biomarkers levels were found between groups. In all patients studied, low EBC pH levels were associated with a decreased diffusing capacity for carbon monoxide (DLCO) during follow-up. Low FeNO levels were correlated with lower forced vital capacity (FVC) at baseline, 4years of follow-up and with a decrease in FVC and DLCO during monitoring. Among ILD patients, high eCO levels were correlated with lower baseline FVC. In the global cohort, a worse progression-free survival was identified in patients with EBC pH values lower than 7.88 and FeNO levels lower than 10.75ppb (Log Rank P=.03 and P<.01, respectively). EB and EBC could help to detect patients likely to present a deterioration on lung function during follow up. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  5. Eicosanoids in exhaled breath condensates in the assessment of childhood asthma.

    Science.gov (United States)

    Kiełbasa, Bogumila; Moeller, Alexander; Sanak, Marek; Hamacher, Joerg; Hutterli, Monika; Cmiel, Adam; Szczeklik, Andrew; Wildhaber, Johannes H

    2008-11-01

    The value of measurements of eicosanoids in exhaled breath condensate (EBC) for the evaluation of childhood asthma is still inconclusive most likely because of the limited value of the methods used. In this case-control study in 48 asthmatic and 20 healthy children, we aimed to characterize the baseline profile of the inflammatory mediators cysteinyl leukotrienes (cysLTs), 9(alpha)11(beta)PGF(2), PGE(2), PGF(2alpha), 8-isoprostane (8-iso-PGF(2alpha)) within EBC in asthmatic compared with healthy children using new methods. In addition, we investigated their relation to other inflammatory markers. The assessment included collection of EBC, measurement of fractional exhaled nitric oxide (FE(NO)) and evaluation of urinary excretion of leukotriene E(4.) cysLTs were measured directly in EBC by radioimmunoassay and prostanoids were measured using gas chromatography negative-ion chemical ionization mass spectrometry. Only cysLT levels were significantly higher in asthmatic compared with healthy children (p = 0.002). No significant differences in cysLTs were found between steroid naïve and patients receiving inhaled corticosteroids. In contrast, FE(NO) was significantly higher in steroid naïve compared with steroid-treated asthmatic and healthy children (p = 0.04 and 0.024, respectively). The diagnostic accuracy of cysLTs in EBC for asthma was 73.6% for the whole group and 78.2% for steroid-naïve asthmatic children. The accuracy to classify asthmatic for FE(NO) was poor (62.9%) for the whole group, but improved to 79.9% when only steroid-naïve asthmatic children were taken into consideration. cysLTs in EBC is an inflammatory marker which distinguishes asthmatics, as a whole group, from healthy children.

  6. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, Matteo [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Caglieri, Andrea [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); Poli, Diana [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Vettori, Maria Vittoria [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Corradi, Massimo [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Apostoli, Pietro [Laboratory of Industrial Hygiene, Department of Experimental and Applied Medicine, University of Brescia (Italy); Mutti, Antonio [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy)]. E-mail: antonio.mutti@unipr.it

    2006-03-15

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI)

  7. Metabolic Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by 1H Magnetic Resonance Spectroscopy: A Feasibility Study.

    Science.gov (United States)

    Ahmed, Naseer; Bezabeh, Tedros; Ijare, Omkar B; Myers, Renelle; Alomran, Reem; Aliani, Michel; Nugent, Zoann; Banerji, Shantanu; Kim, Julian; Qing, Gefei; Bshouty, Zoheir

    2016-01-01

    Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1H magnetic resonance spectroscopy (MRS) of sputum and exhaled breath condensate (EBC), as a noninvasive tool, can identify metabolic biomarkers of lung cancer. Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer (n = 10) and patients with benign respiratory conditions (n = 10). Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR) spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM) than in patients with benign conditions (0.067 mM; P = 0.028). In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N-acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88%) as well as in the cytologically confirmed sputum samples (86%) of lung cancer patients. Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence.

  8. Clinical Effects, Exhaled Breath Condensate pH and Exhaled Nitric Oxide in Humans After Ethyl Acrylate Exposure.

    Science.gov (United States)

    Hoffmeyer, F; Bünger, J; Monsé, C; Berresheim, H; Jettkant, B; Beine, A; Brüning, T; Sucker, K

    Ethyl acrylate is an irritant known to affect the upper airways and eyes. An increase of the eye blink frequency in humans was observed during exposure to 5 ppm. Studies on the lower airways are scant and our study objective was the evaluation of pH in exhaled breath condensate (EBC-pH) and nitric oxide in exhaled breath (FeNO) as markers of inflammation. Sixteen healthy volunteers were exposed for 4 h to ethyl acrylate at a concentration of 5 ppm and to sham (0.05 ppm) in an exposure laboratory. Clinical irritation symptoms, EBC-pH (at a pCO2 of 5.33 kPa) and FeNO were assessed before and after exposure. Differences after ethyl acrylate exposure were adjusted for those after sham exposure. 5 ppm ethyl acrylate induced clinical signs of local irritation in the nose and eyes, but not in lower airways. Exposure produced a subtle, but statistically significant, decrease in breathing frequency (1 breath/min; p = 0.017) and a lower EBC-pH (by 0.045 units; p = 0.037). Concerning FeNO, we did not observe significant changes compared to sham exposure. We conclude that local effects induced by 5 ppm ethyl acrylate consist of sensory irritation of eyes and nose. In addition, acute ethyl acrylate exposure to 5 ppm resulted in a net decrease of EBC-pH. Whether that can be interpreted in terms of additional lower airway irritation or already inflammatory alterations set in needs further investigations.

  9. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Science.gov (United States)

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  10. Effects of occupational exposure to poorly soluble forms of beryllium on biomarkers of pulmonary response in exhaled breath of workers in machining industries.

    Science.gov (United States)

    Radauceanu, Anca; Grzebyk, Michel; Edmé, Jean-Louis; Chérot-Kornobis, Nathalie; Rousset, Davy; Dziurla, Mathieu; De Broucker, Virginie; Hédelin, Guy; Sobaszek, Annie; Hulo, Sébastien

    2016-11-30

    To analyze the effects of occupational exposure to poorly soluble forms of beryllium (Be) on biomarkers of pulmonary inflammation using exhaled breath condensate (EBC) in workers employed in machining industries. Twenty machining operators were compared to 16 controls. The individual exposure to Be was assessed from the work history with several indices of exposure calculated on the basis of task-exposures matrices developed for each plant using historical air measurements. Clinical evaluation consisted in a medical questionnaire, measurements of biomarkers in EBC (tumor necrosis factor alpha (TNF-α), total nitrogen oxides (NOx)), measurement of the fraction of exhaled nitric oxide (FeNO) and resting spirometry. Adjusted multiple linear regressions were used to study the effect of the exposure to Be on inflammatory biomarkers. Levels of TNF-α and NOx in EBC were not statistically different between exposed and controls. We found a statistically significant relationship between levels of TNF-α in EBC and both index of cumulative exposure and duration of exposure to Be. No other statistically significant relationships were found between exposure to Be and pulmonary response. Our results suggest that machining-related exposure to Be is related to pulmonary inflammation involving TNF-α. These findings must be confirmed by larger studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Investigation of the climatic extremes influence on the humane adaptive capacity by mass spectrometric analysis of exhaled breath condensate

    Science.gov (United States)

    Ryabokon, Anna; Larina, Irina; Kononikhin, Alexey; Starodubtceva, Nataliia; Popov, Igor; Nikolaev, Eugene; Varfolomeev, Sergey

    Global climate change, which causes abnormal fluctuations in temperature and rainfall, has adverse effects on human health. Particularly people suffer with cardiovascular and respiratory system disease. Our research was concentrated on the changes in the regulation and adaptation systems of human organism related to hyperthermia and polluted air influence. Healthy individuals with the age from 22 to 45 years were isolated during 30 days in the ground based experimental facility located at Institute of medico-biological problems RAS (Moscow, Russia). In the ground based facility artificially climatic conditions of August, 2010 in Moscow were created. Exhaled breath condensate was collected before and after isolation by R-Tube collector, freeze dried, treated by trypsin and analyzed by nanoflow LC-MS/MS with a 7-Tesla LTQ-FT Ultra mass spectrometer (Thermo Electron, Bremen, Germany). Database search was performed using Mascot Server 2.2 software (Matrix Science, London, UK). Investigation of exhaled breath condensate (EBC) collected from participants of the 30 days isolation with hyper thermic and polluted air climate conditions was performed. After isolation reduction of the protein number was observed. Loss endothelial C receptor precursor - the main physiological anticoagulant - correlate with the clinical data of physicians to increase the propensity to thrombosis. Also COP9 signalosome protein, positive regulator of ubiquitin was identified in all EBC samples before isolation and was not detected for more than a half of donors after isolation. This phenomena may be due to violation of ubiquitin protection system of the cells from harmful proteins. During isolation the air was cleared from microdisperse particles.

  12. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    Science.gov (United States)

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.

  13. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics

    Science.gov (United States)

    Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.

    2017-08-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.

  14. Multiplex analysis inflammatory cytokines in human blood, breath condensate, and urine matrices

    Science.gov (United States)

    Scientific evidence suggests that inflammation is associated with human health effects and health endpoints, yet most studies have focused on human populations that are already considered “unhealthy”.  As such, it is pertinent to measure inflammatory biomarkers in human biologica...

  15. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    Science.gov (United States)

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the

  16. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Mokhtari, Fozieh; Shadjou, Nasrin; Eftekhari, Aziz; Mokhtarzadeh, Ahad; Jouyban-Gharamaleki, Vahid; Mahboob, Soltanali

    2017-06-01

    This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. Copyright © 2017. Published by Elsevier B.V.

  17. Arterial Pressure Variation as a Biomarker of Preload Dependency in Spontaneously Breathing Subjects - A Proof of Principle.

    Science.gov (United States)

    Bronzwaer, Anne-Sophie G T; Ouweneel, Dagmar M; Stok, Wim J; Westerhof, Berend E; van Lieshout, Johannes J

    2015-01-01

    Pulse (PPV) and systolic pressure variation (SPV) quantify variations in arterial pressure related to heart-lung interactions and have been introduced as biomarkers of preload dependency to guide fluid treatment in mechanically ventilated patients. However, respiratory intra-thoracic pressure changes during spontaneous breathing are considered too small to affect preload and stroke volume sufficiently for the detection by PPV and/or SPV. This study addressed the effects of paced breathing and/or an external respiratory resistance on PPV and SPV in detecting preload dependency in spontaneously breathing subjects. In 10 healthy subjects, hemodynamic and respiratory parameters were evaluated during progressive central hypovolemia (head-up tilt). Breathing conditions were varied by manipulating breathing frequency and respiratory resistance. Subjects responding with a reduction in stroke volume index ≥15% were classified as having developed preload dependency. The ability for PPV and SPV to predict preload dependency was expressed by the area under the ROC curve (AUC). A breathing frequency at 6/min increased the PPV (16±5% vs. 10±3%, pvariations in non-ventilated subjects.

  18. Volatile Biomarkers in Breath Associated With Liver Cirrhosis — Comparisons of Pre- and Post-liver Transplant Breath Samples

    Directory of Open Access Journals (Sweden)

    R. Fernández del Río

    2015-09-01

    Conclusions: Limonene, methanol and 2-pentanone are breath markers for a cirrhotic liver. This study raises the potential to investigate these volatiles as markers for early-stage liver disease. By monitoring the wash-out of limonene following transplant, graft liver function can be non-invasively assessed.

  19. Arterial Pressure Variation as a Biomarker of Preload Dependency in Spontaneously Breathing Subjects - A Proof of Principle.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie G T Bronzwaer

    Full Text Available Pulse (PPV and systolic pressure variation (SPV quantify variations in arterial pressure related to heart-lung interactions and have been introduced as biomarkers of preload dependency to guide fluid treatment in mechanically ventilated patients. However, respiratory intra-thoracic pressure changes during spontaneous breathing are considered too small to affect preload and stroke volume sufficiently for the detection by PPV and/or SPV. This study addressed the effects of paced breathing and/or an external respiratory resistance on PPV and SPV in detecting preload dependency in spontaneously breathing subjects.In 10 healthy subjects, hemodynamic and respiratory parameters were evaluated during progressive central hypovolemia (head-up tilt. Breathing conditions were varied by manipulating breathing frequency and respiratory resistance. Subjects responding with a reduction in stroke volume index ≥15% were classified as having developed preload dependency. The ability for PPV and SPV to predict preload dependency was expressed by the area under the ROC curve (AUC.A breathing frequency at 6/min increased the PPV (16±5% vs. 10±3%, p<0.001 and SPV (9±3% vs. 5±2%, p<0.001 which was further enhanced by an expiratory resistance (PPV: 19±3%, p = 0.025 and SPV: 10±2%, p = 0.047. These respiratory modifications, compared to free breathing, enhanced the predictive value of PPV with higher accuracy (AUC: 0.92 vs. 0.46.Under conditions of progressive central hypovolemia, the application of an external respiratory resistance at a breathing frequency of 6/min enhanced PPV and SPV and is worth further study for detection of preload dependency from arterial pressure variations in non-ventilated subjects.

  20. Exhaled Breath Condensate Detects Baseline Reductions in Chloride and Increases in Response to Albuterol in Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    Courtney M. Wheatley

    2013-01-01

    Full Text Available Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF lung disease. A potential application of exhaled breath condensate (EBC collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl − , DLCO and SpO 2 were lower in CF (n = 16 compared to healthy participants (n = 16. EBC Cl − increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO 2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl − in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation.

  1. Diseño y evaluación de un equipo para obtener aire espirado condensado Design and evaluation of a device for collecting exhaled breath condensate

    Directory of Open Access Journals (Sweden)

    Oscar Florencio Araneda Valenzuela

    2009-01-01

    Full Text Available El análisis de muestras de aire espirado condensado ha cobrado gran relevancia en los últimos años como método no invasivo de estudio de la fisiología y las enfermedades de origen pulmonar. En el presente trabajo se describe un equipo para tomar muestras de aire espirado condensado de bajo costo, fácil de fabricar, de transportar al terreno y que permite tomar muestras en forma simultánea. La concentración de metabolitos relativos a procesos inflamatorios y al daño oxidativo (pH, peróxido de hidrógeno y nitrito de muestras de aire espirado condensado obtenido con este equipo son comparables a los reportados con otros previamente.In recent years, the analysis of exhaled breath condensate samples has been given great weight as a noninvasive methodology of studying physiology and lung diseases. The present study describes a device for measuring exhaled breath condensate that is affordable, easily constructed, portable and suitable for use in the field, as well as allowing the collection of simultaneous samples. The results obtained with this device in terms of the concentrations of pH, peroxide oxide and nitrite, metabolites related to inflammatory and oxidative damage, in exhaled breath condensate samples are comparable to those obtained with other devices previously described.

  2. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates.

    Science.gov (United States)

    Huang, Jing; Deng, Hongtao; Song, Dandan; Xu, Hui

    2015-06-09

    In the current study, we introduced a novel polystyrene/graphene (PS/G) composite nanofiber film for thin film microextraction (TFME) for the first time. The PS/G nanofiber film was fabricated on the surface of filter paper by a facile electrospinning method. The morphology and extraction performance of the resultant composite film were investigated systematically. The PS/G nanofiber film exhibited porous fibrous structure, large surface area and strong hydrophobicity. A new thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed for the determination of six aldehydes in human exhaled breath condensates. The method showed high enrichment efficiency and fast analysis speed. Under the optimal conditions, the linear ranges of the analytes were in the range of 0.02-30 μmol L(-1) with correlation coefficients above 0.9938, and the recoveries were between 79.8% and 105.6% with the relative standard deviation values lower than 16.3% (n=5). The limits of quantification of six aldehydes ranged from 13.8 to 64.6 nmol L(-1). The established method was successfully applied for the quantification of aldehyde metabolites in exhaled breath condensates of lung cancer patients and healthy people. Taken together, the TFME-HPLC method provides a simple, rapid, sensitive, cost-effective, non-invasion approach for the analysis of linear aliphatic aldehydes in human exhaled breath condensates. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Stable isotope biomarker breath tests for human metabolic and infectious diseases: a review of recent patent literature.

    Science.gov (United States)

    Timmins, Graham S

    2016-12-01

    Stable isotope breath tests can rapidly and quantitatively report metabolic phenotypes and disease in both humans and microbes in situ. The labelled compound is administered and acted upon by human or microbial metabolism, producing a labelled gas that is detected in exhaled breath. Areas covered: This review details the unique advantages (and disadvantages) of phenotypic stable isotope based breath tests. A review of recent US patent applications and prosecutions since 2010 is conducted. Finally, current clinical trials, product pipelines and approved products are discussed. Expert opinion: Stable isotope breath tests offer new approaches for rapid and minimally invasive detection and study of metabolic phenotypes, both human and microbial. The patent literature has developed considerably in the last 6 years, with over 30 patent applications made. Rates of issuance remain high, although rejections citing 35 U.S.C. §101(subject matter eligibility), §102 (novelty), §103 (obviousness) and §112 (description, enablement and best mode) have occurred. The prior art is significantly greater for human metabolism than microbial, and may drive differing rates of future issuance. These biomarker and diagnostic tools can enable optimization of drug doses, diagnosis of metabolic disease and its progression, and detection of infectious disease and optimize its treatment.

  4. Plasma and exhaled breath condensate nitrite-nitrate level in relation to environmental exposures in adults in the EGEA study.

    Science.gov (United States)

    Rava, Marta; Varraso, Raphäelle; Decoster, Brigitte; Huyvaert, Hélène; Le Moual, Nicole; Jacquemin, Bénédicte; Künzli, Nino; Kauffmann, Francine; Zerimech, Farid; Matran, Régis; Nadif, Rachel

    2012-10-15

    This study evaluated the associations between biological markers in the nitrate-nitrite-NO pathway and four environmental exposures among subjects examined in the second survey (2003-2007) of the French Epidemiological study on Genetics and Environment of Asthma (EGEA). Total nitrite and nitrate (NO(2)(-) /NO(3)(-)) levels were measured both in plasma and in exhaled breath condensate (EBC) in 949 adults. Smoking, diet and exposure to chlorine products were assessed using standardized questionnaires. Exposure to air pollutants was estimated by using geostatistical models. All estimates were obtained with generalized estimating equations for linear regression models. Median levels of NO(2)(-)/NO(3)(-) were 36.3 μM (1st-3rd quartile: 25.7, 51.1) in plasma and 2.0 μmol/mg proteins (1st-3rd quartile 0.9, 3.9) in EBC. After adjustment for asthma, age, sex and menopausal status, plasma NO(2)(-)/NO(3)(-) level increased with leafy vegetable consumption (above versus below median=0.04 (95%CI: 0.001, 0.07)) and decreased in smokers (versus non/ex-smokers=-0.08 (95%CI: -0.11, -0.04). EBC NO(2)(-)/NO(3)(-) level decreased in smokers (-0.08 (95%CI: -0.16, -0.001)) and with exposure to ambient O(3) concentration (above versus below median=-0.10 (95%CI: -0.17, -0.03)). Cured meat, chlorine products, PM(10) and NO(2) concentrations were not associated with NO(2)(-)/NO(3)(-) levels. Results suggest that potential modifiable environmental and behavioral risk factors may modify NO(2)(-)/NO(3)(-) levels in plasma and EBC according to the route of exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The simultaneous detection of trivalent & hexavalent chromium in exhaled breath condensate: A feasibility study comparing workers and controls.

    Science.gov (United States)

    Leese, Elizabeth; Morton, Jackie; Gardiner, Philip H E; Carolan, Vikki A

    2017-04-01

    The analytical method outlined in this feasibility study has been used to show that trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) can be detected and measured in exhaled breath condensate (EBC) samples. EBC samples and urine samples were collected from a cohort of 58 workers occupationally exposed to hexavalent chromium compounds and 22 unexposed volunteers (control group). Levels of Cr(III) and Cr(VI) were determined in EBC samples and total chromium levels were determined in urine samples. Pre and post working week samples for both EBC and urine were collected in tandem. Total chromium in urine samples was analysed by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of Cr(III) and Cr(VI) in EBC samples used a hyphenated micro liquid chromatography (μLC) system coupled to an ICP-MS. Separation was achieved using an anion exchange micro-sized column. The results showed that the occupationally exposed workers had significantly higher levels of Cr(III) and Cr(VI) in their EBC samples than the control group, as well as higher levels of total chromium in their urine samples. However, for the exposed workers no significant difference was found between pre and post working week EBC samples for either Cr(III) or Cr(VI). This study has established that Cr(III) and Cr(VI) can simultaneously be detected and measured in 'real' EBC samples and will help in understanding inhalation exposure. Crown Copyright © 2016. Published by Elsevier GmbH. All rights reserved.

  6. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics.

    Science.gov (United States)

    Mastalerz, Lucyna; Januszek, Rafał; Kaszuba, Marek; Wójcik, Krzysztof; Celejewska-Wójcik, Natalia; Gielicz, Anna; Plutecka, Hanna; Oleś, Krzysztof; Stręk, Paweł; Sanak, Marek

    2015-09-01

    Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2015-03-01

    Full Text Available Recent advancements in the use of electronic-nose (e-nose devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.

  8. Fractionated breath condensate sampling: H2O2 concentrations of the alveolar fraction may be related to asthma control in children

    Directory of Open Access Journals (Sweden)

    Trischler Jordis

    2012-02-01

    Full Text Available Abstract Background Asthma is a chronic inflammatory disease of the airways but recent studies have shown that alveoli are also subject to pathophysiological changes. This study was undertaken to compare hydrogen peroxide (H2O2 concentrations in different parts of the lung using a new technique of fractioned breath condensate sampling. Methods In 52 children (9-17 years, 32 asthmatic patients, 20 controls measurements of exhaled nitric oxide (FENO, lung function, H2O2 in exhaled breath condensate (EBC and the asthma control test (ACT were performed. Exhaled breath condensate was collected in two different fractions, representing mainly either the airways or the alveoli. H2O2 was analysed in the airway and alveolar fractions and compared to clinical parameters. Results The exhaled H2O2 concentration was significantly higher in the airway fraction than in the alveolar fraction comparing each single pair (p = 0.003, 0.032 and 0.040 for the whole study group, the asthmatic group and the control group, respectively. Asthma control, measured by the asthma control test (ACT, correlated significantly with the H2O2 concentrations in the alveolar fraction (r = 0.606, p = 0.004 but not with those in the airway fraction in the group of children above 12 years. FENO values and lung function parameters did not correlate to the H2O2 concentrations of each fraction. Conclusion The new technique of fractionated H2O2 measurement may differentiate H2O2 concentrations in different parts of the lung in asthmatic and control children. H2O2 concentrations of the alveolar fraction may be related to the asthma control test in children.

  9. Breath Ketone Testing: A New Biomarker for Diagnosis and Therapeutic Monitoring of Diabetic Ketosis

    Directory of Open Access Journals (Sweden)

    Yue Qiao

    2014-01-01

    Full Text Available Background. Acetone, β-hydroxybutyric acid, and acetoacetic acid are three types of ketone body that may be found in the breath, blood, and urine. Detecting altered concentrations of ketones in the breath, blood, and urine is crucial for the diagnosis and treatment of diabetic ketosis. The aim of this study was to evaluate the advantages of different detection methods for ketones, and to establish whether detection of the concentration of ketones in the breath is an effective and practical technique. Methods. We measured the concentrations of acetone in the breath using gas chromatography-mass spectrometry and β-hydroxybutyrate in fingertip blood collected from 99 patients with diabetes assigned to groups 1 (−, 2 (±, 3 (+, 4 (++, or 5 (+++ according to urinary ketone concentrations. Results. There were strong relationships between fasting blood glucose, age, and diabetic ketosis. Exhaled acetone concentration significantly correlated with concentrations of fasting blood glucose, ketones in the blood and urine, LDL-C, creatinine, and blood urea nitrogen. Conclusions. Breath testing for ketones has a high sensitivity and specificity and appears to be a noninvasive, convenient, and repeatable method for the diagnosis and therapeutic monitoring of diabetic ketosis.

  10. Phosgene- and chlorine-induced acute lung injury in rats: comparison of cardiopulmonary function and biomarkers in exhaled breath.

    Science.gov (United States)

    Luo, Sa; Trübel, Hubert; Wang, Chen; Pauluhn, Jürgen

    2014-12-04

    This study compares changes in cardiopulmonary function, selected endpoints in exhaled breath, blood, and bronchoalveolar lavage fluid (BAL) following a single, high-level 30-min nose-only exposure of rats to chlorine and phosgene gas. The time-course of lung injury was systematically examined up to 1-day post-exposure with the objective to identify early diagnostic biomarkers suitable to guide countermeasures to accidental exposures. Chlorine, due to its water solubility, penetrates the lung concentration-dependently whereas the poorly water-soluble phosgene reaches the alveolar region without any appreciable extent of airway injury. Cardiopulmonary endpoints were continually recorded by telemetry and barometric plethysmography for 20h. At several time points blood was collected to evaluate evidence of hemoconcentration, changes in hemostasis, and osteopontin. One day post-exposure, protein, osteopontin, and cytodifferentials were determined in BAL. Nitric oxide (eNO) and eCO2 were non-invasively examined in exhaled breath 5 and 24h post-exposure. Chlorine-exposed rats elaborated a reflexively-induced decreased respiratory rate and bradycardia whereas phosgene-exposed rats developed minimal changes in lung function but a similar magnitude of bradycardia. Despite similar initial changes in cardiac function, the phosgene-exposed rats showed different time-course changes of hemoconcentration and lung weights as compared to chlorine-exposed rats. eNO/eCO2 ratios were most affected in chlorine-exposed rats in the absence of any marked time-related changes. This outcome appears to demonstrate that nociceptive reflexes with changes in cardiopulmonary function resemble typical patterns of mixed airway-alveolar irritation in chlorine-exposed rats and alveolar irritation in phosgene-exposed rats. The degree and time-course of pulmonary injury was reflected best by eNO/eCO2 ratios, hemoconcentration, and protein in BAL. Increased fibrin in blood occurred only in chlorine

  11. The application of chromatographic breath analysis in the search of volatile biomarkers of chronic kidney disease and coexisting type 2 diabetes mellitus.

    Science.gov (United States)

    Grabowska-Polanowska, B; Skowron, M; Miarka, P; Pietrzycka, A; Śliwka, I

    2017-08-15

    Chromatographic studies on breath composition are aimed at finding volatile markers useful for medical diagnostics or in screening investigations. Studies leading to the development of screening breath tests are especially important for the diagnostics of chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). The aim of the presented study was to confirm diagnostic usefulness of chosen volatile compounds detected in breath, which are suggested as potential biomarkers of renal dysfunction and diabetes. Breath analysis were carried out in three groups: 10 healthy volunteers, 10 patients with CKD and 10 patients with CKD and T2DM. All exhaled air samples were analyzed using gas chromatograph (Agilent 6890GC) coupled with mass spectrometer (5975MSD). Thermal desorption was applied as the enrichment method. TMA was detected only in CKD patients. Higher breath concentrations of methanethiol (MeSH) were observed in CKD patients with coexisting diabetes than in patients with renal dysfunction only or in the healthy group. There was a tendency of increasing MeSH concentration in breath with increasing total glutathione in plasma (r=0.53, p=0.0026). Also, a trend of increasing dimethylsulfide (DMS) levels detected in breath was noticed with an increase of hydrogen sulfide concentration in plasma (r=0.74; p=0.00001) as well as with aspartate aminotransferase (AST), (r=0.61; p=0.001). The presented results suggest the possibility of applying TMA, MeSH, and DMS detection in breath as diagnostic methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Disordered breathing during sleep and exercise in idiopathic pulmonary fibrosis and the role of biomarkers.

    Science.gov (United States)

    Lee, R N C; Kelly, E; Nolan, G; Eigenheer, S; Boylan, D; Murphy, D; Dodd, J; Keane, M P; McNicholas, W T

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) patients report fatigue, possibly reflecting sleep disturbance, but little is known about sleep-related changes. We compared ventilation and gas exchange during sleep and exercise in a cohort of IPF patients, and evaluated associations with selected biological markers. Twenty stable IPF patients (aged 67.9 ± 12.3 [SD]) underwent overnight polysomnography following an acclimatization night. Cardiopulmonary exercise testing was performed and inflammatory markers measured including TNF-α, IL-6, CXCL8, C-C motif ligand 18 (CCL-18) and C-reactive protein (CRP) RESULTS: Nine patients had sleep-disordered breathing (SDB) with an apnea-hypopnea frequency (AHI) ≥ 5/h, but only two had Epworth sleepiness score ≥ 10, thus having an obstructive sleep apnea syndrome. Sleep quality was poor. Transcutaneous carbon dioxide tension (PtcCO2) rose by 2.56 ± 1.59 kPa overnight (P = 0.001), suggesting hypoventilation. Oxygen saturation (SaO2) was lower during sleep than exercise (P exercise variables correlated with resting pulmonary function. CCL-18 and CRP levels were elevated and correlated with PtcCO2 rise during sleep (P sleep SaO2 and oxygen uptake (VO2) during exercise (P sleep than exercise; thus, nocturnal pulse oxymetry could be included in clinical assessment. CCL-18 and CRP levels correlate with physiological markers of fibrosis. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    Science.gov (United States)

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  14. Increased cys-leukotrienes in exhaled breath condensate and decrease of PNIF after intranasal allergen challenge support the recognition of allergic rhinitis in children.

