WorldWideScience

Sample records for breast tumorigenesis revelation

  1. SIGNIFICANCE AND CORRELATION OF MAPK/ERK2 AND PI3-K IN HUMAN BREAST TUMORIGENESIS

    Institute of Scientific and Technical Information of China (English)

    MA Ping; LI Bai-lin; ZHANG Ying; SONG Min; SONG Ji-ye

    2006-01-01

    Objective: MAPK ((Mitogen-actived Protein Kinase) and PI3-K (Phosphatidylinositol 3-kinase) pathways have been implicated in the mitogenic pathways regulating cell growth, proliferation, differentiation and transformation and thus involved in tumorigenesis. This study was designed to examined the protein expression, activity and mRNA levels of both ERK and PI3-K in a series of breast tumors and adjacent mammary glands, and to figure out the changes of ERK2 and PI3-K during the dynamic process of breast tumorigenesis. Methods: A series of breast tumors and adjacent mammary glands were collected at surgery, including 37 cases of breast cancer, 6 cases of atypical hyperplasia-breast carcinoma in situ and 15 cases of benign conditions. Western blot, kinase activity assay and RT-PCR were used to detect the protein expression, kinase activity and mRNA level, respectively. Results: The revels of protein, activity and mRNA of ERK2 were elevated during the stages of both initiation and progression. The increasing tendency in breast cancer was equal to atypical hyperplasia -in situ carcinoma, but higher than in benign lesion and adjacent normal mammary gland. PI3-K was activated during the stage of progression of breast cancer. An inverse correlation between the activity of PI3-K and ERK2 in breast cancer was found. Conclusion: Our findings indicate that ERK2 may perform its function during both the stages of breast cancer initiation and breast cancer progression, while PI3-K may exert its effect during the stage of breast cancer progression. Both PI3-k and ERK2 are involved in the tumorigenesis of breast cancer.

  2. Cyr61 promotes breast tumorigenesis and cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Miaw-Sheue; Bogart, Daphne F.; Castaneda, Jessica M.; Li, Patricia; Lupu, Ruth

    2002-01-16

    Cyr61, a member of the CCN family of genes, is an angiogenic factor. We have shown that it is overexpressed in invasive and metastatic human breast cancer cells and tissues. Here, we investigated whether Cyr61 is necessary and/or sufficient to bypass the ''normal'' estrogen (E2) requirements for breast cancer cell growth. Our results demonstrate that under E2-depleted condition, Cyr61 is sufficient to induce MCF-7 cells grow in the absence of E2. MCF-7 cells transfected with Cyr61 (MCF-7/Cyr61) became E2-independent but still E2-responsive. On the other hand, MCF-7/vector cells remain E2-dependent. MCF-7/Cyr61 cells acquire an antiestrogen-resistant phenotype, one of the most common clinical occurrences during breast cancer progression. MCF-7/Cyr61 cells are anchorage-independent and capable of forming Matrigel outgrowth patterns in the absence of E2. ERa expression in MCF-7/Cyr61 cells is decreased although still functional. Additionally, MCF-7/Cyr61 cells are tumorigenic in ovariectomized athymic nude mice. The tumors resemble human invasive carcinomas with increased vascularization and overexpression of vascular endothelial growth factor (VEGF). Our results demonstrate that Cyr61 is a tumor-promoting factor and a key regulator of breast cancer progression. This study provides evidence that Cyr61 is sufficient to induce E2-independence and anti-E2 resistance, and to promote invasiveness in vitro, and to induce tumorigenesis in vivo, all of which are characteristics of an aggressive breast cancer phenotype.

  3. Loss of Dickkopf 3 Promotes the Tumorigenesis of Basal Breast Cancer.

    Science.gov (United States)

    Lorsy, Eva; Topuz, Aylin Sophie; Geisler, Cordelia; Stahl, Sarah; Garczyk, Stefan; von Stillfried, Saskia; Hoss, Mareike; Gluz, Oleg; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar

    2016-01-01

    Dickkopf 3 (DKK3) has been associated with tumor suppression of various tumor entities including breast cancer. However, the functional impact of DKK3 on the tumorigenesis of distinct molecular breast cancer subtypes has not been considered so far. Therefore, we initiated a study analyzing the subtype-specific DKK3 expression pattern as well as its prognostic and functional impact with respect to breast cancer subtypes. Based on three independent tissue cohorts including one in silico dataset (n = 30, n = 463 and n = 791) we observed a clear down-regulation of DKK3 expression in breast cancer samples compared to healthy breast tissue controls on mRNA and protein level. Interestingly, most abundant reduction of DKK3 expression was detected in the highly aggressive basal breast cancer subtype. Analyzing a large in silico dataset comprising 3,554 cases showed that low DKK3 mRNA expression was significantly associated with reduced recurrence free survival (RFS) of luminal and basal-like breast cancer cases. Functionally, DKK3 re-expression in human breast cancer cell lines led to suppression of cell growth possibly mediated by up-regulation of apoptosis in basal-like but not in luminal-like breast cancer cell lines. Moreover, ectopic DKK3 expression in mesenchymal basal breast cancer cells resulted in partial restoration of epithelial cell morphology which was molecularly supported by higher expression of epithelial markers like E-Cadherin and down-regulation of mesenchymal markers such as Snail 1. Hence, we provide evidence that down-regulation of DKK3 especially promotes tumorigenesis of the aggressive basal breast cancer subtype. Further studies decoding the underlying molecular mechanisms of DKK3-mediated effects may help to identify novel targeted therapies for this clinically highly relevant breast cancer subtype. PMID:27467270

  4. CHL1 is involved in human breast tumorigenesis and progression

    International Nuclear Information System (INIS)

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression

  5. CHL1 is involved in human breast tumorigenesis and progression

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-Hong [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ma, Qin [Department of Oncology, The General Hospital of Tianjin Medical University, Tianjin (China); Shi, Ye-Hui [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie; Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Shu-Fen [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Tong, Zhong-Sheng, E-mail: 83352162@qq.com [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  6. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  7. The Rab2A GTPase Promotes Breast Cancer Stem Cells and Tumorigenesis via Erk Signaling Activation

    Directory of Open Access Journals (Sweden)

    Man-Li Luo

    2015-04-01

    Full Text Available Proline-directed phosphorylation is regulated by the prolyl isomerase Pin1, which plays a fundamental role in driving breast cancer stem-like cells (BCSCs. Rab2A is a small GTPase critical for vesicle trafficking. Here, we show that Pin1 increases Rab2A transcription to promote BCSC expansion and tumorigenesis in vitro and in vivo. Mechanistically, Rab2A directly interacts with and prevents dephosphorylation/inactivation of Erk1/2 by the MKP3 phosphatase, resulting in Zeb1 upregulation and β-catenin nuclear translocation. In cancer cells, Rab2A is activated via gene amplification, mutation or Pin1 overexpression. Rab2A overexpression or mutation endows BCSC traits to primary normal human breast epithelial cells, whereas silencing Rab2A potently inhibits the expansion and tumorigenesis of freshly isolated BCSCs. Finally, Rab2A overexpression correlates with poor clinical outcome in breast cancer patients. Thus, Pin1/Rab2A/Erk drives BCSC expansion and tumorigenicity, suggesting potential drug targets.

  8. The functional and structural characterization of a novel oncogene GIG47 involved in the breast tumorigenesis

    Directory of Open Access Journals (Sweden)

    Han Kyou-Hoon

    2012-07-01

    Full Text Available Abstract Background A candidate oncogene GIG47, previously known as a neudesin with a neurotrophic activity, was identified by applying the differential expression analysis method. Methods As a first step to understand the molecular role of GIG47, we analyzed the expression profile of GIG47 in multiple human cancers including the breast cancer and characterized its function related to human carcinogenesis. Based on this oncogenic role of GIG47, we then embarked on determining the high-resolution structure of GIG47. We have applied multidimensional heteronuclear NMR methods to GIG47. Results GIG47 was over-expressed in primary breast tumors as well as other human tumors including carcinomas of the uterine cervix, malignant lymphoma, colon, lung, skin, and leukemia. To establish its role in the pathogenesis of breast cancer in humans, we generated stable transfectants of MCF7 cells. The ectopic expression of GIG47 in MCF7 cells promoted the invasiveness in the presence of 50% serum. In addition, it also resulted in the increased tumorigenicity in in vivo tumor formation assay. The tumorigenesis mechanism involving GIG47 might be mediated by the activation of MAPK and PI3K pathways. These results indicate that GIG47 plays a role in the breast tumorigenesis, thus representing a novel target for the treatment of breast cancer. To facilitate the development of GIG47-targeted therapeutics, we determined the structural configuration of GIG47. The high-resolution structure of GIG47 was obtained by combination of NMR and homology modeling. The overall structure of GIG47 has four α-helices and 6 β-strands, arranged in a β1-α1-β2-β3-α2-β4-α3-α4-β5-β6 topology. There is a potential heme/steroid binding pocket formed between two helices α2 and α3. Conclusion The determined three-dimensional structure of GIG47 may facilitate the development of potential anti-cancer agents.

  9. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  10. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  11. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  12. Progesterone receptors – animal models and cell signaling in breast cancer: The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis

    International Nuclear Information System (INIS)

    A relatively small number of cells in the normal human mammary gland express receptors for oestrogen and progesterone (ER and PR), and there is almost complete dissociation between steroid receptor expression and proliferation. Increased expression of the ER alpha (ERα) and loss of the inverse relationship between receptor expression and proliferation occur at the very earliest stages of tumorigenesis, implying that dysregulation of ERα expression contributes to breast tumour formation. There is evidence also for alterations in the ratio between the two PR isoforms in premalignant breast lesions. Elucidation of the factors mediating the effects of oestradiol and progesterone on development of the normal breast and of the mechanisms by which expression of the ERα and the PR isoforms is controlled could identify new targets for breast cancer prevention and improved prediction of breast cancer risk

  13. Role of HGF in obesity-associated tumorigenesis: C3(1)-TAg mice as a model for human basal-like breast cancer

    OpenAIRE

    Sundaram, Sneha; Freemerman, Alex J.; Johnson, Amy R.; Milner, J. Justin; McNaughton, Kirk K.; Galanko, Joseph A.; Bendt, Katharine M.; Darr, David B.; Charles M Perou; Melissa A Troester; Makowski, Liza

    2013-01-01

    Obesity is associated with basal-like breast cancer (BBC), an aggressive breast cancer subtype. The objective of this study was to determine whether obesity promotes BBC onset in adulthood and to evaluate the role of stromal-epithelial interactions in obesity-associated tumorigenesis. We hypothesized that hepatocyte growth factor (HGF) plays a promoting role in BBC, which express the HGF receptor, c-Met. In C3(1)-Tag mice, a murine model of BBC, we demonstrated that obesity leads to a signifi...

  14. MicroRNA-490 inhibits tumorigenesis and progression in breast cancer

    OpenAIRE

    Zhao L; Zheng XY

    2016-01-01

    Lin Zhao,1 Xin-Yu Zheng1,21Department of Breast Surgery, the First Hospital of China Medical University, 2The First Laboratory, Cancer Institute of China Medical University, Shenyang, People’s Republic of ChinaAbstract: MicroRNAs are consistently reported to regulate gene expression in all cancer cell types by modulating a wide range of biological processes, including cell proliferation, differentiation, and apoptosis, which are associated with tumor development and progression. Previou...

  15. Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis

    International Nuclear Information System (INIS)

    Overexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective. Virus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model. VRP-neu prevented or significantly inhibited the growth of HER2/neu-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-neu completely prevented tumor formation in and death of MMTV-c-neu transgenic mice, and resulted in high levels of neu-specific CD8+ T lymphocytes and serum IgG. On the basis of these findings, clinical testing of this vaccine in patients with HER2/neu+ breast cancer is warranted

  16. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis

    Science.gov (United States)

    Stewart, Michael K. G.; Plante, Isabelle; Penuela, Silvia; Laird, Dale W.

    2016-01-01

    Pannexin1 (Panx1) subunits oligomerize to form large-pore channels between the intracellular and extracellular milieu that have been shown to regulate proliferation, differentiation and cell death mechanisms. These key cellular responses are ultimately necessary for normal tissue development and function but the role of Panx1 in development, differentiation and function in many tissues remains unexplored, including that of the breast. Panx1 was identified to be expressed in the mammary gland through western blot and immunofluorescent analysis and is dynamically upregulated during pregnancy and lactation. In order to evaluate the role of Panx1 in the context of mammary gland development and function, Panx1-/- mice were evaluated in comparison to wild-type mice in the mammary glands of virgin, lactating and involuting mice. Our results revealed that Panx1 ablation did not affect virgin or involuting mammary glands following histological and whole mount analysis. Panx1 was necessary for timely alveolar development during early lactation based on a decreased number of alveolar lumen following histological analysis and reduced proliferation following Ki67 immunofluorescent labelling. Importantly, the loss of Panx1 in lactating mammary glands did not overtly affect epithelial or secretory differentiation of the mammary gland suggesting that Panx1 is not critical in normal mammary gland function. In addition, PANX1 mRNA expression was correlated with negative clinical outcomes in patients with breast cancer using in silico arrays. Together, our results suggest that Panx1 is necessary for timely alveolar development following the transition from pregnancy to lactation, which may have implications extending to patients with breast cancer. PMID:27099931

  17. The direct effect of Focal Adhesion Kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    International Nuclear Information System (INIS)

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible) system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD), and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p < 0.05) by FAKsiRNA. Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal specific expression of genes affected by

  18. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  19. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis

    OpenAIRE

    Ben-David, Uri; Ha, Gavin; Khadka, Prasidda; Jin, Xin; Wong, Bang; Franke, Lude; Golub, Todd R.

