WorldWideScience

Sample records for breast-specific gamma camera

  1. Occult Breast Cancer: Scintimammography with High-Resolution Breast-specific Gamma Camera in Women at High Risk for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Jocelyn A. Rapelyea; , Gilat Zisman; Kevin Mohtashemi; Joyce Raub; Christine B. Teal; Stan Majewski; Benjamin L. Welch

    2005-08-01

    To prospectively evaluate a high-resolution breast-specific gamma camera for depicting occult breast cancer in women at high risk for breast cancer but with normal mammographic and physical examination findings. MATERIALS AND METHODS: Institutional Review Board approval and informed consent were obtained. The study was HIPAA compliant. Ninety-four high-risk women (age range, 36-78 years; mean, 55 years) with normal mammographic (Breast Imaging Reporting and Data System [BI-RADS] 1 or 2) and physical examination findings were evaluated with scintimammography. After injection with 25-30 mCi (925-1110 MBq) of technetium 99m sestamibi, patients were imaged with a high-resolution small-field-of-view breast-specific gamma camera in craniocaudal and mediolateral oblique projections. Scintimammograms were prospectively classified according to focal radiotracer uptake as normal (score of 1), with no focal or diffuse uptake; benign (score of 2), with minimal patchy uptake; probably benign (score of 3), with scattered patchy uptake; probably abnormal (score of 4), with mild focal radiotracer uptake; and abnormal (score of 5), with marked focal radiotracer uptake. Mammographic breast density was categorized according to BI-RADS criteria. Patients with normal scintimammograms (scores of 1, 2, or 3) were followed up for 1 year with an annual mammogram, physical examination, and repeat scintimammography. Patients with abnormal scintimammograms (scores of 4 or 5) underwent ultrasonography (US), and those with focal hypoechoic lesions underwent biopsy. If no lesion was found during US, patients were followed up with scintimammography. Specific pathologic findings were compared with scintimammographic findings. RESULTS: Of 94 women, 78 (83%) had normal scintimammograms (score of 1, 2, or 3) at initial examination and 16 (17%) had abnormal scintimammograms (score of 4 or 5). Fourteen (88%) of the 16 patients had either benign findings at biopsy or no focal abnormality at US; in two

  2. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  3. Gamma camera system

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  4. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  5. Novel gamma cameras

    International Nuclear Information System (INIS)

    The gamma-ray cameras described are based on radiation imaging devices which permit the direct recording of the distribution of radioactive material from a radiative source, such as a human organ. They consist in principle of a collimator, a converter matrix converting gamma photons to electrons, and an electron image multiplier producing a multiplied electron output, and means for reading out the information. The electron image multiplier is a device which produces a multiplied electron image. It can be in principle, either gas avalanche electron multiplier or a multi-channel plate. The multi-channel plate employed is a novel device, described elsewhere. The three described embodiments, in which the converter matrix can be either of metal type or of scintillation crystal type, were designed and are being developed

  6. Gamma camera system

    International Nuclear Information System (INIS)

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  7. Gamma camera performance: technical assessment protocol

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, A.A. [West Glasgow Hospitals NHS Trust, London (United Kingdom). Dept. of Clinical Physics; Waddington, W.A. [University College London Hospitals NHS Trust, London (United Kingdom). Inst. of Nuclear Medicine

    1996-12-31

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera`s computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author).

  8. Progress in gamma-camera quality control

    International Nuclear Information System (INIS)

    The latest developments in the art of quality control of gamma cameras are emphasized in a simple historical manner. The exhibit describes methods developed by the Bureau of Radiological Health (BRH) in comparison with previously accepted techniques for routine evaluation of gamma-camera performance. Gamma cameras require periodic testing of their performance parameters to ensure that their optimum imaging capability is maintained. Quality control parameters reviewed are field uniformity, spatial distortion, intrinsic and spatial resolution, and temporal resolution. The methods developed for the measurement of these parameters are simple, not requiring additional electronic equipment or computers. The data has been arranged in six panels as follows: schematic diagrams of the most important test patterns used in nuclear medicine; field uniformity; regional displacements in transmission pattern image; spatial resolution using the BRH line-source phantom; instrinsic resolution using the BRH Test Pattern; and Temporal resolution and count losses at high counting rates

  9. An imaging system for a gamma camera

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  10. GAMPIX: A new generation of gamma camera

    Science.gov (United States)

    Gmar, M.; Agelou, M.; Carrel, F.; Schoepff, V.

    2011-10-01

    Gamma imaging is a technique of great interest in several fields such as homeland security or decommissioning/dismantling of nuclear facilities in order to localize hot spots of radioactivity. In the nineties, previous works led by CEA LIST resulted in the development of a first generation of gamma camera called CARTOGAM, now commercialized by AREVA CANBERRA. Even if its performances can be adapted to many applications, its weight of 15 kg can be an issue. For several years, CEA LIST has been developing a new generation of gamma camera, called GAMPIX. This system is mainly based on the Medipix2 chip, hybridized to a 1 mm thick CdTe substrate. A coded mask replaces the pinhole collimator in order to increase the sensitivity of the gamma camera. Hence, we obtained a very compact device (global weight less than 1 kg without any shielding), which is easy to handle and to use. In this article, we present the main characteristics of GAMPIX and we expose the first experimental results illustrating the performances of this new generation of gamma camera.

  11. Mini gamma camera, camera system and method of use

    Science.gov (United States)

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  12. A novel fully integrated handheld gamma camera

    Science.gov (United States)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  13. Portable mini gamma camera for medical applications

    CERN Document Server

    Porras, E; Benlloch, J M; El-Djalil-Kadi-Hanifi, M; López, S; Pavon, N; Ruiz, J A; Sánchez, F; Sebastiá, A

    2002-01-01

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed.

  14. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides...

  15. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  16. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based (CB) PET. CBPET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CBPET in operation than cPET in the USA. CBPET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  17. Acceptance tests of a new gamma camera

    International Nuclear Information System (INIS)

    For best patient service, a QA programme is needed to produce quantitative/qualitative data and keep records of the results and equipment faults. Gamma cameras must be checked against the manufacturer's specifications.The service manual is usually useful to achieve this goal. Acceptance tests are very important not only to accept a new gamma camera system for routine clinical use but also to have a role in a reference for future measurements. In this study, acceptance tests were performed for a new gamma camera in our department. It is a General Electric MG system with two detectors, two collimators. They are low energy general purpose (LEGP) and medium energy general purpose (MEGP). All intrinsic calibrations and corrections were done by the service engineer at installation (PM tune, dynamic correction, energy calibration, geometric calibration, energy correction, linearity correction and second order corrections).After installation, calibrations and corrections, a close physical inspection of the mechanical and electrical safety aspects of the cameras were done by the responsible physicist of the department. The planar system is based on measurement of system uniformity, resolution/linearity and multiple window spatial registration. All test procedures were performed according to NEMA procedures developed by the manufacturer. Intrinsic uniformity: NEMA uniformity was done first by using service manual and then other isotope uniformities were acquired with 99mTc, 131I, 201Tl and 67Ga. They were evaluated qualitatively and quantitatively, but non-uniformities were observed, especially for detector II, The service engineers repeated all tests and made necessary corrections. We repeated all the intrinsic uniformity tests. 99mTc intrinsic images were also performed at 'no correction', 'no energy correction', 'no linearity correction', 'all correction' and '±10% off peak', and compared. Extrinsic uniformity: At the beginning, collimators were checked for defects

  18. Background {sup 99m}Tc-methoxyisobutylisonitrile uptake of breast-specific gamma imaging in relation to background parenchymal enhancement in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai-Jeon; Kim, Bom Sahn [Ewha Womans University, Department of Nuclear Medicine, Yangchun-Ku, Seoul (Korea, Republic of); Kim, Yemi [Ewha Womans University, Clinical Research Institute and Department of Conservative Dentistry, Seoul (Korea, Republic of); Lee, Jee Eun [Ewha Womans University, Department of Radiology, Seoul (Korea, Republic of)

    2015-01-15

    This study investigated factors that could affect background uptake of {sup 99m}Tc- methoxyisobutylisonitrile (MIBI) on normal breast by breast-specific gamma imaging (BSGI). In addition, the impact of background {sup 99m}Tc-MIBI uptake on the diagnostic performance of BSGI was further investigated. One hundred forty-five women with unilateral breast cancer who underwent BSGI, MRI, and mammography were retrospectively enrolled. Background uptake on BSGI was evaluated qualitatively and quantitatively. Patients were classified into non-dense and dense breast groups according to mammographic breast density. Background parenchymal enhancement (BPE) was rated according to BI-RADS classification. The relationship of age, menopausal status, mammographic breast density, and BPE with background {sup 99m}Tc-MIBI uptake was analyzed. Heterogeneous texture and high background uptake ratio on BSGI were significantly correlated with younger age (p < 0.001, respectively), premenopausal status (p < 0.001 and p = 0.003), dense breast (p < 0.001, respectively), and marked BPE (p < 0.001, respectively). On multivariate analysis, only BPE remained a significant factor for background MIBI uptake (p < 0.001).There was a significant reduction in positive predictive value (p = 0.024 and p = 0.002) as background MIBI uptake and BPE grade increased. BPE on MRI was the most important factor for background MIBI uptake on BSGI. High background MIBI uptake or marked BPE can diminish the diagnostic performance of BSGI. (orig.)

  19. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Sicart, Sergi; Paredes, Pilar [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain); Institut d' Investigacio Biomedica Agusti Pi Sunyer (IDIBAPS), Barcelona (Spain); Vermeeren, Lenka; Valdes-Olmos, Renato A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Nuclear Medicine Department, Amsterdam (Netherlands); Sola, Oriol [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain)

    2011-04-15

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ({sup 99m}Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  20. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high. (orig.)

  1. Validity of breast-specific gamma imaging for Breast Imaging Reporting and Data System 4 lesions on mammography and/or ultrasound

    Science.gov (United States)

    Cho, Min Jeng; Yu, Yeong Beom; Park, Kyoung Sik; Chung, Hyun Woo; So, Young; Choi, Nami; Kim, Mi Young

    2016-01-01

    Purpose The purpose of this study was to assess the breast-specific gamma imaging (BSGI) in Breast Imaging Reporting and Data System (BI-RADS) 4 lesions on mammography and/or ultrasound. Methods We performed a retrospective review of 162 patients who underwent BSGI in BI-RADS 4 lesions on mammography and/or ultrasound. Results Of the 162 breast lesions, 66 were malignant tumors and 96 were benign tumors. Sensitivity and specificity of BSGI were 90.9% and 78.1%, and positive predictive value and negative predictive value were 74.1% and 92.6%. The sensitivity or specificity of mammography and ultrasound were 74.2% and 56.3% and 87.9% and 19.8%, respectively. The sensitivity and specificity of BSGI for breast lesions ≤1 cm were 88.0% and 86.8%, while the values of beast lesions >1 cm were 92.7% and 61.5%. The sensitivity or specificity of BSGI and mammography for patients with dense breasts were 92.0% and 81.3% and 72.0% and 50.0%, respectively. 26 patients showed neither a nodule nor microcalcification on ultrasound, but showed suspicious calcification on mammography. The sensitivity and specificity of BSGI with microcalcification only lesion were 75.0% and 94.4%. Conclusion This study demonstrated that BSGI had shown high sensitivity and specificity, as well as positive and negative predictive values in BI-RADS 4 lesions on ultrasound and/or mammography. BSGI showed excellent results in dense breasts, in lesions that are less than 1 cm in size and lesions with suspicious microcalcification only. PMID:27073789

  2. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu.; Wei, Wei; Yang, Hua-Wei; Liu, Jian-Lun [Affiliated Cancer Hospital of Guangxi Medical University, Department of Breast Surgery of Guangxi Cancer Hospital, Nanning, Guangxi (China)

    2013-03-15

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high. (orig.)

  3. Centering mount for a gamma camera

    International Nuclear Information System (INIS)

    A device for centering a γ-camera detector in case of radionuclide diagnosis is described. It permits the use of available medical coaches instead of a table with a transparent top. The device can be used for centering a detector (when it is fixed at the low end of a γ-camera) on a required area of the patient's body

  4. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm3). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  5. Spectroscopic gamma camera for use in high dose environments

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  6. Development and application of a small gamma camera

    Science.gov (United States)

    Matthews, Kenneth Lee, II

    This work investigates the design, construction, and application of a portable gamma camera based on a single position-sensitive photomultiplier tube (PSPMT) rather than an array of conventional photomultiplier tubes as used in the majority of gamma cameras. The PSPMT is an innovation in phototube design which allows two-dimensional (2-D) position information to be obtained from a single phototube. PSPMT-based portable gamma cameras can have several distinct advantages over portable systems using conventional technology: lower weight, reduced electronics, and smaller size. These advantages imply that PSPMT imagers can be more portable and possibly less expensive than their conventional counterparts. Additionally, this design can be incorporated as modules in conjugate imaging, orthogonal view, or ring detector systems, or even in conventional large-area planar imagers. The PSPMT design is applicable for diagnostic clinical procedures and for basic biomedical research. Clinically, this system could be used for intraoperative imaging; bedside imaging of non-transportable patients, e.g., in an intensive care unit, nursing home, or burn unit; and imaging in outpatient settings. In research settings such as radiopharmaceutical development laboratories, the PSPMT camera is suitable for imaging of small animals. The University of Chicago Small Gamma Camera (SGC) is a PSPMT-based gamma camera. Two SGC systems have been designed and constructed. Computer simulations and physical measurements have been applied to the performance characterization of the SGC. A maximum-likelihood position estimation scheme has been implemented in the system in place of the Anger position estimation scheme used in the majority of conventional gamma cameras. The SGC has been evaluated for several nuclear medicine imaging applications as well as laboratory research imaging. The clinical applications include planar and tomographic imaging. Radiotracer imaging with the SGC has been applied to the

  7. Latest developments in gamma-camera performance testing: resolution measurements

    International Nuclear Information System (INIS)

    Resolution for gamma cameras has two distinct aspects: spatial resolution, referring to the ability to image closely spaced point or line sources of radioactivity as separate entities; and temporal resolution, referring to the ability to properly register two events occurring within a very small time interval as separate events. The BRH Test Pattern has been proven to be a valuable tool for the evaluation of spatial resolution in a wide variety of gamma cameras. A reading from a transmission image of this pattern provides adequate accuracy (0.5 mm minimal separation) for determining intrinsic resolution, and for making an evaluation of spatial distortion and nonuniformities. This pattern can be used for acceptance testing of newly installed equipment and for quality control of all types of gamma cameras as well. Images taken weely may reveal changes in intrinsic resolution, field uniformity, and spatial distortion that may occur gradually over a period of time

  8. Iterative reconstruction of detector response of an Anger gamma camera

    Science.gov (United States)

    Morozov, A.; Solovov, V.; Alves, F.; Domingos, V.; Martins, R.; Neves, F.; Chepel, V.

    2015-05-01

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations.

  9. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  10. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  11. An ISPA-camera for gamma rays

    CERN Document Server

    Puertolas, D; Pani, R; Leutz, H; Gys, Thierry; De Notaristefani, F; D'Ambrosio, C

    1995-01-01

    With the recently developed ISPA (Imaging Silicon Pixel Array)-tube attached either to a planar YAlO3(Ce) (YAP) disc (1mm thick) or to a matrix of optically-separated YAP-crystals (5mm high, 0.6 x 0.6 mm2 cross-section) we achieved high spatial resolution of 57Co-122 keV photons. The vacuum-sealed ISPA-tube is only 4 cm long with 3.5 cm diameter and consists of a photocathode viewed at 3 cm distance by a silicon pixel chip, directly detecting the photoelectrons. The chip-anode consists of 1024 rectangular pixels with 75 µm x 500 µm edges, each bump-bonded to their individual front-end electronics. The total pixel array read-out time is 10 µs. The measured intrinsic spatial resolutions (FWHM) of this ISPA-camera are 700 µm (planar YAP) and 310 µm (YAP-matrix). Apart from its already demonstrated application for particle tracking with scintillating fibres, the ISPA-tube provides also an excellent tool in medicine, biology and chemistry.

  12. A thick Anger camera for gamma-ray astronomy

    Science.gov (United States)

    Cook, W. R.; Finger, M.; Prince, T. A.

    1985-01-01

    The NaI(Tl) Anger camera is a natural candidate for a position sensitive detector in imaging of astrophysical gamma-ray sources. Here laboratory measurements are presented of the response of a relatively thick (5.1 cm) NaI(Tl) Anger camera designed for coded aperture imaging in the 50 keV to 2 MeV energy range. A position resolution of 10.5 mm FWHM at 122 keV and 6.3 mm FWHM at 662 keV. The energy resolution was 7 percent FWHM at 662 keV. The ability of the detector to resolve the depth of the gamma-ray interaction and the use of this depth resolution to reduce back-incident and internal background is discussed.

  13. Evaluation of efficiency of a semiconductor gamma camera

    CERN Document Server

    Otake, H; Takeuchi, Y

    2002-01-01

    We evaluation basic characteristics of a compact type semiconductor gamma camera (eZ-SCOPE AN) of Cadmium Zinc Telluride (CdZnTe). This new compact gamma camera has 256 semiconductors representing the same number of pixels. Each semiconductor is 2 mm square and is located in 16 lines and rows on the surface of the detector. The specific performance characteristics were evaluated in the study referring to National Electrical Manufactures Association (NEMA) standards; intrinsic energy resolution, intrinsic count rate performance, integral uniformity, system planar sensitivity, system spatial resolution, and noise to the neighboring pixels. The intrinsic energy resolution measured 5.7% as full width half maximum (FWHM). The intrinsic count rate performance ranging from 17 kcps to 1,285 kcps was evaluated, but the highest intrinsic count rate was not observed. Twenty percents count loss was recognized at 1,021 kcps. The integral uniformity was 1.3% with high sensitivity collimator. The system planar sensitivity w...

  14. Gamma camera investigations using an on-line computer system

    International Nuclear Information System (INIS)

    A computer system for use with a gamma camera has been developed by Oerebro Regional Hospital and Nukab AB using a PDP 8/e with a 12K core memory connected to a Selektronik gamma camera. It is possible to register, without loss, pictures of high (5kcps) pulse frequency, two separate channels with identical coordinates, fast dynamic functions down to 5 pictures/second, and to perform statistical smoothing and subtraction of two separate pictures. Experience has shown these possibilities to be so valuable that one has difficulty in thinking of a scanning system without them. This applies not only to sophisticated investigations, e.g. dual isotope registration, but also in conventional scanning for avoiding false positive interpretations and increasing the precision. It is possible at relatively low cost to add a dosage planning system. (JIW)

  15. Europe's space camera unmasks a cosmic gamma-ray machine

    Science.gov (United States)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce

  16. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  17. Characterisation of a high resolution small field of view portable gamma camera.

    Science.gov (United States)

    Bugby, S L; Lees, J E; Bhatia, B S; Perkins, A C

    2014-05-01

    A handheld, high-resolution small field of view (SFOV) pinhole gamma camera has been characterised using a new set of protocols adapted from standards previously developed for large field of view (LFOV) systems. Parameters investigated include intrinsic and extrinsic spatial resolution, spatial linearity, uniformity, sensitivity, count rate capability and energy resolution. Camera characteristics are compared to some clinical LFOV gamma cameras and also to other SFOV cameras in development.

  18. Quality assurance of gamma camera scintigraphy in Sweden

    International Nuclear Information System (INIS)

    This nationwide quality assurance project was undertaken during 1990. In total 81 cameras were checked. The mean age for the gamma cameras was 6.5±4.9 years, with the oldest one being 16 years. The uniformity and the spatial resolution of each camera were checked with a flood field and a bar fantom and for the 35 cameras dedicated and used for SPECT, the tomographic uniformity and the adjustment to the axis of rotation were explored with a cylindrical phantom and with a line source, respectively. The intercomparison of bone scintigraphy was performed with a novel transmission skeleton phantom with 18 simulated defects in the ribs and in the vertebrae. The number of counts in the images ranged from 0.16 to 1.1 million with a mean of 0.7 million counts. The local interpreters had been asked to make an assessment of 'their' skeleton images according to a specific protocol. The results can be summarised as follows: One third of the camera systems was classified as having inferior properties for planar imaging in general. For the SPECT system the adjustment of the center of the acquisition matrix to the radius of rotations was found to be adequate. The results from the skeleton study demonstrated considerable variation with the true positives (TP) ranging from 5 to 16 and the false positives (FP) ranging from 0 to 10. The average TP and FP of all 68 interpretations were 11.1 and 1.0, respectively. Due to the large variation of the detection rates, it was not possible to demonstrate clear relationships between the number of true positive findings of the individual interpreters and the camera quality indicators. From these results we concluded that the number of recorded events in a PA projection of the thoracic skeleton should exceed 800 000, and that the overall spatial resolution of the system has a clear impact on the detectability of small and low 'abnormal' uptakes. The image presentation system for hard-copies is crucial for high image quality. The videoscreen

  19. High count rate gamma camera with independent modules

    Science.gov (United States)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2015-11-01

    Advances in nuclear medical imaging are based on the improvements of the detector's performance. Generally the research is focussed on the spatial resolution improvement. However, another important parameter is the acquisition time that can significantly affect performance in some clinical investigation (e.g. first-pass cardiac studies). At present, there are several clinical imaging systems which are able to solve these diagnostic requirements, such as the D-SPECT Cardiac Imaging System (Spectrum Dynamics) or the Nucline Cardiodesk Medical Imaging System (Mediso). Actually, these solutions are organ-specific dedicated systems, while it would be preferable having general purpose planar detectors with high counting rate. Our group has recently introduced the use of scintillation matrices whose size is equal to the overall area of a position sensitive photomultiplier tube (PSPMT) in order to design a modular gamma camera. This study allowed optimising the overall pixel identification by improving and controlling the light collection efficiency of each PSPMT. Although we achieved a solution for the problems about the dead area at the junction of the PSPMTs when they are set side by side. In this paper, we propose a modular gamma camera design as the basis to build large area detectors. The modular detector design allows us to achieve better counting performance. In this approach, each module that is made of one or more PSPMTs, can actually acquire data independently and simultaneously, increasing the overall detection efficiency. To verify the improvement in count rate capability we have built two detectors with a field of view of ~ 5 × 5cm2, by using four R8900-C12 PSPMTs (Hamamatsu Photonics K.K.). Each PSPMT was coupled to a dedicated discrete scintillation structure designed to obtain a good homogeneity, high imaging performance and high efficiency. One of the detectors was designed as a standard gamma camera, while the other was composed by four independent

  20. A new gamma camera for positron emission tomography

    International Nuclear Information System (INIS)

    This thesis describes the detection of annihiliation radiation employing a new principle: radiation is absorbed in a barium fluoride (BaF 2) crystal and the resulting scintillation light is detected in a multiwire proportional chamber filled with a photsensitive vapour. The application of such a detector for PET is new; the use of a high density fast scintillator in combination with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. In this work, the physical background of the above detection mechanism is explored and the performance parameters of a gamma camera using this new principle, are determined. Furthermore, a comprehensive research on the scintillation mechanism and physical characteristics of the increasingly popular BaF 2 scintillator is presented. Also, a new class of ultraviolet (UV) scintillation materials, consisting of rare earth doped fluorides, is introduced. (author). 211 refs.; 30 figs.; 17 tabs

  1. Eliminating spatial distortions in Anger-type gamma cameras

    Science.gov (United States)

    Leitner, Michael; Ceeh, Hubert; Weber, Josef-Andreas

    2012-12-01

    A procedure to quantify and correct the spatial distortions inherent to Anger-type gamma cameras is presented. It consists in imaging a pattern of regularly spaced holes, assigning to each pair of lattice indices the actual position on the detector and generating a look-up matrix describing the inverse mapping. This allows one to correct the position of the distinct events either during or after the measurement with minimal computational effort. The corrected spectrum is indistinguishable from a spectrum taken with an ideal detector in a statistical sense. The effect of the increased resolution on measurements of angular correlation of positron annihilation radiation is demonstrated. The presented scheme is applicable for all types of area detectors.

  2. Nuclear medicine gamma camera system PRISM-XP series

    International Nuclear Information System (INIS)

    Recently, SPECT gamma camera systems have become important in RI imaging of the brain and torso. The PRISM-XP series is a new SPECT system which employs multiple detectors, a fan beam collimator and a non-circular orbit for improved acquisition speed and sensitivity. For improved data processing, this machine uses a 64-bit CPU and a 3D graphics subsystem specially designed for image processing. The PRISM-XP series also includes 3-detector, 2-detector and 1-detector systems. The dual and single detector systems also have functions for whole-body imaging. In this article, the PRISM-XP series, which is commercialized by PICKER International Inc, Ohio, U.S.A., is presented. (author)

  3. Quality control evaluation of 'Gamma PF' interfaces performance for gamma cameras upgrading according to the IAEA TECDOC 602/S tests

    International Nuclear Information System (INIS)

    Aim: The International Atomic Energy Agency (IAEA) had developed a model project around the world in order to support the upgrading of old Gamma cameras, connecting them with modern PC computers through interfaces with image improving capabilities. The aim of this work was to evaluate the performance of 'Gamma PF' interfaces, installed in local area network, using the TECDOC 602/S Quality Control Tests. Materials and Methods: 3 interfaces were used. 2 of them working for count uniformity and energy corrections and other with only count uniformity correction. All of them were Gamma Camera Interface Card Gamma PF - version 97./, which country of origin is Slovenia. 3 Gamma cameras were used, Picker Dyna 415, Picker 312-C and Ohio Nuclear Sigma 410. One Server and four Olidata Computers were used, three of them were connected to the gamma cameras and the other was used for image processing workstation. The tests for evaluating gamma camera-computer system described in the TECDOC 602/S from IAEA were used. Results: A significant improvement in the field uniformity of all gamma cameras was obtained with the online correction system of interfaces. No effect was observed on Resolution. With bar phantoms the visualization is increased though the resolution didn't change. The count rate tests showed an important loss of count using the interfaces. This evaluation is congruent with the observations found in test for checking acquisition times, in static and dynamic modalities. There was no change in the evaluation of linearity. Conclusion: The interfaces were most powerful utility in the correction of uniformity of gamma camera fields, showing limited performance in other evaluation tests like resolution and linearity. The design and performance of these gamma cameras should be done in order to improve the management of counting loss and their system for static and dynamic acquisitions

  4. A compact gamma camera with scintillation array and parallel-hole collimator

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; MA Hongguang; MA Wenyan; ZENG Hui; WANG Zhaomin; XU Zizhong

    2008-01-01

    A new compact gamma camera for small object imaging has been developed. It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole lead collimator. The compact camera has better spatial resolution than Anger camera. The average value of intrinsic spatial resolutions is 2.3 mm (FWHM). The overall spatial resolution (FWHM) is 3, 5 and 6 mm at 0, 2.5 and 3 mm SCD (source-to-collimator distance), respectively. The phantom studies with the compact camera have demonstrated that parallel-hole collimator gamma camera is a practical technique for nuclear medicine application.

  5. The application of breast specific gamma imaging and positron emission mammography in the diagnosis and therapy of breast cancer%核医学乳腺专用显像仪在乳腺癌诊疗中的应用

    Institute of Scientific and Technical Information of China (English)

    谭辉; 张一秋; 石洪成

    2014-01-01

    核医学乳腺专用显像仪包括乳腺专用伽玛射线显像(BSGI)和正电子发射乳腺显像(PEM)仪,两者分辨率高,不受乳腺组织密度、假体植入、瘢痕形成等因素的影响,可以诊断直径仅为3 mm的病灶.笔者综述了BSGI和PEM在乳腺癌早期诊断、治疗方案选择以及疗效评价等方面的应用.%Breast-specific gamma imaging (BSGI) and positron emission mammography (PEM) have the high resolution in diagnosing breast lesions with minimum diameter of 3 mm.Both BSGI and PEM are functional imaging modalities,which have no relation with breast tissue density,implanted prosthesis,scar formation and so on.This review elaborates the application of BSGI and PEM in the early diagnosis,treatment protocols and evaluation of efficacy for the patients with breast cancer.

  6. The utility of intraoperative handheld gamma camera for detection of sentinel lymph nodes in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Elgin; Eroglu, Aydan [Ankara University Medical School, Ankara (Turkmenistan)

    2015-12-15

    Accurate identification of the sentinel lymph node (SLN) is an important prognostic factor for melanoma. In a minority of cases drainage to interval nodal basins, such as the epitrochlear region, are possible. Intraoperative handheld gamma cameras have been used to detect SLNs which are located in different anatomical localizations. In this case we report the utility of an intraoperative handheld gamma camera in the localization of epitrochlear drainage of distal upper extremity melanoma and its impact on surgical procedure.

  7. Point spread functions for a small gamma camera with pinhole collimator

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Tao; XU Zi-Zong; WANG Zhao-Min; XU Shen-Bo

    2003-01-01

    A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended from 45 mm to 70 mm in diameter. The position dependence of the variances of PSF is presented, and theacceptance for the 140 kev gamma rays is explored. A phantom of 70 mm in diameter was experimentally imaged inthe camera with effective FOV of only 45 mm in diameter.

  8. Study of a new architecture of gamma cameras with Cd/ZnTe/CdTe semiconductors

    International Nuclear Information System (INIS)

    This thesis studies new semi conductors for gammas cameras in order to improve the quality of image in nuclear medicine. The chapter 1 reminds the general principle of the imaging gamma, by describing the radiotracers, the channel of detection and the types of Anger gamma cameras acquisition. The physiological, physical and technological limits of the camera are then highlighted, to better identify the needs of future gamma cameras. The chapter 2 is dedicated to a bibliographical study. At first, semi-conductors used in imaging gamma are presented, and more particularly semi-conductors CDTE and CdZnTe, by distinguishing planar detectors and monolithic pixelated detectors. Secondly, the classic collimators of the gamma cameras, used in clinical routine for the most part of between them, are described. Their geometry is presented, as well as their characteristics, their advantages and their inconveniences. The chapter 3 is dedicated to a state of art of the simulation codes dedicated to the medical imaging and the methods of reconstruction in imaging gamma. These states of art allow to introduce the software of simulation and the methods of reconstruction used within the framework of this thesis. The chapter 4 presents the new architecture of gamma camera proposed during this work of thesis. It is structured in three parts. The first part justifies the use of semiconducting detectors CdZnTe, in particular the monolithic pixelated detectors, by bringing to light their advantages with regard to the detection modules based on scintillator. The second part presents gamma cameras to base of detectors CdZnTe (prototypes or commercial products) and their associated collimators, as well as the interest of an association of detectors CdZnTe in the classic collimators. Finally, the third part presents in detail the HiSens architecture. The chapter 5 describes both software of simulation used within the framework of this thesis to estimate the performances of the Hi

  9. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    Science.gov (United States)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  10. Online gamma-camera imaging of {sup 103}Pd seeds (OGIPS) for permanent breast seed implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Ananth [Department of Medical Biophysics, University of Toronto (Canada); Caldwell, Curtis B [Department of Medical Biophysics, University of Toronto (Canada); Keller, Brian M [Medical Physics, Sunnybrook Health Sciences Centre (Canada); Reznik, Alla [Department of Medical Biophysics, University of Toronto (Canada); Pignol, Jean-Philippe [Department of Medical Biophysics, University of Toronto (Canada)

    2007-09-21

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq {sup 103}Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  11. Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu.

    Science.gov (United States)

    D'Arienzo, M; Cazzato, M; Cozzella, M L; Cox, M; D'Andrea, M; Fazio, A; Fenwick, A; Iaccarino, G; Johansson, L; Strigari, L; Ungania, S; De Felice, P

    2016-06-01

    Over the last years (177)Lu has received considerable attention from the clinical nuclear medicine community thanks to its wide range of applications in molecular radiotherapy, especially in peptide-receptor radionuclide therapy (PRRT). In addition to short-range beta particles, (177)Lu emits low energy gamma radiation of 113keV and 208keV that allows gamma camera quantitative imaging. Despite quantitative cancer imaging in molecular radiotherapy having been proven to be a key instrument for the assessment of therapeutic response, at present no general clinically accepted quantitative imaging protocol exists and absolute quantification studies are usually based on individual initiatives. The aim of this work was to develop and evaluate an approach to gamma camera calibration for absolute quantification in tomographic imaging with (177)Lu. We assessed the gamma camera calibration factors for a Philips IRIX and Philips AXIS gamma camera system using various reference geometries, both in air and in water. Images were corrected for the major effects that contribute to image degradation, i.e. attenuation, scatter and dead- time. We validated our method in non-reference geometry using an anthropomorphic torso phantom provided with the liver cavity uniformly filled with (177)LuCl3. Our results showed that calibration factors depend on the particular reference condition. In general, acquisitions performed with the IRIX gamma camera provided good results at 208keV, with agreement within 5% for all geometries. The use of a Jaszczak 16mL hollow sphere in water provided calibration factors capable of recovering the activity in anthropomorphic geometry within 1% for the 208keV peak, for both gamma cameras. The point source provided the poorest results, most likely because scatter and attenuation correction are not incorporated in the calibration factor. However, for both gamma cameras all geometries provided calibration factors capable of recovering the activity in

  12. Theoretical considerations of a new electronically collimated gamma camera utilizing gas scintillation

    International Nuclear Information System (INIS)

    A new electronically collimated gamma camera utilizing a gas scintillation position-sensitive detector and a multiwire proportional chamber is proposed and its imaging characteristics are discussed in this paper. The scheme preserves all the advantages of an electronically collimated system (ECS) i.e. high sensitivity and simultaneous multiple views of the object over the conventional NaI gamma camera. Compared with the Ge based ECS, this scheme would have higher spatial resolution and avoid the construction difficulties of a large area Ge detector

  13. Bullet scintigraphy: can gamma camera be used for depleted uranium accident measurements?

    International Nuclear Information System (INIS)

    The aim of this study was to see could gamma cameras be used for measurement of internal contamination with depleted uranium. Radioactive waste depleted uranium, which is by-product from the production of enriched fuel for nuclear rectors and weapons now, is used for manufacture bullets, which are used in Iraq, Republic of Srpska and Yugoslavia. In this paper is measured minimum detectable activity (MDA) of gamma cameras for depleted uranium, iodine and technetium. For detection of the depleted uranium are used low energy X-rays, energy of 100 keV with 20% windows width. About 40% of gamma emissions of the depleted uranium are in these limits. Measured MDA activities 50-100 Bq for depleted uranium, iodine and technetium are about ten times more than same for WBC (5 Bq). Gamma cameras can be used for relatively measurement of depleted uranium activity, what can be used for absorbed dose estimation. Detection of low level internal contamination with depleted uranium can be done with gamma cameras. (author)

  14. Bullet scintigraphy: can gamma camera be used for depleted uranium accident measurements?

    International Nuclear Information System (INIS)

    The aim of this study was to see could gamma cameras be used for measurement of internal contamination with depleted uranium. Radioactive waste depleted uranium, which is by-product from the production of enriched fuel for nuclear rectors and weapons now, is used for manufacture bullets, which are used in Iraq, Republic of Srpska and Yugoslavia. In this paper is measured minimum detectable activity (MDA) of gamma cameras for depleted uranium, iodine and technetium. For detection of the depleted uranium are used low energy X-rays, energy of 100 keV with 20% windows width. About 40% of gamma emissions of the depleted uranium are in these limits. Measured MDA activities 50-100 Bq for depleted uranium, iodine and technetium are about then times more then same for WBC (5 Bq). Gamma cameras can be used for relatively measurement of depleted uranium activity, what can be used for absorbed dose estimation. Detection of low level internal contamination with depleted uranium can be done with gamma cameras. (authors)

  15. A Compton camera prototype for prompt gamma medical imaging

    Science.gov (United States)

    Thirolf, P. G.; Aldawood, S.; Böhmer, M.; Bortfeldt, J.; Castelhano, I.; Dedes, G.; Fiedler, F.; Gernhäuser, R.; Golnik, C.; Helmbrecht, S.; Hueso-González, F.; Kolff, H. v. d.; Kormoll, T.; Lang, C.; Liprandi, S.; Lutter, R.; Marinšek, T.; Maier, L.; Pausch, G.; Petzoldt, J.; Römer, K.; Schaart, D.; Parodi, K.