    Science.gov (United States)

    Zagórska, Wioletta; Grzela, Katarzyna; Kulus, Marek; Sobczyński, Maciej; Grzela, Tomasz

    2013-08-01

    Exhaled breath condensate (EBC) contains various mediators of inflammation. Since their concentrations correlate with severity of inflammatory response, EBC assessment allows non-invasive detection of various respiratory tract diseases and enables monitoring of their progression or treatment effectiveness. In this study, authors evaluate the usefulness of cysteinyl leukotrienes (cysLT) measurement in EBC, as non-invasive diagnostic markers of allergic rhinitis in children. It has been found that the assessment of cysLT in EBC, when performed out of the natural allergen exposure, can discriminate between healthy and allergic rhinitis individuals, with sensitivity 87.8% and specificity 76.4%, at the threshold level 39.05 pg/ml. The change of peak nasal inspiratory flow (ΔPNIF), measured before and after intranasal allergen challenge allowed recognition of healthy/allergic rhinitis-suffering individuals with sensitivity 76.8% and specificity 78.6%, at the threshold level of -3.2 l/min. When ΔPNIF assessment was combined with the measurement of cysLT in EBC, the sensitivity of such diagnostic approach reached 100% and its specificity increased up to 84.6%. The proposed algorithm was found to sufficiently discriminate between allergic rhinitis-suffering and healthy children, however, its clinical usefulness especially in young children requires further studies.

  15. The effect of allergen-induced bronchoconstriction on concentration of 5-oxo-ETE in exhaled breath condensate of house dust mite-allergic patients.

    Science.gov (United States)

    Kowal, K; Gielicz, A; Sanak, M

    2017-10-01

    Arachidonic acid metabolites regulate several aspects of airway function including inflammation, muscle contraction and mucous secretion. The aim of this study was to evaluate concentration of selected 5-lipoxygenase- and cyclooxygenase-derived eicosanoids in exhaled breath condensate (EBC) during allergen-induced bronchoconstriction. The study was performed on 24 allergic rhinitis/asthma patients sensitized to a house dust mite (HDM) Dermatophagoides pteronyssinus (Dp) and 13 healthy controls (HCs). Bronchial challenge with Dp extract was performed only in the allergic patients. EBC samples were collected before (T0 ) and during Dp-induced bronchoconstriction (TEAR ). Eicosanoid concentration was measured using HPLC-tandem mass spectrometry. Significant bronchoconstriction after Dp challenge was demonstrated in 15 patients (Rs), while in 9 patients (NRs) no asthmatic response could be detected. At T0 the most abundant eicosanoids in EBC of HDM-allergic patients were LTB4 and 5-oxo-ETE, while in HCs EBC concentration of LTB4 was significantly greater than that of 5-oxo-ETE. Allergen challenge resulted in significant increase in EBC concentration of 5-oxo-ETE, LTD4 and 8-iso-PGE2 only in Rs. At TEAR , the relative change of 5-oxo-ETE concentration in EBC correlated with decrease of peripheral blood eosinophilia (R = -0.774; P = .0012). Moreover, the relative increase of 5-oxo-ETE in EBC at TEAR significantly correlated with the severity of the subsequent late asthmatic response (R = 0.683, P = .007). Our study demonstrates significant up-regulation of 5-oxo-ETE synthesis in HDM-allergic patients and indicates possible involvement of that mediator in the pathogenesis of allergic asthma. © 2017 John Wiley & Sons Ltd.

  16. Investigation of acetone, butanol and carbon dioxide as new breath biomarkers for convenient and noninvasive diagnosis of obstructive sleep apnea syndrome.

    Science.gov (United States)

    Bayrakli, Ismail; Öztürk, Önder; Akman, Hatice

    2016-12-01

    The objective of the present study was to investigate whether analysis of carbon dioxide, acetone and/or butanol present in human breath can be used as a simple and noninvasive diagnosis method for obstructive sleep apnea syndrome (OSAS). For this purpose, overnight changes in the concentrations of these breath molecules were measured before and after sleep in 10 patients who underwent polysomnography and were diagnosed with OSAS, and were compared with the levels of these biomarkers determined after sleep in 10 healthy subjects. The concentrations of exhaled carbon dioxide were measured using external cavity laser-based off-axis cavity enhanced absorption spectroscopy, whereas the levels of exhaled acetone and butanol were determined using thermal desorption gas chromatography mass spectrometry. We observed no significant changes in the levels of exhaled acetone and carbon dioxide in OSAS patients after sleep compared with pre-sleep values and compared with those in healthy control subjects. However, for the first time, to our knowledge, analyses of expired air showed an increased concentration of butanol after sleep compared with that before sleep and compared with that in healthy subjects. These results suggest that butanol can be established as a potential biomarker to enable the convenient and noninvasive diagnosis of OSAS in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Cellular respiration, metabolomics and the search for illicit drug biomarkers in breath: report from PittCon 2017

    Science.gov (United States)

    The annual Pittcon meeting is a convenient venue for gathering together a wide range of researchers and analytical equipment manufacturers that may both provide and gain benefit from the more focused topics of breath research. Members of IABR have regularly participated in Pittco...

  18. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma.

    Science.gov (United States)

    Kumar, Sacheen; Huang, Juzheng; Abbassi-Ghadi, Nima; Mackenzie, Hugh A; Veselkov, Kirill A; Hoare, Jonathan M; Lovat, Laurence B; Španěl, Patrik; Smith, David; Hanna, George B

    2015-12-01

    The present study assessed whether exhaled breath analysis using Selected Ion Flow Tube Mass Spectrometry could distinguish esophageal and gastric adenocarcinoma from noncancer controls. The majority of patients with upper gastrointestinal cancer present with advanced disease, resulting in poor long-term survival rates. Novel methods are needed to diagnose potentially curable upper gastrointestinal malignancies. A Profile-3 Selected Ion Flow Tube Mass Spectrometry instrument was used for analysis of volatile organic compounds (VOCs) within exhaled breath samples. All study participants had undergone upper gastrointestinal endoscopy on the day of breath sampling. Receiver operating characteristic analysis and a diagnostic risk prediction model were used to assess the discriminatory accuracy of the identified VOCs. Exhaled breath samples were analyzed from 81 patients with esophageal (N = 48) or gastric adenocarcinoma (N = 33) and 129 controls including Barrett's metaplasia (N = 16), benign upper gastrointestinal diseases (N = 62), or a normal upper gastrointestinal tract (N = 51). Twelve VOCs-pentanoic acid, hexanoic acid, phenol, methyl phenol, ethyl phenol, butanal, pentanal, hexanal, heptanal, octanal, nonanal, and decanal-were present at significantly higher concentrations (P curve using these significant VOCs to discriminate esophageal and gastric adenocarcinoma from those with normal upper gastrointestinal tracts was 0.97 and 0.98, respectively. The area under the ROC curve for the model and validation subsets of the diagnostic prediction model was 0.92 ± 0.01 and 0.87 ± 0.03, respectively. Distinct exhaled breath VOC profiles can distinguish patients with esophageal and gastric adenocarcinoma from noncancer controls.

  19. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Bayrakli, Ismail; Akman, Hatice

    2015-03-01

    A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.

  20. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS.

    Science.gov (United States)

    Jalali, Mahdi; Zare Sakhvidi, Mohammad Javad; Bahrami, Abdulrahman; Berijani, Nima; Mahjub, Hussein

    2016-01-01

    Silicosis is considered an oxidative stress related disease that can lead to the development of lung cancer. In this study, our purpose was to analysis of volatile organic compounds (VOCs) in the exhaled breath of workers exposed to silica containing dust and compare peak area of these compounds with silicosis patients and healthy volunteers (smokers and nonsmokers) groups. In this cross sectional case-control study, the exhaled breath of 69 subjects including workers exposed to silica (n=20), silicosis patient (n=4), healthy non-smoker (n=20) and healthy smoker (n=25) were analyzed. We collected breath samples using 3-liter Tedlar bags. The VOCs were extracted with solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Personal exposure intensity was measured according to NIOSH 7601 method. Respiratory parameters were measured using spirometry. Seventy percent and 100% of the exposures to crystalline silica dust exceeded from 8 h TWA ACGIH TLVs in case and positive control groups, respectively. A significant negative correlation was found between dust exposure intensity and FEV1/FVC when exposure and positive control groups were studied in a group (r2=-0.601, Psilica and silicosis patient compared to the healthy smoker and nonsmoker controls. In some cases the difference was significant (Psilica.

  1. Using the Inflammacheck Device to Measure the Level of Exhaled Breath Condensate Hydrogen Peroxide in Patients With Asthma and Chronic Obstructive Pulmonary Disease (The EXHALE Pilot Study): Protocol for a Cross-Sectional Feasibility Study.

    Science.gov (United States)

    Neville, Daniel M; Fogg, Carole; Brown, Thomas P; Jones, Thomas L; Lanning, Eleanor; Bassett, Paul; Chauhan, Anoop J

    2018-01-30

    Asthma and Chronic Obstructive Pulmonary Disease (COPD) are common conditions that affect over 5 million people in the United Kingdom. These groups of patients suffer significantly from breathlessness and recurrent exacerbations that can be difficult to diagnose and go untreated. A common feature of COPD and asthma is airway inflammation that increases before and during exacerbations. Current methods of assessing airway inflammation can be invasive, difficult to perform, and are often inaccurate. In contrast, measurement of exhaled breath condensate (EBC) hydrogen peroxide (H 2 O 2 ) is performed during normal tidal breathing and is known to reflect the level of global inflammation in the airways. There is a need for novel tools to diagnose asthma and COPD earlier and to detect increased airway inflammation that precedes an exacerbation. The aim of this study was to explore the use of a new handheld device (called Inflammacheck) in measuring H 2 O 2 levels in EBC. We will study whether it can measure EBC H 2 O 2 levels consistently and whether it can be used to differentiate asthma and COPD from healthy controls. We will perform a cross-sectional, feasibility, pilot study of EBC H 2 O 2 levels, as measured by Inflammacheck, and other markers of disease severity and symptom control in patients with asthma and COPD and volunteers with no history of lung disease. Participants will be asked to provide an exhaled breath sample for measurement of their EBC H 2 O 2 using Inflammacheck. The result will be correlated with disease stage, spirometry, fractional exhaled nitric oxide (FeNO), and symptom control scores. This study's recruitment is ongoing; it is anticipated that the results will be available in 2018. The EXhaled Hydrogen peroxide As a marker of Lung diseasE (EXHALE) pilot study will provide an evaluation of a new method of measuring EBC H 2 O 2 . It will assess the device's consistency and ability to distinguish airway inflammation in asthma and COPD compared

  2. Exhaled breath condensate collection for nitrite dosage: a safe and low cost adaptation Coleta do condensado do ar exalado pulmonar para a dosagem de nitrito: Uma adaptação segura e barata

    Directory of Open Access Journals (Sweden)

    Graziela Saraiva Reis

    2010-04-01

    Full Text Available PURPOSE: Standardization of a simple and low cost technique of exhaled breath condensate (EBC collection to measure nitrite. METHODS: Two devices were mounted in polystyrene boxes filled either with crushed ice/salt crystals or dry ice/crushed ice. Blood samples were stored at -70º C for posterior nitrite dosages by chemiluminescence and the Griess reaction. RESULTS: a The use of crushed ice/dry ice or salt revealed sufficient EBC room air collection, but was not efficient for patients under ventilation support; b the method using crushed ice/salt collected greater EBC volumes, but the nitrite concentrations were not proportional to the volume collected; c The EBC nitrite values were higher in the surgical group using both methods; d In the surgical group the nasal clip use diminished the EBC nitrite concentrations in both methods. CONCLUSIONS: The exhaled breath condensate (EBC methodology collection was efficient on room air breathing. Either cooling methods provided successful EBC collections showing that it is possible to diminish costs, and, amongst the two used methods, the one using crushed ice/salt crystals revealed better efficiency compared to the dry ice method.OBJETIVO: Padronizar técnica simples e barata de coleta do condensado do ar exalado pulmonar (CEP para medir nitrito. MÉTODOS: Dois dispositivos foram montados em caixas de isopor e preenchidos com gelo picado/sal grosso ou gelo picado/gelo seco. Amostras de sangue foram armazenadas a -70º C para dosagem de nitrito por quimiluminescência e pela reação de Griess. RESULTADOS: a a utilização de gelo picado/gelo seco ou sal foi eficiente para a coleta em respiração espontânea, mas ineficiente durante ventilação mecânica; b o método gelo picado/sal coletou volumes maiores, sem aumento proporcional do nitrito; c os valores do nitrito foram mais elevados no grupo cirúrgico utilizando os dois métodos; d no grupo cirúrgico com clipe nasal ocorreu diminuição do

  3. Condensation Polymerization

    Indian Academy of Sciences (India)

    chain polyester by a process termed as polycondensation – 'poly' implying that several such events occur, and 'condensation' im- plies that there is a condensate that is formed. The condensate formed in this case, as you would have guessed, is H2O. Such re- actions would be classified as AA + BB type condensation, anal ...

  4. Effect of allergen-specific immunotherapy with purified Alt a1 on AMP responsiveness, exhaled nitric oxide and exhaled breath condensate pH: a randomized double blind study

    Directory of Open Access Journals (Sweden)

    Prieto Luis

    2010-09-01

    Full Text Available Abstract Background Little information is available on the effect of allergen-specific immunotherapy on airway responsiveness and markers in exhaled air. The aims of this study were to assess the safety of immunotherapy with purified natural Alt a1 and its effect on airway responsiveness to direct and indirect bronchoconstrictor agents and markers in exhaled air. Methods This was a randomized double-blind trial. Subjects with allergic rhinitis with or without mild/moderate asthma sensitized to A alternata and who also had a positive skin prick test to Alt a1 were randomized to treatment with placebo (n = 18 or purified natural Alt a1 (n = 22 subcutaneously for 12 months. Bronchial responsiveness to adenosine 5'-monophosphate (AMP and methacholine, exhaled nitric oxide (ENO, exhaled breath condensate (EBC pH, and serum Alt a1-specific IgG4 antibodies were measured at baseline and after 6 and 12 months of treatment. Local and systemic adverse events were also registered. Results The mean (95% CI allergen-specific IgG4 value for the active treatment group increased from 0.07 μg/mL (0.03-0.11 at baseline to 1.21 μg/mL (0.69-1.73, P 4 value increased nonsignificantly from 0.09 μg/mL (0.06-0.12 at baseline to 0.13 μg/mL (0.07-0.18 at 6 months and to 0.11 μg/mL (0.07-0.15 at 12 months of treatment. Changes in the active treatment group were significantly higher than in the placebo group both at 6 months (P Conclusion Although allergen-specific immunotherapy with purified natural Alt a1 is well tolerated and induces an allergen-specific IgG4 response, treatment is not associated with changes in AMP or methacholine responsiveness or with significant improvements in markers of inflammation in exhaled air. These findings suggest dissociation between the immunotherapy-induced increase in IgG4 levels and its effect on airway responsiveness and inflammation.

  5. Breath odor

    Science.gov (United States)

    ... of the abdomen X-ray of the chest Antibiotics may be prescribed for some conditions. For an object in the nose, your provider will use an instrument to remove it. Alternative Names Bad breath; Halitosis References Murr AH. Approach ...

  6. Breathing Problems

    Science.gov (United States)

    ... enough air. Sometimes you can have mild breathing problems because of a stuffy nose or intense exercise. ... Lung conditions such as asthma, emphysema, or pneumonia Problems with your trachea or bronchi, which are part ...

  7. Breathing difficulty

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003075.htm Breathing difficulty To use the sharing features on this page, ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  8. CONDENSATION CAN

    Science.gov (United States)

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  9. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  10. Nitrite exhaled breath condensate study in patients undergoing cardiopulmonary bypass cardiac surgery Estudo do nitrito do condensado do exalado pulmonar em pacientes submetidos à cirurgia cardíaca com CEC

    Directory of Open Access Journals (Sweden)

    Viviane dos Santos Augusto

    2011-03-01

    Full Text Available BACKGROUND: There is a relative lack of studies on postoperative changes in nitrite (NO2 - concentrations, a marker of injury, following cardiac surgery. In this context, investigations on how exhaled NO concentrations vary in the postoperative period of cardiac surgery will certainly contribute to new clinical findings. OBJECTIVE: The objective of this study was to compare the EBC NO levels in both the pre and postoperative (24 hours periods of cardiac surgery. METHODS: Twenty - eight individuals were divided into three groups: 1 control, 2 coronary artery bypass grafting, and 3 valve surgery. The nitrite (NO2 - levels were measured by chemiluminescence in blood samples and exhaled breath condensate (EBC. Data were analyzed by the Mann - Whitney and Wilcoxon tests. RESULTS: 1 Preoperatively, the EBC NO2 - levels from groups 2 and 3 patients were higher than control individuals; 2 The postoperative (24 hours NO2 - levels in the EBC from group 3 patients were lower compared with preoperative values; 3 The NO2 - levels in the plasma from group 2 patients were lower in the preoperative compared with the postoperative (24h values and; 4 Preoperatively, there was no difference between groups 2 and 3 in terms of plasma NO2 - concentrations. CONCLUSION: These data suggest that NO measurement in EBC is feasible in cardiac surgery patients.INTRODUÇÃO: Estudos mostrando alterações das concentrações de nitrito (NO2 - exalado, com biomarcador de lesão, são raros em pacientes submetidos à cirurgia cardíaca. Nesse contexto, o seu estudo no pré e pós - operatório de cirurgias cardíacas poderá contribuir para novos dados clínicos. OBJETIVO: O objetivo foi comparar os níveis de nitrito (NO2 - do condensado do exalado pulmonar (CEP no pré e pós - operatório de cirurgia cardíaca com circulação extracorpórea. MÉTODOS: Vinte e oito indivíduos foram alocados em três grupos: 1 controle, 2 revascularização do miocárdio e 3 corre

  11. Condensation Polymerization

    Indian Academy of Sciences (India)

    Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more ...

  12. Bad Breath

    Science.gov (United States)

    ... fresh and healthy. Tips for preventing bad breath: Brush your teeth (and tongue!) for at least two minutes twice ... and drinks. This helps prevent damage to your teeth and is great for your overall health. Brush after sweets. If you eat or drink sugary ...

  13. Rapid detection of nicotine from breath using desorption ionisation on porous silicon.

    Science.gov (United States)

    Guinan, T M; Abdelmaksoud, H; Voelcker, N H

    2017-05-04

    Desorption ionisation on porous silicon (DIOS) was used for the detection of nicotine from exhaled breath. This result represents proof-of-principle of the ability of DIOS to detect small molecular analytes in breath including biomarkers and illicit drugs.

  14. Temperatura do ar exalado, um novo biomarcador no controle da asma: um estudo piloto Exhaled breath temperature, a new biomarker in asthma control: a pilot study

    Directory of Open Access Journals (Sweden)

    Raul Emrich Melo

    2010-12-01

    Full Text Available OBJETIVO: Avaliar se a temperatura do ar exalado (TAE, medida por um método não invasivo, é efetiva no monitoramento de pacientes com asma não controlada. MÉTODOS: Estudo piloto com nove pacientes (sete mulheres e dois homens; média de idade: 39 anos com diagnóstico de asma por pelo menos um ano e sem uso de tratamento de manutenção por pelo menos três meses antes do início do estudo. Na primeira visita, os pacientes foram submetidos à espirometria e à medida da TAE. Todos os pacientes foram orientados a iniciar tratamento com budesonida/formoterol (200/6 µg inalatório a cada 12 h por seis semanas. Além disso, os pacientes com asma grave (VEF1 OBJECTIVE: To evaluate whether the exhaled breath temperature (EBT, measured by a noninvasive method, is an effective means of monitoring patients with uncontrolled asthma. METHODS: A pilot study comprising nine patients (seven women and two men; mean age: 39 years diagnosed with asthma at least one year prior to the beginning of the study and not having been under maintenance therapy for the last three months. In the first visit, the patients underwent spirometry and measurement of EBT. The patients were then instructed to use inhaled budesonide/formoterol (200/6 µg every 12 h for six weeks. In addition, the patients with severe asthma (FEV1 < 60% of predicted were instructed to use oral prednisolone (40 mg/day for five days. After six weeks, the patients underwent the same tests. RESULTS: All of the patients reported an improvement in the symptoms of asthma, as confirmed by a statistically significant increase in FEV1 from the first to the second visit (mean, 56.1% vs. 88.7% of predicted; p < 0.05. Five patients used oral prednisolone for the first five days of the treatment period. Six patients used additional doses of inhaled budesonide/formoterol (mean duration, 2.5 weeks. The EBT decreased significantly from the first to the second visit (mean EBT: 35.1ºC vs. 34.1ºC; p < 0

  15. Benzoin Condensation

    Indian Academy of Sciences (India)

    ART

    Roots of cassava (tapioca), an important food crop in many countries of the world, including India, contain acetone cyanohy- drin glucoside called linamarin. ..... The replacement of cyanide by the harmless thiazolium salts as catalysts for benzoin condensation is one of the finest examples of Green Chemistry in action. S. N.

  16. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    Science.gov (United States)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (diabetic screening and management under a specifically controlled condition.

  17. Breath holding spell

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000967.htm Breath holding spell To use the sharing features on this page, please enable JavaScript. Some children have breath holding spells. This is an involuntary stop in breathing that ...

  18. Continuous Exhaled Breath Analysis on the Icu

    Science.gov (United States)

    Bos, Lieuwe D. J.; Sterk, Peter J.; Schultz, Marcus J.

    2011-09-01

    During admittance to the ICU, critically ill patients frequently develop secondary infections and/or multiple organ failure. Continuous monitoring of biological markers is very much needed. This study describes a new method to continuously monitor biomarkers in exhaled breath with an electronic nose.

  19. Modular Sampling and Analysis Techniques for the Real-Time Analysis of Human Breath

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M; Farquar, G; Adams, K; Bogan, M; Martin, A; Benner, H; Spadaccini, C; Steele, P; Davis, C; Loyola, B; Morgan, J; Sankaran, S

    2007-07-09

    At LLNL and UC Davis, we are developing several techniques for the real-time sampling and analysis of trace gases, aerosols and exhaled breath that could be useful for a modular, integrated system for breath analysis. Those techniques include single-particle bioaerosol mass spectrometry (BAMS) for the analysis of exhaled aerosol particles or droplets as well as breath samplers integrated with gas chromatography mass spectrometry (GC-MS) or MEMS-based differential mobility spectrometry (DMS). We describe these techniques and present recent data obtained from human breath or breath condensate, in particular, addressing the question of how environmental exposure influences the composition of breath.

  20. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  1. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  2. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  3. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  4. Oxidative stress biomarkers and asthma characteristics in adults of the EGEA study.

    Science.gov (United States)

    Andrianjafimasy, Miora; Zerimech, Farid; Akiki, Zeina; Huyvaert, Helene; Le Moual, Nicole; Siroux, Valérie; Matran, Régis; Dumas, Orianne; Nadif, Rachel

    2017-12-01

    Asthma is an oxidative stress related disease, but associations with asthma outcomes are poorly studied in adults. We aimed to study the associations between several biomarkers related to oxidative stress and various asthma outcomes.Cross-sectional analyses were conducted in 1388 adults (mean age 43 years, 44% with asthma) from the Epidemiological Study of the Genetics and Environment of Asthma (EGEA2). Three blood antioxidant enzyme activities (biomarkers of response to oxidative stress) and exhaled breath condensate 8-isoprostanes and plasma fluorescent oxidation products (FlOPs) levels (two biomarkers of damage) were measured. Associations between biomarkers and 1) ever asthma and 2) asthma attacks, asthma control and lung function in participants with asthma were evaluated using regression models adjusted for age, sex and smoking.Biomarkers of response were unrelated to asthma outcomes. Higher 8-isoprostane levels were significantly associated with ever asthma (odds ratio for one interquartile range increase 1.28 (95% CI 1.06-1.67). Among participants with asthma, 8-isoprostane levels were negatively associated with adult-onset asthma (0.63, 0.41-0.97) and FlOPs levels were positively associated with asthma attacks (1.33, 1.07-1.65), poor asthma control (1.30, 1.02-1.66) and poor lung function (1.34, 1.04-1.74).Our results suggest that 8-isoprostanes are involved in childhood-onset asthma and FlOPs are linked to asthma expression. Copyright ©ERS 2017.

  5. Breathing difficulty - lying down

    Science.gov (United States)

    ... Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea; Heart failure - orthopnea ... does not directly cause difficulty breathing while lying down but often worsens other conditions that lead to ...

  6. Breath-Holding Spells

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Breath-Holding Spells KidsHealth / For Parents / Breath-Holding Spells What's in ... Spells Print en español Espasmos de sollozo About Breath-Holding Spells Many of us have heard stories about stubborn ...

  7. Steam condenser developments

    Science.gov (United States)

    Lang, H. V.

    Factors determining condenser size and tube arrangement are reviewed, including steam side pressure drop; incondensible blanketing; effect of incondensibles on heat transfer; vent requirements; deaeration; condensate depression; cooling water velocity; tube material and diameter selection; fouling; and enhanced heat transfer tubes. Tube nest shapes and condenser concepts are described. Thermal design, and condenser acceptance testing are treated; field test results on "Church Window'' condensers are reported.

  8. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  9. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  10. Biomarkers of inflammation in persons with chronic tetraplegia.

    Science.gov (United States)

    Radulovic, Miroslav; Bauman, William A; Wecht, Jill M; LaFountaine, Michael; Kahn, Nighat; Hobson, Joshua; Singh, Kamaldeep; Renzi, Christopher; Yen, Christina; Schilero, Gregory J

    2015-05-14

    In addition to lung volume restriction, individuals with chronic tetraplegia exhibit reduced airway caliber and bronchodilator responsiveness similar to persons with asthma. In asthma, airflow obstruction is closely linked to airway inflammation. Conversely, little is known regarding the airway inflammatory response in tetraplegia. To compare levels of biomarkers of inflammation in exhaled breath condensate (EBC) and serum in subjects with chronic tetraplegia, mild asthma, and able-bodied controls.Prospective, observational pilot study. Thirty-four subjects participated: tetraplegia (n = 12), asthma (n = 12), controls (n = 10). Biomarkers in EBC [8-isoprostane (8-IP), leukotriene B4 (LT-B4), prostaglandin E2 (PG-E2), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6)] and serum (8-IP, LT-B4, TNF-α, IL-6) were determined using commercially available EIA kits (Cayman Chemical Company, Ann Arbor, MI). Separate, one-way ANOVA with Bonferroni's post-hoc analyses were performed to determine group differences in demographic and dependent variables [EBC and serum biomarkers, fractional exhaled nitric oxide (FeNO), pulmonary function parameters, and specific airway conductance (sGaw)]. The tetraplegia group had significantly elevated 8-IP levels in EBC compared to the asthma (68 ± 38 versus 21 ± 13 pg ml(-1); p tetraplegia group (15 ± 6; p = 0.08). Levels of serum biomarkers did not differ significantly among groups. Through analysis of EBC, levels of 8-IP were significantly elevated compared to levels found in individuals with mild asthma and healthy controls. Further studies are needed to extend upon these preliminary findings that suggest the presence of airway inflammation in subjects with chronic tetraplegia, and how this relates to pulmonary dysfunction in this population.

  11. Assessment of hydrogen peroxide in breath condensate as an ...

    African Journals Online (AJOL)

    Background: Asthma is a major global public health problem. Airway inflammation is the primary cause of development and progression of asthma. Activation of inflammatory cells induces a respiratory burst resulting in the production of reactive oxygen species, such as H2O2. Objective: We sought to measure the ...

  12. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  13. Ethylene and ammonia traces measurements from the patients' breath with renal failure via LPAS method

    Science.gov (United States)

    Popa, C.; Dutu, D. C. A.; Cernat, R.; Matei, C.; Bratu, A. M.; Banita, S.; Dumitras, D. C.

    2011-11-01

    The application of laser photoacoustic spectroscopy (LPAS) for fast and precise measurements of breath biomarkers has opened up new promises for monitoring and diagnostics in recent years, especially because breath test is a non-invasive method, safe, rapid and acceptable to patients. Our study involved assessment of breath ethylene and breath ammonia levels in patients with renal failure receiving haemodialysis (HD) treatment. Breath samples from healthy subjects and from patients with renal failure were collected using chemically inert aluminized bags and were subsequently analyzed using the LPAS technique. We have found out that the composition of exhaled breath in patients with renal failure contains not only ethylene, but also ammonia and gives valuable information for determining efficacy and endpoint of HD. Analysis of ethylene and ammonia traces from the human breath may provide insight into severity of oxidative stress and metabolic disturbances and may ensure optimal therapy and prevention of pathology at patients on continuous HD.

  14. Rapid shallow breathing

    Science.gov (United States)

    ... the smallest air passages of the lungs in children ( bronchiolitis ) Pneumonia or other lung infection Transient tachypnea of the newborn Anxiety and panic Other serious lung disease Home Care Rapid, shallow breathing should not be treated at home. It is ...

  15. What Causes Bad Breath?

    Science.gov (United States)

    ... bacteria love to hang out there. It's equally important to floss because brushing alone won't remove harmful plaque and food particles that become stuck between your teeth and gums. Myth #3: If you breathe into ...

  16. Breathing Problems - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Breathing Problems URL of this page: https://medlineplus.gov/languages/breathingproblems.html Other topics A-Z Expand Section ...

  17. Bad Breath - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bad Breath URL of this page: https://medlineplus.gov/languages/badbreath.html Other topics A-Z Expand Section ...

  18. Mapleson's Breathing Systems

    OpenAIRE

    Kaul, Tej K; Mittal, Geeta

    2013-01-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where...