    2016-01-01

    Aneuploidy and copy-number alterations (CNAs) are a hallmark of human cancer. Although genetically engineered mouse models (GEMMs) are commonly used to model human cancer, their chromosomal landscapes remain underexplored. Here we use gene expression profiles to infer CNAs in 3,108 samples from 45 mouse models, providing the first comprehensive catalogue of chromosomal aberrations in cancer GEMMs. Mining this resource, we find that most chromosomal aberrations accumulate late during breast tu...

  20. Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer.

    Science.gov (United States)

    Khanal, Prem; Kim, Garam; Lim, Sung-Chul; Yun, Hyo-Jeong; Lee, Kwang Youl; Choi, Hoo-Kyun; Choi, Hong Seok

    2013-11-01

    Pin1, a conserved eukaryotic peptidyl-prolyl cis/trans isomerase, has profound effects on numerous key-signaling molecules, and its deregulation contributes to disease, particularly cancer. Although Pin1-mediated prolyl isomerization of protein servers as a regulatory switch in signaling pathways, the significance of proline isomerase activity in chromatin modifying complex remains unclear. Here, we identify Pin1 as a key negative regulator for suppressor of variegation 3-9 homologue 1 (SUV39H1) stability, a major methyltransferase responsible for histone H3 trimethylation on Lys9 (H3K9me3). Pin1 interacts with SUV39H1 in a phosphorylation-dependent manner and promotes ubiquitination-mediated degradation of SUV39H1. Consequently, Pin1 reduces SUV39H1 abundance and suppresses SUV39H1 ability to induce H3K9me3. In contrast, depletion of Pin1 in cancer cells leads to elevated SUV39H1 expression, which subsequently increases H3K9me3, inhibiting tumorigenecity of cancer cells. In a xenograft model with 4T1 metastatic mouse breast carcinoma cells, Pin1 overexpression increases tumor growth, whereas SUV39H1 overexpression abrogates it. In human breast cancer patients, immunohistochemical staining shows that Pin1 levels are negatively correlated with SUV39H1 as well as H3K9me3 levels. Thus, Pin1-mediated reduction of SUV39H1 stability contributes to convey oncogenic signals for aggressiveness of human breast cancer, suggesting that Pin1 may be a promising drug target for anticancer therapy. PMID:23934277

  1. The Models of Revelational Communication

    Directory of Open Access Journals (Sweden)

    S. Mahdi Lotfi

    2012-05-01

    Full Text Available   Quranic revelation is a verbal communication between the Prophet and God which is in the communication model includes sender, recipient, purpose and channels of communication. Muslim scholars and some of the orientalists, offering a variety of communication models that can be investigated in the form of linear and nonlinear models. Linear models contains different elements of revelated communication and attempt to draw process of sending revelation. Some part of this models have a structural fault. nonlinear models also drawing the process of prophet soul ascending and take a different process for sending of revelation but ascending soul of prophet oppose with quran, traditions and communication principles. This type of models is also deficient and weak. This paper review the different models of communication and criticize them from quranic and hadiths point of view .

  2. The Models of Revelational Communication

    Directory of Open Access Journals (Sweden)

    Lotfi, S.M

    2012-01-01

    Full Text Available Quranic revelation is a verbal communication between the Prophet and God which is in the communication model includes sender, recipient, purpose and channels of communication. Muslim scholars and some of the orientalists, offering a variety of communication models that can be investigated in the form of linear and nonlinear models. Linear models contains different elements of revelated communication and attempt to draw process of sending revelation. Some part of this models have a structural fault. nonlinear models also drawing the process of prophet soul ascending and take a different process for sending of revelation but ascending soul of prophet oppose with quran, traditions and communication principles. This type of models is also deficient and weak. This paper review the different models of communication and criticize them from quranic and hadiths point of view.

  3. Seduction, persecution, revelation.

    Science.gov (United States)

    Laplanche, J

    1995-08-01

    The author argues that seduction is not primarily a fantasy but a 'real' situation, which lies at the heart of the other two allegedly primal major scenarios: castration and the primal scene. This statement is not to be confused with an event-based realism, as, for this to be achieved, a third category of reality must be postulated. This reality, constantly misconstrued by authors as corresponding to material and psychological reality, is that of the message conveyed and, more specifically in the case of analysis, the enigmatic message. To establish his position the author re-examines Freud's presentation of the Schreber case. The sexual other and his intrusion are the essential points of Freud's analysis in the first part of his study. In the second part, however, desexualisation (in the name of love) and a return to the ego, as the centre of the whole process, both being evident in the 'primary' sentence from which Freud proposes to derive everything: 'I (a man) love him (a man)'. This leads us to a consideration of Fichte's concept of Bekanntmachung, the 'announcement' by the other and to an argument that the message stemming from the other is irreducible to a projection by the subject, within the three domains of primal seduction, paranoia and religious 'revelation'.

  4. Advances of RANKL/RANK pathway in tumorigenesis and metastasis of breast cancer%乳腺癌发生演进中RANKL/RANK通路作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    唐振宁; 张帆; 姜军

    2011-01-01

    OBJECTIVE: To summarize the role of RANKL/RANK pathway in tumorigenesis and metastasis of breast cancer. METHODS: The papers from January, 1997 to February, 2011 were searched with RANKL and breast neoplasm as key words in PubMed, VIP and CNKI databases, and 31 papers were selected according to the standards: 1) expression and function of RANKL/RANK pathway. 2) RANKL/RANK in breast cancer. RESULTS: The pathway of RANKL/RANK plays key roles in the development of mammary gland during pregnancy. Moreover, recent studies have shown that RANKL/RANK pathway was involves in the development of hormone-related breast cancer. The RANKL/RANK system also mediates the metastasis of breast cancer cells through facilitating the migration and survival of breast cancer cells. Denosumab, a fully human antibody to RANKL, is well on its way in clinical development for breast cancer therapy. CONCLUSION: RANKL/RANK pathway provides a new strategy for the prevention and therapy for breast cancer.%目的:对RANKL/RANK通路在乳腺癌发生演进中的作用及研究进展简要总结和评述.方法:以乳腺癌和核因子Kβ受体活化因子配体(or RANKL)为关键词,检索1997-01-2011-02 PubMed、CNKI和维普数据库的相关文献.纳入标准:1)RANKL/RANK通路表达及功能2)RANKL/RANK通路与乳腺癌的文献.根据纳入标准纳入分析文献31篇.结果:RANKL/RANK通路不仅影响孕期乳腺的的发育,近年来的研究相继发现RANKL/RANK通路参与了女性性激素相关乳腺癌的发生;同时RANKL与RANK间的相互作用促进了乳腺癌细胞的迁移和存活,从而介导乳腺癌细胞的转移过程.针对RANKL人单抗denosumab在乳腺癌治疗的临床研究已经逐步开展.结论:以RANKL/RANK为靶点的治疗有望成为乳腺癌预防和治疗新的方法.

  5. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/β-catenin pathway.

    Science.gov (United States)

    Chang, Po-Hao; Hwang-Verslues, Wendy W; Chang, Yi-Cheng; Chen, Chun-Chin; Hsiao, Michael; Jeng, Yung-Ming; Chang, King-Jen; Lee, Eva Y-H P; Shew, Jin-Yuh; Lee, Wen-Hwa

    2012-09-15

    Tumor microenvironment plays a critical role in regulating tumor progression by secreting factors that mediate cancer cell growth. Stromal fibroblasts can promote tumor growth through paracrine factors; however, restraint of malignant carcinoma progression by the microenvironment also has been observed. The mechanisms that underlie this paradox remain unknown. Here, we report that the tumorigenic potential of breast cancer cells is determined by an interaction between the Robo1 receptor and its ligand Slit2, which is secreted by stromal fibroblasts. The presence of an active Slit2/Robo1 signal blocks the translocation of β-catenin into nucleus, leading to downregulation of c-myc and cyclin D1 via the phosphoinositide 3-kinase (PI3K)/Akt pathway. Clinically, high Robo1 expression in the breast cancer cells correlates with increased survival in patients with breast cancer, and low Slit2 expression in the stromal fibroblasts is associated with lymph node metastasis. Together, our findings explain how a specific tumor microenvironment can restrain a given type of cancer cell from progression and show that both stromal fibroblasts and tumor cell heterogeneity affect breast cancer outcomes.

  6. The parity-related protection against breast cancer is compromised by cigarette smoke during rat pregnancy: observations on tumorigenesis and immunological defenses of the neonate.

    OpenAIRE

    Steinetz, Bernard G.; Gordon, Terry; Lasano, Salamia; Horton, Lori; Ng, Sheung Pui; Zelikoff, Judith T.; Nadas, Arthur; Bosland, Maarten C.

    2006-01-01

    Lifestyle modulation of cancer & cancer biomarkersLifestyle element evaluated: early pregnancyOutcome studied (cancer or cancer biomarker): breast cancerMethod of biomarker analysis: hormone assays, cytokine assays, lymphocyte proliferation assayStudy type (in vitro, animals, humans): Sprague-Dawley rats Confounders controlled for: smoking Impact on outcome: (P < 0.005) decrease in serum immunoactive prolactin concentration on Day 19 of pregnancy in the rats exposed to CS as compared with FA...

  7. A high protein moderate carbohydrate diet fed at discrete meals reduces early progression of N-methyl-N-nitrosourea-induced breast tumorigenesis in rats

    Directory of Open Access Journals (Sweden)

    Singletary Keith W

    2010-01-01

    Full Text Available Abstract Breast cancer is the most prevalent cancer in American women. Dietary factors are thought to have a strong influence on breast cancer incidence. This study utilized a meal-feeding protocol with female Sprague-Dawley rats to evaluate effects of two ratios of carbohydrate:protein on promotion and early progression of breast tissue carcinomas. Mammary tumors were induced by N-methyl-N-nitrosourea (MNU at 52 d of age. Post-induction, animals were assigned to consume either a low protein high carbohydrate diet (LPHC; 15% and 60% of energy, respectively or a high protein moderate carbohydrate diet (HPMC; 35% and 40% of energy, respectively for 10 wk. Animals were fed 3 meals/day to mimic human absorption and metabolism patterns. The rate of palpable tumor incidence was reduced in HPMC relative to LPHC (12.9 ± 1.4%/wk vs. 18.2 ± 1.3%/wk. At 3 wk, post-prandial serum insulin was larger in the LPHC relative to HPMC (+136.4 ± 33.1 pmol/L vs. +38.1 ± 23.4 pmol/L, while at 10 wk there was a trend for post-prandial IGF-I to be increased in HPMC (P = 0.055. There were no differences in tumor latency, tumor surface area, or cumulative tumor mass between diet groups. The present study provides evidence that reducing the dietary carbohydrate:protein ratio attenuates the development of mammary tumors. These findings are consistent with reduced post-prandial insulin release potentially diminishing the proliferative environment required for breast cancer tumors to progress.

  8. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  9. Revelation and Innovation of Value

    DEFF Research Database (Denmark)

    Saghaug, Kristin Margrethe

    show that many of the business owners in this study try to balance between their personal values and economic values. A further investigation into this results in a model of innovation of value from a theological perspective in respect to business model innovation. It is the very understanding......Kristin F. Saghaug’s Phd thesis investigates the interaction of revelatory theology, artistic creativity and small business owners in a business model innovation context. This project challenges mainstream business management’s concept of value and adds to the understanding of the innovation...... process through a pioneering conversation across different specialized domains. How can philosophical theology, namely, Paul Tillich’s theory of revelation, contribute to productive reflection on the innovation of value among small business owners in a business model innovation context? Empirical findings...