    2016-05-01

    Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  16. A Compton camera prototype for prompt gamma medical imaging

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2016-01-01

    Full Text Available Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  17. 乳腺专用伽马成像在乳腺癌诊断中的意义%Clinical significance of breast-specific gamma imaging in diagnosis of breast cancer

    Institute of Scientific and Technical Information of China (English)

    杨为戈; 石洪成; 谭辉; 王红; 朱玮; 杨子昂; 张宏伟

    2014-01-01

    Objective To evaluate the clinical significance of breast-specific gamma imaging ( BSGI) in diagnosis of breast cancer .Methods We performed a perspective study of 136 patients with indeterminate breast lesions who underwent dual-phase BSGI in our hospital from March 2012 to December 2013 .All included lesions were confirmed by pathology .BSGI was evaluated based on the visual interpretation and dual -phase semi-quantitative indices of lesion to non-lesion ( L/N) ratio, which were compared with pathological results . Difference of L/N ratio of BSGI between benign and malignant breast lesions was analyzed by Mann -Whitney U nonparametric test.Results The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of BSGI in the diagnosis of breast cancer were 95.1%( 97/102 ) , 73.5%( 25/34 ) , 89.7%(122/136), 91.5%(97/106) and 83.3%(25/30), respectively.L/N ratio of BSGI in breast cancer was significantly higher than that of benign tumor ( 2.98 ±1.29 vs 0.95 ±1.11 , Z=-7.125 , P=0.000 ) . Conclusion BSGI has a significant clinical value in the diagnosis of breast cancer .%目的:探讨乳腺专用伽马成像( BSGI)在乳腺癌诊断中的意义。方法对2012年3月至2013年12月本院收治的136例体格检查发现或偶然发现乳腺肿块、拟行手术的女性患者进行前瞻性研究,检测BSGI高低浓聚值比,并将BSGI结果与病理结果进行对比。采用Mann-Whitney U非参数检验分析良、恶性肿瘤之间BSGI高低浓聚值比的差异。结果 BSGI诊断乳腺癌的灵敏度、特异度、准确性、阳性预测值和阴性预测值分别为95.1%(97/102)、73.5%(25/34)、89.7%(122/136)、91.5%(97/106)、83.3%(25/30)。乳腺癌的 BSGI 高低浓聚值比明显高于良性肿瘤(2.98±1.29比0.95±1.11,Z=-7.125,P=0.000)。结论 BSGI对于乳腺癌的诊断具有很好的临床应用价值。

  18. Dynamic Studies with a Gamma-Ray Scintillation Camera

    International Nuclear Information System (INIS)

    A commercial model γ-ray scintillation camera of the type described by Anger has been used in this laboratory since October 1962 to study dynamic physiological and pharmacological processes in vivo. The 0.6 x 20-cm Nal crystal is viewed by 19 multiplier phototubes. Light flashes generated in this plate by γ-rays are caused electronically to appear as small coruscations in the same relative positions on an oscilloscope screen. A Polaroid camera focused on this screen gradually forms a picture, the spatial densities of which represent the spatial distribution of γ-rays projected from the biological object into the collimating system. Either a 5 -mm diam. ''pinhole'' or a 771-hole multi-aperture lead collimator is used to view an area of ∼ 16-cm maximal diameter. This ingenious instrument makes true ''point-by-point'' scans electronically. The pictures have no line structure to distort perception. No mechanical difficulties are possible. The ability to view the entire area of interest continuously during a scanning seance is advantageous in reducing the dosage of radioactivity and the statistical errors. A unique feature is the opportunity provided by this camera to make pictures in fast sequence to record rapid changes in the distribution of γ-isotopes. A maximum rate of three pictures each minute has been achieved with 10-s Polaroid roll film. Motion-picture apparatus would provide even higher rates when required to record movements in extraordinarily fast processes. After I131-iodide was injected intravenously into a rat-fed Purina Labchow, a series of pictures, taken during the first 2 min of six successive 5 -min intervals, revealed rapid disappearance of the radioiodine initially distributed throughout the whole body, and concentration in the stomach region within 30 min. Most of the radioactivity remained localized there during the remaining 7 h of the experiment, at which time only a modicum had accumulated in the thyroid. Similarly, after subcutaneous

  19. An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection.

    Science.gov (United States)

    Heemskerk, J W T; Korevaar, M A N; Huizenga, J; Kreuger, R; Schaart, D R; Goorden, M C; Beekman, F J

    2010-11-21

    Electron-multiplying charge-coupled devices (EMCCDs) coupled to scintillation crystals can be used for high-resolution imaging of gamma rays in scintillation counting mode. However, the detection of false events as a result of EMCCD noise deteriorates the spatial and energy resolution of these gamma cameras and creates a detrimental background in the reconstructed image. In order to improve the performance of an EMCCD-based gamma camera with a monolithic scintillation crystal, arrays of silicon photon-multipliers (SiPMs) can be mounted on the sides of the crystal to detect escaping scintillation photons, which are otherwise neglected. This will provide a priori knowledge about the correct number and energies of gamma interactions that are to be detected in each CCD frame. This information can be used as an additional detection criterion, e.g. for the rejection of otherwise falsely detected events. The method was tested using a gamma camera based on a back-illuminated EMCCD, coupled to a 3 mm thick continuous CsI:Tl crystal. Twelve SiPMs have been mounted on the sides of the CsI:Tl crystal. When the information of the SiPMs is used to select scintillation events in the EMCCD image, the background level for (99m)Tc is reduced by a factor of 2. Furthermore, the SiPMs enable detection of (125)I scintillations. A hybrid SiPM-/EMCCD-based gamma camera thus offers great potential for applications such as in vivo imaging of gamma emitters. PMID:21030743

  20. An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection

    International Nuclear Information System (INIS)

    Electron-multiplying charge-coupled devices (EMCCDs) coupled to scintillation crystals can be used for high-resolution imaging of gamma rays in scintillation counting mode. However, the detection of false events as a result of EMCCD noise deteriorates the spatial and energy resolution of these gamma cameras and creates a detrimental background in the reconstructed image. In order to improve the performance of an EMCCD-based gamma camera with a monolithic scintillation crystal, arrays of silicon photon-multipliers (SiPMs) can be mounted on the sides of the crystal to detect escaping scintillation photons, which are otherwise neglected. This will provide a priori knowledge about the correct number and energies of gamma interactions that are to be detected in each CCD frame. This information can be used as an additional detection criterion, e.g. for the rejection of otherwise falsely detected events. The method was tested using a gamma camera based on a back-illuminated EMCCD, coupled to a 3 mm thick continuous CsI:Tl crystal. Twelve SiPMs have been mounted on the sides of the CsI:Tl crystal. When the information of the SiPMs is used to select scintillation events in the EMCCD image, the background level for 99mTc is reduced by a factor of 2. Furthermore, the SiPMs enable detection of 125I scintillations. A hybrid SiPM-/EMCCD-based gamma camera thus offers great potential for applications such as in vivo imaging of gamma emitters.

  1. Monte Carlo Simulation and Experimental Characterization of a Dual Head Gamma Camera

    CERN Document Server

    Rodrigues, S; Abreu, M C; Santos, N; Rato-Mendes, P; Peralta, L

    2007-01-01

    The GEANT4 Monte Carlo simulation and experimental characterization of the Siemens E.Cam Dual Head gamma camera hosted in the Particular Hospital of Algarve have been done. Imaging tests of thyroid and other phantoms have been made "in situ" and compared with the results obtained with the Monte Carlo simulation.

  2. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    Science.gov (United States)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  3. A state-of-the-art report on the laser decontamination and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Yong; Ahn, B. G.; Shim, J. B.; Won, H. J.; Lee, B. J.; Oh, W. Z

    1997-11-01

    Survey on the development status has been performed on the laser as the device of a radioactive surface decontamination and gamma camera as the device of a contamination measurement. The laser is directly applied to a radioactive contamination on the metal or the concrete surface, then the contamination is removed. Its method has the follow advantages; noncontact method, selective removal of contamination area, negligible amounts of additional waste generated. Laser cleaning process is completed at a cooling state before waste generated. Laser cleaning process is completed at a cooling state before the heat wave propagate to substrate and the contamination material is filtered by the suction device. The gamma camera show a contaminated nuclide and pattern with 2-dimension by remote measurement. The gamma camera is consist of 3 part; collimated radiation measurement part, CCTV image process part, distance measurement part. Therefore, if a radiation position and level are defined by the gamma camera and the laser device is used with remote control, it is very useful at decontamination and decommissioning of the nuclear facility. (author). 44 refs., 4 tabs., 34 figs

  4. Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine

    DEFF Research Database (Denmark)

    Madsen, Jan L.; Sjögreen-Gleisner, Katarina; Elema, Dennis Ringkjøbing;

    2014-01-01

    Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolab......Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution...... of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4MBq [75Se]L-SeMet ([75Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period......]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8•2 (SD 1•1)% of the activity. Time–activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera...

  5. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Schmidt, Ulla; Huang, Chenxi;

    2014-01-01

    PURPOSE: Estimation of left ventricular ejection fraction (LVEF) with equilibrium 99MTc-HSA equilibrium radionuclide angiography (MUGA) is frequently used for assessing cardiac function. The purpose of this study was to compare intra- and interobserver variation between three different gamma...

  6. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/n, Rio de Janeiro (Brazil); Rebelo, A.M.O. [University Hospital, Nuclear Medicine Center, Rio de Janeiro (Brazil); Teran, M.; Paolino, A. [Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Rojo, A.M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Puerta, J.A.; Morales, J. [Universidad Nacional de Colombia, Medellin (Colombia); Bejerano, G.M.L. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.; Ruiz, M.A. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac (Mexico); Videla, R.; Pinones, O. [Comision Chilena de Energia Nuclear, Santiago (Chile); Gonzalez, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Navarro, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Cruz-Suarez, R. [International Atomic Energy Agency, Vienna (Austria)

    2007-07-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of {sup 131}I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  7. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M; Spiro, A [Loyola University Maryland, Baltimore, Maryland (United States); Vogel, R [Iowa Doppler Products, Iowa City, Iowa (United States); Donaldson, N; Gosselin, C [Rockhurst University, Kansas City, MO (United States)

    2015-06-15

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.

  8. Simulation of the functioning of a gamma camera using Monte Carlo method; Simulacion del funcionamiento de una camara gamma mediante metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Oramas Polo, I.

    2014-07-01

    This paper presents the simulation of the gamma camera Park Isocam II by Monte Carlo code SIMIND. This simulation allows detailed assessment of the functioning of the gamma camera. The parameters evaluated by means of the simulation are: the intrinsic uniformity with different window amplitudes, the system uniformity, the extrinsic spatial resolution, the maximum rate of counts, the intrinsic sensitivity, the system sensitivity, the energy resolution and the pixel size. The results of the simulation are compared and evaluated against the specifications of the manufacturer of the gamma camera and taking into account the National Protocol for Quality Control of Nuclear Medicine Instruments of the Cuban Medical Equipment Control Center. The simulation reported here demonstrates the validity of the SIMIND Monte Carlo code to evaluate the performance of the gamma camera Park Isocam II and as result a computational model of the camera has been obtained. (Author)

  9. Design, development, and evaluation of a direct gamma camera interface to the Macintosh II computer

    International Nuclear Information System (INIS)

    This paper presents a study to evaluate the potential of a microcomputer (Macintosh II) for direct acquisition, processing, display, and telecommunication of gamma-camera images. Use of such a computer would offer major advantages over existing systems, including reduced cost, standard user interface, image display with greater spatial resolution, use of standard output devices such as laser and film printers, and easily implemented networking. A 2-μsec, 12-bit A-to-D conversion system, hardware-image zooming system, and computer interface were designed, constructed, and interfaced to two gamma-cameras. Software was written in C and assembly language for routine processing of cardiac and other images. Data could be directly acquired from gamma-cameras at rates exceeding 200,000 points per second, with spatial resolution exceeding intrinsic camera resolution (512 x 512 pixel images). Clinical variables such as cardiac ejection fraction (first pass of gated) could be rapidly assessed. With ISDN, images could be remotely transmitted at rates exceeding 50,000 baud

  10. Analysis of dark current images of a CMOS camera during gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Czifrus, Szabolcs, E-mail: czifrus@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Kocsis, Gábor, E-mail: kocsis.gabor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2013-12-15

    Highlights: • Radiation tolerance of a fast framing CMOS camera EDICAM examined. • We estimate the expected gamma dose and spectrum of EDICAM with MCNP. • We irradiate EDICAM by 23.5 Gy in 70 min in a fission rector. • Dose rate normalised average brightness of frames grows linearly with the dose. • Dose normalised average brightness of frames follows the dose rate time evolution. -- Abstract: We report on the behaviour of the dark current images of the Event Detection Intelligent Camera (EDICAM) when placed into an irradiation field of gamma rays. EDICAM is an intelligent fast framing CMOS camera operating in the visible spectral range, which is designed for the video diagnostic system of the Wendelstein 7-X (W7-X) stellarator. Monte Carlo calculations were carried out in order to estimate the expected gamma spectrum and dose for an entire year of operation in W7-X. EDICAM was irradiated in a pure gamma field in the Training Reactor of BME with a dose of approximately 23.5 Gy in 1.16 h. During the irradiation, numerous frame series were taken with the camera with exposure times 20 μs, 50 μs, 100 μs, 1 ms, 10 ms, 100 ms. EDICAM withstood the irradiation, but suffered some dynamic range degradation. The behaviour of the dark current images during irradiation is described in detail. We found that the average brightness of dark current images depends on the total ionising dose that the camera is exposed to and the dose rate as well as on the applied exposure times.

  11. Design of a Compton camera for 3D prompt-{gamma} imaging during ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Roellinghoff, F., E-mail: roelling@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Richard, M.-H., E-mail: mrichard@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Chevallier, M.; Constanzo, J.; Dauvergne, D. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Freud, N. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Henriquet, P.; Le Foulher, F. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Letang, J.M. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Montarou, G. [LPC, CNRS/IN2P3, Clermont-F. University (France); Ray, C.; Testa, E.; Testa, M. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Walenta, A.H. [Uni-Siegen, FB Physik, Emmy-Noether Campus, D-57068 Siegen (Germany)

    2011-08-21

    We investigate, by means of Geant4 simulations, a real-time method to control the position of the Bragg peak during ion therapy, based on a Compton camera in combination with a beam tagging device (hodoscope) in order to detect the prompt gamma emitted during nuclear fragmentation. The proposed set-up consists of a stack of 2 mm thick silicon strip detectors and a LYSO absorber detector. The {gamma} emission points are reconstructed analytically by intersecting the ion trajectories given by the beam hodoscope and the Compton cones given by the camera. The camera response to a polychromatic point source in air is analyzed with regard to both spatial resolution and detection efficiency. Various geometrical configurations of the camera have been tested. In the proposed configuration, for a typical polychromatic photon point source, the spatial resolution of the camera is about 8.3 mm FWHM and the detection efficiency 2.5x10{sup -4} (reconstructable photons/emitted photons in 4{pi}). Finally, the clinical applicability of our system is considered and possible starting points for further developments of a prototype are discussed.

  12. Use of gamma camera for measurement of the internal contamination with depleted uranium

    International Nuclear Information System (INIS)

    Depleted uranium from radioactive wastes is used for manufacturing bullets used in Iraq, Republic of Serbia and Yugoslavia. These bullets are extremely dense and capable of penetrating heavily armored vehicles. Their medical importance lies in the fact that the bullets contain seventy percent depleted uranium which creates aerosolized particles less than five microns in diameter, small enough to be inhaled, after spontaneous bullet burn at impact. Nuclear medicine scientists must be aware of this and be prepared to measure internal contamination of persons exposed to this radioactive material. Whole body counters (WBC) represent appropriate equipment for this purpose but their availability in developing countries is not sufficient. Gamma camera is an alternative. The minimum detectable activity (MDA) of depleted uranium, iodine and technetium for gamma cameras was measured in this paper. Low energy X-ray 100 KeV with 20% windows are used for the depleted uranium detection. About 40% gamma emissions from depleted uranium fall within these limits. The activities measured (50-100 Bq) are about ten times higher then on WBC (5 Bq). This does not limit the use of gamma cameras for measurement of lung or whole body internal contamination with depleted uranium. (author)

  13. Calculation of renal depth by conjugate-view method using dual-head gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Mi; Suh, Tae Suk; Choe, Bo Young; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo; Lee, Hyoung Koo [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-12-01

    In this study, we developed a new method for the determination of renal depth with anterior and posterior renal scintigrams in a dual-head gamma camera, considering the attenuation factor e{sup -{mu}}{sup x} of the conjugate-view method. We developed abdomen and kidney phantoms to perform experiments using Technetium-99m dimercaptosuccinic acid ({sup 99m}Tc-DMSA). The phantom images were obtained by dual-head gamma camera equipped with low-energy, high-resolution, parallel-hole collimators (ICONf, Siemens). The equation was derived from the linear integration of emission {gamma}-ray considering attenuation from the posterior abdomen to the anterior abdomen phantom surface. The program for measurement was developed by Microsoft Visual C++ 6.0. Renal depths of the phantoms were derived from the derived equations and compared with the exact geometrical values. Differences between the measured and the calculated values were the range of 0.1 to 0.7 cm (0.029{+-} 0.15 cm, mean {+-}S. D.). The present study showed that the use of the derived equations for renal depth measurement, combined with quantitative planar imaging using duel-head gamma camera, could provide more accurate results for individual variation than the conventional method.

  14. A portable device for small animal SPECT imaging in clinical gamma-cameras

    International Nuclear Information System (INIS)

    Molecular imaging is reshaping clinical practice in the last decades, providing practitioners with non-invasive ways to obtain functional in-vivo information on a diversity of relevant biological processes. The use of molecular imaging techniques in preclinical research is equally beneficial, but spreads more slowly due to the difficulties to justify a costly investment dedicated only to animal scanning. An alternative for lowering the costs is to repurpose parts of old clinical scanners to build new preclinical ones. Following this trend, we have designed, built, and characterized the performance of a portable system that can be attached to a clinical gamma-camera to make a preclinical single photon emission computed tomography scanner. Our system offers an image quality comparable to commercial systems at a fraction of their cost, and can be used with any existing gamma-camera with just an adaptation of the reconstruction software

  15. An operative gamma camera for sentinel lymph node procedure in case of breast cancer

    CERN Document Server

    Salvador, S; Mathelin, C; Guyonne, J; Huss, D

    2007-01-01

    Large field of view gamma cameras are widely used to perform lymphoscintigraphy in the sentinel lymph nodes (SLN) procedure in case of breast cancer. However, they are not specified for this application and their sizes do not enable their use in the operative room to control the excision of the all SLN. We present the results obtained with a prototype of a new mini gamma camera developed especially for the operative lymphoscintigraphy of the axillary area in case of breast cancer. This prototype is composed of 10 mm thick parallel lead collimator, a 2 mm thick GSO:Ce inorganic scintillating crystal from Hitachi and a Hamamatsu H8500 flat panel multianode (64 channels) photomultiplier tube (MAPMT) equipped with a dedicated electronics. Its actual field of view is 50 × 50mm2. The gamma interaction position in the GSO scintillating plate is obtained by calculating the center of gravity of the fired MAPMT channels. The measurements performed with this prototype demonstrate the usefulness of this mini gamma camer...

  16. Modeling High Energy (I-131) Pinhole Collimator for Small Animal Gamma Camera by Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Jun; Kim, Kyeong Min; Kim, Jin Su; Park, Ji Ae; Lee, Young Sub; Yoo, A-ram; Kim, Jong Guk [Korea Institute of Radiologic and Medical Sciences, Seoul (Korea, Republic of); Lee, Hak Jae; Lee, Ki Sung [Korea University, Seoul (Korea, Republic of)

    2011-05-15

    In medical nuclear imaging, I-131 takes important role in not only the diagnostic image, but also the quantitative evaluation in nuclear medicine therapy. However, due to the relatively high energy peak of I-131[364 keV (82 %), 326 keV (0.27 %), 503 keV (0.36 %), 637 keV (7.18 %), 643 keV (0.22 %), 723 keV (1.77 %)], it is difficult to construct high resolution, high sensitivity preclinical gamma camera. Especially, 637 keV, 723 keV energy, penetration and scattering occur in relatively high possibility. In this manner, penetration and scattering of high energy gamma ray in collimator degrades image quality fatally. According to the characteristics, it is essential to design collimator which can minimize the degrading factor, and preserve the gamma ray for imaging at the same time. In this study, we designed and simulated the structure of pinhole collimator for a small animal high energy gamma camera by Monte Carlo simulation (GATE 6.0). In this model, the diameter, channel length of pinhole and the thickness of collimator are the main issue for determining the system sensitivity. Thus, in this study, we observed the difference in the number of photons on the scintillator which pass through the collimator that determined by those three factors

  17. Modeling of a slanted-hole collimator in a compact endo-cavity gamma camera.

    Science.gov (United States)

    Kamuda, Mark; Cui, Yonggang; Lall, Terry; Ionson, Jim; Camarda, Giuseppe S.; Hossain, Anwar; Yang, Ge; Roy, Utpal N.; James, Ralph B.

    2013-09-01

    Having the ability to take an accurate 3D image of a tumor greatly helps doctors diagnose it and then create a treatment plan for a patient. One way to accomplish molecular imaging is to inject a radioactive tracer into a patient and then measure the gamma rays emitted from regions with high-uptake of the tracer, viz., the cancerous tissues. In large, expensive PET- or SPECT-imaging systems, the 3D imaging easily is accomplished by rotating the gamma-ray detectors and then employing software to reconstruct the 3D images from the multiple 2D projections at different angles of view. However, this method is impractical in a very compact imaging system due to anatomical considerations, e.g., the transrectal gamma camera under development at Brookhaven National Laboratory (BNL) for detection of intra-prostatic tumors. The camera uses pixilated cadmium zinc telluride (CdZnTe or CZT) detectors with matched parallel-hole collimator. Our research investigated the possibility of using a collimator with slanted holes to create 3D pictures of a radioactive source. The underlying concept is to take 2D projection images at different angles of view by adjusting the slant angle of the collimator, then using the 2D projection images to reconstruct the 3D image. To do this, we first simulated the response of a pixilated CZT detector to radiation sources placed in the field of view of the camera. Then, we formulated an algorithm to use the simulation results as prior knowledge and estimate the distribution of a shaped source from its 2D projection images. From the results of the simulation, we measured the spatial resolution of the camera as ~7-mm at a depth of 13.85-mm when using a detector with 2.46-mm pixel pitch and a collimator with 60° slant angle.

  18. Evaluation of different physical parameters that affect the clinical image quality for gamma camera by using different radionuclides

    International Nuclear Information System (INIS)

    Some scintillation camera manufactures adhere to standard code of performance specification established by National Electric Manufactures Association (NEMA). Items such as differential and integral uniformity, spatial resolution energy resolution, etc. are all calculated with reproducible methodology that allows the user reliable technique for creation of these standards to avoid any lack of clinical service that may violate the ethics of patient care. Because 99mTc is the most frequently used radionuclide in nuclear medicine, many clinics perform the daily uniformity and weekly resolution checks using this radionuclide. But when other commonly used radionuclide such as Tl-201,Ga-67 and I-131 are used, no standardized quality control is performed. So in these study we perform to evaluate the response of ADAC(digital) gamma camera and SELO(analogue) gamma camera to four radionuclide (Tl-201,Ga-67, I-131, and 99mTc) flood image acquired using different non-uniformity correction tables. In the planer study uniformity and resolution images were obtained using ADAC and SELO cameras, linearity was obtained only by ADAC camera, while in the SPECT study uniformity and contrast images were obtained using ADAC camera only. The response for using different non-uniformity correction tables acquired using different isotopes was different from gamma camera model to another. We can conclude that the most of the gamma camera quality control parameters (uniformity, resolution and contrast) are influenced by variation in the correction tables, while other parameters not affected by this variation like linearity. (author)

  19. Detection of mixed-range proton pencil beams with a prompt gamma slit camera

    Science.gov (United States)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2016-01-01

    With increasing availability of proton and particle therapy centers for tumor treatment, the need for in vivo range verification methods comes more into the focus. Imaging of prompt gamma rays emitted during the treatment is one of the possibilities currently under investigation. A knife-edge shaped slit camera was recently proposed for this task and measurements proved the feasibility of range deviation detection in homogeneous and inhomogeneous targets. In the present paper, we concentrate on laterally inhomogeneous materials, which lead to range mixing situations when crossed by one pencil beam: different sections of the beam have different ranges. We chose exemplative cases from clinical irradiation and assembled idealized tissue equivalent targets. One-dimensional emission profiles were obtained by measuring the prompt gamma emission with the slit camera. It could be shown that the resulting range deviations can be detected by evaluation of the measured data with a previously developed range deviation detection algorithm. The retrieved value, however, strongly depends on the target composition, and is not necessarily in direct relation to the ranges of both parts of the beam. By combining the range deviation detection with an analysis of the slope of the distal edge of the measured prompt gamma profile, the origin of the detected range deviation, i.e. the mixed range of the beam, is also identified. It could be demonstrated that range mixed prompt gamma profiles exhibit less steep distal slopes than profiles from beams traversing laterally homogeneous material. For future application of the slit camera to patient irradiation with double scattered proton beams, situations similar to the range mixing cases are present and results could possibly apply.

  20. Heart imaging by cadmium telluride gamma cameraEuropean Program ``BIOMED'' consortium

    Science.gov (United States)

    Scheiber, Ch.; Eclancher, B.; Chambron, J.; Prat, V.; Kazandjan, A.; Jahnke, A.; Matz, R.; Thomas, S.; Warren, S.; Hage-Hali, M.; Regal, R.; Siffert, P.; Karman, M.

    1999-06-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3×3 mm, field of view: 15 cm×15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parrallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15° tilt of the collimator with respect to the detector grid. A 16×16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16±0.6 keV (mean ± standard deviation, n=30). Uniformity was ±10%, improving to ±1% when using a correction table. Test objects (emission data: letters 1.8 mm in width) and cold rods in scatter medium have been acquired. The CdTe images have been compared to those acquired with a conventionnal gamma camera.

  1. Realization and study of spectral properties of the ISGRI gamma-ray camera; Mise en oeuvre et etude des proprietes spectrales de la gamma-camera ISGRI

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, O

    2001-11-01

    This work evaluates spectroscopic and physical properties of CdTe detectors in view of assembling a large number on a new generation spectro-imager for space gamma-ray astronomy. Study, optimization, realization and calibration of modular detection units of the ISGRI camera are described. After a description of the experimental context of the INTEGRAL program and a review of the physical processes involved in gamma-ray photon detectors, we present an analysis of the properties of CdTe detectors attempting to be so exhaustive as possible. We propose the base point of a global model, which relates charge transport properties, spectral response and possible instabilities in the detectors. We propose a new formulation of the Hecht relation that describes charge loss as a function of the detector charge transport properties. We discuss at length the method of charge loss correction and its consequences on the associated integrated electronics definition. Finally, we illustrate our instrument capabilities using as an example the observation of titanium 44 lines in historical supernovae. (author)

  2. A new generation gamma-ray camera for planetary science applications : High pressure xenon time projection chamber

    NARCIS (Netherlands)

    Kobayashi, S; Hasebe, N; Hosojima, T; Igarashi, T; Kobayashi, MN; Mimura, M; Miyachi, T; Miyajima, M; Pushkin, KN; Sakaba, H; Tezuka, C; Doke, T; Shibamura, E; Ehrenfreund, P; Foing, B; Cellino, A

    2006-01-01

    A new gamma-ray imaging camera based on High-pressure Xe Time-Projection-Chamber (HPXe-TPC) allows us to simultaneously determine arrival direction and its energy of individual incident gamma rays. HPXe-TPC is a promising y-ray detector for planetary science which provides means of global mapping of

  3. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  4. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  5. Gamma-ray spectral imaging using a single-shutter radiation camera

    International Nuclear Information System (INIS)

    As part of a program to develop mobile robots for reactor environments, we are developing a radiation-imaging camera capable of operating in medium-intensity (<2R/h), medium-energy (<8 MeV) gamma-ray fields. A systematic study of available detectors indicated the advisiability of a high-Z scintillator. The raster-scanning camera uses a lead-shielded bismuth germanate (BGO) scintillator (1.25 cmx1.25 cm right-circular cylinder) coupled to a photomultiplier tube (PMT) operated in pulse mode. Measurements yielded an angular resolution of 2.5deg and energy resolution of 12.9% at 662 keV. The camera motion is totally automated and controlled by stepping motors connected to a remote computer. Several 2D images of radioactive sources have been acquired in fields of up to 400 mR/h and energies up to 2.75 MeV. Some of the images demonstrate the ability of the camera to image a polychromatic field. (orig.)

  6. Design study of a Compton camera for prompts-gamma imaging during ion beam therapy

    International Nuclear Information System (INIS)

    Ion beam therapy is an innovative radiotherapy technique using mainly carbon ion and proton irradiations. Its aim is to improve the current treatment modalities. Because of the sharpness of the dose distributions, a control of the dose if possible in real time is highly desirable. A possibility is to detect the prompt gamma rays emitted subsequently to the nuclear fragmentations occurring during the treatment of the patient. In a first time two different Compton cameras (double and single scattering) have been optimised by means of Monte Carlo simulations. The response of the camera to a photon point source with a realistic energy spectrum was studied. Then, the response of the camera to the irradiation of a water phantom by a proton beam was simulated. It was first compared with measurement performed with small-size detectors. Then, using the previous measurements, we evaluated the counting rates expected in clinical conditions. In the current set-up of the camera, these counting rates are pretty high. Pile up and random coincidences will be problematic. Finally we demonstrate that the detection system is capable to detect a longitudinal shift in the Bragg peak of ± 5 mm, even with the current reconstruction algorithm. (author)

  7. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    International Nuclear Information System (INIS)

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  8. Modeling an Interwoven Collimator for A 3D Endocavity Gamma Camera

    Directory of Open Access Journals (Sweden)

    Terry Lall

    2016-02-01

    Full Text Available Positron emission tomography (PET and single-photon emission-computed tomography (SPECT are important nuclear-medical imaging tools in diagnosing cancers and creating effective treatment plans. Commercially imaging systems are operated externally and can create 3D images of the whole body or of specific organs by rotating the gamma-ray detectors, and then employing software to reconstruct the 3D images from the multiple 2D projections at different angles of view. However, their uses in intraoperative environments or for imaging specific small organs, e.g., the prostate, ovary, and cervix, are limited because of their bulky designs and the long working-distance, hence causing low efficiency and poor spatial-resolution. In such situations, compact imaging devices, e.g., the trans-rectal gamma camera developed at Brookhaven National Laboratory (BNL and Hybridyne Imaging Technologies, are preferable for detecting intra-prostatic tumors. The camera uses pixilated cadmium zinc telluride (CdZnTe detectors with a matched parallel-hole collimator. However, their lack of 3D imaging capability limits their use in clinics, because the acquired images cannot be interpreted easily due to missing depth information. Given the constraint on space in such operations, the traditional 3D-image acquisition methods are impractical. For this reason, we designed an interwoven collimator dedicated for 3D imaging using an endocavity probe. This novel collimator allows us to take two or multiple views of a specific organ or tissue without rotating the camera. At the first stage of design for the collimator, we carried out Monte-Carlo simulations to study the response of the collimator and the attached detectors to gamma rays, and then developed a maximum-likelihood-based algorithm for reconstructing 3D images. In this paper, we detail our modeling of the collimator on a cluster Linux computer, and discuss the imaging capability of this novel collimator.

  9. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  10. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  11. Compact CdZnTe-based gamma camera for prostate cancer imaging

    Science.gov (United States)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  12. COMPACT CdZnTe-BASED GAMMA CAMERA FOR PROSTATE CANCER IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    CUI, Y.; LALL, T.; TSUI, B.; YU, J.; MAHLER, G.; BOLOTNIKOV, A.; VASKA, P.; DeGERONIMO, G.; O' CONNOR, P.; MEINKEN, G.; JOYAL, J.; BARRETT, J.; CAMARDA, G.; HOSSAIN, A.; KIM, K.H.; YANG, G.; POMPER, M.; CHO, S.; WEISMAN, K.; SEO, Y.; BABICH, J.; LaFRANCE, N.; AND JAMES, R.B.

    2011-10-23

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  13. Single photon emission computed tomography of the brain with a rotating gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Knopp, R.; Winkler, C.; Wappenschmidt, J.

    1981-08-01

    In 471 patients SPECT of the brain was performed in addition to conventional serial brain scintigraphy using a rotating gamma camera (GAMMATOME T 9000). 23 patients had tumorous lesions, 26 had vascular lesions, and 422 patients revealed normal brain findings. 5 of the 23 patients with tumorous lesion and 5 of the 12 patients with vascular lesion (anamnesis shorter than 4 weeks) showed positive SPECT results but false negative conventional brain scans. Specificity could be improved up to 98% (412 out of 422 patients) using SPECT and conventional scintigraphy.

  14. A system on chip solution for processing of gamma camera images for thyroid uptake studies

    International Nuclear Information System (INIS)

    Nuclear medical Imaging modalities such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are non-invasive, in-vivo and functional. Molecular imaging technologies that have produced promising results for specific identification of cancer and other investigations which need specialized diagnosis with Gamma Camera (GC) like thyroid scan, bone hot spot study etc. This is due to their unique ability to sense and visualize increased biochemical changes in malignancy zone as compared to healthy tissue well before structural changes can occur

  15. Study of a new architecture of gamma cameras with Cd/ZnTe/CdTe semiconductors; Etude d'une nouvelle architecture de gamma camera a base de semi-conducteurs CdZnTe /CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, L

    2007-11-15

    This thesis studies new semi conductors for gammas cameras in order to improve the quality of image in nuclear medicine. The chapter 1 reminds the general principle of the imaging gamma, by describing the radiotracers, the channel of detection and the types of Anger gamma cameras acquisition. The physiological, physical and technological limits of the camera are then highlighted, to better identify the needs of future gamma cameras. The chapter 2 is dedicated to a bibliographical study. At first, semi-conductors used in imaging gamma are presented, and more particularly semi-conductors CDTE and CdZnTe, by distinguishing planar detectors and monolithic pixelated detectors. Secondly, the classic collimators of the gamma cameras, used in clinical routine for the most part of between them, are described. Their geometry is presented, as well as their characteristics, their advantages and their inconveniences. The chapter 3 is dedicated to a state of art of the simulation codes dedicated to the medical imaging and the methods of reconstruction in imaging gamma. These states of art allow to introduce the software of simulation and the methods of reconstruction used within the framework of this thesis. The chapter 4 presents the new architecture of gamma camera proposed during this work of thesis. It is structured in three parts. The first part justifies the use of semiconducting detectors CdZnTe, in particular the monolithic pixelated detectors, by bringing to light their advantages with regard to the detection modules based on scintillator. The second part presents gamma cameras to base of detectors CdZnTe (prototypes or commercial products) and their associated collimators, as well as the interest of an association of detectors CdZnTe in the classic collimators. Finally, the third part presents in detail the HiSens architecture. The chapter 5 describes both software of simulation used within the framework of this thesis to estimate the performances of the Hi

  16. Recent progress in gamma-ray imaging by using a Si/CdTe semiconductor Compton camera

    International Nuclear Information System (INIS)

    Dust, containing radioactive materials, was dispersed following the Fukushima nuclear power plant accident in March 2011. Gamma-rays were emitted in the process when unstable nuclei in the materials decayed. The visualization of the distribution of radioactive materials is regarded as an important technology in the process of decontamination. A gamma-ray camera, which is based on the concept of reconstructing Compton scatterings, which take place in the detector, is known as a Compton camera and works in the energy range from a few hundred keV to a few MeV. 40 years after the first proposal for such a camera, Compton cameras are now being demonstrated as a real gamma-ray imager that can be used in the Fukushima area. In addition to monitoring hotspots in radiation sites, the camera could be used in various fields, such as medicine and non-destructive analyses. In this paper, we describe recent progress in Gamma-ray imaging by using a semiconductor Compton camera based on the technologies of Si and CdTe semiconductor detectors. (author)

  17. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera

    CERN Document Server

    Abe, A; Lee, J; Oka, T; Shizukuishi, K; Kikuchi, T; Inoue, T; Jimbo, M; Ryuo, H; Bickel, C

    2003-01-01

    We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16 x 16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use...

  18. Realisation of a gamma emission tomograph by a servo-controlled camera and bed

    International Nuclear Information System (INIS)

    We took part in the building of a transverse axial emission tomograph intended for nuclear medicine. The following three points were dealt with: mathematical, choice of processing algorithm; electronic, development of equipment; experimental, testing of the system built. On the mathematical side, following a survey of reconstruction methods, we studied the use of a reconstruction algorithm after filtering of the projections by convolution which gives a good spatial resolution. We also proposed a means to solve the computing time/quality of image problem, leading to a satisfactory result within a shorter total investigation time. In this way the computing time has been reduced by a factor three. In the electronics field we built an interface between the bed, the gamma camera and the computer already in the laboratory. The present instrument corresponds to version no. 2. The system control the bed and gamma camera which are operated from the computer. Experimentally we were able on checking the calculations with a phantom made up of small emitting sources, to prove by finding the exact spot our ability to locate active foci on the patient. While the results obtained are encouraging from the image restitution viewpoint, the study of problems related to self-absorption inside the organ and those of statistical noise have still to be continued

  19. Computer-controlled gamma-camera examination of human renal allografts using 123I-hippuran

    International Nuclear Information System (INIS)

    Human kidney transplants with ischemic damage, acute rejection and urinary flow obstruction were examined by a computer-linked gamma-camera technique using 123I-Hippuran. Serial scintigrams were produced and separate net time/activity curves for the cortex, medulla and pelvis (regional renograms) were constructed by a subtraction technique. In all the kidneys there was a significant uptake of the isotope. The scintigrams provided a morphologic picture of the graft and the upper urinary tract with high geometric resolution. Regional renograms demonstrated a different intrarenal distribution of the isotope in each of the three complications. Thus, in ischemic injury and acute rejection the isotope was retained in the cortex, with an abnormally low accumulation in the medulla and pelvis. In urinary tract obstruction, on the other hand, the isotope cleared normally from the cortex but accumulated gradually in the pelvis. Thus, the accumulation curves obtained with conventionel 131I-Hippuran renography in all three conditions depend on two different mechanisms. Computer-controlled gamma-camera examination using 123I-Hippuran offers a means of distinguishing ischemic damage and acute rejection from urinary flow obstruction. (orig.)

