WorldWideScience

Sample records for breath biomarkers obtained

  1. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  2. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  3. Exhaled Breath Condensate for Proteomic Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Sean W. Harshman

    2014-07-01

    Full Text Available Exhaled breath condensate (EBC has been established as a potential source of respiratory biomarkers. Compared to the numerous small molecules identified, the protein content of EBC has remained relatively unstudied due to the methodological and technical difficulties surrounding EBC analysis. In this review, we discuss the proteins identified in EBC, by mass spectrometry, focusing on the significance of those proteins identified. We will also review the limitations surrounding mass spectral EBC protein analysis emphasizing recommendations to enhance EBC protein identifications by mass spectrometry. Finally, we will provide insight into the future directions of the EBC proteomics field.

  4. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  5. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  6. Sensitive Spectroscopic Analysis of Biomarkers in Exhaled Breath

    Science.gov (United States)

    Bicer, A.; Bounds, J.; Zhu, F.; Kolomenskii, A. A.; Kaya, N.; Aluauee, E.; Amani, M.; Schuessler, H. A.

    2018-06-01

    We have developed a novel optical setup which is based on a high finesse cavity and absorption laser spectroscopy in the near-IR spectral region. In pilot experiments, spectrally resolved absorption measurements of biomarkers in exhaled breath, such as methane and acetone, were carried out using cavity ring-down spectroscopy (CRDS). With a 172-cm-long cavity, an efficient optical path of 132 km was achieved. The CRDS technique is well suited for such measurements due to its high sensitivity and good spectral resolution. The detection limits for methane of 8 ppbv and acetone of 2.1 ppbv with spectral sampling of 0.005 cm-1 were achieved, which allowed to analyze multicomponent gas mixtures and to observe absorption peaks of 12CH4 and 13CH4. Further improvements of the technique have the potential to realize diagnostics of health conditions based on a multicomponent analysis of breath samples.

  7. Potential of Mass Spectrometry in Developing Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath.

    Science.gov (United States)

    Beck, Olof; Olin, Anna-Carin; Mirgorodskaya, Ekaterina

    2016-01-01

    Exhaled breath contains nonvolatile substances that are part of aerosol particles of submicrometer size. These particles are formed and exhaled as a result of normal breathing and contain material from distal airways of the respiratory system. Exhaled breath can be used to monitor biomarkers of both endogenous and exogenous origin and constitutes an attractive specimen for medical investigations. This review summarizes the present status regarding potential biomarkers of nonvolatile compounds in exhaled breath. The field of exhaled breath condensate is briefly reviewed, together with more recent work on more selective collection procedures for exhaled particles. The relation of these particles to the surfactant in the terminal parts of the respiratory system is described. The literature on potential endogenous low molecular weight compounds as well as protein biomarkers is reviewed. The possibility to measure exposure to therapeutic and abused drugs is demonstrated. Finally, the potential future role and importance of mass spectrometry is discussed. Nonvolatile compounds exit the lung as aerosol particles that can be sampled easily and selectively. The clinical applications of potential biomarkers in exhaled breath comprise diagnosis of disease, monitoring of disease progress, monitoring of drug therapy, and toxicological investigations. © 2015 American Association for Clinical Chemistry.

  8. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms.

    Directory of Open Access Journals (Sweden)

    Michael Phillips

    Full Text Available BACKGROUND: Previous studies have reported volatile organic compounds (VOCs in breath as biomarkers of breast cancer and abnormal mammograms, apparently resulting from increased oxidative stress and cytochrome p450 induction. We evaluated a six-minute point-of-care breath test for VOC biomarkers in women screened for breast cancer at centers in the USA and the Netherlands. METHODS: 244 women had a screening mammogram (93/37 normal/abnormal or a breast biopsy (cancer/no cancer 35/79. A mobile point-of-care system collected and concentrated breath and air VOCs for analysis with gas chromatography and surface acoustic wave detection. Chromatograms were segmented into a time series of alveolar gradients (breath minus room air. Segmental alveolar gradients were ranked as candidate biomarkers by C-statistic value (area under curve [AUC] of receiver operating characteristic [ROC] curve. Multivariate predictive algorithms were constructed employing significant biomarkers identified with multiple Monte Carlo simulations and cross validated with a leave-one-out (LOO procedure. RESULTS: Performance of breath biomarker algorithms was determined in three groups: breast cancer on biopsy versus normal screening mammograms (81.8% sensitivity, 70.0% specificity, accuracy 79% (73% on LOO [C-statistic value], negative predictive value 99.9%; normal versus abnormal screening mammograms (86.5% sensitivity, 66.7% specificity, accuracy 83%, 62% on LOO; and cancer versus no cancer on breast biopsy (75.8% sensitivity, 74.0% specificity, accuracy 78%, 67% on LOO. CONCLUSIONS: A pilot study of a six-minute point-of-care breath test for volatile biomarkers accurately identified women with breast cancer and with abnormal mammograms. Breath testing could potentially reduce the number of needless mammograms without loss of diagnostic sensitivity.

  9. Biomarker Analysis of Human Breath for Early Prediction of Hepatotoxicity

    National Research Council Canada - National Science Library

    Risby, Terence

    1998-01-01

    This past three years of research conducted with support from the Air Force Office of Scientific Research has been directed towards evaluating the use of exhaled breath to estimate the actual-exposure...

  10. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  11. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    Directory of Open Access Journals (Sweden)

    Wang Li

    Full Text Available Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p0.05. In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  12. Diagnostic value of a pattern of exhaled breath condensate biomarkers in asthmatic children.

    Science.gov (United States)

    Maloča Vuljanko, I; Turkalj, M; Nogalo, B; Bulat Lokas, S; Plavec, D

    Diagnosing asthma in children is a challenge and using a single biomarker from exhaled breath condensate (EBC) showed the lack of improvement in it. The aim of this study was to assess the diagnostic potential of a pattern of simple chemical biomarkers from EBC in diagnosing asthma in children in a real-life setting, its association with lung function and gastroesophageal reflux disease (GERD). In 75 consecutive children aged 5-7 years with asthma-like symptoms the following tests were performed: skin prick tests, spirometry, impulse oscillometry (IOS), exhaled NO (F E NO), 24-hour oesophageal pH monitoring and EBC collection with subsequent analysis of pH, carbon dioxide tension, oxygen tension, and concentrations of magnesium, calcium, iron and urates. No significant differences were found for individual EBC biomarkers between asthmatics and non-asthmatics (p>0.05 for all). A pattern of six EBC biomarkers showed a statistically significant (p=0.046) predictive model for asthma (AUC=0.698, PPV=84.2%, NPV=38.9%). None to moderate association (R 2 up to 0.43) between EBC biomarkers and lung function measures and F E NO was found, with IOS parameters showing the best association with EBC biomarkers. A significantly higher EBC Fe was found in children with asthma and GERD compared to asthmatics without GERD (p=0.049). An approach that involves a pattern of EBC biomarkers had a better diagnostic accuracy for asthma in children in real-life settings compared to a single one. Poor to moderate association of EBC biomarkers with lung function suggests a complementary value of EBC analysis for asthma diagnosis in children. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  13. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung

    Directory of Open Access Journals (Sweden)

    Laing Richard

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa infections are associated with progressive life threatening decline of lung function in cystic fibrosis sufferers. Growth of Ps. aeruginosa releases a "grape-like" odour that has been identified as the microbial volatile organic compound 2-aminoacetophenone (2-AA. Methods We investigated 2-AA for its specificity to Ps. aeruginosa and its suitability as a potential breath biomarker of colonisation or infection by Solid Phase Micro Extraction and Gas Chromatography-Mass Spectrometry (GC/MS. Results Cultures of 20 clinical strains of Ps. aeruginosa but not other respiratory pathogens had high concentrations of 2-AA in the head space of in vitro cultures when analysed by GC/MS. 2-AA was stable for 6 hours in deactivated glass sampling bulbs but was not stable in Tedlar® bags. Optimisation of GC/MS allowed detection levels of 2-AA to low pico mol/mol range in breath. The 2-AA was detected in a significantly higher proportion of subjects colonised with Ps. aeruginosa 15/16 (93.7% than both the healthy controls 5/17 (29% (p Ps. aeruginosa 4/13(30.7% (p Ps. aeruginosa in sputum and/or BALF was 93.8% (95% CI, 67-99 and 69.2% (95% CI, 38-89 respectively. The peak integration values for 2-AA analysis in the breath samples were significantly higher in Ps. aeruginosa colonised subjects (median 242, range 0-1243 than the healthy controls (median 0, range 0-161; p Ps. aeruginosa (median 0, range 0-287; p Conclusions Our results report 2-AA as a promising breath biomarker for the detection of Ps. aeruginosa infections in the cystic fibrosis lung.

  14. Quantification of volatile organic compounds in exhaled human breath. Acetonitrile as biomarker for passive smoking. Model for isoprene in human breath

    International Nuclear Information System (INIS)

    Prazeller, P.

    2000-03-01

    The topic of this thesis is the quantification of volatile organic compounds in human breath under various circumstances. The composition of exhaled breath reflects metabolic processes in the human body. Breath analysis is a non invasive technique which makes it most interesting especially for medical or toxicological applications. Measurements were done with Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS). This technique combines the advantage of small fragmentation of chemical ionization with highly time resolved mass spectrometry. A big part of this work is about investigations of exposition due to tobacco smoke. After smoking cigarettes the initial increase and time dependence of some compounds in the human breath are monitored . The calculated decrease resulting only from breathing out the compounds is presented and compared to the measured decline in the breath. This allows the distinction whether breathing is the dominant loss of a compound or a different metabolic process remover it more efficiently. Acetonitrile measured in human breath is presented as a biomarker for exposition to tobacco smoke. Especially its use for quantification of passive smoking, the exposition to environmental tobacco smoke (ETS) is shown. The reached accuracy and the fast way of measuring of acetonitrile in human breath using PTR-MS offer a good alternative to common used biomarkers. Numerous publications have described measurements of breath isoprene in humans, and there has been a hope that breath isoprene analyses could be a non-invasive diagnostic tool to assess serum cholesterol levels or cholesterol synthesis rate. However, significant analytical problems in breath isoprene analysis and variability in isoprene levels with age, exercise, diet, etc. have limited the usefulness of these measurements. Here, we have applied proton-transfer-reaction mass spectrometry (PTR-MS) to this problem, allowing on-line detection of breath isoprene. We show that breath isoprene

  15. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Science.gov (United States)

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  16. Breathing Raman modes in Ag{sub 2}S nanoparticles obtained from F9 zeolite matrix

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Beleño, Y. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx [CONACYT Research Fellow, Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Martinez-Nuñez, C.E.; Britto Hurtado, R.; Alvarez, Ramón A.B.; Rocha-Rocha, O.; Arizpe-Chávez, H.; Perez-Rodríguez, A.; Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico)

    2015-12-16

    Highlights: • Raman breathing modes in small silver sulfide nanoparticles. • Low energy (AgS){sub n} clusters. • Vibrational spectra predicted by DFT. • Zeolite synthesis for small nanoparticles. - Abstract: Ag{sub 2}S nanoparticles were synthesized with a combination of synthetic F9, silver nitrate (AgNO{sub 3}) and monohydrated sodium sulfide (Na{sub 2}S{sub 9}H{sub 2}O). An ionic exchange was achieved via hydrothermal reaction. Nanoparticles with a predominant size ranging from 2 to 3 nm were obtained through Transmission Electron Microscopy (TEM). The nanoparticles feature a phase P21/n (14) monoclinic structure. A Raman band can be observed at around 250 cm{sup −1} in the nanoparticles. Furthermore, the vibrational properties and stability parameters of the clusters (AgS){sub n}, (with n = 2–9) were studied by the Density Functional Theory (DFT). The approximation levels used with DFT were: Local Spin Density Approximation (LSDA) and Becke’s three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence). The Radial Breathing Mode (RBM) for B3LYP was found between 227 and 295 cm{sup −1} as well as in longer wavelengths for LSDA.

  17. pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Directory of Open Access Journals (Sweden)

    Thamires Marques de Lima

    2013-12-01

    Full Text Available OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study. RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively. Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers.

  18. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children - clinical tools or scientific toys?

    Science.gov (United States)

    van Mastrigt, E; de Jongste, J C; Pijnenburg, M W

    2015-07-01

    Current monitoring strategies for respiratory diseases are mainly based on clinical features, lung function and imaging. As airway inflammation is the hallmark of many respiratory diseases in childhood, noninvasive methods to assess the presence and severity of airway inflammation might be helpful in both diagnosing and monitoring paediatric respiratory diseases. At present, the measurement of fractional exhaled nitric oxide is the only noninvasive method available to assess eosinophilic airway inflammation in clinical practice. We aimed to evaluate whether the analysis of volatile organic compounds (VOCs) in exhaled breath (EB) and biomarkers in exhaled breath condensate (EBC) is helpful in diagnosing and monitoring respiratory diseases in children. An extensive literature search was conducted in Medline, Embase and PubMed on the analysis and applications of VOCs in EB and EBC in children. We retrieved 1165 papers, of which nine contained original data on VOCs in EB and 84 on biomarkers in EBC. These were included in this review. We give an overview of the clinical applications in childhood and summarize the methodological issues. Several VOCs in EB and biomarkers in EBC have the potential to distinguish patients from healthy controls and to monitor treatment responses. Lack of standardization of collection methods and analysis techniques hampers the introduction in clinical practice. The measurement of metabolomic profiles may have important advantages over detecting single markers. There is a lack of longitudinal studies and external validation to reveal whether EB and EBC analysis have added value in the diagnostic process and follow-up of children with respiratory diseases. In conclusion, the use of VOCs in EB and biomarkers in EBC as markers of inflammatory airway diseases in children is still a research tool and not validated for clinical use. © 2014 John Wiley & Sons Ltd.

  19. MicroRNA7 expression in exhaled breath condensate of smokers with chronic obstructive pulmonary disease: A potential biomarker?

    OpenAIRE

    Nevine Abd Elfattah; R. Ali-Labib

    2017-01-01

    Rationale: The global burden of lung cancer is attributed to its poor outcome as it is usually discovered in an advanced stage therefore the constant search for screening protocols among the high risk groups like smokers and chronic obstructive pulmonary disease (COPD). Biomarker testing in exhaled breath condensate (EBC) samples is a simple inexpensive non invasive method. Many previous researches linked the dys-Regulation of microRNAs to the development of lung carcinogenesis. Consequently ...

  20. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS.

    Science.gov (United States)

    Jalali, Mahdi; Zare Sakhvidi, Mohammad Javad; Bahrami, Abdulrahman; Berijani, Nima; Mahjub, Hussein

    2016-01-01

    Silicosis is considered an oxidative stress related disease that can lead to the development of lung cancer. In this study, our purpose was to analysis of volatile organic compounds (VOCs) in the exhaled breath of workers exposed to silica containing dust and compare peak area of these compounds with silicosis patients and healthy volunteers (smokers and nonsmokers) groups. In this cross sectional case-control study, the exhaled breath of 69 subjects including workers exposed to silica (n=20), silicosis patient (n=4), healthy non-smoker (n=20) and healthy smoker (n=25) were analyzed. We collected breath samples using 3-liter Tedlar bags. The VOCs were extracted with solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Personal exposure intensity was measured according to NIOSH 7601 method. Respiratory parameters were measured using spirometry. Seventy percent and 100% of the exposures to crystalline silica dust exceeded from 8 h TWA ACGIH TLVs in case and positive control groups, respectively. A significant negative correlation was found between dust exposure intensity and FEV1/FVC when exposure and positive control groups were studied in a group (r2=-0.601, P<0.001). Totally, forty VOCs were found in all exhaled breath samples. Among the VOCs, the mean of peak area acetaldehyde, hexanal, nonanal, decane, pentad cane, 2-propanol and 3-hydroxy-2-butanone were higher in exhaled breath of the workers exposed to silica and silicosis patient compared to the healthy smoker and nonsmoker controls. In some cases the difference was significant (P<0.05). The analysis of some VOCs in exhaled breath of subjects is appropriate biomarker to determine of exposure to silica.

  1. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2015-03-01

    Full Text Available Recent advancements in the use of electronic-nose (e-nose devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.

  2. Breath Ketone Testing: A New Biomarker for Diagnosis and Therapeutic Monitoring of Diabetic Ketosis

    Directory of Open Access Journals (Sweden)

    Yue Qiao

    2014-01-01

    Full Text Available Background. Acetone, β-hydroxybutyric acid, and acetoacetic acid are three types of ketone body that may be found in the breath, blood, and urine. Detecting altered concentrations of ketones in the breath, blood, and urine is crucial for the diagnosis and treatment of diabetic ketosis. The aim of this study was to evaluate the advantages of different detection methods for ketones, and to establish whether detection of the concentration of ketones in the breath is an effective and practical technique. Methods. We measured the concentrations of acetone in the breath using gas chromatography-mass spectrometry and β-hydroxybutyrate in fingertip blood collected from 99 patients with diabetes assigned to groups 1 (−, 2 (±, 3 (+, 4 (++, or 5 (+++ according to urinary ketone concentrations. Results. There were strong relationships between fasting blood glucose, age, and diabetic ketosis. Exhaled acetone concentration significantly correlated with concentrations of fasting blood glucose, ketones in the blood and urine, LDL-C, creatinine, and blood urea nitrogen. Conclusions. Breath testing for ketones has a high sensitivity and specificity and appears to be a noninvasive, convenient, and repeatable method for the diagnosis and therapeutic monitoring of diabetic ketosis.

  3. NEW METHODOLOGY FOR IDENTIFYING POTENTIAL HUMAN BIOMARKERS BY COLLECTION AND CONCENTRATION OF EXHALED BREATH CONDENSATE

    Science.gov (United States)

    In many studies of human exposure, the measurement of pollutant chemicals in the environment (air, water, food, soil, etc.) is being supplemented by their additional measurement in biological media such as human breath, blood, and urine. This allows an unambiguous confirmation...

  4. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate.

    Science.gov (United States)

    Riccelli, Maria Grazia; Goldoni, Matteo; Andreoli, Roberta; Mozzoni, Paola; Pinelli, Silvana; Alinovi, Rossella; Selis, Luisella; Mutti, Antonio; Corradi, Massimo

    2018-08-01

    The respiratory tract is the main target organ of the inhaled hexavalent chromium (Cr-VI) and nickel (Ni) contained in stainless steel (SS) welding fumes (WFs). The aim of this study was to investigate the Cr and Ni content of the exhaled breath condensate (EBC) of SS tungsten inert gas (TIG) welders, and relate their concentrations with oxidative stress and inflammatory biomarkers. EBC and urine from 100 SS TIG welders were collected pre-(T 0 ) and post-shift (T 1 ) on a Friday, and pre-shift (T 2 ) on the following Monday morning. Both EBC and urinary Cr concentrations were higher at T 1 (0.08 μg/L and 0.71 μg/g creatinine) and T 0 (0.06 μg/L and 0.74 μg/g creatinine) than at T 2 (below the limit of detection [LOD] and 0.59 μg/g creatinine), and EBC Ni concentrations generally remained welding also play a role in generating lung oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    Science.gov (United States)

    Wojtas, Jacek

    2015-06-17

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.

  6. Quantification of volatile organic compounds in exhaled human breath. Acetonitrile as biomarker for passive smoking. Model for isoprene in human breath; Quantifizierung organischer Spurenkomponenten in der menschlichen Atemluft. Acetonitril als Biomarker fuer Passivrauchen. Modell fuer Isopren im Atem, Zusammenhang Isoprenkonzentration, Cholesterinsynthese, lebensmittelchemische Untersuchungen an Knoblauch und Zwiebel

    Energy Technology Data Exchange (ETDEWEB)

    Prazeller, P

    2000-03-01

    The topic of this thesis is the quantification of volatile organic compounds in human breath under various circumstances. The composition of exhaled breath reflects metabolic processes in the human body. Breath analysis is a non invasive technique which makes it most interesting especially for medical or toxicological applications. Measurements were done with Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS). This technique combines the advantage of small fragmentation of chemical ionization with highly time resolved mass spectrometry. A big part of this work is about investigations of exposition due to tobacco smoke. After smoking cigarettes the initial increase and time dependence of some compounds in the human breath are monitored . The calculated decrease resulting only from breathing out the compounds is presented and compared to the measured decline in the breath. This allows the distinction whether breathing is the dominant loss of a compound or a different metabolic process remover it more efficiently. Acetonitrile measured in human breath is presented as a biomarker for exposition to tobacco smoke. Especially its use for quantification of passive smoking, the exposition to environmental tobacco smoke (ETS) is shown. The reached accuracy and the fast way of measuring of acetonitrile in human breath using PTR-MS offer a good alternative to common used biomarkers. Numerous publications have described measurements of breath isoprene in humans, and there has been a hope that breath isoprene analyses could be a non-invasive diagnostic tool to assess serum cholesterol levels or cholesterol synthesis rate. However, significant analytical problems in breath isoprene analysis and variability in isoprene levels with age, exercise, diet, etc. have limited the usefulness of these measurements. Here, we have applied proton-transfer-reaction mass spectrometry (PTR-MS) to this problem, allowing on-line detection of breath isoprene. We show that breath isoprene

  7. Comparison between total lung capacity and residual volume values obtained by pletysmography and single breath methods with methane

    Directory of Open Access Journals (Sweden)

    Ricardo Marques Dias

    2006-11-01

    Full Text Available We analyzed pulmonary function tests of twenty asthmatic patients from Gaffrée e Guinle University Hospital, classified according to Brazilian Guidelines for Asthma (2002, similar to GINA, into mild persistent or moderate (9 or severe (11 asthma. We obtained parameters from spirometry, plethysmograph(PL and single breath technique for diffusion capacity (SB, with methane. Total lung capacity and residual volume were called TLCPL and RVPL when measured by pletysmography and TLCSB and RVSB when determined by single breath test. There were 13 women and 7 men with mean age of 47.6 years. The pulmonary dysfunction degree to FEV1/FVC was 58.8% with CI95=53.9 to 63.6. The mean values in litres for TLCPL (5.94 and RVPL (2.55 were significantly higher than for TLCSB (4.73 and RVSB (1.66. Multiple regression equations were determined for TLCPL e RVPL using only single breath values, TLCSB or RVSB, and spirographic parameters, with significant regression coefficients. However, the inclusion of spirometric parameters, except for FVC, did not improve the predicted capacity for the equations. Considering only the TLCSB, r2=0.79, the equation is: TLCPL=(TLCSB*1.025+1.088, with EPE=0.64. The regression for RVPL, r2=0.23, is: RVPL=(RVSB*0.9268+1.012. The results obtained after bronchodilation with 400 mcg of salbutamol did not improve the regression. We concluded that the SB technique did not obtain the same results as pletysmography for TLC and RV, but for TLC this difference can be predicted. Resumo: Foram analisados exames de função pulmonar de 20 asmáticos, em acompanhamento no HU Gaffrée Guinle, classificados, segundo o Consenso Brasileiro (2002, em asma leve persistente ou moderada (9 e grave (11. Foram obtidos os valores dos parâmetros da espirografia, da pletismografia e da técnica de respiração única, com metano, para a medida da difusão pulmonar (DLco. Assim, a capacidade pulmonar total e o volume residual, quando

  8. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma

    Czech Academy of Sciences Publication Activity Database

    Kumar, S.; Huang, J.; Abbassi-Ghadi, N.; Mackanzie, H. A.; Veselkov, K. A.; Hoare, J. M.; Lovat, L. B.; Španěl, Patrik; Smith, D.; Hanna, G. B.

    2015-01-01

    Roč. 262, č. 6 (2015), s. 981-990 ISSN 0003-4932 Institutional support: RVO:61388955 Keywords : breath analysis * esophageal cancer * mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.569, year: 2015

  9. Investigation of acetone, butanol and carbon dioxide as new breath biomarkers for convenient and noninvasive diagnosis of obstructive sleep apnea syndrome.

    Science.gov (United States)

    Bayrakli, Ismail; Öztürk, Önder; Akman, Hatice

    2016-12-01

    The objective of the present study was to investigate whether analysis of carbon dioxide, acetone and/or butanol present in human breath can be used as a simple and noninvasive diagnosis method for obstructive sleep apnea syndrome (OSAS). For this purpose, overnight changes in the concentrations of these breath molecules were measured before and after sleep in 10 patients who underwent polysomnography and were diagnosed with OSAS, and were compared with the levels of these biomarkers determined after sleep in 10 healthy subjects. The concentrations of exhaled carbon dioxide were measured using external cavity laser-based off-axis cavity enhanced absorption spectroscopy, whereas the levels of exhaled acetone and butanol were determined using thermal desorption gas chromatography mass spectrometry. We observed no significant changes in the levels of exhaled acetone and carbon dioxide in OSAS patients after sleep compared with pre-sleep values and compared with those in healthy control subjects. However, for the first time, to our knowledge, analyses of expired air showed an increased concentration of butanol after sleep compared with that before sleep and compared with that in healthy subjects. These results suggest that butanol can be established as a potential biomarker to enable the convenient and noninvasive diagnosis of OSAS in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Cellular respiration, metabolomics and the search for illicit drug biomarkers in breath: report from PittCon 2017

    Science.gov (United States)

    The annual Pittcon meeting is a convenient venue for gathering together a wide range of researchers and analytical equipment manufacturers that may both provide and gain benefit from the more focused topics of breath research. Members of IABR have regularly participated in Pittco...

  11. Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection?

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Sovová, Kristýna; Dryahina, Kseniya; Doušová, B.; Dřevínek, P.; Smith, D.

    2016-01-01

    Roč. 10, č. 3 (2016), s. 036013 ISSN 1752-7155 R&D Projects: GA ČR(CZ) GA14-14534S Institutional support: RVO:61388955 Keywords : breath analysis * selected ion flow tube mass spectrometry * volatile metabolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.318, year: 2016

  12. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik

    2015-01-01

    Roč. 9, č. 2 (2015), 022001 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : SIFT-MS * volatile biomarkers * quantifications Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.177, year: 2015

  13. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

    Science.gov (United States)

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  14. Breath pentane as a potential biomarker for survival in hepatic ischemia and reperfusion injury--a pilot study.

    Directory of Open Access Journals (Sweden)

    Changsong Wang

    Full Text Available BACKGROUND: Exhaled pentane, which is produced as a consequence of reactive oxygen species-mediated lipid peroxidation, is a marker of oxidative stress. Propofol is widely used as a hypnotic agent in intensive care units and the operating room. Moreover, this agent has been reported to inhibit lipid peroxidation by directly scavenging reactive oxygen species. In this study, using a porcine liver ischemia-reperfusion injury model, we have evaluated the hypothesis that high concentrations of breath pentane are related to adverse outcome and that propofol could reduce breath pentane and improve liver injury and outcome in swine in this situation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male swine were assigned to two groups: propofol (n = 10 and chloral hydrate groups (n = 10. Hepatic ischemia was induced by occluding the portal inflow vessels. Ischemia lasted for 30 min, followed by reperfusion for 360 min. Exhaled and blood pentane concentrations in the chloral hydrate group markedly increased 1 min after reperfusion and then decreased to baseline. Breath and blood pentane concentrations in the propofol group increased 1 min after reperfusion but were significantly lower than in the chloral hydrate group. A negative correlation was found between breath pentane levels and survival in the chloral hydrate group. The median overall survival was 251 min after reperfusion (range 150-360 min in the chloral hydrate group. All of the swine were alive in the propofol group. CONCLUSIONS: Monitoring of exhaled pentane may be useful for evaluating the severity of hepatic ischemia-reperfusion injury and aid in predicting the outcome; propofol may improve the outcome in this situation.

  15. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach.

    Science.gov (United States)

    Eldridge, Ronald C; Flanders, W Dana; Bostick, Roberd M; Fedirko, Veronika; Gross, Myron; Thyagarajan, Bharat; Goodman, Michael

    2017-09-01

    Since oxidative stress involves a variety of cellular changes, no single biomarker can serve as a complete measure of this complex biological process. The analytic technique of structural equation modeling (SEM) provides a possible solution to this problem by modelling a latent (unobserved) variable constructed from the covariance of multiple biomarkers. Using three pooled datasets, we modelled a latent oxidative stress variable from five biomarkers related to oxidative stress: F 2 -isoprostanes (FIP), fluorescent oxidation products, mitochondrial DNA copy number, γ-tocopherol (Gtoc) and C-reactive protein (CRP, an inflammation marker closely linked to oxidative stress). We validated the latent variable by assessing its relation to pro- and anti-oxidant exposures. FIP, Gtoc and CRP characterized the latent oxidative stress variable. Obesity, smoking, aspirin use and β-carotene were statistically significantly associated with oxidative stress in the theorized directions; the same exposures were weakly and inconsistently associated with the individual biomarkers. Our results suggest that using SEM with latent variables decreases the biomarker-specific variability, and may produce a better measure of oxidative stress than do single variables. This methodology can be applied to similar areas of research in which a single biomarker is not sufficient to fully describe a complex biological phenomenon.

  16. Online trapping and enrichment ultra performance liquid chromatography–tandem mass spectrometry method for sensitive measurement of “arginine-asymmetric dimethylarginine cycle” biomarkers in human exhaled breath condensate

    International Nuclear Information System (INIS)

    Di Gangi, Iole Maria; Pirillo, Paola; Carraro, Silvia; Gucciardi, Antonina; Naturale, Mauro; Baraldi, Eugenio; Giordano, Giuseppe

    2012-01-01

    Highlights: ► Simultaneous quantification of “arginine-ADMA cycle” metabolites developed in EBC. ► EBC is a non-invasive matrix highly useful in patients with respiratory diseases. ► Method, fast, precise and accurate, is suitable in the pediatric clinical studies. ► Sensitivity is increased using on-line trapping and enrichment-UPLC–MS/MS method. ► EBC measurements in asthmatic adolescents confirm that ADMA is increased in asthma. - Abstract: Background: Exhaled breath condensate (EBC) is a biofluid collected non invasively that, enabling the measurement of several biomarkers, has proven useful in the study of airway inflammatory diseases, including asthma, COPD and cystic fibrosis. To the best of our knowledge, there is no previous report of any analytical method to detect ADMA in EBC. Objectives: Aim of this work was to develop an online sample trapping and enrichment system, coupled with an UPLC–MS/MS method, for simultaneous quantification of seven metabolites related to “Arginine-ADMA cycle”, using the isotopic dilution. Methods: Butylated EBC samples were trapped in an online cartridge, washed before and after each injection with cleanup solution to remove matrix components and switched inline into the high pressure analytical column. Multiple reaction monitoring in positive mode was used for analyte quantification by tandem mass spectrometry. Results: Validation studies were performed in EBC to examine accuracy, precision and robustness of the method. For each compound, the calibration curves showed a coefficient of correlation (r 2 ) greater than 0.992. Accuracy (%Bias) was −1 ), measured in EBC samples of asthmatic adolescents are significantly increased (p < 0.0001) than in normal controls (0.0040 ± 0.0021 vs. 0.0012 ± 0.0005 and 0.0020 ± 0.0015 vs. 0.0002 ± 0.0001, respectively), as well the ADMA/Tyr (0.34 ± 0.09 vs. 0.12 ± 0.02, p < 0.0001) and the SDMA/Tyr ratio (0.10 ± 0.04 vs. 0.015 ± 0.004, p < 0.0001). Conclusions

  17. Micropreconcentrator in LTCC Technology with Mass Spectrometry for the Detection of Acetone in Healthy and Type-1 Diabetes Mellitus Patient Breath

    Directory of Open Access Journals (Sweden)

    Artur Rydosz

    2014-10-01

    Full Text Available Breath analysis has long been recognized as a potentially attractive method for the diagnosis of several diseases. The main advantage over other diagnostic methods such as blood or urine analysis is that breath analysis is fully non-invasive, comfortable for patients and breath samples can be easily obtained. One possible future application of breath analysis may be the diagnosing and monitoring of diabetes. It is, therefore, essential, to firstly determine a relationship between exhaled biomarker concentration and glucose in blood as well as to compare the results with the results obtained from non-diabetic subjects. Concentrations of molecules which are biomarkers of diseases’ states, or early indicators of disease should be well documented, i.e., the variations of abnormal concentrations of breath biomarkers with age, gender and ethnic issues need to be verified. Furthermore, based on performed measurements it is rather obvious that analysis of exhaled acetone as a single biomarker of diabetes is unrealistic. In this paper, the author presents results of his research conducted on samples of breath gas from eleven healthy volunteers (HV and fourteen type- 1 diabetic patients (T1DM which were collected in 1-l SKC breath bags. The exhaled acetone concentration was measured using mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK coupled with a micropreconcentrator in LTCC (Low Temperature Cofired Ceramic. However, as according to recent studies the level of acetone varies to a significant extent for each blood glucose concentration of single individuals, a direct and absolute relationship between blood glucose and acetone has not been proved. Nevertheless, basing on the research results acetone in diabetic breath was found to be higher than 1.11 ppmv, while its average concentration in normal breath was lower than 0.83 ppmv.

  18. Bad Breath

    Science.gov (United States)

    ... garlic, onions, cheese, orange juice, and soda poor dental hygiene (say: HI-jeen), meaning not brushing and flossing regularly smoking and other tobacco use Poor oral hygiene leads to bad breath because when food particles ...

  19. Breathing Difficulties

    Science.gov (United States)

    ... symptoms. Symptoms associated with weak respiratory muscles: Air “hunger” (gasping, labored breathing) with an without activity Fatigue ... Start your own fundraising event & help create a world without ALS Start an Event Site Map | Press ...

  20. Bad Breath

    Science.gov (United States)

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  1. Online trapping and enrichment ultra performance liquid chromatography-tandem mass spectrometry method for sensitive measurement of 'arginine-asymmetric dimethylarginine cycle' biomarkers in human exhaled breath condensate

    Energy Technology Data Exchange (ETDEWEB)

    Di Gangi, Iole Maria, E-mail: giordano@pediatria.unipd.it [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Pirillo, Paola [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Carraro, Silvia [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Gucciardi, Antonina; Naturale, Mauro [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Baraldi, Eugenio [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Giordano, Giuseppe [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy)

    2012-11-19

    Highlights: Black-Right-Pointing-Pointer Simultaneous quantification of 'arginine-ADMA cycle' metabolites developed in EBC. Black-Right-Pointing-Pointer EBC is a non-invasive matrix highly useful in patients with respiratory diseases. Black-Right-Pointing-Pointer Method, fast, precise and accurate, is suitable in the pediatric clinical studies. Black-Right-Pointing-Pointer Sensitivity is increased using on-line trapping and enrichment-UPLC-MS/MS method. Black-Right-Pointing-Pointer EBC measurements in asthmatic adolescents confirm that ADMA is increased in asthma. - Abstract: Background: Exhaled breath condensate (EBC) is a biofluid collected non invasively that, enabling the measurement of several biomarkers, has proven useful in the study of airway inflammatory diseases, including asthma, COPD and cystic fibrosis. To the best of our knowledge, there is no previous report of any analytical method to detect ADMA in EBC. Objectives: Aim of this work was to develop an online sample trapping and enrichment system, coupled with an UPLC-MS/MS method, for simultaneous quantification of seven metabolites related to 'Arginine-ADMA cycle', using the isotopic dilution. Methods: Butylated EBC samples were trapped in an online cartridge, washed before and after each injection with cleanup solution to remove matrix components and switched inline into the high pressure analytical column. Multiple reaction monitoring in positive mode was used for analyte quantification by tandem mass spectrometry. Results: Validation studies were performed in EBC to examine accuracy, precision and robustness of the method. For each compound, the calibration curves showed a coefficient of correlation (r{sup 2}) greater than 0.992. Accuracy (%Bias) was <3% except for NMMA and H-Arg (<20%), intra- and inter-assay precision (expressed as CV%) were within {+-}20% and recovery ranged from 97.1 to 102.8% for all analytes. Inter-day variability analysis on 20 EBC of adult subjects did

  2. Rapid detection of nicotine from breath using desorption ionisation on porous silicon.

    Science.gov (United States)

    Guinan, T M; Abdelmaksoud, H; Voelcker, N H

    2017-05-04

    Desorption ionisation on porous silicon (DIOS) was used for the detection of nicotine from exhaled breath. This result represents proof-of-principle of the ability of DIOS to detect small molecular analytes in breath including biomarkers and illicit drugs.

  3. Medical Issues: Breathing

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common ...