  10. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis

    Science.gov (United States)

    Karantza-Wadsworth, Vassiliki; Patel, Shyam; Kravchuk, Olga; Chen, Guanghua; Mathew, Robin; Jin, Shengkan; White, Eileen

    2007-01-01

    Autophagy is a catabolic process involving self-digestion of cellular organelles during starvation as a means of cell survival; however, if it proceeds to completion, autophagy can lead to cell death. Autophagy is also a haploinsufficient tumor suppressor mechanism for mammary tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in breast carcinomas. However, the mechanism by which autophagy suppresses breast cancer remains elusive. Here we show that allelic loss of beclin1 and defective autophagy sensitized mammary epithelial cells to metabolic stress and accelerated lumen formation in mammary acini. Autophagy defects also activated the DNA damage response in vitro and in mammary tumors in vivo, promoted gene amplification, and synergized with defective apoptosis to promote mammary tumorigenesis. Therefore, we propose that autophagy limits metabolic stress to protect the genome, and that defective autophagy increases DNA damage and genomic instability that ultimately facilitate breast cancer progression. PMID:17606641

  11. Cosmology in the book of Revelation

    Directory of Open Access Journals (Sweden)

    Gert J.C. Jordaan

    2013-11-01

    Full Text Available The cosmology of the book of Revelation mainly involves God’s restored reign over the created universe (κόσμος. Throughout the book, the κόσμοςis depicted according to its constituent parts, namely heaven, seaand earth. At first sight, this threefold description seems to stem from the ancient Jewish and mythological three-storied cosmological view of ‘up-above’, ‘here-below’ and ‘down-under’. However, this correspondence proves to be only superficial. Heaven is used by John not as much in spatial sense as in temporal sense: as symbolic reference to a divine point above time and history. Heavenis also a qualitative reference to a situation of complete obedient worship to God. Earthin John’s visions is mostly used as metaphor for sinful mankind under the rule of Satan. Yet, the earth remains part of God’s creation under his divine authority, and even becomes a refuge for the church in this dispensation. The seain Revelation, when not denoting a physical space, is often equated by scholars to the abyss or the underworld. However, in Revelation the sea is mostly used as metaphor for the basic evil from which the beast originates and of everything immoral and impure. The last chapters of Revelation reveal that in the eschaton heaven, seaand earthwill all be part of the new creation − renewed to the point where God’s reign is restored and acknowledged above all doubt throughout the κόσμος.

  12. Kuidas kirjutatakse ajalugu? / Jacques Revel ; interv. Marek Tamm

    Index Scriptorium Estoniae

    Revel, Jacques

    2007-01-01

    Prantsuse ajaloolase ja ajakirja Annales ühe peatoimetaja J. Revel'i erialasest tegevusest ja teostest. Varem. ilm.: Sündmused, jutustus ja analüüsiskaalad : intervjuu Jacques Reveliga // Revel, Jacques, Farge, Arlette. Mässu loogika : lasteröövlite afäär Pariisis 1750. - Tallinn, 2005. - Lk. 109-123

  13. INHIBITION OF SPONTANEOUS APOPTOSIS IN HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    邵志敏; 江明; 吴炅; 余黎民; 韩企夏; 张延璆; 沈镇宙

    1996-01-01

    Breast tumorigenesis proceeds through an accumulation of specific genetic alteration. Breast malignant transformation is dependent on not only the rate of cell production but also on apoptcsis,a genetically prograined process of autonomous ceil death. We investigated whether breast tumorigenesis involved an altered susceptibility to apoptosis and proliferation by examining normal breast epithelium and breast cancer sampies. We found there is a great inhibition of spontaneous apoptosis in breast cancer ceils compared with normal breast epithelium. The inhibition of apoptosis in breast cancer may contribute to neoplastic transformation.

  14. The role of RAD9 in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Howard B. Lieberman; Joshua D. Bernstock; Constantinos G. Broustas; Kevin M. Hopkins; Corinne Leloup; Aiping Zhu

    2011-01-01

    RAD9 regulates multiple cellular processes that influence genomic integrity, and for at least some of its functions the protein acts as part of a heterotrimeric complex bound to HUS1 and RAD1 proteins. RAD9 participates in DNA repair, including base excision repair,homologous recombination repair and mismatch repair, multiple cell cycle phase checkpoints and apoptosis. In addition, functions including the transactivation of downstream target genes, immunoglobulin class switch recombination, as well as 3'-5' exonuclease activity have been reported. Aberrant RAD9 expression has been linked to breast, lung, thyroid, skin and prostate tumorigenesis, and a cause-effect relationship has been demonstrated for the latter two. Interestingly, human RAD9 overproduction correlates with prostate cancer whereas deletion of Mrad9, the corresponding mouse gene, in keratinocytes leads to skin cancer. These results reveal that RAD9 protein can function as an oncogene or tumor suppressor, and aberrantly high or low levels can have deleterious health consequences. It is not clear which of the many functions of RAD9 is critical for carcinogenesis, but several alternatives are considered herein and implications for the development of novel cancer therapies based on these findings are examined.

  15. Loss of KLF14 triggers centrosome amplification and tumorigenesis.

    Science.gov (United States)

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Zhang, Xiaohong; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu; Li, Xiaotao; Zhang, Shengping; Wang, Chuangui

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer. PMID:26439168

  16. Breast

    International Nuclear Information System (INIS)

    Ultrasound is not an efficacious screening modality to detect early-stage breast malignancy in a clinically unremarkable population of women. Computed body tomography is similarly not practical for screening because of slice thickness and partial volume averaging, a higher radiation dose than modern mammography, and the lack of availability of such units for such a high throughput requirement. Nevertheless, these two imaging modalities can be very useful in management to guide the least invasive and efficacious treatment of the patient. X-ray mammography remains the principal imaging modality in the search for breast malignancy, but ultrasound is the single most important second study in the diagnostic evaluation of the breast. The combined use of these techniques and the ability to perform guided aspiration and localization procedures can result in a reduction in the surgical removal of benign cysts and reduction in the amount of tissue volume required if excision becomes necessary

  17. Reproduction and Breast Cancer Risk

    OpenAIRE

    Hanf, Volker; Hanf, Dorothea

    2014-01-01

    Reproduction is doubtlessly one of the main biological meanings of life. It is therefore not surprising that various aspects of reproduction impact on breast cancer risk. Various developmental levels may become targets of breast tumorigenesis. This review follows the chronologic sequence of events in the life of a female at risk, starting with the intrauterine development. Furthermore, the influence of both contraceptive measures and fertility treatment on breast cancer development is dealt w...

  18. Anaplastic thyroid cancer, tumorigenesis and therapy.

    LENUS (Irish Health Repository)

    O'Neill, J P

    2010-03-01

    Anaplastic thyroid cancer (ATC) is a fatal endocrine malignancy. Current therapy fails to significantly improve survival. Recent insights into thyroid tumorigenesis, post-malignant dedifferentiation and mode of metastatic activity offer new therapeutic strategies.

  19. The roles of PIKE in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Qi QI; Keqiang YE

    2013-01-01

    Tumorigenesis is the process by which normal cells evolve the capacity to evade and overcome the constraints usually placed upon their growth and survival.To ensure the integrity of organs and tissues,the balance of cell proliferation and cell death is tightly maintained.The proteins controlling this balance are either considered oncogenes,which promote tumorigenesis,or tumor suppressors,which prevent tumorigenesis.Phosphoinositide 3-kinase enhancer (PIKE) is a family of GTP-binding proteins that possess anti-apoptotic functions and play an important role in the central nervous system.Notably,accumulating evidence suggests that PIKE is a proto-oncogene involved in tumor progression.The PIKE gene (CENTG1) is amplified in a variety of human cancers,leading to the resistance against apoptosis and the enhancement of invasion.In this review,we will summarize the functions of PIKE proteins in tumorigenesis and discuss their potential implications in cancer therapy.

  20. High-fat diet enhances primary mammary tumorigenesis and pulmonary metastasis in MMTV-PyMT mice

    Science.gov (United States)

    The MMTV-PyMT transgenic mouse model is commonly used to study luminal B breast cancer, which has a lower prevalence but a worse prognosis. The objective of the present study was to determine whether an obesogenic, high-fat diet enhances primary tumorigenesis and pulmonary metastasis in female MMTV...

  1. PUMA Suppresses Intestinal Tumorigenesis in Mice

    OpenAIRE

    Qiu, Wei; Carson-Walter, Eleanor B.; Kuan, Shih Fan; Zhang, Lin; Yu, Jian

    2009-01-01

    Defective apoptosis contributes to tumorigenesis, although the critical molecular targets remain to be fully characterized. PUMA, a BH3-only protein essential for p53-dependent apoptosis, has been shown to suppress lymphomagenesis. In this study, we investigated the role of PUMA in intestinal tumorigenesis using two animal models. In the azoxymethane (AOM)/dextran sulfate sodium salt model, PUMA deficiency increased the multiplicity and size of colon tumors but reduced the frequency of β-cate...

  2. Cancer Stem Cells in Lung Tumorigenesis

    OpenAIRE

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2010-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continue...

  3. DNA Methylation in Thyroid Tumorigenesis

    International Nuclear Information System (INIS)

    Thyroid cancer is the most common endocrine cancer with 1,690 deaths each year. There are four main types of which the papillary and follicular types together account for >90% followed by medullary cancers with 3% to 5% and anaplastic carcinomas making up <3%. Epigenetic events of DNA hypermethylation are emerging as promising molecular targets for cancer detection. Our immediate and long term goal is to identify DNA methylation markers for early detection of thyroid cancer. This pilot study comprised of 21 patients to include 11 papillary thyroid cancers (PTC), 2 follicular thyroid cancers (FTC), 5 normal thyroid cases, and 3 hyperthyroid cases. Aberrant promoter methylation was examined in 24 tumor suppressor genes using the methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) assay and in the NIS gene using methylation-specific PCR (MSP). The frequently methylated genes were CASP8 (17/21), RASSF1 (16/21) and NIS (9/21). In the normal samples, CASP8, RASSF1 and NIS were methylated in 5/5, 4/5 and 1/5 respectively. In the hyperthyroid samples, CASP8, RASSF1 and NIS were methylated in 3/3, 2/3 and 1/3 respectively. In the thyroid cancers, CASP8, RASSF1, and NIS were methylated in 9/13, 10/13, and 7/13 respectively. CASP8, RASSF1 and NIS were also methylated in concurrently present normal thyroid tissue in 3/11, 4/11 and 3/11 matched thyroid cancer cases (matched for presence of both normal thyroid tissue and thyroid cancer), respectively. Our data suggests that aberrant methylation of CASP8, RASSF1, and NIS maybe an early change in thyroid tumorigenesis regardless of cell type

  4. 28 CFR 22.22 - Revelation of identifiable data.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Revelation of identifiable data. 22.22 Section 22.22 Judicial Administration DEPARTMENT OF JUSTICE CONFIDENTIALITY OF IDENTIFIABLE RESEARCH AND... subject, be expected to totally conceal subject identity....

  5. Unstructuring User Preferences: Efficient Non-Parametric Utility Revelation

    OpenAIRE

    Domshlak, Carmel; Joachims, Thorsten

    2012-01-01

    Tackling the problem of ordinal preference revelation and reasoning, we propose a novel methodology for generating an ordinal utility function from a set of qualitative preference statements. To the best of our knowledge, our proposal constitutes the first nonparametric solution for this problem that is both efficient and semantically sound. Our initial experiments provide strong evidence for practical effectiveness of our approach.

  6. Amping up estrogen receptors in breast cancer

    OpenAIRE

    Fowler, Amy M; Alarid, Elaine T

    2007-01-01

    This article highlights a recent study by Holst et al. in Nature Genetics that finds estrogen receptor-alpha (ER-α) amplification in early benign lesions and more advanced invasive carcinomas of the breast, and discusses the potential implications to our present understanding of the role of ER-α in breast tumorigenesis.

  7. Cdk2-Null Mice Are Resistant to ErbB-2-Induced Mammary Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    2011-05-01

    Full Text Available The concept of targeting G1 cyclin-dependent kinases (CDKs in breast cancer treatments is supported by the fact that the genetic ablation of Cdk4 had minimal impacts on normal cell proliferation in majority of cell types, resulting in near-normal mouse development, whereas such loss of Cdk4 completely abrogated ErbB-2/neu-induced mammary tumorigenesis in mice. In most human breast cancer tissues, another G1-regulatory CDK, CDK2, is also hyperactivated by various mechanisms and is believed to be an important therapeutic target. In this report, we provide genetic evidence that CDK2 is essential for proliferation and oncogenesis of murine mammary epithelial cells. We observed that 87% of Cdk2-null mice were protected from ErbB-2-induced mammary tumorigenesis. Mouse embryonic fibroblasts isolated from Cdk2-null mouse showed resistance to various oncogene-induced transformation. Previously, we have reported that hemizygous loss of Cdc25A, the major activator of CDK2, can also protect mice from ErbB-2-induced mammary tumorigenesis [Cancer Res (2007 67(14: 6605–11]. Thus, we propose that CDC25A-CDK2 pathway is critical for the oncogenic action of ErbB-2 in mammary epithelial cells, in a manner similar to Cyclin D1/CDK4 pathway.

  8. FAK overexpression and p53 mutations are highly correlated in human breast cancer

    OpenAIRE

    Golubovskaya, Vita M; Conway, Kathleen; Edmiston, Sharon N; Tse, Chiu-Kit; Lark, Amy L.; Livasy, Chad A.; Moore, Dominic; Millikan, Robert C.; Cance, William G

    2009-01-01

    Focal Adhesion Kinase (FAK) is overexpressed in a number of tumors, including breast cancer. Another marker of breast cancer tumorigenesis is the tumor suppressor gene p53 that is frequently mutated in breast cancer. In the present study, our aim was to find a correlation between FAK overexpression, p53 expression and mutation status in a population-based series of invasive breast cancer tumors from the Carolina Breast Cancer Study. Immunohistochemical analyses of 622 breast cancer tumors rev...