  19. Every breath you take

    OpenAIRE

    Padfield, Natasha

    2015-01-01

    The air we breathe is vital to our health. Researchers at the Department of Geosciences (University of Malta) are measuring how clean Malta’s air is. They are also optimising a model of the Mediterranean atmosphere to see how climate change will affect the Maltese Islands and their surrounding region. Words by Natasha Padfield. Photography by Jean Claude Vancell. http://www.um.edu.mt/think/every-breath-you-take/

  20. Volatile compounds in blood headspace and nasal breath.

    Science.gov (United States)

    Ross, Brian M; Babgi, Randa

    2017-09-13

    Breath analysis is a form of metabolomics that utilises the identification and quantification of volatile chemicals to provide information about physiological or pathological processes occurring within the body. An inherent assumption of such analyses is that the concentration of the exhaled gases correlates with the concentration of the same gas in the tissue of interest. In this study we have investigated this assumption by quantifying some volatile compounds in peripheral venous blood headspace, and in nasal breath collected in Tedlar bags obtained at the same time from 30 healthy volunteers, prior to analysis by selected ion flow tube mass spectrometry. Some endogenous compounds were significantly correlated between blood headspace and nasal breath, such as isoprene (r p = 0.63) and acetone (r p = 0.68), however many, such as propanol (r p = -0.26) and methanol (r p = 0.23), were not. Furthermore, the relative concentrations of volatiles in blood and breath varied markedly between compounds, with some, such as isoprene and acetone, having similar concentrations in each, while others, such as acetic acid, ammonia and methanol, being significantly more abundant in breath, and others, such as methanal, being detectable only in breath. We also observed that breath propanol and acetic acid concentrations were higher in male compared to female participants, and that the blood headspace methanol concentration was negatively correlated to body mass index. No relationship between volatile concentrations and age was observed. Our data suggest that breath concentrations of volatiles do not necessarily give information about the same compound in the blood stream. This is likely due to the upper airway contributing compounds over and above that originating in the circulation. An investigation of the relationship between breath volatile concentrations and that in the tissue(s) of interest should therefore become a routine part of the development process of breath

  1. Design of a breath analysis system for diabetes screening and blood glucose level prediction.

    Science.gov (United States)

    Yan, Ke; Zhang, David; Wu, Darong; Wei, Hua; Lu, Guangming

    2014-11-01

    It has been reported that concentrations of several biomarkers in diabetics' breath show significant difference from those in healthy people's breath. Concentrations of some biomarkers are also correlated with the blood glucose levels (BGLs) of diabetics. Therefore, it is possible to screen for diabetes and predict BGLs by analyzing one's breath. In this paper, we describe the design of a novel breath analysis system for this purpose. The system uses carefully selected chemical sensors to detect biomarkers in breath. Common interferential factors, including humidity and the ratio of alveolar air in breath, are compensated or handled in the algorithm. Considering the intersubject variance of the components in breath, we build subject-specific prediction models to improve the accuracy of BGL prediction. A total of 295 breath samples from healthy subjects and 279 samples from diabetic subjects were collected to evaluate the performance of the system. The sensitivity and specificity of diabetes screening are 91.51% and 90.77%, respectively. The mean relative absolute error for BGL prediction is 21.7%. Experiments show that the system is effective and that the strategies adopted in the system can improve its accuracy. The system potentially provides a noninvasive and convenient method for diabetes screening and BGL monitoring as an adjunct to the standard criteria.

  2. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.

    Science.gov (United States)

    Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S

    2014-10-01

    Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

  3. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  4. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  5. [Augmented spontaneous breathing].

    Science.gov (United States)

    Hachenberg, T

    1996-09-01

    Impaired pulmonary gas exchange can result from lung parenchymal failure inducing oxygenation deficiency and fatigue of the respiratory muscles, which is characterized by hypercapnia or a combination of both mechanisms. Contractility of and coordination between the diaphragm and the thoracoabdominal respiratory muscles predominantly determine the efficiency of spontaneous breathing. Sepsis, cardiac failure, malnutrition or acute changes of the load conditions may induce fatigue of the respiratory muscles. Augmentation of spontaneous breathing is not only achieved by the application of different technical principles or devices; it also has to improve perfusion, metabolism, load conditions and contractility of the respiratory muscles. Intermittent mandatory ventilation (IMV) allows spontaneous breathing of the patient and augments alveolar ventilation by periodically applying positive airway pressure tidal volumes, which are generated by the respirator. Potential advantages include lower mean airway pressure (PAW), as compared with controlled mechanical ventilation, and improved haemodynamics. Suboptimal IMV systems may impose increased work and oxygen cost of breathing, fatigue of the respiratory muscles and CO2 retention. During pressure support ventilation (PSV), inspiratory alterations of PAW or gas flow (trigger) are detected by the respirator, which delivers a gas flow to maintain PAW at a fixed value (usually 5-20 cm H2O) during inspiration. PSV may be combined with other modalities of respiratory therapy such as IMV or CPAP. Claimed advantages of PSV include decreased effort of breathing, reduced systemic and respiratory muscle consumption of oxygen, prophylaxis of diaphragmatic fatigue and an improved extubation rate after prolonged periods of mechanical ventilation. Minimum alveolar ventilation is not guaranteed during PSV; thus, close observation of the patient is mandatory to avoid serious respiratory complications. Continuous positive airway pressure

  6. Freeze-Tolerant Condensers

    Science.gov (United States)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  7. An improved method for collecting breath from 3- to 7-year-old children.

    Science.gov (United States)

    Wang, Anthony A; Paige, Katie N; Gaskins, H Rex; Teran-Garcia, Margarita

    2014-05-01

    Breath sampling and analysis provide healthcare professionals with a practical, noninvasive diagnostic measurement for children with a variety of gastrointestinal (GI) disorders. New biomarkers found in human breath have been investigated and provide the opportunity to diagnose bacterial overgrowth and other underlying causes of GI dysfunction. Although several protocols have been described previously regarding breath sampling, few have demonstrated the feasibility of collection in young children. This communication introduces a simple game that allows for 3- to 7-year-old children to practice breath exhalation to give a proper breath sample in a relaxed and comfortable environment. The technique described offers clinicians a creative approach for obtaining breath samples from a child by reducing the apprehension and anxiety associated with the research and clinical environment.

  8. Asthma outcomes: Biomarkers

    Science.gov (United States)

    Szefler, Stanley J.; Wenzel, Sally; Brown, Robert; Erzurum, Serpil C.; Fahy, John V.; Hamilton, Robert G.; Hunt, John F.; Kita, Hirohito; Liu, Andrew H.; Panettieri, Reynold A.; Schleimer, Robert P.; Minnicozzi, Michael

    2012-01-01

    Background Measurement of biomarkers has been incorporated within clinical research studies of asthma to characterize the population and associate the disease with environmental and therapeutic effects. Objective National Institutes of Health institutes and federal agencies convened an expert group to propose which biomarkers should be assessed as standardized asthma outcomes in future clinical research studies. Methods We conducted a comprehensive search of the literature to identify studies that developed and/or tested asthma biomarkers. We identified biomarkers relevant to the underlying disease process progression and response to treatment. We classified the biomarkers as either core (required in future studies), supplemental (used according to study aims and standardized), or emerging (requiring validation and standardization). This work was discussed at an National Institutes of Health–organized workshop convened in March 2010 and finalized in September 2011. Results Ten measures were identified; only 1, multiallergen screening to define atopy, is recommended as a core asthma outcome. Complete blood counts to measure total eosinophils, fractional exhaled nitric oxide (Feno), sputum eosinophils, urinary leukotrienes, and total and allergen-specific IgE are recommended as supplemental measures. Measurement of sputum polymorphonuclear leukocytes and other analytes, cortisol measures, airway imaging, breath markers, and system-wide studies (eg, genomics, proteomics) are considered as emerging outcome measures. Conclusion The working group participants propose the use of multiallergen screening in all asthma clinical trials to characterize study populations with respect to atopic status. Blood, sputum, and urine specimens should be stored in biobanks, and standard procedures should be developed to harmonize sample collection for clinical trial biorepositories. PMID:22386512

  9. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  10. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    Science.gov (United States)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  11. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  12. Shortness of Breath

    Science.gov (United States)

    ... with obesity hypoventilation syndrome also have sleep apnea. Deconditioning If you are not active or do not exer- cise regularly, as a result of being out of shape and experiencing muscle fatigue, you may develop shortness of breath with physical exertion beyond your customary activity such as when ...

  13. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  14. Firefighter's Breathing System

    Science.gov (United States)

    Mclaughlan, P. B.; Giorgini, E. A.; Sullivan, J. L.; Simmonds, M. R.; Beck, E. J.

    1976-01-01

    System, based on open-loop demand-type compressed air concept, is lighter and less bulky than former systems, yet still provides thirty minutes of air supply. Comfort, visibility, donning time, and breathing resistance have been improved. Apparatus is simple to recharge and maintain and is comparable in cost to previously available systems.

  15. Breath Malodour - A Review

    Directory of Open Access Journals (Sweden)

    Shruti Tandon

    2004-01-01

    Full Text Available The term ′Halitosis′, ′Foetor oris′ and ′foetor ex ore′ are used to describe offensive breath. This embarrassing condition causes social, emotional and psychological anxiety. This article provides an insight into etiology, diagnosis and management of oral malodour.

  16. Tongue Scrapers Only Slightly Reduce Bad Breath

    Science.gov (United States)

    ... 2017 About | Contact InfoBites Quick Reference Learn more Halitosis (Bad Breath) Do You Have Traveler's Breath? Bad breath while ... your desktop! more... Tongue Scrapers Only Slightly Reduce Bad Breath Article Chapters Tongue Scrapers Only Slightly Reduce Bad ...

  17. Expiration: breathing's other face.

    Science.gov (United States)

    Jenkin, Sarah E M; Milsom, William K

    2014-01-01

    The evolution of the aspiration pump seen in tetrapod vertebrates from the buccal-pharyngeal force pump seen in air breathing fish and amphibians appears to have first involved the production of active expiration. Active inspiration arose later. This appears to have involved reconfiguration of a parafacial oscillator (now the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)) to produce active expiration, followed by reconfiguration of a paravagal oscillator (now the preBötC) to produce active inspiration. In the ancestral breathing cycle, inspiration follows expiration, which is in turn followed by glottal closure and breath holding. When both rhythms are expressed, as they are in reptiles and birds, and mammals under conditions of elevated respiratory drive, the pFRG/RTN appears to initiate the respiratory cycle. We propose that the coordinated output of this system is a ventilation cycle characterized by four phases. In reptiles, these consist of active inspiration (I), glottal closure (E1), a pause (an apnea or breath hold) (E2), and an active expiration (E3) that initiates the next cycle. In mammals under resting conditions, active expiration (E3) is suppressed and inspiration (I) is followed by airway constriction and diaphragmatic braking (E1) (rather than glottal closure) and a short pause at end-expiration (E2). As respiratory drive increases in mammals, expiratory muscle activity appears. Frequently, it first appears immediately preceding inspiration (E3) just as it does in reptiles. It can also appear in E1, however, and it is not yet clear what mechanisms underlie when and where in the cycle it appears. This may reflect whether the active expiration is recruited to enhance tidal volume, increase breathing frequency, or both. © 2014 Elsevier B.V. All rights reserved.

  18. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  19. Exploiting transient phenomena for imaging with breath figures

    Science.gov (United States)

    Sasikumar, Harish; Varma, Manoj M.

    2017-02-01

    Breath figures refer to the patterns formed when vapor condenses into the liquid phase on a surface, revealing heterogeneities in topography or chemical composition. These figures are composed of micro-droplets, which scatter light and produce optical contrast. Differences in hydrophobicity imposed by surface features or contaminants result in a difference in micro-droplet densities, which has been used in applications such as substrate independent optical visualization of single layer graphene flakes. Here, we show that transient phenomena, such as the pinning transition of micro-droplets condensed over a polymer surface, can be used to enhance the optical contrast even when the time averaged difference in micro-droplet densities is not substantial. Thus, this work opens a new way of visualizing surface heterogeneities using transient phenomena occurring during condensation or evaporation of micro-droplets as opposed to only using time averaged differences in wettability due to the surface features.

  20. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in children.

    Science.gov (United States)

    Barker, Nicola J; Jones, Mandy; O'Connell, Neil E; Everard, Mark L

    2013-12-18

    Dysfunctional breathing is described as chronic or recurrent changes in breathing pattern causing respiratory and non-respiratory symptoms. It is an umbrella term that encompasses hyperventilation syndrome and vocal cord dysfunction. Dysfunctional breathing affects 10% of the general population. Symptoms include dyspnoea, chest tightness, sighing and chest pain which arise secondary to alterations in respiratory pattern and rate. Little is known about dysfunctional breathing in children. Preliminary data suggest 5.3% or more of children with asthma have dysfunctional breathing and that, unlike in adults, it is associated with poorer asthma control. It is not known what proportion of the general paediatric population is affected. Breathing training is recommended as a first-line treatment for adults with dysfunctional breathing (with or without asthma) but no similar recommendations are available for the management of children. As such, breathing retraining is adapted from adult regimens based on the age and ability of the child. To determine whether breathing retraining in children with dysfunctional breathing has beneficial effects as measured by quality of life indices.To determine whether there are any adverse effects of breathing retraining in young people with dysfunctional breathing. We identified trials for consideration using both electronic and manual search strategies. We searched CENTRAL, MEDLINE and EMBASE. We searched the National Research Register (NRR) Archive, Health Services Research Projects in Progress (HSRProj), Current Controlled Trials register (incorporating the metaRegister of Controlled Trials and the International Standard Randomised Controlled Trial Number (ISRCTN) to identify research in progress and unpublished research. The latest search was undertaken in October 2013. We planned to include randomised, quasi-randomised or cluster-randomised controlled trials. We excluded observational studies, case studies and studies utilising a cross

  1. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  2. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  3. [TMJ, eating and breathing].

    Science.gov (United States)

    Cheynet, F

    2016-09-01

    The study of the relationship between temporomandibular joints (TMJ), mastication and ventilation and the involvement of these two functions in the genesis of primary Temporomandibular Disorders (TMD) and in some dentofacial deformities, was initiated in France, more than 30years, by Professor Raymond Gola. Once criticized the weakness of the scientific literature in this domain, the originality of the TMJ within the masticatory system is recalled with its huge adaptation potential to very different biomechanical constraints according to the age and masticatory activities during the day. But the biomechanics of the masticatory system does not stop at night and the positions of the mandible and head during sleep should be studied carefully. In case of nocturnal mouth breathing with open mouth, the predominant sleeping position (generating small but long-term strengths) may be deleterious to the condyle-disc complex, to the surrounding muscles and the occlusal relationships. Some condyle-disc displacements and asymmetric malocclusions occur in this long portion of life what sleep, especially as oral breathing leads to a lot of dysfunctions (low position of the tongue, labio-lingual dysfunctions, exacerbation of bruxism sleep…). The aim of this work was to share our multidisciplinary experience of the biomechanical consequences of the nocturnal mouth breathing on the face involving orthodontists, maxillofacial surgeons, ENT, allergists, speech therapists, physiotherapists and radiologists. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Molecular fossils in Cretaceous condensate from western India

    Science.gov (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  5. Condensed Matter Field Theory

    Science.gov (United States)

    Altland, Alexander; Simons, Ben

    2006-06-01

    Over the past few decades, in concert with ground-breaking experimental advances, condensed matter theory has drawn increasingly from the language of low-energy quantum field theory. This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. It emphasizes the development of modern methods of classical and quantum field theory with applications oriented around condensed matter physics. Topics covered include second quantization, path and functional field integration, mean-field theory and collective phenomena, the renormalization group, and topology. Conceptual aspects and formal methodology are emphasized, but the discussion is rooted firmly in practical experimental application. As well as routine exercises, the text includes extended and challenging problems, with fully worked solutions, designed to provide a bridge between formal manipulations and research-oriented thinking. This book will complement graduate level courses on theoretical quantum condensed matter physics. Spans the field of modern condensed matter theory focusing on field theory techniques Written to facilitate learning, with numerous challenging exercises, with fully worked solutions, aimed at physicists starting graduate-level courses The theoretical methods are firmly set in concrete experimental applications

  6. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults.

    Science.gov (United States)

    Jones, Mandy; Harvey, Alex; Marston, Louise; O'Connell, Neil E

    2013-05-31

    Dysfunctional breathing/hyperventilation syndrome (DB/HVS) is a respiratory disorder, psychologically or physiologically based, involving breathing too deeply and/or too rapidly (hyperventilation) or erratic breathing interspersed with breath-holding or sighing (DB). DB/HVS can result in significant patient morbidity and an array of symptoms including breathlessness, chest tightness, dizziness, tremor and paraesthesia. DB/HVS has an estimated prevalence of 9.5% in the general adult population, however, there is little consensus regarding the most effective management of this patient group. (1) To determine whether breathing exercises in patients with DB/HVS have beneficial effects as measured by quality of life indices (2) To determine whether there are any adverse effects of breathing exercises in patients with DB/HVS SEARCH METHODS: We identified trials for consideration using both electronic and manual search strategies. We searched CENTRAL, MEDLINE, EMBASE, and four other databases. The latest search was in February 2013. We planned to include randomised, quasi-randomised or cluster randomised controlled trials (RCTs) in which breathing exercises, or a combined intervention including breathing exercises as a key component, were compared with either no treatment or another therapy that did not include breathing exercises in patients with DB/HVS. Observational studies, case studies and studies utilising a cross-over design were not eligible for inclusion.We considered any type of breathing exercise for inclusion in this review, such as breathing control, diaphragmatic breathing, yoga breathing, Buteyko breathing, biofeedback-guided breathing modification, yawn/sigh suppression. Programs where exercises were either supervised or unsupervised were eligible as were relaxation techniques and acute-episode management, as long as it was clear that breathing exercises were a key component of the intervention.We excluded any intervention without breathing exercises or

  7. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  8. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  9. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    , and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath...

  10. Evaluation of oxidative stress using exhaled breath 8‑isoprostane ...

    African Journals Online (AJOL)

    2013-08-05

    Aug 5, 2013 ... Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order ...

  11. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  12. Electrons in Condensed Matter

    Indian Academy of Sciences (India)

    entire liquid or solid. The variety of electronic behaviour which ... sity of electronic behaviour in condensed matter, ego ferro- ..... a big dog? We do not know the reasons yet. As it turns out for many fundamentally interesting phenomena, colossal magneto- resistance may also find applications, this time in magnetic recording.

  13. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Bose–Einstein Condensation - Birds of a Feather Flock Together. Rajaram Nityananda. General Article Volume 5 Issue 4 April 2000 pp 46-51. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Electrons in Condensed Matter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  15. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    gas of photons which explained Planck's law for thermal radiation at one ... their first application. Seventy years later they are being used in atomic physics laboratories all over the world. Everybody is talking about Bose-Einstein condensation. This ... distribution of the position of any particle in the gas is a constant function ...

  16. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 12. Bose-Einstein Condensation - Birds of a Feather Flock Together. Rajaram Nityananda. Volume 10 Issue 12 December 2005 pp 142-147. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Condensed-Matter Physics.

    Science.gov (United States)

    Hirsch, Jorge E.; Scalapino, Douglas J.

    1983-01-01

    Discusses ways computers are being used in condensed-matter physics by experimenters and theorists. Experimenters use them to control experiments and to gather and analyze data. Theorists use them for detailed predictions based on realistic models and for studies on systems not realizable in practice. (JN)

  18. Modular invariant gaugino condensation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1991-05-09

    The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.

  19. Condensed Matter Physics

    Science.gov (United States)

    Marder, Michael P.

    2000-01-01

    A modern, unified treatment of condensed matter physics This new work presents for the first time in decades a sweeping review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching "not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect." Six major areas are covered---atomic structure, electronic structure, mechanical properties, electron transport, optical properties, and magnetism. But rather than defining the field in terms of particular materials, the author focuses on the way condensed matter physicists approach physical problems, combining phenomenology and microscopic arguments with information from experiments. For graduate students and professionals, researchers and engineers, applied mathematicians and materials scientists, Condensed Matter Physics provides: * An exciting collection of new topics from the past two decades. * A thorough treatment of classic topics, including band theory, transport theory, and semiconductor physics. * Over 300 figures, incorporating many images from experiments. * Frequent comparison of theory and experiment, both when they agree and when problems are still unsolved. * More than 50 tables of data and a detailed index. * Ample end-of-chapter problems, including computational exercises. * Over 1000 references, both recent and historically significant.

  20. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  1. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Investigation into breath meditation: Phenomenological ...

    African Journals Online (AJOL)

    This integral heuristic phenomenological investigation records participants' experiences of a single session of breath meditation with special reference to psychotherapy and sport psychology. There were 8 participants, 4 men and 4 women, with mean age of 45 years and age range from 31 to 62 years. Various breathing ...

  3. Does a Smaller Waist Mean Smelly Breath?

    Science.gov (United States)

    ... 2017 About | Contact InfoBites Quick Reference Learn more Halitosis (Bad Breath) Do You Have Traveler's Breath? Bad breath while ... when saliva production is diminished." ; Tips to combat halitosis: ; 1. Drink water to wash away germs ; Drinking ...

  4. Recovery of condensate water quality in power generator's surface condenser

    Science.gov (United States)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  5. Exhaled nitric oxide and other exhaled biomarkers in bronchial challenge with exercise in asthmatic children: current knowledge.

    Science.gov (United States)

    Barreto, Mario; Zambardi, Rosanna; Villa, Maria Pia

    2015-01-01

    The fractional concentration of exhaled nitric oxide (FENO), a known marker of atopic-eosinophilic inflammation, may be used as a surrogate to assess exercise-induced bronchoconstriction (EIB) in asthmatic children. The predictive value of baseline FENO for EIB appears to be influenced by several factors, including age, atopy, current therapy with corticosteroids and measurement technique. Nonetheless, FENO cut-off values appear to be able to rule out EIB. FENO levels decrease during EIB, apparently through neural mechanisms rather than by decreased airway-epithelial surface. Partition of FENO into proximal and peripheral contributions of the respiratory tract may improve our understanding on NO exchange during exercise and help to screen subjects prone to EIB. Other biomarkers of inflammation and oxidative stress contained in exhaled gases and exhaled breath condensate (EBC) may shed light on the pathophysiology of EIB. Exhaled breath temperature is a promising real-time measurement whose routine use for assessing EIB warrants further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  7. Energy breathing of nanoparticles

    Science.gov (United States)

    Dynich, Raman A.

    2015-06-01

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such "energy breathing" is presented for spherical Ag and Au nanoparticles with radii of 10 i 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  8. Breath of hospitality.

    Science.gov (United States)

    Škof, Lenart

    2016-12-01

    In this paper we outline the possibilities of an ethic of care based on our self-affection and subjectivity in the ethical spaces between-two. In this we first refer to three Irigarayan concepts - breath, silence and listening from the third phase of her philosophy, and discuss them within the methodological framework of an ethics of intersubjectivity and interiority. Together with attentiveness, we analyse them as four categories of our ethical becoming. Furthermore, we argue that self-affection is based on our inchoate receptivity for the needs of the other(s) and is thus dialectical in its character. In this we critically confront some epistemological views of our ethical becoming. We wind up this paper with a proposal for an ethics towards two autonomous subjects, based on care and our shared ethical becoming - both as signs of our deepest hospitality towards the other.

  9. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  10. Polymorphism of Lysozyme Condensates.

    Science.gov (United States)

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  11. Moyamoya Biomarkers

    Science.gov (United States)

    2015-01-01

    Moyamoya disease (MMD) is an arteriopathy of the intracranial circulation predominantly affecting the branches of the internal carotid arteries. Heterogeneity in presentation, progression and response to therapy has prompted intense study to improve the diagnosis and prognosis of this disease. Recent progress in the development of moyamoya-related biomarkers has stimulated marked interest in this field. Biomarkers can be defined as biologically derived agents-such as specific molecules or unique patterns on imaging-that can identify the presence of disease or help to predict its course. This article reviews the current categories of biomarkers relevant to MMD-including proteins, cells and genes-along with potential limitations and applications for their use. PMID:26180608

  12. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    Science.gov (United States)

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  13. SERS spectroscopy for detection of hydrogen cyanide in breath from children colonised with P. aeruginosa

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Skou, Peter Bæk; Rindzevicius, Tomas

    2017-01-01

    ) nanochip optimised for detection of trace amounts of the P. aeruginosa biomarker hydrogen cyanide (HCN) was mounted inside a Tedlar bag, which the patient breathed into. The SERS chip was then analysed in a Raman spectrometer, investigating the C≡N peak at 2131 cm-1 and correlated with sputum cultures. One...

  14. Release of erythropoietin and neuron-specific enolase after breath holding in competing free divers

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Jattu, T; Nielsen, Henrik

    2015-01-01

    Free diving is associated with extreme hypoxia. This study evaluated the combined effect of maximal static breath holding and underwater swimming on plasma biomarkers of tissue hypoxemia: erythropoietin, neuron-specific enolase and S100B, C-reactive protein, pro-atrial natriuretic peptide...

  15. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren

    2015-01-01

    ) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...

  16. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    Science.gov (United States)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  17. Soft Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Richard A L

    2002-11-20

    The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented

  18. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  19. Confinement Contains Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  20. Nanocarbon condensation in detonation

    Science.gov (United States)

    Bastea, Sorin

    2017-02-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions.

  1. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  2. Palliative care - shortness of breath

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000471.htm Palliative care - shortness of breath To use the sharing features on this page, please enable JavaScript. Palliative care is a holistic approach to care that focuses ...

  3. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    Directory of Open Access Journals (Sweden)

    Van Sickle David

    2008-03-01

    Full Text Available Abstract Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male. Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86 and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification.

  4. Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites

    Science.gov (United States)

    Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.

  5. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  6. Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis.

    Science.gov (United States)

    Chen, W; Laiho, S; Vaittinen, O; Halonen, L; Ortiz, F; Forsblom, C; Groop, P-H; Lehto, M; Metsälä, M

    2016-08-12

    Breath ammonia (NH3) has been proposed as a potential biomarker in monitoring hemodialysis (HD) adequacy, since a strong correlation between blood urea and mouth-exhaled breath NH3 has been observed in patients with end-stage renal disease (ESRD) undergoing HD. However, the biochemical pathways for breath NH3 generation from blood urea have not been demonstrated. In this study, we show a strong correlation (r s  =  0.77, p  NH3) in most of the patients. This confirms that the hydrolysis of urea by urease generates ammonia in the oral cavity. A further strong correlation between salivary ammonia and breath NH3 indicates that salivary ammonia evaporates into gas phase and turns to breath NH3. Therefore, blood urea is a major biochemical source of breath NH3. Since breath NH3 is generated predominantly in the oral cavity, the levels of breath NH3 are influenced significantly by the patient's oral condition including urease activity and salivary pH. Our results agree with previous studies that have shown a connection between salivary urea and breath NH3.

  7. Breathing retraining for dysfunctional breathing in asthma: a randomised controlled trial

    OpenAIRE

    Thomas, M.; Mckinley, R; Freeman, E.; Foy, C.; Prodger, P; Price, D.

    2003-01-01

    Background: Functional breathing disorders may complicate asthma and impair quality of life. This study aimed to determine the effectiveness of physiotherapy based breathing retraining for patients treated for asthma in the community who have symptoms suggestive of dysfunctional breathing.

  8. Supersymmetry is afraid of condensates

    Directory of Open Access Journals (Sweden)

    G. Domokos

    1983-01-01

    Full Text Available Supersymmetry is never broken by pair condensates of chiral superfields: the supersymmetry breaking part of Green's functions satisfies an equation which always has an identically vanishing solution. Hence any phase containing pair condensates is unstable due to its positive vacuum energy.

  9. Chromatin condensation during terminal erythropoiesis.

    Science.gov (United States)

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  10. Decay of Ultralight Axion Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua; Ma, Michael; Suranyi, Peter; Wijewardhana, L. C.R.

    2017-05-15

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion masses $m\\sim10^{-22}$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. We find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.

  11. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    for the health system. It is hard to detect sleep apnea it is beneficial to have a sleep monitoring system in homes of people in high risk zones. However, this system would have to be unobtrusive in order for people to accept to implement them while sleeping. The only really unobtrusive way is through wireless...... human beings life as side effects from not breathing may include death. Breathing monitoring is often used in hospitals, however, the monitoring systems are usually based on physical contact with the patient. As a result, they are often a nuisance to the patient and they may even be disconnected....... A better solution is contactless non-intrusive wireless measurement of the breathing. It is found that up to 20% of the population will suffer from sleep apnea. Sleep apnea has several health related drawback. Among them are several cardiovascular outcomes, increases illness- and accident- related cost...

  12. Beware Postpartum Shortness of Breath

    Science.gov (United States)

    Akpinar, Guleser; Ipekci, Afsin; Gulen, Bedia; Ikizceli, Ibrahim

    2015-01-01

    Peripartum cardiomyopathy (PPCM) is one of the potentially life-threatening complications of pregnancy. We report a case of a 36-year-old female patient who presented with shortness of breath, swelling of feet after giving birth to triplets, and her tests revealed that left ventricle is dilated with its diameter on the borderline and she had EF 35% with advanced systolic dysfunction. Anterior wall and septum were severely hypokinetic. In the presence of these findings, the patient was evaluated as PPCM. PPCM must be considered in the differential diagnosis of a patient presenting with shortness of breath and swelling of feet, which are also common in pregnancy. PMID:26649031

  13. Blue breath holding is benign.

    Science.gov (United States)

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life threatening event' deserve immense understanding and help, and it behoves investigators to exercise extreme care and self criticism in the presentation of new knowledge which may bear upon their management and their morale. PMID:2001115

  14. Water condensation: a multiscale phenomenon.

    Science.gov (United States)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid

    2014-02-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.

  15. Condensation in Nanoporous Packed Beds.

    Science.gov (United States)

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  16. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results

  17. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  18. Fast mixing condensation nucleus counter

    OpenAIRE

    Flagan, Richard C.; Wang, Jian

    2003-01-01

    A fast mixing condensation nucleus counter useful for detecting particles entrained in a sample gas stream is provided. The fast mixing condensation nucleus counter comprises a detector and a mixing condensation device having a mixing chamber adapted to allow gas to flow from an inlet to an outlet, wherein the outlet directs the gas flow to the detector. The mixing chamber has an inlet for introducing vapor-laden gas into the chamber and at least one nozzle for introducing a sample gas having...

  19. Condenser assembly system for an appliance

    Energy Technology Data Exchange (ETDEWEB)

    Litch, Andrew David

    2017-10-17

    An appliance includes a compact condenser assembly formed with at least two separately and independently produced wire on tube condensers. Each of the at least two wire on tube condensers has a condenser inlet and a condenser outlet. The at least two wire on tube condensers are at least substantially locked and positioned in a matingly engaged configuration forming a compact condenser assembly. The at least two wire on tube condensers are configured to be operationally connected in at least one of a parallel configuration, a series configuration, a selectable configuration, and a bypass configuration.