  4. Temperatura do ar exalado, um novo biomarcador no controle da asma: um estudo piloto Exhaled breath temperature, a new biomarker in asthma control: a pilot study

    Directory of Open Access Journals (Sweden)

    Raul Emrich Melo

    2010-12-01

    Full Text Available OBJETIVO: Avaliar se a temperatura do ar exalado (TAE, medida por um método não invasivo, é efetiva no monitoramento de pacientes com asma não controlada. MÉTODOS: Estudo piloto com nove pacientes (sete mulheres e dois homens; média de idade: 39 anos com diagnóstico de asma por pelo menos um ano e sem uso de tratamento de manutenção por pelo menos três meses antes do início do estudo. Na primeira visita, os pacientes foram submetidos à espirometria e à medida da TAE. Todos os pacientes foram orientados a iniciar tratamento com budesonida/formoterol (200/6 µg inalatório a cada 12 h por seis semanas. Além disso, os pacientes com asma grave (VEF1 OBJECTIVE: To evaluate whether the exhaled breath temperature (EBT, measured by a noninvasive method, is an effective means of monitoring patients with uncontrolled asthma. METHODS: A pilot study comprising nine patients (seven women and two men; mean age: 39 years diagnosed with asthma at least one year prior to the beginning of the study and not having been under maintenance therapy for the last three months. In the first visit, the patients underwent spirometry and measurement of EBT. The patients were then instructed to use inhaled budesonide/formoterol (200/6 µg every 12 h for six weeks. In addition, the patients with severe asthma (FEV1 < 60% of predicted were instructed to use oral prednisolone (40 mg/day for five days. After six weeks, the patients underwent the same tests. RESULTS: All of the patients reported an improvement in the symptoms of asthma, as confirmed by a statistically significant increase in FEV1 from the first to the second visit (mean, 56.1% vs. 88.7% of predicted; p < 0.05. Five patients used oral prednisolone for the first five days of the treatment period. Six patients used additional doses of inhaled budesonide/formoterol (mean duration, 2.5 weeks. The EBT decreased significantly from the first to the second visit (mean EBT: 35.1ºC vs. 34.1ºC; p < 0

  5. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results

  6. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  7. CONTINUOUS EXHALED BREATH ANALYSIS ON THE ICU

    International Nuclear Information System (INIS)

    Bos, Lieuwe D. J.; Sterk, Peter J.; Schultz, Marcus J.

    2011-01-01

    During admittance to the ICU, critically ill patients frequently develop secondary infections and/or multiple organ failure. Continuous monitoring of biological markers is very much needed. This study describes a new method to continuously monitor biomarkers in exhaled breath with an electronic nose.

  8. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  9. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  10. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  11. Predictive Biomarkers for Asthma Therapy.

    Science.gov (United States)

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  12. What Causes Bad Breath?

    Science.gov (United States)

    ... Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  13. Understanding the Potential of WO3 Based Sensors for Breath Analysis

    Science.gov (United States)

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods. PMID:27801881

  14. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  15. Cardiorespiratory interactions during resistive load breathing.

    Science.gov (United States)

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  16. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    International Nuclear Information System (INIS)

    Su, T.-H.; Jin, E.-H.; Shen, H.; Zhang, Y.; He, W.

    2012-01-01

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ( 1 H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using 1 H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=–2.646, p = 0.008) and Cho peak visible status (Z=–2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9–4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p 1 H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. 1 H MRS during breath-holding acquisition is superior to that during free-breathing acquisition.

  17. Fibrosis biomarkers in workers exposed to MWCNTs

    International Nuclear Information System (INIS)

    Fatkhutdinova, Liliya M.; Khaliullin, Timur O.; Vasil'yeva, Olga L.; Zalyalov, Ramil R.; Mustafin, Ilshat G.; Kisin, Elena R.; Birch, M. Eileen; Yanamala, Naveena; Shvedova, Anna A.

    2016-01-01

    Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1β, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-β1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies. - Highlights: • The effects of MWCNT exposure in humans remain unclear. • We found increased KL-6/TGF-β levels in the biofluids of MWCNT-exposed workers.

  18. Fibrosis biomarkers in workers exposed to MWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Fatkhutdinova, Liliya M., E-mail: liliya.fatkhutdinova@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Khaliullin, Timur O., E-mail: Khaliullin.40k@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Department of Physiology & Pharmacology, WVU, Morgantown, WV (United States); Vasil' yeva, Olga L., E-mail: volgaleon@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Zalyalov, Ramil R., E-mail: zalyalov.ramil@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Mustafin, Ilshat G., E-mail: ilshat64@mail.ru [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Kisin, Elena R., E-mail: edk8@cdc.gov [National Institute for Occupational Safety and Health, Morgantown, WV (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [National Institute for Occupational Safety and Health, Cincinnati, OH (United States); Yanamala, Naveena, E-mail: wqu1@cdc.gov [National Institute for Occupational Safety and Health, Morgantown, WV (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [National Institute for Occupational Safety and Health, Morgantown, WV (United States); Department of Physiology & Pharmacology, WVU, Morgantown, WV (United States)

    2016-05-15

    Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1β, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-β1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies. - Highlights: • The effects of MWCNT exposure in humans remain unclear. • We found increased KL-6/TGF-β levels in the biofluids of MWCNT-exposed workers.

  19. Ethylene and ammonia traces measurements from the patients' breath with renal failure via LPAS method

    Science.gov (United States)

    Popa, C.; Dutu, D. C. A.; Cernat, R.; Matei, C.; Bratu, A. M.; Banita, S.; Dumitras, D. C.

    2011-11-01

    The application of laser photoacoustic spectroscopy (LPAS) for fast and precise measurements of breath biomarkers has opened up new promises for monitoring and diagnostics in recent years, especially because breath test is a non-invasive method, safe, rapid and acceptable to patients. Our study involved assessment of breath ethylene and breath ammonia levels in patients with renal failure receiving haemodialysis (HD) treatment. Breath samples from healthy subjects and from patients with renal failure were collected using chemically inert aluminized bags and were subsequently analyzed using the LPAS technique. We have found out that the composition of exhaled breath in patients with renal failure contains not only ethylene, but also ammonia and gives valuable information for determining efficacy and endpoint of HD. Analysis of ethylene and ammonia traces from the human breath may provide insight into severity of oxidative stress and metabolic disturbances and may ensure optimal therapy and prevention of pathology at patients on continuous HD.

  20. Effect of influenza vaccination on oxidative stress products in breath.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James

    2010-06-01

    Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.

  1. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  2. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.

  3. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  4. Breath-Holding Spells

    Science.gov (United States)

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  5. Breath in the technoscientific imaginary

    OpenAIRE

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentr...

  6. Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview

    Directory of Open Access Journals (Sweden)

    Jorge Pereira

    2015-01-01

    Full Text Available Currently, a small number of diseases, particularly cardiovascular (CVDs, oncologic (ODs, neurodegenerative (NDDs, chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc. allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  7. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview.

    Science.gov (United States)

    Pereira, Jorge; Porto-Figueira, Priscilla; Cavaco, Carina; Taunk, Khushman; Rapole, Srikanth; Dhakne, Rahul; Nagarajaram, Hampapathalu; Câmara, José S

    2015-01-09

    Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  8. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  10. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  11. Exhaled Breath Condensate: Technical and Diagnostic Aspects.

    Science.gov (United States)

    Konstantinidi, Efstathia M; Lappas, Andreas S; Tzortzi, Anna S; Behrakis, Panagiotis K

    2015-01-01

    The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  12. Exhaled Breath Condensate: Technical and Diagnostic Aspects

    Directory of Open Access Journals (Sweden)

    Efstathia M. Konstantinidi

    2015-01-01

    Full Text Available Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC, biomarkers, pH, asthma, gastroesophageal reflux (GERD, smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH, idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA, and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  13. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  14. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  15. Breathing Like a Fish

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  16. Breathing difficulty - lying down

    Science.gov (United States)

    ... other conditions that lead to it) Panic disorder Sleep apnea Snoring Home Care Your health care provider may recommend self-care measures. For example, weight loss may be suggested if you are obese. When to Contact a Medical Professional If you have any unexplained difficulty in breathing ...

  17. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  18. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  19. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  20. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  1. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  2. Natural Vibration of a Beam with a Breathing Oblique Crack

    Directory of Open Access Journals (Sweden)

    Yijiang Ma

    2017-01-01

    Full Text Available An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing behaviour of the oblique crack is objectively simulated. The finite element method (FEM analysis software ABAQUS is used to calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system, allowing the natural frequency of the beam with the breathing oblique crack to be calculated. Compared with the natural frequencies of the breathing oblique cracked beam obtained using the ABAQUS FEM method, the proposed analytical method exhibits a high computational accuracy, with a maximum error of only 4.65%.

  3. Pharmacogenomic Biomarkers

    Directory of Open Access Journals (Sweden)

    Sandra C. Kirkwood

    2002-01-01

    Full Text Available Pharmacogenomic biomarkers hold great promise for the future of medicine and have been touted as a means to personalize prescriptions. Genetic biomarkers for disease susceptibility including both Mendelian and complex disease promise to result in improved understanding of the pathophysiology of disease, identification of new potential therapeutic targets, and improved molecular classification of disease. However essential to fulfilling the promise of individualized therapeutic intervention is the identification of drug activity biomarkers that stratify individuals based on likely response to a particular therapeutic, both positive response, efficacy, and negative response, development of side effect or toxicity. Prior to the widespread clinical application of a genetic biomarker multiple scientific studies must be completed to identify the genetic variants and delineate their functional significance in the pathophysiology of a carefully defined phenotype. The applicability of the genetic biomarker in the human population must then be verified through both retrospective studies utilizing stored or clinical trial samples, and through clinical trials prospectively stratifying patients based on the biomarker. The risk conferred by the polymorphism and the applicability in the general population must be clearly understood. Thus, the development and widespread application of a pharmacogenomic biomarker is an involved process and for most disease states we are just at the beginning of the journey towards individualized therapy and improved clinical outcome.

  4. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  5. A statistical approach to evaluate the performance of cardiac biomarkers in predicting death due to acute myocardial infarction: time-dependent ROC curve

    Science.gov (United States)

    Karaismailoğlu, Eda; Dikmen, Zeliha Günnur; Akbıyık, Filiz; Karaağaoğlu, Ahmet Ergun

    2018-04-30

    Background/aim: Myoglobin, cardiac troponin T, B-type natriuretic peptide (BNP), and creatine kinase isoenzyme MB (CK-MB) are frequently used biomarkers for evaluating risk of patients admitted to an emergency department with chest pain. Recently, time- dependent receiver operating characteristic (ROC) analysis has been used to evaluate the predictive power of biomarkers where disease status can change over time. We aimed to determine the best set of biomarkers that estimate cardiac death during follow-up time. We also obtained optimal cut-off values of these biomarkers, which differentiates between patients with and without risk of death. A web tool was developed to estimate time intervals in risk. Materials and methods: A total of 410 patients admitted to the emergency department with chest pain and shortness of breath were included. Cox regression analysis was used to determine an optimal set of biomarkers that can be used for estimating cardiac death and to combine the significant biomarkers. Time-dependent ROC analysis was performed for evaluating performances of significant biomarkers and a combined biomarker during 240 h. The bootstrap method was used to compare statistical significance and the Youden index was used to determine optimal cut-off values. Results : Myoglobin and BNP were significant by multivariate Cox regression analysis. Areas under the time-dependent ROC curves of myoglobin and BNP were about 0.80 during 240 h, and that of the combined biomarker (myoglobin + BNP) increased to 0.90 during the first 180 h. Conclusion: Although myoglobin is not clinically specific to a cardiac event, in our study both myoglobin and BNP were found to be statistically significant for estimating cardiac death. Using this combined biomarker may increase the power of prediction. Our web tool can be useful for evaluating the risk status of new patients and helping clinicians in making decisions.

  6. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  7. BREATHE to Understand©

    Science.gov (United States)

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  8. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Patient's breath controls comfort devices

    Science.gov (United States)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  10. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  11. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    Science.gov (United States)

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  12. Breath of hospitality.

    Science.gov (United States)

    Škof, Lenart

    2016-12-01

    In this paper we outline the possibilities of an ethic of care based on our self-affection and subjectivity in the ethical spaces between-two. In this we first refer to three Irigarayan concepts - breath, silence and listening from the third phase of her philosophy, and discuss them within the methodological framework of an ethics of intersubjectivity and interiority. Together with attentiveness, we analyse them as four categories of our ethical becoming. Furthermore, we argue that self-affection is based on our inchoate receptivity for the needs of the other(s) and is thus dialectical in its character. In this we critically confront some epistemological views of our ethical becoming. We wind up this paper with a proposal for an ethics towards two autonomous subjects, based on care and our shared ethical becoming - both as signs of our deepest hospitality towards the other.

  13. An algorithm for the detection of individual breaths from the pulse oximeter waveform.

    Science.gov (United States)

    Leonard, Paul; Grubb, Neil R; Addison, Paul S; Clifton, David; Watson, James N

    2004-12-01

    To determine if wavelet analysis techniques can be used to reliably identify individual breaths from the photoplethysmogram (PPG). Photoplethysmograms were obtained from 22 healthy adult volunteers timing their respiration rate in synchronisation with a metronome. A secondary timing signal was obtained by asking the volunteers to actuate a small push button switch, held in their right hand, in synchronisation with their respiration. Each PPG was analyzed using primary wavelet decomposition and two new, related, secondary decompositions to determine the accuracy of individual breath detection. The optimal breath capture was obtained by manually polling the three techniques, allowing detection of 466 out of the 472 breaths studied; a detection rate of 98.7% with no false positive breaths detected. Our technique allows the accurate capture of individual breaths from the photoplethysmogram, and leads the way for developing a simple non-invasive combined respiration and saturation monitor.

  14. How to breathe when you are short of breath

    Science.gov (United States)

    ... you: Watch TV Use your computer Read a newspaper How to do Pursed lip Breathing The steps ... of Medicine, Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also ...

  15. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  16. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  17. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    Directory of Open Access Journals (Sweden)

    Van Sickle David

    2008-03-01

    Full Text Available Abstract Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male. Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86 and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification.

  18. The effect of mouth breathing on chewing efficiency.

    Science.gov (United States)

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  19. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    Science.gov (United States)

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  20. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  1. 14C-urea breath test for the detection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Veldhuyzen van Zanten, S.J.; Tytgat, K.M.; Hollingsworth, J.; Jalali, S.; Rshid, F.A.; Bowen, B.M.; Goldie, J.; Goodacre, R.L.; Riddell, R.H.; Hunt, R.H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14 C-urea breath test which uses 5 microCi 14 C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared the outcome of the breath test to the results of histology and culture of endoscopically obtained gastric biopsies in 84 patients. The breath test discriminated well between the 50 positive patients and the 34 patients negative for Helicobacter pylori: the calculated sensitivity was 100%, specificity 88%, positive predictive value 93%, and negative predictive value 100%. Treatment with bismuth subsalicylate and/or ampicillin resulted in lower counts of exhaled 14 CO 2 which correlated with histological improvement in gastritis. The 14 C-urea breath test is a better gold standard for the detection of Helicobacter pylori than histology and/or culture

  2. Biomarkers for Detecting Mitochondrial Disorders

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2018-01-01

    Full Text Available (1 Objectives: Mitochondrial disorders (MIDs are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2 Methods: Literature review. (3 Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT, magnetic resonance imaging (MRI, MR-spectroscopy (MRS, positron emission tomography (PET, or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4 Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.

  3. SERS spectroscopy for detection of hydrogen cyanide in breath from children colonised with P. aeruginosa

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Skou, Peter Bæk; Rindzevicius, Tomas

    2017-01-01

    ) nanochip optimised for detection of trace amounts of the P. aeruginosa biomarker hydrogen cyanide (HCN) was mounted inside a Tedlar bag, which the patient breathed into. The SERS chip was then analysed in a Raman spectrometer, investigating the C≡N peak at 2131 cm-1 and correlated with sputum cultures. One...... new P. aeruginosa colonisation occurred during the trial period. The C≡N peak intensity was enhanced in this sample in contrast to the subject's 3 other samples. Three additional patients had intense C≡N SERS signals from their breath, but no P. aeruginosa was cultured from their sputum...

  4. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  5. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    Science.gov (United States)

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  6. Breath analysis based on micropreconcentrator for early cancer diagnosis

    Science.gov (United States)

    Lee, Sang-Seok

    2018-02-01

    We are developing micropreconcentrators based on micro/nanotechnology to detect trace levels of volatile organic compound (VOC) gases contained in human and canine exhaled breath. The possibility of using exhaled VOC gases as biomarkers for various cancer diagnoses has been previously discussed. For early cancer diagnosis, detection of trace levels of VOC gas is indispensable. Using micropreconcentrators based on MEMS technology or nanotechnology is very promising for detection of VOC gas. A micropreconcentrator based breath analysis technique also has advantages from the viewpoints of cost performance and availability for various cancers diagnosis. In this paper, we introduce design, fabrication and evaluation results of our MEMS and nanotechnology based micropreconcentrators. In the MEMS based device, we propose a flower leaf type Si microstructure, and its shape and configuration are optimized quantitatively by finite element method simulation. The nanotechnology based micropreconcentrator consists of carbon nanotube (CNT) structures. As a result, we achieve ppb level VOC gas detection with our micropreconcentrators and usual gas chromatography system that can detect on the order of ppm VOC in gas samples. In performance evaluation, we also confirm that the CNT based micropreconcentrator shows 115 times better concentration ratio than that of the Si based micropreconcentrator. Moreover, we discuss a commercialization idea for new cancer diagnosis using breath analysis. Future work and preliminary clinical testing in dogs is also discussed.

  7. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    Pulmonary Function Responses to Active Cycle. Breathing ... Key Words: Heart Failure, Active Cycle of Breathing ... cough, fatigue, reduced respiratory muscle mass, and. [5] ... an amount of exercise which is said to lower disease. [9].

  8. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  9. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Directory of Open Access Journals (Sweden)

    Snorri Donaldsson

    Full Text Available The ability to determine airflow during nasal CPAP (NCPAP treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing.Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically.The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance.The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  10. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Science.gov (United States)

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  11. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  12. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  13. Periaqueductal Gray Control of Breathing

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert; Homma,; Onimaru, H; Fukuchi, Y

    2010-01-01

    Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and

  14. The effects of aquatic hypercapnia on air-breathing fishes

    DEFF Research Database (Denmark)

    Jew, Corey James; Thomsen, Mikkel; Hicks, James W

    The notion that bimodal breathers (animals that breathe both air and water) obtain O2 from the air and exhale CO2 into the water has been well established in the literature. However, while the majority of supporting experiments tested animals maintained in hypoxic water, the freshwater systems...... that bimodal breathers inhabit have been reported to be hypercapnic as well. Using a biomodal respirometer, data from three air-breathing fishes show that when in hypercapnic water, excretion of CO2 into the air signicantly increases and can account for 10% to 70% of metabolically produced CO2 depending...... on species. The large variation between species suggests the independent evolution of air-breathing organs and behaviors results in different blood PCO2 regulating strategies. However, all three species continued to rely on the water for CO2 excretion to some extent when submerged....

  15. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  16. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    Science.gov (United States)

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  17. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  18. Status of external breath functions of the Northern Kazakhstan residents from a uranium mining areas

    International Nuclear Information System (INIS)

    Ajnabekova, B.A.; Mukhambetov, D.D.; Sutyusheva, G.R.; Braun, M.A.; Sarzhanova, A.N.; Rutenko, N.A.

    2003-01-01

    The aim of the present study is the external breath functions status in population of the Northern Kazakhstan uranium-miming areas. During the obtained data analysis it was revealed, that the indexes both the volume forced breathing-out behind the first wall and the vital lung capacity were low in residents are living at the mines more than 10 years, than in ones are living less than 10 years. The obtained data could not evidencing about reliable influence of low ionizing radiation dose on the bronchus permeability indexes. Presumably, that a possible reason for the reveled breath functions destabilization formation is the dust factor action

  19. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  20. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis - a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva

    2016-11-01

    Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

  1. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  2. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  3. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  4. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  5. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  6. Non-invasive biomarkers and pulmonary function in smokers

    OpenAIRE

    Borrill, Zo? L; Roy, Kay; Vessey, Rupert S; Woodcock, Ashley A; Singh, Dave

    2008-01-01

    Zoë L Borrill1, Kay Roy1, Rupert S Vessey2, Ashley A Woodcock1, Dave Singh11Medicines Evaluation Unit, University of Manchester, Wythenshawe Hospital, Southmoor Rd, Manchester, UK; 2Glaxo Smith Kline, Philadelphia, USAAbstract: Limited information exists regarding measurement, reproducibility and interrelationships of non-invasive biomarkers in smokers. We compared exhaled breath condensate (EBC) leukotriene B4 (LTB4) and 8-isoprostane, exhaled nitric oxide, induced sputum, spirometr...

  7. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  8. Combination of biomarkers

    DEFF Research Database (Denmark)

    Thurfjell, Lennart; Lötjönen, Jyrki; Lundqvist, Roger

    2012-01-01

    The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury.......The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury....

  9. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    Science.gov (United States)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  10. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  11. Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals

    DEFF Research Database (Denmark)

    Buch Thorsen, Stine; Lundberg, Martin; Villablanca, Andrea

    2013-01-01

    of biomarkers from the bench to clinical practice we initiated a biomarker study focusing on a novel technique, the proximity extension assay, with multiplexing capability and the possible additive effect obtained from biomarker panels. We performed a screening of 74 different biomarkers in plasma derived from...

  12. MO-FG-BRA-02: A Feasibility Study of Integrating Breathing Audio Signal with Surface Surrogates for Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y; Zhu, X; Zheng, D; Li, S; Ma, R; Zhang, M; Fan, Q; Wang, X; Verma, V; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States)

    2016-06-15

    Purpose: Tracking the surrogate placed on patient skin surface sometimes leads to problematic signals for certain patients, such as shallow breathers. This in turn impairs the 4D CT image quality and dosimetric accuracy. In this pilot study, we explored the feasibility of monitoring human breathing motion by integrating breathing sound signal with surface surrogates. Methods: The breathing sound signals were acquired though a microphone attached adjacently to volunteer’s nostrils, and breathing curve were analyzed using a low pass filter. Simultaneously, the Real-time Position Management™ (RPM) system from Varian were employed on a volunteer to monitor respiratory motion including both shallow and deep breath modes. The similar experiment was performed by using Calypso system, and three beacons taped on volunteer abdominal region to capture breath motion. The period of each breathing curves were calculated with autocorrelation functions. The coherence and consistency between breathing signals using different acquisition methods were examined. Results: Clear breathing patterns were revealed by the sound signal which was coherent with the signal obtained from both the RPM system and Calypso system. For shallow breathing, the periods of breathing cycle were 3.00±0.19 sec (sound) and 3.00±0.21 sec (RPM); For deep breathing, the periods were 3.49± 0.11 sec (sound) and 3.49±0.12 sec (RPM). Compared with 4.54±0.66 sec period recorded by the calypso system, the sound measured 4.64±0.54 sec. The additional signal from sound could be supplement to the surface monitoring, and provide new parameters to model the hysteresis lung motion. Conclusion: Our preliminary study shows that the breathing sound signal can provide a comparable way as the RPM system to evaluate the respiratory motion. It’s instantaneous and robust characteristics facilitate it possibly to be a either independently or as auxiliary methods to manage respiratory motion in radiotherapy.

  13. MO-FG-BRA-02: A Feasibility Study of Integrating Breathing Audio Signal with Surface Surrogates for Respiratory Motion Management

    International Nuclear Information System (INIS)

    Lei, Y; Zhu, X; Zheng, D; Li, S; Ma, R; Zhang, M; Fan, Q; Wang, X; Verma, V; Zhou, S; Tang, X

    2016-01-01

    Purpose: Tracking the surrogate placed on patient skin surface sometimes leads to problematic signals for certain patients, such as shallow breathers. This in turn impairs the 4D CT image quality and dosimetric accuracy. In this pilot study, we explored the feasibility of monitoring human breathing motion by integrating breathing sound signal with surface surrogates. Methods: The breathing sound signals were acquired though a microphone attached adjacently to volunteer’s nostrils, and breathing curve were analyzed using a low pass filter. Simultaneously, the Real-time Position Management™ (RPM) system from Varian were employed on a volunteer to monitor respiratory motion including both shallow and deep breath modes. The similar experiment was performed by using Calypso system, and three beacons taped on volunteer abdominal region to capture breath motion. The period of each breathing curves were calculated with autocorrelation functions. The coherence and consistency between breathing signals using different acquisition methods were examined. Results: Clear breathing patterns were revealed by the sound signal which was coherent with the signal obtained from both the RPM system and Calypso system. For shallow breathing, the periods of breathing cycle were 3.00±0.19 sec (sound) and 3.00±0.21 sec (RPM); For deep breathing, the periods were 3.49± 0.11 sec (sound) and 3.49±0.12 sec (RPM). Compared with 4.54±0.66 sec period recorded by the calypso system, the sound measured 4.64±0.54 sec. The additional signal from sound could be supplement to the surface monitoring, and provide new parameters to model the hysteresis lung motion. Conclusion: Our preliminary study shows that the breathing sound signal can provide a comparable way as the RPM system to evaluate the respiratory motion. It’s instantaneous and robust characteristics facilitate it possibly to be a either independently or as auxiliary methods to manage respiratory motion in radiotherapy.

  14. Breathing Air Purification for Hyperbaric Purposes, Part II

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-03-01

    Full Text Available Determining the efficiency of breathing air purification for hyperbaric purposes with the use of filtration systems is of a crucial importance. However, when the Polish Navy took samples of breathing air from their own filtration plant for quality purposes, these were found to not meet the required standard. The identification of this problem imposed the need to undertake actions aimed at the elimination of the identified disruptions in the process of breathing air production, with the objective of assuring its proper quality. This study presents the results of the initial tests on the air supply sources utilised by the Polish Navy, which were carried out for the purpose of setting a proper direction of future works and implementing corrective measures in order to optimise the breathing air production process. The obtained test results will be used in a subsequent publication devoted to the assessment of the level of efficiency of air purification with the use of a multifaceted approach consisting in the utilisation of various types of air supply sources and different configurations of purification systems.

  15. Sleep disordered breathing in pregnancy

    Directory of Open Access Journals (Sweden)

    Bilgay Izci Balserak

    2015-12-01

    Sleep disordered breathing (SDB is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the severity of SDB, the epidemiology and the risk factors of SDB in pregnancy, the association of SDB with adverse pregnancy outcomes, and screening and management options specific for this population.

  16. Environmental contamination and breathing disease

    International Nuclear Information System (INIS)

    Cardona A, Jose D

    2003-01-01

    The atmospheric contamination is the main component of the environmental contamination and it can be defined as the presence in the atmosphere of an or several substances in enough quantity to produce alterations of the health, it is presented in aerosol form, with its gassy and specific components, altering the quality of the population's life and the degradation of the ecosystems. The main pollutant, as much for the frequency as for the importance of its effects, is the smoke of cigarettes. The paper mentions other types of polluting agents and their effects in the breathing apparatus

  17. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  18. Relationship between musical characteristics and temporal breathing pattern in piano performance

    Directory of Open Access Journals (Sweden)

    Yutaka Sakaguchi

    2016-07-01

    Full Text Available Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon’s exercise, J. S. Bach’s Invention, Mozart’s Sonatas, and Debussy’s Clair de lune, was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. 1 Mean breath interval was shortened for excerpts in faster tempi. 2 Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. 3 Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise, but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. 4 Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. 5 Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  19. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    Science.gov (United States)

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  20. Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants

    Science.gov (United States)

    Rusin, Craig G.; Hudson, John L.; Lee, Hoshik; Delos, John B.; Guin, Lauren E.; Vergales, Brooke D.; Paget-Brown, Alix; Kattwinkel, John; Lake, Douglas E.; Moorman, J. Randall

    2012-01-01

    In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239–240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge. PMID:22174403

  1. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  2. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command

    International Nuclear Information System (INIS)

    Gutzeit, Andreas; Matoori, Simon; Weymarn, Constantin von; Reischauer, Carolin; Goyen, Matthias; Hergan, Klaus; Meissnitzer, Matthias; Forstner, Rosemarie; Froehlich, Johannes M.; Kolokythas, Orpheus; Soyka, Jan D.; Doert, Aleksis; Koh, Dow-Mu

    2016-01-01

    To investigate whether a trained group of technicians using a modified breathing command during gadoxetate-enhanced liver MRI reduces respiratory motion artefacts compared to non-trained technicians using a traditional breathing command. The gadoxetate-enhanced liver MR images of 30 patients acquired using the traditional breathing command and the subsequent 30 patients after training the technicians to use a modified breathing command were analyzed. A subgroup of patients (n = 8) underwent scans both by trained and untrained technicians. Images obtained using the traditional and modified breathing command were compared for the presence of breathing artefacts [respiratory artefact-based image quality scores from 1 (best) to 5 (non-diagnostic)]. There was a highly significant improvement in the arterial phase image quality scores in patients using the modified breathing command compared to the traditional one (P < 0.001). The percentage of patients with severe and extensive breathing artefacts in the arterial phase decreased from 33.3 % to 6.7 % after introducing the modified breathing command (P = 0.021). In the subgroup that underwent MRI using both breathing commands, arterial phase image quality improved significantly (P = 0.008) using the modified breathing command. Training technicians to use a modified breathing command significantly improved arterial phase image quality of gadoxetate-enhanced liver MRI. (orig.)

  3. Quartz-enhanced photo-acoustic spectroscopy for breath analyses

    Science.gov (United States)

    Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael

    2017-03-01

    An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.

  4. The Effect of Alcohol-Based Hand Sanitizer Vapors on Evidential Breath Alcohol Test Results.

    Science.gov (United States)

    Strawsine, Ellen; Lutmer, Brian

    2017-11-16

    This study was undertaken to determine if the application of alcohol-based hand sanitizers (ABHSs) to the hands of a breath test operator will affect the results obtained on evidential breath alcohol instruments (EBTs). This study obtained breath samples on three different EBTs immediately after application of either gel or foam ABHS to the operator's hands. A small, but significant, number of initial analyses (13 of 130, 10%) resulted in positive breath alcohol concentrations, while 41 samples (31.5%) resulted in a status code. These status codes were caused by ethanol vapors either in the room air or their inhalation by the subject, thereby causing a mouth alcohol effect. Replicate subject samples did not yield any consecutive positive numeric results. As ABHS application can cause a transitory mouth alcohol effect via inhalation of ABHS vapors, EBT operators should forego the use of ABHS in the 15 min preceding subject testing. © 2017 American Academy of Forensic Sciences.

  5. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  6. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  7. Passive breath gating equipment for cone beam CT-guided RapidArc gastric cancer treatments

    International Nuclear Information System (INIS)

    Hu, Weigang; Li, Guichao; Ye, Jinsong; Wang, Jiazhou; Peng, Jiayuan; Gong, Min; Yu, Xiaoli; Studentski, Matthew T.; Xiao, Ying; Zhang, Zhen

    2015-01-01

    Background and purpose: To report preliminary results of passive breath gating (PBG) equipment for cone-beam CT image-guided gated RapidArc gastric cancer treatments. Material and methods: Home-developed PBG equipment integrated with the real-time position management system (RPM) for passive patient breath hold was used in CT simulation, online partial breath hold (PBH) CBCT acquisition, and breath-hold gating (BHG) RapidArc delivery. The treatment was discontinuously delivered with beam on during BH and beam off for free breathing (FB). Pretreatment verification PBH CBCT was obtained with the PBG-RPM system. Additionally, the reproducibility of the gating accuracy was evaluated. Results: A total of 375 fractions of breath-hold gating RapidArc treatments were successfully delivered and 233 PBH CBCTs were available for analysis. The PBH CBCT images were acquired with 2–3 breath holds and 1–2 FB breaks. The imaging time was the same for PBH CBCT and conventional FB CBCT (60 s). Compared to FB CBCT, the motion artifacts seen in PBH CBCT images were remarkably reduced. The average BHG RapidArc delivery time was 103 s for one 270-degree arc and 269 s for two full arcs. Conclusions: The PBG-RPM based PBH CBCT verification and BHG RapidArc delivery was successfully implemented clinically. The BHG RapidArc treatment was accomplished using a conventional RapidArc machine with high delivery efficiency

  8. Time Breath of Psychological Theories

    DEFF Research Database (Denmark)

    Tateo, Luca; Valsiner, Jaan

    2015-01-01

    Psychology as a self-aspiring, ambitious, developmental science faces the crucial limit of time—both theoretically and practically. The issue of time in constructing psychology’s theories is a major unresolved metatheoretical task. This raises several questions about generalization of knowledge...... of time—or fail to do that? How can they generalize with respect to time? The different conceptions of time often remain implicit, while shaping the concepts used in understanding psychological processes. Any preconception about time in human development will foster the generalizability of theory, as well......: which is the time length of breath of psychological theories? Which is the temporal dimension of psychological processes? In this article we discuss the role of different axiomatic assumptions about time in the construction of psychological theories. How could different theories include a concept...

  9. The indoor air we breathe.

    Science.gov (United States)

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions.

  10. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  11. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  12. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer

    International Nuclear Information System (INIS)

    Mah, Dennis; Hanley, Joseph; Rosenzweig, Kenneth E.; Yorke, Ellen; Braban, Louise; Ling, C. Clifton; Leibel, Stephen A.; Mageras, Gikas

    2000-01-01

    Purpose: The goal of this paper is to describe our initial experience with the deep inspiration breath-hold (DIBH) technique in conformal treatment of non-small-cell lung cancer with particular emphasis on the technical aspects required for implementation. Methods and Materials: In the DIBH technique, the patient is verbally coached through a modified slow vital capacity maneuver and brought to a reproducible deep inspiration breath-hold level. The goal is to immobilize the tumor and to expand normal lung out of the high-dose region. A physicist or therapist monitors and records patient breathing during simulation, verification, and treatment using a spirometer with a custom computer interface. Examination of internal anatomy during fluoroscopy over multiple breath holds establishes the reproducibility of the DIBH maneuver for each patient. A reference free-breathing CT scan and DIBH planning scan are obtained. To provide an estimate of tumor motion during normal tidal breathing, additional scan sets are obtained at end inspiration and end expiration. These are also used to set the spirometer action levels for treatment. Patient lung inflation is independently verified over the course of treatment by comparing the distance from the isocenter to the diaphragm measured from the DIBH digitally reconstructed radiographs to the distance measured on the portal films. Patient breathing traces obtained during treatment were examined retrospectively to assess the reproducibility of the technique. Results: Data from the first 7 patients, encompassing over 250 treatments, were analyzed. The inferred displacement of the centroid of gross tumor volume from its position in the planning scan, as calculated from the spirometer records in over 350 breath holds was 0.02 ± 0.14 cm (mean and standard deviation). These data are consistent with the displacements of the diaphragm (-0.1 ± 0.4 cm; range, from -1.2 to 1.1 cm) relative to the isocenter, as measured on the (92) portal films

  13. Optimal ventilatory patterns in periodic breathing.

    Science.gov (United States)

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  14. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  15. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    International Nuclear Information System (INIS)

    Wang, Chuji; Surampudi, Anand B

    2008-01-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring

  16. The role of non-invasive biomarkers in detecting acute respiratory effects of traffic-related air pollution.

    Science.gov (United States)

    Scarpa, M C; Kulkarni, N; Maestrelli, P

    2014-09-01

    The role of non-invasive methods in the investigation of acute effects of traffic-related air pollution is not clearly established. We evaluated the usefulness of non-invasive biomarkers in detecting acute air pollution effects according to the age of participants, the disease status, their sensitivity compared with lung function tests and their specificity for a type of pollutant. Search terms lead to 535 titles, among them 128 had potentially relevant abstracts. Sixtynine full papers were reviewed, while 59 articles were excluded as they did not meet the selection criteria. Methods used to assess short-term effects of air pollution included analysis of nasal lavage (NAL) for the upper airways, and induced sputum (IS), exhaled breath condensate (EBC) and exhaled nitric oxide (FeNO) for central and lower airways. There is strong evidence that FeNO evaluation is useful independently from subject age, while IS analysis is suitable almost for adults. Biomarker changes are generally observed upon pollutant exposure irrespective of the disease status of the participants. None of the biomarkers identified are specific for a type of pollutant exposure. Based on experimental exposure studies, there is moderate evidence that IS analysis is more sensitive than lung function tests, whereas this is not the case for biomarkers obtained by NAL or EBC. Cells and some cytokines (IL-6, IL-8 and myeloperoxidase) have been measured both in the upper respiratory tract (NAL) and in the lower airways (IS). Overall, the response to traffic exposure seems different in the two compartments. In conclusion, this survey of current literature displays the complexity of this research field, highlights the significance of short-term studies on traffic pollution and gives important tips when planning studies to detect acute respiratory effects of air pollution in a non-invasive way. © 2014 John Wiley & Sons Ltd.