  9. Plakoglobin: Role in Tumorigenesis and Metastasis

    Directory of Open Access Journals (Sweden)

    Zackie Aktary

    2012-01-01

    Full Text Available Plakoglobin (γ-catenin is a member of the Armadillo family of proteins and a homolog of β-catenin. As a component of both the adherens junctions and desmosomes, plakoglobin plays a pivotal role in the regulation of cell-cell adhesion. Furthermore, similar to β-catenin, plakoglobin is capable of participating in cell signaling. However, unlike β-catenin that has well-documented oncogenic potential through its involvement in the Wnt signaling pathway, plakoglobin generally acts as a tumor/metastasis suppressor. The exact roles that plakoglobin plays during tumorigenesis and metastasis are not clear; however, recent evidence suggests that it may regulate gene expression, cell proliferation, apoptosis, invasion, and migration. In this paper, we describe plakoglobin, its discovery and characterization, its role in regulating cell-cell adhesion, and its signaling capabilities in regulation of tumorigenesis and metastasis.

  10. Prepubertal exposure to cow’s milk reduces susceptibility to carcinogen-induced mammary tumorigenesis in rats

    OpenAIRE

    Nielsen, Tina S.; Khan, Galam; Davis, Jennifer; Michels, Karin B; Hilakivi-Clarke, Leena

    2011-01-01

    Cow’s milk contains high levels of estrogens, progesterone and insulin-like growth factor 1 (IGF-1), all of which are associated with breast cancer. We investigated whether prepubertal milk exposure affects mammary gland development and carcinogenesis in rats. Sprague Dawley rats were given either whole milk or tap water to drink from postnatal day (PND) 14 to PND 35, and thereafter normal tap water. Mammary tumorigenesis was induced by administering 7,12-dimethylbenz[a]anthracene (DMBA) on P...

  11. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jiaming Su

    2016-01-01

    Full Text Available Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60 family of histone acetyltransferases (HATs. As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16; however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8, suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.

  12. NF-kappaB in Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhenjian [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-12-14

    The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis.

  13. Innate lymphoid cells involve in tumorigenesis.

    Science.gov (United States)

    Tian, Zhiqiang; van Velkinburgh, Jennifer C; Wu, Yuzhang; Ni, Bing

    2016-01-01

    Innate lymphoid cells (ILCs) promptly initiate cytokine responses to pathogen exposure in the mucosa and mucosal-associated lymphoid tissues. ILCs were recently categorized as being of the lymphoid lineage and have been classified into three groups. ILCs play important roles in immunity against pathogens, and an anti-tumor immune-related function was recently demonstrated. In this review we discuss whether and how ILCs involve in the tumorigenesis, providing new insights into the mechanisms underlying the particular functions of ILCs as well as the potential targets for tumor intervention.

  14. Dietary fat, calories, and mammary gland tumorigenesis.

    Science.gov (United States)

    Welsch, C W

    1992-01-01

    In this communication, a vast array of studies designed to examine the relationship between dietary fat and experimental mammary gland tumorigenesis was reviewed and critiqued. It is clear, as reported by many laboratories, that as the fat content of the diet is increased from a low or standard level to a high level, a consistent and substantial increase in the development of rodent mammary gland tumors is observed. The longer the duration the high-fat diet is fed, the greater the enhancing effect on tumorigenesis. Furthermore, the stimulatory effect of a high-fat diet is observed even when fed commencing late in an animal's life. A multitude of studies also have provided evidence that the type of fat can markedly influence the development of rodent mammary gland tumors. In general, high dietary levels of unsaturated fats (e.g., corn oil, sunflower-seed oil) stimulate this tumorigenic process more than high levels of saturated fats (e.g., beef tallow, coconut oil); diets rich in certain fish oils (e.g., Menhaden oil, Max EPA) are often the most inhibitory to this tumorigenic process. Importantly, however, supplementation of saturated fat or fish oil diets with modest amounts of unsaturated fats, e.g., corn oil, often negates the mammary tumor inhibitory activities of these fats. Thus, rather extreme differences in the types of fat are required for a differential in mammary gland tumorigenesis; common proportionate blends of different fats of animal, plant, and/or fish origin are often unable to differentially influence this tumorigenic process. Diets rich in monoenoic fatty acids, e.g., those containing high levels of olive oil, have been examined in a number of studies; results from these studies have been inconsistent. A number of reports suggest that the increase in development of mammary tumors in rodents fed a high-fat diet, compared with those fed a low-fat diet, is due to specific metabolic activities of the fat per se, activities independent of a caloric

  15. The role of menin in parathyroid tumorigenesis.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2009-01-01

    Primary hyperparathyroidism is a common disorder that involves the pathological enlargement of one or more parathyroid glands resulting in excessive production of parathyroid hormone (PTH). The exact pathogenesis of this disease remains to be fully understood. In recent years interest has focussed on the interaction between menin protein and the transforming growth factor (TGF)-beta\\/Smad signalling pathway. In vitro experimentation has demonstrated that the presence of menin is required for TGF-beta to effectively inhibit parathyroid cell proliferation and PTH production. This observation correlates with the almost universal occurrence of parathyroid tumors accompanying the inactivation of menin in multiple endocrine neoplasia Type 1 (MEN1) syndrome and the high rate of somatic menin gene mutations seen in sporadic parathyroid adenomas. This chapter aims to review the role of menin in primary hyperparathyroidism and parathyroid hormone-regulation, including the influences of MEN1 gene mutations on parathyroid cell proliferation, differentiation and tumorigenesis.

  16. Rho GTPases of the RhoBTB subfamily and tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jessica BERTHOLD; Kristína SCHENKOV(A); Francisco RIVERO

    2008-01-01

    RhoBTB proteins constitute a subfamily of atypical members within the Rho fami-ly of small guanosine triphosphatases (GTPases).Their most salient feature is their domain architecture:a GTPase domain (in most cases,non-functional) is followed by a proline-rich region,a tandem of 2 broad-complex,tramtrack,bric hrac (BTB) domains,and a conserved C-terminal region.In humans,the RhoBTB subfamily consists of 3 isoforms:RhoBTB 1,RhoBTB2,and RhoBTB3.Orthologs are present in several other eukaryotes,such as Drosophila and Dictyostelium,but have been lost in plants and fungi.Interest in RhoBTB arose when RHOBTB2 was identified as the gene homozygously deleted in breast cancer samples and was proposed as a candidate tumor suppressor gene,a property that has been extended to RHOBTBI.The functions of RhoBTB proteins have not been defined yet,but may be related to the roles of BTB domains in the recruitment of cullin3,a component of a family of uhiquitin ligases.A model emerges in which RhoBTB proteins are required to maintain constant levels of putative substrates involved in cell cycle regulation or vesicle transport through targeting for degradation in the 26S proteasome.RhoBTB proteins are engrossing the list of Rho GTPases involved in tumorigenesis.Unlike typical Rho GTPases (usually overexpressed or hyperactive),RhoBTB proteins appear to play a part in the carcinogenic process through a mechanism that involves the decreased or abolished expression of the corresponding genes,or more rarely,mutations that result in impaired functioning of the protein,presumably leading to the accumulation of RhoBTB substrates and alterations of the cellular homeostasis.

  17. Revel v izobrazhenii russkihh pissatelei i hudozhnikov 1820-1840-hh gg / Sergei Issakov

    Index Scriptorium Estoniae

    Issakov, Sergei, 1931-2013

    2006-01-01

    Aleksandr Bestuzhev-Marlinski reisikirjast "Pojezdka v Revel" (1921) ja tema nn. liivimaa jutustustest, eriti "Reveli turniirist" (1824) alguse saanud Tallinna kujutamise traditsioon vene kirjanduses a-tel 1820-1840

  18. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  19. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation

    OpenAIRE

    Wang, Neng; Wang, Zhiyu; Wang, Yu; Xie, Xiaoming; Shen, Jiangang; Peng, Cheng; You, Jieshu; Peng, Fu; Tang, Hailin; Guan, Xinyuan; Chen, Jianping

    2015-01-01

    Breast cancer stem cells (CSCs) are considered as the root of mammary tumorigenesis. Previous studies have demonstrated that ISL efficiently limited the activities of breast CSCs. However, the cancer prevention activities of ISL and its precise molecular mechanisms remain largely unknown. Here, we report a novel function of ISL as a natural demethylation agent targeting WIF1 to prevent breast cancer. ISL administration suppressed in vivo breast cancer initiation and progression, accompanied b...

  20. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Dahu Chen

    2014-02-01

    Full Text Available Whether epithelial-mesenchymal transition (EMT is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion.

  1. Maternal exercise during pregnancy reduces risk of mammary tumorigenesis in rat offspring.

    Science.gov (United States)

    Camarillo, Ignacio G; Clah, Leon; Zheng, Wei; Zhou, Xuanzhu; Larrick, Brienna; Blaize, Nicole; Breslin, Emily; Patel, Neal; Johnson, Diamond; Teegarden, Dorothy; Donkin, Shawn S; Gavin, Timothy P; Newcomer, Sean

    2014-11-01

    Breast cancer is the most common cancer among women. Emerging research indicates that modifying lifestyle factors during pregnancy may convey long-term health benefits to offspring. This study was designed to determine whether maternal exercise during pregnancy leads to reduced mammary tumorigenesis in female offspring. Pregnant rats were randomly assigned to exercised and sedentary groups, with the exercised group having free access to a running wheel and the sedentary group housed with a locked wheel during pregnancy. Female pups from exercised or sedentary dams were weaned at 21 days of age and fed a high fat diet without access to a running wheel. At 6 weeks, all pups were injected with the carcinogen N-methyl-N-nitrosourea. Mammary tumor development in all pups was monitored for 15 weeks. Pups from exercised dams had a substantially lower tumor incidence (42.9%) compared with pups from sedentary dams (100%). Neither tumor latency nor histological grade differed between the two groups. These data are the first to demonstrate that exercise during pregnancy potentiates reduced tumorigenesis in offspring. This study provides an important foundation towards developing more effective modes of behavior modification for cancer prevention. PMID:24950432

  2. Maternal Exercise During Pregnancy Reduces Risk of Mammary Tumorigenesis In Rat Offspring

    Science.gov (United States)

    Camarillo, Ignacio; Clah, Leon; Zheng, Wei; Zhou, Xuanzhu; Larrick, Brienna; Blaize, Nicole; Breslin, Emily; Patel, Neal; Johnson, Diamond; Teegarden, Dorothy; Donkin, Shawn S.; Gavin, Timothy P.; Newcomer, Sean

    2015-01-01

    Breast cancer is the most common cancer among women. Emerging research indicates that modifying lifestyle factors during pregnancy may convey long-term health benefits to offspring. This study was designed to determine whether maternal exercise during pregnancy leads to reduced mammary tumorigenesis in female offspring. Pregnant rats were randomly assigned to exercised and sedentary groups, with the exercised group having free access to a running wheel and the sedentary group housed with a locked wheel during pregnancy. Female pups from exercised or sedentary dams were weaned at 21 days of age and fed a high fat diet without access to a running wheel. At 6 weeks, all pups were injected with the carcinogen N-methyl-N-nitrosourea (MNU). Mammary tumor development in all pups was monitored for 15 weeks. Pups from exercised dams had a substantially lower tumor incidence (42.9%) compared to pups from sedentary dams (100%). Neither tumor latency nor histological grade differed between the two groups. These data are the first to demonstrate that exercise during pregnancy potentiates reduced tumorigenesis in offspring. This study provides an important foundation towards developing more effective modes of behavior modification for cancer prevention. PMID:24950432

  3. Fbxw7 Tumor Suppressor: A Vital Regulator Contributes to Human Tumorigenesis.

    Science.gov (United States)

    Cao, Jun; Ge, Ming-Hua; Ling, Zhi-Qiang

    2016-02-01

    Rapidly accumulating data indicate that F-box/WD repeat-containing protein 7 (Fbxw7) is one of the most frequently mutated genes in human cancers and regulates a network of crucial oncoproteins. These studies have generated important new insights into tumorigenesis and may soon enable therapies targeting the Fbxw7 pathway. We searched PubMed, Embase, and ISI Web of Science databases (1973-2015, especially recent 5 years) for articles published in the English language using the key words "Fbxw7," "Fbw7," "hCDC4," and "Sel-10," and we reviewed recent developments in the search for Fbxw7. Fbxw7 coordinates the ubiquitin-dependent proteolysis of several critical cellular regulators, thereby controlling essential processes, such as cell cycle, differentiation, and apoptosis. Fbxw7 contains 3 isoforms (Fbxw7α, Fbxw7β, and Fbxw7γ), and they are differently regulated in subtract recognition. Besides those, Fbxw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates in a variety of human solid tumor types, including glioma malignancy, nasopharyngeal carcinoma, osteosarcoma, melanoma as well as colorectal, lung, breast, gastric, liver, pancreatic, renal, prostate, endometrial, and esophageal cancers. Fbxw7 is strongly associated with tumorigenesis, and the mechanisms and consequences of Fbxw7 deregulation in cancers may soon enable the development of novel therapeutic approaches. PMID:26886596

  4. Prepubertal exposure to cow's milk reduces susceptibility to carcinogen-induced mammary tumorigenesis in rats

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Khan, Galam; Davis, Jennifer;

    2011-01-01

    Cow's milk contains high levels of estrogens, progesterone and insulin-like growth factor 1 (IGF-1), all of which are associated with breast cancer. We investigated whether prepubertal milk exposure affects mammary gland development and carcinogenesis in rats. Sprague-Dawley rats were given either...... whole milk or tap water to drink from postnatal day (PND) 14 to PND 35, and thereafter normal tap water. Mammary tumorigenesis was induced by administering 7,12-dimethylbenz[a]anthracene on PND 50. Milk exposure increased circulating E2 levels on PND 25 by 10-fold (p ... opening, which marks puberty onset, by 2.5 days (p milk before puberty exhibited reduced carcinogen-induced mammary carcinogenesis; that is, their tumor latency was longer (p

  5. Cited1 deficiency suppresses intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Valérie Méniel

    Full Text Available Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with Apc(Min/+ and AhCre(+Apc(fl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in Apc(Min/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in Apc(Min/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1.