  20. Hepatic scintiangiography using gamma camera system: diagnosis of hepatomas and liver abscess

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choon Yul; Bahk, Yong Whee; Yoon, Sei Chul [Catholic Medical College, Seoul (Korea, Republic of)

    1980-12-15

    The purpose of this investigation is to distinguish hepatomas from the liver abscess by scintiangiography using Anger camera system. Ninety-five patients were imaged by Gamma camera system in St. Mary's Hospital, Catholic Medical College between May 1979 and January 1980 and their medical records were reviewed in detail. Of a total of 95 patients 38 patients were proved by histology. The patients were placed supine under Gamma camera detector head to view the anterior projection of the liver and spleen. Following an intravenous bolus injection of 10 mCi Tc-99m-phytate in volume of 3 {approx} 4ml, rapid sequential imaging 1 second duration was obtained for 16 and 30 seconds, and recorded 16 to 30 images in one film. The 4 {approx} 5 scintigraphic images obtained from the time of the first appearance of radioactivity in the abdominal aorta until its disappearance from the abdominal aorta were classified as the arterial phase of the study. In normal arterial phase, there is little or no radioactivity in the hepatic bed, compared to the lungs, heart and right kidney. When a radioactivity (early arterial staining) is depicted in the hepatic bed in the arterial phase of the scintiangiography, neoplastic condition is highly suggested. Hepatoma (47 cases) and metastasis (4 cases) show that extremely high concentration of radioactivity (early arterial staining) was noted in arterial phase in 44 cases and equivocal in 7 cases. A total of early arterial staining is concerted into the cold area in the static liver imaging. This early arterial staining is thought to be due definitely to neovascularization and feeding arteries of tumors. Liver abscess (4 cases) shows that appearance of radioactivity in the hepatic scintiangiogram as a whole was normal, except for reactive rim of hyperemia in arterial and early venous phases, but the area identified on the static liver imaging as a cold area. The hepatic scintiangiography plus static liver imaging using gamma camera system

  1. Study of performance of small gamma camera consisting of crystal pixel array and position sensitive photomultiplier tube

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; LIU Shi-Tao; LEI Xiao-Wen; YAN Tian-Xin; XU Zi-Zong; WANG Zhao-Min

    2005-01-01

    The performance of gamma camera with NaI(T1) array coupled with position sensitive photomultiplier tube (PSPMT) R2486 has been studied. The pixel size of NaI(T1) crystal is 2mm×2mm and the overall dimension of the array is 48.2mm×48.2mm×5mm. There are 484 pixels in a 22×22 matrix. Because each pixel can produce a much focused light spot and restrict the spread of photons, position resolution of the gamma camera is mainly determined by pixel size. It is shown that crystal array pixel can reduce shrinkage effect and improve intrinsic position resolution greatly via restricting the spread of photons. Experimental results demonstrate that its position resolution and linearity are much improved comparing with the gamma camera using planar crystals coupled with PSPMT.

  2. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    Science.gov (United States)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A.; Nishio, T.; Kabuki, S.; Inaniwa, T.

    2016-09-01

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a 137Cs source. We measured the energy spectra of the gamma rays using a LaBr3(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH)2, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from 10B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study.

  3. Imaging of radiocesium uptake dynamics in a plant body by using a newly developed high-resolution gamma camera.

    Science.gov (United States)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Yoshihara, Toshihiro; Watabe, Hiroshi; Yamamoto, Seiichi; Fujimaki, Shu

    2016-01-01

    We developed a new gamma camera specifically for plant nutritional research and successfully performed live imaging of the uptake and partitioning of (137)Cs in intact plants. The gamma camera was specially designed for high-energy gamma photons from (137)Cs (662 keV). To obtain reliable images, a pinhole collimator made of tungsten heavy alloy was used to reduce penetration and scattering of gamma photons. A single-crystal scintillator, Ce-doped Gd3Al2Ga3O12, with high sensitivity, no natural radioactivity, and no hygroscopicity was used. The array block of the scintillator was coupled to a high-quantum efficiency position sensitive photomultiplier tube to obtain accurate images. The completed gamma camera had a sensitivity of 0.83 count s(-1) MBq(-1) for (137)Cs with an energy window from 600 keV to 730 keV, and a spatial resolution of 23.5 mm. We used this gamma camera to study soybean plants that were hydroponically grown and fed with 2.0 MBq of (137)Cs for 6 days to visualize and investigate the transport dynamics in aerial plant parts. (137)Cs gradually appeared in the shoot several hours after feeding, and then accumulated preferentially and intensively in growing pods and seeds; very little accumulation was observed in mature leaves. Our results also suggested that this gamma-camera method may serve as a practical analyzing tool for breeding crops and improving cultivation techniques resulting in low accumulation of radiocesium into the consumable parts of plants.

  4. FDG gamma camera PET equipped with one inch crystal and XCT. Assessment of myocardial viability

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, M. [Dept. of Nuclear Medicine, Medical Univ., General Hospital of Vienna (Austria); Dept. of Nuclear Medicine and Endocrinology, PET CT Centre, St. Vincent' s Hospital, Linz (Austria); Khorsand, A.; Graf, S. [Dept. of Cardiology, Medical Univ., General Hospital of Vienna (Austria); Dobrozemsky, G. [Dept. of Nuclear Medicine, Medical Univ. of Innsbruck (Austria); Oezer, S.; Kletter, K.; Dudczak, R. [Dept. of Nuclear Medicine, Medical Univ., General Hospital of Vienna (Austria); Pirich, C. [Dept. of Nuclear Medicine und Endocrinology, Paracelsus Private Medical Univ., SALK, Salzburg (Austria)

    2006-07-01

    Metabolic imaging with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) is actually considered as the best method to detect and quantitatively assess myocordial tissue viability. The aim of this study was to investigate the accuracy of FDG gamma camera positron emission tomography (GCPET) imaging equipped with one inch NaI crystals in comparison to FDG dedicated PET (dPET) imaging as a ''gold standard'' in phantom and clinical studies. Patients, methods: nineteen patients with coronary artery disease (CAD) underwent both imaging modalities. Phantom and clinical GCPET imaging were performed with a dual-headed, coincidence based gamma camera equipped with 1 inch thick NaI crystals and an X-ray tube (XCT) for attenuation correction (AC), as well as with a dedicated PET scanner with AC. {sup 99m}Tc tetrofosmin single-photon emission tomography (SPET) studies were performed for assessment of myocardial perfusion, with AC. Results: phantom studies showed a significant relation in segmental activity between FDG imaging with AC using GCPET and dPET (r = 0.91, p < 0.001). In clinical studies with AC correlation coefficients of mean segmental FDG uptake and regional defect size were r = 0.87 (p < 0.0001) and r = 0.83 (p < 0.0001), respectively. In regional analysis close agreement was even found in the most attenuated regions of the heart if AC was used in GCPET imaging. The overall agreement for detection of viable myocardium was 81% between FDG-dPET (AC) and FDG-GCPET (AC) and 74% between FDG-dPET (AC) and FDG-GCPET (NC). Conclusions: suggests that the assessment of myocardial metabolism by means of FDG is feasible with a coincidence based gamma camera equipped with 1 inch thick NaI crystal if AC is performed. The results reveal a close concordance and agreement between FDG-dPET (AC) and FDG-GCPET (AC) as compared to FDG-GCPET (NC). (orig.)

  5. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  6. A new approach to the evaluation of peripheral vascular disease using the gamma camera

    International Nuclear Information System (INIS)

    To estimate the degree of impaired perfusion in legs, and the extent of improvement after treatment, a functional test was developed using a gamma camera to follow the perfusion of intravenously injected sup(99m)Tc-pertechnetate. An analysis is given of normal and pathologic curve patterns. The influence of the severity of occlusive arterial disease on the arrival and distribution of radioactivity in the leg is demonstrated. After vascular surgery, changes in the curve pattern and the imaging of activity distribution reflected the function of the inserted bypass grafts. The test proved to be useful in the differentiation between patients with false claudication complaints due to non-arterial disease and patients with true claudication. It is concluded that the technique presented in this thesis can serve as a useful, non-invasive, screening test prior to arteriography and as a functional assessment of vascular reconstruction

  7. Measurement of spleen size using gamma camera scintigraphy in essential thrombocythaemia

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, P. (Department of Medicine, Oestra Hospital, University of Goeteborg, Goeteborg (Sweden)); Carneskog, J.; Wadenvik, H.; Kutti, J. (Haematology Section, Department of Medicine, Sahlgrenska Hospital, University of Goeteborg, Goeteborg (Sweden)); Jarneborn, L. (Department of Clinical Physiology, Oestra Hospital, University of Goeteborg, Goeteborg (Sweden))

    1993-09-01

    By using gamma camera imaging the spleen size was determined in 33 consecutive patients with essential thrombocythaemia (ET) and in 33 consecutive patients with reactive thrombocytosis (RT). All ET patients were newly diagnosed and had not received myelosuppressive treatment prior to study; they all fulfilled the criteria for ET as established by the Polycythemia Vera Study Group. In both posterior and lateral projections, the spleen area in the group of ET patients was significantly larger than in the RT patients. The present study has shown that 39% of ET patients at diagnosis have splenic enlargement. Evaluation of Spleen size is therefore a useful diagnostic test in patients presenting with unexplained thrombocytosis. (au) (15 refs.).

  8. Evaluation of intrinsic uniformity of gamma cameras in two hospitals in the Costa Rican Social Security

    International Nuclear Information System (INIS)

    It is well known that in diagnostic imaging, quality control procedures are important to verify the correct performance of the equipment under certain irradiation conditions that do not vary over time. At the Caja Costarricense del Seguro Social, in the past few years medical physicists have been incorporated in order to verify and carry on quality control tests in the instruments of the nuclear medicine departments. One of the first tasks was to develop a digital management system of data resulting from quality control tests. The aim of this work is to present the results of the analysis of approximately five years of cumulated data from gamma camera intrinsic uniformity evaluation at the San Juan de Dios Hospital, and almost two years at the Mexico Hospital

  9. Maximum-likelihood scintillation detection for EM-CCD based gamma cameras

    International Nuclear Information System (INIS)

    Gamma cameras based on charge-coupled devices (CCDs) coupled to continuous scintillation crystals can combine a good detection efficiency with high spatial resolutions with the aid of advanced scintillation detection algorithms. A previously developed analytical multi-scale algorithm (MSA) models the depth-dependent light distribution but does not take statistics into account. Here we present and validate a novel statistical maximum-likelihood algorithm (MLA) that combines a realistic light distribution model with an experimentally validated statistical model. The MLA was tested for an electron multiplying CCD optically coupled to CsI(Tl) scintillators of different thicknesses. For 99mTc imaging, the spatial resolution (for perpendicular and oblique incidence), energy resolution and signal-to-background counts ratio (SBR) obtained with the MLA were compared with those of the MSA. Compared to the MSA, the MLA improves the energy resolution by more than a factor of 1.6 and the SBR is enhanced by more than a factor of 1.3. For oblique incidence (approximately 450), the depth-of-interaction corrected spatial resolution is improved by a factor of at least 1.1, while for perpendicular incidence the MLA resolution does not consistently differ significantly from the MSA result for all tested scintillator thicknesses. For the thickest scintillator (3 mm, interaction probability 66% at 141 keV) a spatial resolution (perpendicular incidence) of 147 μm full width at half maximum (FWHM) was obtained with an energy resolution of 35.2% FWHM. These results of the MLA were achieved without prior calibration of scintillations as is needed for many statistical scintillation detection algorithms. We conclude that the MLA significantly improves the gamma camera performance compared to the MSA.

  10. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  11. The X-/Gamma-ray camera ECLAIRs for the Gammay-ray burst mission SVOM

    CERN Document Server

    Godet, O; Atteia, J -L; Cordier, B; Mandrou, P; Barret, D; Triou, H; Pons, R; Amoros, C; Bordon, S; Gevin, O; Gonzalez, F; Götz, D; Gros, A; Houret, B; Lachaud, C; Lacombe, K; Marty, W; Mercier, K; Rambaud, D; Ramon, P; Rouaix, G; Schanne, S; Waegebaert, V

    2014-01-01

    We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($\\sim 2$\\,sr) coded mask camera with a mask transparency of 40\\% and a 1024 $\\mathrm{cm}^2$ detection plane coupled to a data processing unit, so-called UGTS, which is in charge of locating GRBs in near real time thanks to image and rate triggers. We present the instrument science requirements and how the design of ECLAIRs has been optimized to increase its sensitivity to high-redshift GRBs and low-luminosity GRBs in the local Universe, by having a low-energy threshold of 4 keV. The total spectral coverage ranges from 4 to 150 keV. ECLAIRs is expected to detect $\\sim 200$ GRBs of all types during the nominal 3 year mission lifetime. To reach a 4 keV low-energy threshold, the ECLAIRs detection plane is paved with 6400 $4\\times 4~\\mathrm{mm}^2$ and 1 mm-thick Schottky CdTe detectors. The detectors are grouped by 32, in 8x4 matrices read by a low-noise ASIC, forming elementary mo...

  12. Monte Carlo simulation of breast tumor imaging properties with compact, discrete gamma cameras

    International Nuclear Information System (INIS)

    The authors describe Monte Carlo simulation results for breast tumor imaging using a compact, discrete gamma camera. The simulations were designed to analyze and optimize camera design, particularly collimator configuration and detector pixel size. Simulated planar images of 5--15 mm diameter tumors in a phantom patient (including a breast, torso, and heart) were generated for imaging distances of 5--55 mm, pixel sizes of 2 x 2--4 x 4 mm2, and hexagonal and square hole collimators with sensitivities from 4,000 to 16,000 counts/mCi/sec. Other factors considered included T/B (tumor-to-background tissue uptake ratio) and detector energy resolution. Image properties were quantified by computing the observed tumor fwhm (full-width at half-maximum) and S/N (sum of detected tumor events divided by the statistical noise). Results suggest that hexagonal and square hole collimators perform comparably, that higher sensitivity collimators provide higher tumor S/N with little increase in the observed tumor fwhm, that smaller pixels only slightly improve tumor fwhm and S/N, and that improved detector energy resolution has little impact on either the observed tumor fwhm or the observed tumor S/N

  13. Gamma camera based Positron Emission Tomography: a study of the viability on quantification

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  14. Acceptance of gamma camera Philips bright view based in the protocol nema 2001; Aceptacion de gammacamara philips brightview basada en el protocolo nema 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Gracia, C.; Luquero Llopis, N.; Plaza Aparicio, R.; Huerga Cabrerizo, C.; Corredoira Silva, E.; Serrada Hierro, A.

    2013-07-01

    Recently a new Philips Bright View X gamma camera installed in the Nuclear Medicine Service. It is one gamma camera of nuclear medicine of variable angle with double detector that can be configured for cardiac SPECT, SPECT not circular, body full, dynamic planar and several acquisitions with a single detector. (Author)

  15. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  16. Statistical pixelwise inference models for planar data analysis: an application to gamma-camera uniformity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kalemis, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Bailey, D L [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Flower, M A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Lord, S K [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Ott, R J [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-07-21

    In this paper two tests based on statistical models are presented and used to assess, quantify and provide positional information of the existence of bias and/or variations between planar images acquired at different times but under similar conditions. In the first test a linear regression model is fitted to the data in a pixelwise fashion, using three mathematical operators. In the second test a comparison using z-scoring is used based on the assumption that Poisson statistics are valid. For both tests the underlying assumptions are as simple and few as possible. The results are presented as parametric maps of either the three operators or the z-score. The z-score maps can then be thresholded to show the parts of the images which demonstrate change. Three different thresholding methods (naive, adaptive and multiple) are presented: together they cover almost all the needs for separating the signal from the background in the z-score maps. Where the expected size of the signal is known or can be estimated, a spatial correction technique (referred to as the reef correction) can be applied. These tests were applied to flood images used for the quality control of gamma camera uniformity. Simulated data were used to check the validity of the methods. Real data were acquired from four different cameras from two different institutions using a variety of acquisition parameters. The regression model found the bias in all five simulated cases and it also found patterns of unstable regions in real data where visual inspection of the flood images did not show any problems. In comparison the z-map revealed the differences in the simulated images from as low as 1.8 standard deviations from the mean, corresponding to a differential uniformity of 2.2% over the central field of view. In all cases studied, the reef correction increased significantly the sensitivity of the method and in most cases the specificity as well. The two proposed tests can be used either separately or in

  17. Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera

    CERN Document Server

    Morozov, A; Marcos, J; Martins, R; Pereira, L; Solovov, V; Chepel, V

    2016-01-01

    Compact gamma cameras with a square-shaped monolithic scintillator crystal and an array of silicon photomultipliers (SiPMs) are actively being developed for applications in areas such as small animal imaging, cancer diagnostics and radiotracer guided surgery. Statistical methods of position reconstruction, which are potentially superior to the traditional centroid method, require accurate knowledge of the spatial response of each photomultiplier. Using both Monte Carlo simulations and experimental data obtained with a camera prototype, we show that the spatial response of all photomultipliers (light response functions) can be parameterized with axially symmetric functions obtained iteratively from flood field irradiation data. The study was performed with a camera prototype equipped with a 30 x 30 x 2 mm3 LYSO crystal and an 8 x 8 array of SiPMs for 140 keV gamma rays. The simulations demonstrate that the images, reconstructed with the maximum likelihood method using the response obtained with the iterative a...

  18. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    CERN Document Server

    Mizumoto, Tetsuya; Takada, Atsushi; Tanimori, Toru; Komura, Shotaro; Kubo, Hidetoshi; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Nakamura, Kiseki; Nakamura, Shogo; Oda, Makoto; Parker, Joseph D; Sawano, Tatsuya; Bando, Naoto; Nabetani, Akira

    2015-01-01

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$\\;$sr and that the detection efficiency and angular resolution for 662$\\;$keV gamma rays from the ...

  19. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Joaquin; Lledo, Salvador [University of Valencia, Clinic University Hospital, Department of Surgery, Valencia (Spain); Ferrer-Rebolleda, Jose [Clinic University Hospital, Department of Nuclear Medicine, Valencia (Spain); Cassinello, Norberto [Clinic University Hospital, Unit of Endocrinologic and Bariatric Surgery, Valencia (Spain)

    2007-02-15

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  20. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade

    Science.gov (United States)

    Rigamonti, D.; Muraro, A.; Nocente, M.; Perseo, V.; Boltruczyk, G.; Fernandes, A.; Figueiredo, J.; Giacomelli, L.; Gorini, G.; Gosk, M.; Kiptily, V.; Korolczuk, S.; Mianowski, S.; Murari, A.; Pereira, R. C.; Cippo, E. P.; Zychor, I.; Tardocchi, M.

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at Eγ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  1. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Backes, M., E-mail: michael.backes@physik.tu-dortmund.d [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Commichau, S.; Commichau, V. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Domke, M. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Dorner, D. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); ISDC, Data Centre for Astrophysics, CH-1290 Versoix (Switzerland); Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Kraehenbuehl, T.; Kranich, D. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Krumm, B. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Lorenz, E. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland)

    2011-05-21

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  2. Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera for radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu [Radiotracer Imaging Gr., Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Toshihiro [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2014-07-01

    Vast agricultural and forest areas around the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station in Japan were contaminated with radiocesium (Cs-134 and Cs-137) after the accident following the earthquake and tsunami in March 2011. A variety of agricultural studies, such as fertilizer management and plant breeding, have been undertaken intensively for reduction of radiocesium uptake in crops, or, enhancement of uptake in phyto-remediation. In this study, we newly developed a gamma camera specific for plant nutritional research, and performed quantitative analyses on uptake and partitioning of radiocesium in intact plant bodies. In general, gamma camera is a common technology in medical imaging, but it is not applicable to high-energy gamma rays such as emissions from Cs-137 (662 keV). Therefore, we designed our new gamma camera to prevent the penetration and scattering of the high-energy gamma rays. A single-crystal scintillator, Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), was employed, which has a relatively high density, a large light output, no natural radioactivity and no hygroscopicity. A 44 x 44 matrix of the Ce:GAGG pixels, with dimensions of 0.85 mm x 0.85 mm x 10 mm for each pixel, was coupled to a high-quantum efficiency position sensitive photomultiplier tube. This gamma detector unit was encased in a 20-mm-thick tungsten container with a tungsten pinhole collimator on the front. By using this gamma camera, soybean plants (Glycine max), grown in hydroponic solutions and fed with 1-2 MBq of Cs-137, were imaged for 6.5 days in maximum to investigate and visualize the uptake dynamics into/within the areal part. As a result, radiocesium gradually appeared in the shoot several hours after feeding of Cs-137, and then accumulated intensively in the maturing pods and seeds in a characteristic pattern. Our results also demonstrated that this gamma-camera method enables quantitative evaluation of plant ability to absorb, transport

  3. Radioisotope guided surgery with imaging probe, a hand-held high-resolution gamma camera

    International Nuclear Information System (INIS)

    Since 1997, our group of Physics together with Nuclear Physicians studies imaging probes (IP), hand-held, high-resolution gamma cameras for radio-guided surgery (RGS). Present work is aimed to verify the usefulness of two updated IP in different surgical operations. Forty patients scheduled for breast cancer sentinel node (SN) biopsy, five patients with nodal recurrence of thyroid cancer, seven patients with parathyroid adenomas, five patients with neuroendocrine tumours (NET), were operated under the guide of IP. We used two different IP with field of view of 1 and 4 in.2, respectively and intrinsic spatial resolution of about 2 mm. Radioisotopes were 99mTc, 123I and 111In. The 1 in.2 IP detected SN in all the 40 patients and more than one node in 24, whereas anger camera (AC) failed locating SN in four patients and detected true positive second nodes in only nine patients. The 4 in.2 IP was used for RGS of thyroid, parathyroid and NETs. It detected eight latero-cervical nodes. In the same patients, AC detected five invaded nodes. Parathyroid adenomas detected by IP were 10 in 7 patients, NET five in five patients. One and 4 in.2 IPs showed usefulness in all operations. Initial studies on SN biopsy were carried out on small series of patients to validate IP and to demonstrate the effectiveness and usefulness of IP alone or against conventional probes. We propose the use of the IP as control method for legal documentation and surgeon strategy guide before and after lesion(s) removal

  4. Monte-Carlo simulation of pinhole collimator of a small field of view gamma camera for small animal imaging

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; MA Wenyan; ZHU Yufeng; MA Hongguang; WU Yuelei; HU Huasi; ZHANG Boping; HUO Yonggang; LIU Silu; JIAN Bin; WANG Zhaomin

    2009-01-01

    Needs in scintimammography applications,especially for small animal cardiac imaging,lead to develop a small field of view,high spatial resolution gamma camera with a pinhole collimator.However the ideal pinhole collimator must keep a compromise between spatial resolution and sensitivity.In order to design a pinhole collimator with an optimized sensitivity and spatial resolution,the spatial resolution and the geometric sensitivity response as a function of the source to collimator distance has been obtained by means of Monte-Carlo simulation for a small field of view gamma camera with a pinhole collimator of various-hole diameters.The results show that the camera with pinhole of 1 mm,1.5 mm and 2 mm diameter has respectively spatial resolution of 1.5 mm,2.25 mm and 3 mm and geometric sensitivity of 0.016%,0.022% and 0.036%,while the source to collimator distance is 3 cm.We chose the pinhole collimator with hole diameter size of 1.2 mm for our the gamma camera designed based on the wade-off between sensitivity and resolution.

  5. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    CERN Document Server

    Watanabe, Shin; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and ...

  6. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    OpenAIRE

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton...

  7. Evaluation of the scattered radiation components produced in a gamma camera using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Polo, Ivon Oramas, E-mail: ivonoramas67@gmail.com [Department of Nuclear Engineering, Faculty of Nuclear Sciences and Technologies, Higher Institute of Applied Science and Technology (InSTEC), La Habana (Cuba)

    2014-07-01

    Introduction: this paper presents a simulation for evaluation of the scattered radiation components produced in a gamma camera PARK using Monte Carlo code SIMIND. It simulates a whole body study with MDP (Methylene Diphosphonate) radiopharmaceutical based on Zubal anthropomorphic phantom, with some spinal lesions. Methods: the simulation was done by comparing 3 configurations for the detected photons. The corresponding energy spectra were obtained using Low Energy High Resolution collimator. The parameters related with the interactions and the fraction of events in the energy window, the simulated events of the spectrum and scatter events were calculated. Results: the simulation confirmed that the images without influence of scattering events have a higher number of valid recorded events and it improved the statistical quality of them. A comparison among different collimators was made. The parameters and detector energy spectrum were calculated for each simulation configuration with these collimators using {sup 99m}Tc. Conclusion: the simulation corroborated that LEHS collimator has higher sensitivity and HEHR collimator has lower sensitivity when they are used with low energy photons. (author)

  8. Studies on tear physiology, pathophysiology and contact lenses by means of dynamic gamma camera and technetium

    International Nuclear Information System (INIS)

    In the present work the tracer method has been evaluated in a normal population. The effect of head and body position has been investigated as well as the effect of eye closure on tear drainage. A common, commercial available equipment has been used and a position and fixation of the patient has been chosen making the tear flow study possible in most persons. The clinical study in patients with lacrimal disorders showed the method being most applicable in pre-sac stenosis cases, i.e. in persons suffering watery eyes though having a normal passage to irrigation. The method being non-invasive and without pain is an excellent tool in the evaluation of tear drainage problems in children. Though a tear flow curve may not be obtained, scintigrams often leed to solid information to the ophthalmologist. In recent years the contact lens - drug relation has been a subject of growing interest. The tracer method applied on contact lens fitted persons yielded some information on the exchange of solutes in contact lens material in vivo. These studies can possibly be extended by marking drugs with technetium to clarify the exchange of the particular drug from the particular contact lens - an exchange that at present seems rather unpredictable. It also seems possible to extent flow studies to the inner eye using technetium and gamma camera with dosimetric precautions. It might be fairly easy to determine aqueous flow by this method. (author)

  9. Three-head positron coincidence detection (γ PET) by PRISM-IRIX gamma camera system

    International Nuclear Information System (INIS)

    The Shimadzu PRISM-IRIX is a three-headed variable-angle gamma camera system that also ensures the highest performances in single photon emission computed tomography (SPECT). It provides not only single photon imaging, but also positron coincidence imaging, by using two of the three heads. We have successfully improved the hardware and software of this system, so that the system fully utilizes all of the three heads in order to perform more reliable positron coincidence imaging. Also, we utilized the method of computer simulation to find out the head configuration that ensures the highest performances. Our investigations have shown that the triangular head configuration ensures the highest performances and stability of results in examinations of small organs where the rotation angle is set to 15 cm and that the C-mode head configuration gives the highest stability in examinations of larger organs where the rotation angle is set to 30 cm. We have further improved the electronic circuitry of the head to establish a system called AZTec (adaptive zone technology system). This system ensures even higher coincidence efficiency and higher performances in general. (author)

  10. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  11. Radioguided Parathyroidectomy with Portable Mini Gamma-Camera for the Treatment of Primary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Claudio Casella

    2015-01-01

    Full Text Available Background. A proper localisation of pathological parathyroid glands is essential for a minimally invasive approach in the surgical treatment of primary hyperparathyroidism (PHP. The recent introduction of portable mini gamma-cameras (pMGCs enabled intraoperative scintigraphic scanning. The aim of our study is to evaluate the efficacy of this new method and compare it with the preoperative localisation surveys. Methods. 20 patients were studied; they were evaluated preoperatively by neck ultrasound and Tc-sestaMIBI-scintigraphy and intraoperatively with the pMGC IP Guardian 2. The results obtained from the three evaluations were compared. Results. The pMGC presented a sensitivity of 95%, a specificity of 98.89%, and a diagnostic accuracy of 98.18%, which were higher than those of preoperative ultrasound (sensitivity 55%; specificity 95%; diagnostic accuracy 87% and scintigraphy with Tc-sestaMIBI (sensitivity 73.68%; specificity 96.05%; diagnostic accuracy 91.58%. Conclusions. The pMGC can be used effectively as an intraoperative method to find the correct location of the pathological parathyroid glands. The pMGC is more reliable than the currently used preoperative and intraoperative localisation techniques.

  12. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    CERN Document Server

    Takada, Atsushi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-01-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronomical Science/Japan Space Exploration Agency on September 1, 2006, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60 degrees. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2, we found that 50% and 21% ...

  13. Intraoperative Scintigraphy Using a Large Field-of-View Portable Gamma Camera for Primary Hyperparathyroidism: Initial Experience

    OpenAIRE

    Hall, Nathan C.; Plews, Robert L.; Amit Agrawal; Povoski, Stephen P.; Chadwick L. Wright; Jun Zhang; Martin, Edward W.; John Phay

    2015-01-01

    Background. We investigated a novel technique, intraoperative 99 mTc-Sestamibi (MIBI) imaging (neck and excised specimen (ES)), using a large field-of-view portable gamma camera (LFOVGC), for expediting confirmation of MIBI-avid parathyroid adenoma removal. Methods. Twenty patients with MIBI-avid parathyroid adenomas were preoperatively administered MIBI and intraoperatively imaged prior to incision (neck) and immediately following resection (neck and/or ES). Preoperative and intraoperative s...

  14. Feasibility of the gamma camera acceptance testing procedure introduced by the Swiss Federal Office of public health

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, S.; Bochud, F.; Verdun, F.R. [University Institute for Radiation Physics, Lausanne (Switzerland); Corminboeuf, F. [Klinik and Poliklinik fur Nuklearmedizin der Universitat, Inselspital, Bern (Switzerland); Linder, R.; Trueb, Ph. [Swiss Federal Office of Public Health, Bern (Switzerland); Malterre, J.; Bischof Delaloye, A. [University Hospital of Lausanne (CHUV), Nuclear Medicine Dept., Lausanne (Switzerland)

    2006-07-01

    Like in the field of radiology, digital systems are also becoming the standard in the field of nuclear medicine. This offers not only the possibility to process, transmit and archive data from patients more easily but also to introduce quantitative measurements for quality controls. In this framework, standards concerning the qualification of gamma camera systems have been updated and appeared to be useful to set legal requirements, in spite of the fact, that this is not their goals. The aim of this study was first to choose a set of tests described in standards to define measurements to be performed at the acceptance of the systems and after the regular maintenance (at least once every six months). Reference values are then established to control the stability of the system. To verify the feasibility, from a technical and a time requirements points of view, the tests proposed for the quality assurance programme have been applied on three gamma camera systems. The results of this study show that new requirements concerning the quality assurance of gamma camera of the Swiss Federal Office of Public Health based on international standards required to slightly modify some procedures to reduce the time necessary for the acceptance and status tests. (authors)

  15. Evaluation of gamma camera-based measurement of individual kidney function using iodine-123 orthoiodohippurate

    International Nuclear Information System (INIS)

    To evaluate the accuracy of these techniques, we measured RUR by an optimized procedure and compared it with standard ERPF. Iodine-123 orthoiodohippurate (OIH) scintigraphy and simultaneous para-aminohippurate clearance study for measuring standard ERPF were performed in three hospitals in 24 patients with normal or mildly impaired renal function. 123I-OIH was injected intravenously and 10-s consecutive imaging of the kidneys was started when the abdominal aorta was seen. The attenuation coefficient for 123I was measured in each hospital using the same water-equivalent absorption materials and used for the attenuation correction. After subtracting background radioactivity, RURs were defined as the count ratios of fractional renal uptakes based on the integral from 1 to 2, 2 to 3, 1.5 to 2.5 and 1 to 3 min after the injection of 123I-OIH in relation to injected doses using the following three procedures in respect of attenuation correction: (1) RUR without attenuation correction, (2) RUR with fractional renal uptake corrected by the measured attenuation coefficient, (3) RUR with the total injected dose corrected by the absorption material. To decide upon the appropriate correction method and time interval, RURs were compared with standard ERPF. Among the three correction methods, procedure 2 showed the highest correlation between RUR and standard ERPF, but the correlation coefficient was low (r=0.75). No significant difference was observed among the RURs of each time interval. Individual kidney function measured from early renal uptake may be inaccurate even when appropriate correction is made for attenuation, background activity or time lag between injection and data acquisition. Gamma camera-based measurement of renal function using 123I-OIH is limited with regard to accuracy and reproducibility, though it is convenient and non-invasive. (orig.). With 2 figs., 2 tabs

  16. Monitoring system for isolated limb perfusion based on a portable gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Vidal-Sicart, S.; Pons, F. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Barcelona (Spain); Roe, N. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Rull, R. [Servei de Cirurgia, Hospital Clinic, Barcelona (Spain); Pavon, N. [Inst. de Fisica Corpuscular, CSIC - UV, Valencia (Spain); Pavia, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2009-07-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-{alpha}) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-{alpha} and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is {+-}1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-{alpha} and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-{alpha} and melphalan has been indicated. (orig.)

  17. MeV gamma-ray Compton camera using a gaseous electron tracker for background-suppressed observation

    Science.gov (United States)

    Takada, A.; Tanimori, T.; Kubo, H.; Parker, J. D.; Mizumoto, T.; Mizumura, Y.; Sawano, T.; Nakamura, K.; Matsuoka, Y.; Komura, S.; Nakamura, S.; Oda, M.; Miuchi, K.; Kurosawa, S.

    2014-07-01

    As a next generation MeV gamma-ray telescope, we develop an electron-tracking Compton camera (ETCC) that consists of a gaseous electron tracker surrounded by pixel scintillator arrays. The tracks of the Compton-recoil electron measured by the tracker restrict the incident gamma-ray direction to an arc region on the sky and reject background by using the energy loss rate dE/dx and a Compton-kinematics test. In 2013, we constructed, for a balloon experiment, a 30-cm-cubic ETCC with an effective area of ~1 cm2 for detecting sub-MeV gamma rays (5 σ detection of the Crab Nebula for 4 h). In future work, we will extend this ETCC to an effective area of ~10 cm2. In the present paper, we report the performance of the current ETCC.

  18. Development of a phantom and assessment of (141)Ce as a surrogate radionuclide for flood field uniformity testing of gamma cameras.

    Science.gov (United States)

    Saxena, Sanjay Kumar; Kumar, Yogendra; Malpani, Basant; Rakshit, Sutapa; Dash, Ashutosh

    2016-06-01

    This paper describes an indigenous method for development and deployment of rechargeable liquid filled phantom with newly proposed radionuclide (141)Ce for determination of extrinsic uniformity of gamma cameras. Details about design of phantom, neutron irradiation of cerium targets, chemical processing of (141)Ce, charging of phantom with (141)Ce solution and their performance evaluation are presented. Suitability of (141)Ce in quality assurance of gamma cameras used in in-vivo diagnostic imaging procedures has been amply demonstrated. PMID:27031297

  19. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    Science.gov (United States)

    Takada, Atsushi; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-05-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60°. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2 we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  20. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    Science.gov (United States)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2015-06-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  1. Dual-head gamma camera system for intraoperative localization of radioactive seeds

    Science.gov (United States)

    Arsenali, B.; de Jong, H. W. A. M.; Viergever, M. A.; Dickerscheid, D. B. M.; Beijst, C.; Gilhuijs, K. G. A.

    2015-10-01

    Breast-conserving surgery is a standard option for the treatment of patients with early-stage breast cancer. This form of surgery may result in incomplete excision of the tumor. Iodine-125 labeled titanium seeds are currently used in clinical practice to reduce the number of incomplete excisions. It seems likely that the number of incomplete excisions can be reduced even further if intraoperative information about the location of the radioactive seed is combined with preoperative information about the extent of the tumor. This can be combined if the location of the radioactive seed is established in a world coordinate system that can be linked to the (preoperative) image coordinate system. With this in mind, we propose a radioactive seed localization system which is composed of two static ceiling-suspended gamma camera heads and two parallel-hole collimators. Physical experiments and computer simulations which mimic realistic clinical situations were performed to estimate the localization accuracy (defined as trueness and precision) of the proposed system with respect to collimator-source distance (ranging between 50 cm and 100 cm) and imaging time (ranging between 1 s and 10 s). The goal of the study was to determine whether or not a trueness of 5 mm can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (these specifications were defined by a group of dedicated breast cancer surgeons). The results from the experiments indicate that the location of the radioactive seed can be established with an accuracy of 1.6 mm  ±  0.6 mm if a collimator-source distance of 50 cm and imaging time of 5 s are used (these experiments were performed with a 4.5 cm thick block phantom). Furthermore, the results from the simulations indicate that a trueness of 3.2 mm or less can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (this trueness was achieved for all 14 breast phantoms which

  2. Could the eZ-SCOPE AN Gamma Camera Replace Intraoperative Measurement of iPTH for PHPT?

    OpenAIRE

    Fujii, Takaaki; Yajima, Reina; Yamaguchi, Satoru; Tsutsumi, Soichi; Asao, Takayuki; Kuwano, Hiroyuki

    2012-01-01

    Intraoperative intact parathyroid hormone (iPTH) measurements have been proposed as an effective assay in surgery for primary hyperparathyroidism (PHPT). We have demonstrated the efficiency of the use of a hand-held gamma camera, eZ-SCOPE AN, with technetium-99m sestamibi (Tc-MIBI) scintigraphy for navigation surgery for PHPT. The aim of this preliminary study was to assess the possibility that the eZ-SCOPE AN can replace the measurement of intraoperative iPTH in surgery for PHPT. Sixteen con...

  3. X-ray and gamma-ray imaging with multiple-pinhole cameras using a posteriori image synthesis.

    Science.gov (United States)

    Groh, G.; Hayat, G. S.; Stroke, G. W.

    1972-01-01

    In 1968, Dicke had suggested that multiple-pinhole camera systems would have significant advantages concerning the SNR in X-ray and gamma-ray astronomy if the multiple images could be somehow synthesized into a single image. The practical development of an image-synthesis method based on these suggestions is discussed. A formulation of the SNR gain theory which is particularly suited for dealing with the proposal by Dicke is considered. It is found that the SNR gain is by no means uniform in all X-ray astronomy applications.

  4. Development of event reconstruction algorithm for full-body gamma-camera based on SiPMs

    Science.gov (United States)

    Philippov, D. E.; Belyaev, V. N.; Buzhan, P. Zh; Ilyin, A. L.; Popova, E. V.; Stifutkin, A. A.