  17. Biomarkers in Autism

    Directory of Open Access Journals (Sweden)

    Robert eHendren

    2014-08-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.

  18. 46 CFR 197.456 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  19. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  20. Analysis for drugs in saliva and breath

    Science.gov (United States)

    1981-09-25

    Collection devices for saliva and breath that involved non-invasive techniques for sample collection were evaluated. Having subjects simply spit into a specially prepared glass vial was found to be an efficient, inexpensive and simple way to collect ...

  1. Analysis for drug in saliva and breath

    Science.gov (United States)

    1981-09-25

    Collection devices for saliva and breath that involved non-invasive : techniques for sample collection were evaluated. Having subjects simply : spit into a specially prepared glass vial was found to be an efficient, : inexpensive and simple way to co...

  2. Humidifiers: Air Moisture Eases Skin, Breathing Symptoms

    Science.gov (United States)

    ... create deposits inside your humidifier that promote bacterial growth. And, when released into the air, these minerals often appear as white dust on your furniture. You may also breathe in some minerals that ...

  3. Breath-hold gadolinium-enhanced MRA : clinical application

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kang, Ji Hee; Kim, Won Hong; Lim, Myung Kwan; Cho, Young Kook; Cho, Soon Gu; Suh, Chang Hae

    1998-01-01

    The purpose of this study is to compare breath-hold gadolinium enhanced MR angiography (MRA) with digital subtraction angiography. Ten patients underwent angiography and breath-hold gadolinium enhanced MRA; the latter performed at 1.5T with 3D FSPGR after a bolus injection of gadopentetate dimeglumine (0.4m mol/kg). Seven of ten pathologic conditions (70%) evaluated by both techniques had a similar appearance. The conditions examined were as follows: the artery feeding renal cell carcinoma(n=2); renal artery stenosis (n=2); pulmonary AVM(n=2); abdominal aortic aneurysm (n=1); atheromatous plaque in the lower abdominal aorta (n=1); an enlarged bronchial artery (n=1); and an aberrant renal artery (n=1). For evaluating an anatomic relationship, a reconstructed 3D image obtained by MRA is more advantageous. Breath hold contrast enhanced MRA is a potentially useful noninvasive screening method for detecting vascular abnormality of the aorta and its branches. (author). 13 refs., 1 tab., 4 figs

  4. Breath-hold gadolinium-enhanced MRA : clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kang, Ji Hee; Kim, Won Hong; Lim, Myung Kwan; Cho, Young Kook; Cho, Soon Gu; Suh, Chang Hae [Inha University Hospital, Inchon (Korea, Republic of)

    1998-05-01

    The purpose of this study is to compare breath-hold gadolinium enhanced MR angiography (MRA) with digital subtraction angiography. Ten patients underwent angiography and breath-hold gadolinium enhanced MRA; the latter performed at 1.5T with 3D FSPGR after a bolus injection of gadopentetate dimeglumine (0.4m mol/kg). Seven of ten pathologic conditions (70%) evaluated by both techniques had a similar appearance. The conditions examined were as follows: the artery feeding renal cell carcinoma(n=2); renal artery stenosis (n=2); pulmonary AVM(n=2); abdominal aortic aneurysm (n=1); atheromatous plaque in the lower abdominal aorta (n=1); an enlarged bronchial artery (n=1); and an aberrant renal artery (n=1). For evaluating an anatomic relationship, a reconstructed 3D image obtained by MRA is more advantageous. Breath hold contrast enhanced MRA is a potentially useful noninvasive screening method for detecting vascular abnormality of the aorta and its branches. (author). 13 refs., 1 tab., 4 figs.

  5. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    Ulusar, U D; Wilson, J D; Murphy, P; Govindan, R B; Preissl, H; Lowery, C L; Eswaran, H

    2011-01-01

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  6. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  7. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  8. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection

    Directory of Open Access Journals (Sweden)

    Mourad Roudjane

    2018-03-01

    Full Text Available In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.

  9. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    Science.gov (United States)

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  10. Prognostic biomarkers in osteoarthritis

    Science.gov (United States)

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  11. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    Science.gov (United States)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  12. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  13. Breath tests: principles, problems, and promise

    International Nuclear Information System (INIS)

    Lo, C.W.; Carter, E.A.; Walker, W.A.

    1982-01-01

    Breath tests rely on the measurement of gases produced in the intestine, absorbed, and expired in the breath. Carbohydrates, such as lactose and sucrose, can be administered in ysiologic doses; if malabsorbed, they will be metabolized to hydrogen by colonic bacteria. Since hydrogen is not produced by human metabolic reactions, a rise in breath hydrogen, as measured by gas chromatography, is evidence of carbohydrate malabsorption. Likewise, a rise in breath hydrogen marks the transit time of nonabsorbable carbohydrates such as lactulose through the small intestine into the colon. Simple end-expiratory interval collection into nonsiliconized vacutainer tubes has made these noninvasive tests quite convenient to perform, but various problems, including changes in stool pH intestinal motility, or metabolic rate, may influence results. Another group of breath tests uses substrates labeled with radioactive or stable isotopes of carbon. Labeled fat substrates such as trioctanoin, tripalmitin, and triolein do not produce the expected rise in labeled breath CO 2 if there is fat malabsorption. Bile acid malabsorption and small intestinal bacterial overgrowth can be measured with labeled cholylglycine or cholyltaurine. Labeled drugs such as aminopyrine, methacetin, and phenacetin can be used as an indication of drug metabolism and liver function. Radioactive substrates have been used to trace metabolic pathways and can be measured by scintillation counters. The availability of nonradioactive stable isotopes has made these ideal for use in children and pregnant women, but the cost of substrates and the mass spectrometers to measure them has so far limited their use to research centers. It is hoped that new techniques of processing and measurement will allow further realization of the exciting potential breath analysis has in a growing list of clinical applications

  14. Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    Matteo Sofia

    2011-01-01

    Full Text Available There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.

  15. Evaluation of a new simple collection device for sampling of microparticles in exhaled breath.

    Science.gov (United States)

    Seferaj, Sabina; Ullah, Shahid; Tinglev, Åsa; Carlsson, Sten; Winberg, Jesper; Stambeck, Peter; Beck, Olof

    2018-03-12

    The microparticle fraction of exhaled breath is of interest for developing clinical biomarkers. Exhaled particles may contain non-volatile components from all parts of the airway system, formed during normal breathing. This study aimed to evaluate a new, simple sampling device, based on impaction, for collecting microparticles from exhaled breath. Performance of the new device was compared with that of the existing SensAbues membrane filter device. The analytical work used liquid chromatography-tandem mass spectrometry methods. The new device collected three subsamples and these were separately analysed from eight individuals. No difference was observed between the centre position (0.91 ng/sample) and the side positions (1.01 ng/sample) using major phosphatidylcholine (PC) 16:0/16:0 as the analyte. Exhaled breath was collected from eight patients on methadone maintenance treatment. The intra-individual variability in measured methadone concentration between the three collectors was 8.7%. In another experiment using patients on methadone maintenance treatment, the sampling efficiency was compared with an established filter device. Compared to the existing device, the efficiency of the new device was 121% greater for methadone and 1450% greater for DPPC. The data from lipid analysis also indicated that a larger fraction of the collected material was from the distal parts. Finally, a study using an optical particle counter indicated that the device preferentially collects the larger particle fraction. In conclusion, this study demonstrates the usefulness of the new device for collecting non-volatile components from exhaled breath. The performance of the device was superior to the filter device in several aspects.

  16. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  17. amphibian_biomarker_data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amphibian metabolite data used in Snyder, M.N., Henderson, W.M., Glinski, D.G., Purucker, S. T., 2017. Biomarker analysis of american toad (Anaxyrus americanus) and...

  18. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... of the biomarker test, and regulatory approval. In addition to these 4 steps, all biomarker studies should be reported in a detailed and transparent manner, using previously published checklists and guidelines. Finally, all biomarker studies relating to demonstration of clinical value should be registered before...

  19. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  20. Clinical Applications of CO2 and H2 Breath Test

    Directory of Open Access Journals (Sweden)

    ZHAO Si-qian;CHEN Bao-jun;LUO Zhi-fu

    2016-08-01

    Full Text Available Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further research, the breath test is expected to be applied in more diseases diagnosis.

  1. Stratum corneum biomarkers for inflammatory skin diseases

    NARCIS (Netherlands)

    Koppes, S.A.

    2017-01-01

    This thesis focusses on development of biomarkers, obtained by a non-invasive sampling method, for skin inflammatory diseases relevant for occupational settings; irritant contact dermatitis (ICD), allergic contact dermatitis (ACD) and atopic dermatitis (AD). In various studies, in which different

  2. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    Science.gov (United States)

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  3. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    Science.gov (United States)

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  4. Medication effects on sleep and breathing.

    Science.gov (United States)

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration. Published by Elsevier Inc.

  5. Imaging biomarkers as surrogate endpoints for drug development

    International Nuclear Information System (INIS)

    Richter, Wolf S.

    2006-01-01

    The employment of biomarkers (including imaging biomarkers, especially PET) in drug development has gained increasing attention during recent years. This has been partly stimulated by the hope that the integration of biomarkers into drug development programmes may be a means to increase the efficiency and effectiveness of the drug development process by early identification of promising drug candidates - thereby counteracting the rising costs of drug development. More importantly, however, the interest in biomarkers for drug development is the logical consequence of recent advances in biosciences and medicine which are leading to target-specific treatments in the framework of ''personalised medicine''. A considerable proportion of target-specific drugs will show effects in subgroups of patients only. Biomarkers are a means to identify potential responders, or patient subgroups at risk for specific side-effects. Biomarkers are used in early drug development in the context of translational medicine to gain information about the drug's potential in different patient groups and disease states. The information obtained at this stage is mainly important for designing subsequent clinical trials and to identify promising drug candidates. Biomarkers in later phases of clinical development may - if properly validated - serve as surrogate endpoints for clinical outcomes. Regulatory agencies in the EU and the USA have facilitated the use of biomarkers early in the development process. The validation of biomarkers as surrogate endpoints is part of FDA's ''critical path initiative''. (orig.)

  6. Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis.

    Science.gov (United States)

    Broza, Yoav Y; Har-Shai, Lior; Jeries, Raneen; Cancilla, John C; Glass-Marmor, Lea; Lejbkowicz, Izabella; Torrecilla, José S; Yao, Xuelin; Feng, Xinliang; Narita, Akimitsu; Müllen, Klaus; Miller, Ariel; Haick, Hossam

    2017-11-15

    Multiple sclerosis (MS) is the most common chronic neurological disease affecting young adults. MS diagnosis is based on clinical characteristics and confirmed by examination of the cerebrospinal fluids (CSF) or by magnetic resonance imaging (MRI) of the brain or spinal cord or both. However, neither of the current diagnostic procedures are adequate as a routine tool to determine disease state. Thus, diagnostic biomarkers are needed. In the current study, a novel approach that could meet these expectations is presented. The approach is based on noninvasive analysis of volatile organic compounds (VOCs) in breath. Exhaled breath was collected from 204 participants, 146 MS and 58 healthy control individuals. Analysis was performed by gas-chromatography mass-spectrometry (GC-MS) and nanomaterial-based sensor array. Predictive models were derived from the sensors, using artificial neural networks (ANNs). GC-MS analysis revealed significant differences in VOC abundance between MS patients and controls. Sensor data analysis on training sets was able to discriminate in binary comparisons between MS patients and controls with accuracies up to 90%. Blinded sets showed 95% positive predictive value (PPV) between MS-remission and control, 100% sensitivity with 100% negative predictive value (NPV) between MS not-treated (NT) and control, and 86% NPV between relapse and control. Possible links between VOC biomarkers and the MS pathogenesis were established. Preliminary results suggest the applicability of a new nanotechnology-based method for MS diagnostics.

  7. Biomarkers of sepsis

    Science.gov (United States)

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  8. How reliable are the sup 14 C-urea breath test and specific serology for the detection of gastric campylobacter

    Energy Technology Data Exchange (ETDEWEB)

    Husebye, E; O' Leary, D; Skar, V; Melby, K [Ullevaal Sykehus, Oslo (Norway)

    1990-01-01

    Detection of gastric campylobacter by the {sup 14}C-urea breath test and serology were correlated to biopsy culture in 25 unselected outpatients referred for gastroscopy. All the 17 culture-positive patients had positive {sup 14}C-urea breath test, and 16 had positive serology. Of eight culture-negative patients, six patients had negative breath test and seven negative serology. A high degree of reproducibility was found when two subsequent breath tests were performed in 11 healthy volunteers. The breath test values obtained at 10 min showed a strong correlation to the accumulated values within 30 min. Breath sampling once, 10 min after intake of 2.5 {mu}Ci {sup 14}C-urea, seems sufficient for the detection of gastric campylobacter. The {sup 14}C-urea breath test correlates well with biopsy culture and provides a sensitive tool for the detection of gastric campylobacter. Serology also corresponds well with biopsy culture and should provide a useful tool for epidemiologic studies. 22 refs., 4 figs., 1 tab.

  9. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  10. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  11. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  12. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  13. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C W [Radiological and Safety Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-11-15

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  14. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    International Nuclear Information System (INIS)

    McDonald, C.W.

    1963-11-01

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  15. Biomarkers of the Dementia

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    2011-01-01

    Full Text Available Recent advances in biomarker studies on dementia are summarized here. CSF Aβ40, Aβ42, total tau, and phosphorylated tau are the most sensitive biomarkers for diagnosis of Alzheimer's disease (AD and prediction of onset of AD from mild cognitive impairment (MCI. Based on this progress, new diagnostic criteria for AD, MCI, and preclinical AD were proposed by National Institute of Aging (NIA and Alzheimer's Association in August 2010. In these new criteria, progress in biomarker identification and amyloid imaging studies in the past 10 years have added critical information. Huge contributions of basic and clinical studies have established clinical evidence supporting these markers. Based on this progress, essential therapy for cure of AD is urgently expected.

  16. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    and previous cancer diagnoses compared to patients who were not diagnosed with cancer. Previous cancer, C-reactive protein (CRP) and suPAR were significantly associated with newly diagnosed cancer during follow-up in multiple logistic regression analyses adjusted for age, sex and CRP. Neither any of the PRRs......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...

  17. Automated 13CO2 analyzing system for the 13C breath test

    International Nuclear Information System (INIS)

    Suehiro, Makiko; Kuroda, Akira; Maeda, Masahiro; Hinaga, Kou; Watanabe, Hiroyuki.

    1987-01-01

    An automated 13 CO 2 analyzing system for the 13 C breath test was designed, built and evaluated. The system, which was designed to be controlled by a micro-computer, includes CO 2 purification, 13 CO 2 abundance measurement, data processing and data filing. This article gives the description of the whole system with flow charts. This system has proved to work well and it has become feasible to dispose of 5 to 6 CO 2 samples per hour. With such a system, the 13 C breath test will be carried out much more easily and will obtain much greater popularity. (author)

  18. Clinical application of the helical CT in patients who are unable to hold their breath

    International Nuclear Information System (INIS)

    Toyama, Yoshihiro; Kimura, Naruhide; Ohkawa, Motoomi; Tanabe, Masatada.

    1997-01-01

    We performed helical CT in eighteen patients who were unable to hold their breath for 10 chest and 8 abdominal regions. Although there were respiratory artifacts in three cases, we could obtain the useful clinical information in all cases. In our experimental examinations, CT value of the phantom by helical scan was lower than that by conventional scan without movement of the phantom. With movement of it, the CT value was further lowered by either scan method, but the lowered rate was smaller by helical scan as the movement becomes faster. We consider that helical CT can be applied to patients who were unable to hold their breath. (author)

  19. [Death by erotic asphyxiation (breath control play)].

    Science.gov (United States)

    Madea, Burkhard; Hagemeier, Lars

    2013-01-01

    Most cases of sexual asphyxia are due to autoerotic activity. Asphyxia due to oronasal occlusion is mostly seen in very old or very young victims. Oronasal occlusion is also used in sadomasochistic sexual practices like "breath control play" or "erotic asphyxiation". If life saving time limitations of oronasal occlusion are not observed, conviction for homicide caused by negligence is possible.

  20. Detection of bronchial breathing caused by pneumonia.

    Science.gov (United States)

    Gross, V; Fachinger, P; Penzel, Th; Koehler, U; von Wichert, P; Vogelmeier, C

    2002-06-01

    The classic auscultation with stethoscope is the established clinical method for the detection of lung diseases. The interpretation of the sounds depends on the experience of the investigating physician. Therefore, a new computer-based method has been developed to classify breath sounds from digital lung sound recordings. Lung sounds of 11 patients with one-sided pneumonia and bronchial breathing were recorded on both the pneumonia side and on contralateral healthy side simultaneously using two microphones. The spectral power for the 300-600 Hz frequency band was computed for four respiratory cycles and normalized. For each breath, the ratio R between the time-segments (duration = 0.1 s) with the highest inspiratory and highest expiratory flow was calculated and averaged. We found significant differences in R between the pneumonia side (R = 1.4 +/- 1.3) and the healthy side (R = 0.5 +/- 0.5; p = 0.003 Wilcoxon-test) of lung. In 218 healthy volunteers we found R = 0.3 +/- 0.2 as a reference-value. The differences of ratio R (delta R) between the pneumonia side and the healthy side (delta R = 1.0 +/- 0.9) were significantly higher compared to follow-up studies after recovery (delta R = 0.0 +/- 0.1, p = 0.005 Wilcoxon-test). The computer based detection of bronchial breathing can be considered useful as part of a quantitative monitoring of patients at risk to develop pneumonia.

  1. Practical recommendations for breathing-adapted radiotherapy

    International Nuclear Information System (INIS)

    Simon, L.; Giraud, P.; Rosenwald, J.C.; Dumas, J.L.; Lorchel, F.; Marre, D.; Dupont, S.; Varmenot, N.; Ginestet, C.; Caron, J.; Marchesi, V.; Ferreira, I.; Garcia, R.

    2007-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  2. A simple, remote, video based breathing monitor.

    Science.gov (United States)

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  3. Breathing easier: Indonesia works towards cleaner air

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2015-01-01

    Indonesians can look forward to breathing cleaner air following upcoming changes in regulations introduced as a result of a study conducted using nuclear analytical techniques. Lead pollution and other fine particulate matter in the air is now, for the first time, being accurately monitored and is giving Indonesian officials a good understanding of their air pollution problem and how to manage it.

  4. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  5. A breath actuated dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne; Frijlink, Henderik W.; Hagedoorn, Paul

    2015-01-01

    A breath actuated dry powder inhaler with a single air circulation chamber for de-agglomeration of entrained powdered medicament using the energy of the inspiratory air stream. The chamber has a substantially polygonal sidewall, a plurality of air supply channels entering the chamber substantially

  6. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.

    Science.gov (United States)

    Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato

    2014-06-01

    On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.

  7. Characterising infant inter-breath interval patterns during active and quiet sleep using recurrence plot analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M

    2009-01-01

    Breathing patterns are characteristically different between active and quiet sleep states in infants. It has been previously identified that breathing dynamics are governed by a non-linear controller which implies the need for a nonlinear analytical tool. Further, it has been shown that quantified nonlinear variables are different between adult sleep states. This study aims to determine whether a nonlinear analytical tool known as recurrence plot analysis can characterize breath intervals of active and quiet sleep states in infants. Overnight polysomnograms were obtained from 32 healthy infants. The 6 longest periods each of active and quiet sleep were identified and a software routine extracted inter-breath interval data for recurrence plot analysis. Determinism (DET), laminarity (LAM) and radius (RAD) values were calculated for an embedding dimension of 4, 6, 8 and 16, and fixed recurrence of 0.5, 1, 2, 3.5 and 5%. Recurrence plots exhibited characteristically different patterns for active and quiet sleep. Active sleep periods typically had higher values of RAD, DET and LAM than for quiet sleep, and this trend was invariant to a specific choice of embedding dimension or fixed recurrence. These differences may provide a basis for automated sleep state classification, and the quantitative investigation of pathological breathing patterns.

  8. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  9. A methodological aspect of the 14C-urea breath test used in Helicobacter pylori diagnosis

    International Nuclear Information System (INIS)

    Kopanski, Z.; Niziol, J.; Micherdzinski, J.; Wasilewska-Radwanska, M.; Cienciala, A.; Lasa, J.; Witkowska, B.

    1996-01-01

    The main purpose of those investigations was optimisation of the performing time of the breath test with 14 C-labelled urea which reveals Helicobacter pylori infection. It was analysed 117 species, preselected according to endoscopy and histopathology results, 56 of them have suffered from chronic gastritis and 61 from gastric ulcer disease. Using microbiology diagnosis (culture + IFP test) it was found that 86 species were H. pylori infected. This group of patients were next subject to investigations with the breath test with 14 C-labelled urea. Measurements of radioactivity of breathe air have been carried out for 30 minutes. The obtained results allow us to maintain that the optimal time of duration of the test described above is 30 minutes. (author)

  10. Daily activities and breathing parameters for use in respiratory tract dosimetry

    International Nuclear Information System (INIS)

    Roy, M.; Courtay, C.

    1991-01-01

    Dosimetry of inhaled substances is based on the air volumes breathed every day by people under exposure to gases and aerosols. In order to assess modern standards for average inspired air volumes according to age and gender, information was recorded on daily activities and breathing rates both indoors and outdoors, of specific categories of the population. Economic surveys recently published provided time budgets and activities of adults, teenagers and children. The data were matched with published data on physical activities and breathing parameters in order to calculate the daily inspired volumes of air. The results were given for adults (age > 17 years), neonates, and children 1, 5, 10 and 15 years old. The values obtained are close to those published by the Internal Commission for Radiological Protection and the reports of the United Nations Scientific Committee on the Effects of Atomic Radiation. (author)

  11. 21 CFR 862.3050 - Breath-alcohol test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened...

  12. 46 CFR 197.340 - Breathing gas supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  13. 46 CFR 197.312 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The maximum...

  14. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  15. IMPLICATIONS OF MOUTH BREATHING AND ATYPICAL SWALLOWING IN BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Veronique Sousa

    2017-07-01

    Conclusion: Statistically significant associations were established between the breathing pattern and the horizontal alignment of acromions, as well as the horizontal and vertical alignment of the head; between the pattern of breathing and swallowing with occlusal relationship anteroposterior and occlusal relationship vertical and also between breathing pattern and swallowing with digital sucking habits and pacifier use.

  16. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations

    Directory of Open Access Journals (Sweden)

    Anwar R. Padhani

    2009-02-01

    Full Text Available On May 3, 2008, a National Cancer Institute (NCI-sponsored open consensus conference was held in Toronto, Ontario, Canada, during the 2008 International Society for Magnetic Resonance in Medicine Meeting. Approximately 100 experts and stakeholders summarized the current understanding of diffusion-weighted magnetic resonance imaging (DW-MRI and reached consensus on the use of DW-MRI as a cancer imaging biomarker. DW-MRI should be tested as an imaging biomarker in the context of well-defined clinical trials, by adding DW-MRI to existing NCI-sponsored trials, particularly those with tissue sampling or survival indicators. Where possible, DW-MRI measurements should be compared with histologic indices including cellularity and tissue response. There is a need for tissue equivalent diffusivity phantoms; meanwhile, simple fluid-filled phantoms should be used. Monoexponential assessments of apparent diffusion coefficient values should use two b values (> 100 and between 500 and 1000 mm2/sec depending on the application. Free breathing with multiple acquisitions is superior to complex gating techniques. Baseline patient reproducibility studies should be part of study designs. Both region of interest and histogram analysis of apparent diffusion coefficient measurements should be obtained. Standards for measurement, analysis, and display are needed. Annotated data from validation studies (along with outcome measures should be made publicly available. Magnetic resonance imaging vendors should be engaged in this process. The NCI should establish a task force of experts (physicists, radiologists, and oncologists to plan, organize technical aspects, and conduct pilot trials. The American College of Radiology Imaging Network infrastructure may be suitable for these purposes. There is an extraordinary opportunity for DW-MRI to evolve into a clinically valuable imaging tool, potentially important for drug development.

  17. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients

    DEFF Research Database (Denmark)

    Schmidt, L E; Olsen, A K; Stentoft, K

    2001-01-01

    BACKGROUND: Interindividual variation in the pharmacokinetics of the immunosuppressive agents cyclosporine (INN, ciclosporin) and tacrolimus may result from differences in the activity of cytochrome P4503A (CYP3A). The erythromycin breath test is an in vivo assay of hepatic CYP3A activity......, but the method has never been directly validated. The aim of the study was to investigate whether an early postoperative erythromycin breath test correlated with the hepatic CYP3A protein level and catalytic activity in liver transplant recipients. METHODS: In 18 liver transplant recipients, the erythromycin...... breath test was performed within 2 hours after transplantation. A graft biopsy was obtained during surgery and analyzed for the CYP3A protein level by Western blotting and for CYP3A activity with erythromycin demethylation and testosterone 6beta- hydroxylation assays. RESULTS: The erythromycin breath...

  18. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  19. Biomarkers for anorexia nervosa

    DEFF Research Database (Denmark)

    Sjøgren, Jan Magnus

    2017-01-01

    Biomarkers for anorexia nervosa (AN) which reflect the pathophysiology and relate to the aetiology of the disease, are warranted and could bring us one step closer to targeted treatment of AN. Some leads may be found in the biochemistry which often is found disturbed in AN, although normalization...

  20. Biomarkers of cancer cachexia.

    Science.gov (United States)

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Impaired memory consolidation in children with obstructive sleep disordered breathing.

    Directory of Open Access Journals (Sweden)

    Kiran Maski

    .03, P = 0.04]. NREM slow oscillation power did not correlate with memory consolidation. All results retained significance after controlling for age and BMI. In sum, participants with mild OSA had impaired memory consolidation and results were mediated by N2 sigma power. These results suggest that N2 sigma power could serve as biomarker of risk for cognitive dysfunction in children with sleep disordered breathing.

  2. UNDERWATER STROKE KINEMATICS DURING BREATHING AND BREATH-HOLDING FRONT CRAWL SWIMMING

    Directory of Open Access Journals (Sweden)

    Nickos Vezos

    2007-03-01

    Full Text Available The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05, the backward hand displacement relative to the water (t9 = 2.471; p<0.05 and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05. On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05 and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05 were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing

  3. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  4. Thoron-in-breath monitoring at CRNL

    International Nuclear Information System (INIS)

    Peterman, B.F.

    1985-04-01

    This report contains a description of the thoron-in-breath monitor (TIBM) developed at CRNL. This monitor can be used to estimate the amount of thorium (Th-232 and/or Th-228) in humans. Thoron-in-breath monitoring is based on the fact that thoron (Rn-220) is a decay product of thorium, and hence deposited thorium produces thoron in vivo, a fraction of which will be exhaled. Experiences with the TIBM indicate that the monitoring is easy to perform and the results in terms of contaminated vs uncontaminated subjects can be easily interpreted. Work on relationships between thoron exhaled and deposited thorium and hence between thoron exhaled and dose, is continuing

  5. An exercise in preferential unilateral breathing

    International Nuclear Information System (INIS)

    Cheong, D.; Tucker, B.; Jenkins, S.; Robinson, P.; Curtin University, Shenton Park, WA

    1999-01-01

    Full text: In preparation for major thoracic surgery, physiotherapists have traditionally taught unilateral breathing exercises. There are no studies that prove that these exercises are effective This study was undertaken to demonstrate the effects of unilateral thoracic expansion exercises (TEE) using 99 Tc m -Technegas Ten physiotherapists were taught unilateral TEE to increase ventilation to the right lower lobe. Each subject underwent two separate Technegas ventilation studies using a single-breath technique, one with normal deep inspiration and the other during a right TEE. Dynamic and static images were acquired in the seated position for each ventilation study. Analysis was undertaken by dividing the lungs into 6 zones of equal height and calculating the relative ventilation of each zone and each lung. Seven subjects (70%) achieved significantly increased ventilation to the right lower zone, while 9 (90%) achieved greater ventilation to the right lung. Total lung ventilation was reduced during right TEE when compared with normal deep inspiration

  6. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  7. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  8. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  9. The experimental modification of sonorous breathing.

    OpenAIRE

    Josephson, S C; Rosen, R C

    1980-01-01

    Loud snoring is a noxious habit and potential personal health risk. We are reporting the first experimental study of simple behavioral techniques for the modification of chronic snoring. Twenty-four volunteers participated in a repeated measures, randomized group design over 2 weeks of intervention and one-month follow-up. Treatment groups included a contingent-awakening and breathing retraining (self-control) condition. Both treatment groups were compared to a no-treatment control. Despite c...

  10. Breathing conditions for animals in radiobiological experiments

    International Nuclear Information System (INIS)

    Stevens, G.N.; Michael, B.D.

    1988-01-01

    In the course of experiments designed to determine the influence of redox agents on the radiosensitivity of murine normal tissues, an unexpected scatter of data points relating to jejunal crypt regeneration was found in mice irradiated under supposedly air-breathing conditions. One possible explanation for the scatter in the data related to variation in the oxygen tension within the jig at the time of irradiation, and the jig modified accordingly. (author)

  11. Breathing air trailer acceptance test report

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1996-01-01

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0251, Rev.0 and ECNs 613530 and 606113. The equipment was tested according to WHC-SD-WM-ATP-104. The equipment tested is a Breathing Air Supply Trailer purchased as a design and fabrication procurement activity. The ATP was written by the Seller and was performed by the Seller with representatives of the Westinghouse Hanford Company witnessing portions of the test at the Seller's location

  12. C-130J Breathing Resistance Study

    Science.gov (United States)

    2016-05-01

    scientific and technical information exchange , and its publication does not constitute the Government’s approval or disapproval of its ideas or findings...regulator and MBU- 20/P oxygen mask, was supplied gaseous Aviators’ Breathing Oxygen (ABO). The regulator was operated in various operating modes, at...Generating System (OBOGS) Laboratory, Area B, Wright-Patterson AFB OH. The CRU-73 oxygen regulator was supplied with 50 pounds/square inch of gaseous

  13. Houses need to breathe--right?

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2004-10-01

    Houses need to breathe, but we can no longer leave the important functions associated with ventilation to be met accidentally. A designed ventilation system must be considered as much a part of a home as its heating system. Windows are a key part of that system because they allow a quick increase in ventilation for unusual events, but neither they nor a leaky building shell can be counted on to provide minimum levels.

  14. Breath tests and irritable bowel syndrome.

    Science.gov (United States)

    Rana, Satya Vati; Malik, Aastha

    2014-06-28

    Breath tests are non-invasive tests and can detect H₂ and CH₄ gases which are produced by bacterial fermentation of unabsorbed intestinal carbohydrate and are excreted in the breath. These tests are used in the diagnosis of carbohydrate malabsorption, small intestinal bacterial overgrowth, and for measuring the orocecal transit time. Malabsorption of carbohydrates is a key trigger of irritable bowel syndrome (IBS)-type symptoms such as diarrhea and/or constipation, bloating, excess flatulence, headaches and lack of energy. Abdominal bloating is a common nonspecific symptom which can negatively impact quality of life. It may reflect dietary imbalance, such as excess fiber intake, or may be a manifestation of IBS. However, bloating may also represent small intestinal bacterial overgrowth. Patients with persistent symptoms of abdominal bloating and distension despite dietary interventions should be referred for H₂ breath testing to determine the presence or absence of bacterial overgrowth. If bacterial overgrowth is identified, patients are typically treated with antibiotics. Evaluation of IBS generally includes testing of other disorders that cause similar symptoms. Carbohydrate malabsorption (lactose, fructose, sorbitol) can cause abdominal fullness, bloating, nausea, abdominal pain, flatulence, and diarrhea, which are similar to the symptoms of IBS. However, it is unclear if these digestive disorders contribute to or cause the symptoms of IBS. Research studies show that a proper diagnosis and effective dietary intervention significantly reduces the severity and frequency of gastrointestinal symptoms in IBS. Thus, diagnosis of malabsorption of these carbohydrates in IBS using a breath test is very important to guide the clinician in the proper treatment of IBS patients.

  15. Free-breathing steady-state free precession cine cardiac magnetic resonance with respiratory navigator gating.

    Science.gov (United States)

    Moghari, Mehdi H; Komarlu, Rukmini; Annese, David; Geva, Tal; Powell, Andrew J

    2015-04-01

    To develop and validate a respiratory motion compensation method for free-breathing cardiac cine imaging. A free-breathing navigator-gated cine steady-state free precession acquisition (Cine-Nav) was developed which preserves the equilibrium state of the net magnetization vector, maintains the high spatial and temporal resolutions of standard breath-hold (BH) acquisition, and images entire cardiac cycle. Cine image data is accepted only from cardiac cycles occurring entirely during end-expiration. Prospective validation was performed in 10 patients by obtaining in each three complete ventricular image stacks with different respiratory motion compensation approaches: (1) BH, (2) free-breathing with 3 signal averages (3AVG), and (3) free-breathing with Cine-Nav. The subjective image quality score (1 = worst, 4 = best) for Cine-Nav (3.8 ± 0.4) was significantly better than for 3AVG (2.2 ± 0.5, P = 0.002), and similar to BH (4.0 ± 0.0, P = 0.13). The blood-to-myocardium contrast ratio for Cine-Nav (6.3 ± 1.5) was similar to BH (5.9 ± 1.6, P = 0.52) and to 3AVG (5.6 ± 2.5, P = 0.43). There were no significant differences between Cine-Nav and BH for the ventricular volumes and mass. In contrast, there were significant differences between 3AVG and BH in all of these measurements but right ventricular mass. Free-breathing cine imaging with Cine-Nav yielded comparable image quality and ventricular measurements to BH, and was superior to 3AVG. © 2014 Wiley Periodicals, Inc.

  16. [Experimental branch vein occlusion: the effect of carbogen breathing on preretinal PO2].

    Science.gov (United States)

    Pournaras, J-A C; Poitry, S; Munoz, J-L; Pournaras, C J

    2003-10-01

    To evaluate the variations in preretinal PO2 in normal and in ischemic postexperimental branch vein occlusion (BRVO) retinal areas during normoxia, hyperoxia (100% O2) and carbogen (95% O2, 5% CO2) breathing. Preretinal PO2 measurements were obtained in intervascular retinal areas far from the retinal vessels of 13 anesthetized miniature pigs with oxygen-sensitive microelectrodes (10 microm tip diameter) introduced through the vitreous cavity by a micromanipulator. The microelectrode tip was placed at 50 microm from the vitreoretinal interface in the preretinal vitreous. PO2 was measured continuously for 10 minutes in systemic normoxia, hyperoxia (100% O2 breathing) and carbogen (95% O2, 5% CO2) breathing. A BRVO was induced with an argon green laser, and oxygen measurements were repeated in normoxia, hyperoxia and carbogen breathing. In hyperoxia, preretinal PO2 remained almost constant in both normal retinas (DeltaPO2=1.33 mmHg +/- 3.39; n=13) and ischemic retinas (DeltaPO2=3.73 mmHg +/- 2.84; n=8), although systemic PaO2 significantly increased. Carbogen breathing induced a significant increase in systemic PaO2 and PaCO2. Furthermore, it significantly increased preretinal PO2: DeltaPO2=23.05 mmHg +/- 17.06 (n=12) in normal retinas, and DeltaPO2=22.54 mmHg +/- 5.96 (n=6) in ischemic retinal areas. Systemic hyperoxia does not increase preretinal PO2 significantly in normal and ischemic post-BRVO retinal areas of miniature pigs, as hyperoxia induces a decrease in the retinal blood flow. Carbogen breathing significantly increases preretinal PO2 in normal and in ischemic post-BRVO retinal areas. This effect is probably due to the vasodilatation of the retinal arterioles induced by the intravascular PaCO2 increase.