  6. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    DEFF Research Database (Denmark)

    Purrington, Kristen S; Slettedahl, Seth; Bolla, Manjeet K;

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymor...

  7. Developmental context determines latency of MYC-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Shelly Beer

    2004-11-01

    Full Text Available One of the enigmas in tumor biology is that different types of cancers are prevalent in different age groups. One possible explanation is that the ability of a specific oncogene to cause tumorigenesis in a particular cell type depends on epigenetic parameters such as the developmental context. To address this hypothesis, we have used the tetracycline regulatory system to generate transgenic mice in which the expression of a c-MYC human transgene can be conditionally regulated in murine hepatocytes. MYC's ability to induce tumorigenesis was dependent upon developmental context. In embryonic and neonatal mice, MYC overexpression in the liver induced marked cell proliferation and immediate onset of neoplasia. In contrast, in adult mice MYC overexpression induced cell growth and DNA replication without mitotic cell division, and mice succumbed to neoplasia only after a prolonged latency. In adult hepatocytes, MYC activation failed to induce cell division, which was at least in part mediated through the activation of p53. Surprisingly, apoptosis is not a barrier to MYC inducing tumorigenesis. The ability of oncogenes to induce tumorigenesis may be generally restrained by developmentally specific mechanisms. Adult somatic cells have evolved mechanisms to prevent individual oncogenes from initiating cellular growth, DNA replication, and mitotic cellular division alone, thereby preventing any single genetic event from inducing tumorigenesis.

  8. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    Science.gov (United States)

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis.

  9. Aberrant promoter CpG methylation and its translational applications in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ting-Xiu Xiang; Ying Yuan; Li-Li Li; Zhao-Hui Wang; Liang-Ying Dan; Yan Chen; Guo-Sheng Ren; Qian Tao

    2013-01-01

    Breast cancer is a complex disease driven by multiple factors including both genetic and epigenetic alterations.Recent studies revealed that abnormal gene expression induced by epigenetic changes,including aberrant promoter methylation and histone modification,plays a critical role in human breast carcinogenesis.Silencing of tumor suppressor genes (TSGs) by promoter CpG methylation facilitates cells growth and survival advantages and further results in tumor initiation and progression,thus directly contributing to breast tumorigenesis.Usually,aberrant promoter methylation of TSGs,which can be reversed by pharmacological reagents,occurs at the early stage of tumorigenesis and therefore may serve as a potential tumor marker for early diagnosis and therapeutic targeting of breast cancer.In this review,we summarize the epigenetic changes of multiple TSGs involved in breast pathogenesis and their potential clinical applications as tumor markers for early detection and treatment of breast cancer.

  10. Role of JNK in mammary gland development and breast cancer

    OpenAIRE

    Cellurale, Cristina; Girnius, Nomeda; Jiang, Feng; Cavanagh-Kyros, Julie; Lu, Shaolei; Garlick, David S.; Mercurio, Arthur M.; Davis, Roger J

    2011-01-01

    JNK signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial ...

  11. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Eri Ohfuchi Maruyama

    Full Text Available Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.

  12. IGFBP3 mRNA expression in benign and malignant breast tumors

    OpenAIRE

    Ren, Zefang; Shin, Aesun; Cai, Qiuyin; Shu, Xiao-Ou; Gao, Yu-Tang; Zheng, Wei

    2007-01-01

    Introduction Most previous studies have focused on evaluating the association between circulating insulin-like growth factor binding protein 3 (IGFBP-3) levels and breast cancer risk. Emerging evidence over the past few years suggests that IGFBP-3 may act directly on mammary epithelial cells. Methods To understand the role of IGFBP-3 in breast tumorigenesis, we investigated IGFBP3 mRNA expression levels in benign and malignant breast tumors and their adjacent normal tissues using real-time qu...

  13. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René;

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Les...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  14. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per;

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into...

  15. Revelation, Redemption, and World Religions: A Pentecostal Perspective on the Inclusive Embrace of Divine Providence

    Science.gov (United States)

    Richie, Tony

    2009-01-01

    This article addresses the development of a Christian theology of religions well equipped for engagement with religious others through discussion of the nature of religion, revelation, and redemption. It affirms the extensiveness of providence from an inclusive perspective and argues that Pentecostal pneumatology contributes positively to…

  16. Nothing but the truth: self-disclosure, self-revelation, and the persona of the analyst.

    Science.gov (United States)

    Levine, Susan S

    2007-01-01

    The question of the analyst's self-disclosure and self-revelation inhabits every moment of every psychoanalytic treatment. All self-disclosures and revelations, however, are not equivalent, and differentiating among them allows us to define a construct that can be called the analytic persona. Analysts already rely on an unarticulated concept of an analytic persona that guides them, for instance, as they decide what constitutes appropriate boundaries. Clinical examples illustrate how self-disclosures and revelations from within and without the analytic persona feel different, for both patient and analyst. The analyst plays a specific role for each patient and is both purposefully and unconsciously different in this context than in other settings. To a great degree, the self is a relational phenomenon. Our ethics call for us to tell nothing but the truth and simultaneously for us not to tell the whole truth. The unarticulated working concept of an analytic persona that many analysts have refers to the self we step out of at the close of each session and the self we step into as the patient enters the room. Attitudes toward self-disclosure and self-revelation can be considered reflections of how we conceptualize this persona.

  17. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  18. A critical reassessment of the role of mitochondria in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Antonio Salas

    2005-11-01

    Full Text Available BACKGROUND: Mitochondrial DNA (mtDNA is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results. METHODS AND FINDINGS: In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis. CONCLUSION: The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research.

  19. Breast pain

    Science.gov (United States)

    Pain - breast; Mastalgia; Mastodynia; Breast tenderness ... There are many possible causes for breast pain. For example, hormone level changes from menstruation or pregnancy often cause breast tenderness. Some swelling and tenderness just before your period ...

  20. Mammary tumorigenesis by radiation and its prevention

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Makoto; Suzuki, Keiko; Inano, Hiroshi [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-06-01

    Since the breast cancer in women emerged as an important risk associated with exposure to ionizing radiation, we have investigated to clarify the relationship between the induction of mammary tumors by irradiation and the developmental stage of the mammary glands that regulated by the action of endocrine hormones. Besides the radiation, epidemiological studies showed that the process of biosynthesis/metabolism of steroid hormones and hyperlipidemia may be associated with an increased risk of mammary carcinogenesis. In this context, we have undertaken investigations to evaluate the anti-carcinogenic activities of dehydroepiandrosterone (DHEA), a major secretory steroid of the adrenal glands, bezafibrate (BEZF), an anti-hyperlipidemic drug derived from clofibrate, and simvastatin (SIMV), a prodrug of a specific inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, against diethylstilbestrol (DES)-dependent promotion/progression of rat mammary tumors initiated by {gamma}-rays. Pregnant Wistar-MS rats received whole-body irradiation with 2.6 Gy of {gamma}-rays from a {sup 60}Co source at day-20 of pregnancy. The mother rats were fed a diet containing either 0.6% DHEA, 0.15% BEZF or 0.03% SIMV beginning immediately after weaning. They were then implanted subcutaneously with a pellet of DES (3 mg/pellet) in the interscapular area 30 days after termination of nursing and were observed for 1 year for detection of palpable mammary tumors starting from the time of pellet implantation. The administration of dietary DHEA, BEZF or SIMV together with DES implantation in rats irradiated in late pregnancy significantly decreased the total incidence of mammary tumors to 35%, 27% and 36%, respectively, for the 1 year period, while higher tumor incidence (96%, 90% and 88%) was observed in rats fed controldiet. However, neither the number of mammary tumors per tumor-bearing rat nor the latency period in the drug treated groups was different from that observed in the control group

  1. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis

    International Nuclear Information System (INIS)

    development of squamous metaplastic lesions in nulliparous females, and in mammary tumors in biparous mice, suggesting that ATF3 acts as a mammary oncogene. A subset of human breast tumors expresses high levels of ATF3, suggesting that ATF3 may play an oncogenic role in human breast tumorigenesis, and therefore may be useful as either a biomarker or therapeutic target

  2. Manipulation of the Gut Microbiota Reveals Role in Colon Tumorigenesis

    Science.gov (United States)

    Zackular, Joseph P.; Baxter, Nielson T.

    2015-01-01

    ABSTRACT There is growing evidence that individuals with colonic adenomas and carcinomas harbor a distinct microbiota. Alterations to the gut microbiota may allow the outgrowth of bacterial populations that induce genomic mutations or exacerbate tumor-promoting inflammation. In addition, it is likely that the loss of key bacterial populations may result in the loss of protective functions that are normally provided by the microbiota. We explored the role of the gut microbiota in colon tumorigenesis by using an inflammation-based murine model. We observed that perturbing the microbiota with different combinations of antibiotics reduced the number of tumors at the end of the model. Using the random forest machine learning algorithm, we successfully modeled the number of tumors that developed over the course of the model on the basis of the initial composition of the microbiota. The timing of antibiotic treatment was an important determinant of tumor outcome, as colon tumorigenesis was arrested by the use of antibiotics during the early inflammation period of the murine model. Together, these results indicate that it is possible to predict colon tumorigenesis on the basis of the composition of the microbiota and that altering the gut microbiota can alter the course of tumorigenesis. IMPORTANCE Mounting evidence indicates that alterations to the gut microbiota, the complex community of bacteria that inhabits the gastrointestinal tract, are strongly associated with the development of colorectal cancer. We used antibiotic perturbations to a murine model of inflammation-driven colon cancer to generate eight starting communities that resulted in various severities of tumorigenesis. Furthermore, we were able to quantitatively predict the final number of tumors on the basis of the initial composition of the gut microbiota. These results further bolster the evidence that the gut microbiota is involved in mediating the development of colorectal cancer. As a final proof of

  3. Exploring the gain of function contribution of AKT to mammary tumorigenesis in mouse models.

    Directory of Open Access Journals (Sweden)

    Carmen Blanco-Aparicio

    Full Text Available Elevated expression of AKT has been noted in a significant percentage of primary human breast cancers, mainly as a consequence of the PTEN/PI3K pathway deregulation. To investigate the mechanistic basis of the AKT gain of function-dependent mechanisms of breast tumorigenesis, we explored the phenotype induced by activated AKT transgenes in a quantitative manner. We generated several transgenic mice lines expressing different levels of constitutively active AKT in the mammary gland. We thoroughly analyzed the preneoplastic and neoplastic mammary lesions of these mice and correlated the process of tumorigenesis to AKT levels. Finally, we analyzed the impact that a possible senescent checkpoint might have in the tumor promotion inhibition observed, crossing these lines to mammary specific p53(R172H mutant expression, and to p27 knock-out mice. We analyzed the benign, premalignant and malignant lesions extensively by pathology and at molecular level analysing the expression of proteins involved in the PI3K/AKT pathway and in cellular senescence. Our findings revealed an increased preneoplastic phenotype depending upon AKT signaling which was not altered by p27 or p53 loss. However, p53 inactivation by R172H point mutation combined with myrAKT transgenic expression significantly increased the percentage and size of mammary carcinoma observed, but was not sufficient to promote full penetrance of the tumorigenic phenotype. Molecular analysis suggest that tumors from double myrAKT;p53(R172H mice result from acceleration of initiated p53(R172H tumors and not from bypass of AKT-induced oncogenic senescence. Our work suggests that tumors are not the consequence of the bypass of senescence in MIN. We also show that AKT-induced oncogenic senescence is dependent of pRb but not of p53. Finally, our work also suggests that the cooperation observed between mutant p53 and activated AKT is due to AKT-induced acceleration of mutant p53-induced tumors. Finally, our

  4. Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer

    OpenAIRE

    Rhodes, Lyndsay V.; Tilghman, Syreeta L.; Boue, Stephen M.; Wang, Shuchun; KHALILI, HAFEZ; Muir, Shannon E.; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi; BUROW, MATTHEW E.; Collins-Burow, Bridgette M.