    2016-02-01

    The gamma-camera is the detector for nuclear medical imaging where the photomultiplier tubes (PMTs) could be replaced by the silicon photomultipliers (SiPMs). Common systems have the energy resolution about 10% and intrinsic spatial resolution about 3 mm (FWHM). In order to achieve the requirement energy and spatial resolution the classical Anger's logic should be modified. In case of a standard monolithic thallium activated sodium iodide scintillator (500x400x10 mm3) and SiPM readout it could be done with identification of the clusters. We show that this approach has a good results with the simulated data.

  5. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database

    International Nuclear Information System (INIS)

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [123I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. 123I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the ''Southampton'' methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal

  6. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    Science.gov (United States)

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  7. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  8. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    Energy Technology Data Exchange (ETDEWEB)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A. (Slaska Akademia Medyczna, Katowice (Poland))

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker /sup 125/Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy.

  9. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    CERN Document Server

    Heller, Matthieu; Porcelli, Alessio; Pujadas, Isaac Troyano; Zietara, Krzysztof; Della Volpe, Domenico; Montaruli, Teresa; Cadoux, Franck; Favre, Yannick; Sanchez, Juan Antonio Aguilar; Christov, Asen; Prandini, Elisa; Rajda, Pawel; Rameez, Mohamed; Blinik, Woijciech; Blocki, Jacek; Bogacz, Leszek; Borkowski, Jurek; Bulik, Tomasz; Frankowski, Adam; Grudzinska, Mira; Idzkowski, Bartosz; Jamrozy, Mateusz; Janiak, Mateusz; Kasperek, Jerzy; Lalik, Krzysztof; Lyard, Etienne; Mach, Emil; Mandat, Dusan; Marszalek, Adrian; Miranda, Luis David Medina; Michalowski, Jerzy; Neronov, Andrii; Niemiec, Jacek; Ostrowski, Michal; Pasko, Pawel; Pech, Miroslav; Schovanek, Petr; Seweryn, Karol; Sliusar, Vitalii; Skowron, Krzysztof; Stawarz, Lukasz; Stodulska, Magdalena; Stodulski, Marek; Walter, Roland; Wiecek, Marek; Zagdanski, Aleksander

    2016-01-01

    The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented mirror dish and an innovative fully digital camera based on silicon photo-multipliers (SiPMs). Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build a telescope with excellent performance, but also to design it so that its components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to...

  10. F-18-FDG positron imaging in oncological patients: gamma camera coincidence detection versus dedicated PET

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, M.; Kaiser, H.J.; Cremerius, U.; Sabri, O.; Schreckenberger, M.; Reinartz, P.; Buell, U. [Technische Hochschule Aachen (Germany). Klinik fuer Nuklearmedizin

    1999-08-01

    Aim of the present study was to investigate the feasibility of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) imaging in oncological patients with a dual head gamma camera modified for coincidence detection (MCD). Methods: Phantom studies were done to determine lesion detection at various lesion-to-background ratios, system sensitivity and spatial resolution. Thirty-two patients with suspected or known malignant disease were first studied with a dedicated full-ring PET system (DPET) applying measured attenuation correction and subsequently with an MCD system without attenuation correction. MCD images were first interpreted without knowledge of the DPET findings. In a second reading, MCD and DPET were evaluated simultaneously. Results: The phantom studies revealed a comparable spatial resolution for DPET and MCD (5.9 x 6.3 x 4.2 mm vs. 5.9 x 6.5 x 6.0 mm). System sensitivity of MCD was less compared to DPET (91 cps/Bq/ml/cm{sub FOV} vs. 231 cps/Bq/ml/cm{sub FOV}). At a lesion-to-background ratio of 4:1, DPET depicted a minimal phantom lesion of 1.0 cm in diameter, MCD a minimal lesion of 1.6 cm. With DPET, a total of 91 lesions in 27 patients were classified as malignant. MCD without knowledge of DPET results revealed increased FDG uptake in all patients with positive DPET findings. MCD detected 72 out of 91 DPET lesions (79.1%). With knowledge of the DPET findings, 11 additional lesions were detected (+12%). MCD missed lesions in six patients with relevance for staging in two patients. All lesions with a diameter above 18 mm were detected. Conclusion: MCD FDG imaging yielded results comparable to dedicated PET in most patients. However, a considerable number of small lesions clearly detectable with DPET were not detected by MCD alone. Therefore, MCD cannot yet replace dedicated PET in all oncological FDG studies. Further technical refinement of this new method is needed to improve imaging quality (e.g. attenuation correction). (orig.) [Deutsch] Ziel dieser Studie

  11. SU-C-201-07: Validation of a GATE Gamma Camera Model for the Siemens Symbia

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, J; Siman, W; Kappadath, S [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Mourtada, F [Christiana Care Hospital, Newark, DE (United States); Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston TX (United States); Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99; these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research

  12. {sup 18F}-FDG PET imaging with dual head gamma camera and co-incidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Quach, T.; Camden, B.M.; Chu, J.M.G. [Liverpool Health Services, Liverpool, NSW (Australia). Department of Nuclear Medicine and Clinical Ultrasound

    1998-06-01

    Full text: {sup 18F}-Fluorodeoxyglucose (FDG) positron tomography is based on the detection of two 511 keV photons which are produced 180 deg apart as a result of an annihilation of a positron and an electron. Apart from the dedicated PET scanner, dual head gamma camera designed for Co-incidence Detection (CD) can now perform `{sup 18}F-FDG PET studies. CD imaging involves using a dual head gamma camera to detect those photons which are 180 deg apart and fall within a timing window of 15 nsec. No collimators are required as a timing gate of 15 nsec is used. {sup 18}F-FDG studies are performed using an ADAC Solus Molecular Co-incidence Detection (MCD) dual head gamma camera. The patients are fasted from midnight but well hydrated before the scan. Prior to injection, the blood sugar levels (BSL) are measured. For optimal {sup 18}F-FDG uptake, the BSL should be less than 8.9 mmol/L. A dose of 200MBq of {sup 18}F-FDG is intravenously injected via a cannula. Scanning commences at 1 hour post injection. To perform a wholebody tomography of the torso, the patient must void before scanning to reduce bladder activity. Excessive bladder activity leads to significant image degradation, therefore the wholebody tomography is started from the pelvis. Depending on the patient torso length, either 2 or 3 tomographies are collected with a 50% overlap. Each tomography is collected for 40 seconds per step for 32 steps. To avoid attenuation from the upper limbs, the patient is positioned supine with the arms above the head. If a patient cannot tolerate this position, scanning with the arms by the side may be necessary since the scanning time may take up to 50 minutes. If the area of interest is the neck, scanning with the patient`s arms down by their sides is preferred, although attenuation will occur. To scan the brain, a circular tomography is performed using 32 steps at 80 seconds per step. For processing purposes, the Singles count rate for each detector must be between 800K and

  13. [F18]-FDG imaging of experimental animal tumours using a hybrid gamma-camera

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) has been widely used in clinical studies. This technology permits detection of compounds labelled with positron emitting radionuclides and in particular, [F18]-fluorodeoxyglucose ([F18]-FDG).[F18]-FDG uptake and accumulation is generally related to malignancy; some recent works have suggested the usefulness of PET camera dedicated to small laboratory animals (micro-PET). Our study dealt with the feasibility of [F18]-FDG imaging of malignant tumours in animal models by means of an hybrid camera dedicated for human scintigraphy. We evaluated the ability of coincidence detection emission tomography (CDET) using this hybrid camera to visualize in vivo subcutaneous tumours grafted to mice or rats. P815 murine mastocytoma grafted in syngeneic DBA/2 mice resulted with foci of very high FDG uptake. Tumours with a diameter of only 3 mm were clearly visualized. Medullary thyroid cancer provoked by rMTC 6/23 and CA77 lines in syngeneic Wag/Rij rat was also detected. The differentiated CA77 tumours exhibited avidity for [F18]-FDG and a tumour, which was just palpable (diameter lower than 2 mm), was identified. In conclusion, CDET-FDG is a non-invasive imaging tool which can be used to follow grafted tumours in the small laboratory animal, even when their size is smaller than 1 cm. It has the potential to evaluate experimental anticancer treatments in small series of animals by individual follow-up. It offers the opportunity to develop experimental PET research within a nuclear medicine or biophysics department, the shift to a dedicated micro-PET device being subsequently necessary. It is indeed compulsory to strictly follow the rules for non contamination and disinfection of the hybrid camera. (authors)

  14. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    Science.gov (United States)

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18) F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  15. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  16. Gamma camera energy windows for Tc-99m bone scintigraphy: effect of asymmetry on contrast resolution. Work in progress

    Energy Technology Data Exchange (ETDEWEB)

    Collier, B.D.; Palmer, D.W.; Knobel, J.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.

    1984-05-01

    By raising the lower threshold of the Tc-99m energy window, rejection of scattered photons can be made more efficient. Unfortunately, with most gamma cameras significant nonuniformities are produced when the window is changed to an asymmetric setting. Recently introduced designs with gain stabilization of the photomultiplier tubes and improved energy correction maintain field uniformity even for an asymmetric window. To assess the impact of an asymmetric energy window on clinical images, 33 Tc-99m-MDP scintigrams of the lumbar spine were taken with symmetrical (126-154 keV) and asymmetric windows (135-154 keV). Bone:soft tissue ratios improved with the asymmetric window, and the resulting images were preferred by the physicians.

  17. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  18. Clinical value of F -18 Fag dual-head gamma camera coincidence imaging in patients with high-risk melanoma

    International Nuclear Information System (INIS)

    Tumour detection based on the uptake of F-18 FDG has been successfully used in the diagnosis of melanoma. We retrospectively evaluated the clinical value of dual-head gamma-camera coincidence PET imaging in patients with high-risk melanoma sent to the Institute of Nuclear Medicine at the General Hospital Linz between 19982002. The cohort included 33 persons (12 women), mean age was 54+ 17 yrs. Median time since first surgery confirming the diagnosis was 24 months (quartiles 2; 54) and after last extirpation of malignant tissue had passed 2 months (quartiles 1; 12). Assessment of diagnostic findings was confirmed by either histological verification or sequel control examination. Calculated on a patient basis, prevalence was 45%. Coincidence PET data was compared to the cumulative information provided by conventional radiological imaging (CT, ultrasound, X-ray) and presented superior values in sensitivity (80% vs. 73%), specificity (89% vs. 56%), positive predictive value (86% vs. 58%) and negative predictive value (84% vs. 71%).It was concluded that under conditions of limited availability of dedicated PET camera systems, the use of coincidence PET systems in patients with high risk melanoma can be recommended as it provides valuable information for clinical practice. (author)

  19. Multi-modality imaging using a handheld gamma camera and MRI for tumor localization

    Science.gov (United States)

    Dika, Cheryl; Georgian-Smith, Dianne

    2015-03-01

    While the methods for diagnostic and screening imaging for breast cancer are numerous, each method has its limitations. Multimodality imaging has increasingly been shown to improve the effectiveness of these imaging. Imaging of dense breast tissue has its own set of challenges. Combining MR and gamma for imaging of breast lesions may increase the sensitivity and specificity in theory especially with dense breasts. This experiment was designed as a proof-of-concept for combining MR and gamma images in a pre-clinical setting using an ex vivo bovine tissue model. Keeping the tissue in the same orientation for both imaging modalities was deemed important to increase accuracy. Using the information of the combined images could assist with localization for biopsy.

  20. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    Science.gov (United States)

    Majewski, Stanislaw; Umeno, Marc M.

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  1. FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)

    CERN Document Server

    Anderhub, H; Biland, A; Boller, A; Braun, I; Bretz, T; Commichau, S; Commichau, V; Domke, M; Dorner, D; Gendotti, A; Grimm, O; von Gunten, H; Hildebrand, D; Horisberger, U; Köhne, J -H; Krähenbühl, T; Kranich, D; Krumm, B; Lorenz, E; Lustermann, W; Mannheim, K; Neise, D; Pauss, F; Renker, D; Rhode, W; Rissi, M; Ribordy, M; Röser, U; Stark, L S; Stucki, J -P; Tibolla, O; Viertel, G; Vogler, P; Warda, K; Weitzel, Q

    2010-01-01

    Geiger-mode Avalanche Photodiodes~(G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.

  2. Design and implementation of a quality assurance program for gamma cameras; Diseno e implementacion de un programa de aseguramiento de calidad para camaras gamma

    Energy Technology Data Exchange (ETDEWEB)

    Montoya M, A.; Rodriguez L, A. [Instituto Nacional de Cancerologia, Departamento de Medicina Nuclear, Av. San Fernando No. 22, Col. Seccion XVI, 14080 Mexico D. F. (Mexico); Trujillo Z, F. E., E-mail: montoya-moreno@hotmail.co [Hospital Regional de Alta Especialidad de Oaxaca, Area de Fisica Medica, Aldama s/n, Paraje El Tule, 71256 San Bartolo Coyotepec, Oaxaca (Mexico)

    2010-09-15

    In nuclear medicine more than 90% of the carried out procedures are diagnostic. To assure an appropriate diagnostic quality of the images and the doses optimization received by the patients originated in the radioactive material, it is indispensable the periodic surveillance of the operation and performance of the equipment s by means of quality assurance tests. This work presents a proposal of a quality assurance program for gamma cameras based on recommendations of the IAEA, the American Association of Medical Physics and the National Electrical Manufacturers Association. Some tests of the program were applied to an e.cam gamma camera (Siemens) of the Nuclear Medicine Department of the National Institute of Cancer. The intrinsic and extrinsic uniformity, the intrinsic spatial resolution and the extrinsic sensibility were verified. For intrinsic uniformity the average daily values of the integral uniformity and differential uniformity in the useful vision field were 2.61% and 1.58% respectively, the average monthly values of intrinsic uniformity for the integral and differential uniformity in the useful vision field were 4.10% and 1.66% respectively. The used acceptance criterions were respectively of 3.74% and 2.74%. The average values of extrinsic uniformity for the useful vision field were of 7.65% (intrinsic uniformity) and 2.69% (extrinsic uniformity), in this case the acceptance criterion is a value of 6.00%. The average value of intrinsic spatial resolution went 4.67 mm superior to 4.4. mm that is the acceptance limit. Finally, maximum variations of 1.8% were observed (minors than 2% that is the acceptance criterion) for the extrinsic sensibility measured in different regions of the detector. Significant variations of extrinsic sensibility were not observed among the monthly lectures. Of the realized measurements was concluded that the system requires of a maintenance service by part of the manufacturer, which one carries out later on to this work. The

  3. New readout and data-acquisition system in an Electron-Tracking Compton Camera for MeV Gamma-Ray Astronomy (SMILE-II)

    CERN Document Server

    Mizumoto, Tetsuya; Mizumura, Yoshitaka; Tanimori, Toru; Kubo, Hidetoshi; Takada, Atsushi; Iwaki, Satoru; Sawano, Tatsuya; Nakamura, Kiseki; Komura, Shotaro; Nakamura, Shogo; Kishimoto, Tetsuro; Oda, Makoto; Miyamoto, Shohei; Takemura, Taito; Parker, Joseph D; Tomono, Dai; Sonoda, Shinya; Miuchi, Kentaro; Kurosawa, Shunsuke

    2015-01-01

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10$\\times$10$\\times$15 cm$^3$ TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm)$^{3}$ medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector syste...

  4. Emission computed tomography using rotating gamma cameras for stress 201Tl myocardial imaging

    International Nuclear Information System (INIS)

    The purpose of this study is to evaluate the efficacy of emission computed tomography (ECT) for stress 201Tl myocardial imaging to localize coronary artery disease (CAD) in comparison with planar (PL) images. In a series of 14 normal subjects and 53 patients with CAD proved coronary arteriography, ECT and PL imaging were performed successively. ECT data were collected for 90 projections in a 64 x 64 matrix form with a total aquisition time of 6 munutes over 1800 of opposed dual cameras ratation and tomographic sections oriented perpendicular and parallel to the long axis of left ventricle were reconstructed. PL images were obtained for left lateral, left anterior oblique (300 and 450) and anterior projections. Both ECT and PL myocardial images were divided into 8 segments and segmental analysis was performed by visual interpretation. The ECT images remarkably increased sensitivity over the PL images in left anterior descending (LAD) artery (from 56% to 76%), right coronary artery (RCA) (from 50% to 96%), and circumflex artery (CX) (from 56% to 69%) lesions. The specificity for ECT images, as compared with PL images, was higher in LAD (88% against 85%) but slightly lower in RCA (70% ag ainst 72%) and CX (84% against 88%). Overall accuracy, therefore, was improved in LAD (from 67% to 81%) and RCA (from 64% to 79%) but equal in CX (81%). We conclude that stress 201Tl ECT imaging result in a remarkable improvement in the localization of CAD, especially in patients with RCA lesions and multi-vessel disease. (author)

  5. Performance evaluation of a small CZT pixelated semiconductor gamma camera system with a newly designed stack-up parallel-hole collimator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngjin [Department of Radiological Science, College of Health Science, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2015-09-11

    Gamma ray imaging techniques that use a cadmium zinc telluride (CZT) or cadmium telluride (CdTe) pixelated semiconductor detectors have rapidly gained popularity as a key tool for nuclear medicine research. By using a pinhole collimator with a pixelated semiconductor gamma camera system, better spatial resolution can be achieved. However, this improvement in spatial resolution is accomplished with a decrease in the sensitivity due to the small collimator hole diameter. Furthermore, few studies have been conducted for novel parallel-hole collimator geometric designs with pixelated semiconductor gamma camera systems. A gamma camera system which combines a CZT pixelated semiconductor detector with a newly designed stack-up parallel-hole collimator was developed and evaluated. The eValuator-2500 CZT pixelated semiconductor detector (eV product, Saxonburg, PA) was selected for the gamma camera system. This detector consisted of a row of four CZT crystals of 12.8 mm in length with 3 mm in thickness. The proposed parallel-hole collimator consists of two layers. The upper layer results in a fourfold increase in hole size compared to a matched square hole parallel-hole collimator with an equal hole and pixel size, while the lower layer also consisted of fourfold holes size and pretty acts as a matched square hole parallel-hole collimator. The overlap ratios of these collimators were 1:1, 1:2, 2:1, 1:5, and 5:1. These collimators were mounted on the eValuator-2500 CZT pixelated semiconductor detector. The basic performance of the imaging system was measured for a {sup 57}Co gamma source (122 keV). The measured averages of sensitivity and spatial resolution varied depending on the overlap ratios of the proposed parallel-hole collimator and source-to-collimator distances. One advantage of our system is the use of stacked collimators that can select the best combination of system sensitivity and spatial resolution. With low counts, we can select a high sensitivity collimator

  6. Performance evaluation of a small CZT pixelated semiconductor gamma camera system with a newly designed stack-up parallel-hole collimator

    Science.gov (United States)

    Lee, Youngjin; Kim, Hee-Joung

    2015-09-01

    Gamma ray imaging techniques that use a cadmium zinc telluride (CZT) or cadmium telluride (CdTe) pixelated semiconductor detectors have rapidly gained popularity as a key tool for nuclear medicine research. By using a pinhole collimator with a pixelated semiconductor gamma camera system, better spatial resolution can be achieved. However, this improvement in spatial resolution is accomplished with a decrease in the sensitivity due to the small collimator hole diameter. Furthermore, few studies have been conducted for novel parallel-hole collimator geometric designs with pixelated semiconductor gamma camera systems. A gamma camera system which combines a CZT pixelated semiconductor detector with a newly designed stack-up parallel-hole collimator was developed and evaluated. The eValuator-2500 CZT pixelated semiconductor detector (eV product, Saxonburg, PA) was selected for the gamma camera system. This detector consisted of a row of four CZT crystals of 12.8 mm in length with 3 mm in thickness. The proposed parallel-hole collimator consists of two layers. The upper layer results in a fourfold increase in hole size compared to a matched square hole parallel-hole collimator with an equal hole and pixel size, while the lower layer also consisted of fourfold holes size and pretty acts as a matched square hole parallel-hole collimator. The overlap ratios of these collimators were 1:1, 1:2, 2:1, 1:5, and 5:1. These collimators were mounted on the eValuator-2500 CZT pixelated semiconductor detector. The basic performance of the imaging system was measured for a 57Co gamma source (122 keV). The measured averages of sensitivity and spatial resolution varied depending on the overlap ratios of the proposed parallel-hole collimator and source-to-collimator distances. One advantage of our system is the use of stacked collimators that can select the best combination of system sensitivity and spatial resolution. With low counts, we can select a high sensitivity collimator with a 1

  7. Monitoring of the internal contamination of occupationally exposure personnel in services of nuclear medicine through the use of gamma cameras

    International Nuclear Information System (INIS)

    The radionuclides incorporation can happen as a result of diverse activities; these include the work associated with the different stadiums of the nuclear fuel cycle, the use of radioactive sources in medicine, the scientific research, the agriculture and the industry. In Uruguay the main activities linked to the manipulation of open sources correspond those of Nuclear Medicine and from 2004, in the mark of the Project Arcal RLA 049 and being based on the Safety Guides of the IAEA it is implementing a program of internal monitoring in combined form the Nuclear Medicine Center of the Hospital of and the Radiochemistry class of the Faculty of Chemistry. In accordance with the publication of the ICRP 75 the emphasis of any monitoring program should be in the formal study of the doses in the workers to who are considered commendable of to receive in routine form an outstanding fraction of the dose limits or who work in areas where the exposures can be significant in the accident event. From April 2004, to the date has started a pilot plan by means of in that were established appropriate conditions of procedures and of safety in a reduced group of workers of the Nuclear Medicine area. In that period the first work limits, equipment adjustment, calibrations and registration systems were determined. The monitoring system implemented until the moment is carried out with a thyroid caption equipment. However these measurements are carried out in the university hospital embracing 40% of the involved workers of our country, with the purpose of reaching the covering of the biggest quantity of occupationally exposed personnel of private clinics. Also it was developed a new work proposal that allows to have an alternative measure method, in the event of not having the equipment habitually used. Among the conclusions of this work are that for the before exposed are considered the measure conditions but appropriate the following ones: Gamma Camera without collimator; Measurement

  8. The influence of electron multiplication and internal X-ray fluorescence on the performance of a scintillator-based gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Hall, David J., E-mail: d.j.hall@open.ac.uk [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Holland, Andrew; Soman, Matthew [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-06-21

    When considering the 'standard' gamma-camera, one might picture an array of photo-multiplier tubes or a similar array of small-area detectors. This array of imaging detectors would be attached to a corresponding array of scintillator modules (or a solid layer of scintillator) in order to give a high detection efficiency in the energy region of interest, usually 8-140 keV. Over recent years, developments of gamma-cameras capable of achieving much higher spatial resolutions have led to a new range of systems based on Charge-Coupled Devices with some form of signal multiplication between the scintillator and the CCD in order for one to distinguish the light output from the scintillator above the CCD noise. The use of an Electron-Multiplying Charge-Coupled Device (EM-CCD) incorporates the gain process within the CCD through a form of 'impact ionisation', however, the gain process introduces an 'excess noise factor' due to the probabilistic nature of impact ionisation and this additional noise consequently has an impact on the spatial and spectral resolution of the detector. Internal fluorescence in the scintillator, producing K-shell X-ray fluorescence photons that can be detected alongside the incident gamma-rays, also has a major impact on the imaging capabilities of gamma-cameras. This impact varies dramatically from the low spatial resolution to high spatial resolution camera system. Through a process of simulation and experimental testing focussed on the high spatial resolution (EM-CCD based) variant, the factors affecting the performance of gamma-camera systems are discussed and the results lead to important conclusions to be considered for the development of future systems. This paper presents a study into the influence of the EM-CCD gain process and the internal X-ray fluorescence in the scintillator on the performance of scintillator-based gamma cameras (CCD-based or otherwise), making use of Monte Carlo simulations to demonstrate

  9. Compton camera and prompt gamma ray timing: two methods for in vivo range assessment in proton therapy

    Directory of Open Access Journals (Sweden)

    Fernando eHueso-González

    2016-04-01

    Full Text Available Proton beams are promising means for treating tumours. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimises the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumours close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterised in realistic radiation environments as a step towards a clinical Compton camera. Corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarised, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed.

  10. Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy

    Science.gov (United States)

    Hueso-González, Fernando; Fiedler, Fine; Golnik, Christian; Kormoll, Thomas; Pausch, Guntram; Petzoldt, Johannes; Römer, Katja E.; Enghardt, Wolfgang

    2016-01-01

    Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumors close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterized in realistic radiation environments as a step toward a clinical Compton camera. On the one hand, corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarized, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed. PMID:27148473

  11. Reliability of a 99sp(m)Tc-DTPA gamma camera technique for determination of single kidney glomerular filtration rate

    International Nuclear Information System (INIS)

    In a recent paper we described a method for calculation of single kidney glomerular filtration rate (SKGFR) from the 99sp(m)Tc-DTPA renogram obtained by gamma camera. In this paper the reliability of the method was compared to other methods for estimation of GFR in 20 unilaterally nephrectomized patients. The values for SKGFR obtained from the renograms and from the estimated endogenous creatinine clearances according to serum creatinine concentration and a nomogram were both accurate. The reliability of the renography method was significantly better judged by less variance in the estimates. SKGFR calculated from the plasma clearance of 51Cr-EDTA overestimated the renal clearance of inulin on an average by 11.3%. No difference was found in the variance of the values obtained from the renograms and from the plasma clearances of 51Cr-EDTA compared to the renal clearance of inulin. Apart from the inaccuracy in the GFR values calculated from the plasma clearance of 51Cr-EDTA, the reliability of these two methods was equal. (author)

  12. Intraoperative Scintigraphy Using a Large Field-of-View Portable Gamma Camera for Primary Hyperparathyroidism: Initial Experience

    Directory of Open Access Journals (Sweden)

    Nathan C. Hall

    2015-01-01

    Full Text Available Background. We investigated a novel technique, intraoperative 99 mTc-Sestamibi (MIBI imaging (neck and excised specimen (ES, using a large field-of-view portable gamma camera (LFOVGC, for expediting confirmation of MIBI-avid parathyroid adenoma removal. Methods. Twenty patients with MIBI-avid parathyroid adenomas were preoperatively administered MIBI and intraoperatively imaged prior to incision (neck and immediately following resection (neck and/or ES. Preoperative and intraoperative serum parathyroid hormone monitoring (IOPTH and pathology (path were also performed. Results. MIBI neck activity was absent and specimen activity was present in 13/20 with imaging after initial ES removal. In the remaining 7/20 cases, residual neck activity and/or absent ES activity prompted excision of additional tissue, ultimately leading to complete hyperfunctioning tissue excision. Postexcision LFOVGC ES imaging confirmed parathyroid adenoma resection 100% when postresection imaging qualitatively had activity (ES and/or no activity (neck. The mean ± SEM time saving using intraoperative LFOVGC data to confirm resection versus first IOPTH or path result would have been 22.0 ± 2 minutes (specimen imaging and 26.0 ± 3 minutes (neck imaging. Conclusion. Utilization of a novel real-time intraoperative LFOVGC imaging approach can provide confirmation of MIBI-avid parathyroid adenoma removal appreciably faster than IOPTH and/or path and may provide a valuable adjunct to parathyroid surgery.

  13. Assessment of spleen size using gamma camera scintigraphy in newly diagnosed patients with essential thrombocythaemia and polycythaemia vera

    Energy Technology Data Exchange (ETDEWEB)

    Carneskog, J.; Wadenvik, H.; Kutti, J. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Fjaeelling, M. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Clinical Physiology, Section of Nuclear Med., Goeteborg (Sweden)

    1996-03-01

    By using gamma camera imaging the spleen size was assessed in 18 consecutive patients with essential thrombocythaemia (ET) and in 18 consecutive patients with polycythaemia vera (PV). All ET and PV patients were newly diagnosed and had not received any myelosuppressive therapy prior to study. The spleen areas in both posterior and left lateral projections were determined. Eighteen consecutive patients with idiopathic thrombocytopenic purpura (ITP) served as a control group since by definition they do not present with splenic enlargement; in these latter subjects the mean posterior and left lateral splenic areas were almost identical (48 {+-} 15 and 47 {+-} 17 cm{sup 2}, respectively). In comparison with this control group patients with ET an dPV had significantly larger spleens. In both ET and in PV patients the left lateral spleen scan area exceeded the posterior one. Patients with PV had larger splenic areas in both projections than did patients with ET, but the differences were not statistically significant. Compared to the ITP patients it was found that at least 50% of the ET patients and at least 61% of the PV patients at diagnosis presented with splenomegaly. (au) 35 refs.

  14. Is. gamma. -camera imaging of platelet deposition useful to assess the effectiveness of prostacyclin (PGI/sub 2/) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fitscha, P.; Kaliman, J.; Sinziger, H. (Vienna Univ. (Austria))

    Platelet labelling with /sup 111/In-oxinesulfate allows visualization of platelet deposition in the vascular bed. Scintigraphic studies were performed in 6 patients with 'active' (platelet uptake ratio (PUR) > 1.20) and 8 patients with 'inactive' (PUR < 1.20) atherosclerotic lesions of the femoral artery. Platelet deposition was also studied in 11 patients with implanted prosthetic vascular grafts and in 21 patients with an abnormal aneurysm of the aorta. Infusing 5 ng/kg/min PGI/sub 2/ during 6 hours for 5 days into patients with 'active'-atherosclerosis and aneurysms of the aorta resulted in a significant decrease of platelet deposition even after having stopped the infusion. There was no influence of PGI/sub 2/ on PUR in patients with 'inactive' lesions. The group of patients with implanted prosthetic grafts demonstrated also a significant decrease of PUR values during the PGI/sub 2/ infusion, but reached baseline values soon after stopping the infusion. When platelet deposition is increased ..gamma..-camera imaging provides valuable data on the influence of any kind of therapy on the in-vivo platelet function.

  15. Non-invasive estimation of the human pulmonary blood volume with gamma camera and RI-angiocardiography

    International Nuclear Information System (INIS)

    A new, non-invasive method for the estimation of the human pulmonary blood volume (PBV), existing between the pulmonary artery bifurcation (PAB) and the left atrium (LA), has been developed in this laboratory, in the form of PBV = PPT sub(RCG) x 0.77 x CO, equation (6), given in Appendix. This was an extension of the classical Stewart-Hamilton method of indicator dilution, applied to radioisotope angiocardiography. Using a gamma-camera, the radio-isotope (99 m Tc-albumin) dilution curves were recorded externally at the region of PAB, LA and LV (left ventricle), among other things, in human subjects in supine position. The mean transit time (MTT) was determined for each region, and the difference in MTT, e.g., ΔMTT sub(PAB-LA), was measured. We calculated PBV between PAB and LA as PBV = ΔMTT sub(PAB-LA) x CO, equation (1) given in Appendix. Empirical time relations between ΔMTT sub(PAB-LA) and PPT sub(RCG) were examined in mechanical models and human subjects, through several steps represented by equations (2) to (5), given in Appendix, and our tentatively final formula was equation (6). The values of PBV estimated in this way were in good agreement with those of PBV measured invasively in the past, using two injection sites (PA and LA) and one sampling site (artery). (author)

  16. Diagnosis of pancreatic cancer using 201Tl-chloride and a three-head rotating gamma camera SPECT system

    International Nuclear Information System (INIS)

    201Tl SPECT was performed on 17 patients with pancreatic cancer or chronic pancreatitis using a three-head rotating gamma camera SPECT system. In 7 of 10 patients with pancreatic cancer, the lesions were clearly delineated by 201Tl SPECT. Whereas the lesion of 30 mm in diameter was visualized, a large tumor of 80 mm in diameter could not be visualized. Namely, it was thought that 201Tl uptake by pancreatic cancer might be well correlated with tumor blood flow and/or its histological subtype rather than with tumor size. In 5 of 7 patients with chronic pancreatitis, no uptake by the pancreas was shown. The sensitivity, specificity, and accuracy in diagnosing pancreatic cancer by 201Tl SPECT were 70%, 71%, and 71%, respectively. The present results obtained by 201Tl SPECT were thought satisfactory enough to evaluate pancreatic cancer under the present conditions where there was no useful imaging agent for visualizing pancreatic cancer by SPECT. 201Tl SPECT is expected to be a new diagnostic tool for investigation of pancreatic tumorous lesion. (author)

  17. Extensive testing of Schottky CdTe detectors for the ECLAIRs X-Gamma-ray Camera on board the SVOM mission

    OpenAIRE

    Nadege, Remoue; Didier, Barret; Olivier, Godet; Pierre, Mandrou

    2010-01-01

    We report on an on-going test campaign of more than 5000 Schottky CdTe detectors (4x4x1 mm^3), over a sample of twelve thousands, provided by Acrorad Co., Ltd (Japan). 6400 of these detectors will be used to build the detection plane of the ECLAIRs camera on the Chinese-French gamma-ray burst mission SVOM. These tests are mandatory to fulfill the prime requirement of ECLAIRs to detect gamma-ray burst photons down to 4 keV. The detectors will be operated at -20C under a reverse bias of 600 V. ...

  18. New mannequin for the measurement of the resolution time in gamma cameras; Nuevo manique para la medida de la resolucion temporal en gammacamaras

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-torres, M.; Torres, J.; Vega, J. M. de la; Ramirez, J. C.; Guirado, D.

    2015-07-01

    The assessment of the resolution temporary is a of the testing recommended on the control of quality of a gamma camera, usually is made by the method of the two sources using the mannequin of Adams, that has thickness of PMMA different to the sides of the sources the that not allows measure simultaneously in the same conditions in gamma cameras of double head. Is simple, not however, build a mannequin economic that this the same configuration of the sources to the two sides, of way that is can measuring the time dead of two heads simultaneously. The goal of East work is set the dimensions and way, of a mannequin of new design of such way that produce the same spectrum that the of Adams. (Author)

  19. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    OpenAIRE

    Cambraia Lopes, P; Clementel, E; Crespo, P; Henrotin, S; Huizenga, J.; G. Janssens; Parodi, K.; Prieels, D.; Roellinghoff, F; Smeets, J.; Stichelbaut, F.; Schaart, D. R.

    2015-01-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digita...

  20. First Avalanche-photodiode camera test (FACT): A novel camera using G-APDs for the observation of very high-energy {gamma}-rays with Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, I. [ETH Zurich, CH-8093 Zurich (Switzerland); Commichau, S.C. [ETH Zurich, CH-8093 Zurich (Switzerland)], E-mail: commichau@phys.ethz.ch; Rissi, M. [ETH Zurich, CH-8093 Zurich (Switzerland); Backes, M. [Dortmund University of Technology, D-44221 Dortmund (Germany); Biland, A. [ETH Zurich, CH-8093 Zurich (Switzerland); Bretz, T. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Britvitch, I.; Commichau, V.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Kranich, D. [ETH Zurich, CH-8093 Zurich (Switzerland); Lorenz, E. [ETH Zurich, CH-8093 Zurich (Switzerland); Max-Planck-Institut fuer Physik, D-80805 Muenchen (Germany); Lustermann, W. [ETH Zurich, CH-8093 Zurich (Switzerland); Mannheim, K. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Neise, D. [Dortmund University of Technology, D-44221 Dortmund (Germany); Pauss, F. [ETH Zurich, CH-8093 Zurich (Switzerland); Pohl, M. [University of Geneva, CH-1211 Geneva (Switzerland); Renker, D. [Paul Scherrer Institut (PSI) Villigen, CH-5232 Villigen (Switzerland); Rhode, W. [Dortmund University of Technology, D-44221 Dortmund (Germany)] (and others)

    2009-10-21

    We present a project for a novel camera using Geiger-mode Avalanche Photodiodes (G-APDs), to be installed in a small telescope (former HEGRA CT3) on the MAGIC site in La Palma (Canary Island, Spain). This novel type of semiconductor photon detector provides several superior features compared to conventional photomultiplier tubes (PMTs). The most promising one is a much higher Photon Detection Efficiency.

  1. Improving spatial resolution of high stopping power X- and gamma-ray cameras:. fibers or slat-structured detectors?

    Science.gov (United States)

    Gerstenmayer, J.-L.