  17. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  18. Breathing is different in the quantum world

    Science.gov (United States)

    Bonitz, Michael; Bauch, Sebastian; Balzer, Karsten; Henning, Christian; Hochstuhl, David

    2009-11-01

    Interacting classicle particles in a harmonic trap are known to possess a radial collective oscillation -- the breathing mode (BM). In case of Coulomb interaction its frequency is universal -- it is independent of the particle number and system dimensionality [1]. Here we study strongly correlated quantum systems. We report a qualitatively different breathing behavior: a quantum system has two BMs one of which is universal whereas the frequency of the other varies with system dimensionality, the particle spin and the strength of the pair interaction. The results are based on exact solutions of the time-dependent Schr"odinger equation for two particles and on time-dependent many-body results for larger particle numbers. Finally, we discuss experimental ways to excite and measure the breathing frequencies which should give direct access to key properties of trapped particles, including their many-body effects [2]. [4pt] [1] C. Henning et al., Phys. Rev. Lett. 101, 045002 (2008) [0pt] [2] S. Bauch, K. Balzer, C. Henning, and M. Bonitz, submitted to Phys. Rev. Lett., arXiv:0903.1993

  19. Biomarkers for predicting complete debulking in ovarian cancer

    DEFF Research Database (Denmark)

    Fagö-Olsen, Carsten Lindberg; Ottesen, Bent; Christensen, Ib Jarle

    2014-01-01

    AIM: We aimed to construct and validate a model based on biomarkers to predict complete primary debulking surgery for ovarian cancer patients. PATIENTS AND METHODS: The study consisted of three parts: Part I: Biomarker data obtained from mass spectrometry, baseline data and, surgical outcome were...... used to construct predictive indices for complete tumour resection; Part II: sera from randomly selected patients from part I were analyzed using enzyme-linked immunosorbent assay (ELISA) to investigate the correlation to mass spectrometry; Part III: the indices from part I were validated in a new.......64. CONCLUSION: Our validated model based on biomarkers was unable to predict surgical outcome for patients with ovarian cancer....

  20. Novel biomarkers for sepsis

    DEFF Research Database (Denmark)

    Larsen, Frederik Fruergaard; Petersen, J Asger

    2017-01-01

    BACKGROUND: Sepsis is a prevalent condition among hospitalized patients that carries a high risk of morbidity and mortality. Rapid recognition of sepsis as the cause of deterioration is desirable, so effective treatment can be initiated rapidly. Traditionally, diagnosis was based on presence of two...... or more positive SIRS criteria due to infection. However, recently published sepsis-3 criteria put more emphasis on organ dysfunction caused by infection in the definition of sepsis. Regardless of this, no gold standard for diagnosis exist, and clinicians still rely on a number of traditional and novel...... biomarkers to discriminate between patients with and without infection, as the cause of deterioration. METHOD: Narrative review of current literature. RESULTS: A number of the most promising biomarkers for diagnoses and prognostication of sepsis are presented. CONCLUSION: Procalcitonin, presepsin, CD64, su...

  1. Clinical utility of asthma biomarkers: from bench to bedside

    Directory of Open Access Journals (Sweden)

    Vijverberg SJH

    2013-08-01

    Full Text Available Susanne JH Vijverberg,1,2,* Bart Hilvering,2,* Jan AM Raaijmakers,1 Jan-Willem J Lammers,2 Anke-Hilse Maitland-van der Zee,1,* Leo Koenderman2,* 1Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; 2Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands *These authors contributed equally to this work Abstract: Asthma is a chronic disease characterized by airway inflammation, bronchial hyperresponsiveness, and recurrent episodes of reversible airway obstruction. The disease is very heterogeneous in onset, course, and response to treatment, and seems to encompass a broad collection of heterogeneous disease subtypes with different underlying pathophysiological mechanisms. There is a strong need for easily interpreted clinical biomarkers to assess the nature and severity of the disease. Currently available biomarkers for clinical practice – for example markers in bronchial lavage, bronchial biopsies, sputum, or fraction of exhaled nitric oxide (FeNO – are limited due to invasiveness or lack of specificity. The assessment of markers in peripheral blood might be a good alternative to study airway inflammation more specifically, compared to FeNO, and in a less invasive manner, compared to bronchoalveolar lavage, biopsies, or sputum induction. In addition, promising novel biomarkers are discovered in the field of breath metabolomics (eg, volatile organic compounds and (pharmacogenomics. Biomarker research in asthma is increasingly shifting from the assessment of the value of single biomarkers to multidimensional approaches in which the clinical value of a combination of various markers is studied. This could eventually lead to the development of a clinically applicable algorithm composed of various markers and clinical features to phenotype asthma and improve diagnosis and asthma management

  2. [Biomarkers of Alzheimer disease].

    Science.gov (United States)

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  3. Breath-hold times in patients undergoing radiological examinations. Comparison of expiration and inspiration with and without hyperventilation

    International Nuclear Information System (INIS)

    Groell, R.; Schaffler, G.J.; Schloffer, S.

    2001-01-01

    Background. Breath-holding is necessary for imaging studies of the thorax and abdomen using computed tomography, magnetic resonance imaging or ultrasound examinations. The purpose of this study was to compare the breath-hold times in expiration and inspiration and to evaluate the effects of hyperventilation. Patients and methods. Thirty patients and 19 healthy volunteers participated in this study after informed consent was obtained in all. The breath-hold times were measured in expiration and inspiration before and after hyperventilation. Results. The mean breath-hold times in expiration (patients: 24±9 sec, volunteers: 27±7 sec) were significantly shorter than those in inspiration (patients: 41±20 sec, p<0.001; volunteers: 62±18 sec, p<0.001). Additional hyperventilation resulted in a significant increase (range: 40-60%, p≤0.005) of the mean breathhold times either in expiration and in inspiration and for both patients and volunteers. Conclusions. Although breath-holding in expiration is recommended for various imaging studies particularly of the thorax and of the abdomen, suspending respiration in inspiration enables the patient a considerable longer breath-hold time. (author)

  4. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

    Science.gov (United States)

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G

    2015-06-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.

  5. Improved multimodal biomarkers for Alzheimer's disease and mild cognitive impairment diagnosis: data from ADNI

    Science.gov (United States)

    Martinez-Torteya, Antonio; Treviño-Alvarado, Víctor; Tamez-Peña, José

    2013-02-01

    The accurate diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) confers many clinical research and patient care benefits. Studies have shown that multimodal biomarkers provide better diagnosis accuracy of AD and MCI than unimodal biomarkers, but their construction has been based on traditional statistical approaches. The objective of this work was the creation of accurate AD and MCI diagnostic multimodal biomarkers using advanced bioinformatics tools. The biomarkers were created by exploring multimodal combinations of features using machine learning techniques. Data was obtained from the ADNI database. The baseline information (e.g. MRI analyses, PET analyses and laboratory essays) from AD, MCI and healthy control (HC) subjects with available diagnosis up to June 2012 was mined for case/controls candidates. The data mining yielded 47 HC, 83 MCI and 43 AD subjects for biomarker creation. Each subject was characterized by at least 980 ADNI features. A genetic algorithm feature selection strategy was used to obtain compact and accurate cross-validated nearest centroid biomarkers. The biomarkers achieved training classification accuracies of 0.983, 0.871 and 0.917 for HC vs. AD, HC vs. MCI and MCI vs. AD respectively. The constructed biomarkers were relatively compact: from 5 to 11 features. Those multimodal biomarkers included several widely accepted univariate biomarkers and novel image and biochemical features. Multimodal biomarkers constructed from previously and non-previously AD associated features showed improved diagnostic performance when compared to those based solely on previously AD associated features.

  6. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect

    DEFF Research Database (Denmark)

    Gorham, Katrine A; Andersen, Mads Peter Sulbæk; Meinardi, Simone

    2009-01-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were...... found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled...... hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway...

  7. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect.

    Science.gov (United States)

    Gorham, Katrine A; Sulbaek Andersen, Mads P; Meinardi, Simone; Delfino, Ralph J; Staimer, Norbert; Tjoa, Thomas; Rowland, F Sherwood; Blake, Donald R

    2009-02-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.

  8. Activity calibration in breath test for diagnosis of Helicobacter pylori

    International Nuclear Information System (INIS)

    Wasilewka-Radwanska, M.; Pysklak, S.; Gilewicz-Wolter, J.; Kuc, T.; Jung, A.; Niziol, J.; Kopanski, J.; Micherdzinski, J.; Cienciala, A.

    1996-01-01

    Some technical and measurement problems of the breath test for diagnosis of Helicobacter pylori are briefly discussed. Calibrated results obtained for population of 108 cases indicate difference between HP+ (infected with Helicobacter pylori) and HP- (non infected with Helicobacter pylori) in exhaled 14 C activity not less than 3.9 kBq while the lower limit for HP+ cases was set at 6.8 kBq at the detection limit: 0.9 Bq/mmol of CO 2 . It was estimated that in exhalation way up to 29% of the taken activity was removed in HP+ cases during first 35 minutes. Radiation hazard for the patient system is negligibly small - dose equipment not exceeds 0.29% of the natural (environmental) yearly exposure. (author)

  9. Biomarkers in Diabetic Retinopathy

    Science.gov (United States)

    Jenkins, Alicia J.; Joglekar, Mugdha V.; Hardikar, Anandwardhan A.; Keech, Anthony C.; O'Neal, David N.; Januszewski, Andrzej S.

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  10. Biomarkers in Diabetic Retinopathy.

    Science.gov (United States)

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  11. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  12. Feasibility and potential utility of multicomponent exhaled breath analysis for predicting development of radiation pneumonitis after stereotactic ablative radiotherapy.

    Science.gov (United States)

    Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian

    2014-07-01

    In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.

  13. Sleep-disordered breathing and mortality: a prospective cohort study.

    OpenAIRE

    Naresh M Punjabi; Brian S Caffo; James L Goodwin; Daniel J Gottlieb; Anne B Newman; George T O'Connor; David M Rapoport; Susan Redline; Helaine E Resnick; John A Robbins; Eyal Shahar; Mark L Unruh; Jonathan M Samet

    2009-01-01

    Editors' Summary Background About 1 in 10 women and 1 in 4 men have a chronic condition called sleep-disordered breathing although most are unaware of their problem. Sleep-disordered breathing, which is commonest in middle-aged and elderly people, is characterized by numerous, brief (10 second or so) interruptions of breathing during sleep. These interruptions, which usually occur when relaxation of the upper airway muscles decreases airflow, lower the level of oxygen in the blood and, as a r...

  14. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    Science.gov (United States)

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  15. Determining urea levels in exhaled breath condensate with minimal preparation steps and classic LC-MS.

    Science.gov (United States)

    Pitiranggon, Masha; Perzanowski, Matthew S; Kinney, Patrick L; Xu, Dongqun; Chillrud, Steven N; Yan, Beizhan

    2014-10-01

    Exhaled breath condensate (EBC) provides a relatively easy, non-invasive method for measuring biomarkers of inflammation and oxidative stress in the airways. However, the levels of these biomarkers in EBC are influenced, not only by their levels in lung lining fluid but also by the volume of water vapor that also condenses during EBC collection. For this reason, the use of a biomarker of dilution has been recommended. Urea has been proposed and utilized as a promising dilution biomarker due to its even distribution throughout the body and relatively low volatility. Current EBC urea analytical methods either are not sensitive enough, necessitating large volumes of EBC, or are labor intensive, requiring a derivatization step or other pretreatment. We report here a straightforward and reliable LC-MS approach that we developed that does not require derivatization or large sample volume (∼36 µL). An Acclaim mixed-mode hydrophilic interaction chromatography column was selected because it can produce good peak symmetry and efficiently separate urea from other polar and nonpolar compounds. To achieve a high recovery rate, a slow and incomplete evaporation method was used followed by a solvent-phase exchange. Among EBC samples collected from 28 children, urea levels were found to be highly variable, with a relative standard deviation of 234%, suggesting high variability in dilution of the lung lining fluid component of EBC. The limit of detection was found to be 0.036 µg/mL. Published by Oxford University Press [2013]. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. A New Serum Biomarker for Lung Cancer - Transthyretin

    Directory of Open Access Journals (Sweden)

    Liyun LIU

    2009-04-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer death worldwide and very few specific biomarkers could be used in clinical diagnosis at present. The aim of this study is to find novel potential serum biomarkers for lung cancer using Surface Enhanced Laser Desorption/Ionization (SELDI technique. Methods Serumsample of 227 cases including 146 lung cancer, 13 pneumonia, 28 tuberculous pleurisy and 40 normal individuals were analyzed by CM10 chips. The candidate biomarkers were identified by ESI/MS-MS and database searching, and further confirmed by immunoprecipitation. The same sets of serum sample from all groups were re-measured by ELISA assay. Results Three protein peaks with the molecular weight 13.78 kDa, 13.90 kDa and 14.07 kDa were found significantlydecreased in lung cancer serum compared to the other groups and were all automatically selected as specific biomarkers by Biomarker Wizard software. The candidate biomarkers obtained from 1-D SDS gel bands by matching the molecular weight with peaks on CM10 chips were identified by Mass spectrometry as the native transthyretin (nativeTTR, cysTTR and glutTTR, and the identity was further validated by immunoprecipitation using commercial TTR antibodies. Downregulated of TTR was found in both ELISA and SELDI analysis. Conclusion TTRs acted as the potentially useful biomarkers for lung cancer by SELDI technique.

  17. Biomarkers in Prostate Cancer Epidemiology

    Directory of Open Access Journals (Sweden)

    Mudit Verma

    2011-09-01

    Full Text Available Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person’s genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.

  18. Biomarker Identification Using Text Mining

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-01-01

    Full Text Available Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database.

  19. Unconstrained monitoring of long-term heart and breath rates during sleep

    International Nuclear Information System (INIS)

    Chen, Wenxi; Zhu, Xin; Wei, Daming; Nemoto, Tetsu; Sugitani, Kayo; Kitamura, Kei-ichiro

    2008-01-01

    An unconstrained method for the long-term monitoring of heart and breath rates during sleep is proposed. The system includes a sensor unit and a web-based network module. The sensor unit is set beneath a pillow to pick up the pressure variations from the head induced by inhalation/exhalation movements and heart pulsation during sleep. The measured pressure signal was digitized and transferred to a remote database server via the network module. A wavelet-based algorithm was employed to detect the heart and breath rates, as well as body movement, during sleep. The overall system was utilized for a total six-month trial operation delivered to a female subject. The profiles of the heart and breath rates on a beat-by-beat and daily basis were obtained. Movements during sleep were also estimated. The results show that the daily average percentage of undetectable periods (UPs) during 881.6 sleep hours over a 180 day period was 17.2%. A total of 89.2% of sleep hours had a UP of not more than 25%. The profile of the heart rate revealed a periodic property that corresponded to the female monthly menstrual cycle. Our system shows promise as a long-term unconstrained monitor for heart and breath rates, and for other physiological parameters related to the quality of sleep and the regularity of the menstrual cycle. (note)

  20. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    Science.gov (United States)

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  1. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  2. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  3. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  4. Optimal technique for deep breathing exercises after cardiac surgery.

    Science.gov (United States)

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  5. Breathing pattern and head posture: changes in craniocervical angles.

    Science.gov (United States)

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  6. Sports-related lung injury during breath-hold diving

    Directory of Open Access Journals (Sweden)

    Tanja Mijacika

    2016-12-01

    Full Text Available The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise. In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition. According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  7. Can resistive breathing injure the lung? Implications for COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Vassilakopoulos T

    2016-09-01

    Full Text Available Theodoros Vassilakopoulos, Dimitrios Toumpanakis Pulmonary and Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Greece Abstract: In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction. The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. Keywords: resistive breathing, COPD, mechanotransduction, bronchoconstriction, inflammation

  8. Hepcidin- A Burgeoning Biomarker

    Directory of Open Access Journals (Sweden)

    Hemkant Manikrao Deshmukh

    2017-10-01

    Full Text Available The discovery of hepcidin has triggered a virtual ignition of studies on iron metabolism and related disorders. The peptide hormone hepcidin is a key homeostatic regulator of iron metabolism. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. Several human diseases are associated with variations in hepcidin concentrations. The evaluation of hepcidin in biological fluids is therefore a promising device in the diagnosis and management of medical situations in which iron metabolism is affected. Thus, it made us to recapitulate role of hepcidin as biomarker.

  9. Towards Improved Biomarker Research

    DEFF Research Database (Denmark)

    Kjeldahl, Karin

    This thesis takes a look at the data analytical challenges associated with the search for biomarkers in large-scale biological data such as transcriptomics, proteomics and metabolomics data. These studies aim to identify genes, proteins or metabolites which can be associated with e.g. a diet...... with very specific competencies. In order to optimize the basis of a sound and fruitful data analysis, suggestions are givenwhich focus on (1) collection of good data, (2) preparation of data for the data analysis and (3) a sound data analysis. If these steps are optimized, PLS is a also a very goodmethod...

  10. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren

    2015-01-01

    Lung infections with Pseudomonas aeruginosa (PA) is the most common cause of morbidity and mortality in cystic fibrosis (CF) patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN......) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...... substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN) demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb...

  11. Usefulness of breath-hold cardiac cine MR imaging with a middle field MRI system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Kentaro; Sato, Kiyoto; Aono, Masaki; Inoshita, Kenji; Utsumi, Naoko [Kagawa Inoshita Hospital, Ohnohara (Japan)

    1999-07-01

    To assess the accuracy of contrast-enhanced, single breath-hold cine MR imaging in calculating left ventricular volume and ejection fraction, we compared MR measurements with those obtained by using cine ventriculography in 60 patients. Fast cine MR images were acquired with a middle field MR system (0.5 T). A breath-hold single slice multi-phase fast gradient-echo (Fast Card) sequence was used to obtain fast cine MR images with the following parameters; TR of 16 ms, TE of 3 ms, flip angle of 30 degree, matrix elements of 256 x 128, view per segment of 6, field of view of 350 x 260 mm and one excitation. Left ventricular end-diastolic volume and ejection fraction obtained with contrast-enhanced Fast Card correlated well with those obtained with cine ventriculography (end-diastolic volume, y=1.00x+14.0, r=0.904, p<0.001; ejection fraction, y=0.961x+2.8, r=0.936, p<0.001). Our results show that contrast enhanced breath-hold cardiac cine MR imaging on horizontal long-axis view using a middle field MR system is an accurate method for evaluating left ventricular volume and ejection fraction. (author)

  12. Appropriate sample bags and syringes for preserving breath samples in breath odor research : a technical note

    NARCIS (Netherlands)

    Winkel, E. G.; Tangerman, A.

    It is now generally accepted that the volatile sulfur compounds (VSCs) hydrogen sulfide, methyl mercaptan and dimethyl sulfide are the main contributors to halitosis when of oropharyngeal origin. The VSCs hydrogen sulfide and methyl mercaptan are the major causes of bad breath in oral malodour

  13. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.

    by the fall of a prey item on the water surface, and in tapping motions of goldfish, a behaviour that was interpreted to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air...

  14. Sleep-disordered breathing in patients with myelomeningocele.

    Science.gov (United States)

    Patel, Daxa M; Rocque, Brandon G; Hopson, Betsy; Arynchyna, Anastasia; Bishop, E Ralee'; Lozano, David; Blount, Jeffrey P

    2015-07-01

    OBJECT A paucity of literature examines sleep apnea in patients with myelomeningocele, Chiari malformation Type II (CM-II), and related hydrocephalus. Even less is known about the effect of hydrocephalus treatment or CM-II decompression on sleep hygiene. This study is an exploratory analysis of sleep-disordered breathing in patients with myelomeningocele and the effects of neurosurgical treatments, in particular CM-II decompression and hydrocephalus management, on sleep organization. METHODS The authors performed a retrospective review of all patients seen in their multidisciplinary spina bifida clinic (approximately 435 patients with myelomeningocele) to evaluate polysomnographs obtained between March 1999 and July 2013. They analyzed symptoms prompting evaluation, results, and recommended interventions by using descriptive statistics. They also conducted a subset analysis of 9 children who had undergone polysomnography both before and after neurosurgical intervention. RESULTS Fifty-two patients had polysomnographs available for review. Sleep apnea was diagnosed in 81% of these patients. The most common presenting symptom was "breathing difficulties" (18 cases [43%]). Mild sleep apnea was present in 26 cases (50%), moderate in 10 (19%), and severe in 6 (12%). Among the 42 patients with abnormal sleep architecture, 30 had predominantly obstructive apneas and 12 had predominantly central apneas. The most common pulmonology-recommended intervention was adjustment of peripheral oxygen supplementation (24 cases [57%]), followed by initiation of peripheral oxygen (10 cases [24%]). In a subset analysis of 9 patients who had sleep studies before and after neurosurgical intervention, there was a trend toward a decrease in the mean number of respiratory events (from 34.8 to 15.9, p = 0.098), obstructive events (from 14.7 to 13.9, p = 0.85), and central events (from 20.1 to 2.25, p = 0.15) and in the apnea-hypopnea index (from 5.05 to 2.03, p = 0.038, not significant when

  15. Attempts at estimating mixed venous carbon dioxide tension by the single-breath method.

    Science.gov (United States)

    Ohta, H; Takatani, O; Matsuoka, T

    1989-01-01

    The single-breath method was originally proposed by Kim et al. [1] for estimating the blood carbon dioxide tension and cardiac output. Its reliability has not been proven. The present study was undertaken, using dogs, to compare the mixed venous carbon dioxide tension (PVCO2) calculated by the single-breath method with the PVCO2 measured in mixed venous blood, and to evaluate the influence of variations in the exhalation duration and the volume of expired air usually discarded from computations as the deadspace. Among the exhalation durations of 15, 30 and 45 s tested, the 15 s duration was found to be too short to obtain an analyzable O2-CO2 curve, but at either 30 or 45 s, the calculated values of PVCO2 were comparable to the measured PVCO2. A significant agreement between calculated and measured PVCO2 was obtained when the expired gas with PCO2 less than 22 Torr was considered as deadspace gas.

  16. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration.

    Science.gov (United States)

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a

  17. Diagnosing phenotypes of single-sample individuals by edge biomarkers.

    Science.gov (United States)

    Zhang, Wanwei; Zeng, Tao; Liu, Xiaoping; Chen, Luonan

    2015-06-01

    Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  18. Biomarkers in Vasculitis

    Science.gov (United States)

    Monach, Paul A.

    2014-01-01

    Purpose of review Better biomarkers are needed for guiding management of patients with vasculitis. Large cohorts and technological advances had led to an increase in pre-clinical studies of potential biomarkers. Recent findings The most interesting markers described recently include a gene expression signature in CD8+ T cells that predicts tendency to relapse or remain relapse-free in ANCA-associated vasculitis, and a pair of urinary proteins that are elevated in Kawasaki disease but not other febrile illnesses. Both of these studies used “omics” technologies to generate and then test hypotheses. More conventional hypothesis-based studies have indicated that the following circulating proteins have potential to improve upon clinically available tests: pentraxin-3 in giant cell arteritis and Takayasu’s arteritis; von Willebrand factor antigen in childhood central nervous system vasculitis; eotaxin-3 and other markers related to eosinophils or Th2 immune responses in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome); and MMP-3, TIMP-1, and CXCL13 in ANCA-associated vasculitis. Summary New markers testable in blood and urine have the potential to assist with diagnosis, staging, assessment of current disease activity, and prognosis. However, the standards for clinical usefulness, in particular the demonstration of either very high sensitivity or very high specificity, have yet to be met for clinically relevant outcomes. PMID:24257367

  19. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    Directory of Open Access Journals (Sweden)

    Rikke Kragh Lauridsen

    2015-09-01

    Full Text Available Lung infections with Pseudomonas aeruginosa (PA is the most common cause of morbidity and mortality in cystic fibrosis (CF patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band at ∼2133 cm−1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb. Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required range. Keywords: Surface-Enhanced Raman Spectroscopy, Hydrogen cyanide, Pseudomonas aeruginosa, Cystic fibrosis, Breath analysis

  20. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath

    Science.gov (United States)

    Patterson, Claire S.; McMillan, Lesley C.; Longbottom, Christopher; Gibson, Graham M.; Padgett, Miles J.; Skeldon, Kenneth D.

    2007-05-01

    We report on a maintenance-free, ward-portable, tunable diode laser spectroscopy system for the ultra-sensitive detection of ethane gas. Ethane is produced when cellular lipids are oxidized by free radicals. As a breath biomarker, ethane offers a unique measure of such oxidative stress. The ability to measure real-time breath ethane fluctuations will open up new areas in non-invasive healthcare. Instrumentation for such a purpose must be highly sensitive and specific to the target gas. Our technology has a sensitivity of 70 parts per trillion and a 1 s sampling rate. Based on a cryogenically cooled lead-salt laser, the instrument has a thermally managed closed-loop refrigeration system, eliminating the need for liquid coolants. Custom LabVIEW software allows automatic control by a laptop PC. We have field tested the instrument to ensure that target performance is sustained in a range of environments. We outline the novel applications underway with the instrument based on an in vivo clinical assessment of oxidative stress.

  1. Harnessing Cerebrospinal Fluid Biomarkers in Clinical Trials for Treating Alzheimer's and Parkinson's Diseases: Potential and Challenges.

    Science.gov (United States)

    Kim, Dana; Kim, Young Sam; Shin, Dong Wun; Park, Chang Shin; Kang, Ju Hee

    2016-10-01

    No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era.

  2. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis

    Directory of Open Access Journals (Sweden)

    Aleš Procházka

    2016-06-01

    Full Text Available This paper is devoted to a new method of using Microsoft (MS Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com. The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human–machine interaction.

  3. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    International Nuclear Information System (INIS)

    Chao, Ming; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi; Wei, Jie; Li, Tianfang

    2016-01-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  −0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. (paper)

  4. Craniofacial changes and symptoms of sleep-disordered breathing in healthy children

    Directory of Open Access Journals (Sweden)

    Maria Christina Thomé Pacheco

    2015-06-01

    Full Text Available INTRODUCTION: The main cause of mouth breathing and sleep-disordered breathing (SDB in childhood is associated with upper airway narrowing to varying degrees. OBJECTIVE: The aim of this study was to assess the prevalence of morphological and functional craniofacial changes and the main clinical symptoms of SDB in healthy children. METHODS: A cross-sectional observational study was conducted. A sample comprising 687 healthy schoolchildren, aged 7-12 years old and attending public schools, was assessed by medical history, clinical medical and dental examination, and respiratory tests. The self-perceived quality of life of mouth breathing children was obtained by a validated questionnaire. RESULTS: Out of the total sample, 520 children were nose breathers (NB while 167 (24.3% were mouth breathers (MB; 32.5% had severe hypertrophy of the palatine tonsils, 18% had a Mallampati score of III or IV, 26.1% had excessive overjet and 17.7% had anterior open bite malocclusion. Among the MB, 53.9% had atresic palate, 35.9% had lip incompetence, 33.5% reported sleepiness during the day, 32.2% often sneezed, 32.2% had a stuffy nose, 19.6% snored, and 9.4% reported having the feeling to stop breathing while asleep. However, the self-perception of their quality of life was considered good. CONCLUSION: High prevalence of facial changes as well as signs and symptoms of mouth breathing were found among health children, requiring early diagnosis and treatment to reduce the risk of SDB.

  5. Biomarkers of Therapeutic Response in the IL-23 Pathway in Inflammatory Bowel Disease

    OpenAIRE

    Cayatte, Corinne; Joyce-Shaikh, Barbara; Vega, Felix; Boniface, Katia; Grein, Jeffrey; Murphy, Erin; Blumenschein, Wendy M; Chen, Smiley; Malinao, Maria-Christina; Basham, Beth; Pierce, Robert H; Bowman, Edward P; McKenzie, Brent S; Elson, Charles O; Faubion, William A

    2012-01-01

    OBJECTIVES: Interleukin-23 (IL-23) has emerged as a new therapeutic target for the treatment of inflammatory bowel disease (IBD). As biomarkers of disease state and treatment efficacy are becoming increasingly important in drug development, we sought to identify efficacy biomarkers for anti-IL-23 therapy in Crohn's disease (CD). METHODS: Candidate IL-23 biomarkers, downstream of IL-23 signaling, were identified using shotgun proteomic analysis of feces and colon lavages obtained from a short-...

  6. Effects of Positioning Uncertainty and Breathing on Dose Delivery and Radiation Pneumonitis Prediction in Breast Cancer

    International Nuclear Information System (INIS)

    Mavroidis, Panayiotis; Axelsson, Sofie; Hyoedynmaa, Simo; Rajala, Juha; Pitkaenen, Maunu A.; Lind, Bengt K.; Brahme, Anders

    2002-01-01

    The quality of the radiation therapy delivered in the treatment of breast cancer is susceptible to setup errors and organ motion uncertainties. For 60 breast cancer patients (24 resected with negative node involvement, 13 resected with positive node involvement and 23 ablated) who were treated with three different irradiation techniques, these uncertainties are simulated. The delivered dose distributions in the lung were recalculated taking positioning uncertainty and breathing effects into account. In this way the real dose distributions delivered to the patients are more closely determined. The positioning uncertainties in the anteroposterior (AP) and the craniocaudal (CC) directions are approximated by Gaussian distributions based on the fact that setup errors are random. Breathing is assumed to have a linear behavior because of the chest wall movement during expiration and inspiration. The combined frequency distribution of the positioning and breathing distributions is obtained by convolution. By integrating the convolved distribution over a number of intervals, the positions and the weights of the fields that simulate the original 'effective fields' are calculated. Opposed tangential fields are simulated by a set of 5 pairs of fields in the AP direction and 3 such sets in the CC direction. Opposed AP + PA fields are simulated by a set of 3 pairs of fields in the AP direction and 3 such sets in the CC direction. Single frontal fields are simulated by a set of 5 fields. In radiotherapy for breast cancer, the lung is often partly within the irradiated volume even though it is a sensitive organ at risk. The influence of the deviation in the dose delivered by the original and the adjusted treatment plans on the clinical outcome is estimated by using the relative seriality model and the biologically effective uniform dose concept. Radiation pneumonitis is used as the clinical endpoint for lung complications. The adjusted treatment plans show larger lung

  7. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  8. Radiographic cephalometry analysis of head posture and craniofacial morphology in oral breathing children

    Directory of Open Access Journals (Sweden)

    Vukićević Vladanka

    2017-01-01

    Full Text Available Background/Aim. Nasal breathing plays an important role in overall physical growth and mental development, as well as in the growth of the craniofacial complex. Oral breathing over a long period of time, can cause changes in position of the head relative to the cervical spine and jaw relationship. It can cause an open bite and the narrowness of the maxillary arch due to increased pressure of strained face. The aim of this study was to analyze the position of the head and craniofacial morphology in oral breathing children, and compare the values obtained compared with those of the same parameters in nasal brething children. Methods. We analyzed the profile cephalometric radiographs of 60 patients who had various orthodontic problems. In the first group there were 30 patients aged 8–14 years, in which oral breathing is confirmed by clinical examination. In the second group there were 30 patients of the same age who had orthodontic problems, but did not show clinical signs of oral breathing. The analyses covered the following: craniocervical angle (NS/OPT, the length of the anterior cranial base (NS, anterior facial height (N-Me, posterior facial height (S-Go, the angle of maxillary prognathism (SNA, angle of mandibular prognathism (SNB, difference between angles SNA and SNB (ANB angle, the angle of the basal planes of the jaws (SpP/MP, cranial base angle (NSB, and the angle of facial convexity (NA/Apg. Results. The average value of the craniocervical angle (NS/OPT was significantly higher in OB children (p = 0.004. There were significantly different values of SNA (p < 0.001, ANB (p < 0.001, NA/APg (p < 0.001 and length of the anterior cranial base (NS (p = 0.024 between groups. Conclusion. Oral breathing children have pronounced retroflexion of the head in relation to the cervical spine compared to nasal breathing children, and the most prominent characteristics of the craniofacial morphology of skeletal jaw relationship of class II and

  9. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit bacterial filter. 868.5260 Section 868.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to remove...

  10. Health, social and economical consequences of sleep-disordered breathing

    DEFF Research Database (Denmark)

    Jennum, Poul; Kjellberg, Jakob

    2011-01-01

    The objective direct and indirect costs of sleep-disordered breathing (snoring, sleep apnoea (SA) and obesity hypoventilation syndrome (OHS)) and the treatment are incompletely described.......The objective direct and indirect costs of sleep-disordered breathing (snoring, sleep apnoea (SA) and obesity hypoventilation syndrome (OHS)) and the treatment are incompletely described....

  11. 21 CFR 868.2375 - Breathing frequency monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a...

  12. The breathtaking truth about breath alcohol readings of zero

    NARCIS (Netherlands)

    Verster, Joris C; Mackus, Marlou; van de Loo, Aurora Jae; Garssen, Johan; Scholey, Andrew

    INTRODUCTION: It has been postulated that the hangover state starts when breath alcohol concentration is zero. METHODS: Data from 2 studies that assessed ethanol in breath, blood and urine were compared. RESULTS: The data revealed that ethanol may still be present in the blood and urine during the

  13. Influence of Continuous Table Motion on Patient Breathing Patterns

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Richter, Anne; Herrmann, Christian; Ma Lei; Flentje, Michael; Guckenberger, Matthias

    2010-01-01

    Purpose: To investigate the influence of continuous table motion on patient breathing patterns for compensation of moving targets by a robotic treatment couch. Methods and Materials: Fifteen volunteers were placed on a robotic treatment couch, and the couch was moved on different breathing-correlated and -uncorrelated trajectories. External abdominal breathing motion of the patients was measured using an infrared camera system. The influence of table motion on breathing range and pattern was analyzed. Results: Continuous table motion was tolerated well by all test persons. Volunteers reacted differently to table motion. Four test persons showed no change of breathing range and pattern. Increased irregular breathing was observed in 4 patients; however, irregularity was not correlated with table motion. Only 4 test persons showed an increase in mean breathing amplitude of more than 2mm during motion of the couch. The mean cycle period decreased by more than 1 s for 2 test persons only. No abrupt changes in amplitude or cycle period could be observed. Conclusions: The observed small changes in breathing patterns support the application of motion compensation by a robotic treatment couch.

  14. Symptoms of Sleep Disordered Breathing and Risk of Cancer

    DEFF Research Database (Denmark)

    Christensen, Anne Sofie; Clark, Alice; Salo, Paula

    2013-01-01

    Sleep disordered breathing (SDB) has been associated with oxidative stress, inflammation, and altered hormonal levels, all of which could affect the risk of cancer. The aim of the study is to examine if symptoms of SDB including snoring, breathing cessations, and daytime sleepiness affect...

  15. Deep-inspiration breath-hold PET/CT versus free breathing PET/CT and respiratory gating PET for reference. Evaluation in 95 patients with lung cancer

    International Nuclear Information System (INIS)

    Kawano, Tsuyoshi; Ohtake, Eiji; Inoue, Tomio

    2011-01-01

    The objective of this study was to define the factors that correlate with differences in maximum standardized uptake value (SUV max ) in deep-inspiration breath-hold (DIBH) and free breathing (FB) positron emission tomography (PET)/CT admixed with respiratory gating (RG) PET for reference. Patients (n=95) with pulmonary lesions were evaluated at one facility over 33 months. After undergoing whole-body PET/CT, a RG PET and FB PET/CT scans were obtained, followed by a DIBH PET/CT scan. All scans were recorded using a list-mode dynamic collection method with respiratory gating. The RG PET was reconstructed using phase gating without attenuation correction; the FB PET was reconstructed from the RG PET sinogram datasets with attenuation correction. Respiratory motion distance, breathing cycle speed, and waveform of RG PET were recorded. The SUV max of FB PET/CT and DIBH PET/CT were recorded: the percent difference in SUV max between the FB and DIBH scans was defined as the %BH-index. The %BH-index was significantly higher for lesions in the lower lung area than in the upper lung area. Respiratory motion distance was significantly higher in the lower lung area than in the upper lung area. A significant relationship was observed between the %BH-index and respiratory motion distance. Waveforms without steady end-expiration tended to show a high %BH-index. Significant inverse relationships were observed between %BH-index and cycle speed, and between respiratory motion distance and cycle speed. Decrease in SUV max of FB PET/CT was due to tumor size, distribution of lower lung, long respiratory movement at slow breathing cycle speeds, and respiratory waveforms without steady end-expiration. (author)

  16. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Brock, Kristy K.; Kazanjian, Sahira; Fitch, Dwight; McGinn, Cornelius J.; Lawrence, Theodore S.; Haken, Randall K. ten; Balter, James

    2001-01-01

    Purpose: To evaluate the intrafraction and interfraction reproducibility of liver immobilization using active breathing control (ABC). Methods and Materials: Patients with unresectable intrahepatic tumors who could comfortably hold their breath for at least 20 s were treated with focal liver radiation using ABC for liver immobilization. Fluoroscopy was used to measure any potential motion during ABC breath holds. Preceding each radiotherapy fraction, with the patient setup in the nominal treatment position using ABC, orthogonal radiographs were taken using room-mounted diagnostic X-ray tubes and a digital imager. The radiographs were compared to reference images using a 2D alignment tool. The treatment table was moved to produce acceptable setup, and repeat orthogonal verification images were obtained. The positions of the diaphragm and the liver (assessed by localization of implanted radiopaque intra-arterial microcoils) relative to the skeleton were subsequently analyzed. The intrafraction reproducibility (from repeat radiographs obtained within the time period of one fraction before treatment) and interfraction reproducibility (from comparisons of the first radiograph for each treatment with a reference radiograph) of the diaphragm and the hepatic microcoil positions relative to the skeleton with repeat breath holds using ABC were then measured. Caudal-cranial (CC), anterior-posterior (AP), and medial-lateral (ML) reproducibility of the hepatic microcoils relative to the skeleton were also determined from three-dimensional alignment of repeat CT scans obtained in the treatment position. Results: A total of 262 fractions of radiation were delivered using ABC breath holds in 8 patients. No motion of the diaphragm or hepatic microcoils was observed on fluoroscopy during ABC breath holds. From analyses of 158 sets of positioning radiographs, the average intrafraction CC reproducibility (σ) of the diaphragm and hepatic microcoil position relative to the skeleton

  17. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  18. [Autoantibodies as biomarkers].