  20. Efficient, Long-Life Biocidal Condenser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity in manned modules. Condensing surfaces...

  1. Efficient, Long-Life Biocidal Condenser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity. Condensing surfaces must be...

  2. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  3. Breathing retraining: a rational placebo?

    NARCIS (Netherlands)

    Garssen, B.; de Ruiter, C.; van Dyck, R.

    1992-01-01

    Breathing retraining of patients with Hyperventilation Syndrome (HVS) and/or panic disorder is discussed to evaluate its clinical effectiveness and to examine the mechanism that mediates its effect. In relation to this theoretical question, the validity of HVS as a scientific model is discussed and

  4. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  5. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  6. Rapid detection of Pseudomonas aeruginosa biomarkers in biological fluids using surface-enhanced Raman scattering

    Science.gov (United States)

    Wu, Xiaomeng; Chen, Jing; Zhao, Yiping; Zughaier, Susu M.

    2014-05-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes major infection not only in Cystic Fibrosis patients but also in chronic obstructive pulmonary disease and in critically ill patients in intensive care units. Successful antibiotic treatment of the infection relies on accurate and rapid identification of the infectious agents. Conventional microbiological detection methods usually take more than 3 days to obtain accurate results. We have developed a rapid diagnostic technique based on surface-enhanced Raman scattering to directly identify PA from biological fluids. P. aeruginosa strains, PAO1 and PA14, are cultured in lysogeny broth, and the SERS spectra of the broth show the signature Raman peaks from pyocyanin and pyoverdine, two major biomarkers that P. aeruginosa secretes during its growth, as well as lipopolysaccharides. This provides the evidence that the presence of these biomarkers can be used to indicate P. aeruginosa infection. A total of 22 clinical exhaled breath condensates (EBC) samples were obtained from subjects with CF disease and from non-CF healthy donors. SERS spectra of these EBC samples were obtained and further analyzed by both principle component analysis and partial least square-discriminant analysis (PLS-DA). PLS-DA can discriminate the samples with P. aeruginosa infection and the ones without P. aeruginosa infection at 99.3% sensitivity and 99.6% specificity. In addition, this technique can also discriminate samples from subject with CF disease and healthy donor with 97.5% sensitivity and 100% specificity. These results demonstrate the potential of using SERS of EBC samples as a rapid diagnostic tool to detect PA infection.

  7. Solar engineering - a condensed course

    Energy Technology Data Exchange (ETDEWEB)

    Broman, Lars

    2011-11-15

    The document represents the material covered in a condensed two-week course focusing on the most important thermal and PV solar energy engineering topics, while also providing some theoretical background.

  8. Condenser procurement guidelines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Impagliazzo, A.M.

    1985-05-01

    Steam surface condensers have a major impact on power plant availability and efficiency. Since supplying condensers to the utility industry is a very competitive buisness, it is essential that all of the requirements, all of the operating and design conditions, and any off standard conditions which can affect the condenser design and performance be clearly communicated to potential suppliers. These requirements are officially transmitted via the Purchase Specification. This report is intended to provide guidance in the preparation of this document so that it will include all of the information needed by a competent specialist to design a condenser which will achieve the required performance in a reliable manner with minimum maintenance. A further objective is to provide guidelines which will permit the Purchaser to evaluate the diverse offerings of the various suppliers.

  9. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  10. Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations.

    Science.gov (United States)

    Sukul, Pritam; Oertel, Peter; Kamysek, Svend; Trefz, Phillip

    2017-03-21

    There is a need for standardisation in sampling and analysis of breath volatile organic compounds (VOCs) in order to minimise ubiquitous confounding effects. Physiological factors may mask concentration changes induced by pathophysiological effects. In humans, unconscious switching of oral and nasal breathing can occur during breath sampling, which may affect VOC patterns. Here, we investigated exhaled VOC concentrations in real-time while switching breathing routes. Breath from 15 healthy volunteers was analysed continuously by proton transfer reaction time-of-flight mass spectrometry during paced breathing (12 breaths min-1). Every two minutes breathing routes were switched (Setup-1: Oral → Nasal → Oral → Nasal; Setup-2: OralinNasalout → NasalinOralout → OralinNasalout → NasalinOralout). VOCs in inspiratory and alveolar air and respiratory and hemodynamic parameters were monitored quantitatively in parallel. Changing of the breathing routes and patterns immediately affected exhaled VOC concentrations. These changes were reproducible in both setups. In setup-1 cardiac output and acetone concentrations remained constant, while partial pressure of end-tidal CO2 (pET-CO2), isoprene and furan concentrations inversely mirrored tidal-volume and minute-ventilation. H2S (hydrogen-sulphide), C4H8S (allyl-methyl-sulphide), C3H8O (isopropanol) and C3H6O2 increased during oral exhalation. C4H10S increased during nasal exhalations. CH2O2 steadily decreased during the whole measurement. In setup-2 pET-CO2, C2H6S (dimethyl-sulphide), isopropanol, limonene and benzene concentrations decreased whereas, minute-ventilation, H2S and acetonitrile increased. Isoprene and furan remained unchanged. Breathing route and patterns induced VOC concentration changes depended on respiratory parameters, oral and nasal cavity exposure and physico-chemical characters of the compounds. Before using breath VOC concentrations as biomarkers it is essential that the breathing

  11. A systematic review of breath analysis and detection of volatile organic compounds in COPD

    DEFF Research Database (Denmark)

    Christiansen, Anders; Davidsen, Jesper Rømhild; Titlestad, Ingrid

    2016-01-01

    research area is breath analysis, with several published attempts to find exhaled compounds as diagnostic markers. The field is broad and no review of published COPD breath analysis studies exists yet. We have conducted a systematic review examining the state of art and identified 12 suitable papers, which......Chronic obstructive pulmonary disease (COPD) is, according to the WHO, the fifth leading cause of death worldwide, and is expected to increase to rank third in 2030. Few robust biomarkers for COPD exist, and several attempts have been made to find suitable molecular marker candidates. One rising...... we investigated in detail to extract a list of potential COPD breath marker molecules. First, we observed that no candidate markers were detected in all 12 studies. Only three were reported in more than one paper, thus reliable exhaled markers are still missing. A major challenge is the heterogeneity...

  12. Research progress of control of condensate depression for condenser

    Science.gov (United States)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  13. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  14. Air-Breathing Rocket Engines

    Science.gov (United States)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  15. Spacecraft Crew Cabin Condensation Control

    Science.gov (United States)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  16. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  17. Scrutinizing the pion condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-02-15

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)

  18. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  19. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    Science.gov (United States)

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-02

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  20. Kidney motion during free breathing and breath hold for MR-guided radiotherapy.

    Science.gov (United States)

    Stam, Mette K; van Vulpen, Marco; Barendrecht, Maurits M; Zonnenberg, Bernard A; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W

    2013-04-07

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney.

  1. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    OpenAIRE

    Qiang Sheng; Jie Sun; Qian Wang; Wen Wang; Hua Sheng Wang

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of ...

  2. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    Science.gov (United States)

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2017-04-28

    In this paper, we introduce TR-BREATH, a timereversal (TR) based contact-free breathing monitoring system. It is capable of breathing detection and multi-person breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TRBREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 seconds of measurement, a mean accuracy of 99% can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of 98:65% in breathing rate estimation for a dozen people under the line-of-sight (LOS) scenario and a mean accuracy of 98:07% in breathing rate estimation of 9 people under the NLOS scenario, both with 63 seconds of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  3. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    Science.gov (United States)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  4. Rotary condenser for SC2

    CERN Multimedia

    1975-01-01

    During 1975 the SC2 performance was improved among other things by redesigning some of the elements of the ROTCO (Annual Report 1975, p. 55). The photo shows an interior wiew of the housing of the rotary condenser and of the sixteen sets of shaped stator blades.

  5. Approaching Bose-Einstein Condensation

    Science.gov (United States)

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  6. KAON CONDENSATION IN NEUTRON STARS.

    Energy Technology Data Exchange (ETDEWEB)

    RAMOS,A.; SCHAFFNER-BIELICH,J.; WAMBACH,J.

    2001-04-24

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed.

  7. Bose-Einstein Condensation Observed

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Bose-Einstein Condensation Observed. Rajaram Nityananda. Research News Volume 1 Issue 2 February 1996 pp 111-114. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0111-0114 ...

  8. Modelling of silicon condenser microphones

    NARCIS (Netherlands)

    van der Donk, A.G.H.; van der Donk, A.G.H.; Scheeper, P.R.; Scheeper, P.R.; Olthuis, Wouter; Bergveld, Piet

    1994-01-01

    Several models concerning the sensitivity of capacitive pressure sensors have been presented in the past. Modelling of condenser microphones, which can be considered to be a special type of capacitive pressure sensor, usually requires a more complicated analysis of the sensitivity, because they have

  9. Topological states of condensed matter

    Science.gov (United States)

    Wang, Jing; Zhang, Shou-Cheng

    2017-11-01

    Topological states of quantum matter have been investigated intensively in recent years in materials science and condensed matter physics. The field developed explosively largely because of the precise theoretical predictions, well-controlled materials processing, and novel characterization techniques. In this Perspective, we review recent progress in topological insulators, the quantum anomalous Hall effect, chiral topological superconductors, helical topological superconductors and Weyl semimetals.

  10. Sleep disordered breathing in pregnancy

    Science.gov (United States)

    2015-01-01

    Key points Sleep disordered breathing (SDB) is common and the severity increases as pregnancy progresses. Frequent snoring, older age and high pre-pregnancy body mass index (>25 kg⋅m−2) could be reliable indicators for SDB in early pregnancy. SDB screening tools, including questionnaires, used in the nonpregnant population have poor predictive ability in pregnancy. Accumulating evidence suggests that SDB during pregnancy may be associated with increased risk of adverse pregnancy outcomes, including gestational diabetes and pre-eclampsia. However, the results should be interpreted cautiously because several studies failed to adjust for potential maternal confounders and have other study limitations. There are no pregnancy-specific practice guidelines for SDB treatment. Many clinicians and practices follow recommendations for the treatment in the general population. Women with pre-existing SDB might need to be reassessed, particularly after the sixth month of pregnancy, because symptoms can worsen with nasal congestion and weight gain. Educational aims To highlight the prevalence and severity of sleep disordered breathing (SDB) in the pregnant population. To inform readers about risk factors for SDB in pregnancy. To explore the impact of SDB on adverse maternal and fetal outcomes, and biological pathways for associated adverse maternal and fetal outcomes. To introduce current management options for SDB in pregnancy, including medical and behavioural approaches. Sleep disordered breathing (SDB) is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the

  11. Breathing

    Science.gov (United States)

    ... pull upward. This increases the size of the thoracic cavity and decreases the pressure inside. As a result, ... the diaphragm relaxes, and the volume of the thoracic cavity decreases, while the pressure within it increases. As ...

  12. Sleep disordered breathing in pregnancy

    Directory of Open Access Journals (Sweden)

    Bilgay Izci Balserak

    2015-12-01

    Sleep disordered breathing (SDB is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the severity of SDB, the epidemiology and the risk factors of SDB in pregnancy, the association of SDB with adverse pregnancy outcomes, and screening and management options specific for this population.

  13. Defining Pesticide Biomarkers

    Science.gov (United States)

    Biomarkers are measurable substances or characteristics in the human body that can be used to monitor the presence of a chemical in the body, biological responses or harm to health. This Web page describes categories of biomarkers and provides examples.

  14. Modeling of Kerena Emergency Condenser

    Directory of Open Access Journals (Sweden)

    Bryk Rafał

    2017-12-01

    Full Text Available KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA was built in Karlstein, Germany. The emergency condenser (EC system transfers heat from the reactor pressure vessel (RPV to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA. The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  15. Modeling of Kerena Emergency Condenser

    Science.gov (United States)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  16. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers.

    Science.gov (United States)

    Aherrera, Angela; Olmedo, Pablo; Grau-Perez, Maria; Tanda, Stefan; Goessler, Walter; Jarmul, Stephanie; Chen, Rui; Cohen, Joanna E; Rule, Ana M; Navas-Acien, Ana

    2017-11-01

    Nickel (Ni) and chromium (Cr) are components of e-cigarette heating coils. Whether e-cigarettes increase metal internal dose, however, is unknown. We assessed the association of e-cigarette use patterns and of e-liquid and aerosol metal concentrations with Ni and Cr biomarker levels in e-cigarette users from Maryland. We recruited 64 e-cigarette users from December 2015 to March 2016. We collected urine, saliva, and exhaled breath condensate (EBC), data on e-cigarette use, and samples from their e-cigarette device (dispenser e-liquid, aerosol, and tank e-liquid). Median Ni and Cr levels were 0.73 and 0.39μg/g creatinine in urine, 2.25 and 1.53μg/L in saliva, and 1.25 and 0.29μg/L in EBC. In adjusted models, tertiles 2 and 3 of aerosol Ni concentrations were associated with 16% and 72% higher urine Ni and 202% and 321% higher saliva Ni compared to the lowest tertile. Tertile 3 of aerosol Cr levels were associated with 193% higher saliva Cr. An earlier time to first vape in the morning and more frequent coil change were associated with higher urine Ni. Tertile 2 of e-liquid consumption per week and voltage were associated with higher saliva Ni levels than tertile 1. Positive associations of Ni and Cr aerosol concentrations with corresponding Ni and Cr biomarker levels indicate e-cigarette emissions increase metal internal dose. Increased e-cigarette use and consumption were also associated with higher Ni biomarker levels. Metal level standards are needed to prevent involuntary metal exposure among e-cigarette users. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Combination of biomarkers

    DEFF Research Database (Denmark)

    Thurfjell, Lennart; Lötjönen, Jyrki; Lundqvist, Roger

    2012-01-01

    The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury.......The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury....

  18. Biomarkers in Veterinary Medicine.

    Science.gov (United States)

    Myers, Michael J; Smith, Emily R; Turfle, Phillip G

    2017-02-08

    This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.

  19. Periaqueductal gray control of breathing.

    Science.gov (United States)

    Subramanian, Hari H; Holstege, Gert

    2010-01-01

    Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and for speech in humans) an important mechanism for survival, respiration has to be changed. The caudal brainstem premotor respiratory centers need input from higher brain centers in order to change respiration according to the surrounding circumstances. One of the most important of such a higher brain centers is the midbrain periaqueductal gray (PAG). The PAG co-ordinates motor output, including respiratory changes based on input from limbic, prefrontal and anterior cingulate cortex regions. These areas integrate visual, auditory and somatosensory information in the context of basic survival mechanisms and relay the result to the PAG, which has access to respiratory control centers in the caudal brainstem. Through these pathways the PAG can change eupneic respiratory rhythm into the behavior necessary for that specific situation. We present data obtained from the cat and propose a functional framework for the breathing control pathways.

  20. Inspiratory resistive breathing induces acute lung injury.

    Science.gov (United States)

    Toumpanakis, Dimitris; Kastis, George A; Zacharatos, Panagiotis; Sigala, Ioanna; Michailidou, Tatiana; Kouvela, Maroussa; Glynos, Constantinos; Divangahi, Maziar; Roussos, Charis; Theocharis, Stamatios E; Vassilakopoulos, Theodoros

    2010-11-01

    Resistive breathing is associated with large negative intrathoracic pressures. Increased mechanical stress induces high-permeability pulmonary edema and lung inflammation. To determine the effects of resistive breathing on the healthy lung. Anesthetized rats breathed through a two-way nonrebreathing valve. The inspiratory line was connected to a resistance setting peak inspiratory tracheal pressure at 50% of maximum (inspiratory resistive breathing), while 100% oxygen was supplied to prevent hypoxemia. Quietly breathing animals (100% oxygen) served as controls. Lung injury was evaluated after 3 and 6 hours of resistive breathing. After both 3 and 6 hours of resistive breathing, lung permeability was increased, as assessed by (99m)Tc-diethylenetriaminepentaacetic acid scintigraphy and Evans blue dye extravasation. Tissue elasticity, measured on the basis of static pressure-volume curves and by the low-frequency forced oscillation technique, was also increased. After both 3 and 6 hours of resistive breathing, gravimetric measurements revealed the presence of pulmonary edema and analysis of bronchoalveolar lavage showed increased total protein content, whereas the total cell count was elevated only after 6 hours of resistive breathing. Cytokine levels were assessed in bronchoalveolar lavage fluid and lung tissue by ELISA and were increased after 6 hours compared with controls. Western blot analysis showed early activation of Src kinase via phosphorylation (at 30 min), and Erk1/2 and IκBα (nuclear factor-κB inhibitor) were phosphorylated at 3 and 6 hours. Pathology revealed the presence of lung injury after resistive breathing. Resistive breathing induces acute lung injury and inflammation.

  1. Quartz-enhanced photo-acoustic spectroscopy for breath analyses

    Science.gov (United States)

    Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael

    2017-03-01

    An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.

  2. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  3. Gaugino Condensation in the Early Universe

    OpenAIRE

    Matsuda, Tomohiro

    1996-01-01

    We examine the process of formation of the gaugino condensation within a Nambu-Jona-Lasinio type approach. We construct an effective Lagrangian description for the gaugino condensation which include a Weyl compensator superfield whose vacuum expectation value is related to the gaugino condensation.

  4. TEN YEARS OF "CONDENSED MATTER PHYSICS"

    OpenAIRE

    Editors

    2003-01-01

    This year the journal "Condensed Matter Physics" celebrates its tenth anniversary. It was founded in 1993 by the Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine for the purpose of publishing the regular and review papers in the field of statistical mechanics and condensed matter theory.

  5. Polymer induced condensation of dna supercoils

    NARCIS (Netherlands)

    Bessa Ramos Jr., J.E.; Ruggiero Neto, J.; Vries, de R.J.

    2008-01-01

    Macromolecular crowding is thought to be a significant factor driving DNA condensation in prokaryotic cells. Whereas DNA in prokaryotes is supercoiled, studies on crowding-induced DNA condensation have so far focused on linear DNA. Here we compare DNA condensation by poly(ethylene oxide) for

  6. Analysis of inflammatory cytokines in human blood, breath condensate, and urine using a multiplex immunoassay platform

    Science.gov (United States)

    A change in the expression of cytokines in human biological media indicates an inflammatory response to external stressors and reflects an early step along the adverse outcome pathway (AOP) for various health endpoints. To characterize and interpret this inflammatory response, m...

  7. Human Exhaled Breath Condensate (EBC) Media: Implementation of Automated Quanterix SIMOA Immunochemistry Instrumentation

    Science.gov (United States)

    Immunochemistry is an important clinical tool for observing biological pathways leading to disease. Standard enzyme-linked immunosorbent assays (ELISA) for cytokines are typically labor intensive and lack sensitivity at sub pg/ml concentrations. Here we report on emerging tec...

  8. New sepsis biomarkers

    Directory of Open Access Journals (Sweden)

    Dolores Limongi

    2016-06-01

    Full Text Available Sepsis remains a leading cause of death in the intensive care units and in all age groups worldwide. Early recognition and diagnosis are key to achieving improved outcomes. Therefore, novel biomarkers that might better inform clinicians treating such patients are surely needed. The main attributes of successful biomarkers would be high sensitivity, specificity, possibility of bedside monitoring and financial accessibility. A panel of sepsis biomarkers along with currently used laboratory tests will facilitate earlier diagnosis, timely treatment and improved outcome may be more effective than single biomarkers. In this review, we summarize the most recent advances on sepsis biomarkers evaluated in clinical and experimental studies.

  9. Electronic Nose and Exhaled Breath NMR-based Metabolomics Applications in Airways Disease.

    Science.gov (United States)

    Santini, Giuseppe; Mores, Nadia; Penas, Andreu; Capuano, Rosamaria; Mondino, Chiara; Trové, Andrea; Macagno, Francesco; Zini, Gina; Cattani, Paola; Martinelli, Eugenio; Motta, Andrea; Macis, Giuseppe; Ciabattoni, Giovanni; Montuschi, Paolo

    2016-01-01

    Breathomics, the multidimensional molecular analysis of exhaled breath, includes analysis of exhaled breath with gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses), and metabolomics of exhaled breath condensate (EBC), a non-invasive technique which provides information on the composition of airway lining fluid, generally by high-resolution nuclear magnetic resonance (NMR) spectroscopy or MS methods. Metabolomics is the identification and quantification of small molecular weight metabolites in a biofluid. Specific profiles of volatile compounds in exhaled breath and metabolites in EBC (breathprints) are potentially useful surrogate markers of inflammatory respiratory diseases. Electronic noses (e-noses) are artificial sensor systems, usually consisting of chemical cross-reactive sensor arrays for characterization of patterns of breath volatile compounds, and algorithms for breathprints classification. E-noses are handheld, portable, and provide real-time data. E-nose breathprints can reflect respiratory inflammation. E-noses and NMR-based metabolomics of EBC can distinguish patients with respiratory diseases such as asthma, COPD, and lung cancer, or diseases with a clinically relevant respiratory component including cystic fibrosis and primary ciliary dyskinesia, and healthy individuals. Breathomics has also been reported to identify patients affected by different types of respiratory diseases. Patterns of breath volatile compounds detected by e-nose and EBC metabolic profiles have been associated with asthma phenotypes. In combination with other -omics platforms, breathomics might provide a molecular approach to respiratory disease phenotyping and a molecular basis to tailored pharmacotherapeutic strategies. Breathomics might also contribute to identify new surrogate markers of respiratory inflammation, thus, facilitating drug discovery. Validation in newly recruited, prospective independent cohorts is essential for development of e

  10. Breath analysis and blood alcohol concentration.

    NARCIS (Netherlands)

    Mulder, J.A.G. & Noordzij, P.C.

    1978-01-01

    Devices for breath analysis are intended to meet the need for a simple method for determining the blood alcohol concentration. Devices have already been developed for several purposes. For applying breath analyses a compromise has to be found between users' requirements and technical

  11. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...

  12. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  13. NASA firefighters breathing system program report

    Science.gov (United States)

    Wood, W. B.

    1977-01-01

    Because of the rising incidence of respiratory injury to firefighters, local governments expressed the need for improved breathing apparatus. A review of the NASA firefighters breathing system program, including concept definition, design, development, regulatory agency approval, in-house testing, and program conclusion is presented.

  14. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  15. Quark condensation in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.; Horn, D.; Mandula, J.E.

    1979-12-15

    Working within a limited Fock-space approximation (LFSA), we argue that if the running coupling constant of quantum chromodynamics (QCD) exceeds a critical value of order 1 the vacuum becomes a condensate of quark-antiquark pairs. To evaluate the critical coupling constant we use a Mellin-transform technique which is first illustrated with a Schroedinger equation problem. We then apply it to scalar and spinor QED, as well as to QCD, using the LFSA.

  16. Advances in condensed matter optics

    CERN Document Server

    Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin

    2015-01-01

    This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.

  17. BREATH OF USE AND VOCAL TRAINING

    Directory of Open Access Journals (Sweden)

    Nuran ACAR

    2016-10-01

    Full Text Available Breathable, who escorted us in every aspect of our lives and our survival is our primary activity, allowing for quality of life in a healthy way. quality of breaths taken the right technique, you need both health professional sense should perhaps take advantage of individuals who want to achieve success in life is the primary rule. When the diaphragm is born with assisted breathing lungs of every person's life starts to grow to keep up with the flurry lose this special and important skills. First and foremost, which is important for our body health, including every aspect of proper breathing, especially correct use of the voice carries particular importance. In this article, breathing subject discussed, correct breathing and our lives have tried to give us information about the benefits of both vocal training.

  18. Rapid eye movement sleep in breath holders.

    Science.gov (United States)

    Kohyama, J; Hasegawa, T; Shimohira, M; Fukumizu, M; Iwakawa, Y

    2000-07-01

    One-night polysomnography was performed on seven subjects suffering from breath-holding spells, including one whose death was suggested to be a consequence of a breath-holding spell. The fatal case showed no rapid eye movements (REMs) during REM sleep, although he exhibited REMs during wakefulness. The average numbers of both REMs and bursts of REMs in REM sleep in the other six breath holders were significantly lower than those in age-matched controls. The breath holders showed no airway obstruction, desaturation, or sleep fragmentation. Since the rapid ocular activity in REM sleep is generated in the brain stem, we hypothesized that a functional brainstem disturbance is involved in the occurrence of breath-holding spells.

  19. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  20. Sleep Disordered Breathing in Major Depressive Disorder

    Science.gov (United States)

    Cheng, Philip; Casement, Melynda; Chen, Chiau-Fang; Hoffmann, Robert F.; Armitage, Roseanne; Deldin, Patricia J.

    2012-01-01

    Summary Individuals with major depressive disorder often experience obstructive sleep apnea. However, the relationship between depression and less severe sleep disordered breathing is less clear. This study examines the rate of sleep disordered breathing in depression after excluding those who had clinically significant sleep apnea (> 5 apneas/hr). Archival data collected between 1991 and 2005 was used to assess the prevalence of sleep disordered breathing events in 60 (31 depressed; 29 healthy controls) unmedicated participants. Respiratory events were automatically detected using a program developed in-house measuring thermal nasal air-flow and chest pressure. Results show that even after excluding participants with clinically significant sleep disordered breathing, individuals with depression continue to exhibit higher rates of sleep disordered breathing compared to healthy controls (Depressed group: AHI mean=.524, SE =.105; Healthy group: AHI mean =.179, SE =.108). Exploratory analyses were also conducted to assess for rates of exclusion in depression studies due to sleep-disordered breathing. Study exclusion of sleep disordered breathing was quantified based on self-report during telephone screening, and via first night polysomnography. Results from phone screening data reveal that individuals reporting depression were 5.86 times more likely to report a diagnosis of obstructive sleep apnea than presumptive control participants. Furthermore, all of the participants excluded for severe sleep disordered breathing detected on the first night were participants with depression. These findings illustrate the importance of understanding the relationship between sleep disordered breathing and depression, and suggests that screening and quantification of sleep disordered breathing should be considered in depression research. PMID:23350718

  1. Sleep disordered breathing in children.

    Science.gov (United States)

    Sinha, Deepti; Guilleminault, Christian

    2010-02-01

    Sleep disordered breathing (SDB) is increasingly being recognised as a cause of morbidity even in young children. With an estimated prevalence of 1 to 4 per cent, SDB results from having a structurally narrow airway combined with reduced neuromuscular tone and increased airway collapsibility. SDB in children differs from adults in a number of ways, including presenting symptoms and treatment. Presentation may differ according to the age of the child. Children have a more varied presentation from snoring and frequent arousals to enuresis to hyperactivity. Those with Down syndrome, midface hypoplasia or neuromuscular disorders are at higher risk for developing SDB. First line definitive treatment in children involves tonsillectomy and adenoidectomy. Rapid maxillary expansion, allergy treatment and continuous positive airway pressure (CPAP) are other options. As untreated SDB results in complications as learning difficulties, memory loss and a long term increase in risk of hypertension, depression and poor growth, it is important to diagnose SDB.

  2. Time Breath of Psychological Theories

    DEFF Research Database (Denmark)

    Tateo, Luca; Valsiner, Jaan

    2015-01-01

    Psychology as a self-aspiring, ambitious, developmental science faces the crucial limit of time—both theoretically and practically. The issue of time in constructing psychology’s theories is a major unresolved metatheoretical task. This raises several questions about generalization of knowledge......: which is the time length of breath of psychological theories? Which is the temporal dimension of psychological processes? In this article we discuss the role of different axiomatic assumptions about time in the construction of psychological theories. How could different theories include a concept...... of time—or fail to do that? How can they generalize with respect to time? The different conceptions of time often remain implicit, while shaping the concepts used in understanding psychological processes. Any preconception about time in human development will foster the generalizability of theory, as well...

  3. Voucher-Based Reinforcement for Alcohol Abstinence Using the Ethyl-Glucuronide Alcohol Biomarker

    Science.gov (United States)

    McDonell, Michael G.; Howell, Donelle N,; McPherson, Sterling; Cameron, Jennifer M.; Srebnik, Debra; Roll, John M.; Ries, Richard K.

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase.…

  4. Carbon Monoxide in Exhaled Breath Testing and Therapeutics

    Science.gov (United States)

    Ryter, Stefan W.; Choi, Augustine M.K.

    2013-01-01

    Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation, and potential diagnostic value remains incompletely characterized. Among other candidate “medicinal gases” with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease. PMID:23446063

  5. Carbon monoxide in exhaled breath testing and therapeutics.

    Science.gov (United States)

    Ryter, Stefan W; Choi, Augustine M K

    2013-03-01

    Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation and its potential diagnostic value remain incompletely characterized. Among other candidate 'medicinal gases' with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease.

  6. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose

  7. The Effect of Condensate Inundation on Condensation Heat Transfer in Tube Bundles of Marine Condensers.

    Science.gov (United States)

    1980-12-01

    provides additional protection from contamination. After the strainer, the steam proceeds through a 31.75 mm. diameter line which provides for two...the system was tested for air-tightness and found to be secure. In addition , it was believed that the velocity of steam passing through the test...REFERENCES 1. Standards for Steam Surface Condensers, 6th ed., Heat Exchange Institue, 1970. 2. Standards of Tubular Exchanger Manifacturers Association

  8. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    Science.gov (United States)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  9. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  10. An ultrasonic contactless sensor for breathing monitoring.

    Science.gov (United States)

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-08-20

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569).