    2000-11-01

    For medical imaging applications, the earliness of the detection is an essential factor to increase chances of recovery; in the field of industrial imaging, nondestructive testing with lower detectivity threshold to ensure quality and safe conduct. Accordingly, in all areas using the up-to-date compact (much less-expensive facilities) high-energy pulsed electron accelerators (HF or induction linac, Marx generator) to produce energetic photons (bremsstrahlung), such as industrial and medical numerical imaging, flash radiography, radiotherapy positioning, computed tomography, detection of small- or low-contrasted details require two-dimensional (2D) detectors with an even more improved combination of sensitivity (which implies high stopping power), spatial resolution (millimetric or sub-millimetric) and speed, working in integrating mode (i.e. dose measurement) because bremsstrahlung X-ray sources provide short pulses. The purpose of this paper is to highlight some of the issues involved in the development of high-performance position-sensitive X- and gamma-ray cameras for high-energy flash imaging. The basic idea is that, examining in detail the energy deposition and its statistics (quantum noise), we shall be able to determine in real detectors the following features, such as detectors composition and pixel size, which can simultaneously lead to good detection efficiency and good spatial resolution. In general, conclusions can be transposed to other particle imaging detectors as neutron imagers (changing "dense" metal by "high energy transfer" material). There are, of course, challenges to get such detectors, although new technologies have already provided some prototypes offering more than 30% stopping power and less than 2 mm spatial resolution (blur) for 50 ns long 5 MeV X-ray pulses. There are various detector-segmentation methods that can be applied in order to improve the stopping power (macroscopic cross-section) and reduce the effect of the lateral energy

  2. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Petasecca, M.; Loo, K. J.; Safavi-Naeini, M.; Han, Z.; Metcalfe, P. E.; Lerch, M. L. F.; Qi, Y.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Meikle, S. [Brain and Mind Research Institute, University of Sydney, NSW 2006, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Pospisil, S.; Jakubek, J. [Institute of Experimental and Applied Physics, Czech Technical University of Prague, Prague (Czech Republic); Bucci, J. A. [St George Cancer Care Centre, St George Hospital, Kogarah, NSW 2217 (Australia); Zaider, M. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States)

    2013-04-15

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real

  3. Hydra phantom applicability for carrying out tests of field uniformity in gamma cameras; Aplicabilidade do fantoma hydra para realizacao dos testes de uniformidade de campo em gama camaras

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Filho, Geraldo L., E-mail: geraldo_lemos10@hotmail.com [Centro de Medicina Nuclear de Pernambuco (CEMUPE), Recife, PE (Brazil); Oliveira, Alex C.H., E-mail: oliveira_ach@yahoo.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lopes Filho, Ferdinand J.; Vieira, Jose W., E-mail: ferdinand.lopes@oi.com.br, E-mail: jose-wilson59@live.com [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV

  4. Development of the set of corrections for a gamma camera dedicated to research; Desarrollo del conjunto de correcciones para una gammacamara dedicada a investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Insua, M.; Ambroa Rey, E. M.; Vazquez Vazquez, R.; Sanchez Garcia, M.; Luna Vega, V.; Mosquera Sueiro, J.; Otero Martinez, C.; Lobato Busto, R.; Pombar Camean, M.

    2013-07-01

    As part of a project for animal research, replaced electronics one of the gamma-cameras (GC) of the service that was out of use, with the aim of using it for SPECT. The implementation is therefore required of the corrections that allow image quality enough for SPECT from raw data supplied by the team. This has been developed software that enables to perform correction of power, uniform and linearity on the acquired data. For validation, change in several parameters indicative of the image quality has been evaluated. (Author)

  5. Use of calibration methodology of gamma cameras for the workers surveillance using a thyroid simulator; Uso de una metodologia de calibracion de camaras gamma para la vigilancia de trabajadores usando un simulador de tiroides

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, M.; Molina, G.; Vazquez, R.; Garcia, O., E-mail: mercedes.alfaro@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    In Mexico there are a significant number of nuclear medicine centers in operation. For what the accidents risk related to the transport and manipulation of open sources used in nuclear medicine can exist. The National Institute of Nuclear Research (ININ) has as objective to establish a simple and feasible methodology for the workers surveillance related with the field of the nuclear medicine. This radiological surveillance can also be applied to the public in the event of a radiological accident. To achieve this it intends to use the available equipment s in the nuclear medicine centers, together with the neck-thyroid simulators elaborated by the ININ to calibrate the gamma cameras. The gamma cameras have among their component elements that conform spectrometric systems like the employees in the evaluation of the internal incorporation for direct measurements, reason why, besides their use for diagnostic for image, they can be calibrated with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity distributed homogeneously in the human body, or located in specific organs. Inside the project IAEA-ARCAL-RLA/9/049-LXXVIII -Procedures harmonization of internal dosimetry- where 9 countries intervened (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). It was developed a protocol of cameras gamma calibration for the determination in vivo of radionuclides. The protocol is the base to establish and integrated network in Latin America to attend in response to emergencies, using nuclear medicine centers of public hospitals of the region. The objective is to achieve the appropriate radiological protection of the workers, essential for the sure and acceptable radiation use, the radioactive materials and the nuclear energy. (Author)

  6. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    CERN Document Server

    Anderhub, H; Biland, A; Boller, A; Braun, I; Bretz, T; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; von Gunten, H; Hildebrand, D; Horisberger, U; Krähenbühl, T; Kranich, D; Lorenz, E; Lustermann, W; Mannheim, K; Neise, D; Pauss, F; Renker, D; Rhode, W; Rissi, M; Röser, U; Rollke, S; Stark, L S; Stucki, J -P; Viertel, G; Vogler, P; Weitzel, Q

    2009-01-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  7. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; Gunten, H von; Hildebrand, D; Horisberger, U; Kraehenbuehl, T; Kranich, D; Lorenz, E; Lustermann, W [Institute for Particle Physics, ETH Zurich, Schafmattstr. 20, 8093 Zurich (Switzerland); Backes, M; Neise, D [TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund (Germany); Bretz, T; Mannheim, K [University of Wuerzburg Am Hubland, 97074 Wuerzburg (Germany)], E-mail: qweitzel@phys.ethz.ch (and others)

    2009-10-15

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  8. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Gregory J.

    2000-12-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm{sup 3} in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera.

  9. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    International Nuclear Information System (INIS)

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm3 in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera

  10. Microchannel plate streak camera

    Science.gov (United States)

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  11. The next evolution in radioguided surgery: breast cancer related sentinel node localization using a freehandSPECT-mobile gamma camera combination.

    Science.gov (United States)

    Engelen, Thijs; Winkel, Beatrice Mf; Rietbergen, Daphne Dd; KleinJan, Gijs H; Vidal-Sicart, Sergi; Olmos, Renato A Valdés; van den Berg, Nynke S; van Leeuwen, Fijs Wb

    2015-01-01

    Accurate pre- and intraoperative identification of the sentinel node (SN) forms the basis of the SN biopsy procedure. Gamma tracing technologies such as a gamma probe (GP), a 2D mobile gamma camera (MGC) or 3D freehandSPECT (FHS) can be used to provide the surgeon with radioguidance to the SN(s). We reasoned that integrated use of these technologies results in the generation of a "hybrid" modality that combines the best that the individual radioguidance technologies have to offer. The sensitivity and resolvability of both 2D-MGC and 3D-FHS-MGC were studied in a phantom setup (at various source-detector depths and using varying injection site-to-SN distances), and in ten breast cancer patients scheduled for SN biopsy. Acquired 3D-FHS-MGC images were overlaid with the position of the phantom/patient. This augmented-reality overview image was then used for navigation to the hotspot/SN in virtual-reality using the GP. Obtained results were compared to conventional gamma camera lymphoscintigrams. Resolution of 3D-FHS-MGC allowed identification of the SNs at a minimum injection site (100 MBq)-to-node (1 MBq; 1%) distance of 20 mm, up to a source-detector depth of 36 mm in 2D-MGC and up to 24 mm in 3D-FHS-MGC. A clinically relevant dose of approximately 1 MBq was clearly detectable up to a depth of 60 mm in 2D-MGC and 48 mm in 3D-FHS-MGC. In all ten patients at least one SN was visualized on the lymphoscintigrams with a total of 12 SNs visualized. 3D-FHS-MGC identified 11 of 12 SNs and allowed navigation to all these visualized SNs; in one patient with two axillary SNs located closely to each other (11 mm), 3D-FHS-MGC was not able to distinguish the two SNs. In conclusion, high sensitivity detection of SNs at an injection site-to-node distance of 20 mm-and-up was possible using 3D-FHS-MGC. In patients, 3D-FHS-MGC showed highly reproducible images as compared to the conventional lymphoscintigrams. PMID:26069857

  12. Uteroplacental blood flow in pre-eclampsia measurements with /sup 113 m/In and a computer-linked gamma camera

    International Nuclear Information System (INIS)

    Uteroplacental blood flow was measured with a computer-linked gamma camera after intravenous injection of 1 mCi 113In. Results of the measurements from 32 pre-eclamptic pregnancies and 37 normal controls are compared. The uteroplacental blood flow was measured as an index calculated from the rise time and maximum activity of the isotope accumulation curve. The uteroplacental blood flow was reduced with 50% in pre-eclampsia. In severe pre-eclampsia it was more compromised than in mild pre-eclampsia. A diminished uteroplacental blood flow was found in pre-eclampsia even in the absence of intrauterine growth retardation. The maternal placental circulation in the supine position was reduced with one third compared to that in the left lateral recumbent position

  13. Radiopharmaceutical activities administered for diagnostic procedures in nuclear medicine in the first six months of the gamma camera use in the Clinical Center of Montenegro - Podgorica

    International Nuclear Information System (INIS)

    Nuclear medicine procedures have carried out in the Clinical Center of Montenegro - Podgorica since 2006 by the dual-headed SPECT and Digital gamma camera NUCLINE Spirit DH-V. In the first six months of the gamma camera use (from September 2006 to March 2007) examinations of skeleton, kidneys, thyroid and lung were performed. For diagnostic skeletal imaging (102 patients) the radiopharmaceutical 99mTc-MDP is used, and administered activities were in the range from 555 to 740 MBq. For thyroid imaging (203 patients) 99mTc-pertechnetate is used, and administered activities were in the range (37-111) MBq. Lung imaging is performed for 3 patients, using 99mTc-MAA and administered activities in the range (111-185) MBq. Renal imaging is carried out for 72 patients: 42 dynamic studies of kidneys were performed with 99mTc-DTPA and administered activities from 207 to 282 MBq, and 30 static kidneys scintigraphies were performed using the radiopharmaceutical 99mTc-DMSA. 6 patients in the last mentioned group were children with year of birth between 2000 and 2006, and administered activities were from 16.6 to 55.5 MBq. In the same group, activities 28.5 MBq, 74.4 MBq and 120 MBq were administered to three patients with age between 6 and 18 years, and in the other cases, administered activities to the patients (adults) were in the range (59.2 to 196) MBq. The administered activities presented here are basis for further estimations of cumulated activity and absorbed dose to the various organs, which is useful for comparison of the average dose to patient organs in various nuclear medicine procedures and calculation of effective dose equivalent and total effective dose, significant for an estimation of potential risk due to the radioactivity administered to a patient during nuclear medicine procedures. It is very important for procedures optimization and improvement of the radiation protection. (author)

  14. Fluorine 18 FDG coincidence positron emission tomography using dual-head gamma camera in the follow-up of patient with head and neck cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pai, M. S.; Park, C. H.; Koh, J. H.; Suh, J. H.; Joh, C. W.; Yoon, S. N.; Kim, S.; Hwang, K. H. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1999-07-01

    Metabolic imaging with F-18-FDG has diagnostic potential to detect residual malignancy as well as the involvement of lymph node after or during the treatment, but it is not widely available because of high cost of PET operation. The alternative method to use F-18-FDG has been developed the coincident PET (CoDe PET) using gamma camera. Purpose is to evaluate the clinical usefulness of the F-18-FDG CoDe PET using gamma camera in differentiating residual/recurrent disease from post-therapy changes in patients with head and neck cancer. 55 cases F-18-FDG CoDe PET studies in 32 patients (Age : 25-79, mean : 50 13, M/F : 23/9) after therapy with various head and neck cancers were performed (11 undifferentiated carcinoma, 10 squamous cell carcinoma, 9 malignant lymphoma, 1 adenoid cystic cancer, 1 Ewing sarcoma). All patients were in the fasting stage for 6-12 hours and injected 3-10mCi of F-18-FDG 1 hour before the imaging. Images were obtained for 30 min (3 min per one rotation) with 20% photopeak window and 20% compton scatter window and reconstructed after filtered with METS filter. Attenuation correction was not done. Any visually detectable FDG uptake in the head and neck except the physiologic uptake were considered positive. All findings were validated either by biopsy or by clinical follow-up and compared with corresponding CT/MRI findings. Ten of eleven cases with residual disease and 41 of 44 cases which remained relapse free were correctly identified by CoDe PET. CoDe PET assessed nine more relapse free cases, in which CT/MRI were specificity (93%). FDG CoDe PET was especially helpful in patients with residual abnormalities noted on radiological imaging. F-18-FDG CoDe PET is a useful method for follow-up after the initial therapy in patients with head and neck cancers.

  15. Extensive testing of Schottky CdTe detectors for the ECLAIRs X-Gamma-ray Camera on board the SVOM mission

    CERN Document Server

    Nadege, Remoue; Olivier, Godet; Pierre, Mandrou

    2010-01-01

    We report on an on-going test campaign of more than 5000 Schottky CdTe detectors (4x4x1 mm^3), over a sample of twelve thousands, provided by Acrorad Co., Ltd (Japan). 6400 of these detectors will be used to build the detection plane of the ECLAIRs camera on the Chinese-French gamma-ray burst mission SVOM. These tests are mandatory to fulfill the prime requirement of ECLAIRs to detect gamma-ray burst photons down to 4 keV. The detectors will be operated at -20C under a reverse bias of 600 V. We found that 78% of the detectors already tested could be considered for the flight model. We measured a mean energy resolution of 1.8 keV at 59.6 keV. We investigated the polarization effect first at room temperature and low bias voltage for faster analysis. We found that the spectroscopic degradation in quantum efficiency, gain and energy resolution, starts as soon as the bias is turned on: first slowly and then dramatically after a time t_p which depends on the temperature and the voltage value. Preliminary tests unde...

  16. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Capriotti, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Di Santo, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Capotondi, C. [Unit of Radiology, S. Andrea Hospital, Rome (Italy); Micarelli, A. [Nuclear Medicine, Sulmona Hospital, Sulmona (AQ) (Italy); Massari, R. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Trotta, C. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Soluri, A. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy)]. E-mail: soluri@isib.cnr.it

    2006-12-20

    The diagnosis of diabetic foot osteomyelitis is often difficult. {sup 99m}Tc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7x25.7 mm{sup 2} FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. {sup 99m}Tc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.

  17. Development of a Compton Camera for Online Range Monitoring of Laser-Accelerated Proton Beams via Prompt-Gamma Detection

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2014-03-01

    Full Text Available Presently large efforts are conducted in Munich towards the development of proton beams for bio-medical applications, generated via the technique of particle acceleration from high-power, short-pulse lasers. While so far mostly offline diagnostics tools are used in this context, we aim at developing a reliable and accurate online range monitoring technique, based on the position-sensitive detection of prompt γ rays emitted from nuclear reactions between the proton beam and the biological sample. For this purpose, we develop a Compton camera, designed to be able to track not only the Compton scattering of the primary photon, but also to detect the secondary Compton electron, thus reducing the Compton cone to an arc segment and by this increasing the source reconstruction efficiency. Design specifications and the status of the protype system are discussed.

  18. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  19. Computer aided collimation gamma (Cacao): a new approach in measuring and visualizing the distribution of X and gamma ray emitters in contaminate wounds; Cacao (camera a collimation assistee par ordinateur): une nouvelle approche pour reconstruire et visualiser des contaminations d'emetteurs X et gamma dans les blessures

    Energy Technology Data Exchange (ETDEWEB)

    Douiri, A. [Hopital Pitie-Salpetriere (LENA), 75 - Paris (France); Jeanguillaume, C. [Centre Hospitalier Universitaire de Larrey, Service de Medecine Nucleaire, 49 - Angers (France); Franck, D.; Carlan, L. de [Institut de Radioprotection et de Surete Nucleaire, IRSN, Dept. de Protection de la Sante de l' Homme et de Dosimetrie, 92 - Fontenay aux Roses (France); Quartuccio, M.; Begot, S. [Faculte des Sciences d' Orsay (LPS), 91 - Orsay (France)

    2003-07-01

    The treatment of contaminated wounds can be greatly improved by visualizing the distribution of the radioactivity that is present. The low sensitivity of the conventional Anger camera means that it can only be used where there is a high level of activity. Moreover, these gamma cameras cannot make full use of the recent progress made in high spatial resolution semi-conductor detectors. In order to increase sensitivity while at the same time maintaining a sufficient resolution of the reconstructed image, the principle of the Computer aided collimation gamma camera (CACAO in French) was proposed as a possible means of using gamma cameras in intern dosimetry. This principle is based on the combined use of collimators with holes that are wider- than the intrinsic resolution of the detector, circular and linear scanning movements, a detector sensitive to the source depth and a specific reconstruction algorithm. This article presents the recent developments of the CACAO system and illustrates by a theoretical and experimental study, its performances compared with the classic tomography system. We start with a general overview of the CACAO system and its reconstruction algorithm. First of all, the superiority of the CACAO system is demonstrated by a simulation ,study. Then, an experimental bench was developed using an implanted silicon pixel detector specifically designed to allow the visualization of a subject contaminated with low energy X and gamma emitters. The study presented here shows images obtained from a phantom composed of three sources of Americium {sup 341}Am. Although the comparison between the conventional and CACAO approaches were not carried out with optimal parameters, especially for CACAO, the initial results show that CACAO has an improved sensitivity and a superior resolution. Finally, the transposition of this system to the practical study of contaminated wounds is discussed. (authors)

  20. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McKinsey, Daniel Nicholas [Yale University

    2013-08-27

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have better energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for

  1. Proposal of balloon and satellite observations of MeV gammas using Electron Tracking Compton Camera for reaching a high sensitivity of 1 mCrab

    Science.gov (United States)

    Takada, Atsushi; Tanimori, Toru

    2016-04-01

    ETCC with a gas Time Projection Chamber (TPC) and pixel GSO scintillators, by measuring electron tracks precisely, provides both a strong background rejection by dE/dx of the track and well-defined 2-dimensional Point Spread Function (PDF) with better than several degrees by adding the arc direction of incident gammas (SPD: Scatter Plane Deviation) with the ARM (angular Resolution Measure) direction measured in standard Compton Camera (CC). In 2006 its background rejection was revealed by SMILE-I balloon experiment with 10cm-cubic ETCC using the dE/dx of tracks. In 2013, 30cm-cube-ETCC has been developed to catch gammas from Crab in next SMILE-II balloon with >5sigma detection for 4 hrs. Now its sensitivity has been improved to 10sigma by attaining the angular resolution of the track (SPD angle) to that determined by multiple scattering of the gas. Thus, we show the ability of ETCC to give a better significance by a factor of 10 than that of standard CCs having same detection area by electron tracking?and we have found that SPD is an essential to define the PSF of Compton imaging quantitatively. Such a well-defined PSF is, for the first time, able to provide reliable sensitivity in Compton imaging without assuming the use of optimization algorithm. These studies uncover the uncertainties of CCs from both points of view of the intense background and the difficulty of the definition of the PSF, and overcome the above problems. Based on this technology, SMILE-II with 3atm CF4 gas is expected to provide a 5times better sensitivity than COMPTEL in one month balloon, and 4modules of 50cm-cube ETCCs would exceed over 10^-12 erg/cm^2s^1 (1mCrab) in satellite. Here we summarize the performance of the ETCC and new astrophysics opened in near future by high sensitive observation of MeV gamma-rays.

  2. Surface and volume three-dimensional displays of Tc-99m HMPAO brain SPECT images in stroke patients with three-head gamma camera

    International Nuclear Information System (INIS)

    This paper evaluates volume and surface 3D displays in Tc-99m HMPAO brain SPECT imaging in stroke patients. Using a triple-head gamma camera interfaced with a 64-bit supercomputer, 20 patients with stroke were studied. Each patient was imaged 30-60 minutes after an intravenous injection of 20 mCi of Tc-99m HMPAO. SPECT images as well as planar images were routinely obtained; volume and surface 3D display then proceeded, with the process requiring 5-10 minutes. Volume and surface 3D displays show the brain from all angles; thus the location and extension of lesion(s) in the brain are much easier to appreciate. While a cerebral lesion(s) was more clearly delineated by surface 3D imaging, crossed cerebellar diaschisis in seven patients was clearly exhibited with volume 3D but not with surface 3D imaging. Volume and surface 3D displays enhance continuity of structures and understanding of spatial relationships

  3. Comparison of uteroplacental blood flow in normal and pre-eclamptic patients measurement with technetium-99m and a computer-linked gamma camera

    International Nuclear Information System (INIS)

    Uteroplacental blood flow studies in preeclampsia are of special interest since the vascular changes reported in this disease might constitute a structural basis for a reduction of blood flow. Evidence has also been given for a decreased uteroplacental blood flow in preeclampsia. Among the various methods to estimate the maternal placental blood flow, the one most frequently reported in the literature during the last years has been the time activity analysis of short lived radiotracer such as technetium-99m or indium-113m injected intravenously. Only few studies with the above mentioned technique comparing normal and preeclampsia cases have been undertaken. In clinical practice we frequently experience difficuly in finding the optimal time to get the delivery in preeclampsia patients. The aim of this study was first to measure uteroplacental blood flow in preeclamptic pregnancies using a computer-linked gamma camera method for the time-activity analysis of technetium-99m and second to discuss the possibility of clinical application of these measurements for determination of fetal well-being and the timing of the delivery in these patients. Uteroplacental blood flow was measured from 13 preeclamptic patients and 19 pregnancies without any complication after 35 completed weeks of gestation from Jan. 1983 to Sep. 1983 at Obstetrics department of Hanyang University Hospital. (Author)

  4. Comparison of uteroplacental blood flow in normal and pre-eclamptic patients measurement with technetium-99m and a computer-linked gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.H.; Moon, H.; Kim, D.S.; Cho, S.S.

    1985-05-01

    Uteroplacental blood flow studies in preeclampsia are of special interest since the vascular changes reported in this disease might constitute a structural basis for a reduction of blood flow. Evidence has also been given for a decreased uteroplacental blood flow in preeclampsia. Among the various methods to estimate the maternal placental blood flow, the one most frequently reported in the literature during the last years has been the time activity analysis of short lived radiotracer such as technetium-99m or indium-113m injected intravenously. Only few studies with the above mentioned technique comparing normal and preeclampsia cases have been undertaken. In clinical practice we frequently experience difficuly in finding the optimal time to get the delivery in preeclampsia patients. The aim of this study was first to measure uteroplacental blood flow in preeclamptic pregnancies using a computer-linked gamma camera method for the time-activity analysis of technetium-99m and second to discuss the possibility of clinical application of these measurements for determination of fetal well-being and the timing of the delivery in these patients. Uteroplacental blood flow was measured from 13 preeclamptic patients and 19 pregnancies without any complication after 35 completed weeks of gestation from Jan. 1983 to Sep. 1983 at Obstetrics department of Hanyang University Hospital. (Author).

  5. Rapid radiotracer washout from the heart: effect on image quality in SPECT performed with a single-headed gamma camera system.

    Science.gov (United States)

    O'Connor, M K; Cho, D S

    1992-06-01

    Technetium-99m-teboroxime demonstrates high extraction and rapid washout from the myocardium. To evaluate the feasibility of performing SPECT with this agent using a single-headed gamma camera system, a series of phantom studies were performed that simulated varying degrees of washout from normal and "ischemic" regions of the myocardium. In the absence of ischemic regions, short axis profiles were relatively unaffected by washout of less than 50% of activity over the duration of a SPECT acquisition. However, significant corruption of the SPECT data was observed when large (greater than a factor of 2) differences existed in the washout of activity from normal and "ischemic" myocardium. This corruption was observed with 30%-40% washout of activity from normal regions of the heart. Based on published washout rates, these results indicate that clinical studies with 99mTc-teboroxime may need to be completed within 2-4 min to order to prevent degradation of image quality due to differential washout effects.

  6. Mediastinal staging of lung cancer with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography and a dual-head coincidence gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, Michael; Reinartz, Patrick; Cremerius, Uwe; Buell, Udalrich [Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Pauwelsstrasse 30, 52074 Aachen (Germany); Hochstenbag, Monique; Velde, Guul ten [Department of Pulmonology, University Hospital, 6229 HX Maastricht (Netherlands); Lamers, Rob [Department of Radiology, University Hospital, 6229 HX Maastricht (Netherlands)

    2003-04-01

    The aims of the present study were (a) to evaluate mediastinal staging in patients with lung cancer with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) using a coincidence gamma camera (hybrid PET) in comparison with dedicated positron emission tomography (PET) and computed tomography (CT), and (b) to assess the feasibility to determine standardized uptake values (SUV) with hybrid PET. Forty patients were included in the study. Hybrid PET was performed without and with attenuation correction. Data were rebinned with single-slice (SSRB) or Fourier rebinning (FORE). The SUVs of primary tumors were calculated with hybrid PET and compared with SUVs determined by dedicated PET. Diagnostic accuracy for hybrid with or without attenuation correction was 80 or 74% compared with 82% for dedicated PET, and 63% for CT. Attenuation-corrected hybrid PET revealed a higher specificity than CT (83 vs 52%; p<0.05). The SUVs of primary tumors were similar to those of hybrid PET and dedicated PET with a mean relative difference of 20.8{+-}16.4%. The FORE improved the agreement of SUVs with a mean relative difference of 13.8{+-}9.9 vs 36.0{+-}17.9% for SSRB (p<0.001). Hybrid PET with attenuation correction is more specific than CT for mediastinal staging in patients with lung cancer (p<0.05). It reveals similar results in comparison with dedicated PET. Calculation of SUVs with hybrid PET is feasible. (orig.)

  7. Monitoring of the internal contamination of occupationally exposure personnel in services of nuclear medicine through the use of gamma cameras; Monitoreo de la contaminacion interna de personal ocupacionalmente expuesto en servicios de medicina nuclear mediante el uso de gamma camaras

    Energy Technology Data Exchange (ETDEWEB)

    Teran, M.; Paolino, A.; Savio, E. [Catedra de Radioquimica, Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Centro de Medicina Nuclear, Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Dantas, B.M. [Laboratorio de Medidas In vivo, Instituto da Radioprotecao e Dosimetria, Rio de Janeiro (Brazil)

    2006-07-01

    The radionuclides incorporation can happen as a result of diverse activities; these include the work associated with the different stadiums of the nuclear fuel cycle, the use of radioactive sources in medicine, the scientific research, the agriculture and the industry. In Uruguay the main activities linked to the manipulation of open sources correspond those of Nuclear Medicine and from 2004, in the mark of the Project Arcal RLA 049 and being based on the Safety Guides of the IAEA it is implementing a program of internal monitoring in combined form the Nuclear Medicine Center of the Hospital of and the Radiochemistry class of the Faculty of Chemistry. In accordance with the publication of the ICRP 75 the emphasis of any monitoring program should be in the formal study of the doses in the workers to who are considered commendable of to receive in routine form an outstanding fraction of the dose limits or who work in areas where the exposures can be significant in the accident event. From April 2004, to the date has started a pilot plan by means of in that were established appropriate conditions of procedures and of safety in a reduced group of workers of the Nuclear Medicine area. In that period the first work limits, equipment adjustment, calibrations and registration systems were determined. The monitoring system implemented until the moment is carried out with a thyroid caption equipment. However these measurements are carried out in the university hospital embracing 40% of the involved workers of our country, with the purpose of reaching the covering of the biggest quantity of occupationally exposed personnel of private clinics. Also it was developed a new work proposal that allows to have an alternative measure method, in the event of not having the equipment habitually used. Among the conclusions of this work are that for the before exposed are considered the measure conditions but appropriate the following ones: Gamma Camera without collimator; Measurement

  8. Five year experience in the detection of recurrence of ovarian cancer with [F18]-FDG using an hybrid (CDET) gamma camera

    International Nuclear Information System (INIS)

    Objective: The aim of this study was to evaluate the role of [F18]-FDG-CDET in the detection of recurrence of ovarian cancer. Methods and patients: After a fast of 6 hours, the patient (pt) was injected I. V. with 150-250 MBq of [F18]-FDG and imaging (whole-body scan and at least a tomoscintigram) was started 60 min. later, using a PICKER-MARCONI dual-head or triple-head CDET gamma camera. Between July 1997 and July 2001, 81 pts were studied for suspected recurrence of ovarian carcinoma. To date, the results of 62 pts are evaluable with reference to histology after surgery or concordance with conventional imaging and long-term follow-up. From these, 27 pts were referred for occult recurrence (OR) defined by an increase in serum CA-125 levels with negative CI and the remaining 35 pts for equivocal aspect at conventional imaging (ECI). Results: [F18]-FDG-CDET was true positive in 47 cases, 27 confirmed by histology after surgery (13 OC, 14 ECI) and the remaining 20 confirmed by evolution and concordance with CI. [F18]-FDG-CDET was true negative in 13 cases (6 OC, 7 ECI) as confirmed by spontaneous normalisation of CA-125 levels and no events during a 20-month follow-up for 11 pts and histology after surgery for 2 pts. [F18]-FDG CDET was false negative (FN) in 2 pts with ECI, 1 pt with a lymph node metastasis of less than 10 mm in size and 1 pt with continuing increase of CA-125 levels and still negative conventional imaging during a 8 month follow-up. No false positive results was reported in our study. In summary, the overall sensitivity, specificity and accuracy on a per patient basis were respectively 47/49 (96%), 13/13 (100%) and 60/62 (97%). The positive and negative predictive values were respectively 47/47 (100%) and 13/15 ( 87%). Conclusion: The present series of 62 patients gives valuable experience in CDET as compared to the cumulated data by Gambhir et al (J Nucl Med May 2001) reporting on a total of 357 patients using dedicated PET. Our CDET results are

  9. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification

    International Nuclear Information System (INIS)

    The purpose of this paper is to evaluate the ability of a prototype Compton camera (CC) to measure prompt gamma rays (PG) emitted during delivery of clinical proton pencil beams for prompt gamma imaging (PGI) as a means of providing in vivo verification of the delivered proton radiotherapy beams.A water phantom was irradiated with clinical 114 MeV and 150 MeV proton pencil beams. Up to 500 cGy of dose was delivered per irradiation using clinical beam currents. The prototype CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data (2D) images of the PG emission were reconstructed. (1D) profiles were extracted from the PG images and compared to measured depth dose curves of the delivered proton pencil beams.The CC was able to measure PG emission during delivery of both 114 MeV and 150 MeV proton beams at clinical beam currents. 2D images of the PG emission were reconstructed for single 150 MeV proton pencil beams as well as for a 5   ×   5 cm mono-energetic layer of 114 MeV pencil beams. Shifts in the Bragg peak (BP) range were detectable on the 2D images. 1D profiles extracted from the PG images show that the distal falloff of the PG emission profile lined up well with the distal BP falloff. Shifts as small as 3 mm in the beam range could be detected from the 1D PG profiles with an accuracy of 1.5 mm or better. However, with the current CC prototype, a dose of 400 cGy was required to acquire adequate PG signal for 2D PG image reconstruction.It was possible to measure PG interactions with our prototype CC during delivery of proton pencil beams at clinical dose rates. Images of the PG emission could be reconstructed and shifts in the BP range were detectable. Therefore PGI with a CC for in vivo range verification during proton treatment delivery is feasible. However, improvements in the prototype CC detection efficiency and reconstruction algorithms are necessary to

  10. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters.

    Science.gov (United States)

    Cambraia Lopes, Patricia; Clementel, Enrico; Crespo, Paulo; Henrotin, Sebastien; Huizenga, Jan; Janssens, Guillaume; Parodi, Katia; Prieels, Damien; Roellinghoff, Frauke; Smeets, Julien; Stichelbaut, Frederic; Schaart, Dennis R

    2015-08-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digital photon counters (DPCs). PG profiles emitted from a PMMA target upon irradiation with a 160 MeV proton pencil beams (about 6.5 × 10(9) protons delivered in total) were measured using detector modules equipped with four DPC arrays coupled to BGO or LYSO : Ce crystal matrices. The knife-edge slit collimator and detector module were placed at 15 cm and 30 cm from the beam axis, respectively, in all cases. The use of LYSO : Ce enabled time-of-flight (TOF) rejection of background events, by synchronizing the DPC readout electronics with the 106 MHz radiofrequency signal of the cyclotron. The signal-to-background (S/B) ratio of 1.6 obtained with a 1.5 ns TOF window and a 3 MeV-7 MeV energy window was about 3 times higher than that obtained with the same detector module without TOF discrimination and 2 times higher than the S/B ratio obtained with the BGO module. Even 1 mm shifts of the Bragg peak position translated into clear and consistent shifts of the PG profile if TOF discrimination was applied, for a total number of protons as low as about 6.5 × 10(8) and a detector surface of 6.6 cm × 6.6 cm. PMID:26216269

  11. Corrections in dose assessment of 99mTc radiolabeled aerosol particles targeted to central human airways using planar gamma camera imaging.

    Science.gov (United States)

    Möller, Winfried; Felten, Kathrin; Meyer, Gabriele; Meyer, Peter; Seitz, Jürgen; Kreyling, Wolfgang G

    2009-03-01

    The dose of inhaled radiolabeled aerosols is usually assessed using gamma (GC) camera imaging. Because of the complex and inhomogeneous structure of the lung, consisting of soft tissue, the thoracic skeleton, blood vessels, and air spaces, proper attenuation correction coefficients are difficult to evaluate and the estimated doses bear high uncertainty. One hundred milliliters of aerosol boli composed of 100 nm diameter (99m)Tc radiolabeled carbon particles (Technegas) were targeted either to the airways (AW) or to 800-mL volumetric lung depth (alveoli, AL) in 11 healthy volunteers. In addition, 750-mL full breaths (FB) of aerosol were inhaled to a 800-mL lung depth. The deposited dose was measured by collecting aerosol from inhaled and exhaled air stream on filters, which were analyzed for radioactivity. Lung imaging was performed using a planar GC (posterior). Ratios of GC counts to deposited dose (GC/DD) were similar after FB and AL administration, but twofold lower after AW administration (p attenuation correction factors (ACF) were 2.5 +/- 0.5 (FB), 2.2 +/- 0.4 (AL), and 5.5 +/- 1.6 (AW, p mass index and GC/DD. Inhalation of radioaerosols used in medical diagnosis and therapy in combination with high central airway deposition results in an underestimation of the deposited dose based on planar GC imaging. The aerosol distribution index C/P may provide one suitable indicator for corrections, which should be confirmed in future studies by individual attenuation analysis based on radiotracer transmission measurements. PMID:18844481

  12. Effects of Fe as a physical filter on spectra of Technitium- 99m, uniformity, system volume sensitivity and spatial resolution of Philip ADAC Forte dual-head gamma camera

    International Nuclear Information System (INIS)

    Single photon emission computed tomography (SPECT) imaging inherits some limitations, i.e., due to scattered gamma photons which degrade spatial resolution causes poor image quality. This study attempts to reduce a fraction of scattered gamma photons before reaching gamma camera detector by using Fe sheet (0.35 mm and 0.40 mm) as a physical filter. Also investigate the effects on spectra of Tc-99m, spatial resolution, system volume sensitivity and uniformity. The thickness of Fe physical filter is selected on the basis of percentage attenuation calculations of different gamma ray energies by various thicknesses of material. Data were acquired using Philip ADAC forte dual-head gamma camera without and with physical filter with LEHR collimator installed. For spectra, uniformity and system volume sensitivity, a cylindrical source tank filled with water added with Tc-99m was scanned. Uniformity and system volume sensitivity images were reconstructed with FBP method by applying Butterworth filter of order 5, cut-off frequency 0.35 cycles/cm and Chang's attenuation correction method using 0.13 cm−1 linear attenuation coefficient. Spatial resolution study was done by scanning a line source (0.8 mm inner diameter) of Tc-99m at various source-to-collimator distances in air and in scattering medium without and with physical filter. A substantial reduction in count rate from Compton and photopeak regions of Tc-99m spectra with physical filter is recorded. Improvement in spatial resolution with physical filter up to 4 cm source-to-collimator distance is obtained. System volume sensitivity was reduced and no improvement in uniformity. These thicknesses of physical filter may be tested further by scanning different planar/SPECT phantoms in Tc-99m imaging

  13. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    Science.gov (United States)

    Cambraia Lopes, Patricia; Clementel, Enrico; Crespo, Paulo; Henrotin, Sebastien; Huizenga, Jan; Janssens, Guillaume; Parodi, Katia; Prieels, Damien; Roellinghoff, Frauke; Smeets, Julien; Stichelbaut, Frederic; Schaart, Dennis R.

    2015-08-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digital photon counters (DPCs). PG profiles emitted from a PMMA target upon irradiation with a 160 MeV proton pencil beams (about 6.5   ×   109 protons delivered in total) were measured using detector modules equipped with four DPC arrays coupled to BGO or LYSO : Ce crystal matrices. The knife-edge slit collimator and detector module were placed at 15 cm and 30 cm from the beam axis, respectively, in all cases. The use of LYSO : Ce enabled time-of-flight (TOF) rejection of background events, by synchronizing the DPC readout electronics with the 106 MHz radiofrequency signal of the cyclotron. The signal-to-background (S/B) ratio of 1.6 obtained with a 1.5 ns TOF window and a 3 MeV-7 MeV energy window was about 3 times higher than that obtained with the same detector module without TOF discrimination and 2 times higher than the S/B ratio obtained with the BGO module. Even 1 mm shifts of the Bragg peak position translated into clear and consistent shifts of the PG profile if TOF discrimination was applied, for a total number of protons as low as about 6.5   ×   108 and a detector surface of 6.6 cm  ×  6.6 cm.

  14. Changes in left ventricular function as determined by the multi-wire gamma camera at near presyncopal levels of lower body negative pressure

    Science.gov (United States)

    Pintner, R.; Fortney, S.; Mulvagh, S.; Lacy, J.