    Science.gov (United States)

    Tron, François

    2014-01-01

    Activation and differentiation of autoreactive B-lymphocytes lead to the production of autoantibodies, which are thus the direct consequence of the autoimmune process. They often constitute biomarkers of autoimmune diseases and are measured by tests displaying various diagnosis sensitivity and specificity. Autoantibody titers can be correlated to the disease activity and certain autoantibody populations associated with particular clinical manifestations or tissue lesions. The demonstration that autoantibodies appear years before the onset of autoimmune diseases indicates that their presence in healthy individuals may be a predictive marker of the occurrence of disease. Certain autoantibodies could also be predictive markers of a therapeutic response to biologics and of the occurrence of side effects as well. Thus, autoantibodies are useful tools in the diagnosis and the management of patients with organ specific or non-organ specific autoimmune diseases at different steps of the autoimmune process. Copyright © 2013. Published by Elsevier Masson SAS.

  19. Cardiac Biomarkers and Cycling Race

    Directory of Open Access Journals (Sweden)

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier

    2015-06-01

    Full Text Available In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011, but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac biomarkers: creatin kinase (CK, creating kinase midbrain (CK-MB, myoglobin (MYO, highly sensitive troponin T (hs-TnT and N-terminal brain natriuretic peptide (NT-proBNP. The population studied was a group of young trained cyclists participating in a 177-km cycling race. The group of individuals was selected for maximal homogeneity. Their annual training volume was between 10,000 and 16,000 kilometers. The rhythm of races is comparable and averages 35 km/h, depending on the race’s difficulty. The cardiac frequency was recorded via a heart rate monitor. Three blood tests were taken. The first blood test, T0, was taken approximately 2 hours before the start of the race and was intended to gather values which would act as references for the following tests. The second blood test, T1, was realized within 5 minutes of their arrival. The third and final blood test, T3, was taken 3 hours following their arrival. The CK, CK-MB, MYO, hs-TnT and NT-proBNP were measured on the Roche Diagnostic modular E (Manhein, Germany. For the statistical analysis, an ANOVA and post hoc test of Scheffé were calculated with the Statistica Software version 9.1. We noticed an important significant variation in the cardiac frequency between T0 and T1 (p < 0.0001, T0 and T3 (p < 0.0001, and T1 and T3 (p < 0.01. Table 1 shows the results obtained for the different biomarkers. CK and CK-MB showed significant variation between T0-T1 and T0-T3 (p < 0.0001. Myoglobin increased significantly

  20. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  1. New biomarkers for sepsis

    Directory of Open Access Journals (Sweden)

    Li-xin XIE

    2013-01-01

    Full Text Available There is a higher sepsis rate in the intensive care unit (ICU patients, which is one of the most important causes for patient death, but the sepsis lacks specific clinical manifestations. Exploring sensitive and specific molecular markers for infection that accurately reflect infection severity and prognosis is very clinically important. In this article, based on our previous study, we introduce some new biomarkers with high sensitivity and specificity for the diagnosis and predicting the prognosis and severity of sepsis. Increase of serum soluble(s triggering receptor expressed on myeloid cells-1 (sTREM-1 suggests a poor prognosis of septic patients, and changes of locus rs2234237 of sTREM-1 may be the one of important mechanisms. Additionally, urine sTREM-1 can provide an early warning of possible secondary acute kidney injury (AKI in sepsis patients. Serum sCD163 level was found to be a more important factor than procalcitonin (PCT and C-reactive protein (CRP in prognosis of sepsis, especially severe sepsis. Moreover, urine sCD163 also shows excellent performance in the diagnosis of sepsis and sepsis-associated AKI. Circulating microRNAs, such as miR-150, miR-297, miR-574-5p, miR -146a , miR-223, miR -15a and miR-16, also play important roles in the evaluation of status of septic patients. In the foreseeable future, newly-emerging technologies, including proteomics, metabonomics and trans-omics, may exert profound effects on the discovery of valuable biomarkers for sepsis.

  2. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    OpenAIRE

    Arden-Close, E; Yardley, L; Kirby, S; Thomas, M; Bruton, A

    2017-01-01

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retr...

  3. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  4. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control.

    Science.gov (United States)

    Malinovschi, Andrei; Pizzimenti, Stefano; Sciascia, Savino; Heffler, Enrico; Badiu, Iuliana; Rolla, Giovanni

    2011-07-01

    Asthma is a chronic respiratory disease, characterised by airways inflammation, obstruction and hyperresponsiveness. Asthma control is the goal of asthma treatment, but many patients have sub-optimal control. Exhaled NO and exhaled breath condensate (EBC) NO metabolites (nitrites and nitrates) measurements are non-invasive tools to assess airways inflammation. Our aim was to investigate the relationships between asthma control and the above-named biomarkers of airways inflammation. Thirty-nine non-smoking asthmatic patients (19 women) aged 50 (21-80) years performed measurements of exhaled NO (FENO), EBC nitrates, nitrites and pH, and answered Asthma Control Questionnaire (ACQ) and Asthma Control Test (ACT)-questionnaire. The ACT and ACQ score were strongly interrelated (ρ = -0.84, p 0.05). EBC nitrates were negatively related to ACT score (ρ = -0.34, p = 0.03) and positively related to ACQ score (ρ = 0.41, p = 0.001) while no relation of EBC nitrites to either ACQ or ACT score was found (p>0.05). EBC nitrates were the only biomarker that was significantly related to asthma control. This suggests that nitrates, but not nitrites or FENO, reflect an aspect of airways inflammation that is closer related to asthma symptoms. Therefore there is a potential role for EBC nitrates in objective assessment of asthma control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...... with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is dependent...... on wakefulness and sleep. Thus, it is important to be aware of basic mechanisms in the regulation and control of sleep and awake states. Supine position decreases the vital capacity in tetraplegic individuals, and diminished responsiveness to Pa(CO)(2) may further decrease ventilatory reserve. There also may...

  6. Sleep disordered breathing in children with achondroplasia.

    Science.gov (United States)

    Zaffanello, Marco; Cantalupo, Gaetano; Piacentini, Giorgio; Gasperi, Emma; Nosetti, Luana; Cavarzere, Paolo; Ramaroli, Diego Alberto; Mittal, Aliza; Antoniazzi, Franco

    2017-02-01

    Children with achondroplasia often have breathing problems, especially during sleep. The most important treatments are adenotonsillectomy (for treating upper obstruction) and/or neurosurgery (for resolving cervicomedullar junction stenosis). We reviewed the scientific literature on polysomnographic investigations which assessed the severity of respiratory disorders during sleep. Recent findings have highlighted the importance of clinical investigations in patients with achondroplasia, differentiating between those that look for neurological patterns and those that look for respiratory problems during sleep. In particular, magnetic resonance imaging (MRI) and somatosensory evoked potentials are the main tools to evaluate necessary neurosurgery and over myelopathy, respectively. The use of polysomnography enables clinicians to identify children with upper airway obstruction and to quantify disease severity; it is not suitable for MRI and/or neurosurgery considerations.

  7. The breathing mode and the nuclear surface

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Grammaticos, B.

    1981-01-01

    The role of nuclear surface in the breathing mode of nuclei is analyzed. We discuss a simple model in which the density varies according to a scaling of the coordinates. We show that this model reproduces accurately the results of microscopic calculations in heavy nuclei, and we use it to estimate the contribution of the surface to the effective compression modulus of semi-infinite nuclear matter. The calculation is performed in the framework of an extended Thomas-Fermi approximation and using several effective interactions. It is shown that the surface energy is maximum with respect to variations of the density around saturation density. The reduction of the effective compression modulus due to the surface turns to be proportional to the bulk compression modulus. The magnitude of the effect is compared with results of RPA calculations. Other contributions to the effective compressions modulus of finite nuclei are also discussed. (orig.)

  8. Multiple Sclerosis Cerebrospinal Fluid Biomarkers

    Directory of Open Access Journals (Sweden)

    Gavin Giovannoni

    2006-01-01

    Full Text Available Cerebrospinal fluid (CSF is the body fluid closest to the pathology of multiple sclerosis (MS. For many candidate biomarkers CSF is the only fluid that can be investigated. Several factors need to be standardized when sampling CSF for biomarker research: time/volume of CSF collection, sample processing/storage, and the temporal relationship of sampling to clinical or MRI markers of disease activity. Assays used for biomarker detection must be validated so as to optimize the power of the studies. A formal method for establishing whether or not a particular biomarker can be used as a surrogate end-point needs to be adopted. This process is similar to that used in clinical trials, where the reporting of studies has to be done in a standardized way with sufficient detail to permit a critical review of the study and to enable others to reproduce the study design. A commitment must be made to report negative studies so as to prevent publication bias. Pre-defined consensus criteria need to be developed for MS-related prognostic biomarkers. Currently no candidate biomarker is suitable as a surrogate end-point. Bulk biomarkers of the neurodegenerative process such as glial fibrillary acidic protein (GFAP and neurofilaments (NF have advantages over intermittent inflammatory markers.

  9. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science.

    Science.gov (United States)

    Wallace, M Ariel Geer; Kormos, Tzipporah M; Pleil, Joachim D

    2016-01-01

    Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.

  10. Biomarkers and correlative endpoints for immunotherapy trials.

    Science.gov (United States)

    Morse, Michael A; Osada, Takuya; Hobeika, Amy; Patel, Sandip; Lyerly, H Kim

    2013-01-01

    Immunotherapies for lung cancer are reaching phase III clinical trial, but the ultimate success likely will depend on developing biomarkers to guide development and choosing patient populations most likely to benefit. Because the immune response to cancer involves multiple cell types and cytokines, some spatially and temporally separated, it is likely that multiple biomarkers will be required to fully characterize efficacy of the vaccine and predict eventual benefit. Peripheral blood markers of response, such as the ELISPOT assay and cytokine flow cytometry analyses of peripheral blood mononuclear cells following immunotherapy, remain the standard approach, but it is increasingly important to obtain tissue to study the immune response at the site of the tumor. Earlier clinical endpoints such as response rate and progression-free survival do not correlate with overall survival demonstrated for some immunotherapies, suggesting the need to develop other intermediary clinical endpoints. Insofar as all these biomarkers and surrogate endpoints are relevant in multiple malignancies, it may be possible to extrapolate findings to immunotherapy of lung cancer.

  11. Particle transport in breathing quantum graph

    International Nuclear Information System (INIS)

    Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.

    2012-01-01

    Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)

  12. Oral breathing: new early treatment protocol

    Directory of Open Access Journals (Sweden)

    Gloria Denotti

    2014-01-01

    Full Text Available Oral breathing is a respiratory dysfunction that affects approximately 10-15% of child population. It is responsable of local effects and systemic effects, both immediate and long-term. They affect the growth of the subject and his physical health in many ways: pediatric, psycho-behavioral and cognitive. The etiology is multifactorial. It’s important the establishment of a vicious circle involving more areas and it is essential to stop it as soon as possible. In order to correct this anomaly, the pediatric dentist must be able to make a correct diagnosis to treat early the disfunction and to avoid the onset of cascade mechanisms. Who plays a central role is the pediatrician who first and frequently come into contact with little patients. He can identify the anomalies, and therefore collaborate with other specialists, including the dentist. The key aspect that guides us in the diagnosis, and allows us to identify the oral respirator, is the “adenoid facies”. The purpose of the study is to highlight the importance and benefits of an early and multidisciplinary intervention (pediatric, orthopedic-orthodontic-functional. A sample of 20 patients was selected with the following inclusion criteria: mouth breathing, transverse discrepancy > 4 mm, early mixed dentition, central and lateral permenent incisors, overjet increased, lip and nasal incompetence, snoring and/or sleep apnea episodes. The protocol of intervention includes the use of the following devices and procedures: a maxillary rapid expander (to correct the transverse discrepancy, to increase the amplitude of the upper respiratory airway and to reduce nasal resistances tract in association with myo-functional devices (nasal stimulator and oral obturator. They allow the reconstruction of a physiological balance between the perioral musculature and tongue, the acquisition of nasal and lips competence and the reduction of overjet. This protocol speeds up and stabilizes the results. The

  13. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  14. Experimental Dynamic Analysis of a Breathing Cracked Rotor

    Science.gov (United States)

    Guo, Chao-Zhong; Yan, Ji-Hong; Bergman, Lawrence A.

    2017-09-01

    Crack fault diagnostics plays a critical role for rotating machinery in the traditional and Industry 4.0 factory. In this paper, an experiment is set up to study the dynamic response of a rotor with a breathing crack as it passes through its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. A cracked shaft is made by applying fatigue loads through a three-point bending apparatus and then placed in a rotor testbed. The vibration signals of the testbed during the coasting-up process are collected. Whirl orbit evolution at these subcritical speed zones is analyzed. The Fourier spectra obtained by FFT are used to investigate the internal frequencies corresponding to the typical orbit characteristics. The results show that the appearance of the inner loops and orientation change of whirl orbits in the experiment are agreed well with the theoretical results obtained previously. The presence of higher frequencies 2X, 3X, 4X and 5X in Fourier spectra reveals the causes of subharmonic resonances at these subcritical speed zones. The experimental investigation is more systematic and thorough than previously reported in the literature. The unique dynamic behavior of the orbits and frequency spectra are feasible features for practical crack diagnosis. This paper provides a critical technology support for the self-aware health management of rotating machinery in the Industry 4.0 factory.

  15. Biomarkers as Proxies for Life and Environment

    Science.gov (United States)

    Summons, R. E.

    2006-05-01

    Biomarkers are organic molecules that can be used to trace specific types of organisms or biological processes in contemporary ecosystems, ancient sediments and, potentially, beyond the Earth. Biomarkers offer a means to evaluate Earth's biosphere from its earliest development to the modern day. Hydrocarbons, which are the remains of lipids that once resided in the membranes of ancestral organisms, carry chemical and isotopic clues about the nature of early ecosystems. The hydrocarbon remains of fatty acids, sterols, bacterial triterpenoids and pigments are very recalcitrant substances and can be found in rocks as old as 2.8 billion years. These molecules tell us that the three domains, archaea, bacteria and eukarya that comprise all extant life appeared quite early in Earth's history as did the oxygen-producing photosynthesis that oxidized our atmosphere and made it possible for animal life to evolve and increase in complexity. Pigment-derived biomarkers are especially useful for evaluating paleo-environmental conditions. They occur in rocks from the Archean to the present day and can be especially diagnostic for euxinic conditions. The greatest known mass extinction event occurred at the end of the Permian period and extinguished about 70% of the animals and plants that existed at that time. Much controversy surrounds its cause with many different scenarios having been proposed. An international collaboration has enabled biomarker profiles to be obtained from Permian- Triassic boundary sections in China, Australia, Canada, Tibet and Greenland. These data suggest that euxinic conditions prevailed widely in the oceans for an extended period from the Late Permian and that sulfide toxicity may have been a major factor in the demise of both plant and animal life.

  16. New serum biomarkers for prostate cancer diagnosis

    Science.gov (United States)

    Chadha, Kailash C.; Miller, Austin; Nair, Bindukumar B.; Schwartz, Stanley A.; Trump, Donald L.; Underwood, Willie

    2014-01-01

    Background Prostate-specific antigen (PSA) is currently used as a biomarker for diagnosis and management of prostate cancer (CaP). However, PSA typically lacks the sensitivity and specificity desired of a diagnostic marker. Objective The goal of this study was to identify an additional biomarker or a panel of biomarkers that is more sensitive and specific than PSA in differentiating benign versus malignant prostate disease and/or localized CaP versus metastatic CaP. Methods Concurrent measurements of circulating interleukin-8 (IL-8), Tumor necrosis factor-α (TNF-α) and soluble tumor necrosis factor-α receptors 1 (sTNFR1) were obtained from four groups of men: (1) Controls (2) with elevated prostate-specific antigen with a negative prostate biopsy (elPSA_negBx) (3) with clinically localized CaP and (4) with castration resistant prostate cancer. Results TNF-α Area under the receiver operating characteristic curve (AUC = 0.93) and sTNFR1 (AUC = 0.97) were strong predictors of elPSA_negBx (vs. CaP). The best predictor of elPSA_negBx vs CaP was sTNFR1 and IL-8 combined (AUC = 0.997). The strongest single predictors of localized versus metastatic CaP were TNF-α (AUC = 0.992) and PSA (AUC = 0.963) levels. Conclusions The specificity and sensitivity of a PSA-based CaP diagnosis can be significantly enhanced by concurrent serum measurements of IL-8, TNF-α and sTNFR1. In view of the concerns about the ability of PSA to distinguish clinically relevant CaP from indolent disease, assessment of these biomarkers in the larger cohort is warranted. PMID:25593898

  17. The use of biomarkers in occupational health research, practice, and policy.

    Science.gov (United States)

    Schulte, P A; Hauser, J E

    2012-08-13

    Biomarkers are potentially useful tools for occupational health and safety research, practice, and policy. However, the full realization of this potential has not been achieved. In this paper, the progress made in these three usage areas is reviewed to identify what efforts can be taken to realize the full promise of biomarkers. Biomarker uses are described by a diverse taxonomy that builds on the categories of exposure, effect and susceptibility, and the continuum between exposure and disease prognosis. The most significant uses of biomarkers in occupational health have been in biological monitoring of workers. Other important uses have been in enhancing research and assessing mechanisms of action of occupational toxicants at low exposures. Seven critical areas will influence the extent to which the potential of biomarkers in occupational health and safety is realized. These include: (1) adequate investment in validation; (2) obtaining international agreement on exposure guidelines; (3) exploring the utility of biomarkers in regulation; (4) applying biomarkers to critical occupational safety and health questions; (5) developing the exposome; (6) utilizing biomarkers to address emerging occupational health issues; and (7) continuing to address the ethical and social justice issues related to biomarkers. Overall, if biomarkers are to make a major contribution to occupational health and safety then a more holistic approach to bringing them from the laboratory to practice will be needed. Published by Elsevier Ireland Ltd.

  18. Development of a 4D numerical chest phantom with customizable breathing.

    Science.gov (United States)

    Leni, Pierre-Emmanuel; Laurent, Rémy; Salomon, Michel; Gschwind, Régine; Makovicka, Libor; Henriet, Julien

    2016-06-01

    Respiratory movement information is useful for radiation therapy, and is generally obtained using 4D scanners (4DCT). In the interest of patient safety, reducing the use of 4DCT could be a significant step in reducing radiation exposure, the effects of which are not well documented. The authors propose a customized 4D numerical phantom representing the organ contours. Firstly, breathing movement can be simulated and customized according to the patient's anthroporadiametric data. Using learning sets constituted by 4D scanners, artificial neural networks can be trained to interpolate the lung contours corresponding to an unknown patient, and then to simulate its respiration. Lung movement during the breathing cycle is modeled by predicting the lung contours at any respiratory phases. The interpolation is validated comparing the obtained lung contours with 4DCT via Dice coefficient. Secondly, a preliminary study of cardiac and œsophageal motion is also presented to demonstrate the flexibility of this approach. The application may simulate the position and volume of the lungs, the œsophagus and the heart at every phase of the respiratory cycle with a good accuracy: the validation of the lung modeling gives a Dice index greater than 0.93 with 4DCT over a breath cycle. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Efficacy of a Respiratory Training System on the Regularity of Breathing

    International Nuclear Information System (INIS)

    Shin, Eun Hyuk; Park, Hee Chul; Han, Young Yih; Ju, Sang Gyu; Shin, Jung Suk; Ahn, Yong Chan

    2008-01-01

    In order to enhance the efficiency of respiratory gated 4-dimensional radiation therapy for more regular and stable respiratory period and amplitude, a respiration training system was designed, and its efficacy was evaluated. Materials and Methods: The experiment was designed to measure the difference in respiration regularity following the use of a training system. A total of 11 subjects (9 volunteers and 2 patients) were included in the experiments. Three different breathing signals, including free breathing (free-breathing), guided breathing that followed training software (guided-breathing), and free breathing after the guided-breathing (post guided-breathing), were consecutively recorded in each subject. The peak-to-peak (PTP) period of the breathing signal, standard deviation (SD), peak-amplitude and its SD, area of the one cycle of the breathing wave form, and its root mean square (RMS) were measured and computed. Results: The temporal regularity was significantly improved in guided-breathing since the SD of breathing period reduced (free-breathing 0.568 vs guided-breathing 0.344, p=0.0013). The SD of the breathing period representing the post guided-breathing was also reduced, but the difference was not statistically significant (free-breathing 0.568 vs. guided-breathing 0.512, p=ns). Also the SD of measured amplitude was reduced in guided-breathing (free-breathing 1.317 vs. guided-breathing 1.068, p=0.187), although not significant. This indicated that the tidal volume for each breath was kept more even in guided-breathing compared to free-breathing. There was no change in breathing pattern between free-breathing and guided-breathing. The average area of breathing wave form and its RMS in postguided-breathing, however, was reduced by 7% and 5.9%, respectively. Conclusion: The guided-breathing was more stable and regular than the other forms of breathing data. Therefore, the developed respiratory training system was effective in improving the temporal

  20. Single breath study for lung scan with krypton-81m: proposition of a mathematical model

    International Nuclear Information System (INIS)

    Pommet, R.; Mathieu, E.

    1981-01-01

    A single breath study with sup(81m)Kr was proceeded in patients, and we studied a theorical model. Based on experimental datas, the model was extrapolated by simple compartimental hypothesis, permitting a study per area of the instant alveolar lung flow by a deconvolution operation. An other approach to present the local ventilation is proposed too. Based on the average flow of ventilation index, calculation is obtained easier than by deconvolution method, and this method fully agree with the proposed model. This index allows the realisation of functionnal views of the local ventilation flow, made possible by the use of a computer for the study of each elementary area of the lung and the realisation of the activity curve recorded during the sup(81m)Kr first breath [fr

  1. Electromagnetic properties of 6Li in a cluster model with breathing clusters

    International Nuclear Information System (INIS)

    Kruppa, A.T.; Beck, R.; Dickmann, F.

    1987-01-01

    Electromagnetic properties of 6 Li are studied using a microscopic (α+δ) cluster model. In addition to the ground state of the clusters, their breathing excited states are included in the wave function in order to take into account the distortion of the clusters. The elastic charge form factor is in good agreement with experiment up to a momentum transfer of 8 fm -2 . The ground state magnetic form factor and the inelastic charge form factor are also well described. The effect of the breathing states of α on the form factors proves to be negligible except at high momentum transfer. The ground-state charge density, rms charge radius, the magnetic dipole moment and a reduced transition strength are also obtained in fair agreement with experiment. (author)

  2. Assessment of the vaginal residence time of biomarkers of semen exposure.

    Science.gov (United States)

    Thurman, Andrea; Jacot, Terry; Melendez, Johan; Kimble, Thomas; Snead, Margaret; Jamshidi, Roxanne; Wheeless, Angie; Archer, David F; Doncel, Gustavo F; Mauck, Christine

    2016-11-01

    The primary objective of this pilot study is to determine and compare the residence time in the vagina of biomarkers of semen exposure for up to 15 days post exposure. The biomarkers are prostate-specific antigen (PSA), Y chromosome DNA, the sex determining region of the Y chromosome (SRY) and testis-specific protein Y-encoded 4 (TSPY4). The secondary objectives are to determine if biomarker concentrations differed between intercourse and inoculation groups, to establish whether the sampling frequency post exposure affected biomarker concentrations and decay profile and to determine if biomarker concentrations in vaginal swabs obtained by the participant at home were similar to swabs obtained by the nurse in the clinic. We randomized healthy women to unprotected intercourse (n=17) versus vaginal inoculation with the male partner's semen in the clinic (n=16). Women were then further randomized to have vaginal swabs obtained at either 7 or 4 time points after semen exposure, up to 15 days post exposure, either obtained at home by the participant or in the clinic by the research nurse. PSA and SRY were markers of recent semen exposure. TSPY4 was detectable in approximately 50% of participants at 15 days post exposure. Unprotected intercourse resulted in significantly higher concentrations of select biomarkers. Sampling frequency and home versus clinic sampling had no significant effect on biomarker concentrations. Objective biomarkers of recent or distant semen exposure may have great utility for verifying protocol compliance in a variety of clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Free-breathing conformal irradiation of pancreatic cancer.

    Science.gov (United States)

    Solla, Ignazio; Zucca, Sergio; Possanzini, Marco; Piras, Sara; Pusceddu, Claudio; Porru, Sergio; Meleddu, Gianfranco; Farace, Paolo

    2013-07-08

    The purpose of this study was to assess treatment margins in free-breathing irradiation of pancreatic cancer after bone alignment, and evaluate their impact on conformal radiotherapy. Fifteen patients with adenocarcinoma of the head of the pancreas underwent implantation of single fiducial marker. Intrafraction uncertainties were assessed on simulation four-dimensional computed tomography (4D CT) by calculating maximal intrafraction fiducial excursion (MIFE). In the first ten patients, after bony alignment, the position of the fiducial was identified on weekly acquired megavolt cone-beam CT (MV-CBCT). The interfraction residual uncertainties were estimated by measuring the fiducial displacements with respect to the position in the first session. Patient mean (pM) and patient standard deviation (pSD) of fiducial displacement, mean (μM) and standard deviation (μSD) of pM, and root-mean-square of pSD (σ(res)) were calculated. In the other five patients, MIFE was added to the residual component to obtain personalized margin. In these patients, conformal kidney sparing (CONKISS) irradiation was planned prescribing 54/45 Gy to PTV1/PTV2. The organ-at-risk limits were set according to current NCCN recommendation. No morbidity related to the fiducial marker implantation was recorded. In the first ten patients, along right-left, anterior-posterior, and inferior-superior directions, MIFE was variable (mean ± std = 0.24 ± 0.13 cm, 0.31 ± 0.14 cm, 0.83 ± 0.35 cm, respectively) and was at most 0.51, 0.53, and 1.56 cm, respectively. Along the same directions, μM were 0.09, -0.05, -0.05 cm, μSD were 0.30, 0.17, 0.33 cm, and σ(res) were 0.35, 0.26, and 0.30 cm, respectively. MIFE was not correlated with pM and pSD. In the five additional patients, it was possible to satisfy recommended dose limits, with the exception of slightly higher doses to small bowel. After bony alignment, the margins for target expansion can be obtained by adding personalized MIFE to the residual

  4. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment.

    Science.gov (United States)

    Sivathamboo, Shobi; Perucca, Piero; Velakoulis, Dennis; Jones, Nigel C; Goldin, Jeremy; Kwan, Patrick; O'Brien, Terence J

    2018-04-01

    Epilepsy is a group of neurological conditions in which there is a pathological and enduring predisposition to generate recurrent seizures. Evidence over the last few decades suggests that epilepsy may be associated with increased sleep-disordered breathing, which may contribute towards sleep fragmentation, daytime somnolence, reduced seizure control, and cardiovascular-related morbidity and mortality. Chronic sleep-disordered breathing can result in loss of gray matter and cause deficits to memory and global cognitive function. Sleep-disordered breathing is a novel and independent predictor of sudden cardiac death and, as such, may be involved in the mechanisms leading to sudden unexpected death in epilepsy. Despite this, the long-term consequences of sleep-disordered breathing in epilepsy remain unknown, and there are no guidelines for screening or treating this population. There is currently insufficient evidence to indicate continuous positive airway pressure (CPAP) for the primary or secondary prevention of cardiovascular disease, and recent evidence has failed to show any reduction of fatal or nonfatal cardiovascular endpoints. Treatment of sleep-disordered breathing may potentially improve seizure control, daytime somnolence, and neurocognitive outcomes, but few studies have examined this relationship. In this review, we examine sleep-disordered breathing in epilepsy, and discuss the potential effect of epilepsy treatments. We consider the role of CPAP and other interventions for sleep-disordered breathing and discuss their implications for epilepsy management.

  5. Sleep disordered breathing in spinal cord injury: A systematic review.

    Science.gov (United States)

    Chiodo, Anthony E; Sitrin, Robert G; Bauman, Kristy A

    2016-07-01

    Spinal cord injury commonly results in neuromuscular weakness that impacts respiratory function. This would be expected to be associated with an increased likelihood of sleep-disordered breathing. (1) Understand the incidence and prevalence of sleep disordered breathing in spinal cord injury. (2) Understand the relationship between injury and patient characteristics and the incidence of sleep disordered breathing in spinal cord injury. (3) Distinguish between obstructive sleep apnea and central sleep apnea incidence in spinal cord injury. (4) Clarify the relationship between sleep disordered breathing and stroke, myocardial infarction, metabolic dysfunction, injuries, autonomic dysreflexia and spasticity incidence in persons with spinal cord injury. (5) Understand treatment tolerance and outcome in persons with spinal cord injury and sleep disordered breathing. Extensive database search including PubMed, Cochrane Library, CINAHL and Web of Science. Given the current literature limitations, sleep disordered breathing as currently defined is high in patients with spinal cord injury, approaching 60% in motor complete persons with tetraplegia. Central apnea is more common in patients with tetraplegia than in patients with paraplegia. Early formal sleep study in patients with acute complete tetraplegia is recommended. In patients with incomplete tetraplegia and with paraplegia, the incidence of sleep-disordered breathing is significantly higher than the general population. With the lack of correlation between symptoms and SDB, formal study would be reasonable. There is insufficient evidence in the literature on the impact of treatment on morbidity, mortality and quality of life outcomes.

  6. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    International Nuclear Information System (INIS)

    Mistry, Nilesh N.; Diwanji, Tejan; Shi, Xiutao; Pokharel, Sabin; Feigenberg, Steven; Scharf, Steven M.; D'Souza, Warren D.

    2013-01-01

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R 2 of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance

  7. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Diwanji, Tejan; Shi, Xiutao [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Pokharel, Sabin [Morgan State University, Baltimore, Maryland (United States); Feigenberg, Steven [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Scharf, Steven M. [Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  8. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.

    Science.gov (United States)

    Zhang, Runkun; Huang, Wanting; Li, Gongke; Hu, Yufei

    2017-03-21

    The development of noninvasive methods for real-time in vivo analysis is of great significant, which provides powerful tools for medical research and clinical diagnosis. In the present work, we described a new strategy based on cataluminescence (CTL) for real-time in vivo clinical breath analysis. To illustrate such strategy, a homemade real-time CTL monitoring system characterized by coupling an online sampling device with a CTL sensor for sevoflurane (SVF) was designed, and a real-time in vivo method for the monitoring of SVF in exhaled breath was proposed. The accuracy of the method was evaluated by analyzing the real exhaled breath samples, and the results were compared with those obtained by GC/MS. The measured data obtained by the two methods were in good agreement. Subsequently, the method was applied to real-time monitoring of SVF in exhaled breath from rat models of the control group to investigate elimination pharmacokinetics. In order to further probe the potential of the method for clinical application, the elimination pharmacokinetics of SVF from rat models of control group, liver fibrosis group alcohol liver group, and nonalcoholic fatty liver group were monitored by the method. The raw data of pharmacokinetics of different groups were normalized and subsequently subjected to linear discriminant analysis (LDA). These data were transformed to canonical scores which were visualized as well-clustered with the classification accuracy of 100%, and the overall accuracy of leave-one-out cross-validation procedure is 88%, thereby indicating the utility of the potential of the method for liver disease diagnosis. Our strategy undoubtedly opens up a new door for real-time clinical analysis in a pain-free and noninvasive way and also guides a promising development direction for CTL.

  9. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    Directory of Open Access Journals (Sweden)

    Yong-Jian Ma

    2016-01-01

    Full Text Available This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0±5.9 d rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0±4.0 d, and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0±2.9 d were statistically similar (all p>0.05 to and linearly correlated (r=0.96, p<0.01 with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0±2.7 d; RIB10, 33.0±1.3 d; and RIB20, 27.0±0.8 d. The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models.

  10. Urinary Biomarkers of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Manxia An

    2015-12-01

    Full Text Available Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.

  11. Biomarkers of latent TB infection

    DEFF Research Database (Denmark)

    Ruhwald, Morten; Ravn, Pernille

    2009-01-01

    For the last 100 years, the tuberculin skin test (TST) has been the only diagnostic tool available for latent TB infection (LTBI) and no biomarker per se is available to diagnose the presence of LTBI. With the introduction of M. tuberculosis-specific IFN-gamma release assays (IGRAs), a new area...... of in vitro immunodiagnostic tests for LTBI based on biomarker readout has become a reality. In this review, we discuss existing evidence on the clinical usefulness of IGRAs and the indefinite number of potential new biomarkers that can be used to improve diagnosis of latent TB infection. We also present...... early data suggesting that the monocyte-derived chemokine inducible protein-10 may be useful as a novel biomarker for the immunodiagnosis of latent TB infection....

  12. Off-line breath acetone analysis in critical illness.

    Science.gov (United States)

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  13. Breathing multichimera states in nonlocally coupled phase oscillators

    Science.gov (United States)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  14. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    Science.gov (United States)

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  15. Biomarkers in differentiating clinical dengue cases: A prospective cohort study

    Directory of Open Access Journals (Sweden)

    Gary Kim Kuan Low

    2015-12-01

    Full Text Available Objective: To evaluate five biomarkers (neopterin, vascular endothelial growth factor-A, thrombomodulin, soluble vascular cell adhesion molecule 1 and pentraxin 3 in differentiating clinical dengue cases. Methods: A prospective cohort study was conducted whereby the blood samples were obtained at day of presentation and the final diagnosis were obtained at the end of patients’ follow-up. All patients included in the study were 15 years old or older, not pregnant, not infected by dengue previously and did not have cancer, autoimmune or haematological disorder. Median test was performed to compare the biomarker levels. A subgroup Mann-Whitney U test was analysed between severe dengue and non-severe dengue cases. Monte Carlo method was used to estimate the 2-tailed probability (P value for independent variables with unequal number of patients. Results: All biomarkers except thrombomodulin has P value < 0.001 in differentiating among the healthy subjects, non-dengue fever, dengue without warning signs and dengue with warning signs/severe dengue. Subgroup analysis for all the biomarkers between severe dengue and non-severe dengue cases was not statistically significant except vascular endothelial growth factor-A (P < 0.05. Conclusions: Certain biomarkers were able to differentiate the clinical dengue cases. This could be potentially useful in classifying and determining the severity of dengue infected patients in the hospital.

  16. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    International Nuclear Information System (INIS)

    Kim, Taeho; Kim, Siyong; Youn, Kaylin K; Park, Yang-Kyun; Keall, Paul; Lee, Rena

    2014-01-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE 90% ) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min −1 with free breathing to 0.09 mm min −1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH

  17. Analysis of biomarker data a practical guide

    CERN Document Server

    Looney, Stephen W

    2015-01-01

    A "how to" guide for applying statistical methods to biomarker data analysis Presenting a solid foundation for the statistical methods that are used to analyze biomarker data, Analysis of Biomarker Data: A Practical Guide features preferred techniques for biomarker validation. The authors provide descriptions of select elementary statistical methods that are traditionally used to analyze biomarker data with a focus on the proper application of each method, including necessary assumptions, software recommendations, and proper interpretation of computer output. In addition, the book discusses

  18. 13C mixed triglyceride breath test: a noninvasive method to assess lipase activity in children.