    2011-01-01

    The purpose of this study was to investigate the effects of glyceollins on the suppression of tumorigenesis in triple-negative breast carcinoma cell lines. We further explored the effects of glyceollins on microRNA and protein expression in MDA-MB-231 cells. Triple-negative (ER-, PgR- and Her2/neu-) breast carcinoma cells were used to test the effects of glyceollins on tumorigenesis in vivo. Following this procedure, unbiased microarray analysis of microRNA expression was performed. Additiona...

  5. What Is Breast Cancer?

    Science.gov (United States)

    ... Next Topic Types of breast cancers What is breast cancer? Breast cancer starts when cells in the breast ... breast cancer? ” and Non-cancerous Breast Conditions . How Breast Cancer Spreads Breast cancer can spread through the lymph ...

  6. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    Science.gov (United States)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  7. The role of Notch signaling in development and tumorigenesis

    OpenAIRE

    Mazur, Pawel Karol

    2010-01-01

    This thesis underscores the high importance of Notch signaling in the development of pancreas and liver as well as in tumorigenesis of pancreas and skin. Pancreas-specific ablation of Notch signaling impairs exocrine cell expansion and leads to premature differentiation of progenitor into endocrine cells. In addition, Notch was found to play an essential role in pancreas recovery after acute pancreatitis. Also, Notch is critical for intrahepatic bile duct formation during liver maturation. Fi...

  8. A critical reassessment of the role of mitochondria in tumorigenesis.

    OpenAIRE

    Antonio Salas; Yong-Gang Yao; Vincent Macaulay; Ana Vega; Angel Carracedo; Hans-Jürgen Bandelt

    2005-01-01

    Background: Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results. Methods and Findings: In ...

  9. Developmental context determines latency of MYC-induced tumorigenesis.

    OpenAIRE

    Shelly Beer; Anders Zetterberg; Ihrie, Rebecca A.; Ryan A McTaggart; Qiwei Yang; Nicole Bradon; Constadina Arvanitis; Attardi, Laura D.; Sandy Feng; Boris Ruebner; Cardiff, Robert D.; Felsher, Dean W.

    2004-01-01

    One of the enigmas in tumor biology is that different types of cancers are prevalent in different age groups. One possible explanation is that the ability of a specific oncogene to cause tumorigenesis in a particular cell type depends on epigenetic parameters such as the developmental context. To address this hypothesis, we have used the tetracycline regulatory system to generate transgenic mice in which the expression of a c-MYC human transgene can be conditionally regulated in murine hepato...

  10. Loss of KLF14 triggers centrosome amplification and tumorigenesis

    OpenAIRE

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinical...

  11. Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis

    OpenAIRE

    Zhai, Zongzhao; Kondo, Shu; Ha, Nati; Boquete, Jean-Philippe; Brunner, Michael; Ueda, Ryu; Lemaitre, Bruno

    2015-01-01

    Stem cell self-renewal and differentiation are coordinated to maintain tissue homeostasis and prevent cancer. Mutations causing stem cell proliferation are traditionally the focus of cancer studies. However, the contribution of the differentiating stem cell progenies in tumorigenesis is poorly characterized. Here we report that loss of the SOX transcription factor, Sox21a, blocks the differentiation programme of enteroblast (EB), the intestinal stem cell progeny in the adult Drosophila midgut...

  12. Breast Cancer-derived Dickkopf1 Inhibits Osteoblast Differentiation and Osteoprotegerin Expression: Implication for Breast Cancer Osteolytic Bone Metastases

    OpenAIRE

    Bu, Guojun; Lu, Wenyan; Liu, Chia-Chen; Selander, Katri; Yoneda, Toshiyuki; Hall, Christopher; Evan T. Keller; Li, Yonghe

    2008-01-01

    Most breast cancer metastases in bone form osteolytic lesions, but the mechanisms of tumor-induced bone resorption and destruction are not fully understood. Although it is well recognized that Wnt/β-catenin signaling is important for breast cancer tumorigenesis, the role of this pathway in breast cancer bone metastasis is unclear. Dickkopf1 (Dkk1) is a secreted Wnt/β-catenin antagonist. In the present study, we demonstrated that activation of Wnt/β-catenin signaling enhanced Dkk1 expression i...

  13. The Human Cell Surfaceome of Breast Tumors

    Directory of Open Access Journals (Sweden)

    Júlia Pinheiro Chagas da Cunha

    2013-01-01

    Full Text Available Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors.

  14. Effects of n3 Intake on Plasma Phospholipid Fatty Acids and Sex Hormone Profiles in Postmenopausal Women: Potential for Breast Cancer Risk Reduction

    Science.gov (United States)

    Breast cancer risk is associated with dietary fat intake. Omega-6 fatty acids (n6) promote while omega-3 fatty acids (n3) inhibit tumorigenesis. Increased sex hormone (SH) concentrations are associated with risk of breast cancer. The effects of total fat and n3 on SH and PLFA were assessed in a f...

  15. Mammary cells with active Wnt signaling resist ErbB2-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Wen Bu

    Full Text Available Aberrant activation of Wnt signaling is frequent in human malignancies. In normal epithelial tissues, including the breast, Wnt signaling is active only in a subset of cells, but it is unknown whether this subset of Wnt signaling-active cells is at increased risk of carcinogenesis. We created transgenic mice (TOP-tva in which the synthetic Wnt-responsive promoter TOP controlled the gene encoding TVA, which confers susceptibility to infection by the retroviral vector RCAS. Thus, only cells in which Wnt signaling is active will express tva and be targeted by RCAS. Surprisingly, we found that RCAS-mediated delivery of cDNA encoding a constitutively activated version of ErbB2 (HER2/Neu into the small number of TVA+ mammary epithelial cells in TOP-tva mice failed to induce tumor, while the same virus readily induced mammary tumors after it was delivered into a comparable number of cells in our previously reported mouse line MMTV-tva, whose tva is broadly expressed in mammary epithelium. Furthermore, we could not even detect any early lesions or infected cells in TOP-tva mice at the time of necropsy. Therefore, we conclude that the Wnt pathway-active cell subset in the normal mammary epithelium does not evolve into tumors following ErbB2 activation-rather, they apparently die due to apoptosis, an anticancer "barrier" that we have reported to be erected in some mammary cells followed ErbB2 activation. In accord with these mouse model data, we found that unlike the basal subtype, ErbB2+ human breast cancers rarely involve aberrant activation of Wnt signaling. This is the first report of a defined sub-population of mammalian cells that is "protected" from tumorigenesis by a potent oncogene, and provides direct in vivo evidence that mammary epithelial cells are not equal in their response to oncogene-initiated transformation.

  16. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy

    Directory of Open Access Journals (Sweden)

    Kay Andrea

    2009-10-01

    Full Text Available Abstract The mammalian target of rapamycin (mTOR is an intracellular serine/threonine protein kinase positioned at a central point in a variety of cellular signaling cascades. The established involvement of mTOR activity in the cellular processes that contribute to the development and progression of cancer has identified mTOR as a major link in tumorigenesis. Consequently, inhibitors of mTOR, including temsirolimus, everolimus, and ridaforolimus (formerly deforolimus have been developed and assessed for their safety and efficacy in patients with cancer. Temsirolimus is an intravenously administered agent approved by the US Food and Drug Administration (FDA and the European Medicines Agency (EMEA for the treatment of advanced renal cell carcinoma (RCC. Everolimus is an oral agent that has recently obtained US FDA and EMEA approval for the treatment of advanced RCC after failure of treatment with sunitinib or sorafenib. Ridaforolimus is not yet approved for any indication. The use of mTOR inhibitors, either alone or in combination with other anticancer agents, has the potential to provide anticancer activity in numerous tumor types. Cancer types in which these agents are under evaluation include neuroendocrine tumors, breast cancer, leukemia, lymphoma, hepatocellular carcinoma, gastric cancer, pancreatic cancer, sarcoma, endometrial cancer, and non-small-cell lung cancer. The results of ongoing clinical trials with mTOR inhibitors, as single agents and in combination regimens, will better define their activity in cancer.

  17. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng, E-mail: zhongdsyx@126.com

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  18. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    International Nuclear Information System (INIS)

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression

  19. Breast lump

    Science.gov (United States)

    Breast mass ... males and females of all ages have normal breast tissue. This tissue responds to hormone changes. Because of this, lumps can come and go. Breast lumps may appear at any age: Both male ...

  20. Breast Diseases

    Science.gov (United States)

    Most women experience breast changes at some time. Your age, hormone levels, and medicines you take may cause lumps, bumps, and discharges (fluids that are not breast milk). If you have a breast lump, pain, ...

  1. Trianthema portulacastrum Linn. exerts chemoprevention of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bishayee, Anupam, E-mail: abishayee@auhs.edu [Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755 (United States); Mandal, Animesh [Cancer Therapeutics and Chemoprevention Group, Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272 (United States)

    2014-10-15

    Highlights: • Dietary administration of an ethanolic extract of aerial parts of T. portulacastrum (TPE) exhibits a striking chemopreventive effect in an experimentally induced classical animal model of breast cancer. • The mammary tumor-inhibitory effect of TPE could be achieved, at least in part, though intervention of key hallmark capabilities of tumor cells, such as abnormal cell proliferation and evasion of apoptosis. • TPE is capable of diminishing activated canonical Wnt/β-catenin signaling to exhibit antiproliferative, proapoptotic and oncostatic effects during this early-stage mammary carcinoma. • These results coupled with a safety profile of T. portulacastrum may encourage further studies to understand the full potential of this dietary plant for chemoprevention of breast cancer. - Abstract: Due to limited treatment options for advanced-stage metastatic breast cancer, a high priority should be given to develop non-toxic chemopreventive drugs. The value of various natural and dietary agents to reduce the risk of developing breast cancer is well established. Trianthema portulacastrum Linn. (Aizoaceae), a dietary and medicinal plant, has been found to exert antihepatotoxic and antihepatocarcinogenic properties in rodents. This study was initiated to investigate mechanism-based chemopreventive potential of an ethanolic extract of T. portulacastrum (TPE) against 7,12-dimethylbenz(a)anthracene (DMBA)-initiated rat mammary gland carcinogenesis, an experimental tumor model that closely resembles human breast cancer. Rats had access to a basal diet supplemented with TPE to yield three dietary doses of the extract, i.e., 50, 100 and 200 mg/kg body weight. Following two weeks of TPE treatment, mammary tumorigenesis was initiated by oral administration of DMBA (50 mg/kg body weight). At the end of the study (16 weeks after DMBA exposure), TPE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden and average tumor weight

  2. Comparative genomic hybridization detects novel amplifications in fibroadenomas of the breast

    DEFF Research Database (Denmark)

    Ojopi, E P; Rogatto, S R; Caldeira, J R;

    2001-01-01

    Comparative genomic hybridization analysis was performed for identification of chromosomal imbalances in 23 samples of fibroadenomas of the breast. Chromosomal gains rather than losses were a feature of these lesions. Only two cases with a familial and/or previous history of breast lesions had gain...... indicates that gain of these regions can also occur in benign breast lesions. Our findings may provide a basis for conducting further investigations to locate and identify genes associated with proliferation that may be involved in the early steps of tumorigenesis of the breast....

  3. Antisense angiopoietin-1 inhibits tumorigenesis and angiogenesis of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Kai-Chun Wu; De-Xin Zhang; Dai-Ming Fan

    2006-01-01

    AIM: To investigate the effect of angiopoietin-1 (Ang-1)on biological behaviors in vitro and tumorigenesis and angiogenesis in vitro of human gastric cancer cells.METHODS: Human full-length Ang-1 gene was cloned from human placental tissues by RT-PCR method.Recombinant human Ang-1 antisense eukaryotic expression vector was constructed by directional cloning,and transfected by lipofectin method into human gastric cancer line SGC7901 with high Ang-1 expression level.Inhibition efficiency was confirmed by semi- quantitive PCR and Western blot method. Cell growth curve and cell cycle were observed with MTT assays and flow cytometry, respectively. Nude mice tumorigenicity test was employed to compare in vitro tumorigenesis of cells with Ang-1 suppression. Microvessel density (MVD) of implanted tumor tissues was analyzed by immunohistochemistry for factor Ⅷ staining.RESULTS: Full-length Ang-1 gene was successfully cloned and stable transfectants were established,namely 7Ang1- for antisense, and 7901P for empty vector transfected. 7Ang1- cells showed down-regulated Ang-1 expression, while its in vitro proliferation and cell cycle distribution were not significantly changed.In contrast, xenograft of 7Ang1- cells in nude mice had lower volume and weight than those of 7901P after 30 days' implantation (P<0.01, 293.00±95.54 mg vs. 624.00±77.78 mg) accompanied with less vessel formation with MVD 6.00±1.73 compared to 7901P group 8.44±1.33 (P<0.01).CONCLUSION: Ang-1 may play an important role in tumorigenesis and angiogenesis of gastric cancer, and targeting its expression may be beneficial for the therapy of gastric cancer.

  4. Breast Cancer

    Science.gov (United States)

    ... I found something when I did my breast self-exam. What should I do now? How often should I have mammograms? I have breast cancer. What are my treatment options? How often should I do breast self-exams? I have breast cancer. Is my daughter ...