    1992-01-01

    At presyncopal levels of lower body negative pressure (LBNP), we have frequently observed electrocardiographic responses that may be due to changes in cardiac position and/or shape, but could be indicative of altered myocardial function. To further investigate this, we evaluated cardiac function using a nuclear imaging technique in 21 healthy subjects (17 men and 4 women) after 30 minutes of supine rest and near the end of a presyncopal-limited LBNP exposure (LBNP averaged 65 plus or minus 3 mmHg at injection). Cardiac first pass images were obtained with a Multi-Wire Gamma Camera following an intravenous bolus injection of 30-50 millicurries of Tantalum-178. Manual blood pressures and electrocardiograms were obtained throughout the 3 minute graded LBNP protocol. Between rest and injection during LBNP, heart rate increased (P less than 0.01) from 67 plus or minus 3 beats per minute to 99 plus or minus beats per minute, systolic blood pressure decreased (P less than 0.01) from 110 plus or minus 3 mmHg to 107 plus or minus 3 mmHg and left ventricular ejection fraction (EF) decreased (P less than 0.01) from 0.57 plus or minus 0.02 to 0.48 plus or minus 0.02. During LBNP, ST segment depression of at least 0.5 mm occurred in 7 subjects. Subjects with ST depression had greater reductions (P = 0.05) in EF than subjects without ST depression (0.15 plus or minus 0.07 versus 0.005 plus or minus 0.03), but also tolerated greater levels (P less than 0.05) of negative pressure (88 plus or minus mmHg versus 69 plus or minus 5 mmHg). There was a significant relationship between presyncopal LBNP level and EF (R(exp 2) = 0.50, P less than 0.05). Our findings suggest there may be a decrease in systolic myocardial function at high levels of LBNP.

  15. Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hruska, Carrie B.; Weinmann, Amanda L.; O' Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

    2012-06-15

    Purpose: Molecular breast imaging (MBI) is a nuclear medicine technology that uses dual-head cadmium zinc telluride (CZT) gamma cameras to image functional uptake of a radiotracer, Tc-99m sestamibi, in the breast. An important factor in adoption of MBI in the screening setting is reduction of the necessary administered dose of Tc-99m sestamibi from the typically used dose of 740 MBq to approximately 148 MBq, such that MBI's whole-body effective dose is comparable to that of screening mammography. Methods that increase MBI count sensitivity may allow a proportional reduction in the necessary administered dose. Our objective was to evaluate the impact of two count sensitivity improvement methods on image quality by evaluating count sensitivity, spatial resolution, and lesion contrast in phantom simulations. Methods: Two dual-head CZT-based MBI systems were studied: LumaGem and Discovery NM 750b. Two count sensitivity improvement methods were implemented: registered collimators optimized for dedicated breast imaging and widened energy acceptance window optimized for use with CZT. System sensitivity, spatial resolution, and tumor contrast-to-noise ratio (CNR) were measured comparing standard collimation and energy window setting [126-154 keV (+10%, -10%)] with optimal collimation and a wide energy window [110-154 keV (+10%, -21%)]. Results: Compared to the standard collimator designs and energy windows for these two systems, use of registered optimized collimation and wide energy window increased system sensitivity by a factor of 2.8-3.6. Spatial resolution decreased slightly for both systems with new collimation. At 3 cm from the collimator face, LumaGem's spatial resolution was 4.8 and 5.6 mm with standard and optimized collimation; Discovery NM 750b's spatial resolution was 4.4 and 4.6 mm with standard and optimized collimation, respectively. For both systems, at tumor depths of 1 and 3 cm, use of optimized collimation and wide energy window

  16. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    NARCIS (Netherlands)

    Cambraia Lopes, P.; Clementel, E.; Crespo, P.; Henrotin, S.; Huizenga, J.; Janssens, G.; Parodi, K.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Schaart, D.R.

    2015-01-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in c

  17. The test of intrinsic uniformity is one of the basic tests to check the status of the detectors of gamma cameras, and as such is contained in RD 1 841/1997 Quality Control in Nuclear Medicine; Protocolo NEMA para el calculo de la uniformidad intrinsica en gamma-camaras: aplicacion y comparacion con el software del fabricante

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Soto, X. L.; Gonzalez Ruiz, C.; Lopez-Boto, M. A.; Polo Cezon, R.

    2015-07-01

    Spanish Protocol Quality Control Instrumentation in Nuclear Medicine provides guidelines for conducting this test, similar to those established in the NEMA protocol NEMA Protocol for the calculation of the uniformity intrinsic in GAMMA cameras: application and comparison with the SQFTWARE of the manufacturer. it is advisable to conduct a study to ensure that the results for the test of intrinsic uniformity of the software provided by the equipment manufacturer are equivalent to those obtained by applying the protocol recommended by the SEFM before using this software for performing quality control. (Author)

  18. Gamma camera based Positron Emission Tomography: a study of the viability on quantification; Tomografia por emissao de positrons com sistemas PET/SPECT: um estudo da viabilidade de quantifizacao

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lorena

    2005-07-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  19. CCD Color Camera Characterization for Image Measurements

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2007-01-01

    In this article, we will analyze a range of different types of cameras for its use in measurements. We verify a general model of a charged coupled device camera using experiments. This model includes gain and offset, additive and multiplicative noise, and gamma correction. It is shown that for sever

  20. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  1. CCD characterization for a range of color cameras

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2005-01-01

    CCD cameras are widely used for remote sensing and image processing applications. However, most cameras are produced to create nice images, not to do accurate measurements. Post processing operations such as gamma adjustment and automatic gain control are incorporated in the camera. When a (CCD) cam

  2. Whole body retention of Se-75-homotaurocholic acid (SeBCAT) using a Gamma Camera: A new test in chronic diarrhea

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, H.; Palma, R.; Pfau, J.; Coudeu, I.; Bauer, K.

    1985-05-01

    Bile acid malabsorption has been recognized as an important cause of chronic diarrhea. Se-75HCAT, a bile acid, is absorbed in the terminal ileum. Therefore, measurement of its body retention indicate ileal function not requiring fecal collections. The authors studied 8 normal volunteers presenting with chronic recurrent diarrhea for more than 2 years. Each received orally a 10 ..mu..Ci capsule of SeHCAT (Amersham Intl.) and 3 hours later anterior and posterior whole body activity was measured using a digital camera without collimator. Measurements were repeated daily for 7 days and expressed as % of retention. Three patients had normal retention (1 celiac disease, 1 inactive Crohn disease and 1 functional diarrhea), another was borderline (an immunodeficiency) and 4 patients presented abnormal bile acid absorption (2 had vagotomy, 1 Crohn disease and 1 idiopathic diarrhea). This last group was treated with cholestyramine showing improvement of the diarrhea, and relapse on drug withdrawal. These findings demonstrate that this technique can identify bile acid malabsorption as the cause of chronic diarrhea by external counting.

  3. Optimization of HiSens, a high sensitivity CdZnTe gamma-camera architecture dedicated to the clinical imaging applications

    International Nuclear Information System (INIS)

    To overcome the Anger camera spatial resolution-sensitivity trade-off, the HiSens architecture has been studied for several years. This architecture, based on pixelated CZT detectors, takes advantage of the accurate 3D localization of the interactions inside the detector. This work is dedicated to this architecture. First, a quantification methodology is introduced. This step allows preliminary simulation-based and experimental evaluation of the architecture in planar acquisition mode. A DQE (Detective Quantum Efficiency) calculation tool, aiming at optimizing the HiSens parameters in planar acquisition mode, is then proposed and used for two applications (cardiac imaging and scinti-mammography). lt shows that, considering a 5 cm source-collimator distance, the system sensitivity can be increased by 3 while maintaining or improving the spatial resolution thanks to the HiSens architecture. In this study, the collimator-to-detector distance parameter is made scalable. We show that its adjustment can advantageously increase the high frequency content of the reconstructed images. The effect of this parameter is experimentally validated in this work and has been besides patented. Finally, a SPECT DQE calculation tool is developed. This one, permitting to describe the system performances inside the field-of-view, is used, at the end of the work, to suggest a methodology allowing to determine the optimal collimation parameters for cardiac SPECT applications. (author)

  4. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B. [Brookhaven National Laboratory, Upton, New York 11793 (United States); Hodges, D. [University of Texas at El Paso, El Paso, Texas 79968 (United States); Lee, W. [Korea University, Seoul 136-855 (Korea, Republic of); Petryk, M. [SUNY Binghamton, Vestal, New York 13902 (United States)

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  5. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    Science.gov (United States)

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  6. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    International Nuclear Information System (INIS)

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm3 detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects

  7. Measurement of cerebral blood flow the blood sampling method using {sup 99m}Tc-ECD. Simultaneous scintigram scanning of arterial blood samples and the brain with a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, Takenori; Inugami, Atsushi [Rehabilitation Center for Physically Disabled Persons and Medical Center for Mental Health-Akita, Kyowa (Japan); Iida, Hidehiro; Mizuta, Yoshihiko; Kawakami, Takeshi; Inoue, Minoru

    1999-01-01

    To measure regional cerebral blood flow (rCBF) by blood sampling using {sup 99m}Tc-ECD we devised a method of measuring the radioactive concentration in arterial blood sample with a gamma camera. In this method the head and a blood sample are placed within the same visual field to record the SPECT data of both specimens simultaneously. The results of an evaluation of the counting rate performance, applying the 30 hours decaying method using {sup 99m}Tc solution showed that this method is not comparable to the well-type scintillation counter and in clinical cases the active concentration in arterial blood sample remained well within the dynamic range. In addition, examination of the influence of scattered radiation from the brain by the dilution method showed that it was negligible at a distance of more than 7.5 cm between the brain and the arterial blood sample. In the present study we placed a head-shaped phantom next to the sample. The results of the examinations suggested that this method is suitable for clinical application, and because it does not require a well-type scintillation counter, it is expected to find wide application. (author)

  8. ISO camera array development status

    Science.gov (United States)

    Sibille, F.; Cesarsky, C.; Agnese, P.; Rouan, D.

    1989-01-01

    A short outline is given of the Infrared Space Observatory Camera (ISOCAM), one of the 4 instruments onboard the Infrared Space Observatory (ISO), with the current status of its two 32x32 arrays, an InSb charge injection device (CID) and a Si:Ga direct read-out (DRO), and the results of the in orbit radiation simulation with gamma ray sources. A tentative technique for the evaluation of the flat fielding accuracy is also proposed.

  9. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  10. A compact gamma camera for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  11. Current Development of Breast-Speciifc Gamma Imaging (BSGI) Technique%乳腺专用伽玛显像(BSGI)技术的最新进展

    Institute of Scientific and Technical Information of China (English)

    孙达; 陈伟君

    2015-01-01

    Breast-Specific Gamma Imaging(BSGI)is an improved and optimizing nuclear medicine breast imaging technique on the basis of traditional gamma camera. It uses a high resolution, smal field-of-view scintil a detector. The detector is designed with 3 073 individual detector crystals and 48 position-sensitive photomultiplier tubes. The FOV of detector is 15 cm×20 cm, and optimal system resolution for breast imaging is 3 mm, can detect the diameter of only 2~3 mm smal lesions. BSGI has better sensitivity in detecting subcentimetre or nonpalpable breast cancer. The sensitivity for the diagnosis of breast cancer is high, not influenced by the density of the breast tissue, implants, architectural distortion or scars from prior surgery or radiation. So it is cal ed a high resolution, smal field-of-view breast-specific gamma camera.%乳腺专用伽玛显像(BSGI)是一种在传统伽玛照相机的基础上进行了优化的核医学显像技术,配置有高分辨率数字探测器,内置3072块晶体和48个光电倍增管。探测器的视野(FOV)为15 cm×20 cm,空间分辨率为3 mm,能探查到直径仅为2~3 mm的微小病灶,对亚厘米或不能触及的病灶有很高的应用价值,且不受乳腺致密组织、植入假体及术后瘢痕等因素的影响,对乳腺癌诊断的灵敏度较高。BSGI被称为小视野和高分辨率乳腺专用伽玛照相机。

  12. Calibration of the cameras of the H.E.S.S. {gamma}-ray astronomy experiment and observations of the Galactic Centre above 100 GeV; Etalonnage des cameras de l'experience d'astronomie {gamma} H.E.S.S. et observations du centre galactique au-dela de 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, L

    2005-05-15

    The H.E.S.S. experiment (High Energy Stereoscopic System) consists of four imaging atmospheric Cherenkov telescopes to study the southern astrophysical sources above 100 GeV. This thesis presents the detector as well as the analysis chain. The calibration methods are described in details and the systematic errors on the image amplitude are derived. Then, an analysis based on a semi-analytical model of the electromagnetic shower development in the atmosphere is presented. Tools to reconstruct the energy spectrum and the morphology of the very high energy {gamma}-ray sources are presented and applied to the Crab Nebula. Systematic errors associated to the spectrum analysis are estimated. All these techniques were applied to study the Galactic Centre emission above 100 GeV. The nature of the source detected in 2003 and 2004 observations is still unknown and its spectrum, variability and morphology are studied. Various candidates are proposed, among them the supermassive black hole Sgr A* located at the dynamical centre of the Milky Way, the supernova remnant Sgr A Est or interactions of accelerated particles with the dense medium of this region. In this thesis, the signal was interpreted in terms of dark matter annihilation (neutralinos or Kaluza-Klein bosons) in a dense halo located at the Galactic Centre. This analysis showed that, in the framework of these models, dark matter annihilation alone can not explain the H.E.S.S. signal. The main component would thus come from astrophysical sources. (author)

  13. Dual-head gamma camera 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in oncological patients: effects of non-uniform attenuation correction on lesion detection

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, M.; Kaiser, H.J.; Cremerius, U.; Reinartz, P.; Schreckenberger, M.; Sabri, O.; Buell, U. [Department of Nuclear Medicine, University Hospital, Aachen University of Technology (Germany)

    1999-08-01

    The purpose of this study was to evaluate a dual head coincidence gamma camera (DH-PET) equipped with single-photon transmission for 2-[fluorine-18]-fluoro-2-deoxy-d-glucose (FDG) imaging in oncological patients. Forty-five patients with known or suspected malignancies, scheduled for a positron emission tomography (PET) scan, were first studied with a dedicated ring PET and subsequently with DH-PET. All patients underwent measured attenuation correction using germanium-68 rod sources for ring PET and caesium-137 sources for DH-PET. Ring PET emission scan was started 64{+-}17 min after intravenous administration of 235{+-}42 MBq FDG. DH-PET emission followed 160{+-}32 min after i.v. FDG. Attenuation-corrected and non-attenuation-corrected images were reconstructed for ring PET and DH-PET. The image sets were evaluated independently by three observers blinded to clinical data and to results of conventional imaging. Attenuation-corrected ring PET as the standard of reference depicted 118 lesions, non-attenuation-corrected ring PET 113 (96%) lesions, and attenuation-corrected DH-PET and non-attenuation-corrected DH-PET, 101 (86%) and 84 (71%) lesions, respectively (P<0.05). The lesion detection rate of attenuation-corrected and non-attenuation-corrected DH-PET was almost similar for lesions >20 mm, whereas attenuation correction increased the detection rate from 60% to 80% for lesions {<=}20 mm (P<0.01). A patient-based analysis revealed concordant results relative to attenuation-corrected ring PET for non-attenuation-corrected ring PET, attenuation-corrected DH-PET and non-attenuation-corrected DH-PET in 42 (93%), 36 (80%) and 31 (69%) patients, respectively. Differences might have influenced patient management in two (4%), six (13%) and ten (22%) patients, respectively. In conclusion, measured attenuation correction markedly improves the lesion detection capability of DH-PET. With measured attenuation correction the diagnostic performance of DH-PET is closer to that

  14. PET with a dual-head coincidence gamma camera in head and neck cancer: A comparison with computed tomography and dedicated PET; Stellenwert der PET mit Koinzidenz-Gammakameras bei Kopf-Hals-Tumoren: Vergleich mit Computertomographie und dedizierter PET

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, M. [Technische Hochschule Aachen (Germany). Klinik fuer Nuklearmedizin

    2001-11-01

    Positron emission tomography with {sup 18}F-fluoro-deoxyglucose (FDG PET) is a promising imaging tool for detecting and staging of primary or recurrent head and neck cancer. The aim of this study was to evaluate a dual-head gamma camera modified for coincidence detection (KGK-PET) in comparison to computed tomography (CT) and dedicated PET (dPET). 50 patients with known or suspected primary or recurrent head and neck cancer were enrolled. 32 patients underwent KGK-PET and dPET using a one-day protocol. The sensitivity for the detection of primary/ recurrent head and neck cancer for KGK-PET and CT was 80% and 54%, respectively, specificity was 73% and 82%, respectively. The sensitivity and specificity for the detection of lymph node metastases based on neck sides with KGK-PET was 71% (CT: 65%) and 88% (CT: 89%) respectively. In comparison to dPET, KGK-PET revealed concordant results in 32/32 patients with respect to primary tumor/recurrent disease and in 55/60 evaluated neck sides. All involved neck sides that were missed by KGK-PET were also negative with dPET. These results indicate that in patients with head and neck cancer KGK-PET reveals information, that are similar to dPET and complementary to CT. (orig.) [German] Die Positronenemissionstomographie mit {sup 18}F-Fluor-Deoxyglukose (FDG-PET) ist ein viel versprechendes Verfahren zur Detektion und zum Staging von primaeren und rezidivierenden Malignomen der Kopf-Hals-Region. Ziel der Studie war die Evaluation einer koinzidenzfaehigen Doppelkopf-Gammakamera (KGK-PET) im Vergleich zur Computertomographie (CT) und dedizierten Ring-PET (dPET). Untersucht wurden 50 Patienten mit Kopf-Hals-Tumoren. Vergleichsuntersuchungen mit dPET erfolgten bei 32 Patienten. Die Sensitivitaet von KGK-PET zur Erkennung von Primaertumoren/Rezidiven betrug 80% bei einer Spezifitaet von 73%. Fuer CT berechnete sich eine Sensitivitaet von 54% und eine Spezifitaet von 82%. Bezueglich einer zervikalen Lymphknotenmetastasierung errechnete

  15. Central Acceptance Testing for Camera Technologies for CTA

    OpenAIRE

    Bonardi, A.; T. Buanes; Chadwick, P.; Dazzi, F.; A. Förster(CERN, Geneva, Switzerland); Hörandel, J. R.; Punch, M.; Consortium, R. M. Wagner for the CTA

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international initiative to build the next generation ground based very-high energy gamma-ray observatory. It will consist of telescopes of three different sizes, employing several different technologies for the cameras that detect the Cherenkov light from the observed air showers. In order to ensure the compliance of each camera technology with CTA requirements, CTA will perform central acceptance testing of each camera technology. To assist with thi...

  16. Gamma teletopography

    International Nuclear Information System (INIS)

    The mapping of gamma sources radiation emission in a nuclear plant is an important safety point. A remote gamma ray mapping process was developed in SPS/CEA/SACLAY. It uses the ''pinhole camera'' principle, precursor of photography. It mainly consists of a radiation proof box, with a small orifice, containing sensitive emulsions at the opposite. A first conventional photographic type emulsion photographs the area. A second photographic emulsion shows up the gamma radiations. The superim position of the two shots gives immediate informations of the precise location of each source of radiation in the observed area. To make easier the presentation and to improve the accuracy of the results for radiation levels mapping, the obtained films are digitally processed. The processing assigns a colours scale to the various levels of observed radiations. Taking account physical data and standard parameters, it gets possible to estimate the dose rate. The device is portable. Its compactness and fully independent nature make it suitable for use anywhere. It can be adapted to a remote automatic handling system, robot... so as to avoid all operator exposure when the local dose rate is too high

  17. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  18. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  19. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  20. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  1. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  2. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  3. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....

  4. Calibration of a Stereo Radiation Detection Camera Using Planar Homography

    Directory of Open Access Journals (Sweden)

    Seung-Hae Baek

    2016-01-01

    Full Text Available This paper proposes a calibration technique of a stereo gamma detection camera. Calibration of the internal and external parameters of a stereo vision camera is a well-known research problem in the computer vision society. However, few or no stereo calibration has been investigated in the radiation measurement research. Since no visual information can be obtained from a stereo radiation camera, it is impossible to use a general stereo calibration algorithm directly. In this paper, we develop a hybrid-type stereo system which is equipped with both radiation and vision cameras. To calibrate the stereo radiation cameras, stereo images of a calibration pattern captured from the vision cameras are transformed in the view of the radiation cameras. The homography transformation is calibrated based on the geometric relationship between visual and radiation camera coordinates. The accuracy of the stereo parameters of the radiation camera is analyzed by distance measurements to both visual light and gamma sources. The experimental results show that the measurement error is about 3%.

  5. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  6. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  7. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  8. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  9. Ringfield lithographic camera

    Science.gov (United States)

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  10. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  11. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  12. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  13. Dry imaging cameras

    Directory of Open Access Journals (Sweden)

    I K Indrajit

    2011-01-01

    Full Text Available Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  14. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  15. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... researchers, cameras, and filmed subjects already inherently comprise analytical decisions. It is these ethnographic qualities inherent in audiovisual and photographic imagery that make it of particular value to a participatory anthropological enterprise that seeks to resist analytic closure and seeks instead...

  16. Central Acceptance Testing for Camera Technologies for CTA

    CERN Document Server

    Bonardi, A; Chadwick, P; Dazzi, F; Förster, A; Hörandel, J R; Punch, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international initiative to build the next generation ground based very-high energy gamma-ray observatory. It will consist of telescopes of three different sizes, employing several different technologies for the cameras that detect the Cherenkov light from the observed air showers. In order to ensure the compliance of each camera technology with CTA requirements, CTA will perform central acceptance testing of each camera technology. To assist with this, the Camera Test Facilities (CTF) work package is developing a detailed test program covering the most important performance, stability, and durability requirements, including setting up the necessary equipment. Performance testing will include a wide range of tests like signal amplitude, time resolution, dead-time determination, trigger efficiency, performance testing under temperature and humidity variations and several others. These tests can be performed on fully-integrated cameras using a portable setup at the came...

  17. The BCAM Camera

    CERN Document Server

    Hashemi, K S

    2000-01-01

    The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the BCAM to the ATLAS forward muon detector alignment system. We show that the camera's performance is only weakly dependent upon the brightness, focus and diameter of the source image. Its resolution is dominated by turbulence along the external light path. The camera electronics is radiation-resistant. With a field of view of ± 10 mrad, it tracks the bearing of a light source 16 m away with better than 3 µrad accuracy, well within the ATLAS requirements.

  18. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  19. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  20. The MKID Camera

    Science.gov (United States)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  1. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  2. Spacecraft camera image registration

    Science.gov (United States)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  3. Deployable Wireless Camera Penetrators

    Science.gov (United States)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  4. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  5. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  6. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  7. The Dark Energy Camera

    Science.gov (United States)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  8. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  9. Limited-angle imaging in positron cameras: theory and practice

    International Nuclear Information System (INIS)

    The principles of operation of planar positron camera systems made up of multiwire proportional chambers as detectors and electromagnetic delay lines for coordinate readout are discussed. Gamma converters are coupled to the wire chambers to increase detection efficiency and improve spatial resolution. The conversion efficiencies of these converters are calculated and the results compare favorably to the experimentally measured values

  10. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  11. Performance evaluation of a pixellated Ge Compton camera

    Energy Technology Data Exchange (ETDEWEB)

    Alnaaimi, M A; Royle, G J; Ghoggali, W; Banoqitah, E; Speller, R D [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Cullum, I, E-mail: m.alnaaimi@medphys.ucl.ac.uk [Institute of Nuclear Medicine, University College London Hospital, London NW1 2BU (United Kingdom)

    2011-06-21

    An ongoing project is being carried out to develop a high purity germanium (HPGe) Compton camera for medical applications. The Compton camera offers many potential advantages over the conventional gamma camera. The camera reported in this paper comprises two pixellated germanium detector planes housed 9.6 cm apart in the same vacuum housing. The camera has 177 pixels, 152 in the scatter detector and 25 in the absorption detector. The pixels are 4 x 4 mm{sup 2} with a thickness of 4 mm in the scatter detector and 10 mm in the absorption detector. Images have been taken for a variety of test objects including point sources, a ring source and a Perspex phantom. The measured angular resolution is 9.4{sup 0} {+-} 0.4{sup 0} for a 662 keV gamma-ray source at 3 cm. Due to the limited number of readout modules a multiple-view technique was used to image the source distributions from different angles and simulate the pixel arrangement in the full camera.

  12. Artificial human vision camera

    Science.gov (United States)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  13. The Star Formation Camera

    OpenAIRE

    Scowen, Paul A.; Jansen, Rolf; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and ...

  14. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  15. Underwater camera with depth measurement

    Science.gov (United States)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  16. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  17. Advanced Virgo phase cameras

    Science.gov (United States)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  18. The world's fastest camera

    CERN Multimedia

    Piquepaille, Roland

    2006-01-01

    This image processor is not your typical digital camera. It took 6 years to 20 people and $6 million to build the "Regional Calorimeter Trigger"(RCT) which will be a component of the Compact Muon Solenoid (CMS) experiment, one of the detectors on the Large Hadron Collider (LHC) in Geneva, Switzerland (1 page)

  19. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  20. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  1. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  2. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter...

  3. Images processing in hostile nuclear environments. Experimental CCD cameras tests results for robotic operations

    International Nuclear Information System (INIS)

    This paper describes succinctly the hostile aspect of nuclear environment for visual sensors and transmissions. It approaches the new field of nuclear Robotic and its constraints about vision process. Tolerance tests of CCD cameras in gamma radiations environment are displayed: - gamma dosimetry measures, - electrical measurement process, - views during testing, - degradations and better tolerance hypothesis

  4. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  5. Combustion pinhole camera system

    Science.gov (United States)

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  6. Camera Surveillance Quadrotor

    OpenAIRE

    Hjelm, Emil; Yousif, Robert

    2015-01-01

    A quadrotor is a helicopter with four rotors placed at equal distance from the crafts centre of gravity, controlled by letting the different rotors generate different amount of thrust. It uses various sensors to stay stable in the air, correct readings from these sensors are therefore critical. By reducing vibrations, electromagnetic interference and external disturbances the quadrotor’s stability can increase. The purpose of this project is to analyse the feasibility of a quadrotor camera su...

  7. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  8. Hemispherical Laue camera

    Science.gov (United States)

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  9. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  10. SPECT detectors: the Anger Camera and beyond

    Science.gov (United States)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  11. Two-detector, 512-element high purity germanium camera prototype

    International Nuclear Information System (INIS)

    A gamma-ray camera consisting of two 3.2 x 3.2 x 1-cm3 HPGe detectors has been assembled. Shallow orthogonal grooves define 512 2 x 2-mm2 elements. Square hole collimators have been fabricated with design parameters that exploit the unique characteristics of the detector. Intrinsic spatial resolution is a square function with 2-mm width, and energy resolution is approximately 2.5% FWHM at 140 keV. Evidently superior images are obtained when this instrument is compared to state-of-the-art scintillation cameras. 17 refs

  12. Adaptive compressive sensing camera

    Science.gov (United States)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  13. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  14. A Compton camera application for the GAMOS GEANT4-based framework

    Science.gov (United States)

    Harkness, L. J.; Arce, P.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dormand, J.; Jones, M.; Nolan, P. J.; Sampson, J. A.; Scraggs, D. P.; Sweeney, A.; Lazarus, I.; Simpson, J.

    2012-04-01

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  15. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Lampert, Máté, E-mail: lampert.mate@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Un Nam, Yong, E-mail: yunam@nfri.re.kr [NFRI, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2015-01-11

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  16. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  17. A compact neutron scatter camera for field deployment.

    Science.gov (United States)

    Goldsmith, John E M; Gerling, Mark D; Brennan, James S

    2016-08-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources. PMID:27587113

  18. A compact neutron scatter camera for field deployment

    CERN Document Server

    Goldsmith, John E M; Brennan, James S

    2016-01-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4{\\pi}) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  19. A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shin' ichiro, E-mail: takeda@astro.isas.jaxa.jp [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Harayama, Atsushi [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ichinohe, Yuto [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Odaka, Hirokazu [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Watanabe, Shin; Takahashi, Tadayuki [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Tajima, Hiroyasu [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Genba, Kei; Matsuura, Daisuke; Ikebuchi, Hiroshi; Kuroda, Yoshikatsu [Mitsubishi Heavy Industries, 1200 Higashi-Tanaka, Komaki, Aichi 485-8561 (Japan); Tomonaka, Tetsuya [Mitsubishi Heavy Industry, 2-1-1 Shinhama, Arai-cho, Takasago, Hyogo 676-8686 (Japan)

    2015-07-01

    Gamma-ray imagers with the potential for visualizing the distribution of radioactive materials are required in the fields of astrophysics, medicine, nuclear applications, and homeland security. Based on the technology of the Si/CdTe Compton camera, we have manufactured the first commercial Compton camera for practical use. Through field tests in Fukushima, we demonstrated that the camera is capable of hot spot detection and the evaluation of radioactive decontamination.

  20. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... repeatedly to convey the feeling of a man and a woman falling in love. This raises the question of why producers and directors choose certain stylistic features to narrate certain categories of content. Through the analysis of several short film and TV clips, this article explores whether...... or not there are perceptual aspects related to specific stylistic features that enable them to be used for delimited narrational purposes. The article further attempts to reopen this particular stylistic debate by exploring the embodied aspects of visual perception in relation to specific stylistic features...

  1. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  2. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  3. Working safely in gamma radiography. A training manual for industrial radiographers

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.; Peabody, C.A.

    1982-09-01

    This manual is designed for classroom training in working safely in industrial radiography using gamma sources. The purpose is to train radiographers' assistants to work safely as a qualified gamma radiographer. The contents cover the essentials of radiation, radiation protection, emergency procedures, gamma cameras, and biological effects of radiation. (ACR)

  4. Working safely in gamma radiography. A training manual for industrial radiographers

    International Nuclear Information System (INIS)

    This manual is designed for classroom training in working safely in industrial radiography using gamma sources. The purpose is to train radiographers' assistants to work safely as a qualified gamma radiographer. The contents cover the essentials of radiation, radiation protection, emergency procedures, gamma cameras, and biological effects of radiation

  5. Measuring the Luminosity of a gamma gamma Collider with gamma gamma -> l+ l- gamma Events

    OpenAIRE

    Makarenko, V.; Moenig, K.; Shishkina, T.

    2003-01-01

    The process gamma gamma -> l+ l- is highly suppressed when the total angular momentum of the two colliding photons is zero so that it cannot be used for luminosity determination. This configuration, however is needed for Higgs production at a photon collider. It will be shown that the process gamma gamma -> l+ l- gamma can be used in this case to measure the luminosity of a collider with a precision that is good enough not to limit the error on the partial decay width Gamma(H -> gamma gamma).

  6. Radiation camera motion correction system

    Science.gov (United States)

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  7. LISS-4 camera for Resourcesat

    Science.gov (United States)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  8. Noise evaluation of Compton camera imaging for proton therapy

    CERN Document Server

    Ortega, P G; Cerutti, F; Ferrari, A; Gillam, J E; Lacasta, C; Llosá, G; Oliver, J F; Sala, P R; Solevi, P; Rafecas, M

    2015-01-01

    Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming γ energy is considered as a variable in the recons...

  9. Camera sensitivity study

    Science.gov (United States)

    Schlueter, Jonathan; Murphey, Yi L.; Miller, John W. V.; Shridhar, Malayappan; Luo, Yun; Khairallah, Farid

    2004-12-01

    As the cost/performance Ratio of vision systems improves with time, new classes of applications become feasible. One such area, automotive applications, is currently being investigated. Applications include occupant detection, collision avoidance and lane tracking. Interest in occupant detection has been spurred by federal automotive safety rules in response to injuries and fatalities caused by deployment of occupant-side air bags. In principle, a vision system could control airbag deployment to prevent this type of mishap. Employing vision technology here, however, presents a variety of challenges, which include controlling costs, inability to control illumination, developing and training a reliable classification system and loss of performance due to production variations due to manufacturing tolerances and customer options. This paper describes the measures that have been developed to evaluate the sensitivity of an occupant detection system to these types of variations. Two procedures are described for evaluating how sensitive the classifier is to camera variations. The first procedure is based on classification accuracy while the second evaluates feature differences.

  10. Proportional counter radiation camera

    Science.gov (United States)

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  11. Development of SED Camera for Quasars in Early Universe (SQUEAN)

    CERN Document Server

    Kim, Sanghyuk; Lee, Hye-In; Park, Woojin; Ji, Tae-Geun; Hyun, Minhee; Choi, Changsu; Im, Myungshin; Pak, Soojong

    2016-01-01

    We describe the characteristics and performance of a camera system, Spectral energy distribution Camera for Quasars in Early Universe (SQUEAN). It was developed to measure SEDs of high redshift quasar candidates (z $\\gtrsim$ 5) and other targets, e.g., young stellar objects, supernovae, and gamma-ray bursts, and to trace the time variability of SEDs of objects such as active galactic nuclei (AGNs). SQUEAN consists of an on-axis focal plane camera module, an auto-guiding system, and mechanical supporting structures. The science camera module is composed of a focal reducer, a customizable filter wheel, and a CCD camera on the focal plane. The filter wheel uses filter cartridges that can house filters with different shapes and sizes, enabling the filter wheel to hold twenty filters of 50 mm $\\times$ 50 mm size, ten filters of 86 mm $\\times$ 86 mm size, or many other combinations. The initial filter mask was applied to calibrate the filter wheel with high accuracy and we verified that the filter position is repea...

  12. Development of SED Camera for Quasars in Early Universe (SQUEAN)

    Science.gov (United States)

    Kim, Sanghyuk; Jeon, Yiseul; Lee, Hye-In; Park, Woojin; Ji, Tae-Geun; Hyun, Minhee; Choi, Changsu; Im, Myungshin; Pak, Soojong

    2016-11-01

    We describe the characteristics and performance of a camera system, Spectral energy distribution Camera for Quasars in Early Universe (SQUEAN). It was developed to measure SEDs of high-redshift quasar candidates (z ≳ 5) and other targets, e.g., young stellar objects, supernovae, and gamma-ray bursts, and to trace the time variability of SEDs of objects such as active galactic nuclei (AGNs). SQUEAN consists of an on-axis focal plane camera module, an autoguiding system, and mechanical supporting structures. The science camera module is composed of a focal reducer, a customizable filter wheel, and a CCD camera on the focal plane. The filter wheel uses filter cartridges that can house filters with different shapes and sizes, enabling the filter wheel to hold 20 filters of 50 mm × 50 mm size, 10 filters of 86 mm × 86 mm size, or many other combinations. The initial filter mask was applied to calibrate the filter wheel with high accuracy, and we verified that the filter position is repeatable at much less than one pixel accuracy. We installed and tested 50 nm medium bandwidth filters of 600–1050 nm and other filters at the commissioning observation in 2015 February. We found that SQUEAN can reach limiting magnitudes of 23.3–25.3 AB mag at 5σ in a one-hour total integration time.

  13. Vision Sensors and Cameras

    Science.gov (United States)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  14. Expedited, uniform processing of multi-vendor gamma test data

    International Nuclear Information System (INIS)

    Aim: Acceptance testing of gamma camera performance is time consuming. When data is collected from different vendors image format and methodology differences can result in disjointed and difficult to compare results. Even when performing NEMA specified tests consistent processing of data from multi-vendor cameras results in methodological inconsistencies. A more uniform and consistent method to process data collected from gamma cameras would be a boon to those involved in acquiring and processing such test data. Methods and Materials: Image J is an image processing program freely available on the Web at http://rsb.info.nih.gov/ij/. It can be run using a normal Web browser or installed on any computer. Since it is written in Java it is platform and operating system independent. Image J is very extensible, object based and has a large international user community in many imaging disciplines. Extensions to Image J are written using the Java programming language and the internal macro recording facility. Image J handles multiple image formats useful in nuclear medicine including DICOM, RAW, BMP, JPG, Interfile, AVI and QT. Extensions have been written to process and determine gamma camera intrinsic and extrinsic uniformity, COR errors, planar extrinsic resolution and reconstructed spatial resolution. The testing and processing adhere closely to NEMA specified procedures and result in quantitative measures of performance traceable to NEMA and manufacturers specifications. Results and Conclusions: Extensions to Image J written specifically to process gamma camera acceptance test data have resulted in considerable decrease in time to complete the analysis and allows a consistent, vendor independent, method to measure performance of cameras from multiple vendors. Quality control images from multiple camera vendors are also easily processed in a consistent fashion. The availability of this or similar platform and vendor independent software should lead to more complete

  15. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  16. The future of consumer cameras

    Science.gov (United States)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  17. Molecular breast imaging with gamma emitters.

    Science.gov (United States)

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  18. Silicon detector for a Compton Camera in Nuclear Medical Imaging

    CERN Document Server

    Meier, D; Jalocha, P; Sowicki, B; Kowal, M; Dulinski, W; Maehlum, G; Nygård, E; Yoshioka, K; Fuster, J A; Lacasta, C; Mikuz, M; Roe, S; Weilhammer, Peter; Hua, C H; Park, S J; Wilderman, S J; Zhang, L; Clinthorne, N H; Rogers, W L

    2001-01-01

    Electronically collimated gamma ca\\-me\\-ras based on Com\\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to $10^5$~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium ($^{\\rm 99m}_{43}$Tc) and americium ($^{241}_{...

  19. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  20. Gamma watermarking

    Science.gov (United States)

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  1. Gamma watermarking

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  2. SUB-CAMERA CALIBRATION OF A PENTA-CAMERA

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-03-01

    Full Text Available Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors

  3. The Clementine longwave infrared camera

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D. [Lawrence Livermore National Lab., CA (United States); Massie, M.A. [Pacific Advanced Technology, Solvang, CA (United States); Metschuleit, K. [Amber/A Raytheon Co., Goleta, CA (United States)

    1995-04-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The longwave-infrared (LWIR) camera supplemented the UV/Visible and near-infrared mapping cameras providing limited strip coverage of the moon, giving insight to the thermal properties of the soils. This camera provided {approximately}100 m spatial resolution at 400 km periselene, and a 7 km across-track swath. This 2.1 kg camera using a 128 x 128 Mercury-Cadmium-Telluride (MCT) FPA viewed thermal emission of the lunar surface and lunar horizon in the 8.0 to 9.5 {micro}m wavelength region. A description of this light-weight, low power LWIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.