    Science.gov (United States)

    van Dijk-van Aalst, K; Van Den Driessche, M; van Der Schoor, S; Schiffelers, S; van't Westeinde, T; Ghoos, Y; Veereman-Wauters, G

    2001-05-01

    Results from the 13C mixed triglyceride (MTG) breath test correlate with duodenal lipase activity in adults. This noninvasive test is a potential screening and diagnostic tool for children with fat malabsorption. The aim of this study was to adapt the methodology of the MTG breath test to study test meals and sampling methods and to define normal values for healthy children of all age groups; premature and full-term infants have similar pancreatic lipase deficiencies. After parental consent was obtained, 12 premature infants ( 2 kg), 12 full-term infants (1-6 months old), 20 children (3-10 years old), and 20 teenagers (11-17 years old) were tested. All children were thriving well, had no gastrointestinal or respiratory problems, and had not received any medication that contained natural 13C. For the premature and full-term infants, a formula was prepared that had a low and stable natural 13C content mixed with 100 mg 13C-labeled MTG (1,3-distearyl, 2-[13C-carboxyl] octanoyl glycerol) and 1 g polyethylene-glycol 3350. The best accepted test meal for children over 3 years old was a slice of white bread with 5 g butter and 15 g chocolate paste, mixed with 250 mg 13C-labeled MTG, and a glass of 100 mL whole-fat milk. Children over 3 years old were able to blow through a straw in a vacutainer for collecting the breath samples. In children under 3 years old, expired air was collected by aspirating breath via a nasal prong. Carbon dioxide production was calculated according to weight, age, and sex. For healthy pediatric control participants, the mean values for cumulative excretion of 13CO2 as a percentage of the administered dose after 6 hours were 23.9 +/- 5.2% in premature infants, 31.9 +/- 7.7% in full-term infants, 32.5 +/- 5.3% in children, and 28.0 +/- 5.4% in teenagers. The mean value for healthy adults is 35.6% with a lower reference limit of 22.8%. Age-specific test meals and breath-sampling techniques for the MTG breath test were defined. The mean values for

  19. Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases.

    Science.gov (United States)

    Kanoh, Soichiro; Kobayashi, Hideo; Motoyoshi, Kazuo

    2005-10-01

    Oxidative stress plays a role in the pathogenesis and progression of interstitial lung disease (ILD). Exhaled ethane is a product of lipid peroxidation that has been proposed as a biomarker of oxidative stress in vivo. To determine whether the exhaled ethane level is elevated in patients with ILD and to compare it with other clinical parameters. Breath samples were collected from 34 patients with ILD, including 13 with idiopathic pulmonary fibrosis (IPF), 9 patients with cryptogenic organizing pneumonia, 6 patients with collagen vascular disease-associated interstitial pneumonia, and 6 patients with pulmonary sarcoidosis. Gas samples were obtained at hospital admission and after 3 weeks. After each expired sample was concentrated using a trap-and-purge procedure, the ethane level was analyzed by gas chromatography. Exhaled ethane levels were elevated in ILD patients (n = 34, mean +/- SD, 8.5 +/- 8.0 pmol/dL) compared with healthy volunteers (n = 16, 2.9 +/- 1.0 pmol/dL; p ethane levels were largely consistent with the clinical course. Four patients with IPF who had persistently high ethane levels died or deteriorated, whereas those with ethane levels ethane concentrations were positively correlated with levels of lactate dehydrogenase (Spearman rank correlation coefficient [rs], 0.28, p = 0.026) and C-reactive protein (rs, 0.38, p = 0.025) and were inversely correlated with Pa(O2) (rs, - 0.40, p = 0.0026). Patients showing increased uptake on (67)Ga scintigraphy demonstrated higher ethane levels (n = 19, 7.5 +/- 5.7 pmol/dL) compared with those who did not show increased uptake on scintigraphy (n = 10, 3.0 +/- 2.4 pmol/dL; p ethane is elevated in patients with ILD and is correlated with the clinical outcome, suggesting that it provides useful information about ongoing oxidative stress, and thereby disease activity and severity in ILD.

  20. Biomarkers of Risk for Post-Traumatic Stress Disorder (PTSD)

    National Research Council Canada - National Science Library

    Tyrka, Audrey R

    2008-01-01

    .... Cortisol samples have been obtained from 96 of these subjects. Hormone and genetic data will be used to predict the development of PTSD and chronic PTSD. In addition, interactions of these biomarkers with trauma severity and other stressors as well as social supports will be examined.

  1. Robust remote monitoring of breathing function by using infrared thermography.

    Science.gov (United States)

    Pereira, Carina B; Yu, Xinchi; Blazek, Vladimir; Leonhardt, Steffen

    2015-01-01

    An abnormal breathing rate (BR) is one of the strongest markers of physiological distress. Moreover, it plays an important role in early detection of sudden infant death syndrome, as well as in the diagnosis of respiratory disorders. However, the current measuring modalities can cause discomfort to the patient, since attachment to the patient's body is required. This paper proposes a new approach based on infrared thermography to remotely monitor BR. This method allows to (1) detect automatically the nose, (2) track the associate region of interest (ROI), and (3) extract BR. To evaluate the performance of this method, thermal recording of 5 healthy subjects were acquired. Results were compared with BR obtained by capnography. The introduced approach demonstrated an excellent performance. ROIs were precisely segmented and tracked. Furthermore, a Bland-Altman diagram showed a good agreement between estimated BR and gold standard. The mean correlation and mean absolute BR error are 0.92 ± 0.07 and 0.53 bpm, respectively. In summary, infrared thermography seems to be a great, clinically relevant alternative to attached sensors, due to its outstanding characteristics and performance.

  2. Ultrasound for critical care physicians: take a deep breath

    Directory of Open Access Journals (Sweden)

    Ling D

    2015-07-01

    Full Text Available No abstract available. Article truncated at 150 words. A 40 year old man with a past medical history of intravenous drug abuse presented to the emergency department with difficulty walking and lower extremity weakness. He did admit to recent heroin use. He became somnolent in the ED and was given naloxone. However, he did not improve his level of consciousness sufficiently and was intubated for hypercarbia. The patient was transferred to the MICU and was evaluated for respiratory failure. He later that day passed a spontaneous breathing trial after he awoke and was extubated. However, he was soon thereafter was re-intubated for poor respiratory efforts and a weak cough. With an unexplained etiology for the respiratory failure, CT of the head, MRI of the brain and lab evaluation were pursued but were negative. At that point, a bedside ultrasound of the right hemi-diaphragm in the zone of apposition was obtained and is shown below: Figure 1. Ultrasound of ...

  3. Exhaled breath condensate metabolome clusters for endotype discovery in asthma

    NARCIS (Netherlands)

    Sinha, Anirban; Desiraju, Koundinya; Aggarwal, Kunal; Kutum, Rintu; Roy, Siddhartha; Lodha, Rakesh; Kabra, S. K.; Ghosh, Balaram; Sethi, Tavpritesh; Agrawal, Anurag

    2017-01-01

    Asthma is a complex, heterogeneous disorder with similar presenting symptoms but with varying underlying pathologies. Exhaled breath condensate (EBC) is a relatively unexplored matrix which reflects the signatures of respiratory epithelium, but is difficult to normalize for dilution. Here we

  4. Pulmonary Effects of Submerged Breathing of Air or Oxygen

    National Research Council Canada - National Science Library

    Shykoff, B

    2002-01-01

    ...). The risks of developing PO2T are poorly characterized. The current shallow-water exposure limit, four hours breathing oxygen at 25 fsw or less in any 24-hour period, was established somewhat arbitrarily as a known "safe" exposure...

  5. Training Studies with Compressed Air Breathing Apparatus – Methodology, Exercises

    Directory of Open Access Journals (Sweden)

    Buks Roberts

    2015-11-01

    Full Text Available The current article describes topics ranging from the respiratory physiology and the structure of compressed air breathing apparatus to the performance of practical training exercises in an unbreathable environment (hereinafter referred to as UE.

  6. Sex differences in sleep disordered breathing in adults.

    Science.gov (United States)

    Lozo, Tijana; Komnenov, Dragana; Badr, M Safwan; Mateika, Jason H

    2017-11-01

    The prevalence of sleep disordered breathing is greater in men compared to women. This disparity could be due to sex differences in the diagnosis and presentation of sleep apnea, and the pathophysiological mechanisms that instigate this disorder. Women tend to report more non-typical symptoms of sleep apnea compared to men, and the presentation of apneic events are more prevalent in rapid compared to non-rapid eye movement sleep. In addition, there is evidence of sex differences in upper airway structure and mechanics and in neural mechanisms that impact on the control of breathing. The purpose of this review is to summarize the literature that addresses sex differences in sleep-disordered breathing, and to discuss the influence that upper airway mechanics, chemoreflex properties, and sex hormones have in modulating breathing during sleep in men and women. Published by Elsevier B.V.

  7. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... sufficient volume to prevent gas waste during exhalation and to provide an adequate reserve for inhalation. (b) Breathing bags shall be constructed of materials which are flexible and resistant to gasoline...

  8. Take a Breath (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Breathing is a natural bodily function that most take for granted. But for people with chronic obstructive pulmonary disease, or COPD, inhaling and exhaling is a daily struggle. In this podcast, Dr. Anne Wheaton discusses health problems associated with COPD.

  9. Breath hydrogen analysis in patients with ileoanal pouch anastomosis

    DEFF Research Database (Denmark)

    Bruun, E; Meyer, J N; Rumessen, J J

    1995-01-01

    The possible influence on functional outcomes of hydrogen production in the ileoanal pouch after restorative proctocolectomy was investigated by means of lactulose H2 breath tests. Eight of 15 patients had significant increases in breath hydrogen after 10 g lactulose. One patient declined...... to participate in further investigations, the remaining seven responders had no evidence of small bowel bacterial overgrowth after glucose H2 breath tests. The ability to produce hydrogen by anaerobic fermentation of lactulose in the pouch was unrelated to the age of the patients or of the pouch. Seven of eight...... responders had successive breath tests after ingestion of lactulose 20 g and wheat starch 100 g. Five of seven had significant increases after lactulose but none after wheat starch. The overall function of the pouch continence, spontaneity of defecation, and 24 hour stool frequency was significantly better...

  10. COPD: When You Learn More, You'll Breathe Better

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues COPD: When You Learn More, You'll Breathe Better ... Trial to Look at Home Oxygen Therapy for COPD The National Heart, Lung, and Blood Institute (NHLBI) ...

  11. Taking Her Breath Away: The Rise of COPD in Women

    Science.gov (United States)

    ... Disparities Taking Her Breath Away: The Rise of COPD in Women Disparities in Lung Health Series More ... the U.S. live with chronic obstructive pulmonary disease (COPD), which includes chronic bronchitis and emphysema. Millions more ...

  12. Take a Deep Breath (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Nearly 16 million Americans have been diagnosed with COPD; however, many may not be aware they have the condition. This podcast discusses the importance of seeing a health care provider if you have trouble breathing.

  13. Respiratory difficulties and breathing disorders in achondroplasia.

    Science.gov (United States)

    Afsharpaiman, S; Saburi, A; Waters, Karen A

    2013-12-01

    Respiratory difficulties and breathing disorders in achondroplasia are thought to underlie the increased risk for sudden infant death and neuropsychological deficits seen in this condition. This review evaluates literature regarding respiratory dysfunctions and their sequelae in patients with achondroplasia. The limited number of prospective studies of respiratory disease in achondroplasia means that observational studies and case series provide a large proportion of the data regarding the spectrum of respiratory diseases in achondroplasia and their treatments. Amongst clinical respiratory problems described, snoring is the commonest observed abnormality, but the reported incidence of obstructive sleep apnoea (OSA) shows wide variance (10% to 75%). Reported treatments of OSA include adenotonsillectomy, the use of CPAP, and surgical improvement of the airway, including mid-face advancement. Otolaryngologic manifestations are also common. Respiratory failure due to small thoracic volumes is reported, but uncommon. Mortality rate at all ages was 2.27 (CI: 1.7-3.0) with age-specific mortality increased at all ages. Sudden death was most common in infants and children. Cardiovascular events are the main cause of mortality in adults. Despite earlier recognition and treatment of respiratory complications of achondroplasia, increased mortality rates and other complications remain high. Future and ongoing evaluation of the prevalence and impact of respiratory disorders, particularly OSA, in achondroplasia is recommended. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Sleep disordered breathing and depression among U.S. adults: National Health and Nutrition Examination Survey, 2005-2008.

    Science.gov (United States)

    Wheaton, Anne G; Perry, Geraldine S; Chapman, Daniel P; Croft, Janet B

    2012-04-01

    To determine if symptoms of sleep disordered breathing (SDB) are associated with depression symptomology in a national sample. National Health and Nutrition Examination Survey. U.S., 2005-2008. 9,714 adults (≥ 18 years). Respondents were asked about frequency of snoring and snorting, gasping, or stopping breathing while asleep and completed the PHQ-9 (a 9-item depression screener). Odds ratios (OR) and 95% confidence intervals (CI) for SDB symptom-associated probable major depression (defined as a PHQ-9 score ≥ 10) were obtained from sex-specific logistic regression analyses adjusted for body mass index, age, race/ethnicity, and education. Among men, 6.0% reported physician-diagnosed sleep apnea, 37.2% snored ≥ 5 nights/week, 7.1% snorted/stopped breathing ≥ 5 nights/week, and 5.0% had PHQ-9 scores ≥ 10. Among women, 3.1% reported sleep apnea, 22.4% snored ≥ 5 nights/week, 4.3% snorted/stopped breathing ≥ 5 nights/week, and 8.4% had PHQ-9 scores ≥ 10. Sleep apnea was associated with probable major depression (OR = 2.4; 95% CI: 1.5, 3.6 among men; OR = 5.2; 95% CI: 2.7, 9.9 among women). Snoring was not associated with depression symptoms in men or women. Snorting/stopping breathing ≥ 5 nights/week compared to never was strongly associated with probable major depression in men (OR = 3.1; 95% CI: 1.8, 5.2) and women (OR = 3.0; 95% CI: 1.6, 5.4). Frequent snorting/stopping breathing was associated with probable major depression by the PHQ-9 in a national sample of adults. Additional research may be needed to determine whether regular screening for these conditions by mental health professionals and sleep specialists should be recommended.

  15. Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects.

    Science.gov (United States)

    Alfaro, Mario F; Walby, William F; Adams, William C; Schelegle, Edward S

    2007-01-01

    Ozone (O3) inhalation induces pulmonary function decrements and inflammation. The present study was designed to determine if a relationship exists between O3 induced pulmonary function changes and the presence of inflammatory markers as measured in exhaled breath condensates (EBCs) obtained from O3-sensitive and nonsensitive human subjects. Eight healthy adult volunteers (4 males/4 females, age 18 to 30 years) were studied, characterized as to their ozone sensitivity and placed into 2 groups (sensitive and nonsensitive) with each group having 2 males and 2 females. Subjects completed a 20-minute EBC collection and pulmonary function test (PFT) prior to a single 60-minute bout of cycle ergometer exercise (V(E) = 50-55 L/min) while breathing filtered air (FA) or 0.35 ppm O3. Subjective symptom scores (SSSs) were collected at 6, 20, 40, and 60 minutes during exposure. An immediate postexposure PFT was performed followed by an EBC collection. Subjective symptom scores, EBCs, and PFTs were collected at 1, 4 and 8 hours post exposure. EBCs were analyzed for prostaglandin E2 (PGE2), leukotriene B4 (LTB4), 8-isoprostane, and total nitric oxide (NO) metabolites (nitrate + nitrite content). Sensitive subjects, breathing O3, had significantly greater functional decrements in PFTs, increased SSSs, and increased rapid shallow breathing as well as elevated levels of 8-isoprostane and LTB4 in EBCs compared to those breathing FA. In addition, there were significant increases in nitrate + nitrite content in both sensitive and nonsensitive subjects breathing O3 compared to FA. These results indicate that sensitive subjects have elevated arachidonic acid metabolites in EBCs compared to nonsensitive subjects after O3 inhalation.

  16. Breathing mode distortion and magnetic order in rare-earth nickelates RNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Alexander; Ederer, Claude [Materials Theory, ETH Zuerich (Switzerland)

    2016-07-01

    Rare-earth nickelate perovskites display a rich and not yet fully understood phase diagram, where all RNiO{sub 3} compounds with R from Sm to Lu undergo a non-magnetic metal-insulator transition (MIT). This transition is connected to a lattice distortion, which can be described as breathing mode of the oxygen octahedra surrounding the Ni cations. Between 100-250 K the RNiO{sub 3} compounds undergo a magnetic transition to an antiferromagnetic (AFM) state, with a wave-vector k= [(1)/(4) (1)/(4) (1)/(4)] relative to the underlying simple cubic perovskite structure. Here, we use density functional theory and its extensions (DFT+U, DFT+DMFT) together with distortion mode analysis to explore the interplay between lattice distortions, magnetic order, and the strength of the local Coulomb interaction U in rare earth nickelates. Our results show a strong dependency of the breathing mode amplitude on the magnetic order, with a much larger breathing mode obtained for the AFM state compared to the ferromagnetic case. Furthermore, we demonstrate that DFT+U is able to capture the correct trends of the lattice distortions across the nickelate series.

  17. Normobaric hypoxia training: the effects of breathing-gas flow rate on symptoms.

    Science.gov (United States)

    Artino, Anthony R; Folga, Richard V; Vacchiano, Charles

    2009-06-01

    The U.S. Navy has replaced segments of refresher low-pressure chamber instruction with normobaric hypoxia training using a reduced oxygen breathing device (ROBD). A previous training evaluation revealed that this alternative instructional paradigm is a preferred means of training experienced jet aviators to recognize and recover from hypoxia. However, findings from this earlier work also indicated that air hunger was the most commonly reported symptom during ROBD training. This finding raised concern that air hunger could have resulted from a training artifact caused by the lower breathing-gas flow rate produced by the ROBD when compared to more familiar jet aircraft breathing systems. In an effort to address this issue, a software change was made that increased ROBD mask flow from 30 to 50 L x min(-1) (LPM). The purpose of this retrospective study was to determine if there are differences in the hypoxia symptoms reported by aviators trained on the ROBD upgrade (ROBD-50) compared to those trained on the original device (ROBD-30). Hypoxia training was provided to 156 aviators using the ROBD-50, and survey results were compared to those obtained from 121 aviators trained on the ROBD-30. There was a significant decrease in the number of aviators who reported experiencing air hunger while training on the ROBD-50 (44.2%) as compared to the ROBD-30 (59.4%) [Pearson chi2 (1) = 5.45, P hunger and, therefore, may impact training fidelity.

  18. Inferior vena cava collapsibility detects fluid responsiveness among spontaneously breathing critically-ill patients.

    Science.gov (United States)

    Corl, Keith A; George, Naomi R; Romanoff, Justin; Levinson, Andrew T; Chheng, Darin B; Merchant, Roland C; Levy, Mitchell M; Napoli, Anthony M

    2017-10-01

    Measurement of inferior vena cava collapsibility (cIVC) by point-of-care ultrasound (POCUS) has been proposed as a viable, non-invasive means of assessing fluid responsiveness. We aimed to determine the ability of cIVC to identify patients who will respond to additional intravenous fluid (IVF) administration among spontaneously breathing critically-ill patients. Prospective observational trial of spontaneously breathing critically-ill patients. cIVC was obtained 3cm caudal from the right atrium and IVC junction using POCUS. Fluid responsiveness was defined as a≥10% increase in cardiac index following a 500ml IVF bolus; measured using bioreactance (NICOM™, Cheetah Medical). cIVC was compared with fluid responsiveness and a cIVC optimal value was identified. Of the 124 participants, 49% were fluid responders. cIVC was able to detect fluid responsiveness: AUC=0.84 [0.76, 0.91]. The optimum cutoff point for cIVC was identified as 25% (LR+ 4.56 [2.72, 7.66], LR- 0.16 [0.08, 0.31]). A cIVC of 25% produced a lower misclassification rate (16.1%) for determining fluid responsiveness than the previous suggested cutoff values of 40% (34.7%). IVC collapsibility, as measured by POCUS, performs well in distinguishing fluid responders from non-responders, and may be used to guide IVF resuscitation among spontaneously breathing critically-ill patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  20. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  1. Impact of breath holding on cardiovascular respiratory and cerebrovascular health.

    Science.gov (United States)

    Dujic, Zeljko; Breskovic, Toni

    2012-06-01

    Human underwater breath-hold diving is a fascinating example of applied environmental physiology. In combination with swimming, it is one of the most popular forms of summer outdoor physical activities. It is performed by a variety of individuals ranging from elite breath-hold divers, underwater hockey and rugby players, synchronized and sprint swimmers, spear fishermen, sponge harvesters and up to recreational swimmers. Very few data currently exist concerning the influence of regular breath holding on possible health risks such as cerebrovascular, cardiovascular and respiratory diseases. A literature search of the PubMed electronic search engine using keywords 'breath-hold diving' and 'apnoea diving' was performed. This review focuses on recent advances in knowledge regarding possibly harmful physiological changes and/or potential health risks associated with breath-hold diving. Available evidence indicates that deep breath-hold dives can be very dangerous and can cause serious acute health problems such a collapse of the lungs, barotrauma at descent and ascent, pulmonary oedema and alveolar haemorrhage, cardiac arrest, blackouts, nitrogen narcosis, decompression sickness and death. Moreover, even shallow apnoea dives, which are far more frequent, can present a significant health risk. The state of affairs is disturbing as athletes, as well as recreational individuals, practice voluntary apnoea on a regular basis. Long-term health risks of frequent maximal breath holds are at present unknown, but should be addressed in future research. Clearly, further studies are needed to better understand the mechanisms related to the possible development or worsening of different clinical disorders in recreational or competitive breath holding and to determine the potential changes in training/competition regimens in order to prevent these adverse events.

  2. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    Science.gov (United States)

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  3. Quantitating aortic regurgitation by cardiovascular magnetic resonance: significant variations due to slice location and breath holding

    International Nuclear Information System (INIS)

    Chaturvedi, Abhishek; Hamilton-Craig, Christian; Cawley, Peter J.; Maki, Jeffrey H.; Mitsumori, Lee M.; Otto, Catherine M.

    2016-01-01

    Compare variability in flow measurements by phase contrast MRI, performed at different locations in the aorta and pulmonary artery (PA) using breath-held (BH) and free-breathing (FB) sequences. Fifty-seven patients with valvular heart disease, confirmed by echocardiography, were scanned using BH technique at 3 locations in the ascending aorta (SOV = sinus of Valsalva, STJ = sinotubular junction, ASC = ascending aorta at level of right pulmonary artery) and 2 locations in PA. Single FB measurement was obtained at STJ for aorta. Obtained metrics (SV = stroke volume, FV = forward volume, BV = backward volume, RF = regurgitant fraction) were evaluated separately for patients with aortic regurgitation (AR, n = 31) and mitral regurgitation (n = 26). No difference was noted between the two measurements in the PA. Significant differences were noted in measured SV at different aortic locations. SV measurements obtained at ASC correlated best with the measurements obtained in the PA. Strongest correlation of AR was measured at the STJ. Measurements of flow volumes by phase contrast MRI differ depending on slice location. When using stroke volumes to calculate pulmonary to systemic blood flow ratio (Qp/Qs), ASC should be used. For quantifying aortic regurgitation, measurement should be obtained at STJ. (orig.)

  4. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita; Kato, Hisato; Masuda, Kazufumi

    2013-06-01

    Early disease diagnosis is crucial for human healthcare and successful therapy. Since any changes in homeostatic balance can alter human emanations, the components of breath exhalations and skin emissions may be diagnostic biomarkers for various diseases and metabolic disorders. Since hundreds of endogenous and exogenous volatile organic compounds (VOCs) are released from the human body, analysis of these VOCs may be a noninvasive, painless, and easy diagnostic tool. Sampling and preconcentration by sorbent tubes/traps and solid-phase microextraction, in combination with GC or GC-MS, are usually used to analyze VOCs. In addition, GC-MS-olfactometry is useful for simultaneous analysis of odorants and odor quality. Direct MS techniques are also useful for the online real-time detection of VOCs. This review focuses on recent developments in sampling and analysis of volatile biomarkers in human odors and/or emanations, and discusses future use of VOC analysis.

  5. Qualitative and quantitative determination of human biomarkers by laser photoacoustic spectroscopy methods

    Science.gov (United States)

    Popa, C.; Bratu, A. M.; Matei, C.; Cernat, R.; Popescu, A.; Dumitras, D. C.

    2011-07-01

    The hypothesis that blood, urine and other body fluids and tissues can be sampled and analyzed to produce clinical information for disease diagnosis or therapy monitoring is the basis of modern clinical diagnosis and medical practice. The analysis of breath air has major advantages because it is a non-invasive method, represents minimal risk to personnel collecting the samples and can be often sampled. Breath air samples from the human subjects were collected using aluminized bags from QuinTron and analyzed using the laser photoacoustic spectroscopy (LPAS) technique. LPAS is used to detect traces of ethylene in breath air resulting from lipid peroxidation in lung epithelium following the radiotherapy and also traces of ammonia from patients subjected to hemodialysis for treatment of renal failure. In the case of patients affected by cancer and treated by external radiotherapy, all measurements were done at 10P(14) CO2 laser line, where the ethylene absorption coefficient has the largest value (30.4 cm-1 atm-1), whereas for patients affected by renal failure and treated by standard dialysis, all measurements were performed at 9R(30) CO2 laser line, where the ammonia absorption coefficient has the maximum value of 57 cm-1 atm-1. The levels of ethylene and ammonia in exhaled air, from patients with cancer and renal failure, respectively, were measured and compared with breath air contents from healthy humans. Human gas biomarkers were measured at sub-ppb (parts per billion) concentration sensitivities. It has been demonstrated that LPAS technique will play an important role in the future of exhaled breath air analysis. The key attributes of this technique are sensitivity, selectivity, fast and real time response, as well as its simplicity.

  6. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  7. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    Science.gov (United States)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  8. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Science.gov (United States)

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  9. Lung function, diagnosis, and treatment of sleep-disordered breathing in children with achondroplasia.

    Science.gov (United States)

    Julliand, Sébastien; Boulé, Michèle; Baujat, Geneviève; Ramirez, Adriana; Couloigner, Vincent; Beydon, Nicole; Zerah, Michel; di Rocco, Federico; Lemerrer, Martine; Cormier-Daire, Valérie; Fauroux, Brigitte

    2012-08-01

    Children with achondroplasia are at risk of sleep-disordered breathing. The aim of the study was to evaluate lung function and sleep-disordered breathing in children with achondroplasia. An interview, clinical examination, lung function tests with blood gases, and a polygraphic sleep study were obtained as part of routine annual evaluation in consecutive children with achondroplasia. We included 30 children (median age 3.0 years, range: 0.4-17.1) over a period of 21 months. Habitual snoring and witnessed apneas were observed in 77% and 33% of the patients, respectively. Prior to the sleep study, 10/29 (34%) patients had undergone upper airway surgery and 5/29 (17%) craniocervical decompression operation. Arterial blood gases were abnormal in two (7%) patients. Sleep findings were abnormal in 28/30 (93%) patients. Eleven (37%) patients had an apnea index≥1 event/hr and 26 (87%) had an apnea-hypopnea index≥5 events/hr. The ≥3% desaturation index was >5/hr in 22 (73%) patients. Sixteen (53%) patients had a minimal pulse oximetry50 mmHg during sleep. As a consequence, the following therapeutic interventions were performed: upper airway surgery in four patients and noninvasive positive pressure ventilation (NPPV) in five other patients, resulting in an improvement in sleep studies in all nine patients. Systematic sleep studies are recommended in children with achondroplasia because of the high prevalence of sleep-disordered breathing. Upper airway surgery and NPPV are effective treatments of sleep-disordered breathing. Copyright © 2012 Wiley Periodicals, Inc.

  10. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A, E-mail: tewatia@wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay '{tau}' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed

  11. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    International Nuclear Information System (INIS)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A

    2011-01-01

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  12. Influence of the breathing pattern on the learning process: a systematic review of literature

    Directory of Open Access Journals (Sweden)

    Genef Caroline Andrade Ribeiro

    Full Text Available ABSTRACT INTRODUCTION: Mouth breathing leads to negative consequences on quality of life, especially in school-age children. OBJECTIVE: To determine whether the breathing pattern influences children's learning process. METHODS: This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA instructions, with no restrictions regarding the year of publication and language, created based on the clinical question formulation according to the Problem/Patient/Population, Intervention/Indicator, Comparison, Outcome (PICO strategy: "Is the mouth-breathing child more likely to have learning disabilities when compared to nasal breathers?" in the SciELO, PubMed, LILACS, and Scopus electronic databases. Google Scholar was used to search the gray literature. The keywords "learning," "mouth breathing," and their equivalent terms in Portuguese were used in an integrated manner. The studies included in the review were observational, conducted with schoolchildren aged 7-11 years. Afterwards, the studies were evaluated regarding their methodological quality. The research was performed by two eligible reviewers. RESULTS: A total of 357 records were obtained, of which 43 records were duplicate. After applying the eligibility criteria, ten articles were included in the research scope. Half of the studies used a control group and otorhinolaryngological assessment, whereas a minority used validated (20% and sample calculation protocols (10%. The evaluation procedures were varied. Overall, 80% of the articles showed a higher incidence of learning disabilities among mouth breathers. CONCLUSION: This systematic review has shown that mouth breathers are more likely to have learning difficulties than nasal breathers.

  13. Influence of the breathing pattern on the learning process: a systematic review of literature.

    Science.gov (United States)

    Ribeiro, Genef Caroline Andrade; Dos Santos, Isadora Diniz; Santos, Ana Claudia Nascimento; Paranhos, Luiz Renato; César, Carla Patrícia Hernandez Alves Ribeiro

    2016-01-01

    Mouth breathing leads to negative consequences on quality of life, especially in school-age children. To determine whether the breathing pattern influences children's learning process. This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) instructions, with no restrictions regarding the year of publication and language, created based on the clinical question formulation according to the Problem/Patient/Population, Intervention/Indicator, Comparison, Outcome (PICO) strategy: "Is the mouth-breathing child more likely to have learning disabilities when compared to nasal breathers?" in the SciELO, PubMed, LILACS, and Scopus electronic databases. Google Scholar was used to search the gray literature. The keywords "learning," "mouth breathing," and their equivalent terms in Portuguese were used in an integrated manner. The studies included in the review were observational, conducted with schoolchildren aged 7-11 years. Afterwards, the studies were evaluated regarding their methodological quality. The research was performed by two eligible reviewers. A total of 357 records were obtained, of which 43 records were duplicate. After applying the eligibility criteria, ten articles were included in the research scope. Half of the studies used a control group and otorhinolaryngological assessment, whereas a minority used validated (20%) and sample calculation protocols (10%). The evaluation procedures were varied. Overall, 80% of the articles showed a higher incidence of learning disabilities among mouth breathers. This systematic review has shown that mouth breathers are more likely to have learning difficulties than nasal breathers. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. A Medical Cloud-Based Platform for Respiration Rate Measurement and Hierarchical Classification of Breath Disorders

    Directory of Open Access Journals (Sweden)

    Atena Roshan Fekr

    2014-06-01

    Full Text Available The measurement of human respiratory signals is crucial in cyberbiological systems. A disordered breathing pattern can be the first symptom of different physiological, mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration patterns, as well as respiration rate is a critical need in medical applications. There are several methods for respiration rate measurement. However, despite their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based platform for both monitoring the respiration rate and breath pattern classification, remotely. The proposed system is designed particularly for patients with breathing problems (e.g., respiratory complications after surgery or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE and cloud-computing model. We also suggest a procedure to improve the accuracy of respiration rate for patients at rest positions. The overall error in the respiration rate calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot’s breathing are classified based on hierarchical Support Vector Machine (SVM with seven different features. We have evaluated the performance of the proposed classification while it is individualized to every subject (case 1 as well as considering all subjects (case 2. Since the selection of kernel function is a key factor to decide SVM’s performance, in this paper three different kernel functions are evaluated. The experiments are conducted with 11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for case 2 are achieved based on Radial Basis Function (RBF. Finally, a performance evaluation has been done for normal and impaired subjects considering sensitivity, specificity and G-mean parameters

  15. Sleep disordered breathing analysis in a general population using standard pulse oximeter signals.

    Science.gov (United States)

    Barak-Shinar, Deganit; Amos, Yariv; Bogan, Richard K

    2013-09-01

    Obstructive sleep apnea reported as the apnea-hypopnea index (AHI) is usually measured in sleep laboratories using a high number of electrodes connected to the patient's body. In this study, we examined the use of a standard pulse oximeter system with an automated analysis based on the photoplethysmograph (PPG) signal for the diagnosis of sleep disordered breathing. Using a standard and simple device with high accuracy might provide a convenient diagnostic or screening solution for patient evaluation at home or in other out of center testing environments. The study included 140 consecutive patients that were referred routinely to a sleep laboratory [SleepMed Inc.] for the diagnosis of sleep disordered breathing. Each patient underwent an overnight polysomnography (PSG) study according to AASM guidelines in an AASM-accredited sleep laboratory. The automatic analysis is based on photoplethysmographic and saturation signals only. Those two signals were recorded for the entire night as part of the full overnight PSG sleep study. The AHI calculated from the PPG analysis is compared to the AHI calculated from the manual scoring gold standard full PSG. The AHI and total respiratory events measured by the pulse oximeter analysis correlated very well with the corresponding results obtained by the gold standard full PSG. The sensitivity and specificity of AHI = or > 5 and 15 levels measured by the analysis are both above 90 %. The sensitivity and positive predictive value for the detection of respiratory event are both above 84 %. The tested system in this study yielded an acceptable result of sleep disordered breathing compared to the gold standard PSG in patients with moderate to severe sleep apnea. Accordingly and given the convenience and simplicity of the standard pulse oximeter device, the new system can be considered suitable for home and ambulatory diagnosis or screening of sleep disordered breathing patients.

  16. Bad-breath: Perceptions and misconceptions of Nigerian adults.

    Science.gov (United States)

    Nwhator, S O; Isiekwe, G I; Soroye, M O; Agbaje, M O

    2015-01-01

    To provide baseline data about bad-breath perception and misconceptions among Nigerian adults. Multi-center cross-sectional study of individuals aged 18-64 years using examiner-administered questionnaires. Age comparisons were based on the model of emerging adults versus full adults. Data were recoded for statistical analyses and univariate and secondary log-linear statistics applied. Participants had lopsided perceptions about bad-breath. While 730 (90.8%) identified the dentist as the expert on halitosis and 719 (89.4%) knew that bad-breath is not contagious, only 4.4% and 2.5% associated bad-breath with tooth decay and gum disease respectively. There were no significant sex differences but the older adults showed better knowledge in a few instances. Most respondents (747, 92.9%) would tell a spouse about their bad-breath and 683 (85%) would tell a friend. Participants had lop-sided knowledge and perceptions about bad-breath. Most Nigerian adults are their "brothers' keepers" who would tell a spouse or friend about their halitosis so they could seek treatment.

  17. Remote monitoring of breathing dynamics using infrared thermography.

    Science.gov (United States)

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen

    2015-11-01

    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient's body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as "gold standard" for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1-3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages.