  5. Anticancer and Cancer Prevention Effects of Piperine-Free Piper nigrum Extract on N-nitrosomethylurea-Induced Mammary Tumorigenesis in Rats.

    Science.gov (United States)

    Sriwiriyajan, Somchai; Tedasen, Aman; Lailerd, Narissara; Boonyaphiphat, Pleumjit; Nitiruangjarat, Anupong; Deng, Yan; Graidist, Potchanapond

    2016-01-01

    Piper nigrum (P. nigrum) is commonly used in traditional medicine. This current study aimed to investigate the anticancer and cancer preventive activity of a piperine-free P. nigrum extract (PFPE) against breast cancer cells and N-nitrosomethylurea (NMU)-induced mammary tumorigenesis in rats. The cytotoxic effects and the mechanism of action were investigated in breast cancer cells using the MTT assay and Western blot analysis, respectively. An acute toxicity study was conducted according to the Organization for Economic Co-operation and Development guideline. Female Sprague-Dawley rats with NMU-induced mammary tumors were used in preventive and anticancer studies. The results showed that PFPE inhibited the growth of luminal-like breast cancer cells more so than the basal-like ones by induction of apoptosis. In addition, PFPE exhibited greater selectivity against breast cancer cells than colorectal cancer, lung cancer, and neuroblastoma cells. In an acute toxicity study, a single oral administration of PFPE at a dose of 5,000 mg/kg body weight resulted in no mortality and morbidity during a 14-day observation period. For the cancer preventive study, the incidence of tumor-bearing rats was 10% to 20% in rats treated with PFPE. For the anticancer activity study, the growth rate of tumors in the presence of PFPE-treated groups was much slower when compared with the control and vehicle groups. The extract itself caused no changes to the biochemical and hematologic parameters when compared with the control and vehicle groups. In conclusion, PFPE had a low toxicity and a potent antitumor effect on mammary tumorigenesis in rats. PMID:26511488

  6. New and emerging factors in tumorigenesis: an overview

    International Nuclear Information System (INIS)

    This article provides an overview of the genes and cellular processes that have emerged recently as new key factors in tumorigenesis. We review these in the context of three broad categories. First, genome-scale sequencing studies have revealed a set of frequently mutated genes in cancer. Genes that are mutated in >5% of all cancers across tissue types are discussed, with a highlighted focus on the two most frequently mutated genes, TP53 and PIK3CA. Second, the mechanisms of resistance to targeted therapy are reviewed. These include acquired resistance under targeted therapy selection owing to mutations and amplification of genes in the same or parallel signaling pathways. Importantly, sequencing of primary tumors has revealed that therapy-resistant clones already exist prior to targeted therapy, demonstrating that tumor heterogeneity in primary tumors confers a mechanism for inherent therapy resistance. Third, “metastasis-specific genes”, or rather lack thereof, are discussed. While many genes have been shown to be capable of promoting metastasis in experimental systems, no common genetic alterations have been identified specific to metastatic lesions. Rather, the same gene mutations frequently found in primary tumors are also found prevalent in metastases, suggesting that the genes that drive tumorigenesis may also drive metastasis. In this light, an emerging view of metastatic progression is discussed. Collectively, these recent advances in cancer research have refined our knowledge on cancer etiology and progression but also present challenges that will require innovative new approaches to treat and manage cancer

  7. EXPRESSION AND CLINICAL SIGNIFICANCE OF p73A IN BREAST CARCINOMA TISSUES

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xin; SUN Zhi-jun

    2005-01-01

    Objective: To study the expression and clinical significance of p73( in breast carcinomas. Methods: The expression of p73( was detected by immunohistochemistry in 41 breast carcinoma tissues, 13 benign breast tumor tissues and 8 normal tissues and 8 normal breast tissues, respectively. Results: The positive expression of p73( was found in 20/41 (48.8%) of breast carcinoma tissues, 1/13 (7.7%) of benign breast tumor tissues. The positive expression rate of p73( in breast carcinoma tissues was significant1y higher than that in benign breast tumor tissues and normal breast tissues (P<0.05). The expression intensity of p73( increased significantly in breast carcinoma tissues compared with benign breast tumor tissues and normal breast tissues (P<0.05). Significant association of the expression of p73( with lymph node metastases and TNM stages of the carcinoma was found (P<0.05). The expression of p73( displayed a positive correlation with p53 (P<0.05). Conclusion: These results suggest that there is an up-regulation of p73( expression in breast carcinoma tissues, which may be implicated in the tumorigenesis of breast carcinoma as a molecular alteration.

  8. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis.

    Science.gov (United States)

    Pinzaru, Alexandra M; Hom, Robert A; Beal, Angela; Phillips, Aaron F; Ni, Eric; Cardozo, Timothy; Nair, Nidhi; Choi, Jaehyuk; Wuttke, Deborah S; Sfeir, Agnel; Denchi, Eros Lazzerini

    2016-06-01

    Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL) patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1) function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  9. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Alexandra M. Pinzaru

    2016-06-01

    Full Text Available Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1 function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  10. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  11. Role of Dicer on tumorigenesis in glioma cells

    Institute of Scientific and Technical Information of China (English)

    Anling Zhang; Lei Han; Guangxiu Wang; Zhifan Jia; Peiyu Pu; Chunsheng Kang

    2010-01-01

    Micro RNAs(miRNAs)are non-coding,single-stranded RNAs that regulate target gene expression by repressing translation or promoting RNA cleavage.Recent studies show that miRNA expression is globally decreased in some human tumors.Dicer is an essential component of the miRNA processing machinery.To determine whether global reduction of miRNA effects tumorigenesis,small interfering RNA were designed to target Dicer to restrain whole miRNA expression in the glioblastoma cell line-TJ905.With effective knock-down of Dicer,tumor cells were invasive and proliferative,and globally impaired miRNA processing enhanced proliferation and invasiveness of glioma cells in vitro.Suppression of Dicer expression resulted in a more aggressive glioma phenotype,which suggests that global reduction of miRNA expression could have an oncogenic role in glioblastoma cells.

  12. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc

    Science.gov (United States)

    Pusapati, Raju V.; Rounbehler, Robert J.; Hong, Sungki; Powers, John T.; Yan, Mingshan; Kiguchi, Kaoru; McArthur, Mark J.; Wong, Paul K.; Johnson, David G.

    2006-01-01

    Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of H2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development. p53 | DNA damage

  13. Targeting γ-secretase in breast cancer

    Directory of Open Access Journals (Sweden)

    Han J

    2012-06-01

    Full Text Available Jianxun Han,1 Qiang Shen21Department of Chemical Engineering and Applied Chemistry, University of Toronto, 2Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University Health Network, Toronto, Ontario, CanadaAbstract: γ-secretase complexes are multisubunit protease complexes that perform the intramembrane cleavage of more than 60 type-I transmembrane proteins, including Notch receptors. Since dysregulated Notch signaling has been implicated in the tumorigenesis and progression of breast cancer, small molecule γ-secretase inhibitors (GSIs are being tested for their therapeutic potential in breast cancer treatment in several clinical trials. Here, the structure of γ-secretase complex and the development of GSIs are briefly reviewed, the roles of Notch and several other γ-secretase substrates in breast cancer are discussed, and the difference between γ-secretase inhibition and Notch inhibition, as well as the side effects associated with GSIs, are described. A better understanding of molecular mechanisms that affect the responsiveness of breast cancer to GSI might help to develop strategies to enhance the antitumor activity and, at the same time, alleviate the side effects of GSI.Keywords: γ-secretase, GSI, Notch, breast cancer

  14. New and emerging factors in tumorigenesis: an overview

    Directory of Open Access Journals (Sweden)

    Kim S

    2015-07-01

    Full Text Available Suwon Kim1,2 1Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 2Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: This article provides an overview of the genes and cellular processes that have emerged recently as new key factors in tumorigenesis. We review these in the context of three broad categories. First, genome-scale sequencing studies have revealed a set of frequently mutated genes in cancer. Genes that are mutated in >5% of all cancers across tissue types are discussed, with a highlighted focus on the two most frequently mutated genes, TP53 and PIK3CA. Second, the mechanisms of resistance to targeted therapy are reviewed. These include acquired resistance under targeted therapy selection owing to mutations and amplification of genes in the same or parallel signaling pathways. Importantly, sequencing of primary tumors has revealed that therapy-resistant clones already exist prior to targeted therapy, demonstrating that tumor heterogeneity in primary tumors confers a mechanism for inherent therapy resistance. Third, “metastasis-specific genes”, or rather lack thereof, are discussed. While many genes have been shown to be capable of promoting metastasis in experimental systems, no common genetic alterations have been identified specific to metastatic lesions. Rather, the same gene mutations frequently found in primary tumors are also found prevalent in metastases, suggesting that the genes that drive tumorigenesis may also drive metastasis. In this light, an emerging view of metastatic progression is discussed. Collectively, these recent advances in cancer research have refined our knowledge on cancer etiology and progression but also present challenges that will require innovative new approaches to treat and manage cancer. Keywords: cancer, genomics, gene mutations, targeted therapy resistance, tumor heterogeneity, metastasis

  15. Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity.

    Science.gov (United States)

    Zhang, Qi; Pan, Jing; North, Paula E; Yang, Shoua; Lubet, Ronald A; Wang, Yian; You, Ming

    2012-05-01

    3-Bromopyruvate, an alkylating agent and a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. However, the chemopreventive effect of 3-bromopyruvate in lung tumorigenesis has not been tested. In this study, we investigated the chemopreventive activity of 3-bromopyruvate in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and 3-bromopyruvate was administered by oral gavage to female A/J mice. We found that 3-bromopyruvate significantly decreased tumor multiplicity and tumor load by 58% and 83%, respectively, at a dose of 20 mg/kg body weight by gavage. Due to the known liver toxicity of 3-bromopyruvate in animal models given large doses of 3-bromopyruvate, confirmed in this study, we decided to test the chemopreventive activity of aerosolized 3-bromopyruvate in the same lung tumor model. As expected, aerosolized 3-bromopyruvate similarly significantly decreased tumor multiplicity and tumor load by 49% and 80%, respectively, at a dose of 10 mg/mL by inhalation. Interestingly, the efficacy of aerosolized 3-bromopyruvate did not accompany any liver toxicity indicating that it is a safer route of administering this compound. Treatment with 3-bromopyruvate increased immunohistochemical staining for cleaved caspase-3, suggesting that the lung tumor inhibitory effects of 3-bromopyruvate were through induction of apoptosis. 3-Bromopyruvate also dissociated hexokinase II from mitochondria, reduced hexokinase activity, and blocked energy metabolism in cancer cells, finally triggered cancer cell death and induced apoptosis through caspase-3, and PARP in human lung cancer cell line. The ability of 3-bromopyruvate to inhibit mouse lung tumorigenesis, in part through induction of apoptosis, merits further investigation of this compound as a chemopreventive agent for human lung cancer. PMID:22401980

  16. Multiple Functions of Ten-eleven Translocation 1 during Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Tian; Yi-Min Zhu; Xiao-Hui Sun; Mao-De Lai

    2016-01-01

    Objective:Aberrant expression of ten-eleven translocation 1 (TET1) plays a critical role in tumor development and progression.We systematically summarized the latest research progress on the role and mechanisms of TET1 in cancer biology.Dato Sources:Relevant articles published in English from 1980 to April 2016 were selected from the PubMed database.The terms "ten-eleven translocation 1," "5mC," "5hmC," "microRNA," "hypoxia," and "embryonic stem cell" were used for the search.Study Selection:Articles focusing on the role and mechanism ofTET 1 in tumor were reviewed,including clinical and basic research articles.Results:TET proteins,the key enzymes converting 5-methylcytosine to 5-hydroxymethylcytosine,play vital roles in DNA demethylation regulation.Recent studies have shown that loss of TET1 is associated with tumorigenesis and can be used as a potential biomarker for cancer therapy,which indicates that TET1 serves as tumor suppressor gene.Moreover,besides its dioxygenase activity,TET1 could induce epithelial-mesenchymal transition and act as a coactivator to regulate gene transcription,such as developmental regulator in embryonic stem cells (ESCs) and hypoxia-responsive gene in cancer.The regulation of TET1 is also correlated with microRNA in a posttranscriptional modification process.Hence,it is complex but critical to comprehend the mechanisms of TET1 in the biology of ESCs and cancer.Conclusions:TET1 not only serves as a demethylation enzyme but also plays multiple roles during tumorigenesis and progression.More studies should be carried out to elucidate the exact mechanisms of TET1 and its associations with cancer before considering it as a therapeutic tool.