  4. Gamma-ray methods

    International Nuclear Information System (INIS)

    Bulk analysis techniques using gamma radiation are described. The methods include gamma-ray induced reactions, selective gamma-ray scattering and methods which rely on natural radioactivity. The gamma-ray resonance scattering technique can be used for the determination of copper and nickel in bulk samples and drill cores. The application of gamma-gamma methods to iron ore analysis is outlined

  5. Use of gamma probe in 131I thyroid uptake studies

    International Nuclear Information System (INIS)

    Evaluation of thyroid uptake by administration of radioactive iodine is a well-defined procedure to assess patient thyroid function. In general, nuclear medicine institutions use gamma cameras coupled to pinhole collimators to perform uptake studies. With the growing use of intraoperative gamma probes in the radioguided surgical techniques, several institutions are purchasing this new and portable equipment, which can technically be also employed to assess patient's thyroid function, permitting further other applications of gamma cameras. The aim of the study was to compare thyroid uptake trails carried out with both gamma camera and intraoperative gamma probe, in order to evaluate the possible use of gamma probe for this purpose. At first a preliminary study of feasibility was carried out using a neck phantom to verify equipment efficiency with known activities of 131 I. Henceforth, work data from 12 patients undergone studies of thyroid uptakes were evaluated, 24 hours after oral administration of 370 kBq of 131 I. The maximum difference observed between the values obtained with both equipment was 60%, which demonstrated the feasibility of the proposed protocol and made clear that gamma probe can be useful for thyroid uptake studies. (author)

  6. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  7. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  8. BLAST Autonomous Daytime Star Cameras

    CERN Document Server

    Rex, M; Devlin, M J; Gundersen, J; Klein, J; Pascale, E; Wiebe, D; Rex, Marie; Chapin, Edward; Devlin, Mark J.; Gundersen, Joshua; Klein, Jeff; Pascale, Enzo; Wiebe, Donald

    2006-01-01

    We have developed two redundant daytime star cameras to provide the fine pointing solution for the balloon-borne submillimeter telescope, BLAST. The cameras are capable of providing a reconstructed pointing solution with an absolute accuracy < 5 arcseconds. They are sensitive to stars down to magnitudes ~ 9 in daytime float conditions. Each camera combines a 1 megapixel CCD with a 200 mm f/2 lens to image a 2 degree x 2.5 degree field of the sky. The instruments are autonomous. An internal computer controls the temperature, adjusts the focus, and determines a real-time pointing solution at 1 Hz. The mechanical details and flight performance of these instruments are presented.

  9. EDICAM (Event Detection Intelligent Camera)

    International Nuclear Information System (INIS)

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator

  10. GARCH Gamma

    OpenAIRE

    Robert F. Engle; Joshua V. Rosenberg

    1995-01-01

    This paper addresses the issue of hedging option positions when the underlying asset exhibits stochastic volatility. By parameterizing the volatility process as GARCH, and utilizing risk- neutral valuation, we estimate hedging parameters (delta and gamma) using Monte-Carlo simulation. We estimate hedging parameters for options on the Standard and Poor's 500 index, a bond futures index, a weighted foreign exchange rate index, and an oil futures index. We find that Black-Scholes and GARCH delta...

  11. Camera assisted multimodal user interaction

    Science.gov (United States)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  12. Regional cerebral blood flow studied by gamma camera and gamma tomography

    International Nuclear Information System (INIS)

    The conventional multi-detector systems used for studying regional cerebral blood flow, rCBF, are stationary, usually viewing the hemispheres laterally. A 2-dimensional brain image is obtained. The intrinsic limitation of this approach in recording flow in a complex 3-dimensional structure such as the brain is obvious. This difficulty can be circumvented by applying a tomographic approach to the detection of the emission of radioisotopes. Current development in this field will be outlined with special regard to the dynamic single photon emission tomograph we have developed specifically for the purpose of measuring rCBF. (orig./VJ)

  13. Cooling Tests of the NectarCAM camera for the Cherenkov Telescope Array

    CERN Document Server

    Moulin, E; Durand, D; Feirreira, O; Fesquet, M; Giebels, B; Glicenstein, J -F; Loiseau, D; Louis, F; Nunio, F; Rateau, S; consortia, CTA

    2015-01-01

    The NectarCAM is a camera proposed for the medium-sized telescopes in the framework of the Cherenkov Telescope Array (CTA), the next-generation observatory for very-high-energy gamma-ray astronomy. The cameras are designed to operate in an open environment and their mechanics must provide protection for all their components under the conditions defined for the CTA observatory. In order to operate in a stable environment and ensure the best physics performance, each NectarCAM will be enclosed in a slightly overpressurized, nearly air-tight, camera body, to prevent dust and water from entering. The total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest fraction is dissipated by the readout electronics in the modules. We present the design and implementation of the cooling system together with the test bench results obtained on the NectarCAM thermal demonstrator.

  14. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  15. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  16. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  17. Electronographic cameras for space astronomy.

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  18. The Dark Energy Survey Camera

    Science.gov (United States)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  19. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  20. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    Just like art historians have focused on e.g. composition or lighting, this dissertation takes a single stylistic parameter as its object of study: camera movement. Within film studies this localized avenue of middle-level research has become increasingly viable under the aegis of a perspective...... known as ‘the poetics of cinema.’ The dissertation embraces two branches of research within this perspective: stylistics and historical poetics (stylistic history). The dissertation takes on three questions in relation to camera movement and is accordingly divided into three major sections. The first...... cinematic poetics and interpretive criticism sensitive to style may gain from each other. There is no reason why stylistically informed interpretive criticism cannot be considered within a functional framework and there is no reason why one should not use a functional taxonomy as a basis on which to launch...

  1. Combustion pinhole-camera system

    Science.gov (United States)

    Witte, A.B.

    1982-05-19

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  2. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  3. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  4. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  5. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  6. Solid-state array cameras.

    Science.gov (United States)

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  7. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  8. Fuzzy Gamma-hypersemigroups

    OpenAIRE

    R. Ameri; Sadeghi, R.

    2013-01-01

    We introduced and study fuzzy gamma-hypersemigroups, according to fuzzy semihyper- groups as previously defined [33] and prove that results in this respect. In this regard first we introduce fuzzy hyperoperation and then study fuzzy gamma-hypersemigroup. We will proceed by study fuzzy gamma-hyperideals and fuzzy gamma-bihyperideals. Also we study the relation between the classes of fuzzy gamma-hypersemigroups and semigroups. Precisely, we associate a gamma-hypersemigroup to every fuzzy hypers...

  9. D-SPECT, a semiconductor camera: Technical aspects and clinical applications;La camera a semi-conducteur D-Spect: aspects techniques et applications cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, C.; Bertrand, S.; Kelly, A.; Veyre, A.; Mestas, D.; Cachin, F. [CLCC Jean-Perrin, Service de medecine nucleaire, 63 - Clermont-Ferrand (France); Motreff, P.; Levesque, S. [CHU Gabriel-Montpied, Service de cardiologie, 63 - Clermont-Ferrand (France); Cachin, F. [Universite d' Auvergne, UMR 990 Inserm, 63 - Clermont-Ferrand (France); Askienazy, S. [Cyclopharma, biopole Clermont-Limagne, 63 -Saint-Beauzire (France)

    2010-03-15

    Clinical practice in nuclear medicine has largely changed in the last decade, particularly with the arrival of PET/CT and SPECT/CT. New semiconductor cameras could represent the next evolution in our nuclear medicine practice. Due to the resolution and sensitivity improvement, this technology authorizes fast speed acquisitions, high contrast and resolution images performed with low activity injection. The dedicated cardiology D-SPECT camera (Spectrum Dynamics, Israel) is based on semiconductor technology and provides an original system for collimation and images reconstruction. We describe here our clinical experience in using the D-SPECT with a preliminary study comparing D-D.P.E.C.T. and conventional gamma camera. (authors)

  10. On semi-exclusive measurement of $\\gamma\\gamma\\to\\gamma\\gamma$ scattering

    CERN Document Server

    Staszewski, Rafał

    2016-01-01

    The two-photon production of photon pairs, i.e. the $\\gamma\\gamma\\to\\gamma\\gamma$ process, is studied. Different production modes regarding the elastic or inelastic coupling of the intermediate-state photons to the protons are considered. The semi-exclusive measurement, where one intact proton is registered by a dedicated forward proton detector, is discussed. As an example, the signal and background simulations are performed for the $\\gamma\\gamma\\to\\gamma\\gamma$ process mediated by the hypothetical 750 GeV resonance.

  11. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  12. Large Size Telescope camera support structures for the Cherenkov Telescope Array

    CERN Document Server

    Deleglise, G; Lamanna, G

    2013-01-01

    The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main requirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFPR) technologies. This work presents the design, static and dynamic performance of the telescope fulfilling critical specifications for the major scientific objectives of the CTA LST, e.g. Gamma Ray Burst detection.

  13. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Backes, M. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.c [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Gunten, H. von; Hildebrand, D.; Horisberger, U. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Mannheim, K. [Universitaet Wuerzburg, 97074 Wuerzburg (Germany)

    2011-02-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  14. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    Science.gov (United States)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; Gonzlez-Hernandez, J. Jess; Lee, William H.; Loose, Markus; Lotkin, Gennadiy; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Romn-Zuniga, Carols; Samuel, Mathew V.; Sparr, Leroy M.; Watson, Alan M.

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  15. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  16. Cryogenic mechanism for ISO camera

    Science.gov (United States)

    Luciano, G.

    1987-12-01

    The Infrared Space Observatory (ISO) camera configuration, architecture, materials, tribology, motorization, and development status are outlined. The operating temperature is 2 to 3 K, at 2.5 to 18 microns. Selected material is a titanium alloy, with MoS2/TiC lubrication. A stepping motor drives the ball-bearing mounted wheels to which the optical elements are fixed. Model test results are satisfactory, and also confirm the validity of the test facilities, particularly for vibration tests at 4K.

  17. Video clustering using camera motion

    OpenAIRE

    Tort Alsina, Laura

    2012-01-01

    Com el moviment de càmera en un clip de vídeo pot ser útil per a la seva classificació en termes semàntics. [ANGLÈS] This document contains the work done in INP Grenoble during the second semester of the academic year 2011-2012, completed in Barcelona during the first months of the 2012-2013. The work presented consists in a camera motion study in different types of video in order to group fragments that have some similarity in the content. In the document it is explained how the data extr...

  18. Multiple-image oscilloscope camera

    Science.gov (United States)

    Yasillo, Nicholas J.

    1978-01-01

    An optical device for placing automatically a plurality of images at selected locations on one film comprises a stepping motor coupled to a rotating mirror and lens. A mechanical connection from the mirror controls an electronic logical system to allow rotation of the mirror to place a focused image at the desired preselected location. The device is of especial utility when used to place four images on a single film to record oscilloscope views obtained in gamma radiography.

  19. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  20. Optimising camera traps for monitoring small mammals.

    Science.gov (United States)

    Glen, Alistair S; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea), feral cats (Felis catus) and hedgehogs (Erinaceuseuropaeus). Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  1. Modulation gamma resonance spectroscopy

    International Nuclear Information System (INIS)

    Possibility to control dynamic processes in a matter through gamma-resonance modulation by high-frequency external variable fields in excess of inverse lifetimes of the Moessbauer nuclei excited states, that is, within the megahertz frequency range lies in the heart of the modulation gamma-resonance spectroscopy. Through the use of the gamma-resonance process theoretical analysis methods and of the equation solution method for the density matrix with the secondary quantization of gamma-radiation field one attacks the problems dealing with the effect of both variable fields and relaxation on gamma-resonance. One has studied the gamma-radiation ultrasound modulation stages. One points out a peculiar role of the gamma-magnetic resonance effect in modulation gamma resonance spectroscopy formation. One forecasts development of the modulation gamma-resonance spectroscopy into the nonlinear gamma-resonance spectroscopy

  2. The Dark Energy Camera (DECam)

    CERN Document Server

    Honscheid, K; Abbott, T; Annis, J; Antonik, M; Barcel, M; Bernstein, R; Bigelow, B; Brooks, D; Buckley-Geer, E; Campa, J; Cardiel, L; Castander, F; Castilla, J; Cease, H; Chappa, S; Dede, E; Derylo, G; Diehl, T; Doel, P; De Vicente, J; Eiting, J; Estrada, J; Finley, D; Flaugher, B; Gaztañaga, E; Gerdes, D; Gladders, M; Guarino, V; Gutíerrez, G; Hamilton, J; Haney, M; Holland, S; Huffman, D; Karliner, I; Kau, D; Kent, S; Kozlovsky, M; Kubik, D; Kühn, K; Kuhlmann, S; Kuk, K; Leger, F; Lin, H; Martínez, G; Martínez, M; Merritt, W; Mohr, J; Moore, P; Moore, T; Nord, B; Ogando, R; Olsen, J; Onal, B; Peoples, J; Qian, T; Roe, N; Sánchez, E; Scarpine, V; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Selen, M; Shaw, T; Simaitis, V; Slaughter, J; Smith, C; Spinka, H; Stefanik, A; Stuermer, W; Talaga, R; Tarle, G; Thaler, J; Tucker, D; Walker, A; Worswick, S; Zhao, A

    2008-01-01

    In this paper we describe the Dark Energy Camera (DECam), which will be the primary instrument used in the Dark Energy Survey. DECam will be a 3 sq. deg. mosaic camera mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). It consists of a large mosaic CCD focal plane, a five element optical corrector, five filters (g,r,i,z,Y), a modern data acquisition and control system and the associated infrastructure for operation in the prime focus cage. The focal plane includes of 62 2K x 4K CCD modules (0.27"/pixel) arranged in a hexagon inscribed within the roughly 2.2 degree diameter field of view and 12 smaller 2K x 2K CCDs for guiding, focus and alignment. The CCDs will be 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). Production of the CCDs and fabrication of the optics, mechanical structure, mechanisms, and control system for DECam are underway; delivery of the instrument to CTIO is scheduled ...

  3. [Application of two-dimensional imaging to very high energy gamma ray astronomy]: Progress report, 1987-1988

    International Nuclear Information System (INIS)

    The major accomplishment of this project was the development of a gamma camera for detection of very weak flux from the Crab Nebula. In addition, the detection of a pulsed flux from Hercules X-1 and the installation of a new high resolution camera are reported. 6 figs

  4. Determination of kidney function with 99mTc-DTPA renography using a dual-head camera

    DEFF Research Database (Denmark)

    Madsen, Claus J; Møller, Michael L; Zerahn, Bo;

    2013-01-01

    Single-head gamma camera renography has been used for decades to estimate kidney function. An estimate of the glomerular filtration rate (GFR) can be obtained using Tc-diethylenetriaminepentaacetic acid (Tc-DTPA). However, because of differing attenuation, an error is introduced when the kidney...

  5. Action selection for single-camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J

    2010-01-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionall...

  6. Development of biostereometric experiments. [stereometric camera system

    Science.gov (United States)

    Herron, R. E.

    1978-01-01

    The stereometric camera was designed for close-range techniques in biostereometrics. The camera focusing distance of 360 mm to infinity covers a broad field of close-range photogrammetry. The design provides for a separate unit for the lens system and interchangeable backs on the camera for the use of single frame film exposure, roll-type film cassettes, or glass plates. The system incorporates the use of a surface contrast optical projector.

  7. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  8. Comparative evaluation of consumer grade cameras and mobile phone cameras for close range photogrammetry

    Science.gov (United States)

    Chikatsu, Hirofumi; Takahashi, Yoji

    2009-08-01

    The authors have been concentrating on developing convenient 3D measurement methods using consumer grade digital cameras, and it was concluded that consumer grade digital cameras are expected to become a useful photogrammetric device for the various close range application fields. On the other hand, mobile phone cameras which have 10 mega pixels were appeared on the market in Japan. In these circumstances, we are faced with alternative epoch-making problem whether mobile phone cameras are able to take the place of consumer grade digital cameras in close range photogrammetric applications. In order to evaluate potentials of mobile phone cameras in close range photogrammetry, comparative evaluation between mobile phone cameras and consumer grade digital cameras are investigated in this paper with respect to lens distortion, reliability, stability and robustness. The calibration tests for 16 mobile phone cameras and 50 consumer grade digital cameras were conducted indoors using test target. Furthermore, practability of mobile phone camera for close range photogrammetry was evaluated outdoors. This paper presents that mobile phone cameras have ability to take the place of consumer grade digital cameras, and develop the market in digital photogrammetric fields.

  9. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  10. True-color night vision cameras

    Science.gov (United States)

    Kriesel, Jason; Gat, Nahum

    2007-04-01

    This paper describes True-Color Night Vision cameras that are sensitive to the visible to near-infrared (V-NIR) portion of the spectrum allowing for the "true-color" of scenes and objects to be displayed and recorded under low-light-level conditions. As compared to traditional monochrome (gray or green) night vision imagery, color imagery has increased information content and has proven to enable better situational awareness, faster response time, and more accurate target identification. Urban combat environments, where rapid situational awareness is vital, and marine operations, where there is inherent information in the color of markings and lights, are example applications that can benefit from True-Color Night Vision technology. Two different prototype cameras, employing two different true-color night vision technological approaches, are described and compared in this paper. One camera uses a fast-switching liquid crystal filter in front of a custom Gen-III image intensified camera, and the second camera is based around an EMCCD sensor with a mosaic filter applied directly to the sensor. In addition to visible light, both cameras utilize NIR to (1) increase the signal and (2) enable the viewing of laser aiming devices. The performance of the true-color cameras, along with the performance of standard (monochrome) night vision cameras, are reported and compared under various operating conditions in the lab and the field. In addition to subjective criterion, figures of merit designed specifically for the objective assessment of such cameras are used in this analysis.

  11. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  12. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  13. Gamma ray imager on the DIII-D tokamak.

    Science.gov (United States)

    Pace, D C; Cooper, C M; Taussig, D; Eidietis, N W; Hollmann, E M; Riso, V; Van Zeeland, M A; Watkins, M

    2016-04-01

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons. PMID:27131674

  14. Framework for Evaluating Camera Opinions

    Directory of Open Access Journals (Sweden)

    K.M. Subramanian

    2015-03-01

    Full Text Available Opinion mining plays a most important role in text mining applications in brand and product positioning, customer relationship management, consumer attitude detection and market research. The applications lead to new generation of companies/products meant for online market perception, online content monitoring and reputation management. Expansion of the web inspires users to contribute/express opinions via blogs, videos and social networking sites. Such platforms provide valuable information for analysis of sentiment pertaining a product or service. This study investigates the performance of various feature extraction methods and classification algorithm for opinion mining. Opinions expressed in Amazon website for cameras are collected and used for evaluation. Features are extracted from the opinions using Term Document Frequency and Inverse Document Frequency (TDFIDF. Feature transformation is achieved through Principal Component Analysis (PCA and kernel PCA. Naïve Bayes, K Nearest Neighbor and Classification and Regression Trees (CART classification algorithms classify the features extracted.

  15. Illumination box and camera system

    Science.gov (United States)

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  16. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  17. Maximum likelihood positioning in the scintillation camera using depth of interaction

    International Nuclear Information System (INIS)

    The spatial (X and Y) dependence of the photomultiplier (PM) response in Anger gamma camera has been thoroughly described in the past. The light distribution to individual PM in gamma cameras--solid angle seen by each photocathode--being a truly three-dimensional problem, the depth of interaction (DOI) has to be included in the analysis of the PM output. Furthermore, DOI being a stochastic process, it has to be considered explicitly, on a event-by-event basis, while evaluating both position and energy. Specific effects of the DOI on the PM response have been quantified. The method was implemented and tested on a Monte Carlo simulator with special care to the noise modeling. Two models were developed, a first one considering only the geometric aspects of the camera and used for comparison, and a second one describing a more realistic camera environment. In a typical camera configuration and 140 keV photons, the DOI alone can account for a 6.4 mm discrepancy in position and 12% in energy between two scintillations. Variation of the DOI can still bring additional distortions when photons do not enter the crystal perpendicularly such as in slant hole, cone beam and other focusing collimators. With a 0.95 cm crystal and a 30 degree slant angle, the obliquity factor can be responsible for a 5.5 mm variation in the event position. Results indicate that both geometrical and stochastic effects of the DOI are definitely reducing the camera performances and should be included in the image formation process

  18. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs (RCCT) from the previous time period. It is...

  19. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many ca

  20. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial relationsh

  1. Camera self-calibration from translation by referring to a known camera.

    Science.gov (United States)

    Zhao, Bin; Hu, Zhaozheng

    2015-09-01

    This paper presents a novel linear method for camera self-calibration by referring to a known (or calibrated) camera. The method requires at least three images, with two images generated by the uncalibrated camera from pure translation and one image generated by the known reference camera. We first propose a method to compute the infinite homography from scene depths. Based on this, we use two images generated by translating the uncalibrated camera to recover scene depths, which are further utilized to linearly compute the infinite homography between an arbitrary uncalibrated image, and the image from the known camera. With the known camera as reference, the computed infinite homography is readily decomposed for camera calibration. The proposed self-calibration method has been tested with simulation and real image data. Experimental results demonstrate that the method is practical and accurate. This paper proposes using a "known reference camera" for camera calibration. The pure translation, as required in the method, is much more maneuverable, compared with some strict motions in the literature, such as pure rotation. The proposed self-calibration method has good potential for solving online camera calibration problems, which has important applications, especially for multicamera and zooming camera systems.

  2. A BASIC CAMERA UNIT FOR MEDICAL PHOTOGRAPHY.

    Science.gov (United States)

    SMIALOWSKI, A; CURRIE, D J

    1964-08-22

    A camera unit suitable for most medical photographic purposes is described. The unit comprises a single-lens reflex camera, an electronic flash unit and supplementary lenses. Simple instructions for use of th's basic unit are presented. The unit is entirely suitable for taking fine-quality photographs of most medical subjects by persons who have had little photographic training.

  3. Cameras Monitor Spacecraft Integrity to Prevent Failures

    Science.gov (United States)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  4. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  5. Depth Estimation Using a Sliding Camera.

    Science.gov (United States)

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm.

  6. Depth Estimation Using a Sliding Camera.

    Science.gov (United States)

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm. PMID:26685238

  7. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  8. Fazendo 3d com uma camera so

    CERN Document Server

    Lunazzi, J J

    2010-01-01

    A simple system to make stereo photography or videos based in just two mirrors was made in 1989 and recently adapted to a digital camera setup. Um sistema simples para fazer fotografia ou videos em estereo baseado em dois espelhos que dividem o campo da imagem foi criado no ano 1989, e recentemente adaptado para camera digital.

  9. Laser Dazzling of Focal Plane Array Cameras

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Dimmeler, A.; Eberle, B; Heuvel, J.C. van den; Mieremet, A.L.; Bekman, H.H.P.T.; Mellier, B.

    2007-01-01

    Laser countermeasures against infrared focal plane array cameras aim to saturate the full camera image. In this paper we will discuss the results of dazzling experiments performed with MWIR lasers. In the “low energy” pulse regime we observe an increasing saturated area with increasing power. The si

  10. Laser Dazzling of Focal Plane Array Cameras

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Heuvel, J.C. van den; Mieremet, A.J.; Mellier, B.; Putten, F.J.M. van

    2007-01-01

    Laser countermeasures against infrared focal plane array cameras aim to saturate the full camera image. In this paper we will discuss the results of three different dazzling experiments performed with MWIR lasers and show that the obtained results are independent of the read-out mechanism of the cam

  11. Creating and Using a Camera Obscura

    Science.gov (United States)

    Quinnell, Justin

    2012-01-01

    The camera obscura (Latin for "darkened room") is the earliest optical device and goes back over 2500 years. The small pinhole or lens at the front of the room allows light to enter and this is then "projected" onto a screen inside the room. This differs from a camera, which projects its image onto light-sensitive material. Originally images were…

  12. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Science.gov (United States)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun

    2016-09-01

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  13. Flow visualization by mobile phone cameras

    Science.gov (United States)

    Cierpka, Christian; Hain, Rainer; Buchmann, Nicolas A.

    2016-06-01

    Mobile smart phones were completely changing people's communication within the last ten years. However, these devices do not only offer communication through different channels but also devices and applications for fun and recreation. In this respect, mobile phone cameras include now relatively fast (up to 240 Hz) cameras to capture high-speed videos of sport events or other fast processes. The article therefore explores the possibility to make use of this development and the wide spread availability of these cameras in the terms of velocity measurements for industrial or technical applications and fluid dynamics education in high schools and at universities. The requirements for a simplistic PIV (particle image velocimetry) system are discussed. A model experiment of a free water jet was used to prove the concept and shed some light on the achievable quality and determine bottle necks by comparing the results obtained with a mobile phone camera with data taken by a high-speed camera suited for scientific experiments.

  14. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    the viewpoint movements to the player type and her game-play style. Ultimately, the methodology is applied to a 3D platform game and is evaluated through a controlled experiment; the results suggest that the resulting adaptive cinematographic experience is favoured by some player types and it can generate......Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose...... a novel approach to virtual camera control, which builds upon camera control and player modelling to provide the user with an adaptive point-of-view. To achieve this goal, we propose a methodology to model the player’s preferences on virtual camera movements and we employ the resulting models to tailor...

  15. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... industry and game AI research focus on the devel- opment of increasingly sophisticated systems to automate the control of the virtual camera integrating artificial intel- ligence algorithms within physical simulations. However, in both industry and academia little research has been carried out...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...

  16. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  17. Gamma-ray imaging detectors based on silicon drift detectors arrays coupled to a single scintillator

    International Nuclear Information System (INIS)

    Arrays of Silicon Drift Detectors (SDDs) coupled to a single scintillator, according to the Anger Camera scheme, can be successfully employed in gamma-ray imaging. The low value of output capacitance of a SDD allows to reach a lower electronics noise with respect to conventional silicon photodiodes used in scintillation detection. A small prototype of gamma camera with sub-millimeter resolution has been realized by using a monolithic array of small SDDs (5 mm2 each unit) with on-chip JFET. For the realization of gamma cameras of larger areas based on single units assembled in array, SDDs of 30 mm2 of area with external JFET have been also experimented

  18. NIR Camera/spectrograph: TEQUILA

    Science.gov (United States)

    Ruiz, E.; Sohn, E.; Cruz-Gonzalez, I.; Salas, L.; Parraga, A.; Torres, R.; Perez, M.; Cobos, F.; Tejada, C.; Iriarte, A.

    1998-11-01

    We describe the configuration and operation modes of the IR camera/spectrograph called TEQUILA, based on a 1024X1024 HgCdTe FPA (HAWAII). The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN$_2$ dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An optomechanical assembly cooled to -30oC that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provisions to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8 m Mexican Infrared-Optical Telescope (TIM).

  19. Cloud Computing with Context Cameras

    Science.gov (United States)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  20. Cloud Computing with Context Cameras

    CERN Document Server

    Pickles, A J

    2013-01-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every 2 minutes through BVriz filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of 0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-comp...

  1. Smart Camera Technology Increases Quality

    Science.gov (United States)

    2004-01-01

    When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.

  2. True three-dimensional camera

    Science.gov (United States)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  3. Illuminant spectrum estimation using a digital color camera and a color chart

    Science.gov (United States)

    Shi, Junsheng; Yu, Hongfei; Huang, Xiaoqiao; Chen, Zaiqing; Tai, Yonghang

    2014-10-01

    Illumination estimation is the main step in color constancy processing, also an important prerequisite for digital color image reproduction and many computer vision applications. In this paper, a method for estimating illuminant spectrum is investigated using a digital color camera and a color chart under the situation when the spectral reflectance of the chart is known. The method is based on measuring CIEXYZ of the chart using the camera. The first step of the method is to gain camera's color correction matrix and gamma values by taking a photo of the chart under a standard illuminant. The second step is to take a photo of the chart under an estimated illuminant, and the camera's inherent RGB values are converted to the standard sRGB values and further converted to CIEXYZ of the chart. Based on measured CIEXYZ and known spectral reflectance of the chart, the spectral power distribution (SPD) of the illuminant is estimated using the Wiener estimation and smoothing estimation. To evaluate the performance of the method quantitatively, the goodnessfitting coefficient (GFC) was used to measure the spectral match and the CIELAB color difference metric was used to evaluate the color match between color patches under the estimated and actual SPDs. The simulated experiment was carried to estimate CIE standard illuminant D50 and C using X-rite ColorChecker 24-color chart, the actual experiment was carried to estimate daylight and illuminant A using two consumergrade cameras and the chart, and the experiment results verified feasible of the investigated method.

  4. Application of two-dimensional imaging to very-high-energy gamma-ray astronomy, May 1, 1983-April 30, 1984

    International Nuclear Information System (INIS)

    Significant progress has been made on the development of the fast large-aperture camera on the 10m reflector on Mt. Hopkins at Whipple Observatory. Preliminary observations with the 19-element camera show that the camera behaves as predicted. We propose to expand the camera to 37 elements and to recoat the mirrors of the 10m reflector. An additional 3m reflector (supplied by Iowa State University) will be added to the system to improve its angular discrimination. The camera will be used in the winter of 1983-1984 in an extensive series of observations of candidate gamma-ray sources

  5. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-20 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  6. Sky camera geometric calibration using solar observations

    Science.gov (United States)

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. Calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.

  7. Thermal characterization of a NIR hyperspectral camera

    Science.gov (United States)

    Parra, Francisca; Meza, Pablo; Pezoa, Jorge E.; Torres, Sergio N.

    2011-11-01

    The accuracy achieved by applications employing hyperspectral data collected by hyperspectral cameras depends heavily on a proper estimation of the true spectral signal. Beyond question, a proper knowledge about the sensor response is key in this process. It is argued here that the common first order representation for hyperspectral NIR sensors does not represent accurately their thermal wavelength-dependent response, hence calling for more sophisticated and precise models. In this work, a wavelength-dependent, nonlinear model for a near infrared (NIR) hyperspectral camera is proposed based on its experimental characterization. Experiments have shown that when temperature is used as the input signal, the camera response is almost linear at low wavelengths, while as the wavelength increases the response becomes exponential. This wavelength-dependent behavior is attributed to the nonlinear responsivity of the sensors in the NIR spectrum. As a result, the proposed model considers different nonlinear input/output responses, at different wavelengths. To complete the representation, both the nonuniform response of neighboring detectors in the camera and the time varying behavior of the input temperature have also been modeled. The experimental characterization and the proposed model assessment have been conducted using a NIR hyperspectral camera in the range of 900 to 1700 [nm] and a black body radiator source. The proposed model was utilized to successfully compensate for both: (i) the nonuniformity noise inherent to the NIR camera, and (ii) the stripping noise induced by the nonuniformity and the scanning process of the camera while rendering hyperspectral images.

  8. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  9. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (''bang-bang'') closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator ''seasickness'' caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator System SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system

  10. Rehabilitation of gamma

    Science.gov (United States)

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  11. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  12. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  13. A solid state streak camera

    Science.gov (United States)

    Kleinfelder, Stuart; Kwiatkowski, Kris; Shah, Ashish

    2005-03-01

    A monolithic solid-state streak camera has been designed and fabricated in a standard 0.35 μm, 3.3V, thin-oxide digital CMOS process. It consists of a 1-D linear array of 150 integrated photodiodes, followed by fast analog buffers and on-chip, 150-deep analog frame storage. Each pixel's front-end consists of an n-diffusion / p-well photodiode, with fast complementary reset transistors, and a source-follower buffer. Each buffer drives a line of 150 sample circuits per pixel, with each sample circuit consisting of an n-channel sample switch, a 0.1 pF double-polysilicon sample capacitor, a reset switch to definitively clear the capacitor, and a multiplexed source-follower readout buffer. Fast on-chip sample clock generation was designed using a self-timed break-before-make operation that insures the maximum time for sample settling. The electrical analog bandwidth of each channels buffer and sampling circuits was designed to exceed 1 GHz. Sampling speeds of 400 M-frames/s have been achieved using electrical input signals. Operation with optical input signals has been demonstrated at 100 MHz sample rates. Sample output multiplexing allows the readout of all 22,500 samples (150 pixels times 150 samples per pixel) in about 3 ms. The chip"s output range was a maximum of 1.48 V on a 3.3V supply voltage, corresponding to a maximum 2.55 V swing at the photodiode. Time-varying output noise was measured to be 0.51 mV, rms, at 100 MHz, for a dynamic range of ~11.5 bits, rms. Circuit design details are presented, along with the results of electrical measurements and optical experiments with fast pulsed laser light sources at several wavelengths.

  14. GammaWorkshops Proceedings

    DEFF Research Database (Denmark)

    Strålberg, Elisabeth; Klemola, Seppo; Nielsen, Sven Poul;

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities...... it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day’s meeting, GammaWorkshops, was held in September at Risø-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited...... to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical...

  15. Determining camera parameters for round glassware measurements

    Science.gov (United States)

    Baldner, F. O.; Costa, P. B.; Gomes, J. F. S.; Filho, D. M. E. S.; Leta, F. R.

    2015-01-01

    Nowadays there are many types of accessible cameras, including digital single lens reflex ones. Although these cameras are not usually employed in machine vision applications, they can be an interesting choice. However, these cameras have many available parameters to be chosen by the user and it may be difficult to select the best of these in order to acquire images with the needed metrological quality. This paper proposes a methodology to select a set of parameters that will supply a machine vision system with the needed quality image, considering the measurement required of a laboratory glassware.

  16. Uncertainty of temperature measurement with thermal cameras

    Science.gov (United States)

    Chrzanowski, Krzysztof; Matyszkiel, Robert; Fischer, Joachim; Barela, Jaroslaw

    2001-06-01

    All main international metrological organizations are proposing a parameter called uncertainty as a measure of the accuracy of measurements. A mathematical model that enables the calculations of uncertainty of temperature measurement with thermal cameras is presented. The standard uncertainty or the expanded uncertainty of temperature measurement of the tested object can be calculated when the bounds within which the real object effective emissivity (epsilon) r, the real effective background temperature Tba(r), and the real effective atmospheric transmittance (tau) a(r) are located and can be estimated; and when the intrinsic uncertainty of the thermal camera and the relative spectral sensitivity of the thermal camera are known.

  17. Close-range photogrammetry with video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  18. Screen-Camera Calibration Using Gray Codes

    OpenAIRE

    FRANCKEN, Yannick; Hermans, Chris; Bekaert, Philippe

    2009-01-01

    In this paper we present a method for efficient calibration of a screen-camera setup, in which the camera is not directly facing the screen. A spherical mirror is used to make the screen visible to the camera. Using Gray code illumination patterns, we can uniquely identify the reflection of each screen pixel on the imaged spherical mirror. This allows us to compute a large set of 2D-3D correspondences, using only two sphere locations. Compared to previous work, this means we require less manu...

  19. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  20. Neural network method for characterizing video cameras

    Science.gov (United States)

    Zhou, Shuangquan; Zhao, Dazun

    1998-08-01

    This paper presents a neural network method for characterizing color video camera. A multilayer feedforward network with the error back-propagation learning rule for training, is used as a nonlinear transformer to model a camera, which realizes a mapping from the CIELAB color space to RGB color space. With SONY video camera, D65 illuminant, Pritchard Spectroradiometer, 410 JIS color charts as training data and 36 charts as testing data, results show that the mean error of training data is 2.9 and that of testing data is 4.0 in a 2563 RGB space.

  1. Task Panel Sensing with a Movable Camera

    Science.gov (United States)

    Wolfe, William J.; Mathis, Donald W.; Magee, Michael; Hoff, William A.

    1990-03-01

    This paper discusses the integration of model based computer vision with a robot planning system. The vision system deals with structured objects with several movable parts (the "Task Panel"). The robot planning system controls a T3-746 manipulator that has a gripper and a wrist mounted camera. There are two control functions: move the gripper into position for manipulating the panel fixtures (doors, latches, etc.), and move the camera into positions preferred by the vision system. This paper emphasizes the issues related to repositioning the camera for improved viewpoints.

  2. APEX sub-mm monitoring of gamma-ray blazars

    CERN Document Server

    Larsson, S; Weiss, A; Angelakis, E; Krichbaum, T P; Nestoras, I; Zensus, J A; Axelsson, M; Nilsson, D; Ryde, F; Hjalmarsdotter, L; Larsson, J; Lundgren, A; Mac-Auliffe, F; Parra, R; Siringo, G

    2012-01-01

    So far, no systematic long-term blazar monitoring programs and detailed variability studies exist at sub-mm wavelengths. Here, we present a new sub-mm blazar monitoring program using the APEX 12-m telescope. A sample of about 40 gamma-ray blazars has been monitored since 2007/2008 with the LABOCA bolometer camera at 345 GHz. First light curves, preliminary variability results and a first comparison with the longer cm/mm bands (F-GAMMA program) are presented, demonstrating the extreme variability characteristics of blazars at such short wavelengths.

  3. 3-D localization of gamma ray sources with coded apertures for medical applications

    Science.gov (United States)

    Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. P.

    2015-09-01

    Several small gamma cameras for radioguided surgery using CdTe or CdZnTe have parallel or pinhole collimators. Coded aperture imaging is a well-known method for gamma ray source directional identification, applied in astrophysics mainly. The increase in efficiency due to the substitution of the collimators by the coded masks renders the method attractive for gamma probes used in radioguided surgery. We have constructed and operationally verified a setup consisting of two CdTe gamma cameras with Modified Uniform Redundant Array (MURA) coded aperture masks of rank 7 and 19 and a video camera. The 3-D position of point-like radioactive sources is estimated via triangulation using decoded images acquired by the gamma cameras. We have also developed code for both fast and detailed simulations and we have verified the agreement between experimental results and simulations. In this paper we present a simulation study for the spatial localization of two point sources using coded aperture masks with rank 7 and 19.