  11. Role of biomarkers in patients with dyspnea.

    Science.gov (United States)

    Gori, C S; Magrini, L; Travaglino, F; Di Somma, S

    2011-02-01

    The use of biomarkers has been demonstrated useful in many acute diseases both for diagnosis, prognosis and risk stratification. The purpose of this review is to analyze several biomarkers of potential use in patients referring to Emergency Department with acute dyspnea. The role of natriuretic peptides has a proven utility in the diagnosis, risk stratification, patient management and prediction of outcome in acute and chronic heart failure (HF). New immunoassays are available for the detection of mid-region prohormones in patients with acute dyspnea such as Mid-region pro-adrenomedullin (MR-proADM) and Mid-region pro-atrial natriuretic peptide (MR-proANP). Also procalcitonin, copeptin and D-dimer, which are markers of inflammation, bacterial infections and sepsis, seem to be useful in the differential diagnosis of dyspnea. Conventional and high-sensitivity troponins are fundamental, not only in the diagnosis of acute coronary syndromes, but also as indicators of mortality in patients with acute decompensated heart failure. Further studies with randomized controlled clinical trials will be needed to prove the theoretical clinical advantages offered by a shortness of breath biomarkers in terms of diagnostic, prognostic, cost effective work-up and management of patients with acute dyspnea. A multimarker pannel approach performed by rapid and accurate assays could be useful for emergency physicians to promptly identify different causes of dyspnea thus managing to improve diagnosis, treatment and risk stratification.

  12. Biomarkers in sarcoidosis.

    Science.gov (United States)

    Chopra, Amit; Kalkanis, Alexandros; Judson, Marc A

    2016-11-01

    Numerous biomarkers have been evaluated for the diagnosis, assessment of disease activity, prognosis, and response to treatment in sarcoidosis. In this report, we discuss the clinical and research utility of several biomarkers used to evaluate sarcoidosis. Areas covered: The sarcoidosis biomarkers discussed include serologic tests, imaging studies, identification of inflammatory cells and genetic analyses. Literature was obtained from medical databases including PubMed and Web of Science. Expert commentary: Most of the biomarkers examined in sarcoidosis are not adequately specific or sensitive to be used in isolation to make clinical decisions. However, several sarcoidosis biomarkers have an important role in the clinical management of sarcoidosis when they are coupled with clinical data including the results of other biomarkers.

  13. Air sampling unit for breath analyzers

    Science.gov (United States)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  14. Quantum tunnelling in condensed media

    CERN Document Server

    Kagan, Yu

    1992-01-01

    The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse

  15. Metabolomics Toward Biomarker Discovery.

    Science.gov (United States)

    Yin, Peiyuan; Xu, Guowang

    2017-01-01

    Metabolomics has been used as practical tool in the discovery of novel biomarkers in a broad area in the clinic. The analytical platforms including nuclear magnetic resonance (NMR) and mass spectrometry (MS) can cover thousands of metabolites. With the help of multivariate data analysis, many potential biomarkers can be defined in the studies. Since metabolites stand at the end point of metabolism, it remains difficult to find novel biomarkers with good diagnostic or prognostic performance. In this chapter, we will introduce a general protocol for biomarker discovery within the scope of metabolomics using MS.

  16. Diabetes and the metabolic syndrome: possibilities of a new breath test in a dolphin model

    Directory of Open Access Journals (Sweden)

    Michael eSchivo

    2013-11-01

    Full Text Available Diabetes type-2 and the metabolic syndrome are prevalent in epidemic proportions and result in significant co-morbid disease. Limitations in understanding of dietary effects and cholesterol metabolism exist. Current methods to assess diabetes are essential, though many are invasive; for example, blood glucose and lipid monitoring require regular finger sticks and blood draws. A novel method to study these diseases may be non-invasive breath testing of exhaled compounds. Currently, acetone and lipid peroxidation products have been seen in small scale studies, though other compounds may be significant. As Atlantic bottlenose dolphins (Tursiops truncatus have been proposed as a good model for human diabetes, applications of dietary manipulations and breath testing in this population may shed important light on how to design human clinical studies. In addition, ongoing studies indicate that breath testing in dolphins is feasible, humane, and yields relevant metabolites. By studying the metabolic and cholesterol responses of dolphins to dietary modifications, researchers may gain insight into human diabetes, improve the design of costly human clinical trials, and potentially discover biomarkers for non-invasive breath monitoring.

  17. Real-time breath gas analysis of CO and CO2 using an EC-QCL

    Science.gov (United States)

    Ghorbani, Ramin; Schmidt, Florian M.

    2017-05-01

    Real-time breath gas analysis is a promising, non-invasive tool in medical diagnostics, and well-suited to investigate the physiology of carbon monoxide (CO), a potential biomarker for oxidative stress and respiratory diseases. A sensor for precise, breath-cycle resolved, simultaneous detection of exhaled CO (eCO) and carbon dioxide (eCO2) was developed based on a continuous wave, external-cavity quantum cascade laser (EC-QCL), a low-volume multi-pass cell and wavelength modulation spectroscopy. The system achieves a noise-equivalent (1σ) sensitivity of 8.5 × 10-8 cm-1 Hz-1/2 and (2σ) detection limits of 9 ± 2 ppbv and 650 ± 7 ppmv at 0.14 s spectrum acquisition time for CO and CO2, respectively. Integration over 15 s yields a precision of 0.6 ppbv for CO. The fact that the eCO2 expirograms measured by capnography and laser spectroscopy have essentially identical shape confirms true real-time detection. It is found that the individual eCO exhalation profiles from healthy non-smokers have a slightly different shape than the eCO2 profiles and exhibit a clear dependence on exhalation flow rate and breath-holding time. Detection of indoor air CO and broadband breath profiling across the 93 cm-1 mode-hop-free tuning range of the EC-QCL are also demonstrated.

  18. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air at the surface. Air breathing is a common behaviour in many fish species when exposed to hypoxia, although certain...... species perform air-breathing in normoxia to fill their swim bladders for buoyancy control and/or sound transduction. Hoplos/emum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of a fast air...... overlap considerably in their kinematics (turning rates and distance covered), suggesting that air breathing in this species is performed using escapelike C-start motions. This demonstrates that C-starts in fish do not need external stimulation and can be spontaneous behaviours used outside the context...

  19. DNA condensation in one dimension.

    Science.gov (United States)

    Pardatscher, Günther; Bracha, Dan; Daube, Shirley S; Vonshak, Ohad; Simmel, Friedrich C; Bar-Ziv, Roy H

    2016-12-01

    DNA can be programmed to assemble into a variety of shapes and patterns on the nanoscale and can act as a template for hybrid nanostructures such as conducting wires, protein arrays and field-effect transistors. Current DNA nanostructures are typically in the sub-micrometre range, limited by the sequence space and length of the assembled strands. Here we show that on a patterned biochip, DNA chains collapse into one-dimensional (1D) fibres that are 20 nm wide and around 70 µm long, each comprising approximately 35 co-aligned chains at its cross-section. Electron beam writing on a photocleavable monolayer was used to immobilize and pattern the DNA molecules, which condense into 1D bundles in the presence of spermidine. DNA condensation can propagate and split at junctions, cross gaps and create domain walls between counterpropagating fronts. This system is inherently adept at solving probabilistic problems and was used to find the possible paths through a maze and to evaluate stochastic switching circuits. This technique could be used to propagate biological or ionic signals in combination with sequence-specific DNA nanotechnology or for gene expression in cell-free DNA compartments.

  20. Condensation induced water hammer safety

    Energy Technology Data Exchange (ETDEWEB)

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  1. Approaching Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Loris, E-mail: loris.ferrari@unibo.it [Department of Physics of the University, Viale B. Pichat, 6/2, 40127, Bologna (Italy)

    2011-11-15

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial role of the bosonic ground level. If so, a correct treatment of the problem, including the ground level population N{sub 0} by construction, leads to BEC in a straightforward way. For a density of states of the form G({epsilon}){approx}{epsilon}{sup {gamma}}, the chemical potential {mu} is explicitly calculated as a function of the temperature T and of the number N of bosons, for various significant values of the positive exponent {gamma}. In the thermodynamic limit, in which the boson number N diverges and BEC is a sharp process, the chemical potential {mu} is a singular function of T at the critical temperature T{sub B}, determined by an appropriate critical exponent. The condensate population N{sub 0} is studied analytically and numerically as a function of the temperature, for various values of N and for different {gamma}. This provides an accurate description of the way BEC approaches the character of a sharp phase transition. Some aspects of the real experiments on BEC, involving a finite number of bosons, are also illustrated.

  2. Muonic Chemistry in Condensed Matter

    CERN Multimedia

    2002-01-01

    When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...

  3. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  4. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  5. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    2017-04-04

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  6. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  7. Managing Asthma: Learning to Breathe Easier

    Science.gov (United States)

    ... Issues Subscribe June 2014 Print this issue Managing Asthma Learn To Breathe Easier En español Send us ... Allergy Therapy Seeking Allergy Relief Wise Choices Controlling Asthma Get regular checkups for your asthma. Make a ...

  8. Coordination of Mastication, Swallowing and Breathing

    Science.gov (United States)

    Matsuo, Koichiro; Palmer, Jeffrey B.

    2009-01-01

    Summary The pathways for air and food cross in the pharynx. In breathing, air may flow through either the nose or the mouth, it always flows through the pharynx. During swallowing, the pharynx changes from an airway to a food channel. The pharynx is isolated from the nasal cavity and lower airway by velopharyngeal and laryngeal closure during the pharyngeal swallow. During mastication, the food bolus accumulates in the pharynx prior to swallow initiation. The structures in the oral cavity, pharynx and larynx serve multiple functions in breathing, speaking, mastication and swallowing. Thus, the fine temporal coordination of feeding among breathing, mastication and swallowing is essential to provide proper food nutrition and to prevent pulmonary aspiration. This review paper will review the temporo-spatial coordination of the movements of oral, pharyngeal, and laryngeal structures during mastication and swallowing, and temporal coordination between breathing, mastication, and swallowing. PMID:20161022

  9. Breath-holding spells in infants.

    Science.gov (United States)

    Goldman, Ran D

    2015-02-01

    I have children in my clinic who experience seizurelike episodes in which they cry and hold their breath to the point of cyanosis and loss of consciousness. Their examination or investigation findings are normal and referral to a pediatric specialist results in no further investigation. Are breath-holding spells common, and what type of investigation is needed? A breath-holding spell is a benign paroxysmal nonepileptic disorder occurring in healthy children 6 to 48 months of age. The episodes start with a provocation such as emotional upset or minor injury, and might progress to breath holding, cyanosis, and syncope. The episodes are extremely frightening to watch but have benign consequences. Once a clinical diagnosis is made, it is recommended to conduct an electrocardiogram and to rule out anemia, but no further investigation or referral is warranted. Copyright© the College of Family Physicians of Canada.

  10. Understanding the Potential of WO3 Based Sensors for Breath Analysis

    Science.gov (United States)

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods. PMID:27801881

  11. 21 CFR 868.5280 - Breathing tube support.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing tube support. 868.5280 Section 868.5280...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a) Identification. A breathing tube support is a device that is intended to support and anchor a patient's breathing...

  12. 46 CFR 197.456 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  13. Comparison of work of breathing using drawover and continuous flow anaesthetic breathing systems in children.

    Science.gov (United States)

    Bell, G T; McEwen, J P J; Beaton, S J; Young, D

    2007-04-01

    We compared the work of breathing under general anaesthesia in children using drawover and continuous flow anaesthetic systems. A pilot study was conducted in four children weighing > 20 kg in whom it would usually be considered appropriate to use breathing systems designed for adult anaesthesia. The pilot study compared work of breathing using the Mapleson D breathing system and the Triservice Anaesthetic Apparatus (TSAA). Work of breathing was calculated using the modified Campbell technique that calculates work using a pressure volume loop derived from oesophageal pressure and airway gas volume measurements. We found no difference in the work of breathing when comparing the Mapleson D and the TSAA in children > 20 kg. Following completion of the pilot study, we conducted a study on 10 children weighing between 10 and 20 kg comparing work of breathing using the Mapleson F breathing system and the TSAA. We found no significant difference in the work of breathing between the Mapleson F and the TSAA for these children. The TSAA can therefore be recommended for use down to a lower weight limit of 10 kg.

  14. Quantum depletion of a soliton condensate

    Science.gov (United States)

    Huang, Guoxiang; Deng, L.; Yan, Jiaren; Hu, Bambi

    2006-09-01

    We present rigorous results on the diagonalization of Bogoliubov Hamiltonian for a soliton condensate. Using the complete and orthonormalized set of eigenfunction for the Bogoliubov de Gennes equations, we calculate exactly the quantum depletion of the condensate and show that two degenerate zero-modes, which originate from a U(1) gauge- and a translational-symmetry breaking of the system, induce the quantum diffusion and transverse instability of the soliton condensate.

  15. Control of breathing in invertebrate model systems.

    Science.gov (United States)

    Bell, Harold J; Syed, Naweed I

    2012-07-01

    The invertebrates have adopted a myriad of breathing strategies to facilitate the extraction of adequate quantities of oxygen from their surrounding environments. Their respiratory structures can take a wide variety of forms, including integumentary surfaces, lungs, gills, tracheal systems, and even parallel combinations of these same gas exchange structures. Like their vertebrate counterparts, the invertebrates have evolved elaborate control strategies to regulate their breathing activity. Our goal in this article is to present the reader with a description of what is known regarding the control of breathing in some of the specific invertebrate species that have been used as model systems to study different mechanistic aspects of the control of breathing. We will examine how several species have been used to study fundamental principles of respiratory rhythm generation, central and peripheral chemosensory modulation of breathing, and plasticity in the control of breathing. We will also present the reader with an overview of some of the behavioral and neuronal adaptability that has been extensively documented in these animals. By presenting explicit invertebrate species as model organisms, we will illustrate mechanistic principles that form the neuronal foundation of respiratory control, and moreover appear likely to be conserved across not only invertebrates, but vertebrate species as well. © 2012 American Physiological Society. Compr Physiol 2:1745-1766, 2012.

  16. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  17. Biomarkers of Diabetic Retinopathy.

    Science.gov (United States)

    Ting, Daniel Shu Wei; Tan, Kara-Anne; Phua, Val; Tan, Gavin Siew Wei; Wong, Chee Wai; Wong, Tien Yin

    2016-12-01

    Diabetic retinopathy (DR), a leading cause of acquired vision loss, is a microvascular complication of diabetes. While traditional risk factors for diabetic retinopathy including longer duration of diabetes, poor blood glucose control, and dyslipidemia are helpful in stratifying patient's risk for developing retinopathy, many patients without these traditional risk factors develop DR; furthermore, there are persons with long diabetes duration who do not develop DR. Thus, identifying biomarkers to predict DR or to determine therapeutic response is important. A biomarker can be defined as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Incorporation of biomarkers into risk stratification of persons with diabetes would likely aid in early diagnosis and guide treatment methods for those with DR or with worsening DR. Systemic biomarkers of DR include serum measures including genomic, proteomic, and metabolomics biomarkers. Ocular biomarkers including tears and vitreous and retinal vascular structural changes have also been studied extensively to prognosticate the risk of DR development. The current studies on biomarkers are limited by the need for larger sample sizes, cross-validation in different populations and ethnic groups, and time-efficient and cost-effective analytical techniques. Future research is important to explore novel DR biomarkers that are non-invasive, rapid, economical, and accurate to help reduce the incidence and progression of DR in people with diabetes.

  18. Respiratory Toxicity Biomarkers

    Science.gov (United States)

    The advancement in high throughput genomic, proteomic and metabolomic techniques have accelerated pace of lung biomarker discovery. A recent growth in the discovery of new lung toxicity/disease biomarkers have led to significant advances in our understanding of pathological proce...

  19. Novel biomarkers for sepsis

    DEFF Research Database (Denmark)

    Larsen, Frederik Fruergaard; Petersen, J Asger

    2017-01-01

    biomarkers to discriminate between patients with and without infection, as the cause of deterioration. METHOD: Narrative review of current literature. RESULTS: A number of the most promising biomarkers for diagnoses and prognostication of sepsis are presented. CONCLUSION: Procalcitonin, presepsin, CD64, su...

  20. Oxidative stress in breath-hold divers after repetitive dives

    OpenAIRE

    Theunissen, S; Sponsiello, N; Rozloznik, M; Germonpre, P.; Guerrero, F.; Cialoni, D; Balestra, C.

    2013-01-01

    Introduction: Hyperoxia causes oxidative stress. Breath-hold diving is associated with transient hyperoxia followed by hypoxia and a build-up of carbon dioxide (CO2), chest-wall compression and significant haemodynamic changes. This study analyses variations in plasma oxidative stress markers after a series of repetitive breath-hold dives.Methods: Thirteen breath-hold divers were asked to perform repetitive breath-hold dives to 20 metres’ depth to a cumulative breath-hold time of approximatel...

  1. Preclinical biomarker qualification.

    Science.gov (United States)

    Sauer, John-Michael; Porter, Amy C

    2017-01-01

    Biomarkers are ubiquitously used within drug development programs in both nonclinical species and in humans to assess safety and efficacy of novel compounds. To routinely apply such novel biomarkers with certainty, a well-defined data package is necessary for review and endorsement by regulatory agencies including the US Food and Drug Administration, European Medicines Agency, and Japanese Pharmaceuticals and Medical Devices Agency. This type of endorsement is known as regulatory qualification. Novel approaches are being applied to speed the process, lower the resource intensity, and increase the accessibility of biomarker qualification data and it is likely that consortia will continue to play a fundamental role in the qualification process by bringing together like-minded stakeholders focused on specific tools to accelerate drug development. This article will focus on learnings from the previous three nonclinical biomarker qualification projects, as well as discuss the progression of preclinical biomarker projects into the clinical qualification space and the current strategy for the use of nonclinical biomarker data in the translational qualification of clinical biomarkers; much like nonclinical information is used in the approval of drug development candidates. Impact statement This minireview provides an overview of the history of preclinical biomarker qualification by summarizing the three examples of this type of qualification with US Food and Drug Administration, European Medicines Agency, and Japanese Pharmaceuticals and Medical Devices Agency. In addition, an overview of the biomarker qualification process is included to educate key stakeholders with links to relevant white papers that provide information on current evidentiary considerations. The manuscript also provides new information on the evolution of the role that preclinical qualification plays in clinical qualification of biomarkers and the novel approaches that are being utilized to improve the

  2. Chloromethane emissions in human breath.

    Science.gov (United States)

    Keppler, Frank; Fischer, Jan; Sattler, Tobias; Polag, Daniela; Jaeger, Nicole; Schöler, Heinz Friedrich; Greule, Markus

    2017-12-15

    Chloromethane (CH3Cl), currently the most abundant chlorinated organic compound in the atmosphere at around ~550 parts per trillion by volume (pptv), is considered responsible for approximately 16% of halogen-catalyzed stratospheric ozone destruction. Although emissions of CH3Cl are known to occur from animals such as cattle, formation and release of CH3Cl from humans has not yet been reported. In this study a pre-concentration unit coupled with a gas chromatograph directly linked to a mass spectrometer was used to precisely measure concentrations of CH3Cl at the pptv level in exhaled breath from 31 human subjects with ages ranging from 3 to 87years. We provide analytical evidence that all subjects exhaled CH3Cl in the range of 2.5 to 33 parts per billion by volume, levels which significantly exceed those of inhaled air by a factor of up to 60. If the mean of these emissions was typical for the world's population, then the global source of atmospheric CH3Cl from humans would be around 0.66Ggyr(-1) (0.33 to 1.48Ggyr(-1)), which is less than 0.03% of the total annual global atmospheric source strength. The observed endogenous formation of a chlorinated methyl group in humans might be of interest to biochemists and medical scientists as CH3Cl is also known to be a potent methylating agent and thus, could be an important target compound in future medical research diagnostic programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Recovery of Percent Vital Capacity by Breathing Training in Patients With Panic Disorder and Impaired Diaphragmatic Breathing.

    Science.gov (United States)

    Yamada, Tatsuji; Inoue, Akiomi; Mafune, Kosuke; Hiro, Hisanori; Nagata, Shoji

    2017-09-01

    Slow diaphragmatic breathing is one of the therapeutic methods used in behavioral therapy for panic disorder. In practice, we have noticed that some of these patients could not perform diaphragmatic breathing and their percent vital capacity was initially reduced but could be recovered through breathing training. We conducted a comparative study with healthy controls to investigate the relationship between diaphragmatic breathing ability and percent vital capacity in patients with panic disorder. Our findings suggest that percent vital capacity in patients with impaired diaphragmatic breathing was significantly reduced compared with those with normal diaphragmatic breathing and that diaphragmatic breathing could be restored by breathing training. Percent vital capacity of the healthy controls was equivalent to that of the patients who had completed breathing training. This article provides preliminary findings regarding reduced vital capacity in relation to abnormal respiratory movements found in patients with panic disorder, potentially offering alternative perspectives for verifying the significance of breathing training for panic disorder.

  4. Comparison of Heat Transfer Coefficients of Silver Coated and Chromium Coated Copper Tubes of Condenser in Dropwise Condensation

    OpenAIRE

    Er. Shivesh Kumar; Dr. Amit Kumar

    2016-01-01

    Since centuries steam is being used in power generating system. The steam leaving the power unit is reconverted into water in a condenser designed to transfer heat from the steam to the cooling water as rapidly and as efficiently as possible. The efficiency of condenser depends on rate of condensation and mode of condensation of steam in the condenser. The increase in efficiency of the condenser enhances the heat transfer co-efficient which in turn results in economic design of condenser and ...

  5. The mean condensate heat resistance of dropwise condensation with flowing inert gases

    NARCIS (Netherlands)

    van der Geld, C.W.M.; Brouwers, Jos

    1995-01-01

    The quantification of the condensate heat resistance is studied for dropwise condensation from flowing air-steam mixtures. Flows are essentially laminar and stable with gas Reynolds numbers around 900 and 2000. The condensate shaping up as hemispheres on a plastic plane wall and the presence of

  6. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  7. Molecular attraction of condensed bodies

    Science.gov (United States)

    Derjaguin, B. V.; Abrikosova, I. I.; Lifshitz, E. M.

    2015-09-01

    From the Editorial Board. As a contribution to commemorating the 100th anniversary of the birth of Evgenii Mikhailovich Lifshitz, it was found appropriate by the Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal that the materials of the jubilee-associated Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences published in this issue (pp. 877-905) be augmented by the review paper "Molecular attraction of condensed bodies" reproduced from a 1958 UFN issue. Included in this review, in addition to an account by Evgenii Mikhailovich Lifshitz of his theory of molecular attractive forces between condensed bodies (first published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (ZhETF) in 1955 and in its English translation Journal of Experimental and Theoretical Physics (JETP) in 1956), is a summary of a series of experimental studies beginning in 1949 by Irina Igorevna Abrikosova at the Institute of Physical Chemistry of the Academy of Sciences of the USSR in a laboratory led by Boris Vladimirovich Derjaguin (1902-1994), a Corresponding Member of the USSR Academy of Sciences. In 1958, however, UFN was not yet available in English translation, so the material of the review is insufficiently accessible to the present-day English-speaking reader. This is the reason why the UFN Editorial Board decided to contribute to celebrating the 100th anniversary of E M Lifshitz's birthday by reproducing on the journal's pages a 1958 review paper which contains both E M Lifshitz's theory itself and the experimental data that underpinned it (for an account of how Evgenii Mikhailovich Lifshitz was enlisted to explain the experimental results of I I Abrikosova and B V Derjaguin, see the letter to the editors N P Danilova on page 925 of this jubilee collection of publications).

  8. Condensed Matter Theories - Volume 22

    Science.gov (United States)

    Reinholz, Heidi; Röpke, Gerd; de Llano, Manuel

    2007-09-01

    pt. A. Fermi liquids. Pressure comparison between the spherical cellular model and the Thomas-Fermi model / G.A. Baker, Jr. Pair excitations and vertex corrections in Fermi fluids and the dynamic structure function of two-dimension 3He / H.M. Böhm, H. Godfrin, E. Krotscheck, H.J. Lauter, M. Meschke and M. Panholzer. Condensation of helium in wedges / E.S. Hernádez ... [et al.]. Non-Fermi liquid behavior from the Fermi-liquid approach / V.A. Khodel ... [et al.]. Theory of third sound and stability of thin 3He-4He superfluid films / E. Krotscheck and M.D. Miller. Pairing in asymmetrical Fermi systems / K.F. Quader and R. Liao. Ground-state properties of small 3He drops from quantum Monte Carlo simulations / E. Sola, J. Casulleras and J. Boronat. Ground-state energy and compressibility of a disordered two-dimensional electron gas / Tanatar ... [et al.]. Quasiexcitons in photoluminescence of incompressible quantum liquids / A. Wójs, A.G ladysiewicz and J.J. Quinn -- pt. B. Bose liquids. Quantum Boltzmann liquids / K.A. Gernoth, M L. Ristig and T. Lindenau. Condensate fraction in the dynamic structure function of Bose fluids / M. Saarela, F. Mazzanti and V. Apaja -- pt. C. Strongly-correlated electronic systems. Electron gas in high-field nanoscopic transport: metallic carbon nanotubes / F. Green and D. Neilson. Evolution and destruction of the Kondo effect in a capacitively coupled double dot system / D.E. Logan and M.R. Galpin. The method of increments-a wavefunction-based Ab-Initio correlation method for solids / B. Paulus. Fractionally charged excitations on frustrated lattices / E. Runge, F. Pollmann and P. Fulde. 5f Electrons in actinides: dual nature and photoemission spectra / G. Zwicknagl -- pt. D. Magnetism. Magnetism in disordered two-dimensional Kondo-Necklace / W. Brenig. On the de Haas-can Alphen oscillation in 2D / S. Fujita and D.L. Morabito. Dynamics in one-dimensional spin systems-density matrix reformalization group study / S. Nishimoto and M

  9. Assessment of the controllability of condensible emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shareef, G.S.; Waddell, J.T.

    1990-10-01

    The report gives results of a study to gain insights into the condensible emissions area from an air toxics perspective, with emphasis on controllability and chemical composition of these emissions. The study: compiled existing data on condensible emissions; determined the chemical composition of condensible emissions, where possible; identified source categories that are major emitters of condensibles; evaluated the effectiveness of various control devices in reducing condensible emissions; and evaluated how the performance of currently available control technologies can be improved to better control condensible emissions. Two data bases were developed: the Condensibles Data Base contains 43 emission source categories; the Specialized Condensibles Data Base focuses on the chemical composition of condensible emissions.

  10. Spectral Properties of Holstein and Breathing Polarons

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, Cyrill [University of Cincinnati; Macridin, Alexandru [University of Cincinnati; Sawatzky, George [University of British Columbia, Vancouver; Jarrell, Mark [University of Cincinnati; Maier, Thomas A [ORNL

    2006-01-01

    We calculate the spectral properties of the one-dimensional Holstein and breathing polarons using the self-consistent Born approximation. The Holstein model electron-phonon coupling is momentum independent while the breathing coupling increases monotonically with the phonon momentum. We find that for a linear or tight binding electron dispersion: i) for the same value of the dimensionless coupling the quasiparticle renormalization at small momentum in the breathing polaron is much smaller, ii) the quasiparticle renormalization at small momentum in the breathing polaron increases with phonon frequency unlike in the Holstein model where it decreases, iii) in the Holstein model the quasiparticle dispersion displays a kink and a small gap at an excitation energy equal to the phonon frequency $\\omega_0$ while in the breathing model it displays two gaps, one at excitation energy $\\omega_0$ and another one at $2\\omega_0$. These differences have two reasons: first, the momentum of the relevant scattered phonons increases with increasing polaron momentum and second, the breathing bare coupling is an increasing function of the phonon momentum. These result in an effective electron-phonon coupling for the breathing model which is an increasing function of the total polaron momentum, such that the small momentum polaron is in the weak coupling regime while the large momentum one is in the strong coupling regime. However the first reason does not hold if the free electron dispersion has low energy states separated by large momentum, as in a higher dimensional system for example, in which situation the difference between the two models becomes less significant.

  11. Individuality of breathing during volitional moderate hyperventilation.

    Science.gov (United States)

    Besleaga, Tudor; Blum, Michaël; Briot, Raphaël; Vovc, Victor; Moldovanu, Ion; Calabrese, Pascale

    2016-01-01

    The aim of this study is to investigate the individuality of airflow shapes during volitional hyperventilation. Ventilation was recorded on 18 healthy subjects following two protocols: (1) spontaneous breathing (SP1) followed by a volitional hyperventilation at each subject's spontaneous (HVSP) breathing rate, (2) spontaneous breathing (SP2) followed by hyperventilation at 20/min (HV20). HVSP and HV20 were performed at the same level of hypocapnia: end tidal CO2 (FETCO2) was maintained at 1% below the spontaneous level. At each breath, the tidal volume (VT), the breath (TTOT), the inspiratory (TI) and expiratory durations, the minute ventilation, VT/TI, TI/TTOT and the airflow shape were quantified by harmonic analysis. Under different conditions of breathing, we test if the airflow profiles of the same individual are more similar than airflow profiles between individuals. Minute ventilation was not significantly different between SP1 (6.71 ± 1.64 l·min(-1)) and SP2 (6.57 ± 1.31 l·min(-1)) nor between HVSP (15.88 ± 4.92 l·min(-1)) and HV20 (15.87 ± 4.16 l·min(-1)). Similar results were obtained for FETCO2 between SP1 (5.06 ± 0.54 %) and SP2 (5.00 ± 0.51%), and HVSP (4.07 ± 0.51%) and HV20 (3.88 ± 0.42%). Only TI/TTOT remained unchanged in all four conditions. Airflow shapes were similar when comparing SP1-SP2, HVSP-HV20, and SP1-HVSP but not similar when comparing SP2-HV20. These results suggest the existence of an individuality of airflow shape during volitional hyperventilation. We conclude that volitional ventilation alike automatic breathing follows inherent properties of the ventilatory system. Registered by Pascale Calabrese on ClinicalTrials.gov, # NCT01881945.

  12. Prognostic biomarkers in osteoarthritis

    Science.gov (United States)

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  13. Hydrophilic structures for condensation management in appliances

    Science.gov (United States)

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  14. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  15. Mathematical modelling of dropwise condensation on textured ...