  18. Breath acetone concentration; biological variability and the influence of diet

    International Nuclear Information System (INIS)

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, Alžběta; Chippendale, Thomas W E; Smith, David

    2011-01-01

    Previous measurements of acetone concentrations in the exhaled breath of healthy individuals and the small amount of comparable data for individuals suffering from diabetes are briefly reviewed as a prelude to the presentation of new data on the sporadic and wide variations of breath acetone that occur in ostensibly healthy individuals. Data are also presented which show that following a ketogenic diet taken by eight healthy individuals their breath acetone concentrations increased up to five times over the subsequent 6 h. Similarly, the breath acetone increased six and nine times when a low carbohydrate diet was taken by two volunteers and remained high for the several days for which the diet was continued. These new data, together with the previous data, clearly indicate that diet and natural intra-individual biological and diurnal variability result in wide variations in breath acetone concentration. This places an uncertainty in the use of breath acetone alone to monitor blood glucose and glycaemic control, except and unless the individual acts as their own control and is cognizant of the need for dietary control. (note)

  19. Identification of serum biomarkers for aging and anabolic response

    Directory of Open Access Journals (Sweden)

    Urban Randall J

    2011-06-01

    Full Text Available Abstract Objective With the progressive aging of the human population, there is an inexorable decline in muscle mass, strength and function. Anabolic supplementation with testosterone has been shown to effectively restore muscle mass in both young and elderly men. In this study, we were interested in identifying serum factors that change with age in two distinct age groups of healthy men, and whether these factors were affected by testosterone supplementation. Methods We measured the protein levels of a number of serum biomarkers using a combination of banked serum samples from older men (60 to 75 years and younger men (ages 18 to 35, as well as new serum specimens obtained through collaboration. We compared baseline levels of all biomarkers between young and older men. In addition, we evaluated potential changes in these biomarker levels in association with testosterone dose (low dose defined as 125 mg per week or below compared to high dose defined as 300 mg per week or above in our banked specimens. Results We identified nine serum biomarkers that differed between the young and older subjects. These age-associated biomarkers included: insulin-like growth factor (IGF1, N-terminal propeptide of type III collagen (PIIINP, monokine induced by gamma interferon (MIG, epithelial-derived neutrophil-activating peptide 78 (ENA78, interleukin 7 (IL-7, p40 subunit of interleukin 12 (IL-12p40, macrophage inflammatory protein 1β (MIP-1β, platelet derived growth factor β (PDGFβ and interferon-inducible protein 10 (IP-10. We further observed testosterone dose-associated changes in some but not all age related markers: IGF1, PIIINP, leptin, MIG and ENA78. Gains in lean mass were confirmed by dual energy X-ray absorptiometry (DEXA. Conclusions Results from this study suggest that there are potential phenotypic biomarkers in serum that can be associated with healthy aging and that some but not all of these biomarkers reflect gains in muscle mass upon

  20. Can audio coached 4D CT emulate free breathing during the treatment course?

    International Nuclear Information System (INIS)

    Persson, Gitte F.; Nygaard, Ditte E.; Olsen, Mikael; Juhler-Noettrup, Trine; Pedersen, Anders N.; Specht, Lena; Korreman, Stine S.

    2008-01-01

    Background. The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. Methods. Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. Results. For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. Conclusion. These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for

  1. Can audio coached 4D CT emulate free breathing during the treatment course?

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gitte F.; Nygaard, Ditte E.; Olsen, Mikael; Juhler-Noettrup, Trine; Pedersen, Anders N.; Specht, Lena; Korreman, Stine S. (Dept. of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark))

    2008-08-15

    Background. The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. Methods. Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. Results. For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. Conclusion. These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for

  2. Biomarkers in acute heart failure.

    Science.gov (United States)

    Mallick, Aditi; Januzzi, James L

    2015-06-01

    The care of patients with acutely decompensated heart failure is being reshaped by the availability and understanding of several novel and emerging heart failure biomarkers. The gold standard biomarkers in heart failure are B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide, which play an important role in the diagnosis, prognosis, and management of acute decompensated heart failure. Novel biomarkers that are increasingly involved in the processes of myocardial injury, neurohormonal activation, and ventricular remodeling are showing promise in improving diagnosis and prognosis among patients with acute decompensated heart failure. These include midregional proatrial natriuretic peptide, soluble ST2, galectin-3, highly-sensitive troponin, and midregional proadrenomedullin. There has also been an emergence of biomarkers for evaluation of acute decompensated heart failure that assist in the differential diagnosis of dyspnea, such as procalcitonin (for identification of acute pneumonia), as well as markers that predict complications of acute decompensated heart failure, such as renal injury markers. In this article, we will review the pathophysiology and usefulness of established and emerging biomarkers for the clinical diagnosis, prognosis, and management of acute decompensated heart failure. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Detection of drugs of abuse in exhaled breath using a device for rapid collection: comparison with plasma, urine and self-reporting in 47 drug users.

    Science.gov (United States)

    Beck, Olof; Stephanson, Niclas; Sandqvist, Sören; Franck, Johan

    2013-06-01

    Exhaled breath has recently been identified as a matrix for the detection of drugs of abuse. This work aims to further document this application using a new and simple collection device in patients following recovery from acute intoxication. Breath, plasma and urine samples were collected from 47 patients (38 males, age range 25-74) together with interview data. Analysis of breath and plasma samples was done by liquid chromatography-mass spectrometry methods. Urine was screened using immunochemical reagents and positive findings confirmed with liquid chromatography-mass spectrometry methods. The 12 analytes investigated were: methadone, amphetamine, methamphetamine, 6-acetylmorphine, morphine, benzoylecgonine, cocaine, diazepam, oxazepam, alprazolam, buprenorphine and tetrahydrocannabinol. In all 47 cases, recent intake of an abused substance prior to admission was reported, but in one case the substance (ketobemidone) was not investigated. In 40 of the remaining cases (87%) breath analysis gave a positive finding of any of the substances that were part of the analytical investigation. Identifications were based on correct chromatographic retention time and product ion ratios obtained in selected reaction monitoring mode. In general, data from breath, plasma, urine and self-reporting were in good agreement, but in 23% of the cases substances were detected that had not been self-reported. All substances covered were detected in a number of breath samples. Considering that breath sampling was often done about 24 h after intake, the detection rate was considered to be high for most substances. Analytes with low detection rates were benzodiazepines, and a further increase in analytical sensitivity is needed to overcome this. This study further supports use of exhaled breath as a new matrix in clinical toxicology.

  4. Breath-by-breath analysis of expiratory gas concentration in chickens.

    Science.gov (United States)

    Itabisashi, T

    1981-01-01

    Expiratory oxygen and carbon-dioxide concentration were analysed breath by breath in order to examine their wave forms in adult awake hens restrained in various postural positions, including supine, prone and sitting positions. Expired gas was collected at the nostril in almost all the hens. In the sitting position free from vocalization, feeding, drinking, panting, and restlessness, hens showed various forms of stable pattern of oxygen-gas curves. These forms were classified into three types, or the ascending, flat and descending types, with respect to the plateau inclination. The waves of carbon-dioxide were not always a mirror image of those of oxygen. The rate of occurrence of each type varied with the hen's postural position. The wave form was altered with the experimental body-rotation of the hen. When placed between the deflections of stable pattern, the episodes of wave deformation resembling that seen at the time of uneven pulmonary ventilation in mammals could frequently be observed in any hen's posture examined. Cardiogenic oscillation appeared on the plateau of expired-gas curves.

  5. DNA methylation based biomarkers: Practical considerations and applications

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; How Kit, Alexandre; Tost, Jorg

    2012-01-01

    of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type...... of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods...... as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more...

  6. Sleep-disordered breathing and mortality: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Naresh M Punjabi

    2009-08-01

    Full Text Available Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older.We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea-hypopnea index (AHI based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women died. Compared to those without sleep-disordered breathing (AHI: or=30.0 events/h sleep-disordered breathing were 0.93 (95% CI: 0.80-1.08, 1.17 (95% CI: 0.97-1.42, and 1.46 (95% CI: 1.14-1.86, respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40-70 y (hazard ratio: 2.09; 95% CI: 1.31-3.33. Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease-related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality.Sleep-disordered breathing is associated with all-cause mortality and specifically that due to coronary artery disease, particularly in men aged 40-70 y with severe sleep-disordered breathing. Please see later in the article for the Editors' Summary.

  7. To Breathe-Zone of Zero. Kimsooja.

    Directory of Open Access Journals (Sweden)

    Cintia Gutiérrez Reyes

    2016-01-01

    Full Text Available CAC Málaga. Del 7 de octubre de 2016 al 8 de enero de 2017. Desde el 7 de octubre y hasta el 8 de enero la artista coreana Kimsooja ocupa el espacio central del Centro de Arte Contemporáneo de Málaga con una instalación Lotus: Zone Cero, que insta a yacer horizontalmente para contemplar un universo de farolillos. La artista conceptual transforma la sala de una forma sutil, casi imperceptible, dando al espectador la posibilidad de transitar un suelo vacío, en silencio, que invita al recogimiento, al aislamiento y a la utilización del espacio expositivo como santuario. Para entender este proceso de conversión, resulta fundamental el sonido de cantos gregorianos, tibetanos o de llamadas a la oración de la pieza To Breathe, que resuena en ese «Espacio Cero». La artista activista Kimsooja (Daegu, Corea del Sur, 1957, nos tiene acostumbrados a este tipo de intervenciones donde imperceptiblemente el espacio se transforma mediante pequeños actos. Un lugar reconocido que vuelve a presentársenos lleno de una carga poética, conceptual y social que nos activa las percepciones sensoriales o la imaginación. Quizá porque basa su obra en esa dialéctica que parte de lo propio, sus raíces tradicionales de la cultura coreana, para dialogar con lo universal, la preocupación por el papel de la mujer, la religión, la identidad o el nomadismo.

  8. Towards The Design of a Smartphone-Based Biofeedback Breathing Training: Identifying Diaphragmatic Breathing Patterns from a Smartphone’s Microphone

    OpenAIRE

    Shih, Chen-Hsuan Iris; Kowatsch, Tobias; Tinschert, Peter; Barata, Filipe; Nißen, Marcia Katharina

    2016-01-01

    Asthma, diabetes, hypertension, or major depression are non-communicable diseases (NCDs) and impose a major burden on global health. Stress is linked to both the causes and consequences of NCDs and it has been shown that biofeedback-based breathing trainings (BBTs) are effective in coping with stress. Here, diaphragmatic breathing, i.e. deep abdominal breathing, belongs to the most distinguished breathing techniques. However, high costs and low scalability of state-of-the-art BBTs that requir...

  9. Biomarkers in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Bennike, Tue; Birkelund, Svend; Stensballe, Allan

    2014-01-01

    Unambiguous diagnosis of the two main forms of inflammatory bowel diseases (IBD): Ulcerative colitis (UC) and Crohn's disease (CD), represents a challenge in the early stages of the diseases. The diagnosis may be established several years after the debut of symptoms. Hence, protein biomarkers...... for early and accurate diagnostic could help clinicians improve treatment of the individual patients. Moreover, the biomarkers could aid physicians to predict disease courses and in this way, identify patients in need of intensive treatment. Patients with low risk of disease flares may avoid treatment...... with medications with the concomitant risk of adverse events. In addition, identification of disease and course specific biomarker profiles can be used to identify biological pathways involved in the disease development and treatment. Knowledge of disease mechanisms in general can lead to improved future...

  10. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  11. Initial experience with active breathing control of liver motion during ventilation

    International Nuclear Information System (INIS)

    Robertson, John M.; Sharpe, Michael B.; Jaffray, David A.; Wong, John W.

    1997-01-01

    Purpose: Recent evidence has shown that some patients with hepatic tumors can be safely irradiated to a dose well over twice the whole liver tolerance dose if portions of normal liver are spared. Correction during treatment planning for the ventilatory motion of the liver can add a large volume of normal liver to the planning target volume. Any reduction in ventilatory motion has the potential to allow a higher dose of radiation to be given safely. Active Breathing Control (ABC) can be used to temporarily stop the airflow to a patient, thus immobilizing the liver, at any part of a patient's ventilatory cycle. ABC during helical CT scanning can be used to study the full three dimensional motion of the liver and other abdominal organs during ventilation. Ultimately, if the use of ABC is found to be clinically feasible, tolerable for patients, and, most importantly, reproducible over time, then ABC may be used during radiation treatment. Materials and Methods: An ABC apparatus was constructed using a flow monitor and scissor valves on both the inhalation and exhalation paths to the patient. The patient breathed through either a mouthpiece or facemask during the procedure. The ventilatory cycle was displayed in real time. When a stable breathing pattern was observed, the ABC was activated at a specific lung volume, closing both scissors valves, and preventing ventilation. The length of time for comfortable activation of the ABC machine for the individual patient was determined during a teaching and practice period prior to CT scanning. Helical CT scans (slice thickness 0.5 cm) to assess the potential benefit of immobilizing breathing were obtained for normal breathing, end-inspiration and end-expiration. The reproducibility of ABC over time was assessed by repeating the end-inspiration scan both immediately and one week later. The contours of the liver and kidneys were entered for each study. Results: Five patients have undergone ABC study of the abdomen. End

  12. LABORATORY BIOMARKERS FOR ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    E. N. Aleksandrova

    2017-01-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease from a group of spondyloarthritis (SpA, which is characterized by lesions of the sacroiliac joints and spine with the common involvement of entheses and peripheral joints in the pathological process. Advances in modern laboratory medicine have contributed to a substantial expansion of the range of pathogenetic, diagnostic, and prognostic biomarkers of AS. As of now, there are key pathogenetic biomarkers of AS (therapeutic targets, which include tumor necrosis factor-α (TNF-α, interleukin 17 (IL-17, and IL-23. Among the laboratory diagnostic and prognostic biomarkers, HLA-B27 and C-reactive protein are of the greatest value in clinical practice; the former for the early diagnosis of the disease and the latter for the assessment of disease activity, the risk of radiographic progression and the efficiency of therapy. Anti-CD74 antibodies are a new biomarker that has high sensitivity and specificity values in diagnosing axial SpA at an early stage. A number of laboratory biomarkers, including calprotectin, matrix metalloproteinase-3 (MMP-3, vascular endothelial growth factor, Dickkopf-1 (Dkk-1, and C-terminal telopeptide of type II collagen (CTX II do not well reflect disease activity, but may predict progressive structural changes in the spine and sacroiliac joints in AS. Blood calprotectin level monitoring allows the effective prediction of a response to therapy with TNF inhibitors and anti-IL-17А monoclonal antibodies. The prospects for the laboratory diagnosis of AS are associated with the clinical validation of candidate biomarkers during large-scale prospective cohort studies and with a search for new proteomic, transcriptomic and genomic markers, by using innovative molecular and cellular technologies.

  13. Advantage of using deep inspiration breath hold with active breathing control and image-guided radiation therapy for patients treated with lung cancers

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Madhusudhansresty; Sha, Rajib Lochan; Raut, Birendra Kumar; Poornima; Subash; Mallikarjun; Anil; Krishnam Raju, A.; Vidya; Sudarshan, G.; Mahadev, Shankar; Narayana Murthy, P.

    2008-01-01

    To evaluate the impact of moderate deep inspiration breath hold (mDIBH) using an active breathing control (ABC) apparatus on heart, spinal cord, liver and contra lateral lung doses and its volumes compared with free breathing (FB) with lung cancer irradiation

  14. Biomarkers in scleroderma: Current status

    Directory of Open Access Journals (Sweden)

    Latika Gupta

    2017-01-01

    Full Text Available Scleroderma is an autoimmune disease characterized by indolent obliterative vasculopathy and widespread fibrosis. The two main morphological manifestations of the disease overlap and may make it difficult to separate activity from damage. Many patients, especially those with the limited subset of the disease, have an indolent course without clear-cut inflammatory manifestations. There is a felt need for validated biomarkers, which can differentiate activity from damage, and yet be sensitive to change with therapy. Multiplex arrays of biomarkers have ushered an era of targeted or personalized medicine based on phenotypic characteristics in an individual.

  15. Increased Prevalence of Sleep-Disordered Breathing in Adults

    Science.gov (United States)

    Peppard, Paul E.; Young, Terry; Barnet, Jodi H.; Palta, Mari; Hagen, Erika W.; Hla, Khin Mae

    2013-01-01

    Sleep-disordered breathing is a common disorder with a range of harmful sequelae. Obesity is a strong causal factor for sleep-disordered breathing, and because of the ongoing obesity epidemic, previous estimates of sleep-disordered breathing prevalence require updating. We estimated the prevalence of sleep-disordered breathing in the United States for the periods of 1988–1994 and 2007–2010 using data from the Wisconsin Sleep Cohort Study, an ongoing community-based study that was established in 1988 with participants randomly selected from an employed population of Wisconsin adults. A total of 1,520 participants who were 30–70 years of age had baseline polysomnography studies to assess the presence of sleep-disordered breathing. Participants were invited for repeat studies at 4-year intervals. The prevalence of sleep-disordered breathing was modeled as a function of age, sex, and body mass index, and estimates were extrapolated to US body mass index distributions estimated using data from the National Health and Nutrition Examination Survey. The current prevalence estimates of moderate to severe sleep-disordered breathing (apnea-hypopnea index, measured as events/hour, ≥15) are 10% (95% confidence interval (CI): 7, 12) among 30–49-year-old men; 17% (95% CI: 15, 21) among 50–70-year-old men; 3% (95% CI: 2, 4) among 30–49-year-old women; and 9% (95% CI: 7, 11) among 50–70 year-old women. These estimated prevalence rates represent substantial increases over the last 2 decades (relative increases of between 14% and 55% depending on the subgroup). PMID:23589584

  16. Afternoon serum-melatonin in sleep disordered breathing.

    Science.gov (United States)

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  17. Breath Tests Application in Order to Improve the Outcomes of Treatment for Celiac Disease

    Directory of Open Access Journals (Sweden)

    Ye.Yu. Gubskaya

    2014-02-01

    Full Text Available The article presents data from an own study on modern opportunities to improve the effectiveness of treatment of patients with celiac disease (n = 41. All patients were on a gluten-free diet, nonetheless effectiveness of treatment was regarded as unsatisfactory. Due to the use of modern carbon and hydrogen breath tests and diagnosis of bacterial overgrowth syndrome, lactase deficiency and exocrine pancreatic insufficiency, which were the causes for the persistence of clinical symptoms, we obtained reasons for their correction and achieved a complete remission of the underlying disease.

  18. An examination of variations in the cepstral spectral index of dysphonia across a single breath group in connected speech.

    Science.gov (United States)

    Watts, Christopher R; Awan, Shaheen N

    2015-01-01

    The purpose of this study was to use spectral and cepstral analyses of speech to investigate whether underlying physiological changes in voice result in changes in acoustic estimates of dysphonia severity in continuous speech contexts within a single breath group. The effect of dysphonia on acoustic estimates of dysphonia severity, frequency, relative intensity, and vocalization time across initial and terminal segments of a single breath group using a common clinical stimulus was investigated. Prospective quasi-experimental controlled design. Digitized recordings of the Consensus Auditory-Perceptual Evaluation of Voice sentence "We were away a year ago" were obtained from 20 treatment-seeking dysphonic individuals (females, mean age = 39 years) and 20 normal controls (females, mean age = 39 years). Each recorded sample was separated into the first four syllables ("We were away … ") and second four syllables ("…a year ago.") of the breath group. Cepstral and spectral measures, intensity measures, and temporal analyses were obtained and used in calculations of the Cepstral Spectral Index of Dysphonia (CSID, an acoustic estimate of dysphonia severity), fundamental frequency (F0), vocalization time, and relative vocal intensity (dB SLP). Statistical analyses were applied to calculations of change (delta [Δ]) in these measures from one breath group segment to the next. Results revealed a significant effect of group on measures of CSID and F0, but not relative intensity or vocalization time. Dysphonic speakers exhibited a significant increase in the CSID from the first to second breath group segment and limited variation in F0 compared with controls. These results may support the hypothesis that voice impairment increases in severity toward the termination of a breath group even within a short temporal frame (i.e., 2 seconds or less of connected speech), and that this portion of the breath group may be an important determinant of perceptual impressions. Further

  19. Impact of Exhaled Breath Acetone in the Prognosis of Patients with Heart Failure with Reduced Ejection Fraction (HFrEF. One Year of Clinical Follow-up.

    Directory of Open Access Journals (Sweden)

    Fabiana G Marcondes-Braga

    Full Text Available The identification of new biomarkers of heart failure (HF could help in its treatment. Previously, our group studied 89 patients with HF and showed that exhaled breath acetone (EBA is a new noninvasive biomarker of HF diagnosis. However, there is no data about the relevance of EBA as a biomarker of prognosis.To evaluate whether EBA could give prognostic information in patients with heart failure with reduced ejection fraction (HFrEF.After breath collection and analysis by gas chromatography-mass spectrometry and by spectrophotometry, the 89 patients referred before were followed by one year. Study physicians, blind to the results of cardiac biomarker testing, ascertained vital status of each study participant at 12 months.The composite endpoint death and heart transplantation (HT were observed in 35 patients (39.3%: 29 patients (32.6% died and 6 (6.7% were submitted to HT within 12 months after study enrollment. High levels of EBA (≥3.7μg/L, 50th percentile were associated with a progressively worse prognosis in 12-month follow-up (log-rank = 11.06, p = 0.001. Concentrations of EBA above 3.7μg/L increased the risk of death or HT in 3.26 times (HR = 3.26, 95%CI = 1.56-6.80, p = 0.002 within 12 months. In a multivariable cox regression model, the independent predictors of all-cause mortality were systolic blood pressure, respiratory rate and EBA levels.High EBA levels could be associated to poor prognosis in HFrEF patients.

  20. Impact of Exhaled Breath Acetone in the Prognosis of Patients with Heart Failure with Reduced Ejection Fraction (HFrEF). One Year of Clinical Follow-up

    Science.gov (United States)

    Saldiva, Paulo H. N.; Mangini, Sandrigo; Issa, Victor S.; Ayub-Ferreira, Silvia M.; Bocchi, Edimar A.

    2016-01-01

    Background The identification of new biomarkers of heart failure (HF) could help in its treatment. Previously, our group studied 89 patients with HF and showed that exhaled breath acetone (EBA) is a new noninvasive biomarker of HF diagnosis. However, there is no data about the relevance of EBA as a biomarker of prognosis. Objectives To evaluate whether EBA could give prognostic information in patients with heart failure with reduced ejection fraction (HFrEF). Methods After breath collection and analysis by gas chromatography-mass spectrometry and by spectrophotometry, the 89 patients referred before were followed by one year. Study physicians, blind to the results of cardiac biomarker testing, ascertained vital status of each study participant at 12 months. Results The composite endpoint death and heart transplantation (HT) were observed in 35 patients (39.3%): 29 patients (32.6%) died and 6 (6.7%) were submitted to HT within 12 months after study enrollment. High levels of EBA (≥3.7μg/L, 50th percentile) were associated with a progressively worse prognosis in 12-month follow-up (log-rank = 11.06, p = 0.001). Concentrations of EBA above 3.7μg/L increased the risk of death or HT in 3.26 times (HR = 3.26, 95%CI = 1.56–6.80, p = 0.002) within 12 months. In a multivariable cox regression model, the independent predictors of all-cause mortality were systolic blood pressure, respiratory rate and EBA levels. Conclusions High EBA levels could be associated to poor prognosis in HFrEF patients. PMID:28030609

  1. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers.

    Science.gov (United States)

    Beard, John D; Erdely, Aaron; Dahm, Matthew M; de Perio, Marie A; Birch, M Eileen; Evans, Douglas E; Fernback, Joseph E; Eye, Tracy; Kodali, Vamsi; Mercer, Robert R; Bertke, Stephen J; Schubauer-Berigan, Mary K

    2018-07-01

    Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72 kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. Inhalable rather than respirable CNT/F was more

  2. Can audio coached 4D CT emulate free breathing during the treatment course?

    DEFF Research Database (Denmark)

    Persson, Gitte F; Nygaard, Ditte E; Olsen, Mikael

    2008-01-01

    BACKGROUND: The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable...... breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. METHODS: Thirteen volunteers completed respiratory audio coaching on 3 days within...... a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing...

  3. On the importance of developing a new generation of breath tests for Helicobacter pylori detection.

    Science.gov (United States)

    Kushch, Ievgeniia; Korenev, Nikolai; Kamarchuk, Lyudmila; Pospelov, Alexander; Kravchenko, Andrey; Bajenov, Leonid; Kabulov, Mels; Amann, Anton; Kamarchuk, Gennadii

    2015-12-15

    State-of-the-art methods for non-invasive detection of the Helicobacter pylori (H. pylori) infection have been considered. A reported global tendency towards a non-decreasing prevalence of H. pylori worldwide could be co-influenced by the functional limitations of urea breath tests (UBTs), currently preferred for the non-invasive recognition of H. pylori in a clinical setting. Namely, the UBTs can demonstrate false-positive or false-negative results. Within this context, limitations of conventional clinically exploited H. pylori tests have been discussed to justify the existing need for the development of a new generation of breath tests for the detection of H. pylori and the differentiation of pathogenic and non-pathogenic strains of the bacterium. This paper presents the results of a pilot clinical study aimed at evaluating the development and diagnostic potential of a new method based on the detection of the non-urease products of H. pylori vital activity in exhaled gas. The characteristics of breath of adolescents with H. pylori-positive and H. pylori-negative functional dyspepsia, together with a consideration of the cytotoxin-associated gene A (CagA) status of H. pylori-positive subjects, have been determined for the first time using innovative point-contact nanosensor devices based on salts of the organic conductor tetracyanoquinodimethane (TCNQ). The clinical and diagnostic relevance of the response curves of the point-contact sensors was assessed. It was found that the recovery time of the point-contact sensors has a diagnostic value for differentiation of the H. pylori-associated peptic ulcer disease. The diagnostically significant elongation of the recovery time was even more pronounced in patients infected with CagA-positive H. pylori strains compared to the CagA-negative patients. Taking into account the operation of the point-contact sensors in the real-time mode, the obtained results are essential prerequisites for the development of a fast and

  4. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  5. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Fayroz F. Sherif

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer’s disease (AD. Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA studies. New SNP biomarkers were observed to be significantly associated with Alzheimer’s disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively.

  6. Retinal Layer Abnormalities as Biomarkers of Schizophrenia.

    Science.gov (United States)

    Samani, Niraj N; Proudlock, Frank A; Siram, Vasantha; Suraweera, Chathurie; Hutchinson, Claire; Nelson, Christopher P; Al-Uzri, Mohammed; Gottlob, Irene

    2018-06-06

    Schizophrenia is associated with several brain deficits, as well as visual processing deficits, but clinically useful biomarkers are elusive. We hypothesized that retinal layer changes, noninvasively visualized using spectral-domain optical coherence tomography (SD-OCT), may represent a possible "window" to these abnormalities. A Leica EnvisuTM SD-OCT device was used to obtain high-resolution central foveal B-scans in both eyes of 35 patients with schizophrenia and 50 demographically matched controls. Manual retinal layer segmentation was performed to acquire individual and combined layer thickness measurements in 3 macular regions. Contrast sensitivity was measured at 3 spatial frequencies in a subgroup of each cohort. Differences were compared using adjusted linear models and significantly different layer measures in patients underwent Spearman Rank correlations with contrast sensitivity, quantified symptoms severity, disease duration, and antipsychotic medication dose. Total retinal and photoreceptor complex thickness was reduced in all regions in patients (P layer (P layer (P layer thickness (R = -.47, P = .005). Our novel findings demonstrate considerable retinal layer abnormalities in schizophrenia that are related to clinical features and visual function. With time, SD-OCT could provide easily-measurable biomarkers to facilitate clinical assessment and further our understanding of the disease.

  7. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    Science.gov (United States)

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  8. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing

    Directory of Open Access Journals (Sweden)

    Áron Kőszeghy

    2018-04-01

    Full Text Available The orbitofrontal cortex (OFC has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  9. Cardiorespiratory and autonomic interactions during snoring related resistive breathing.

    Science.gov (United States)

    Mateika, J H; Mitru, G

    2001-03-15

    We hypothesized that blood pressure (BP) is less during snoring as compared to periods of non-snoring in non-apneic individuals. Furthermore, we hypothesized that this reduction may be accompanied by a simultaneous decrease in sympathetic (SNSA) and parasympathetic (PNSA) nervous system activity and an increase in heart rate (HR). N/A. N/A. N/A. The variables mentioned above in addition to breathing frequency were measured in 9 subjects during NREM sleep. In addition, the lowest systolic (SBP) and diastolic blood pressure (DBP) during inspiration and the highest SBP and DBP during expiration was determined breath-by-breath from segments selected from each NREM cycle. Heart rate variability was used as a marker of autonomic nervous system activity. Our results showed that BP during snoring decreased compared to non-snoring and the breath-by-breath BP analysis suggested that this difference may have been mediated by changes in intrathoracic pressure. In conjunction with the decrease in BP, SNSA decreased and HR increased however PNSA remained constant. Thus, a decrease in PNSA was likely not the primary mechanism responsible for the HR response. We conclude that BP responses and SNSA during snoring are similar to that reported previously in non-snoring individuals. However, the causal mechanisms maybe different and manifested in other measures such as HR. Thus, nocturnal cardiovascular and autonomic function maybe uniquely different in non-apneic snoring individuals.

  10. Acoustic rhinometry in mouth breathing patients: a systematic review.

    Science.gov (United States)

    Melo, Ana Carolina Cardoso de; Gomes, Adriana de Oliveira de Camargo; Cavalcanti, Arlene Santos; Silva, Hilton Justino da

    2015-01-01

    When there is a change in the physiological pattern of nasal breathing, mouth breathing may already be present. The diagnosis of mouth breathing is related to nasal patency. One way to access nasal patency is by acoustic rhinometry. To systematically review the effectiveness of acoustic rhinometry for the diagnosis of patients with mouth breathing. Electronic databases LILACS, MEDLINE via PubMed and Bireme, SciELO, Web of Science, Scopus, PsycInfo, CINAHL, and Science Direct, from August to December 2013, were consulted. 11,439 articles were found: 30 from LILACS, 54 from MEDLINE via Bireme, 5558 from MEDLINE via PubMed, 11 from SciELO, 2056 from Web of Science, 1734 from Scopus, 13 from PsycInfo, 1108 from CINAHL, and 875 from Science Direct. Of these, two articles were selected. The heterogeneity in the use of equipment and materials for the assessment of respiratory mode in these studies reveals that there is not yet consensus in the assessment and diagnosis of patients with mouth breathing. According to the articles, acoustic rhinometry has been used for almost twenty years, but controlled studies attesting to the efficacy of measuring the geometry of nasal cavities for complementary diagnosis of respiratory mode are warranted. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. Measuring breath acetone for monitoring fat loss: Review.

    Science.gov (United States)

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  12. Some aspects of cancer biomarkers and their clinical application in solid tumors – revisited

    Directory of Open Access Journals (Sweden)

    Isaac D

    2017-07-01

    Full Text Available Cancer biomarkers can be used for a variety of purposes related to screening, prediction, stratification, detection, diagnosis, prognosis, treatment design, and monitoring of a therapeutic response. One of the most important characteristics of a given biomarker includes ease of collection allowing for a non-invasive approach and frequent sampling. Such samples may be obtained from serum or plasma, sputum, bronchoalveolar lavage, saliva, nipple discharge, pleural, or peritoneal effusions. Validation of different biomarkers is considered a mandatory method for useful evaluation. In this review, we highlight the clinical applicability of some cancer biomarkers, as well as future approaches for their development and collection, which may help guide clinicians and researchers. The role of liquid biopsies will also be summarized. Further studies using liquid biopsies are needed to elucidate the significance of various sources of biomarkers suitable for clinical application.

  13. Cheyne-Stokes respiration: hypoxia plus a deep breath that interrupts hypoxic drive, initiating cyclic breathing.

    Science.gov (United States)

    Guntheroth, Warren G

    2011-11-01

    In the 19th Century, Cheyne and Stokes independently reported cycles of respiration in patients with heart failure, beginning with apnea, followed by a few breaths. However Cheyne-Stokes respiration (C-SR) can also occur in healthy individuals with sleep, and was demonstrated in 1908 with voluntary hyperventilation, followed by apnea that Haldane blamed on hypoxia, subsequently called post-hyperventilation apnea. Additional theories explaining C-SR did not appear until 1954, based on control theory, specifically a feed-back regulator controlling CO(2). This certainly describes control of normal respiration, but to produce an unstable state such as C-SR requires either a very long transit time (3½ min) or an increase of the controller gain (13 times), physiologically improbable. There is general agreement that apnea initiates C-SR but that has not been well explained except for post-hyperventilation apnea, and that explanation is not compatible with a study by Nielsen and Smith in 1951. They plotted the effects of diminished oxygen on ventilation (V) in relation to CO(2) (Fig. 1). They found that the slope of V/CO(2) (gain) increased with hypoxia, but it flattened at a moderate CO(2) level and had nointercept with zero (apnea). It is also incompatible with our published findings in 1975 that showed that apnea did not occur until an extreme level of hypoxia occurred (the PO(2) fell below 10 mmHg), followed shortly by gasping. Much milder hypoxia underlies most cases of C-SR, when hypoxic drive replaces the normal CO(2)-based respiratory drive, in a failsafe role. I hypothesize that the cause of apnea is a brief interruption of hypoxic drive caused by a pulse of oxygen from a stronger than average breath, such as a sigh. The rapidity of onset of apnea in response to a pulse of oxygen, reflects the large pressure gradient for oxygen from air to lung with each breath, in contrast to CO(2). With apnea, there is a gradual fall in oxygen, resulting in a resumption of

  14. Early-Phase Studies of Biomarkers

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Janes, Holly; Li, Christopher I.

    2016-01-01

    of a positive biomarker test in cases (true positive) to cost associated with a positive biomarker test in controls (false positive). Guidance is offered on soliciting the cost/benefit ratio. The calculations are based on the longstanding decision theory concept of providing a net benefit on average...... impact on patient outcomes of using the biomarker to make clinical decisions....

  15. Rostrocaudal Dynamics of CSF Biomarkers

    NARCIS (Netherlands)

    Tarnaris, A.; Toma, A.K.; Chapman, M.D.; Petzold, A.F.S.; Keir, G.; Kitchen, N.D.; Watkins, L.D.

    2011-01-01

    The rostrocaudal gradient (RCG) of markers present in cerebrospinal fluid (CSF) has not been studied adequately due to lack of appropriate control populations and ethical restrictions. The aim of this study is to understand the rostrocaudal gradient of CSF biomarkers. We contacted a study comparing

  16. Imaging Biomarkers for Adult Medulloblastomas

    DEFF Research Database (Denmark)

    Keil, V C; Warmuth-Metz, M; Reh, C

    2017-01-01

    BACKGROUND AND PURPOSE: The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences ...

  17. Biomarkers of satiation and satiety

    NARCIS (Netherlands)

    Graaf, de C.; Blom, W.A.M.; Smeets, P.A.M.; Stafleu, A.; Hendriks, H.F.J.

    2004-01-01

    This review's objective is to give a critical summary of studies that focused on physiologic measures relating to subjectively rated appetite, actual food intake, or both. Biomarkers of satiation and satiety may be used as a tool for assessing the satiating efficiency of foods and for understanding

  18. Bias in Peripheral Depression Biomarkers

    DEFF Research Database (Denmark)

    Carvalho, André F; Köhler, Cristiano A; Brunoni, André R

    2016-01-01

    BACKGROUND: To aid in the differentiation of individuals with major depressive disorder (MDD) from healthy controls, numerous peripheral biomarkers have been proposed. To date, no comprehensive evaluation of the existence of bias favoring the publication of significant results or inflating effect...

  19. Biomarkers of spontaneous preterm birth

    DEFF Research Database (Denmark)

    Polettini, Jossimara; Cobo, Teresa; Kacerovsky, Marian

    2017-01-01

    biomarkers associated with PTB published from January 2005 to March 2014. Retrieved citations (3631) were screened, and relevant studies (33) were selected for full-text reading. Ten studies were included in the review. Forty-two PTB-related proteins were reported, and RANTES and IL-10 (three studies...

  20. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI

    OpenAIRE

    2015-01-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast ?weighted? for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes ...

  1. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.

    Science.gov (United States)

    2015-04-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.

  2. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  3. Non-Small Cell Carcinoma Biomarker Testing: The Pathologist's Perspective.

    Directory of Open Access Journals (Sweden)

    Elisa eBrega

    2014-07-01

    Full Text Available Biomarker testing has become standard of care for patients diagnosed with non-small cell lung cancer. Although it can be successfully performed in circulating tu-mor cells, at present, the vast majority of investigations are carried out using di-rect tumor sampling, either through aspiration methods, which render most often isolated cells, or tissue sampling, that could range from minute biopsies to large resections. Consequently, pathologists play a central role in this process. Recent evidence suggests that refining NSCLC diagnosis might be clinically signifi-cant, particularly in cases of lung adenocarcinomas (ADC, which in turn, has prompted a new proposal for the histologic classification of such pulmonary neo-plasms. These changes, in conjunction with the mandatory incorporation of biomarker testing in routine NSCLC tissue processing, have directly affected the pathologist’s role in lung cancer work-up. This new role pathologists must play is complex and demanding, and requires a close interaction with surgeons, oncologists, radiologists and molecular pathologists. Pathologists often find themselves as the central figure in the coordination of a process, that involves assuring that the tumor samples are properly fixed, but without disruption of the DNA structure, obtaining the proper diagnosis with a minimum of tissue waste, providing pre-analytical evaluation of tumor samples selected for biomarker testing, which includes assessment of the proportion of tumor to normal tissues, as well as cell viability, and assuring that this entire pro-cess happens in a timely fashion. Therefore, it is part of the pathologist’s respon-sibilities to assure that the samples received in their laboratories, be processed in a manner that allows for optimal biomarker testing. This article goal is to discuss the essential role pathologists must play NSCLC bi-omarker testing, as well as to provide a summarized review of the main NSCLC bi-omarkers of

  4. Breath 14CO2 after intravenous administration of [14C]aminopyrine in liver diseases

    International Nuclear Information System (INIS)

    Pauwels, S.; Geubel, A.P.; Dive, C.; Beckers, C.