  4. The observation of Delta Sct and Gamma Dor stars by using MONS satellite

    CERN Document Server

    Zerbi, F M; Aerts, C; Handler, G; Kaye, A B

    2000-01-01

    The MONS space experiment will be able to verify some of the most important topics in the asteroseismologic studies of Delta Sct and Gamma Dor stars. We discuss how the $\\gamma$ Doradus can be considered possible "bridges" between the opacity driven overstable pulsation and the stochastically excited solar like oscillation. For this reason the possible inclusion of a Gamma Dor representative in the MONS main target list is presented and discussed. To study Delta Sct stars, an appropriate frequency resolution, comparable to or better than what is currently achieved by ground-based observations, is necessary and hence two runs are recommended. To avoid over-scheduling of the Main Camera, a possible combination of observations from the Main Camera and from the Star Trackers is proposed. As a result, key-objects could be adequately monitored, affording the possibility to enter into details of amplitude variations. Simultaneously, the same results could be obtained on two Gamma Dor stars.

  5. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  6. Action selection for single-camera SLAM.

    Science.gov (United States)

    Vidal-Calleja, Teresa A; Sanfeliu, Alberto; Andrade-Cetto, Juan

    2010-12-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionally, the system has been ported to a mobile robotic platform, thus closing the control-estimation loop. To show the viability of the approach, simulations and experiments are presented for the unconstrained motion of a handheld camera and for the motion of a mobile robot with nonholonomic constraints. When combined with a path planner, the technique safely drives to a marked goal while, at the same time, producing an optimal estimated map. PMID:20350845

  7. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  8. Calibration Procedures on Oblique Camera Setups

    Science.gov (United States)

    Kemper, G.; Melykuti, B.; Yu, C.

    2016-06-01

    Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager) is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna -IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first step with the help of

  9. CALIBRATION PROCEDURES ON OBLIQUE CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna –IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first

  10. Increase in the Array Television Camera Sensitivity

    Science.gov (United States)

    Shakhrukhanov, O. S.

    A simple adder circuit for successive television frames that enables to considerably increase the sensitivity of such radiation detectors is suggested by the example of array television camera QN902K.

  11. Traffic Cameras, MDTA Cameras, Camera locations at MDTA, Camera location inside the tunnel (SENSITIVE), Published in 2010, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Traffic Cameras dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2010. It is described as...

  12. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  13. A Survey of Catadioptric Omnidirectional Camera Calibration

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-02-01

    Full Text Available For dozen years, computer vision becomes more popular, in which omnidirectional camera has a larger field of view and widely been used in many fields, such as: robot navigation, visual surveillance, virtual reality, three-dimensional reconstruction, and so on. Camera calibration is an essential step to obtain three-dimensional geometric information from a two-dimensional image. Meanwhile, the omnidirectional camera image has catadioptric distortion, which need to be corrected in many applications, thus the study of such camera calibration method has important theoretical significance and practical applications. This paper firstly introduces the research status of catadioptric omnidirectional imaging system; then the image formation process of catadioptric omnidirectional imaging system has been given; finally a simple classification of omnidirectional imaging method is given, and we discussed the advantages and disadvantages of these methods.

  14. Compact stereo endoscopic camera using microprism arrays.

    Science.gov (United States)

    Yang, Sung-Pyo; Kim, Jae-Jun; Jang, Kyung-Won; Song, Weon-Kook; Jeong, Ki-Hun

    2016-03-15

    This work reports a microprism array (MPA) based compact stereo endoscopic camera with a single image sensor. The MPAs were monolithically fabricated by using two-step photolithography and geometry-guided resist reflow to form an appropriate prism angle for stereo image pair formation. The fabricated MPAs were transferred onto a glass substrate with a UV curable resin replica by using polydimethylsiloxane (PDMS) replica molding and then successfully integrated in front of a single camera module. The stereo endoscopic camera with MPA splits an image into two stereo images and successfully demonstrates the binocular disparities between the stereo image pairs for objects with different distances. This stereo endoscopic camera can serve as a compact and 3D imaging platform for medical, industrial, or military uses.

  15. Selecting the Right Camera for Your Desktop.

    Science.gov (United States)

    Rhodes, John

    1997-01-01

    Provides an overview of camera options and selection criteria for desktop videoconferencing. Key factors in image quality are discussed, including lighting, resolution, and signal-to-noise ratio; and steps to improve image quality are suggested. (LRW)

  16. Vacuum compatible miniature CCD camera head

    Science.gov (United States)

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  17. AUTOMATIC THEFT SECURITY SYSTEM (SMART SURVEILLANCE CAMERA)

    OpenAIRE

    Veena G.S; Chandrika Prasad; Khaleel K

    2013-01-01

    The proposed work aims to create a smart application camera, with the intention of eliminating the need for a human presence to detect any unwanted sinister activities, such as theft in this case. Spread among the campus, are certain valuable biometric identification systems at arbitrary locations. The application monitosr these systems (hereafter referred to as “object”) using our smart camera system based on an OpenCV platform. By using OpenCV Haar Training, employing the Vio...

  18. The Large APEX Bolometer Camera LABOCA

    CERN Document Server

    Siringo, G; Kovács, A; Schuller, F; Weiss, A; Esch, W; Gemuend, H P; Jethava, N; Lundershausen, G; Colin, A; Guesten, R; Menten, K M; Beelen, A; Bertoldi, F; Beeman, J W; Haller, E E

    2009-01-01

    The Large APEX Bolometer Camera, LABOCA, has been commissioned for operation as a new facility instrument t the Atacama Pathfinder Experiment 12m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 micron atmospheric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.

  19. CMOS Camera Array With Onboard Memory

    Science.gov (United States)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  20. Imaging camera with multiwire proportional chamber

    International Nuclear Information System (INIS)

    The camera for imaging radioisotope dislocations for use in nuclear medicine or for other applications, claimed in the patent, is provided by two multiwire lattices for the x-coordinate connected to a first coincidence circuit, and by two multiwire lattices for the y-coordinate connected to a second coincidence circuit. This arrangement eliminates the need of using a collimator and increases camera sensitivity while reducing production cost. (Ha)

  1. Image noise induced errors in camera positioning

    OpenAIRE

    G. Chesi; Hung, YS

    2007-01-01

    The problem of evaluating worst-case camera positioning error induced by unknown-but-bounded (UBB) image noise for a given object-camera configuration is considered. Specifically, it is shown that upper bounds to the rotation and translation worst-case error for a certain image noise intensity can be obtained through convex optimizations. These upper bounds, contrary to lower bounds provided by standard optimization tools, allow one to design robust visual servo systems. © 2007 IEEE.

  2. A stereoscopic lens for digital cinema cameras

    Science.gov (United States)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  3. A comparison of colour micrographs obtained with a charged couple devise (CCD) camera and a 35-mm camera

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Smedegaard, Jesper; Jensen, Peter Koch;

    2005-01-01

    ophthalmology, colour CCD camera, colour film, digital imaging, resolution, micrographs, histopathology, light microscopy......ophthalmology, colour CCD camera, colour film, digital imaging, resolution, micrographs, histopathology, light microscopy...

  4. Lag Camera: A Moving Multi-Camera Array for Scene-Acquisition

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2007-04-01

    Full Text Available Many applications, such as telepresence, virtual reality, and interactive walkthroughs, require a three-dimensional (3Dmodel of real-world environments. Methods, such as lightfields, geometric reconstruction and computer vision use cameras to acquire visual samples of the environment and construct a model. Unfortunately, obtaining models of real-world locations is a challenging task. In particular, important environments are often actively in use, containing moving objects, such as people entering and leaving the scene. The methods previously listed have difficulty in capturing the color and structure of the environment while in the presence of moving and temporary occluders. We describe a class of cameras called lag cameras. The main concept is to generalize a camera to take samples over space and time. Such a camera, can easily and interactively detect moving objects while continuously moving through the environment. Moreover, since both the lag camera and occluder are moving, the scene behind the occluder is captured by the lag camera even from viewpoints where the occluder lies in between the lag camera and the hidden scene. We demonstrate an implementation of a lag camera, complete with analysis and captured environments.

  5. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  6. New developments to improve SO2 cameras

    Science.gov (United States)

    Luebcke, P.; Bobrowski, N.; Hoermann, C.; Kern, C.; Klein, A.; Kuhn, J.; Vogel, L.; Platt, U.

    2012-12-01

    The SO2 camera is a remote sensing instrument that measures the two-dimensional distribution of SO2 (column densities) in volcanic plumes using scattered solar radiation as a light source. From these data SO2-fluxes can be derived. The high time resolution of the order of 1 Hz allows correlating SO2 flux measurements with other traditional volcanological measurement techniques, i.e., seismology. In the last years the application of SO2 cameras has increased, however, there is still potential to improve the instrumentation. First of all, the influence of aerosols and ash in the volcanic plume can lead to large errors in the calculated SO2 flux, if not accounted for. We present two different concepts to deal with the influence of ash and aerosols. The first approach uses a co-axial DOAS system that was added to a two filter SO2 camera. The camera used Filter A (peak transmission centred around 315 nm) to measures the optical density of SO2 and Filter B (centred around 330 nm) to correct for the influence of ash and aerosol. The DOAS system simultaneously performs spectroscopic measurements in a small area of the camera's field of view and gives additional information to correct for these effects. Comparing the optical densities for the two filters with the SO2 column density from the DOAS allows not only a much more precise calibration, but also to draw conclusions about the influence from ash and aerosol scattering. Measurement examples from Popocatépetl, Mexico in 2011 are shown and interpreted. Another approach combines the SO2 camera measurement principle with the extremely narrow and periodic transmission of a Fabry-Pérot interferometer. The narrow transmission window allows to select individual SO2 absorption bands (or series of bands) as a substitute for Filter A. Measurements are therefore more selective to SO2. Instead of Filter B, as in classical SO2 cameras, the correction for aerosol can be performed by shifting the transmission window of the Fabry

  7. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  8. Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Hoon; Kim, Young Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Ju Hahn; Lee, Chun Sik [Dept. of Physics, Chung-Ang University, Seoul (Korea, Republic of)

    2012-03-15

    In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.

  9. How the $\\gamma \\gamma$ Resonance Stole Christmas

    CERN Document Server

    Craig, Nathaniel; Kilic, Can; Thomas, Scott

    2015-01-01

    The experimental and theoretical implications of heavy di-gauge boson resonances that couple to, or are comprised of, new charged and strongly interacting matter are investigated. Observation and measurement of ratios of the resonant di-gauge boson channels $WW$, $ZZ$, $\\gamma \\gamma$, $Z \\gamma$, and $gg$ in the form of di-jets, provide a rather direct -- and for some ratios a rather robust -- probe of the gauge representations of the new matter. For a spin-zero resonance with the quantum numbers of the vacuum, the ratios of resonant $WW$ and $ZZ$ to $\\gamma \\gamma$ channels, as well as the longitudinal versus transverse polarization fractions in the $WW$ and $ZZ$ channels, provide extraordinarily sensitive probes for possible mixing with the Higgs boson, while di-Higgs and di-top resonant channels, $hh$ and $tt$, provide somewhat less sensitivity. We present a survey of possible underlying models for di-gauge boson resonances by considering various limits for the mass of the new charged and strongly interac...

  10. How to Build Your Own Document Camera for around $100

    Science.gov (United States)

    Van Orden, Stephen

    2010-01-01

    Document cameras can have great utility in second language classrooms. However, entry-level consumer document cameras start at around $350. This article describes how the author built three document cameras and offers suggestions for how teachers can successfully build their own quality document camera using a webcam for around $100.

  11. 16 CFR 1025.45 - In camera materials.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false In camera materials. 1025.45 Section 1025.45... PROCEEDINGS Hearings § 1025.45 In camera materials. (a) Definition. In camera materials are documents... excluded from the public record. (b) In camera treatment of documents and testimony. The Presiding...

  12. Fog camera to visualize ionizing charged particles; Camara de niebla para visualizar particulas cargadas ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo A, L.; Rodriguez R, N. I.; Vega C, H. R., E-mail: ingtrujilloa@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  13. Design of Endoscopic Capsule With Multiple Cameras.

    Science.gov (United States)

    Gu, Yingke; Xie, Xiang; Li, Guolin; Sun, Tianjia; Wang, Dan; Yin, Zheng; Zhang, Pengfei; Wang, Zhihua

    2015-08-01

    In order to reduce the miss rate of the wireless capsule endoscopy, in this paper, we propose a new system of the endoscopic capsule with multiple cameras. A master-slave architecture, including an efficient bus architecture and a four level clock management architecture, is applied for the Multiple Cameras Endoscopic Capsule (MCEC). For covering more area of the gastrointestinal tract wall with low power, multiple cameras with a smart image capture strategy, including movement sensitive control and camera selection, are used in the MCEC. To reduce the data transfer bandwidth and power consumption to prolong the MCEC's working life, a low complexity image compressor with PSNR 40.7 dB and compression rate 86% is implemented. A chipset is designed and implemented for the MCEC and a six cameras endoscopic capsule prototype is implemented by using the chipset. With the smart image capture strategy, the coverage rate of the MCEC prototype can achieve 98% and its power consumption is only about 7.1 mW. PMID:25376042

  14. Calibration of action cameras for photogrammetric purposes.

    Science.gov (United States)

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-09-18

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  15. Calibration of Action Cameras for Photogrammetric Purposes

    Directory of Open Access Journals (Sweden)

    Caterina Balletti

    2014-09-01

    Full Text Available The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a easy to handle, (b capable of performing under extreme conditions and more importantly (c able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  16. Modulated CMOS camera for fluorescence lifetime microscopy.

    Science.gov (United States)

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  17. Modulated CMOS camera for fluorescence lifetime microscopy.

    Science.gov (United States)

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition.

  18. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  19. Calibration of action cameras for photogrammetric purposes.

    Science.gov (United States)

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  20. Camera Calibration with Radial Variance Component Estimation

    Science.gov (United States)

    Mélykuti, B.; Kruck, E. J.

    2014-11-01

    Camera calibration plays a more and more important role in recent times. Beside real digital aerial survey cameras the photogrammetric market is dominated by a big number of non-metric digital cameras mounted on UAVs or other low-weight flying platforms. The in-flight calibration of those systems has a significant role to enhance the geometric accuracy of survey photos considerably. It is expected to have a better precision of photo measurements in the center of images then along the edges or in the corners. With statistical methods the accuracy of photo measurements in dependency of the distance of points from image center has been analyzed. This test provides a curve for the measurement precision as function of the photo radius. A high number of camera types have been tested with well penetrated point measurements in image space. The result of the tests led to a general consequence to show a functional connection between accuracy and radial distance and to give a method how to check and enhance the geometrical capability of the cameras in respect to these results.

  1. Managing a large database of camera fingerprints

    Science.gov (United States)

    Goljan, Miroslav; Fridrich, Jessica; Filler, Tomáš

    2010-01-01

    Sensor fingerprint is a unique noise-like pattern caused by slightly varying pixel dimensions and inhomogeneity of the silicon wafer from which the sensor is made. The fingerprint can be used to prove that an image came from a specific digital camera. The presence of a camera fingerprint in an image is usually established using a detector that evaluates cross-correlation between the fingerprint and image noise. The complexity of the detector is thus proportional to the number of pixels in the image. Although computing the detector statistic for a few megapixel image takes several seconds on a single-processor PC, the processing time becomes impractically large if a sizeable database of camera fingerprints needs to be searched through. In this paper, we present a fast searching algorithm that utilizes special "fingerprint digests" and sparse data structures to address several tasks that forensic analysts will find useful when deploying camera identification from fingerprints in practice. In particular, we develop fast algorithms for finding if a given fingerprint already resides in the database and for determining whether a given image was taken by a camera whose fingerprint is in the database.

  2. Phase camera experiment for Advanced Virgo

    Science.gov (United States)

    Agatsuma, Kazuhiro; van Beuzekom, Martin; van der Schaaf, Laura; van den Brand, Jo

    2016-07-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO2 lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance.

  3. Hidden cameras everything you need to know about covert recording, undercover cameras and secret filming

    CERN Document Server

    Plomin, Joe

    2016-01-01

    Providing authoritative information on the practicalities of using hidden cameras to expose abuse or wrongdoing, this book is vital reading for anyone who may use or encounter secret filming. It gives specific advice on using phones or covert cameras and unravels the complex legal and ethical issues that need to be considered.

  4. Mobile phone camera benchmarking: combination of camera speed and image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-01-01

    When a mobile phone camera is tested and benchmarked, the significance of quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. For example, ISO 15781 defines several measurements to evaluate various camera system delays. However, the speed or rapidity metrics of the mobile phone's camera system have not been used with the quality metrics even if the camera speed has become more and more important camera performance feature. There are several tasks in this work. Firstly, the most important image quality metrics are collected from the standards and papers. Secondly, the speed related metrics of a mobile phone's camera system are collected from the standards and papers and also novel speed metrics are identified. Thirdly, combinations of the quality and speed metrics are validated using mobile phones in the market. The measurements are done towards application programming interface of different operating system. Finally, the results are evaluated and conclusions are made. The result of this work gives detailed benchmarking results of mobile phone camera systems in the market. The paper defines also a proposal of combined benchmarking metrics, which includes both quality and speed parameters.

  5. Calibration method for a central catadioptric-perspective camera system.

    Science.gov (United States)

    He, Bingwei; Chen, Zhipeng; Li, Youfu

    2012-11-01

    A central catadioptric-perspective camera system is widely used nowadays. A critical problem is that current calibration methods cannot determine the extrinsic parameters between the central catadioptric camera and a perspective camera effectively. We present a novel calibration method for a central catadioptric-perspective camera system, in which the central catadioptric camera has a hyperbolic mirror. Two cameras are used to capture images of one calibration pattern at different spatial positions. A virtual camera is constructed at the origin of the central catadioptric camera and faced toward the calibration pattern. The transformation between the virtual camera and the calibration pattern could be computed first and the extrinsic parameters between the central catadioptric camera and the calibration pattern could be obtained. Three-dimensional reconstruction results of the calibration pattern show a high accuracy and validate the feasibility of our method.

  6. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  7. Medical Compton cameras based on semiconductor detectors design and experimental development

    CERN Document Server

    Scannavini, M G

    2001-01-01

    The work presented in this thesis is aimed at the study of Compton scatter as an alternative method of collimating gamma-rays in nuclear medicine applications. Conventional approaches to radioisotope medical imaging and their current limitations are examined. The theory of electronic collimation based on Compton scatter is introduced and it is shown that in principle its application could provide an advantageous imaging method, with both high spatial resolution and high sensitivity. The current status of research in the field, of Compton cameras is assessed and potential niches for applications of clinical interest are suggested. The criteria for the design of a Compton scatter camera are examined. A variety of semiconductors are considered for the construction of an electronic collimator and results from Monte Carlo computer simulations are presented for photon energies of clinical interest. It is concluded that the most viable approach is to design a silicon collimator for the imaging of high-energy (511 ke...

  8. Installation and first light of the BOOTES-IR near-IR camera

    Science.gov (United States)

    Cunniffe, R.; Castro-Tirado, A. J.; Kubánek, P.; Jelínek, M.; Vítek, S.; Gorosabel, J.; de Ugarte Postigo, A.; Riva, A.; Zerbi, F.; Claret, A.; Sánchez-Fernández, C.

    2008-07-01

    BIRCAM is a near-infrared (0.8-2.5um) cryogenic camera based on a 1Kx1K HgCdTe array. It was designed for - and is now mounted at - one of the Nasmyth foci of the fast-slewing 0.6 m BOOTES-IR telescope at the Sierra Nevada Observatory (OSN) in Spain. The primary science mission is prompt Gamma Ray-Burst afterglow research, with an implied demand for extremely time-efficient operation. We describe the challenges of installing a heavy camera on a small high-speed telescope, of integrating the dithering mechanism, the filterwheel, and the array itself into a high-efficiency instrument, the design of the software to meet the requirements.

  9. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  10. Gamma-ray sources

    International Nuclear Information System (INIS)

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  11. Gamma-sterilization

    International Nuclear Information System (INIS)

    The author makes a survey of his experience in sterilization and sterility control of medical products. At present three different methods are used, steamsterilization, gassterilizing and gammasterilizing. The investments and costs for gamma radiation is presented and a comparison of the costs for gamma- and gassterilization including sterility control is made. (M.S.)

  12. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  13. Camera placement in integer lattices (extended abstract)

    Science.gov (United States)

    Pocchiola, Michel; Kranakis, Evangelos

    1990-09-01

    Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).

  14. Results of the prototype camera for FACT

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Backes, M. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Commichau, S.; Commichau, V. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Dorner, D. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); INTEGRAL Science Data Center, CH-1290 Versoix (Switzerland); Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Kraehenbuehl, T., E-mail: thomas.kraehenbuehl@phys.ethz.c [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Kranich, D.; Lorenz, E.; Lustermann, W. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Mannheim, K. [Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2011-05-21

    The maximization of the photon detection efficiency (PDE) is a key issue in the development of cameras for Imaging Atmospheric Cherenkov Telescopes. Geiger-mode Avalanche Photodiodes (G-APD) are a promising candidate to replace the commonly used photomultiplier tubes by offering a larger PDE and in addition a facilitated handling. The FACT (First G-APD Cherenkov Telescope) project evaluates the feasibility of this change by building a camera based on 1440 G-APDs for an existing small telescope. As a first step towards a full camera, a prototype module using 144 G-APDs was successfully built and tested. The strong temperature dependence of G-APDs is compensated using a feedback system, which allows to keep the gain of the G-APDs constant to 0.5%.

  15. PEOPLE REIDENTIFCATION IN A DISTRIBUTED CAMERA NETWORK

    Directory of Open Access Journals (Sweden)

    Icaro Oliveira de Oliveira

    2010-06-01

    Full Text Available This paper presents an approach to the object reidentification problem in a distributed camera network system. The reidentification or reacquisition problem consists essentially on the matching process of images acquired from different cameras. This work is applied in a monitored environment by cameras. This application is important to modern security systems, in which the targets presence identification in the environment expands the capacity of action by security agents in real time and provides important parameters like localization for each target. We used target’s interest points and target’s color with features for reidentification. The satisfactory results were obtained from real experiments in public video datasets and synthetic images with noise.

  16. Mechanical Design of the LSST Camera

    Energy Technology Data Exchange (ETDEWEB)

    Nordby, Martin; Bowden, Gordon; Foss, Mike; Guiffre, Gary; /SLAC; Ku, John; /Unlisted; Schindler, Rafe; /SLAC

    2008-06-13

    The LSST camera is a tightly packaged, hermetically-sealed system that is cantilevered into the main beam of the LSST telescope. It is comprised of three refractive lenses, on-board storage for five large filters, a high-precision shutter, and a cryostat that houses the 3.2 giga-pixel CCD focal plane along with its support electronics. The physically large optics and focal plane demand large structural elements to support them, but the overall size of the camera and its components must be minimized to reduce impact on the image stability. Also, focal plane and optics motions must be minimized to reduce systematic errors in image reconstruction. Design and analysis for the camera body and cryostat will be detailed.

  17. HIGH SPEED KERR CELL FRAMING CAMERA

    Science.gov (United States)

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  18. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  19. The CALET Gamma-ray Burst Monitor (CGBM)

    CERN Document Server

    Yamaoka, Kazutaka; Sakamoto, Takanori; Takahashi, Ichiro; Hara, Takumi; Yamamoto, Tatsuma; Kawakubo, Yuta; Inoue, Ry ota; Terazawa, Shunsuke; Fujioka, Rie; Senuma, Kazumasa; Nakahira, Satoshi; Tomida, Hiroshi; Ueno, Shiro; Torii, Shoji; Cherry, Michael L; Ricciarini, Sergio

    2013-01-01

    The CALET Gamma-ray Burst Monitor (CGBM) is the secondary scientific instrument of the CALET mission on the International Space Station (ISS), which is scheduled for launch by H-IIB/HTV in 2014. The CGBM provides a broadband energy coverage from 7 keV to 20 MeV, and simultaneous observations with the primary instrument Calorimeter (CAL) in the GeV - TeV gamma-ray range and Advanced Star Camera (ASC) in the optical for gamma-ray bursts (GRBs) and other X-gamma-ray transients. The CGBM consists of two kinds of scintillators: two LaBr$_3$(Ce) (7 keV - 1 MeV) and one BGO (100 keV - 20 MeV) each read by a single photomultiplier. The LaBr$_3$(Ce) crystal, used in space for the first time here for celestial gamma-ray observations, enables GRB observations over a broad energy range from low energy X-ray emissions to gamma rays. The detector performance and structures have been verified using the bread-board model (BBM) via vibration and thermal vacuum tests. The CALET is currently in the development phase of the prot...

  20. Resolved photon and multi-component model for $\\gamma^*$p and $\\gamma^* \\gamma^*$ total cross section

    OpenAIRE

    Szczurek, A.; Pietrycki, T.

    2005-01-01

    We generalize our previous model for $\\gamma^* p$ scattering to $\\gamma \\gamma$ scattering. Performing a new simultaneous fit to $\\gamma^* p$ and $\\gamma \\gamma$ total cross section we find an optimal set of parameters to describe both processes. We propose new measures of factorization breaking for $\\gamma^* \\gamma^*$ collisions and present results for our new model.

  1. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  2. Rapid optical variability of the gamma-ray burst grb 080319b and its central engine

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Bondar, S.; Guarnieri, A.; Bartolini, C.; Greco, D.; Piccioni, A.

    2010-07-01

    The results of observations of the optical emission that accompanied the gamma-ray burst GRB 080319B are reported. Observations were made using the TORTORA fast wide-field camera mounted on the REM robotic telescope in Chile. The behavior of the light curve before, during, and after the gamma-ray burst is described. The light curve consists of four, possibly periodic, 5-7 s long peaks 8-9 s apart. The behavior of the burst in the gamma and optical energy ranges are compared and the results of the theoretical interpretation of this comparison are reported.

  3. Colliding. gamma. e- and. gamma gamma. -beams on the basis of electron-positron linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1983-08-01

    Main properties of the ..gamma..e and ..gamma gamma.. collisions are discussed in some detail with application to the generation of colliding ..gamma..e and ..gamma gamma.. beams basing on the designed linear accelerators with colliding e/sup +/e/sup -/ beams, VLEEP and SLC, as it was proposed in a previous work. Intensive ..gamma.. beams with the energy 50 GeV would be produced from scattering of the laser light focused to the electron beams of the accelerators. Laser radiation is focused to the electron beam in the conversion region at a distance of about 10 cm from the place of collision. After scattering on electrons high-energy photons move practically along the electron primary trajectories and are focused in the collision region. The electrons are deflected from the collision region by means of approximately 1 T magnetic field. Then the produced ..gamma..-beam collides with an electron beam or a similar ..gamma..-beam. In the case when the maximum luminosity (L) is attained, the luminosity distribution in the invariant mass of the ..gamma..e or ..gamma gamma.. systems is wide. A monochromatization of the collisions up to the level of 5-10% is possible. That will entail a decrease in the luminosity, the procedure is most effective if one uses the electrons and the laser photons with opposite helicities. Examples of physically interesting problems to be investigated with the proposed ..gamma..e and ..gamma gamma.. beams are suggested.

  4. Embedded image enhancement for high-throughput cameras

    Science.gov (United States)

    Geerts, Stan J. C.; Cornelissen, Dion; de With, Peter H. N.

    2014-03-01

    This paper presents image enhancement for a novel Ultra-High-Definition (UHD) video camera offering 4K images and higher. Conventional image enhancement techniques need to be reconsidered for the high-resolution images and the low-light sensitivity of the new sensor. We study two image enhancement functions and evaluate and optimize the algorithms for embedded implementation in programmable logic (FPGA). The enhancement study involves high-quality Auto White Balancing (AWB) and Local Contrast Enhancement (LCE). We have compared multiple algorithms from literature, both with objective and subjective metrics. In order to objectively compare Local Contrast (LC), an existing LC metric is modified for LC measurement in UHD images. For AWB, we have found that color histogram stretching offers a subjective high image quality and it is among the algorithms with the lowest complexity, while giving only a small balancing error. We impose a color-to-color gain constraint, which improves robustness of low-light images. For local contrast enhancement, a combination of contrast preserving gamma and single-scale Retinex is selected. A modified bilateral filter is designed to prevent halo artifacts, while significantly reducing the complexity and simultaneously preserving quality. We show that by cascading contrast preserving gamma and single-scale Retinex, the visibility of details is improved towards the level appropriate for high-quality surveillance applications. The user is offered control over the amount of enhancement. Also, we discuss the mapping of those functions on a heterogeneous platform to come to an effective implementation while preserving quality and robustness.

  5. Analysis of Brown camera distortion model

    Science.gov (United States)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  6. Camera-enabled techniques for organic synthesis

    Directory of Open Access Journals (Sweden)

    Steven V. Ley

    2013-05-01

    Full Text Available A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future.

  7. Camera-enabled techniques for organic synthesis

    Science.gov (United States)

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  8. A multidetector scintillation camera with 254 channels

    DEFF Research Database (Denmark)

    Sveinsdottir, E; Larsen, B; Rommer, P;

    1977-01-01

    A computer-based scintillation camera has been designed for both dynamic and static radionuclide studies. The detecting head has 254 independent sodium iodide crystals, each with a photomultiplier and amplifier. In dynamic measurements simultaneous events can be recorded, and 1 million total counts...... per second can be accommodated with less than 0.5% loss in any one channel. This corresponds to a calculated deadtime of 5 nsec. The multidetector camera is being used for 133Xe dynamic studies of regional cerebral blood flow in man and for 99mTc and 197 Hg static imaging of the brain....

  9. The High-Speed and Wide-Field TORTORA Camera: description & results .

    Science.gov (United States)

    Greco, G.; Beskin, G.; Karpov, S.; Guarnieri, A.; Bartolini, C.; Bondar, S.; Piccioni, A.; Molinari, E.

    We present the description and the most significant results of the wide-field and ultra-fast TORTORA camera devoted to the investigation of rapid changes in light intensity in a phenomenon occurring within an extremely short period of time and randomly distributed over the sky. In particular, the ground-based TORTORA observations synchronized with the gamma -ray BAT telescope on board of the Swift satellite has permitted to trace the optical burst time-structure of the Naked-Eye GRB 080319B with an unprecedented level of accuracy.

  10. A Prototype Si/CdTe Compton Camera and the Polarization Measurement

    OpenAIRE

    Mitani, Takefumi; Tanaka, Takaaki; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Takashima, Takeshi; Tajima, Hiroyasu; Nakamura, Hidehito; Nomachi, Masaharu; Nakamoto, Tatsuya; Fukazawa, Yasushi

    2004-01-01

    A Compton camera is the most promising approach for gamma-ray detection in the energy region from several hundred keV to MeV, especially for application in high energy astrophysics. In order to obtain good angular resolution, semiconductor detectors such as silicon, germanium and cadmium telluride(CdTe) have several advantages over scintillation detectors, which have been used so far. Based on the recent advances of high resolution CdTe and silicon imaging detectors, we are working on a Si/Cd...

  11. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  12. Far field 3D localization of radioactive hot spots using a coded aperture camera.

    Science.gov (United States)

    Shifeng, Sun; Zhiming, Zhang; Lei, Shuai; Daowu, Li; Yingjie, Wang; Yantao, Liu; Xianchao, Huang; Haohui, Tang; Ting, Li; Pei, Chai; Yiwen, Zhang; Wei, Zhou; Mingjie, Yang; Cunfeng, Wei; Chuangxin, Ma; Long, Wei

    2016-01-01

    This paper presents a coded aperture method to remotely estimate the radioactivity of a source. The activity is estimated from the detected counts and the estimated source location, which is extracted by factoring the effect of aperture magnification. A 6mm thick tungsten-copper alloy coded aperture mask is used to modulate the incoming gamma-rays. The location of point and line sources in all three dimensions was estimated with an accuracy of less than 10% when the source-camera distance was about 4 m. The estimated activities were 17.6% smaller and 50.4% larger than the actual activities for the point and line sources, respectively.

  13. The Rutherford Appleton Laboratory's Mark I Multiwire Proportional Counter positron camera

    International Nuclear Information System (INIS)

    A small model of a proposed large aperture positron camera has been developed at Rutherford Appleton Laboratory. Based on Multiwire Proportional Counter technology it uses lead foil cathodes which function simultaneously as converters for the 511 keV gamma rays and readout electrodes for a delay line readout system. The detectors have been built up into a portable imaging system complete with a dedicated computer for data taking, processing and display. A complete hardware system and sufficient software was provided to permit hospital based colleagues to generate useful images easily. A complete description of the system is given with performance figures and some of the images obtained are presented. (author)

  14. Study of the Polarimetric Performance of a Si/CdTe Semiconductor Compton Camera for the Hitomi Satellite

    CERN Document Server

    Katsuta, Junichiro; Watanabe, Shin; Odaka, Hirokazu; Uchida, Yusuke; Uchida, Nagomi; Mizuno, Tsunefumi; Fukazawa, Yasushi; Hayashi, Katsuhiro; Habata, Sho; Ichinohe, Yuto; Kitaguchi, Takao; Ohno, Masanori; Ohta, Masayuki; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tajima, Hiroyasu; Yuasa, Takayuki; Itou, Masayoshi

    2016-01-01

    Gamma-ray polarization offers a unique probes into the geometry of the gamma-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excellent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649--0.701 (inner part) and 0.637--0.653 (outer part) at 122.2 keV and 0.610--0.651 (inner part) and 0.564--0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ~3%.

  15. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  16. Analogue Sum ASIC for L1 Trigger Decision in Cherenkov Telescope Cameras

    CERN Document Server

    Barrio, Joan Abel; Boix, Joan; Delagnes, Eric; Delgado, Carlos; Coromina, Lluis Freixas; Gascon, David; Guilloux, Fabrice; Coto, Ruben Lopez; Martinez, Gustavo; Sanuy, Andreu; Tejedor, Luis Angel

    2014-01-01

    The Cherenkov Telescope Array (CTA) project aims to build the largest ground-based gamma-ray observatory based on an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The CTA will implement a multi-level trigger system to distinguish between gamma ray-like induced showers and background images induced by night sky background (NSB) light. The trigger system is based on coincident detections among pixels (level 0 trigger), clusters of pixels (level 1) or telescopes. In this article, the first version of the application specific integrated circuit (ASIC) for Level 1 trigger system is presented, capable of working with different Level 0 strategies and different trigger region sizes. In addition, it complies with all the requirements specified by the CTA project, specially the most critical ones as regards noise, bandwidth, dynamic range and power consumption. All these features make the presented system very suitable for use in the CTA cameras and improve the features of discrete components prototypes of...

  17. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  18. Gamma and beta intra-operative imaging probes

    International Nuclear Information System (INIS)

    Small area (∝1.5 cm2) scintillation cameras for imaging gammas and betas using inter-changeable detector front ends were built and characterized. Components common to both emission imaging cameras include: (1) fiber optic bundles 2-3 m long, comprised of multi-clad fibers which connect the scintillation detector to (2) an MC-PMT; (3) parallel MC-PMT outputs feed a resistive positioning network and i-V converter/line driver network which produce balanced +X, -X, +Y, and -Y outputs; and (4) four ADCs and a Macintosh PC for system control and image display. The beta and gamma devices used distinct scintillation detectors which were characterized by both simulation and measurement. The beta camera utilized a 0.5 mm by 1.25 cm φ CaF2(Eu) scintillation crystal coupled, through a diffusing light guide, to 19 2-mm φ optical fibers. These front-end fibers are in turn coupled by a more flexible fiber bundle to the MC-PMT. CaF2(Eu) has high light output, high beta sensitivity, and low gamma sensitivity. Image signals are histogrammed and displayed after Anger logic computations are performed on digitized signals. The beta camera has 2 and 2 x 2 mm2 CsI(Tl) and NaI(Tl) crystals of various lengths, and 3 mm thick continuous crystals. Configurations using 4 x 4 element matrices with one-to-one coupling between crystals and fiber channels, and light diffusers between each crystal matrix and fibers were evaluated. (orig.)

  19. Evaluation of mobile phone camera benchmarking using objective camera speed and image quality metrics

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-11-01

    When a mobile phone camera is tested and benchmarked, the significance of image quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. However, the speed or rapidity metrics of the mobile phone's camera system has not been used with the quality metrics even if the camera speed has become a more and more important camera performance feature. There are several tasks in this work. First, the most important image quality and speed-related metrics of a mobile phone's camera system are collected from the standards and papers and, also, novel speed metrics are identified. Second, combinations of the quality and speed metrics are validated using mobile phones on the market. The measurements are done toward application programming interface of different operating systems. Finally, the results are evaluated and conclusions are made. The paper defines a solution to combine different image quality and speed metrics to a single benchmarking score. A proposal of the combined benchmarking metric is evaluated using measurements of 25 mobile phone cameras on the market. The paper is a continuation of a previous benchmarking work expanded with visual noise measurement and updates of the latest mobile phone versions.

  20. GammaWorkshops Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramebaeck, H. (ed.) (Swedish Defence Research Agency (Sweden)); Straalberg, E. (Institute for Energy Technology, Kjeller (Norway)); Klemola, S. (Radiation and Nuclear Safety Authority, STUK (Finland)); Nielsen, Sven P. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Palsson, S.E. (Icelandic Radiation Safety Authority (Iceland))

    2012-01-15

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)