    Indian Academy of Sciences (India)

    locations with local minima of the free surface energy. In macroscopic modelling of ..... the substrate area by a random seed generator function in C++ that returns a matrix containing pseudo random numbers ... 2.2b Drop growth by direct condensation: The rate of condensation on the free surface of a drop depends on its ...

  16. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.

    by the fall of a prey item on the water surface, and in tapping motions of goldfish, a behaviour that was interpreted to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air...... at the surface. Air breathing is a common behaviour in many fish species when exposed to hypoxia, although certain species perform air-breathing in normoxia to fill their swim bladders for buoyancy control and/or sound transduction. Hoplosternum littorale is an air-breathing freshwater catfish found in South...... America. Field video observations reveal that their air-breathing behaviour consists of a fast air-gulping motion at the surface, followed by swimming towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of spontaneous air-gulping performed by H. littorale in normoxia...

  17. Condensation phenomenon detection through surface plasmon resonance.

    Science.gov (United States)

    Ibrahim, Joyce; Al Masri, Mostafa; Veillas, Colette; Celle, Frédéric; Cioulachtjian, Serge; Verrier, Isabelle; Lefèvre, Frédéric; Parriaux, Olivier; Jourlin, Yves

    2017-10-02

    The aim of this work is to optically detect the condensation of acetone vapor on an aluminum plate cooled down in a two-phase environment (liquid/vapor). Sub-micron period aluminum based diffraction gratings with appropriate properties, exhibiting a highly sensitive plasmonic response, were successfully used for condensation experiments. A shift in the plasmonic wavelength resonance has been measured when acetone condensation on the aluminum surface takes place due to a change of the surrounding medium close to the surface, demonstrating that the surface modification occurs at the very beginning of the condensation phenomenon. This paper presents important steps in comprehending the incipience of condensate droplet and frost nucleation (since both mechanisms are similar) and thus to control the phenomenon by using an optimized engineered surface.

  18. Polariton condensation in a disordered potential

    DEFF Research Database (Denmark)

    Antón, C.; Tosi, G.; Lingg, C. A.

    2011-01-01

    We study polariton condensation under OPO (Optical Parametric Oscillator) out-of-equilibrium conditions [1] in the presence of linear and point defects. Because of the simultaneous presence of pump, signal and idler emitting at different wave vectors, as well as of photonic disorder, the system....... Furthermore, a detailed study of the condensate phase demonstrates that the map of the supercurrents is unambiguously determined by the different defect geometries. We have studied two similar λ/2 GaAs-based microcavities, differing mainly by the thickness of the cavity and of the quantum well placed...... of a surrounding 2D OPO condensate. A spectral analysis of the real space emission (Fig. 1 (b)) resolves the 2D emission (1.5505 eV) and that of the 1D condensate (1.5500 eV). The linear defect separates the 2D condensate in two parts, each one of them having a different finite momentum pointing towards the low...

  19. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  20. Metabolic products as biomarkers

    Science.gov (United States)

    Melancon, M.J.; Alscher, R.; Benson, W.; Kruzynski, G.; Lee, R.F.; Sikka, H.C.; Spies, R.B.; Huggett, Robert J.; Kimerle, Richard A.; Mehrle, Paul M.=; Bergman, Harold L.

    1992-01-01

    Ideally, endogenous biomarkers would indicate both exposure and environmental effects of toxic chemicals; however, such comprehensive biochemical and physiological indices are currently being developed and, at the present time, are unavailable for use in environmental monitoring programs. Continued work is required to validate the use of biochemical and physiological stress indices as useful components of monitoring programs. Of the compounds discussed only phytochelatins and porphyrins are currently in biomarkers in a useful state; however, glutathione,metallothioneins, stress ethylene, and polyamines are promising as biomarkers in environmental monitoring.

  1. Abdominal breathing increases tear secretion in healthy women.

    Science.gov (United States)

    Sano, Kokoro; Kawashima, Motoko; Ikeura, Kazuhiro; Arita, Reiko; Tsubota, Kazuo

    2015-01-01

    To determine the relationship between abdominal breathing and tear meniscus volume in healthy women, we investigated the change in tear meniscus volume in two groups: normal breathing and abdominal breathing. We used a crossover experimental model and examined 20 healthy women aged 20-54 years (mean ± SD, 32.7 ± 11.1 years). The participants were randomly assigned to one of two groups. During the first visit, the normal breathing group was subjected to normal breathing for 3 min, whereas the abdominal breathing group was subjected to abdominal breathing (4-second inhalation and 6-second exhalation) for 3 min. During the second visit, the protocols were swapped between the two groups. We estimated the R wave to R wave (R-R) interval, tear meniscus volume, salivary amylase activity, pulse, and blood pressure before and immediately after, 15 min after, and 30 min after completion of the breathing activity. After abdominal breathing, compared to that before breathing, the tear meniscus volume increased significantly 15 min after breathing (Pabdominal breathing (PAbdominal breathing for 3 minutes increases the tear meniscus volume in healthy women. Consequently, abdominal breathing may be considered in the treatment of dry eye disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  3. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  4. amphibian_biomarker_data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amphibian metabolite data used in Snyder, M.N., Henderson, W.M., Glinski, D.G., Purucker, S. T., 2017. Biomarker analysis of american toad (Anaxyrus americanus) and...

  5. Theranostic Biomarkers for Schizophrenia

    Directory of Open Access Journals (Sweden)

    Matea Nikolac Perkovic

    2017-03-01

    Full Text Available Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.

  6. Theranostic Biomarkers for Schizophrenia

    Science.gov (United States)

    Nikolac Perkovic, Matea; Nedic Erjavec, Gordana; Svob Strac, Dubravka; Uzun, Suzana; Kozumplik, Oliver; Pivac, Nela

    2017-01-01

    Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide. PMID:28358316

  7. Luminally expressed gastrointestinal biomarkers.

    Science.gov (United States)

    Cummins, Gerard; Yung, Diana E; Cox, Ben F; Koulaouzidis, Anastasios; Desmulliez, Marc P Y; Cochran, Sandy

    2017-12-01

    A biomarker is a measurable indicator of normal biologic processes, pathogenic processes or pharmacological responses. The identification of a useful biomarker is challenging, with several hurdles to overcome before clinical adoption. This review gives a general overview of a range of biomarkers associated with inflammatory bowel disease or colorectal cancer along the gastrointestinal tract. Areas covered: These markers include those that are already clinically accepted, such as inflammatory markers such as faecal calprotectin, S100A12 (Calgranulin C), Fatty Acid Binding Proteins (FABP), malignancy markers such as Faecal Occult Blood, Mucins, Stool DNA, Faecal microRNA (miRNA), other markers such as Faecal Elastase, Faecal alpha-1-antitrypsin, Alpha2-macroglobulin and possible future markers such as microbiota, volatile organic compounds and pH. Expert commentary: There are currently a few biomarkers that have been sufficiently validated for routine clinical use at present such as FC. However, many of these biomarkers continue to be limited in sensitivity and specificity for various GI diseases. Emerging biomarkers have the potential to improve diagnosis and monitoring but further study is required to determine efficacy and validate clinical utility.

  8. Theranostic Biomarkers for Schizophrenia.

    Science.gov (United States)

    Perkovic, Matea Nikolac; Erjavec, Gordana Nedic; Strac, Dubravka Svob; Uzun, Suzana; Kozumplik, Oliver; Pivac, Nela

    2017-03-30

    Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.

  9. Topology and condensed matter physics

    CERN Document Server

    Mj, Mahan; Bandyopadhyay, Abhijit

    2017-01-01

    This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field.  The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...

  10. Stellar matter with pseudoscalar condensates

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, A.A. [Saint-Petersburg State University, St. Petersburg (Russian Federation); Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos (ICCUB), Barcelona, Catalonia (Spain); Andrianov, V.A.; Kolevatov, S.S. [Saint-Petersburg State University, St. Petersburg (Russian Federation); Espriu, D. [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos (ICCUB), Barcelona, Catalonia (Spain)

    2016-03-15

    In this work we consider how the appearance of gradients of pseudoscalar condensates in dense systems may possibly influence the transport properties of photons in such a medium as well as other thermodynamic characteristics. We adopt the hypothesis that in regions where the pseudoscalar density gradient is large the properties of photons and fermions are governed by the usual lagrangian extended with a Chern-Simons interaction for photons and a constant axial field for fermions. We find that these new pieces in the lagrangian produce non-trivial reflection coefficients both for photons and fermions when entering or leaving a region where the pseudoscalar has a non-zero gradient. A varying pseudoscalar density may also lead to instability of some fermion and boson modes and modify some properties of the Fermi sea. We speculate that some of these modifications could influence the cooling rate of stellar matter (for instance in compact stars) and have other observable consequences. While quantitative results may depend on the precise astrophysical details most of the consequences are quite universal and consideration should be given to this possibility. (orig.)

  11. Ice-condenser aerosol tests

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  12. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  13. Low-temperature Condensation of Carbon

    Science.gov (United States)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  14. Acoustic signal classification of breathing movements to virtually aid breath regulation.

    Science.gov (United States)

    Abushakra, Ahmad; Faezipour, Miad

    2013-03-01

    Monitoring breath and identifying breathing movements have settled importance in many biomedical research areas, especially in the treatment of those with breathing disorders, e.g., lung cancer patients. Moreover, virtual reality (VR) revolution and their implementations on ubiquitous hand-held devices have a lot of implications, which could be used as a simulation technology for healing purposes. In this paper, a novel method is proposed to detect and classify breathing movements. The overall VR framework is intended to encourage the subjects regulate their breath by classifying the breathing movements in real time. This paper focuses on a portion of the overall VR framework that deals with classifying the acoustic signal of respiration movements. We employ Mel-frequency cepstral coefficients (MFCCs) along with speech segmentation techniques using voice activity detection and linear thresholding to the acoustic signal of breath captured using a microphone to depict the differences between inhale and exhale in frequency domain. For every subject, 13 MFCCs of all voiced segments are computed and plotted. The inhale and exhale phases are differentiated using the sixth MFCC order, which carries important classification information. Experimental results on a number of individuals verify our proposed classification methodology.

  15. Adaptive neuro-fuzzy inference system for breath phase detection and breath cycle segmentation.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2017-07-01

    The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial. This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system. The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset. The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069. The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Changes in breathing variables during a 30-minute spontaneous breathing trial.

    Science.gov (United States)

    Figueroa-Casas, Juan B; Connery, Sean M; Montoya, Ricardo

    2015-02-01

    Spontaneous breathing trials (SBTs) are increasingly performed. Significant changes in monitored breathing variables and the timing of those changes during the trial have important implications for its outcome determination and supervision. We aimed to study the magnitude and timing of change in breathing variables during the course of a 30-min SBT. Breathing variables were continuously measured and averaged by minute during the SBT in 32 subjects with trial success and 8 subjects with trial failure from a general ICU population. Percentage changes in breathing variables during the trial and proportions of subjects showing a ≥20% change at different time points relative to the second minute of the trial were calculated. The commonly monitored breathing variables (frequency, tidal volume, their ratio, and minute ventilation) showed median coefficients of variation of <15% throughout the trial and a median change of less than ±20% by the end of the trial. Changes in a detrimental direction of ≥20% at the end of the trial but not already present at 10 min were noted in ≤5% of all subjects. During the course of a 30-min SBT, breathing variables remain relatively constant, and potentially significant changes in these variables after 10 min into the trial are uncommon. These findings should be considered when addressing aspects of duration and supervision of SBTs in weaning protocols. Copyright © 2015 by Daedalus Enterprises.

  17. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring.

    Science.gov (United States)

    Storer, Malina; Curry, Kirsty; Squire, Marie; Kingham, Simon; Epton, Michael

    2015-05-26

    Breath testing has potential for the rapid assessment of the source and impact of exposure to air pollutants. During the development of a breath test for acetonitrile using selected ion flow tube mass spectrometry (SIFT-MS) raised acetonitrile concentrations in the breath of volunteers were observed that could not be explained by known sources of exposure. Workplace/laboratory exposure to acetonitrile was proposed since this was common to the volunteers with increased breath concentrations. SIFT-MS measurements of acetonitrile in breath and air were used to confirm that an academic chemistry laboratory was the source of exposure to acetonitrile, and quantify the changes that occurred to exhaled acetonitrile after exposure. High concentrations of acetonitrile were detected in the air of the chemistry laboratory. However, concentrations in the offices were not significantly different across the campus. There was a significant difference in the exhaled acetonitrile concentrations of people who worked in the chemistry laboratories (exposed) and those who did not (non-exposed). SIFT-MS testing of air and breath made it possible to determine that occupational exposure to acetonitrile in the chemistry laboratory was the cause of increased exhaled acetonitrile. Additionally, the sensitivity was adequate to measure the changes to exhaled amounts and found that breath concentrations increased quickly with short exposure and remained increased even after periods of non-exposure. There is potential to add acetonitrile to a suite of VOCs to investigate source and impact of poor air quality.

  18. Finger dexterity and visual discrimination following two yoga breathing practices

    Directory of Open Access Journals (Sweden)

    Shirley Telles

    2012-01-01

    Full Text Available Background: Practicing yoga has been shown to improve motor functions and attention. Though attention is required for fine motor and discrimination tasks, the effect of yoga breathing techniques on fine motor skills and visual discrimination has not been assessed. Aim: To study the effect of yoga breathing techniques on finger dexterity and visual discrimination. Materials and Methods: The present study consisted of one hundred and forty subjects who had enrolled for stress management. They were randomly divided into two groups, one group practiced high frequency yoga breathing while the other group practiced breath awareness. High frequency yoga breathing (kapalabhati, breath rate 1.0 Hz and breath awareness are two yoga practices which improve attention. The immediate effect of high frequency yoga breathing and breath awareness (i were assessed on the performance on the O′Connor finger dexterity task and (ii (in a shape and size discrimination task. Results: There was a significant improvement in the finger dexterity task by 19% after kapalabhati and 9% after breath awareness (P<0.001 in both cases, repeated measures ANOVA and post-hoc analyses. There was a significant reduction (P<0.001 in error (41% after kapalabhati and 21% after breath awareness as well as time taken to complete the shape and size discrimination test (15% after kapalabhati and 15% after breath awareness; P<0.001 was also observed. Conclusion: Both kapalabahati and breath awareness can improve fine motor skills and visual discrimination, with a greater magnitude of change after kapalabhati.

  19. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    unimodal refers to that there is one polymer only in the system. As an alternative to unimodal networks there are the bimodal networks where two polymers with significantly different molecular weights are mixed with one crosslinker. [2]Silicone rubber can be divided into condensation type and addition type...... according to the curing reaction. The advantages of condensation silicones compared to addition are the relatively low cost, the curing rate largely being independent of temperature, the excellent adhesion, and the catalyst being nontoxic. [3]In this work, a series of bimodal condensation silicone...

  20. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  1. Preoperational test report, primary ventilation condensate system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-01-29

    Preoperational test report for Primary Ventilation Condensate System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides a collection point for condensate generated by the W-030 primary vent offgas cooling system serving tanks AYIOI, AY102, AZIOI, AZI02. The system is located inside a shielded ventilation equipment cell and consists of a condensate seal pot, sampling features, a drain line to existing Catch Tank 241-AZ-151, and a cell sump jet pump. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  2. Condensation of bosons in kinetic regime

    OpenAIRE

    Semikoz, D.V.; Tkachev, I. I.

    1995-01-01

    We study the kinetic regime of the Bose-condensation of scalar particles with weak $\\lambda \\phi^4$ self-interaction. The Boltzmann equation is solved numerically. We consider two kinetic stages. At the first stage the condensate is still absent but there is a nonzero inflow of particles towards ${\\bf p} = {\\bf 0}$ and the distribution function at ${\\bf p} ={\\bf 0}$ grows from finite values to infinity in a finite time. We observe a profound similarity between Bose-condensation and Kolmogorov...

  3. Condenser retubing-criteria manual. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Impagliazzo, A.M.; Bell, R.J.; Curlett, P.L.; Gordon, H.L.

    1982-05-01

    The objective of this document is to provide engineering assistance to utilities involved in retubing steam surface condensers with corrosion-resistant materials, such as titanium, and the recently developed high alloy pit-resistant steels. Field tests and recent operating experience have shown titanium and at least one of the high alloy pit-resistant steels to be virtually immune to the usual forms of corrosion occurring in steam surface condensers. This, together with the trend toward elimination of copper alloys in the circulating water system, has caused many utilities to retube their condensers with these materials.

  4. Metallization of molecular condensates and superconductivity

    CERN Document Server

    Bogomolov, V N

    2002-01-01

    The possibility of explaining the light absorption by xenon metallization under the pressure as a transition into the superconducting state is considered. The energy structure of the Van der Waals condensates is considered. It is supposed, that by compression of such samples and decrease in the interatomic distances in the Fermi metals and the Van der Waals dielectrics the condensate gets into the area of the superconducting state. This is the area of the binding energies 40-60 kJ/mol. Many of the molecular condensates and metals are close to this area of instability

  5. Vortices and turbulence in trapped atomic condensates

    Science.gov (United States)

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  6. Active condensation of water by plants

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey Anatolievich

    2013-10-01

    Full Text Available This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomenon in question is found everywhere, but it is particularly important for plants in arid ecosystems.

  7. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  8. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  9. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview.

    Science.gov (United States)

    Pereira, Jorge; Porto-Figueira, Priscilla; Cavaco, Carina; Taunk, Khushman; Rapole, Srikanth; Dhakne, Rahul; Nagarajaram, Hampapathalu; Câmara, José S

    2015-01-09

    Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  10. Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview

    Directory of Open Access Journals (Sweden)

    Jorge Pereira

    2015-01-01

    Full Text Available Currently, a small number of diseases, particularly cardiovascular (CVDs, oncologic (ODs, neurodegenerative (NDDs, chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc. allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  11. Chemoresistive Gas Sensors for the Detection of Colorectal Cancer Biomarkers

    Directory of Open Access Journals (Sweden)

    Cesare Malagù

    2014-10-01

    Full Text Available Numerous medical studies show that tumor growth is accompanied by protein changes that may lead to the peroxidation of the cell membrane with consequent emission of volatile organic compounds (VOCs by breath or intestinal gases that should be seen as biomarkers for colorectal cancer (CRC. The analysis of VOCs represents a non-invasive and potentially inexpensive preliminary screening technique. An array of chemoresistive gas sensors based on screen-printed metal oxide semiconducting films has been selected to discriminate gases of oncological interest, e.g., 1-iodononane and benzene, widely assumed to be biomarkers of colorectal cancer, from those of interference in the gut, such as methane and nitric oxide.

  12. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Condensed Matter Theories: Volume 25

    Science.gov (United States)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  14. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  15. Biomarkers in petroleum from sedimentary basins in Northeast Japan. Tohoku Nippon no taiseki bonchi ni okeru abura no biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Susumu; Kaneko, Nobuyuki; Suzuki, Noriyuki (Geological Survey of Japan, Tsukuba, (Japan) Shimane Univ., Shimane, (Japan). Faculty of Science)

    1990-01-01

    Study by biomarker was made of oil from sedimentary basin in Northeast Japan. The oil biomarker is a proof to directly verify the biological origin of oil and becomes an index to effectively evaluate the matureness of oil, type of original organic matter, migration of oil, influence of microbiological decomposition, etc. Both matureness and original organic matter indexes of both steroid and triterpenoid hydrocarbon were applied to both crude oil and condensate, produced in Northeast Japan. Condensate is higher in matureness than crude oil. While as for crude oil, some of crude oil from Akita-Yamagata basin is lower in matureness than that from Niigata basin. It is possible that Akita-Yamagata basin was earlier in primary migration period than Niigata basin. Oil from Niigata basin trends to be larger in contribution by terrigenous organic matter than that from Akita-Yamagata basin. In oil from Niigata basin, no systematic difference was recorded in original organic matter between crude oil and condensate. 26 refs., 4 figs., 1 tab.

  16. High temperature Bose-Einstein condensation

    Directory of Open Access Journals (Sweden)

    Begun Viktor

    2016-01-01

    Full Text Available The indications of a possible pion condensation at the LHC are summarized. The condensation is predicted by the non-equilibrium hadronization model for 2.76 TeV Pb+Pb collisions at the LHC. The model solves the proton/pion puzzle and reproduces the low pT enhancement of the pion spectra, as well as the spectra of protons and antiprotons, charged kaons, K0S, K*(8920 and ϕ(1020. The obtained parameters allow to estimate the amount of pion condensate on the level of 5% from the total number of pions at the LHC. The condensate is located at pT < 250 MeV.

  17. Condensate of excitations in moving superfluids

    CERN Document Server

    Kolomeitsev, E E

    2016-01-01

    A possibility of the condensation of excitations with a non-zero momentum in rectilinearly moving and rotating superfluid bosonic and fermionic (with Cooper pairing) media is considered in terms of a phenomenological order-parameter functional at zero and non-zero temperature. The results might be applicable to the description of bosonic systems like superfluid $^4$He, ultracold atomic Bose gases, charged pion and kaon condensates in rotating neutron stars, and various superconducting fermionic systems with pairing, like proton and color-superconducting components in compact stars, metallic superconductors, and neutral fermionic systems with pairing, like the neutron component in compact stars and ultracold atomic Fermi gases. Order parameters of the "mother" condensate in the superfluid and the new condensate of excitations, corresponding energy gains, critical temperatures and critical velocities are found.

  18. Solitons in Bose–Einstein condensates

    Indian Academy of Sciences (India)

    function interaction. Keywords. Solitons .... where Tc is the Bose–Einstein condensation temperature, the bosons are normal so that 〈 〉 vanishes. ... solutions. Small deviations around the background density ρ0 are studied by setting ψ(r, t) = √.

  19. Recent developments in Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  20. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... in a pilot plant condensational scrubber. The model can satisfactorily predict particle growth and particle deposition by diffusional, convective and inertial mechanisms for a wide range of conditions. The parameters of principal importance for the model precision are identified and a procedure...... for their estimation is proposed. The behaviour of scrubbers and condensers for some important technical applications is demonstrated by model simulations. (C) 1997 Elsevier Science Ltd....

  1. Light front distribution of the chiral condensate

    National Research Council Canada - National Science Library

    Chang, Lei; Roberts, Craig D; Schmidt, Sebastian M

    2013-01-01

    The pseudoscalar projection of the pionE1/4s Poincare-covariant Bethe-Salpeter amplitude onto the light-front may be understood to provide the probability distribution of the chiral condensate within the pion...

  2. Pulmonary Function Responses to Active Cycle Breathing ...

    African Journals Online (AJOL)

    Chronic heart failure patients experience restrictive respiratory dysfunction, resulting in alterations of FEV1, FVC and FEV /FVC as demonstrated in exercise 1 intolerance, dyspnoea and poor quality of life (QoL). Active Cycle of Breathing Techniques (ACBT) is traditionally used by Physiotherapists in the management of ...

  3. Breath psychotherapy | Edwards | Inkanyiso: Journal of Humanities ...

    African Journals Online (AJOL)

    There are many forms of breathbased healing: basic breathing and relaxation methods, with or without the practice of psychological skills such as imagery, centring and concentration; expressive physical and emotional techniques; advanced meditation, prayer and other spiritual exercises. Such an approach has been ...

  4. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    FVC and FEV /FVC as demonstrated in exercise. 1 intolerance, dyspnoea and poor quality of life (QoL). Active Cycle of Breathing Techniques (ACBT) is traditionally used by Physiotherapists in the management of respiratory conditions. The aim of this study was to investigate the physiological effects of ACBT on pulmonary ...

  5. Sleep effects on breathing and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Choudhary Sumer

    2009-01-01

    Full Text Available To understand normal sleep pattern and physiological changes during sleep, sleep and breathing interaction, nomenclature and scales used in sleep study, discuss the effect of rapid eye movements and non-rapid eye movements while sleep and to review the effects of obstructive and restrictive lung disease on gas exchange during sleep and sleep architecture.

  6. The Physics of Breath-Hold Diving.

    Science.gov (United States)

    Aguilella, Vicente; Aguilella-Arzo, Marcelo

    1996-01-01

    Analyzes physical features of breath-hold diving. Considers the diver's descent and the initial surface dive and presents examples that show the diver's buoyancy equilibrium varying with depth, the driving force supplied by finning, and the effect of friction between the water and the diver. (Author/JRH)

  7. A breath actuated dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne; Frijlink, Henderik W.; Hagedoorn, Paul

    2015-01-01

    A breath actuated dry powder inhaler with a single air circulation chamber for de-agglomeration of entrained powdered medicament using the energy of the inspiratory air stream. The chamber has a substantially polygonal sidewall, a plurality of air supply channels entering the chamber substantially

  8. The NASA firefighter's breathing system program

    Science.gov (United States)

    Mclaughlan, P. B.; Carson, M. A.

    1974-01-01

    The research is reported in the development of a firefighter's breathing system (FBS) to satisfy the operational requirements of fire departments while remaining within their cost constraints. System definition for the FBS is discussed, and the program status is reported. It is concluded that the most difficult problem in the FBS Program is the achievement of widespread fire department acceptance of the system.

  9. Breathing Better with a COPD Diagnosis

    Science.gov (United States)

    ... help prevent the airways from getting inflamed. PulmoNary rehabilitatioN This is a program that helps you learn ... call your health care provider right away. breathiNg better with a CoPD DiagNosis 4 W Seek emergency ...

  10. Fast and accurate exhaled breath ammonia measurement.

    Science.gov (United States)

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  11. Condensate of massive graviton and dark matter

    OpenAIRE

    Aoki, Katsuki; Maeda, Kei-ichi

    2018-01-01

    We study coherently oscillating massive gravitons in the ghost-free bigravity theory. This coherent field can be interpreted as a condensate of the massive gravitons. We first define the effective energy-momentum tensor of the coherent massive gravitons in a curved spacetime. We then study the background dynamics of the universe and the cosmic structure formation including the effects of the coherent massive gravitons. We find that the condensate of the massive graviton behaves as a dark matt...

  12. Stabilization flyuorytopodibnoyi structure in oxide vacuum condensate

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2006-01-01

    Full Text Available  The influence of the oxide-stabilizer content, M'-cation radius and film deposition temperature on the stabilization of the fluorite-like solid solutions in the zirconium and hafnium oxides-based vacuum condensates, obtained by Laser-evaporating method, was investigated. The optimum parameters of the coatication of the isotropic thermostable coverings was determined. This results were explained by using of the high-speed condensation in vacuum theory.

  13. Energy condensed packaged systems. Composition, production, properties

    OpenAIRE

    Igor L. Kovalenko; Vitaliy P. Kuprin; Dmytro V. Kiyaschenko

    2015-01-01

    In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids o...

  14. Essay: fifty years of condensed matter physics.

    Science.gov (United States)

    Cohen, Marvin L

    2008-12-19

    Since the birth of Physical Review Letters fifty years ago, condensed matter physics has seen considerable growth, and both the journal and the field have flourished during this period. In this essay, I begin with some general comments about condensed matter physics and then give some personal views on the conceptual development of the field and list some highlights. The focus is mostly on theoretical developments.

  15. Biomarkers of sepsis

    Science.gov (United States)

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  16. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.

    Science.gov (United States)

    White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A

    2013-06-01

    The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20

  17. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  18. Breathing Exercises for Inpatients with Sickle Cell Disease

    OpenAIRE

    Matthie, Nadine; Brewer, Cheryl A.; Moura, Vera L.; Jenerette, Coretta M.

    2015-01-01

    Sickle cell disease (SCD) is a painful condition wherein breathing often is compromised. This pilot study supports the premise that individuals with SCD are willing to learn breathing exercises. Medical-surgical nurses should encourage breathing exercises for managing pain and preventing complications.

  19. 21 CFR 868.2375 - Breathing frequency monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...

  20. 21 CFR 868.5330 - Breathing gas mixer.

    Science.gov (United States)

    2010-04-01

    ... apparatus to control the mixing of gases that are to be breathed by a patient. (b) Classification. Class II... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  1. 46 CFR 197.340 - Breathing gas supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  2. 46 CFR 197.312 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The maximum...

  3. Experiencing the Meaning of Breathing | Edwards | Indo-Pacific ...

    African Journals Online (AJOL)

    The meaning of breathing is discussed in relation to consciousness, bodiliness, spirituality, illness prevention and health promotion. Experiencing the meaning of breathing is to experience more meaning in life itself. Experiential vignettes confirm that breathing skills may be regarded as an original method of survival, ...

  4. Numerical simulation of condensation on structured surfaces.

    Science.gov (United States)

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  5. Interstitial Condensation Risk at Thermal Rehabilitated Buildings

    Science.gov (United States)

    Baran, I.; Bliuc, I.; Iacob, A.; Dumitrescu, L.; Pescaru, R. A.; Helepciuc, C.

    2016-11-01

    The increasing thermal insulation degree of existing residential buildings, aiming to reduce the energy requirements for ensuring the indoor comfort, has as expected effect the elimination of condensation risk. However, in some cases this phenomenon occurs, both on the inner surface of the closing element and also in its structure. The surface condensation causes can be identified and can be easily removed. Instead, the causes and even the presence of interstitial condensation are more difficult to be observed. But the moistening of the insulation materials and the reduction of thermal insulation capacity or even its total degradation, contravene into a large extent or totally to the main purpose of the additional thermal protection. To avoid such situations, it is necessary to respect some principles concerning the structure, resulted from the knowledge of the water vapour diffusion behaviour of various materials. It is known that condensation vulnerability is higher for the additional thermal protection solutions by disposing the insulating material on the inside surface of the closing element. But practice has shown that the condensation phenomenon is not totally excluded neither in the case of outside thermal insulation - which is the current solution applied to the rehabilitation works - if the principles mentioned above are not known and respected. In this paper two models are compared on which the risk of interstitial condensation can be checked. The analysis made on two structures of exterior walls with thermal insulation demonstrates the need for additional verifications before proposing a solution for thermal rehabilitation of the envelope elements.