    1982-01-01

    The determination of of 14 CO2 in breath after oral administration of [ 14 C]aminopyrine has been proposed as a quantitative liver function test. In order to shorten the procedure and avoid misinterpretations related to variable rates of intestinal absorption, the [ 14 C]aminopyrine breath test (ABT) was performed after intravenous administration of [ 14 C]aminopyrine in 21 controls and 89 patients with biopsy-proven liver disease. The specific activity of the first hour sample corrected for body weight (SA1) was the most discriminant expression of breath data. The SA1 value, expressed as the percentage of the administered dose, was 0.86 +/- 0.1% (mean +/- SD) in controls and significantly less in patients (0.46 +/- 0.31%). Low values were observed in patients with untreated chronic active hepatitis (0.16 +/- 0.13%), alcoholic cirrhosis (0.2 +/ 0.15%0, and untreated postnecrotic cirrhosis (0.47 +/- 0.17%). In contrast, normal values were obtained in chronic persistent hepatitis (0.86 +/- 0.13%) and 58% of noncirrhotic alcoholic liver diseases (0.83 +/- 0.27%). The results of duplicate studies were reproducible and SA1 correlated with other conventional liver function tests, including 45-min BSP retention. Among these, ABT was the most sensitive screening test for the presence of cirrhosis, especially in alcoholic patients, where it allowed a sharp distinction between cirrhotic and noncirrhotic cases. The results obtained in chronic hepatitis suggested that ABT may provide a reliable index of the activity of the disease. In our hands, intravenous ABT, performed over a 1-hr period, was a fast, sensitive, and discriminant liver function test

  5. Evolution of lung breathing from a lungless primitive vertebrate.

    Science.gov (United States)

    Hoffman, M; Taylor, B E; Harris, M B

    2016-04-01

    Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Breath analysis using external cavity diode lasers: a review

    Science.gov (United States)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  7. A wireless breathing-training support system for kinesitherapy.

    Science.gov (United States)

    Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton

    2009-01-01

    We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.

  8. Predictive value of 14CO2 breath tests for clinical use of 13CO2 breath tests

    International Nuclear Information System (INIS)

    Glaubitt, D.M.H.

    1975-01-01

    The knowledge of the efficiency of 14 CO 2 breath tests makes possible the comparison of the efficiency of analogous tests using the stable isotope 13 C. 14 CO 2 exhalation studies render overall information. After parenteral administration of a 14 C labeled substrate, 14 CO 2 breath tests permit insight into the metabolism of the 14 C substrate and the associated intermediary metabolism. If the 14 C substrate is given orally or by intraduodenal instillation, 14 CO 2 breath tests supply information not only about gastrointenstinal absorption and digestion but also about the intermediary metabolism yielding 14 CO 2 , after the administered substrate or its degradation products have been absorbed in the gastrointestinal tract. The fraction of 14 CO 2 arising from absorption, digestion and intermediary metabolism can be estimated only by additional methods. 14 CO 2 breath tests are unable to delineate single metabolic reactions involved in the formation of carbon dioxide. Under these considerations the clinical application of 14 CO 2 breath tests may provide diagnostically useful results, especially in internal medicine and surgery. The tests are suitable for intraindividual assessment of the course of a disease and of therapeutic effects. They may be important in the research of the metabolism of 14 C labeled substrates

  9. Effects of high-frequency yoga breathing called kapalabhati compared with breath awareness on the degree of optical illusion perceived.

    Science.gov (United States)

    Telles, Shirley; Maharana, Kanchan; Balrana, Budhi; Balkrishna, Acharya

    2011-06-01

    Prior research has shown that methods of meditation, breath control, and different kinds of yoga breathing affect attention and visual perception, including decreasing the size of certain optical illusions. Evaluating relationships sheds light on the perceptual and cognitive changes induced by yoga and related methods, and the locus of the effects. In the present study, the degree of optical illusion was assessed using Müller-Lyer stimuli before and immediately after two different kinds of practice, a high frequency yoga breathing called kapalabhati, and breath awareness. A nonyoga, control session tested for practice effects. Thirty participants (with group M age = 26.9 yr., SD = 5.7) practiced the two techniques for 18 min. on two separate days. The control group had 15 nonyoga practitioners assessed before and after 18 min. in which they did not perform any specific activity but were seated and relaxed. After both kapalabhati and breath awareness there was a significant decrease in the degree of optical illusion. The possibility that this was due to a practice or repetition effect was ruled out when 15 nonyoga practitioners showed no change in the degree of illusion when retested after 18 min. The changes were interpreted as due to changes in perception related to the way the stimuli were judged.

  10. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    Science.gov (United States)

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.

  11. Short-term changes in respiratory biomarkers after swimming in a chlorinated pool.

    Science.gov (United States)

    Font-Ribera, Laia; Kogevinas, Manolis; Zock, Jan-Paul; Gómez, Federico P; Barreiro, Esther; Nieuwenhuijsen, Mark J; Fernandez, Pilar; Lourencetti, Carolina; Pérez-Olabarría, Maitane; Bustamante, Mariona; Marcos, Ricard; Grimalt, Joan O; Villanueva, Cristina M

    2010-11-01

    Swimming in chlorinated pools involves exposure to disinfection by-products (DBPs) and has been associated with impaired respiratory health. We evaluated short-term changes in several respiratory biomarkers to explore mechanisms of potential lung damage related to swimming pool exposure. We measured lung function and biomarkers of airway inflammation [fractional exhaled nitric oxide (FeNO), eight cytokines, and vascular endothelial growth factor (VEGF) in exhaled breath condensate], oxidative stress (8-isoprostane in exhaled breath condensate), and lung permeability [surfactant protein D (SP-D) and the Clara cell secretory protein (CC16) in serum] in 48 healthy nonsmoking adults before and after they swam for 40 min in a chlorinated indoor swimming pool. We measured trihalomethanes in exhaled breath as a marker of individual exposure to DBPs. Energy expenditure during swimming, atopy, and CC16 genotype (rs3741240) were also determined. Median serum CC16 levels increased from 6.01 to 6.21 microg/L (average increase, 3.3%; paired Wilcoxon test p = 0.03), regardless of atopic status and CC16 genotype. This increase was explained both by energy expenditure and different markers of DBP exposure in multivariate models. FeNO was unchanged overall but tended to decrease among atopics. We found no significant changes in lung function, SP-D, 8-isoprostane, eight cytokines, or VEGF. We detected a slight increase in serum CC16, a marker of lung epithelium permeability, in healthy adults after they swam in an indoor chlorinated pool. Exercise and DBP exposure explained this association, without involving inflammatory mechanisms. Further research is needed to confirm the results, establish the clinical relevance of short-term serum CC16 changes, and evaluate the long-term health impacts.

  12. Theme and variations: amphibious air-breathing intertidal fishes.

    Science.gov (United States)

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  13. A simple breath test for fat malabsorption in man

    International Nuclear Information System (INIS)

    Talbot, J.N.; Coutris, G.; Milhaud, G.

    1980-01-01

    The metabolic pathway of 14 C-labeled oleic acid leads to the formation and the breath excretion of 14 CO 2 . This behavior can be used for measuring lipid absorption. The simple, accurate screening test includes the ingestion of 14 C-labeled triolein and the intermittent collection of breath 14 CO 2 in a trapping solution. The results are strongly correlated to the measurement of fecal fat. The use of carbon-14 in man should not be restricted, provided the labeled substrates are converted into rapidly excreted metabolites [fr

  14. Airflow Characteristics at the Breathing Zone of a Seated Person

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Bolashikov, Zhecho Dimitrov; Nagano, Hideaki

    2011-01-01

    A method for active control over the interaction between the free convection flow around occupant‘s body and locally applied airflow from front on the velocity field at the breathing zone of a seated person was studied. A workplace equipped with personalised ventilation (PV) generating flow from......) was installed below the table board, above the thighs of the manikin, and was used to exhaust the air of the free convection flow coming from the lower body parts of the manikin. The velocity field at the breathing zone was measured with Particle Image Velocimetry consisting of a dual cavity laser and two CCD...

  15. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    Science.gov (United States)

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  16. Implementation of proteomic biomarkers: making it work.

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John P A; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-09-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  17. Biomarkers of PTSD: military applications and considerations

    Directory of Open Access Journals (Sweden)

    Amy Lehrner

    2014-08-01

    Full Text Available Background: Although there are no established biomarkers for posttraumatic stress disorder (PTSD as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. Objective: This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Method: Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Results: Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Conclusions: Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  18. Biomarkers of PTSD: military applications and considerations.

    Science.gov (United States)

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  19. Implementation of proteomic biomarkers: making it work

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John PA; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-01-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. PMID:22519700

  20. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  1. Meeting Report--NASA Radiation Biomarker Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  2. CURRENT APPROACHES FOR RESEARCH OF MULTIPLE SCLEROSIS BIOMARKERS

    Directory of Open Access Journals (Sweden)

    Kolyada T.I

    2016-12-01

    techniques (including full genome resequencing, targeted resequencing of the genome. The results obtained with these techniques became the basis for the further development of screening technologies. Disadvantages of the "classical" methods are associated not only with their resolution or other technical limitations but also to the fact that the range of pathological processes in MS may vary significantly from patient to patient and single biomarkers suitable for one group of patients may be inappropriate for another group of patients. Due to the complexity of MS the reflection of pathological changes may be determined not by single biomarkers but by isolated biomarkers panel from different compartments. The solution of this problem seems to be possible due to the development of microarray methods including biochips technology. Biochips are used for screening of MS patients and allow determining the rare MS-associated gene variants that have a significant impact on the development of the disease. In conjunction with the "classical" methods, microarrays allowed to apply systems biology approaches (i.e. genomics, transcriptomics, proteomics, metabolomics, epigenomics in the study of MS biomarkers. Addition of bioinformatics methods to "classical" and microarray laboratory methods allows not only to find new biomarkers but to identify complex patterns of biomarkers while single biomarkers informative value is not sufficient. To date, the use of genome-wide association study (GWAS revealed more than a hundred genetic variants associated with the development of MS, while the total number of investigated genetic variants including the candidate ones exceeded two hundred. GWAS is used to identify correlations of genetic variants with the disease, including the identification of variants associated with a risk of developing MS, but cannot answer the question of the causal links between specific genes polymorphism and the pathogenesis of MS. Current studies of biomarkers of disease

  3. Symptoms and biomarkers associated with celiac disease

    DEFF Research Database (Denmark)

    Kårhus, Line L; Thuesen, Betina H; Rumessen, Juri J.

    2016-01-01

    OBJECTIVES: To identify possible early predictors (symptoms and biomarkers) of celiac disease, compare symptoms before and after screening, and evaluate the diagnostic efficacy of serologic screening for celiac disease in an adult Danish population. METHODS: This cross-sectional population......-positive individuals 19 months after the clinical evaluation to obtain information on their symptoms and their experience with participation in the screening. RESULTS: Before screening, participants subsequently diagnosed with celiac disease did not differ from the rest of the population with respect to symptoms...... with having been diagnosed and 71% felt better on a gluten-free diet. CONCLUSION: There were no differences in the prevalence of symptoms between participants with and without screening-detected celiac disease, confirming that risk stratification in a general population by symptoms is difficult. The majority...

  4. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath.

    Science.gov (United States)

    Fan, Gang-Ting; Yang, Chien-Lin; Lin, Cheng-Huang; Chen, Chien-Chung; Shih, Chung-Hung

    2014-03-01

    The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed to detect acetone, a biomarker for diabetes mellitus (DM) prediction, in human breath. Samples of exhaled breath were collected from four DM patients (one type-I and three type-II) and eight volunteers (nondiabetic healthy subjects), respectively. The gas samples, without any pretreatment, were simultaneously injected into a GC column through a Hadamard-injector based on Hadamard codes. Under optimized conditions, when cyclic S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the acetone signals were substantially improved by 8.0-, 16.0- and 22.6-fold, respectively; these improvements are in good agreement with theoretically calculated values. We found that the breath acetone concentration levels in the four DM patients and the eight volunteers ranged from 1 to 10 ppmv and 0.1 to 1 ppmv, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biomarkers of Aspergillus spores

    Science.gov (United States)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  6. Chronic Obstructive Pulmonary Disease Biomarkers

    Directory of Open Access Journals (Sweden)

    Tatsiana Beiko

    2016-04-01

    Full Text Available Despite significant decreases in morbidity and mortality of cardiovascular diseases (CVD and cancers, morbidity and cost associated with chronic obstructive pulmonary disease (COPD continue to be increasing. Failure to improve disease outcomes has been related to the paucity of interventions improving survival. Insidious onset and slow progression halter research successes in developing disease-modifying therapies. In part, the difficulty in finding new therapies is because of the extreme heterogeneity within recognized COPD phenotypes. Novel biomarkers are necessary to help understand the natural history and pathogenesis of the different COPD subtypes. A more accurate phenotyping and the ability to assess the therapeutic response to new interventions and pharmaceutical agents may improve the statistical power of longitudinal clinical studies. In this study, we will review known candidate biomarkers for COPD, proposed pathways of pathogenesis, and future directions in the field.

  7. Glycoscience aids in biomarker discovery

    Directory of Open Access Journals (Sweden)

    Serenus Hua1,2 & Hyun Joo An1,2,*

    2012-06-01

    Full Text Available The glycome consists of all glycans (or carbohydrates within abiological system, and modulates a wide range of important biologicalactivities, from protein folding to cellular communications.The mining of the glycome for disease markers representsa new paradigm for biomarker discovery; however, this effortis severely complicated by the vast complexity and structuraldiversity of glycans. This review summarizes recent developmentsin analytical technology and methodology as applied tothe fields of glycomics and glycoproteomics. Mass spectrometricstrategies for glycan compositional profiling are described, as arepotential refinements which allow structure-specific profiling.Analytical methods that can discern protein glycosylation at aspecific site of modification are also discussed in detail.Biomarker discovery applications are shown at each level ofanalysis, highlighting the key role that glycoscience can play inhelping scientists understand disease biology.

  8. Candidate immune biomarkers for radioimmunotherapy.

    Science.gov (United States)

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-08-01

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy. Copyright © 2017. Published by Elsevier B.V.

  9. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders

    Science.gov (United States)

    Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

  10. Impact of manakin motion on particle transport in the breathing zone

    Science.gov (United States)

    The current experimental investigation is focused on particle measurements using Phase Doppler Anemometry (PDA) in the breathing zone of a seated, breathing, thermal manikin under stationary and rotational conditions. Particle size, concentration, flux, and velocity data were co...

  11. Effect of upper costal and costo-diaphragmatic breathing types on electromyographic activity of respiratory muscles.

    Science.gov (United States)

    Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl

    2015-04-01

    To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.

  12. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Yin, Y [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  13. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    Science.gov (United States)

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biomarkers in adult posthemorrhagic hydrocephalus.

    Science.gov (United States)

    Hua, Cong; Zhao, Gang

    2017-08-01

    Posthemorrhagic hydrocephalus is a severe complication following intracranial hemorrhage. Posthemorrhagic hydrocephalus is often associated with high morbidity and mortality and serves as an important clinical predictor of adverse outcomes after intracranial hemorrhage. Currently, no effective medical intervention exists to improve functional outcomes in posthemorrhagic hydrocephalus patients because little is still known about the mechanisms of posthemorrhagic hydrocephalus pathogenesis. Because a better understanding of the posthemorrhagic hydrocephalus pathogenesis would facilitate development of clinical treatments, this is an active research area. The purpose of this review is to describe recent progress in elucidation of molecular mechanisms that cause posthemorrhagic hydrocephalus. What we are certain of is that the entry of blood into the ventricular system and subarachnoid space results in release of lytic blood products which cause a series of physiological and pathological changes in the brain. Blood components that can be linked to pathology would serve as disease biomarkers. From studies of posthemorrhagic hydrocephalus, such biomarkers are known to mutually synergize to initiate and promote posthemorrhagic hydrocephalus progression. These findings suggest that modulation of biomarker expression or function may benefit posthemorrhagic hydrocephalus patients.

  15. Biomarker-Based Approaches for Assessing Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    Onni Niemelä

    2016-01-01

    Full Text Available Although alcohol use disorders rank among the leading public health problems worldwide, hazardous drinking practices and associated morbidity continue to remain underdiagnosed. It is postulated here that a more systematic use of biomarkers improves the detection of the specific role of alcohol abuse behind poor health. Interventions should be initiated by obtaining information on the actual amounts of recent alcohol consumption through questionnaires and measurements of ethanol and its specific metabolites, such as ethyl glucuronide. Carbohydrate-deficient transferrin is a valuable tool for assessing chronic heavy drinking. Activities of common liver enzymes can be used for screening ethanol-induced liver dysfunction and to provide information on the risk of co-morbidities including insulin resistance, metabolic syndrome and vascular diseases. Conventional biomarkers supplemented with indices of immune activation and fibrogenesis can help to assess the severity and prognosis of ethanol-induced tissue damage. Many ethanol-sensitive biomarkers respond to the status of oxidative stress, and their levels are modulated by factors of life style, including weight gain, physical exercise or coffee consumption in an age- and gender-dependent manner. Therefore, further attention should be paid to defining safe limits of ethanol intake in various demographic categories and establishing common reference intervals for biomarkers of alcohol use disorders.

  16. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  17. Exhaled breath condensate pH does not discriminate asymptomatic gastroesophageal reflux or the response to lansoprazole treatment in children with poorly controlled asthma.

    Science.gov (United States)

    Fitzpatrick, Anne M; Holbrook, Janet T; Wei, Christine Y; Brown, Meredith S; Wise, Robert A; Teague, W Gerald

    2014-01-01

    Although exhaled breath condensate (EBC) pH has been identified as an "emerging" biomarker of interest for asthma clinical trials, the clinical determinants of EBC pH remain poorly understood. Other studies have associated acid reflux-induced respiratory symptoms, for example, cough, with transient acidification of EBC. We sought to determine the clinical and physiologic correlates of EBC acidification in a highly characterized sample of children with poorly controlled asthma. We hypothesized that (1) children with asymptomatic gastroesophageal reflux determined by 24-hour esophageal pH monitoring would have a lower EBC pH than children without gastroesophageal reflux, (2) treatment with lansoprazole would alter EBC pH in those children, and (3) EBC acidification would be associated with increased asthma symptoms, poorer asthma control and quality of life, and increased formation of breath nitrogen oxides (NOx). A total of 110 children, age range 6 to 17 years, with poor asthma control and esophageal pH data enrolled in the Study of Acid Reflux in Children with Asthma (NCT00442013) were included. Children submitted EBC samples for pH and NOx measurement at randomization and at study weeks 8, 16, and 24. Serial EBC pH measurements failed to distinguish asymptomatic gastroesophageal reflux and was not associated with breath NOx formation. EBC pH also did not discriminate asthma characteristics such as medication and health care utilization, pulmonary function, and asthma control and quality of life both at baseline and across the study period. Despite the relative ease of EBC collection, EBC pH as a biomarker does not provide useful information of children with asthma who were enrolled in asthma clinical trials. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Purification yields of forced air filters for radioactive breath protection

    International Nuclear Information System (INIS)

    Landman, E.B.

    1986-01-01

    Air filters for breath protection were tested as to purification yield using the in-situ DOP testing method. Only some of them satisfied the requirements made by the authors. Requirements, testing methods, experimental set-up and results are presented. (G.J.P.)

  19. African breathing and spiritual healing | Edwards | Indilinga: African ...

    African Journals Online (AJOL)

    Abstract. Discerning visitors to Africa typically have an 'ancestral-roots' experience on encountering an essential humanity and ... In its original, essential and literal meaning, psychology is concerned with the breath, energy ... some other form. Such an essential and spiritual form of psychology, still practiced internationally,

  20. Softening of the Radial Breathing Mode in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H. (ed.); Sasaki, K.; Kalbáč, Martin; Hofmann, M.; Saito, R.; Dresselhaus, M. S.; Kong, J.

    2009-01-01

    Roč. 102, č. 12 (2009), 126804-1-126804-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic carbon nanotubes * radial breathing mode * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.328, year: 2009

  1. WE-DE-209-02: Active Breathing Control

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D. [Stronach Regional Cancer Centre (Canada)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  2. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  3. Take a Deep Breath (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2016-11-24

    Nearly 16 million Americans have been diagnosed with COPD; however, many may not be aware they have the condition. This podcast discusses the importance of seeing a health care provider if you have trouble breathing.  Created: 11/24/2016 by MMWR.   Date Released: 11/24/2016.

  4. Morbidity prior to a Diagnosis of Sleep-Disordered Breathing

    DEFF Research Database (Denmark)

    Jennum, Poul; Ibsen, Rikke Falkner; Kjellberg, Jakob

    2013-01-01

    Sleep-disordered breathing (SDB) causes burden to the sufferer, the healthcare system, and society. Most studies have focused on cardiovascular diseases (CVDs) after a diagnosis of obstructive sleep apnea (OSA) or obesity hypoventilation syndrome (OHS); however, the overall morbidity prior...

  5. Finding aroma clues in the human breath to diagnose diseases

    Science.gov (United States)

    A. Dan Wilson

    2016-01-01

    History of human odor analysis in disease diagnosis The use of the sense of smell as an indicator of human disease probably originated with Hippocrates (circa 400 BC). Early medical practitioners recognized that the presence of human diseases changed the odors released from the body and breath. Physicians once relied heavily on their sense of smell to provide useful...

  6. Analysis of the movement of calcified lymph nodes during breathing

    International Nuclear Information System (INIS)

    Jenkins, Peter; Salmon, Clare; Mannion, Cathy

    2005-01-01

    Purpose: To identify and measure the respiratory-induced movement of calcified mediastinal lymph nodes. Methods and materials: Twenty-one patients receiving radiation therapy for primary lung or pleural tumors were noted to have calcification within one or more mediastinal lymph nodes. The breathing motion of 27 such nodes was measured with orthogonal fluoroscopic imaging during quiet respiration. Results: All 27 nodes showed some motion synchronous with breathing. The mean respiratory movement was 6.6 mm, 2.6 mm, and 1.4 mm in the craniocaudal, dorsoventral, and mediolateral planes, respectively. There was a significant difference in the amplitude of motion in the craniocaudal plane compared with movement in the other two directions (p < 0.001). No differences were seen in the movement of lymph nodes dependent on position within the mediastinum (supracarinal vs. infracarinal or hilar vs. mediastinal). Neither size of the primary tumor nor spirometric parameters were correlated with the amplitude of lymph node movement. Conclusions: Mediastinal lymph nodes move during breathing, and this needs to be accounted for when the internal margin component of the PTV is defined. The amplitude of this movement is anisotropic and seems to be less than that reported for primary lung tumors. This should permit a modest reduction in the margin allowed for breathing movement around involved mediastinal nodes, particularly in the mediolateral and dorsoventral planes

  7. Carbon Dioxide Changes in Hyperventilation and Breath-hold Diving

    African Journals Online (AJOL)

    1974-01-05

    Jan 5, 1974 ... South Africa. S. Afr. Med. l., 48, 18 (1974). Under conditions of normal atmospheric pressure, breath- holding results in important changes in the mechanism whereby the CO, is transported ... haemoglobin in the face of falling CO, output to the ... Hong,' in a field study of Korean diving women, noted that they ...

  8. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  9. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  10. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  11. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  12. The effect of African breath psychotherapeutic workshops on ...

    African Journals Online (AJOL)

    The aim of this research was to investigate the effect of an African breath psychotherapeutic workshop called Shiso on spirituality perceptions and experiences. In view of previous pilot study findings, it was hypothesized that further Shiso workshops with enlarged samples would improve participants' spirituality in ...

  13. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  14. Effects of integral breath consciousness workshops on spirituality ...

    African Journals Online (AJOL)

    Although not quite reaching quantitative significant levels, qualitatively improved health was reported. The results are discussed in relation to previous and future research with regard to the influence of breath consciousness on perceptions of spirituality, health, psychological skills, stress and related phenomena.

  15. Toward a hydrogen peroxide sensor for exhaled breath analysis

    NARCIS (Netherlands)

    Wiedemair, Justyna; van Dorp, Henriëtte; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a chip-integrated amperometric sensor for the detection of H2O2 in exhaled breath condensate (EBC) is reported. The electrode chip is characterized, and detection of H2O2 in an aqueous phase is shown by means of cyclic voltammetry (CV) and amperometry. Variation of conditions

  16. Breath acetone concentration; biological variability and the influence of diet

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, A.; Chippendale, T. W. E.; Smith, D.

    2011-01-01

    Roč. 32, č. 8 (2011), N23-N31 ISSN 0967-3334 R&D Projects: GA ČR GP203/09/P172 Institutional research plan: CEZ:AV0Z40400503 Keywords : acetone * breath * ketogenic diet Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.677, year: 2011

  17. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  18. BREATHING EXERCISE RELAXATION INCREASE PHSYCOLOGICAL RESPONSE PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-07-01

    Full Text Available Introduction: Being hospitalize will be made the children become stress. Hospitalization response of the child particularly is afraid sense regard to painfull procedure and increase to attack the invasive procedure. The aimed of this study was to describe the influence of breathing exercise relaxation technique regarded to phsycological receiving responses in the preeliminary school chidren while they were receiving invasive procedure. Method: A quasy experimental purposive sampling design was used in this study. There were 20 respondents who met to the inclusion criteria. The independent variable was the breathing exercise relaxation technique and the dependent variable was phsycological receiving responses. Data for phsylogical response were collected by using observation form then analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level α≤0.05. Result :  The result showed that breathing exercise relaxation technique had significance influence to phsycological response (p=0.000. Discussion: It,s can be concluded that breathing exercise relaxation technique has an effect to increase pshycological response in preeliminary school children who received invasive procedure.

  19. The Breathing Cell: Cyclic Intermembrane Distance Variation in Reverse Electrodialysis

    NARCIS (Netherlands)

    Moreno Domingo, Jordi; Slouwerhof, E.; Vermaas, David; Saakes, M.; Nijmeijer, Dorothea C.

    2016-01-01

    The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater.

  20. The breathing cell : cyclic intermembrane distance variation in reverse electrodialysis

    NARCIS (Netherlands)

    Moreno, J.; Slouwerhof, E.; Vermaas, D.A.; Saakes, M.; Nijmeijer, K.

    2016-01-01

    The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater.

  1. WE-DE-209-02: Active Breathing Control

    International Nuclear Information System (INIS)

    Comsa, D.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  2. Bad-breath: Perceptions and misconceptions of Nigerian adults

    African Journals Online (AJOL)

    2015-03-02

    Mar 2, 2015 ... Key words: Bad‑breath, emerging adults, misconceptions, Nigeria, perceptions. Date of ... negligible minority being attributable to food and ill health. Many cases of ..... Intra‑ and extra‑oral halitosis: finding of a new form of ...

  3. Breathing, spiking and chaos in a laser with injected signal

    Energy Technology Data Exchange (ETDEWEB)

    Lugiato, L A; Narducci, L M

    1983-06-01

    The behavior of a laser driven by an injected cw field detuned from the operating laser frequency is considered. The analysis covers the entire range of incident power levels from zero to the injection locking threshold. In this domain, the output intensity exhibits regular and chaotic oscillations, a period doubling cascade in reverse order, envelope breathing and spiking.

  4. The breathing of webs under repeated partial edge loading

    Czech Academy of Sciences Publication Activity Database

    Škaloud, Miroslav; Zörnerová, Marie; Urushadze, Shota

    2012-01-01

    Roč. 40, č. 1 (2012), s. 463-468 E-ISSN 1877-7058. [Steel structures and bridges. Podbanske, 26.09.2012-28.09.2012] R&D Projects: GA ČR GA103/08/1340 Institutional support: RVO:68378297 Keywords : slender webs * breathing * fatigue limit state * design * repeated partial edge loading Subject RIV: JM - Building Engineering

  5. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    Science.gov (United States)

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  6. Mass spectrometry for real-time quantitative breath analysis

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Herbig, J.; Beauchamp, J.

    2014-01-01

    Roč. 8, č. 2 (2014), 027101 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : breath analysis * proton transfer reaction mass spectrometry * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  7. Breathing Patterns In The Newborn And Related Cardiovascular ...

    African Journals Online (AJOL)

    The transition from foetal to neonatal life is a dramatic one; it demands considerable and effective physiological alteration in the newborn to ensure survival. Simultaneously cardio-respiratory adjustments are initiated and breathing maintained on a continuous basis. The basic movements in the human foetus being about 8 ...

  8. Take a Breath (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-03-26

    Breathing is a natural bodily function that most take for granted. But for people with chronic obstructive pulmonary disease, or COPD, inhaling and exhaling is a daily struggle. In this podcast, Dr. Anne Wheaton discusses health problems associated with COPD.  Created: 3/26/2015 by MMWR.   Date Released: 3/26/2015.

  9. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory.

    Science.gov (United States)

    Usman, M; Ruijsink, B; Nazir, M S; Cruz, G; Prieto, C

    2017-05-01

    To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4-5min and 4D whole-heart volumes (3D+cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P>0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5min free breathing acquisition. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The impact of dysfunctional breathing on the assessment of asthma control.

    Science.gov (United States)

    Veidal, Sandra; Jeppegaard, Maria; Sverrild, Asger; Backer, Vibeke; Porsbjerg, Celeste

    2017-02-01

    Dysfunctional breathing (DB) is a respiratory disorder, which involves a pattern of breathing too deeply, too superficially and/or too rapidly. In asthma patients, DB may lead to an overestimation of the severity of asthma symptoms, and hence potentially to overtreatment. However, it is not known to which degree DB may affect estimates of asthma control, in a specialist clinical setting. The MAPOut-study examined all patients referred consecutively over a 12-months period for specialist assessment of asthma at the Respiratory Outpatient Clinic at Bispebjerg Hospital in Copenhagen. All patients were examined with the Nijmegen questionnaire with a DB defined as a score ≥23 and the ACQ questionnaire. Linear regression analysis of predictors of ACQ score was performed. Asthma was defined as asthma symptoms and a positive asthma test. Of the 256 patients referred to the lung clinic, data on both the Nijmegen questionnaire and ACQ score was obtained in 127 patients, who were included in the present analysis. Median (range) age: 30 (15-63) years, and 76 (59.8%) were females. DB was found in 31 (24.4%). Asthmatic patients with co-existing DB had a poorer asthma control compared to asthmatics without DB (Median (range) ACQ score: 2.40 (0.20-4.60) vs 1.20 (0.00-4.40); p < 0.001.). A regression analysis showed that the effect of DB on asthma control was independent of airway hyperresponsiveness or airway inflammation in patients with DB. Dysfunctional breathing is common among asthma patients in a specialist setting, and results in a clinically significant underestimation of asthma control, which may potentially lead to overtreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biomarkers in sediments. The racemization/epiremitation of amino acids like tool in geochronology and paleothermometrics

    International Nuclear Information System (INIS)

    Torres, T.; Llamas, F. J.; Canoira, L.; Garcia-Alonso, P.; Ortiz, J. E.

    1999-01-01

    The study of amino acids as biomarkers in sediments has become a necessary methodology and tool for the analysis of palaeoenvironmental conditions and, therefore, of climatic evolution in the past. Research based on the selection and analysis of geological biomarkers, and more specifically activities relating to the racemization/epimerization of amino acids, makes it possible to obtain the geochronological and photoelectrochemical data required to establish different hypotheses for Long-Term Performance Assessment of a repository for high level radioactive wastes

  12. Using shark biomarkers as tools for biomonitoring the health of atlantic waters

    Directory of Open Access Journals (Sweden)

    Luís Miguel Fonseca Alves

    2014-06-01

    The results obtained in this first biomarkers screening are promising as it allowed for a better understanding on how blue sharks deal with the intake and accumulation of different xenobiotics and which are the most suitable tissues for specific biomarker testing and more efficient biomonitoring. Lastly, this approach presents a potential to be adapted to other species which are also on top of food chains, providing an even more robust insight on the oceanic deep waters health status.

  13. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives

    DEFF Research Database (Denmark)

    Gracia-Lor, Emma; Castiglioni, Sara; Bade, Richard

    2017-01-01

    The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about...... and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed....

  14. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, Peter W.G.; Ogink, Nico

    2018-01-01

    The breath methane concentration method uses the methane concentrations in the cow's breath during feed bin visits as a proxy for the methane production rate. The objective of this study was to assess the uncertainty of a breath methane concentration method in a feeder and its capability to measure

  15. Sensing the effects of mouth breathing by using 3-tesla MRI

    Science.gov (United States)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  16. Automated daily breath hold stability measurements by real-time imaging in radiotherapy of breast cancer

    NARCIS (Netherlands)

    De Boer, Hans C J; Van Den Bongard, Desirée J G; van Asselen, B

    2016-01-01

    Background and purpose Breath hold is increasingly used for cardiac sparing in left-sided breast cancer irradiation. We have developed a fast automated method to verify breath hold stability in each treatment fraction. Material and methods We evaluated 504 patients treated with breath hold. Moderate

  17. Scintigraphic determination of gastrointestinal transit times. A comparison with breath hydrogen and radiologic methods

    DEFF Research Database (Denmark)

    Madsen, J L; Larsen, N E; Hilsted, J

    1991-01-01

    A scintigraphic method for determination of gastrointestinal transit times was compared with the breath hydrogen test and a multiple-bolus, single-radiograph technique. A close temporal association was found between the caecal appearance of radioactivity and the onset of breath hydrogen excretion...... the breath hydrogen concentration profiles....

  18. A Study on How to Breathe Properly When Practicing Tai Chi Chuan

    Science.gov (United States)

    Yang, Hanchun

    2011-01-01

    When practicing Tai Chi Chuan, proper breath plays an important role in shaping Tai Chi Chuan's style and its fitness value. The paper aims to analyse the postures of Tai Chi Chuan and its breath characteristics. The paper also presents some new insights on how to co-ordinate breath with postures by case studies.

  19. 14C-urea breath test for the detection of Helicobacter pylori

    NARCIS (Netherlands)

    Veldhuyzen van Zanten, S. J.; Tytgat, K. M.; Hollingsworth, J.; Jalali, S.; Rshid, F. A.; Bowen, B. M.; Goldie, J.; Goodacre, R. L.; Riddell, R. H.; Hunt, R. H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14C-urea breath test which uses 5 microCi 14C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared

  20. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions.

    Science.gov (United States)

    Xue, Hui; Kellman, Peter; Larocca, Gina; Arai, Andrew E; Hansen, Michael S

    2013-11-14

    Cine cardiovascular magnetic resonance (CMR) is challenging in patients who cannot perform repeated breath holds. Real-time, free-breathing acquisition is an alternative, but image quality is typically inferior. There is a clinical need for techniques that achieve similar image quality to the segmented cine using a free breathing acquisition. Previously, high quality retrospectively gated cine images have been reconstructed from real-time acquisitions using parallel imaging and motion correction. These methods had limited clinical applicability due to lengthy acquisitions and volumetric measurements obtained with such methods have not previously been evaluated systematically. This study introduces a new retrospective reconstruction scheme for real-time cine imaging which aims to shorten the required acquisition. A real-time acquisition of 16-20s per acquired slice was inputted into a retrospective cine reconstruction algorithm, which employed non-rigid registration to remove respiratory motion and SPIRiT non-linear reconstruction with temporal regularization to fill in missing data. The algorithm was used to reconstruct cine loops with high spatial (1.3-1.8 × 1.8-2.1 mm²) and temporal resolution (retrospectively gated, 30 cardiac phases, temporal resolution 34.3 ± 9.1 ms). Validation was performed in 15 healthy volunteers using two different acquisition resolutions (256 × 144/192 × 128 matrix sizes). For each subject, 9 to 12 short axis and 3 long axis slices were imaged with both segmented and real-time acquisitions. The retrospectively reconstructed real-time cine images were compared to a traditional segmented breath-held acquisition in terms of image quality scores. Image quality scoring was performed by two experts using a scale between 1 and 5 (poor to good). For every subject, LAX and three SAX slices were selected and reviewed in the random order. The reviewers were blinded to the reconstruction approach and acquisition protocols and