  6. Diagnosing lactase deficiency in three breaths.

    Science.gov (United States)

    Oberacher, M; Pohl, D; Vavricka, S R; Fried, M; Tutuian, R

    2011-05-01

    Lactose hydrogen breath tests (H(2)-BTs) are widely used to diagnose lactase deficiency, the most common cause of lactose intolerance. The main time-consuming part of the test relates to the sampling frequency and number of breath samples. Evaluate sensitivities and specificities of two- and three-sample breath tests compared with standard breath sampling every 15 min. Lactose H(2)-BT with probes samples every 15 min served as gold standard. Sensitivity, specificity, positive and negative predictive value of two-sample tests (0-60 min, 0-90 min or 0-120 min) and three-sample tests (0-60-90 min, 0-60-120 min or 0-90-120 min) were calculated. Among 1049 lactose H(2)-BT performed between July 1999 and December 2005, 337 (32%) had a positive result. Two-sample tests had sensitivity and specificity of 52.5 and 100.0% (0-60 min), 81.9 and 99.7% (0-90 min), and 92.6 and 99.2% (0-120 min), respectively. Three-sample tests had sensitivity and specificity of 83.4 and 99.7% (0-60-90 min), 95.0 and 99.2% (0-60-120 min), and 95.0 and 98.9% (0-90-120 min), respectively. A three-sample breath test (baseline, 60/90 min and 120 min) has excellent sensitivity and specificity for lactase deficiency. Lactose H(2)-BT can be simplified but not shortened to <2 h.

  7. Biomarkers intersect with the exposome.

    Science.gov (United States)

    Rappaport, Stephen M

    2012-09-01

    The exposome concept promotes use of omic tools for discovering biomarkers of exposure and biomarkers of disease in studies of diseased and healthy populations. A two-stage scheme is presented for profiling omic features in serum to discover molecular biomarkers and then for applying these biomarkers in follow-up studies. The initial component, referred to as an exposome-wide-association study (EWAS), employs metabolomics and proteomics to interrogate the serum exposome and, ultimately, to identify, validate and differentiate biomarkers of exposure and biomarkers of disease. Follow-up studies employ knowledge-driven designs to explore disease causality, prevention, diagnosis, prognosis and treatment.

  8. Condensation of the air-steam mixture in a vertical tube condenser

    Directory of Open Access Journals (Sweden)

    Havlík Jan

    2016-01-01

    Full Text Available This paper deals with the condensation of water vapour in the presence of non-condensable air. Experimental and theoretical solutions of this problem are presented here. A heat exchanger for the condensation of industrial waste steam containing infiltrated air was designed. The condenser consists of a bundle of vertical tubes in which the steam condenses as it flows downwards with cooling water flowing outside the tubes in the opposite direction. Experiments with pure steam and with mixtures of steam with added air were carried out to find the dependence of the condensation heat transfer coefficient (HTC on the air concentration in the steam mixture. The experimental results were compared with the theoretical formulas describing the cases. The theoretical determination of the HTC is based on the Nusselt model of steam condensation on a vertical wall, where the analogy of heat and mass transfer is used to take into account the behaviour of air in a steam mixture during the condensation process. The resulting dependencies obtained from the experiments and obtained from the theoretical model have similar results. The significant decrease in the condensation HTC, which begins at very low air concentrations in a steam mixture, was confirmed.

  9. TO STUDY THE EFFECTIVENESS OF BUTEYKO BREATHING TECHNIQUE VERSUS DIAPHRAGMATIC BREATHING IN ASTHMATICS

    Directory of Open Access Journals (Sweden)

    Gauri Mayank Afle

    2014-08-01

    Full Text Available Background:Asthma is one of the most common chronic diseases in the world. It is estimated that around 300 million people in the world currently have asthma In Asthmatics dysfunctional breathing pattern is common. Breathing pattern is the basis of abnormal patterns in asthma. The purpose of this study was to find out the effectiveness of Buteyko breathing technique versus diaphragmatic breathing in asthmatics. Methods: 46 patients with asthma aged 20-65 years were taken. The duration of the study was 2 weeks & data was collected on day zero and at the end of 2nd week. The subjects were divided into two groups A & B 23 patients of asthma in each group were distributed by convenient sampling. Each subject was assessed according to FEV1, FEV1/FVC and PEFR Statistics were applied by using SPSS 11. Results: Results were calculated by using 0.05 level of significance. On the basis of above statistical analysis the p value for group A is less than 0.05. So the intervention on group A is effective than intervention on group B. Conclusion: So Buteyko breathing technique proves to be more effective than diaphragmatic breathing technique in asthmatics.

  10. Does Manual Therapy Provide Additional Benefit To Breathing Retraining In The Management Of Dysfunctional Breathing? A Randomised Controlled Trial

    OpenAIRE

    Jones, MO; Troup, F; Nugus, J; Roughton, M; Hodson, ME; Rayner, C.; Bowen, F; Pryor, J

    2015-01-01

    Purpose: Dysfunctional breathing (DB) is associated with an abnormal breathing pattern, unexplained breathlessness and significant patient morbidity. Treatment involves breathing retraining through respiratory physiotherapy. Recently, manual therapy (MT) has also been used, but no evidence exists to validate its use. This study sought to investigate whether MT produces additional benefit when compared with breathing retraining alone in patients with DB. Methods: Sixty subjects with primary...

  11. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... in patients with NSSC. Patients were included from the DOC, Department of Infectious Diseases, Copenhagen University Hospital Hvidovre. Patients were given a final diagnosis based on the combined results from scans, blood work and physical examination. Weight loss, Charlson score and previous cancer were...

  12. Biomarkers of the Dementia

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    2011-01-01

    Full Text Available Recent advances in biomarker studies on dementia are summarized here. CSF Aβ40, Aβ42, total tau, and phosphorylated tau are the most sensitive biomarkers for diagnosis of Alzheimer's disease (AD and prediction of onset of AD from mild cognitive impairment (MCI. Based on this progress, new diagnostic criteria for AD, MCI, and preclinical AD were proposed by National Institute of Aging (NIA and Alzheimer's Association in August 2010. In these new criteria, progress in biomarker identification and amyloid imaging studies in the past 10 years have added critical information. Huge contributions of basic and clinical studies have established clinical evidence supporting these markers. Based on this progress, essential therapy for cure of AD is urgently expected.

  13. Towards Improved Biomarker Research

    DEFF Research Database (Denmark)

    Kjeldahl, Karin

    This thesis takes a look at the data analytical challenges associated with the search for biomarkers in large-scale biological data such as transcriptomics, proteomics and metabolomics data. These studies aim to identify genes, proteins or metabolites which can be associated with e.g. a diet...... to actually identify strong biomarkers when strict validation is applied; the latter phenomenon is to some extentmasked by a publication bias, but has been widely observed among researchers working with omics data. In this thesis, the background of this apparent small effect size of the biomarkers...... is investigated and followed by some suggestions which can potentially improve the chances of a successful outcome of an omics study. A method widely applied in the analysis of omics studies is Partial Least Squares (PLS) regression which is one of the work horses within the chemometrics tool box; a method which...

  14. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  15. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  16. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  17. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  18. Biomarkers of kidney injury.

    Science.gov (United States)

    Urbschat, Anja; Obermüller, Nicholas; Haferkamp, Axel

    2011-07-01

    Acute kidney injury (AKI) represents a common serious clinical problem. Up to date mortality due to AKI, especially in intensive care units, has not been changed significantly over the past 50 years. This is partly due to a delay in initiating renal protective and appropriate therapeutic measures since until now there are no reliable early-detecting biomarkers. The gold standard, serum creatinine, displays poor specificity and sensitivity with regard to recognition of the early period of AKI. Our objective was to review established markers versus novel urine and serum biomarkers of AKI in humans, which have progressed to clinical phase with regard to their diagnostic and prognostic value. A review was performed on the basis of literature search of renal failure, acute kidney injury, and biomarkers in Pubmed. Next to established biomarkers as creatinine and cystatin C, other molecules such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), monocyte chemotactic peptide (MCP-1), Netrin-1, and interleukin (IL)-18 are available and represent promising new markers that, however, need to be further evaluated in the clinical setting for suitability. In clinical settings with incipient AKI, not only the development and the implementation of more sensitive biomarkers are required for earlier treatment initiation in order to attenuate the severity of kidney injury, but also equally important remains the substantial improvement and application of refined and prophylactic therapeutic options in these situations. Adequately powered clinical trials testing a row of biomarkers are warranted before they may qualify for full adoption in clinical practice.

  19. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  20. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  1. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    Science.gov (United States)

    Maski, Kiran; Steinhart, Erin; Holbrook, Hannah; Katz, Eliot S; Kapur, Kush; Stickgold, Robert

    2017-01-01

    consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing.

  2. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    Directory of Open Access Journals (Sweden)

    Kiran Maski

    .03, P = 0.04]. NREM slow oscillation power did not correlate with memory consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing.

  3. UNDERWATER STROKE KINEMATICS DURING BREATHING AND BREATH-HOLDING FRONT CRAWL SWIMMING

    Directory of Open Access Journals (Sweden)

    Nickos Vezos

    2007-03-01

    Full Text Available The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05, the backward hand displacement relative to the water (t9 = 2.471; p<0.05 and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05. On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05 and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05 were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing

  4. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    Science.gov (United States)

    What is the study? This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays. Why was it done? No such comparative study of cigarette smoke condensates has been reported. H...

  5. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps in ad...

  6. Emerging Biomarkers in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Warren P. Mason

    2013-08-01

    Full Text Available Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. A number of biomarkers which have potential in diagnosis, prognosis and prediction of response to therapy have been identified and along with imaging modalities could contribute to the clinical management of GBM. Molecular biomarkers including O(6-methlyguanine-DNA-methyltransferase (MGMT promoter and deoxyribonucleic acid (DNA methylation, loss of heterozygosity (LOH of chromosomes 1p and 19q, loss of heterozygosity 10q, isocitrate dehydrogenase (IDH mutations, epidermal growth factor receptor (EGFR, epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1 (ELTD1, vascular endothelial growth factor (VEGF, tumor suppressor protein p53, phosphatase and tensin homolog (PTEN, p16INK4a gene, cytochrome c oxidase (CcO, phospholipid metabolites, telomerase messenger expression (hTERT messenger ribonucleic acid [mRNA], microRNAs (miRNAs, cancer stem cell markers and imaging modalities as potential biomarkers are discussed. Inclusion of emerging biomarkers in prospective clinical trials is warranted in an effort for more effective personalized therapy in the future.

  7. Emerging Biomarkers in Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Mairéad G.; Sahebjam, Solmaz; Mason, Warren P., E-mail: warren.mason@uhn.ca [Pencer Brain Tumor Centre, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada)

    2013-08-22

    Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. A number of biomarkers which have potential in diagnosis, prognosis and prediction of response to therapy have been identified and along with imaging modalities could contribute to the clinical management of GBM. Molecular biomarkers including O(6)-methlyguanine-DNA-methyltransferase (MGMT) promoter and deoxyribonucleic acid (DNA) methylation, loss of heterozygosity (LOH) of chromosomes 1p and 19q, loss of heterozygosity 10q, isocitrate dehydrogenase (IDH) mutations, epidermal growth factor receptor (EGFR), epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1 (ELTD1), vascular endothelial growth factor (VEGF), tumor suppressor protein p53, phosphatase and tensin homolog (PTEN), p16INK4a gene, cytochrome c oxidase (CcO), phospholipid metabolites, telomerase messenger expression (hTERT messenger ribonucleic acid [mRNA]), microRNAs (miRNAs), cancer stem cell markers and imaging modalities as potential biomarkers are discussed. Inclusion of emerging biomarkers in prospective clinical trials is warranted in an effort for more effective personalized therapy in the future.

  8. Emerging Biomarkers in Cognition

    Science.gov (United States)

    Wicklund, Meredith; Petersen, Ronald C.

    2014-01-01

    Synopsis The field of aging and dementia is rapidly evolving with the aim of identifying individuals in the earliest stages of disease processes. Biomarkers allow the clinician to demonstrate the presence of an underlying pathologic process and resultant synapse dysfunction and neurodegeneration, even in those earliest stages. For example, PET amyloid imaging and CSF Aβ42 provide direct evidence of amyloid deposition and structural MRI, FDG-PET or SPECT and CSF tau provide indirect evidence of synapse dysfunction and neurodegeneration when the pathologic process is due to Alzheimer's disease (AD). While this review will focus on biomarkers for mild cognitive impairment (MCI) due to AD, structural MRI, FDG-PET or SPECT, and PET with dopamine ligands are also valuable in suggesting non-AD pathologic processes. While these biomarkers are very useful and can even be applied to diagnostic criteria in MCI, several limitations exist. As the field continues to grow, several new biomarkers are emerging and ultimately, a more biological characterization of subjects’ underlying pathophysiologic spectra will be possible. PMID:24094298

  9. Biomarkers of cell senescence

    Science.gov (United States)

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  10. Biomarkers for anorexia nervosa

    DEFF Research Database (Denmark)

    Sjøgren, Jan Magnus

    2017-01-01

    Biomarkers for anorexia nervosa (AN) which reflect the pathophysiology and relate to the aetiology of the disease, are warranted and could bring us one step closer to targeted treatment of AN. Some leads may be found in the biochemistry which often is found disturbed in AN, although normalization...

  11. Microstructured optical fiber interferometric breathing sensor.

    Science.gov (United States)

    Favero, Fernando C; Villatoro, Joel; Pruneri, Valerio

    2012-03-01

    In this paper a simple photonic crystal fiber (PCF) interferometric breathing sensor is introduced. The interferometer consists of a section of PCF fusion spliced at the distal end of a standard telecommunications optical fiber. Two collapsed regions in the PCF caused by the splicing process allow the excitation and recombination of a core and a cladding PCF mode. As a result, the reflection spectrum of the device exhibits a sinusoidal interference pattern that instantly shifts when water molecules, present in exhaled air, are adsorbed on or desorbed from the PCF surface. The device can be used to monitor a person's breathing whatever the respiration rate. The device here proposed could be particularly important in applications where electronic sensors fail or are not recommended. It may also be useful in the evaluation of a person's health and even in the diagnosis and study of the progression of serious illnesses such as sleep apnea syndrome. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage....... The performance of the envelope is simulated and put through an optimization process. The impact of a design system on the architectural potential of Performance -based design was investigated.......A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  13. Why double-stranded RNA resists condensation

    Science.gov (United States)

    Tolokh, Igor S.; Pabit, Suzette A.; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V.

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes—internal and external—distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode. PMID:25123663

  14. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  15. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  16. Structure of vacuum Cu-Ta condensates

    Science.gov (United States)

    Zubkov, A. I.; Zubarev, E. N.; Sobol', O. V.; Hlushchenko, M. A.; Lutsenko, E. V.

    2017-02-01

    The structure of vacuum condensate foils (separated from substrates) of the binary Cu-Ta system has been investigated both in the initial condensed state and after annealings at temperatures of up to 1000°C. It has been shown that the alloying of a vapor flow of the matrix metal (copper) with tantalum to 0.5 at % makes it possible to reduce the grain size from 3 μm to 50 nm. Depending on the tantalum concentration, condensates exhibit a broad spectrum of structural states, i.e., single- and two-phase, a supersaturated solution of tantalum in the fcc lattice of copper, etc. The structure of the objects possesses a high thermal stability. The temperature of the start of grain growth in the copper matrix depends on the tantalum content and can reach 900°C. The dispersion of the structure of copper condensates and its thermal stability is due to the formation of segregates of tantalum atoms at the boundaries of grains of the copper matrix both in the process of condensation and upon subsequent annealing.

  17. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    Today's oil and gas production requires the application of various chemicals in large amounts. To evaluate the effects of those chemicals on the environment, it is of crucial importance to know how much of the chemicals are discharged via produced water and how much is dissolved in the crude oil....... The ultimate objective of this work is to develop a predictive thermodynamic model for the mutual solubility of oil, water, and polar chemicals. But for the development and validation of the model, experimental data are required. This work presents new experimental liquid-liquid equilibrium (LLE) data for 1......,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...

  18. Biomarkers of cancer cachexia.

    Science.gov (United States)

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Sleep disordered breathing in patients with epilepsy

    OpenAIRE

    Vengamma B; Vijayabhaskara Rao J; Mohan A

    2016-01-01

    Background:Sleep has long been known to affect epilepsy. Little has been documented regarding the epidemiology of sleep disordered breathing (SDB) in patients with epilepsy from India. Methods:Between April 2009 and September 2011, in the first stage of the study, 452 consecutive patients with epilepsy (cases) and 500 age- and gender-matched normal control subjects were screened using Epworth’s Sleepiness Scale (ESS). Of these, 98 (23%) had an ESS score of 10 or more, suggestive of exce...

  20. Air breathing direct methanol fuel cell

    Science.gov (United States)

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  1. A deep breath bronchoconstricts obese asthmatics.

    Science.gov (United States)

    Holguin, Fernando; Cribbs, Sushma; Fitzpatrick, Anne M; Ingram, Roland H; Jackson, Andrew C

    2010-02-01

    Asthma is characterized by the loss of a deep breath (DB)-induced bronchodilation and bronchoprotection. Obesity causes lung restriction and increases airway resistance, which may further worsen the capacity of a DB to induce bronchodilation; however, whether increasing BMI impairs the bronchodilatory response to a DB in asthmatics is unknown. The population consisted of 99 subjects, 87 with moderate to severe persistent asthma and 12 obese control subjects. Using transfer impedance we derived airway resistance (Raw). Participants breathed for 1 minute and took a slow DB followed by passive exhalation to functional residual capacity (FRC) and tidal breathing for another minute. After a DB, obese asthmatics had the largest percent increase in Raw (median 9.8% interquartile range [IQR] 3.1-15.1), compared with overweight (6.5% IQR -1.3, 12.1) and lean (0.7% IQR -3, 7.9) asthmatics and obese controls (2.5% IQR -.6, 11) (p for trend = 0.008). The association between the percent increase in Raw after a DB and BMI as a continuous variable was significant (p = 0.02). In obese, moderate to severe and poorly controlled asthmatics, a DB results in increased Raw. This phenomenon was not observed in leaner asthmatics of similar severity or in obese control subjects.

  2. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  3. Sleep Disorders: Sleep-Related Breathing Disorders.

    Science.gov (United States)

    Burman, Deepa

    2017-09-01

    Sleep-related breathing disorders or sleep-disordered breathing are characterized by abnormal respiration during sleep. They are grouped into obstructive sleep apnea (OSA), central sleep apnea, sleep-related hypoventilation, and sleep-related hypoxemia disorder. OSA is a common disorder encountered in the family medicine setting that is increasingly being recognized because of the obesity epidemic and greater public and physician awareness. OSA is characterized by recurrent episodes of partial or complete closure of the upper airway resulting in disturbed breathing during sleep. It is associated with decreased quality of life and significant medical comorbidities. Untreated OSA can lead to a host of cardiovascular diseases including coronary artery disease, stroke, and atrial fibrillation. Patients who report symptoms of snoring, witnessed apneas, or daytime sleepiness should be screened for sleep apnea. In-laboratory attended diagnostic polysomnography or portable home sleep testing can be used to diagnose sleep apnea. Continuous positive airway pressure (CPAP) therapy is the first-line treatment for OSA in adults. Other modalities include mandibular advancement devices, surgery, or upper airway stimulation therapy. Adjunctive therapy should include weight loss in overweight patients, avoidance of sedatives and alcohol before sleep, and possibly positional therapy. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  4. Getting to grips with 'dysfunctional breathing'.

    Science.gov (United States)

    Barker, Nicki; Everard, Mark L

    2015-01-01

    Dysfunctional breathing (DB) is common, frequently unrecognised and responsible for a substantial burden of morbidity. Previously lack of clarity in the use of the term and the use of multiple terms to describe the same condition has hampered our understanding. DB can be defined as an alteration in the normal biomechanical patterns of breathing that result in intermittent or chronic symptoms. It can be subdivided into thoracic and extra thoracic forms. Thoracic DB is characterised by breathing patterns involving relatively inefficient, excessive upper chest wall activity with or without accessory muscle activity. This is frequently associated with increased residual volume, frequent sighing and an irregular pattern of respiratory effort. It may be accompanied by true hyperventilation in the minority of subjects. Extra thoracic forms include paradoxical vocal cord dysfunction and the increasingly recognised supra-glottic 'laryngomalacia' commonly seen in young sportsmen and women. While the two forms would appear to be two discreet entities they often share common factors in aetiology and respond to similar interventions. Hence both forms are considered in this review which aims to generate a more coherent approach to understanding, diagnosing and treating these conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Asthma - A Disease of How We Breathe: Role of Breathing Exercises and Pranayam.

    Science.gov (United States)

    Sankar, Jhuma; Das, Rashmi Ranjan

    2017-12-16

    To describe the role of breathing exercises or yoga and/or pranayama in the management of childhood asthma. We conducted an updated literature search and retrieved relevant literature on the role of breathing exercises or yoga and/or pranayama in the management of childhood asthma. We found that the breathing exercises or yoga and/or pranayama are generally multi-component packaged interventions, and are described as follows: Papworth technique, Buteyko technique, Yoga and/or Pranayam. These techniques primarily modify the pattern of breathing to reduce hyperventilation resulting in normalisation of CO2 level, reduction of bronchospasm and resulting breathlessness. In addition they also change the behaviour, decrease anxiety, improve immunological parameters, and improve endurance of the respiratory muscles that may ultimately help asthmatic children. We found 10 clinical trials conducted in children with asthma of varying severity, and found to benefit children with chronic (mild and moderate) and uncontrolled asthma, but not acute severe asthma. Breathing exercises or yoga and/or pranayama may benefit children with chronic (mild and moderate) and uncontrolled asthma, but not acute severe asthma. Before these techniques can be incorporated into the standard care of asthmatic children, important outcomes like quality of life, medication use, and patient reported outcomes need to be evaluated in future clinical trials.

  6. The breath of life. Patients' experiences of breathing during and after mechanical ventilation.

    Science.gov (United States)

    Haugdahl, Hege S; Dahlberg, Helena; Klepstad, Pål; Storli, Sissel L

    2017-06-01

    Breathlessness is a prevalent and distressing symptom in intensive care, underestimated by nurses and physicians. Therefore, to develop a more comprehensive understanding of this problem, the study had two aims: to compare patients' self-reported scores of breathlessness obtained during mechanical ventilation (MV) with experiences of breathlessness later recalled by patients and: to explore the lived experience of breathing during and after MV. A qualitatively driven sequential mixed method design combining prospective observational breathlessness data at the end of a spontaneous breathing trial (SBT) and follow up data from 11 post-discharge interviews. Four out of six patients who reported breathlessness at the end of an SBT did not remember being breathless in retrospect. Experiences of breathing intertwined with the whole illness experience and were described in four themes: existential threat; the tough time; an amorphous and boundless body and getting through. Breathing was not always a clearly separate experience, but intertwined with the whole illness experience. This may explain the poor correspondence between patients' and clinicians assessments of breathlessness. The results suggest patients' own reports of breathing should form part of nursing interventions and follow-up to support patients' quest for meaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Heat and moisture exchanger: importance of humidification in anaesthesia and ventilatory breathing system.

    Science.gov (United States)

    Parmar, Vandana

    2008-08-01

    Adequate humidification is vital to maintain homeostasis of the airway. Heat and moisture exchangers conserve some of the exhaled water, heat and return them to inspired gases. Many heat and moisture exchangers also perfom bacterial/viral filtration and prevent inhalation of small particles. Heat and moisture exchangers are also called condenser humidifier, artificial nose, etc. Most of them are disposable devices with exchanging medium enclosed in a plastic housing. For adult and paediatric age group different dead space types are available. Heat and moisture exchangers are helpful during anaesthesia and ventilatory breathing system. To reduce the damage of the upper respiratory tract through cooling and dehydration inspiratory air can be heated and humidified, thus preventing the serious complications.

  8. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    Science.gov (United States)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  9. Field theories of condensed matter physics

    CERN Document Server

    Fradkin, Eduardo

    2013-01-01

    Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

  10. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms......The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric......) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates...

  11. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Dropwise condensation on inclined textured surfaces

    CERN Document Server

    Khandekar, Sameer

    2014-01-01

    Dropwise Condensation on Textured Surfaces presents a holistic framework for understanding dropwise condensation through mathematical modeling and meaningful experiments. The book presents a review of the subject required to build up models as well as to design experiments. Emphasis is placed on the effect of physical and chemical texturing and their effect on the bulk transport phenomena. Application of the model to metal vapor condensation is of special interest. The unique behavior of liquid metals, with their low Prandtl number and high surface tension, is also discussed. The model predicts instantaneous drop size distribution for a given level of substrate subcooling and derives local as well as spatio-temporally averaged heat transfer rates and wall shear stress.

  13. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  14. Fermion masses through four-fermion condensates

    CERN Document Server

    Ayyar, Venkitesh

    2016-01-01

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

  15. Bose-Einstein condensation in nonuniform media

    Science.gov (United States)

    Sa-Yakanit, Virulh; Yarunin, Vladimir; Nisamaneephong, Pornther

    1998-02-01

    The Bogoliubov model of a nonideal gas is developed for Bose-Einstein condensation (BEC) in media with broken translational symmetry. A decrease of the transition temperature Tλ is found as a function of the ratio {F 1}/{g 0}, where g0 is the interaction between the atoms of the condensate and F1 is the condensate-noncondensate interaction, generated by the nonhomogeneous property of the matter. The shift of Tλ in porous media experimentally found by Wong et al. [Phys. Rev. Lett. 65 (1990) 2410] is applied to estimate the ratio {F 1}/{g 0}, which is found to be equal to 0.1, and may be considered as a measure of the influence of the porosity on the interaction between the atoms.

  16. Temporal dynamics of Bose-condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Martinez, Mauricio

    2014-03-19

    We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

  17. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  18. Experimental Investigation of Flow Condensation in Microgravity

    Science.gov (United States)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  19. Novel insights into mitotic chromosome condensation

    Science.gov (United States)

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  20. Nonlocal Condensate Model for QCD Sum Rules

    OpenAIRE

    Hsieh, Ron-Chou; Li, Hsiang-nan

    2009-01-01

    We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark condensate contribut...

  1. Chiral Lagrangians and quark condensate in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, J.; Chanfray, G.; Ericson, M.

    1996-03-01

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author). 28 refs.; Submitted to nuclear Physics, A (NL).

  2. Formation Time of a Fermion Pair Condensate

    OpenAIRE

    Zwierlein, M. W.; Schunck, C. H.; Stan, C. A.; Raupach, S. M. F.; Ketterle, W.

    2004-01-01

    The formation time of a condensate of fermionic atom pairs close to a Feshbach resonance was studied. This was done using a phase-shift method in which the delayed response of the many-body system to a modulation of the interaction strength was recorded. The observable was the fraction of condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The measured response time was slow compared to the rapid ramp, which provides final proof that the molecular...

  3. Analytical Treatment of Normal Condensation Shock

    Science.gov (United States)

    Heybey

    1947-01-01

    The condensation of water vapor in an air consequences: acquisition of heat (liberated heat vaporization; loss of mass on the part of the flowing gas (water vapor is converted to liquid); change in the specific gas constants and of the ratio k of the specific heats (caused by change of gas composition). A discontinuous change of state is therefore connected with the condensation; schlieren photographs of supersonic flows in two-dimensional Laval nozzles show two intersecting oblique shock fronts that in the case of high humidities may merge near the point of intersection into one normal shock front.

  4. Turbulent meson condensation in quark deconfinement

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto

    2015-06-01

    Full Text Available In a QCD-like strongly coupled gauge theory at large Nc, using the AdS/CFT correspondence, we find that heavy quark deconfinement is accompanied by a coherent condensation of higher meson resonances. This is revealed in non-equilibrium deconfinement transitions triggered by static, as well as quenched electric fields even below the Schwinger limit. There, we observe a “turbulent” energy flow to higher meson modes, which finally results in the quark deconfinement. Our observation is consistent with seeing deconfinement as a condensation of long QCD strings.

  5. Air pollution source apportionment before, during, and after the 2008 Beijing Olympics and association of sources to aldehydes and biomarkers of blood coagulation, pulmonary and systemic inflammation, and oxidative stress in healthy young adults

    Science.gov (United States)

    Altemose, Brent A.

    Based on principal component analysis (PCA) of air pollution data collected during the Summer Olympic Games held in Beijing, China during 2008, the five source types of air pollution identified -- natural soil/road dust, vehicle and industrial combustion, vegetative burning, oil combustion, and secondary formation, were all distinctly lower during the Olympics. This was particularly true for vehicle and industrial combustion and oil combustion, and during the main games period between the opening and closing ceremonies. The reduction in secondary formation was reflective of a reduction in nitrogen oxides, but this also contributed to increased ozone concentrations during the Olympic period. Among three toxic aldehydes measured in Beijing during the same time period, only acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Accordingly, acetaldehyde was significantly correlated with primary emission sources including vegetative burning and oil combustion, and with several pollutants emitted mainly from primary sources. In contrast, formaldehyde and acrolein increased during the Olympic air pollution control period; accordingly both were significantly correlated with ozone and with the secondary formation source type. These findings indicate primary sources may dominate for acetaldehyde while secondary sources may dominate for formaldehyde and acrolein. Biomarkers for pulmonary inflammation (exhaled breath condensate (EBC) pH, exhaled nitric oxide, and EBC nitrite) and hemostasis and blood coagulation (vWF and sCD62p) were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The systemic inflammation biomarker 8-OHdG was most consistently associated with vehicle and industrial combustion. In contrast, the associations between the biomarkers and the aldehydes were generally not significant or in the hypothesized direction, although

  6. Development of Highly Sensitive and Selective Breathing Sensors Using Molecular Imprinted Filtering for Diabetic and Alcoholic Patients

    Science.gov (United States)

    Bhuiyan, Md. Saleh Akram

    Wellness sensor technology is an emerging diagnostic test research field, which mostly deal with the point of care of the patients in the recent days. Due to the lack of awareness from the patients, most diseases cannot be detected in due time. This led to worse conditions, such as diabetic and alcoholic syndrome. Therefore, many research groups have been working to develop portable sensor devices that can track serious diseases. These include diabetic and alcoholic biomarkers in breathing. These devices have very high selectivity and reliability. However, the major limitation of biomarkers is that it deals with the bio-molecular based sensing mechanism. Extensive challenges exist in the selectivity and reliability of breathing sensors. These require development of proper materials and effective detection methods. Thus, selection of proper materials, correct sensing parameters, effective device architecture and simple fabrication processing are substantially critical. The goal of this work is to develop graphene based breathing sensors with high selectivity and sensitivity using a novel molecular imprinted filtering technique. The sensors have various applications including Point of Care Testing (POCT) device for personalized home and clinical use in early detection of diabetic and alcoholic patients. Different fabrication procedures were used to optimize the sensor performance. The optimized results demonstrate that a proper biomarker molecule imprinting process could selectively detect diabetes and alcohol. The graphene layer was optimized by maintaining spray coating time, pattern and distance between the substrate and spray coater. Graphene adhesion to the substrate was also improved using polyvinyl pyrrolidone. The molecular imprinting filter made on top of the graphene layer improved the performance of acetone and ethanol molecule detection, indicated by the change of resistance in the graphene layer. The sensors showed poor performance for long-time exposure

  7. Breathing mode influence on craniofacial development and head posture.

    Science.gov (United States)

    Chambi-Rocha, Annel; Cabrera-Domínguez, Mª Eugenia; Domínguez-Reyes, Antonia

    2017-08-14

    The incidence of abnormal breathing and its consequences on craniofacial development is increasing, and is not limited to children with adenoid faces. The objective of this study was to evaluate the cephalometric differences in craniofacial structures and head posture between nasal breathing and oral breathing children and teenagers with a normal facial growth pattern. Ninety-eight 7-16 year-old patients with a normal facial growth pattern were clinically and radiographically evaluated. They were classified as either nasal breathing or oral breathing patients according to the predominant mode of breathing through clinical and historical evaluation, and breathing respiratory rate predomination as quantified by an airflow sensor. They were divided in two age groups (G1: 7-9) (G2: 10-16) to account for normal age-related facial growth. Oral breathing children (8.0±0.7 years) showed less nasopharyngeal cross-sectional dimension (MPP) (p=0.030), whereas other structures were similar to their nasal breathing counterparts (7.6±0.9 years). However, oral breathing teenagers (12.3±2.0 years) exhibited a greater palate length (ANS-PNS) (p=0.049), a higher vertical dimension in the lower anterior face (Xi-ANS-Pm) (p=0.015), and a lower position of the hyoid bone with respect to the mandibular plane (H-MP) (p=0.017) than their nasal breathing counterparts (12.5±1.9 years). No statistically significant differences were found in head posture. Even in individuals with a normal facial growth pattern, when compared with nasal breathing individuals, oral breathing children present differences in airway dimensions. Among adolescents, these dissimilarities include structures in the facial development and hyoid bone position. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. Assessment of breath-by-breath alveolar gas exchange: an alternative view of the respiratory cycle.

    Science.gov (United States)

    Cettolo, V; Francescato, Maria Pia

    2015-09-01

    Breath-by-breath (BbB) determination of the O2 flux at alveolar level implies the identification of the start and end points of each respiratory cycle; Grønlund defined them as the times in two successive breaths showing equal expiratory gas fractions. Alternatively, the start and end points of each breath might be linked to the ratio between the exchangeable and non-exchangeable gases. The alternative algorithm is described and evaluated with respect to the algorithm proposed by Grønlund. Oxygen and carbon dioxide fractions, and ventilatory flow at the mouth were continuatively recorded in 20 subjects over 6 min at rest and during a cycloergometer exercise including 4 increasing intensities lasting 6 min each. Alveolar BbB oxygen uptake was calculated from the gas and flow traces by means of the two methods at stake. Total number of analysed breaths was 14,257. The data obtained with the two methods were close to the identity line (average slope 0.998 ± 0.004; R > 0.994; n > 334 in all subjects). Average difference between the O2 uptake data obtained by the two methods amounted to -0.27 ± 1.29 mL/min, whilst the standard deviation of the differences was 11.5 ± 4.6 mL/min. The relative percentage difference was independent from the O2 uptake and showed an average bias amongst subjects close to zero (-0.06 ± 0.15 %). The alternative timing of the respiratory cycle provided congruent O2 uptake data and made the identification of the start and end points of each breath more robust without introducing systematic errors.

  9. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect

    DEFF Research Database (Denmark)

    Gorham, Katrine A; Andersen, Mads Peter Sulbæk; Meinardi, Simone

    2009-01-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were f...

  10. Meeting Report: Breath Biomarkers Networking Sessions at PittCon 2010, Orlando, Florida

    Science.gov (United States)

    The Pittsburgh Conference and Exposition, or "PittCon" (www.pittcon.org/), is one of the largest international conferences for analytical chemistry and instrumentation typically attracting about 25,000 attendees and 1,000 commercial exhibitors. PittCon began in 1950 as a small sp...

  11. Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics.

    Science.gov (United States)

    Zhang, Junfeng; Zhu, Tong; Kipen, Howard; Wang, Guangfa; Huang, Wei; Rich, David; Zhu, Ping; Wang, Yuedan; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott; Hu, Min; Tong, Jian; Gong, Jicheng; Thomas, Duncan

    2013-02-01

    Associations between air pollution and cardiorespiratory mortality and morbidity have been well established, but data to support biologic mechanisms underlying these associations are limited. We designed this study to examine several prominently hypothesized mechanisms by assessing Beijing residents' biologic responses, at the biomarker level, to drastic changes in air quality brought about by unprecedented air pollution control measures implemented during the 2008 Beijing Olympics. To test the hypothesis that changes in air pollution levels are associated with changes in biomarker levels reflecting inflammation, hemostasis, oxidative stress, and autonomic tone, we recruited and retained 125 nonsmoking adults (19 to 33 years old) free of cardiorespiratory and other chronic diseases. Using the combination of a quasi-experimental design and a panel-study approach, we measured biomarkers of autonomic dysfunction (heart rate [HR*] and heart rate variability [HRV]), of systemic inflammation and oxidative stress (plasma C-reactive protein [CRP], fibrinogen, blood cell counts and differentials, and urinary 8-hydroxy-2'-deoxyguanosine [8-OHdG]), of pulmonary inflammation and oxidative stress (fractional exhaled nitric oxide [FeNO], exhaled breath condensate [EBC] pH, EBC nitrate, EBC nitrite, EBC nitrite+nitrate [sum of the concentrations of nitrite and nitrate], and EBC 8-isoprostane), of hemostasis (platelet activation [plasma sCD62P and sCD40L], platelet aggregation, and von Willebrand factor [vWF]), and of blood pressure (systolic blood pressure [SBP] and diastolic blood pressure [DBP]). These biomarkers were measured on each subject twice before, twice during, and twice after the Beijing Olympics. For each subject, repeated measurements were separated by at least one week to avoid potential residual effects from a prior measurement. We measured a large suite of air pollutants (PM2.5 [particulate matter Olympics periods). We used mixed-effects models to assess changes

  12. Biomarkers in Neurocritical Care

    OpenAIRE

    Kimberly, W. Taylor

    2011-01-01

    The gold standard for assessing neurological function is the bedside clinical examination. However, in neurocritical patients, the signs and symptoms related to the severity of illness can often be ambiguous. It can be hard to distinguish between a severe but stable disease state and one that is dynamic and in a critical decline. Clinicians and family members alike may struggle with the uncertainty of functional outcome prediction. Intermediate biomarkers of brain injury can assist with ongoi...

  13. Biomarkers of Selenium Status

    Directory of Open Access Journals (Sweden)

    Gerald F. Combs, Jr.

    2015-03-01

    Full Text Available The essential trace element, selenium (Se, has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites.

  14. IMMEDIATE EFFECTS OF INVERSE RATIO BREATHING VERSUS DIAPHRAGMATIC BREATHING ON INSPIRATORY VITAL CAPACITY AND THORACIC EXPANSION IN ADULT HEALTHY FEMALES

    Directory of Open Access Journals (Sweden)

    Kshipra Baban Pedamkar

    2016-04-01

    Full Text Available Background: The normal inspiratory to expiratory ratio is 1:2.However, the duration of inspiration can be increased voluntarily till the ratio becomes 2:1.This is called as inverse ratio breathing. The effects of inverse ratio ventilation have been studied on patients with respiratory failure and Acute Respiratory Distress Syndrome. No studies have been carried out to study the effects of inverse ratio breathing in voluntarily breathing individuals. Hence this study was carried out to find the immediate effects of inverse ratio breathing versus diaphragmatic breathing on inspiratory vital capacity and thoracic expansion. Methods: 30 healthy adult females in the age group 20-25 years were included in the study. Inspiratory vital capacity and thoracic expansion at 2nd, 4th and 6th intercostal space was measured using a digital spirometer and an inelastic inch tape respectively. Diaphragmatic breathing was administered for one minute and the same parameters were measured again. A washout period of one day was given and same outcome measures were measured before and after individuals performed inverse ratio breathing with the help of a visual feedback video for one minute. Results: Data was analysed using Wilcoxon test. There was extremely significant difference between the mean increase in the inspiratory vital capacity and thoracic expansion at the 2nd, 4th and 6th intercostals space after inverse ratio breathing as compared to diaphragmatic breathing (p < 0.0001. Conclusion: Inspiratory vital capacity and thoracic expansion increase significantly after inverse ratio breathing.

  15. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  16. [Biomarkers of cardiorenal syndrome].

    Science.gov (United States)

    Kuster, Nils; Moréna, Marion; Bargnoux, Anne-Sophie; Leray, Hélène; Chenine, Leila; Dupuy, Anne-Marie; Canaud, Bernard; Cristol, Jean-Paul

    2013-01-01

    Complex interactions existing between cardiac and renal diseases led to define 5 types of so-called cardiorenal syndromes. This classification is based on the organ primarily involved and the acute or chronic failure. The mutual impact of renal and cardiac functions makes it difficult to evaluate and manage patients with cardiorenal syndromes and worsen morbidity and mortality. This review seeks to discuss the place of biomarkers in diagnosis, management and follow-up of patients with cardiorenal syndromes. Biomarkers can be classified as functional (creatinine, cystatin C…) or lesional (neutrophil gelatinase-associated lipocalin, urinary cystatin C…) renal markers and functional (natriuretic peptides…) or lesional (troponin, fatty acid binding protein) cardiac markers. A last kind of biomarkers reflects the dialogue between heart and kidney (renin-angiotensin-aldosteron-system, indicators of activation of arginine vasopressin system) or the systemic impact (inflammation, oxidative stress…). In order to evaluate accurately the complex interactions that are the basis of cardiorenal syndromes, a multi-marker approach seems nowadays necessary.

  17. Conformal symmetry of trapped Bose-Einstein condensates and massive Nambu-Goldstone modes

    Science.gov (United States)

    Ohashi, Keisuke; Fujimori, Toshiaki; Nitta, Muneto

    2017-11-01

    The Gross-Pitaevskii or nonlinear Schrödinger equation relevant to ultracold atomic gaseous Bose-Einstein condensates possesses a modified Schrödinger symmetry in two spatial dimensions, in the presence of a harmonic trapping potential, an (artificial) constant magnetic field (or rotation), and an (artificial) electric field of a quadratic electrostatic potential. We find that a variance and a center of a trapped gas with or without a vorticity can be regarded as massive Nambu-Goldstone (NG) modes associated with spontaneous breaking of the modified Schrödinger symmetry. We show that the Noether theorem for the modified Schrödinger symmetry gives universal equations of motion which describe exact time evolutions of the trapped gases such as a harmonic oscillation, a cyclotron motion, and a breathing oscillation with frequencies determined by the symmetry independent of the details of the system. We further construct an exact effective action for all the NG modes.

  18. Exciton condensation in strongly correlated electron bilayers

    NARCIS (Netherlands)

    Rademaker, Louk; van den Brink, J.; Zaanen, Jan; Hilgenkamp, H.

    2013-01-01

    We studied the possibility of exciton condensation in Mott insulating bilayers. In these strongly correlated systems, an exciton is the bound state of a double occupied and empty site. In the strong coupling limit, the exciton acts as a hard-core boson. Its physics is captured by the exciton t -J

  19. Bose-Einstein condensation in quantum glasses.

    Science.gov (United States)

    Carleo, Giuseppe; Tarzia, Marco; Zamponi, Francesco

    2009-11-20

    The role of geometrical frustration in strongly interacting bosonic systems is studied with a combined numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both Bose-Einstein condensation and spin-glass behavior. The differences between such a phase and the otherwise insulating "Bose glasses" are elucidated.

  20. Counterion condensation and release in micellar solutions

    Science.gov (United States)

    Hsiao, Chin Chieh; Wang, Tzu-Yu; Tsao, Heng-Kwong

    2005-04-01

    Counterion condensation and release in micellar solutions are investigated by direct measurement of counterion concentration with ion-selective electrode. Monte Carlo simulations based on the cell model are also performed to analyze the experimental results. The degree of counterion condensation is indicated by the concentration ratio of counterions in the bulk to the total ionic surfactant added, α⩽1. The ionic surfactant is completely dissociated below the critical micelle concentration (cmc). However, as cmc is exceeded, the free counterion ratio α declines with increasing the surfactant concentration and approaches an asymptotic value owing to counterion condensation to the surface of the highly charged micelles. Micelle formation leads to much stronger electrostatic attraction between the counterion and the highly charged sphere in comparison to the attraction of single surfactant ion with its counterion. A simple model is developed to obtain the true degree of ionization, which agrees with our Monte Carlo results. Upon addition of neutral polymer or monovalent salts, some of the surfactant counterions are released to the bulk. The former is due to the decrease of the intrinsic charge (smaller aggregation number) and the degree of ionization is increased. The latter is attributed to competitive counterion condensation, which follows the Hefmeister series. This consequence indicates that the specific ion effect plays an important role next to the electrostatic attraction.

  1. Condensate formation in a Bose gas

    NARCIS (Netherlands)

    Stoof, H.T.C.

    1995-01-01

    Using magnetically trapped atomic hydrogen as an example, we investigate the prospects of achieving Bose-Einstein condensation in a dilute Bose gas. We show that, if gas is quenched sufficiently far into the critical region of the phase transition, the typical time scale for the nucleation of the

  2. The quark condensate in a nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Weise, W. [Regensburg Univ. (Germany). Inst. of Theoretical Physics

    1995-12-31

    A summary and survey on the change of the chiral condensate in dense (and hot) matter is presented. Implications for nuclear physics and relativistic heavy ion collisions are discussed, such as the strong Dirac scalar mean field that results from the density dependence of , and possible consequences for decreasing hadron masses in matter. (author). 22 refs., 4 figs.

  3. Spatially inhomogeneous condensate in asymmetric nuclear matter

    NARCIS (Netherlands)

    Sedrakian, A

    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into

  4. Complex Langevin simulation in condensed matter physics

    CERN Document Server

    Yamamoto, Arata

    2015-01-01

    The complex Langevin method is one hopeful candidate to tackle the sign problem. This method is applicable not only to QCD but also to nonrelativistic field theory, such as condensed matter physics. We present the simulation results of a rotating Bose gas and an imbalanced Fermi-Hubbard model.

  5. Activity, purification, and analysis of condensed tannins

    Science.gov (United States)

    As a class of plant polyphenolic compounds contained in some forages (i.e., sanfoin, big trefoil, birdfoot trefoil), condensed tannins (CTs), also referred to as proanthocyanidins (PAs), exhibit a variety of biological effects on ruminants and on the dairy farm nitrogen cycle. Interest in CTs stems ...

  6. Condensing Organic Aerosols in a Microphysical Model

    Science.gov (United States)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  7. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    Far from the Debye sphere, radiative mode can damp due to thermal conduction of electrons and ions. Keywords. Dusty plasma; radiative condensation; charge fluctuations. PACS Nos 52.27.Lw; 52.35.Fp; 52.35.Qz. 1. Introduction. The structure formation in subcritical Jeans mass regions in the interstellar medium may.

  8. Production of clean gasoline from the condensate

    Directory of Open Access Journals (Sweden)

    Noureddin Bentahar

    2013-12-01

    Full Text Available The locally available Algerian bentonite is explored to prepare catalysts for the isomerization of the light fractions of Algerian condensate to produce high quality gasoline of high octane number. Satisfying results are obtained which render these catalysts applicable for a large scale production.

  9. Connections between quantum chromodynamics and condensed ...

    Indian Academy of Sciences (India)

    Recently some of the analyses that originated in condensed matter physics have found applications in QCD. Using examples we discuss some of the connections between the two fields and show how progress can be made by exploiting this connection. Some of the challenges that remain in the two fields are quite similar.

  10. Fundamentals of neutron scattering by condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Scherm, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    The purpose of this introductory lecture is to give the basic facts about the scattering of neutrons by condensed matter. This lecture is restricted to nuclear scattering, whereas magnetic scattering will be dealt with in an other course. Most of the formalism, however, can also be easily extended to magnetic scattering. (author) 17 figs., 3 tabs., 10 refs.

  11. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Scheeper, P.R.; Voorthuyzen, J.A.; Voorthuyzen, J.A.; Bergveld, Piet

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile

  12. Order and chaos in soft condensed matter

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 67; Issue 1. Order and chaos in soft condensed matter. A K Sood Rajesh Ganapathy. Volume 67 Issue ... Soft matter, like colloidal suspensions and surfactant gels, exhibit strong response to modest external perturbations. This paper reviews our recent experiments on ...

  13. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  14. Massive graviton on a spatial condensate

    Directory of Open Access Journals (Sweden)

    Chunshan Lin

    2014-11-01

    Full Text Available In this paper, we consider the spatial gauge symmetries spontaneously breaking down in GR, and graviton becoming massive on this spatial condensate background. Such a model can be considered as a simplest example of massive gravity. We then apply our massive gravity theory to inflation, and find that the graviton mass removes the IR divergence of the inflationary loop diagram.

  15. optimal evaporating and condensing temperatures of organic

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... However, the study further showed that the evaporating temperature (ET) and condensing temperature (CT) affect the thermal performance and net power output of the cycles. Dai et al.[20]conducted parametric optimisation of ORC with exergy efficiency. He et al. [21] considered the optimisation of a simple.

  16. Condensation enhancement by means of electrohydrodynamic techniques

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2014-12-01

    Full Text Available Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.

  17. Spermine Condenses DNA, but Not RNA Duplexes

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  18. Vast Antimatter Regions and Scalar Condensate Baryogenesis

    OpenAIRE

    Kirilova, D.; Panayotova, M.; Valchanov, T

    2002-01-01

    The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.

  19. Ultrafine Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  20. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  1. rotor of the SC rotating condenser

    CERN Multimedia

    1974-01-01

    The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.

  2. Biomarkers in Diabetic Retinopathy

    Science.gov (United States)

    Jenkins, Alicia J.; Joglekar, Mugdha V.; Hardikar, Anandwardhan A.; Keech, Anthony C.; O'Neal, David N.; Januszewski, Andrzej S.

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  3. Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph.

    Science.gov (United States)

    Tanda, Naoko; Hinokio, Yoshinori; Washio, Jumpei; Takahashi, Nobuhiro; Koseki, Takeyoshi

    2014-11-24

    Ketone bodies including acetone are disease biomarkers for diabetes that sometimes causes severe ketoacidosis. The present study was undertaken to clarify the significance of exhaled acetone and plasma ketone bodies at bedside in a clinical setting. The oral glucose tolerance test (OGTT) was performed in 10 healthy Japanese volunteers (five females and five males). Exhaled breath acetone and volatile sulfide compounds (VSCs) in mouth air were measured simultaneously with blood sampling during the OGTT using a portable gas chromatograph equipped with an In2O3 thick-film type gas sensor and a VSC monitor. Acetone, β-hydroxybutyrate (β-OHB) and acetoacetate (AcAc) in blood plasma as well as glucose and insulin were examined. Oral conditions were examined based on the Community Periodontal Index (CPI) by one dentist. In addition, the same type of analysis was applied to two uncontrolled type 2 diabetes mellitus patients hospitalized at Tohoku University Hospital. Exhaled acetone was measured at the same time as blood withdrawal in the morning before breakfast and at night before bed at the beginning, the middle, and the end of hospitalization. All volunteers showed normal OGTT patterns with no ketonuria and periodontitis; however, there were significant correlations between breath acetone and plasma β-ΟΗΒ and between breath acetone and plasma AcAc under fasting conditions. Breath acetone of the type 2 diabetes mellitus patients showed positive correlations with plasma glucose when the level of plasma glucose tended to decrease during hospitalization. In spite of a very limited number of cases, our results support the idea that exhaled breath acetone may be related to plasma β-OHB and AcAc, which reflect glucose metabolism in the body.

  4. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    Science.gov (United States)

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  5. Exhaled breath analysis: physical methods, instruments, and medical diagnostics

    Science.gov (United States)

    Vaks, V. L.; Domracheva, E. G.; Sobakinskaya, E. A.; Chernyaeva, M. B.

    2014-07-01

    This paper reviews the analysis of exhaled breath, a rapidly growing field in noninvasive medical diagnostics that lies at the intersection of physics, chemistry, and medicine. Current data are presented on gas markers in human breath and their relation to human diseases. Various physical methods for breath analysis are described. It is shown how measurement precision and data volume requirements have stimulated technological developments and identified the problems that have to be solved to put this method into clinical practice.

  6. Mouth breathing, another risk factor for asthma: the Nagahama Study.

    Science.gov (United States)

    Izuhara, Y; Matsumoto, H; Nagasaki, T; Kanemitsu, Y; Murase, K; Ito, I; Oguma, T; Muro, S; Asai, K; Tabara, Y; Takahashi, K; Bessho, K; Sekine, A; Kosugi, S; Yamada, R; Nakayama, T; Matsuda, F; Niimi, A; Chin, K; Mishima, M

    2016-07-01

    Allergic rhinitis, a known risk factor for asthma onset, often accompanies mouth breathing. Mouth breathing may bypass the protective function of the nose and is anecdotally considered to increase asthma morbidity. However, there is no epidemiological evidence that mouth breathing is independently associated with asthma morbidity and sensitization to allergens. In this study, we aimed to clarify the association between mouth breathing and asthma morbidity and allergic/eosinophilic inflammation, while considering the effect of allergic rhinitis. This community-based cohort study, the Nagahama Study, contained a self-reporting questionnaire on mouth breathing and medical history, blood tests, and pulmonary function testing. We enrolled 9804 general citizens of Nagahama City in the Shiga Prefecture, Japan. Mouth breathing was reported by 17% of the population and was independently associated with asthma morbidity. The odds ratio for asthma morbidity was 1.85 (95% CI, 1.27-2.62) and 2.20 (95% CI, 1.72-2.80) in subjects with mouth breathing alone and allergic rhinitis alone, which additively increased to 4.09 (95% CI, 3.01-5.52) when mouth breathing and allergic rhinitis coexisted. Mouth breathing in nonasthmatics was a risk for house dust mite sensitization, higher blood eosinophil counts, and lower pulmonary function after adjusting for allergic rhinitis. Mouth breathing may increase asthma morbidity, potentially through increased sensitization to inhaled allergens, which highlights the risk of mouth-bypass breathing in the 'one airway, one disease' concept. The risk of mouth breathing should be well recognized in subjects with allergic rhinitis and in the general population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. ABA-Cloud: support for collaborative breath research

    OpenAIRE

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-01-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step ...

  8. Cloud Condensation in Titan's Lower Stratosphere

    Science.gov (United States)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  9. Chiari malformation and sleep related breathing disorders

    Science.gov (United States)

    Dauvilliers, Y; Stal, V; Abril, B; Coubes, P; Bobin, S; Touchon, J; Escourrou, P; Parker, F; Bourgin, P

    2007-01-01

    Objective To estimate the frequency, mechanisms and predictive factors of sleep apnoea syndrome (SAS) in a large group of children and adults with type I (CMI) and II (CMII) Chiari malformation (CM). Background The anatomical and functional integrity of both respiratory circuits and lower cranial nerves controlling the upper airway is necessary for breathing control during sleep. These latter structures may be altered in CM, and a few investigations have reported CM related sleep disordered breathing. Methods Forty‐six consecutive unrelated patients with CM (40 CMI, six CMII), of which 20 were children (eight males) and 26 were adults (12 males), underwent physical, neurological and oto‐rhino‐laryngoscopic examination, MRI and polysomnography. Results SAS was present in 31 (67.4%) of the patients with CM (70% of CMI, 50% of CMII, including mainly children). Sixty per cent of children with CM exhibited SAS, including 35% with obstructive (OSAS) and 25% with central (CSAS) sleep apnoea syndrome. SAS was observed in 73% of CM adults (57.7% OSAS, 15.4% CSAS). Severe SAS was found in 23% of CM adults. Multiple regression analysis revealed that age, type II Chiari and vocal cord paralysis predicted the central apnoea index. Conclusion SAS is highly prevalent in all age groups of patients suffering from CM. CSAS, a rare condition in the general population, was common among the patients with CM in our study. Sleep disordered breathing associated with CM may explain the high frequency of respiratory failures observed during curative surgery of CM. Our results suggest that SAS should be systematically screened for in patients with CM, especially before surgery. PMID:17400590

  10. Air-Breathing Rocket Engine Test

    Science.gov (United States)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  11. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin

    2015-04-21

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A young male with shortness of breath

    Directory of Open Access Journals (Sweden)

    Khan Fahmi

    2008-01-01

    Full Text Available We report a case of primary mediastinal seminoma, which presented initially with shortness of breath and a swelling in upper part of anterior chest wall. The diagnosis of primary mediastinal seminoma was established on the basis of histologic findings and was confirmed by immunohistochemical analysis. Abdominal, pelvis and cerebral CT scan, testicular ultrasound and TC-99 MDP bone scintigraphy were negative. Chemotherapy was initiated with B.E.P. protocol (Bleomycin, Etoposide, Cisplatinum; the patient received four cycles of chemotherapy. After 8 months, the patient was seen in the clinic; he was well.

  13. Breath hydrogen test in children with giardiasis.

    Science.gov (United States)

    Vega-Franco, L; Meza, C; Romero, J L; Alanis, S E; Meijerink, J

    1987-01-01

    Respiratory hydrogen excretion was measured in 50 children with giardiasis in order to study lactose absorption. Samples of expired air were collected before and after the children drank 250 ml of whole cow's milk. The test was repeated after successful elimination of Giardia lamblia following treatment with tinidazol. The number of children showing a rise in breath hydrogen excretion greater than 20 ppm decreased from 33 (72%) before treatment to 20 (44%) after treatment. This study permits the conclusion that the presence of G. lamblia in the intestine might interfere with optimum lactose absorption.

  14. Sports-related lung injury during breath-hold diving.

    Science.gov (United States)

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.

  15. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  16. Can resistive breathing injure the lung? Implications for COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Vassilakopoulos T

    2016-09-01

    Full Text Available Theodoros Vassilakopoulos, Dimitrios Toumpanakis Pulmonary and Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Greece Abstract: In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction. The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. Keywords: resistive breathing, COPD, mechanotransduction, bronchoconstriction, inflammation

  17. Evolution of the Cardiorespiratory System in Air-Breathing Fishes

    OpenAIRE

    Ishimatsu, Atsushi

    2012-01-01

    Fishes have evolved a wide variety of air-breathing organs independently along different lineages. Of these air-breathing fishes, only some (e.g., mudskippers) venture onto land but the vast majority of them remain in water and use air as an oxygen source to different degrees. With the development of air-breathing capacity, the circulatory system of fishes has often been modified in various ways to accommodate blood to and from the newly developed air-breathing surface. However, most air-brea...

  18. General Anesthesia with Preserved Spontaneous Breathing through an Intubation Tube

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2010-01-01

    Full Text Available Objective: to study whether spontaneous patient breathing may be preserved during elective operations under general anesthesia with tracheal intubation. Subjects and methods. One hundred and twelve patients undergoing elective surgeries under general endotracheal anesthesia were randomized into 2 groups: 1 patients who had forced mechanical ventilation in the volume-controlled mode and 2 those who received assisted ventilation as spontaneous breathing with mechanical support. Conclusion. The study shows that spontaneous breathing with mechanical support may be safely used during some surgical interventions in patients with baseline healthy lungs. Key words: Pressure Support, assisted ventilation, spontaneous breathing, general anesthesia, lung function.

  19. Appropriate sample bags and syringes for preserving breath samples in breath odor research : a technical note

    NARCIS (Netherlands)

    Winkel, E. G.; Tangerman, A.

    It is now generally accepted that the volatile sulfur compounds (VSCs) hydrogen sulfide, methyl mercaptan and dimethyl sulfide are the main contributors to halitosis when of oropharyngeal origin. The VSCs hydrogen sulfide and methyl mercaptan are the major causes of bad breath in oral malodour

  20. Biomarkers-A General Review.

    Science.gov (United States)

    Aronson, Jeffrey K; Ferner, Robin E

    2017-03-17

    A biomarker is a biological observation that substitutes for and ideally predicts a clinically relevant endpoint or intermediate outcome that is more difficult to observe. The use of clinical biomarkers is easier and less expensive than direct measurement of the final clinical endpoint, and biomarkers are usually measured over a shorter time span. They can be used in disease screening, diagnosis, characterization, and monitoring; as prognostic indicators; for developing individualized therapeutic interventions; for predicting and treating adverse drug reactions; for identifying cell types; and for pharmacodynamic and dose-response studies. To understand the value of a biomarker, it is necessary to know the pathophysiological relationship between the biomarker and the relevant clinical endpoint. Good biomarkers should be measurable with little or no variability, should have a sizeable signal to noise ratio, and should change promptly and reliably in response to changes in the condition or its therapy. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.