  17. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  18. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  19. Breast Gangrene

    Directory of Open Access Journals (Sweden)

    Husasin Irfan

    2011-08-01

    Full Text Available Abstract Background Breast gangrene is rare in surgical practice. Gangrene of breast can be idiopathic or secondary to some causative factor. Antibiotics and debridement are used for management. Acute inflammatory infiltrate, severe necrosis of breast tissue, necrotizing arteritis, and venous thrombosis is observed on histopathology. The aim of was to study patients who had breast gangrene. Methods A prospective study of 10 patients who had breast gangrene over a period of 6 years were analyzed Results All the patients in the study group were female. Total of 10 patients were encountered who had breast gangrene. Six patients presented with breast gangrene on the right breast whereas four had on left breast. Out of 10 patients, three had breast abscess after teeth bite followed by gangrene, one had iatrogenic trauma by needle aspiration of erythematous area of breast under septic conditions. Four had history of application of belladonna on cutaneous breast abscess and had then gangrene. All were lactating female. Amongst the rest two were elderly, one of which was a diabetic who had gangrene of breast and had no application of belladonna. All except one had debridement under cover of broad spectrum antibiotics. Three patients had grafting to cover the raw area. Conclusion Breast gangrene occurs rarely. Etiology is variable and mutifactorial. Teeth bite while lactation and the iatrogenic trauma by needle aspiration of breast abscess under unsterlised conditions could be causative. Uncontrolled diabetes can be one more causative factor for the breast gangrene. Belladonna application as a topical agent could be inciting factor. Sometimes gangrene of breast can be idiopathic. Treatment is antibiotics and debridement.

  20. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells.

    Science.gov (United States)

    Tsui, Ke-Hung; Lin, Yu-Hsiang; Chung, Li-Chuan; Chuang, Sung-Ting; Feng, Tsui-Hsia; Chiang, Kun-Chun; Chang, Phei-Lang; Yeh, Chi-Ju; Juang, Horng-Heng

    2016-05-28

    Prostate-derived Ets (E-twenty six) factor (PDEF), an epithelium-specific member of the Ets family of transcription factors, has been shown to play a role in suppressing the development of many epithelium-derived cancers such as prostate and breast cancer. It is not clear, however, whether PDEF is involved in the development or progression of bladder cancer. In a comparison between normal urothelium and bladder tumor tissue, we identified significant decreases of PDEF in the tumor tissue. Further, the immunohistochemistry assays indicated a significantly higher immunostaining of PDEF in low-grade bladder tumors. Additionally, the highly differentiated transitional-cell bladder carcinoma RT-4 cells expressed significantly more PDEF levels than the bladder carcinoma HT1376 and the T24 cells. Ectopic overexpression of PDEF attenuated proliferation, invasion, and tumorigenesis of bladder carcinoma cells in vitro and in vivo. PDEF enhanced the expression levels of mammary serine protease inhibitor (MASPIN), N-myc downstream regulated gene 1 (NDRG1), KAI1, and B-cell translocation gene 2 (BTG2). PDEF modulated epithelial-mesenchymal-transition (EMT) by upregulating E-cadherin expression and downregulating the expression of N-cadherin, SNAIL, SLUG, and vimentin, leading to lower migration and invasion abilities of bladder carcinoma cells. Filamentous actin (F-actin) polarization and remodeling were observed in PDEF-knockdown RT-4 cells. Our results suggest that PDEF gene expression is associated with the extent of bladder neoplasia and PDEF modulated the expressions of EMT-related genes. The induction of BTG2, NDRG1, MASPIN, and KAI1 gene expressions by PDEF may explain the inhibitory functions of PDEF on the proliferation, invasion, and tumorigenesis in bladder carcinoma cells.

  1. Breast lift

    Science.gov (United States)

    ... One breast that is larger than the other (asymmetry of the breasts) Uneven position of the nipples ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  2. Breast cancer

    Science.gov (United States)

    ... perform breast self-exams each month. However, the importance of self-exams for detecting breast cancer is ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  3. Breast; Sein

    Energy Technology Data Exchange (ETDEWEB)

    Bourgier, C.; Garbay, J.R.; Pichenot, C.; Uzan, C.; Delaloge, S.; Andre, F.; Spielmann, M.; Arriagada, R.; Lefkopoulos, D.; Marsigli, H.; Bondiau, P.Y.; Courdi, A.; Lallemand, M.; Peyrotte, I.; Chapellier, C.; Ferrero, J.M.; Chiovati, P.; Baldissera, A.; Frezza, G.; Vicenzi, L.; Palombarini, M.; Martelli, O.; Degli Esposti, C.; Donini, E.; Romagna CDR, E.; Romagna CDF, E.; Benmensour, M.; Bouchbika, Z.; Benchakroun, N.; Jouhadi, H.; Tawfiq, N.; Sahraoui, S.; Benider, A.; Gilliot, O.; Achard, J.L.; Auvray, H.; Toledano, I.; Bourry, N.; Kwiatkowski, F.; Verrelle, P.; Lapeyre, M.; Tebra Mrad, S.; Braham, I.; Chaouache, K.; Bouaouin, N.; Ghorbel, L.; Siala, W.; Sallemi, T.; Guermazi, M.; Frikha, M.; Daou, J.; El Omrani, A.; Chekrine, T.; Mangoni, M.; Castaing, M.; Folino, E.; Livi, L.; Dunant, A.; Mathieu, M.C.; Bitib, G.P.; Arriagada, R.; Marsigli, H

    2007-11-15

    Nine articles treat the question of breast cancer. Three-dimensional conformal accelerated partial breast irradiation: dosimetric feasibility study; test of dose escalation neo-adjuvant radiotherapy focused by Cyberknife in breast cancer; Three dimensional conformal partial irradiation with the technique by the Irma protocol ( dummy run multi centers of the Emilie Romagne area Italy); Contribution of the neo-adjuvant chemotherapy in the treatment of locally evolved cancers of the uterine cervix; Post operative radiotherapy of breast cancers (N0, pN) after neo-adjuvant chemotherapy. Radiotherapy of one or two mammary glands and ganglions areas,The breast cancer at man; breast conservative treatment; breast cancers without histological ganglions invasion; the breast cancer at 70 years old and more women; borderline mammary phyllod tumors and malignant. (N.C.)

  4. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk [Emory Univ. School of Medicine, Atlanta (United States)

    2011-06-15

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [{sup 18F}]fluorocyclo butane 1 carboxylic acid ([{sup 18F}]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [{sup 18F}]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [{sup 18F}]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging.

  5. Epithelial-mesenchymal transition in breast cancer progression and metastasis

    Institute of Scientific and Technical Information of China (English)

    Yifan Wang; Binhua P. Zhou

    2011-01-01

    Breast cancer is the most common cancer in women,and approximately 90% of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells.Epithelial-mesenchymal transition (EMT) is a vital process for large-scale cell movement during morphogenesis at the time of embryonic development.Tumor cells usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis.Several transcription factors and signals are involved in these events.In this review,we summarize recent advances in breast cancer researches that have provided new insights in the molecular mechanisms underlying EMT regulation during breast cancer progression and metastasis.We especially focus on the molecular pathways that control EMT.

  6. Transforming growth factor-β and breast cancer: Lessons learned from genetically altered mouse models

    International Nuclear Information System (INIS)

    Transforming growth factor (TGF)-βs are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-βaction in the context of the whole animal. Overexpression of TGF-β can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-β function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-β response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-βs have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-β receptors seen in some human breast hyperplasias may play a causal role in tumor development

  7. Breast Cancer

    Science.gov (United States)

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks ... the risk. Women who have family members with breast or ovarian cancer may wish to be tested ...

  8. Ultrasound - Breast

    Science.gov (United States)

    ... Even so, mammograms do not detect all breast cancers. Some breast lesions and abnormalities are not visible or are difficult to interpret on mammograms. In breasts that are dense, meaning there is a lot ... and less fat, many cancers can be hard to see on mammography. Many ...

  9. Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice

    International Nuclear Information System (INIS)

    The major obstacles to the successful use of individual nutritional compounds as preventive or therapeutic agents are their efficacy and bioavailability. One approach to overcoming this problem is to use combinations of nutrients to induce synergistic effects. The objective of this research was to investigate the synergistic effects of two dietary components: docosahexaenoic acid (DHA), an omega-3 fatty acid present in cold-water fish, and curcumin (CCM), an herbal nutrient present in turmeric, in an in vivo model of DMBA-induced mammary tumorigenesis in mice. We used the carcinogen DMBA to induce breast tumors in SENCAR mice on control, CCM, DHA, or DHA + CCM diets. Appearance and tumor progression were monitored daily. The tumors were harvested 15 days following their first appearance for morphological and immunohistological analysis. Western analysis was performed to determine expression of maspin and survivin in the tumor tissues. Characterization of tumor growth was analyzed using appropriate statistical methods. Otherwise all other results are reported as mean ± SD and analyzed with one-way ANOVA and Tukey’s post hoc procedure. Analysis of gene microarray data indicates that combined treatment with DHA + CCM altered the profile of “PAM50” genes in the SK-BR-3 cell line from an ER-/Her-2+ to that resembling a “normal-like” phenotype. The in vivo studies demonstrated that DHA + CCM treatment reduced the incidence of breast tumors, delayed tumor initiation, and reduced progression of tumor growth. Dietary treatment had no effect on breast size development, but tumors from mice on a control diet (untreated) were less differentiated than tumors from mice fed CCM or DHA + CCM diets. The synergistic effects also led to increased expression of the pro-apoptotic protein, maspin, but reduced expression of the anti-apoptotic protein, survivin. The SK-BR-3 cells and DMBA-induced tumors, both with an ER- and Her-2+ phenotype, were affected by the synergistic

  10. CLINICOPATHOLOGICAL SIGNIFICANCE OF PTEN AND CASPASE-3 EXPRESSIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Xue-fei Yang; Yan Xin; Li-li Mao

    2008-01-01

    Objective To investigate the expressions of PTEN and Caspase-3 proteins in human breast carcinoma, and to evaluate their clinicopathological implications during the tumorigenesis and progression of breast cancer.Methods The expressions of PTEN and Caspase-3 proteins in 95 cases of breast cancer and 15 cases of benignbreast diseases were investigated immunohistochemically. Correlations between the expression of PTEN protein,Caspase-3 protein, and clinicopathological features of breast cancers were analyzed.Results The loss expression rate of PTEN protein in tumor tissues was significantly higher than that in benignbreast diseases (33.7% vs. 0, P 0. 05). In addition,the expression of PTEN protein had significantly positive correlation with the expression of Caspase-3 protein in breast cancer (P <0.01 ).Conclusion The combination detection of PTEN and Caspase-3 may serve as an important index to estimate the pathobiological behavior and pognosis of breast cancer.

  11. E-cadherin promotor methylation and mutation are inversely related to motility capacity of breast cancer cells

    NARCIS (Netherlands)

    Horssen, R. van; Hollestelle, A.; Rens, J.A.; Eggermont, A.M.; Schutte, M.; Ten Hagen, T.L.

    2012-01-01

    Inactivation of the tumor suppressor E-cadherin is an important event during breast tumorigenesis, as its decreased expression is linked to aggressiveness and metastasis. However, the relationship between the different modes of E-cadherin inactivation (mutation versus promotor hypermethylation) and

  12. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    Science.gov (United States)

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  13. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    Science.gov (United States)

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  14. John’s use of Scripture in Revelation 1:7

    Directory of Open Access Journals (Sweden)

    M. J.J Menken

    2007-07-01

    Full Text Available Four questions are asked in this paper: (1 Which are the Old Testament passages from which John quotes in Revelation 1:7? (2 To what extent do the separate quotations and their combination belong to the early Christian tradition used by John? (3 How and where did this combination of quotations come into being? (4 What does John aim at with this com- bination of quotations in this context? John makes use of the combination of God’s eschatological agent as depicted in Daniel 7 and the “pierced one” from Zechariah 12 into one figure, to present the traditional early Christian eschatology, phrased in Old Testament terms, as the basis and the starting point of his book.

  15. Aromatase inhibitor strategies in metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Heather L McArthur

    2009-07-01

    Full Text Available Heather L McArthur, Patrick G MorrisBreast Cancer Medicine Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USAAbstract: Despite ongoing therapeutic innovations, metastatic breast cancer (MBC remains a treatable but incurable disease. In the developed world, a diagnosis of MBC without a preceding diagnosis of early stage disease is a rare event. However, approximately one-third of women with early stage breast cancer ultimately experience a distant recurrence. Because the majority of breast cancers express estrogen and/or progesterone receptors and are accordingly considered hormone-sensitive, therapeutic strategies that interfere with hormone-mediated tumorigenesis have been a cornerstone of the breast cancer management paradigm for decades. Historically, the selective estrogen receptor modulator tamoxifen has been the most extensively studied and widely used hormone maneuver in breast cancer. However, a recent therapeutic innovation, namely the successful development of third-generation aromatase inhibitors (AIs, has had a dramatic impact on the treatment paradigm for women with hormone-sensitive MBC. Because of the demonstrated efficacy in postmenopausal breast cancer patients, the generally favorable side-effect profile, and the convenience of oral administration, AIs are now in widespread clinical use. Currently, there are three clinically available third-generation AIs: two reversible, nonsteroidal AIs, letrozole and anastrozole; and one irreversible, steroidal AI, exemestane. All three agents are at least as efficacious as tamoxifen as monotherapy for postmenopausal women with hormone-sensitive MBC. Current clinical research aims to improve upon existing strategies by evaluating AIs in combination with systemic chemotherapy regimens and/or novel targeted agents. It is hoped that these therapeutic innovations will lead to ongoing improvements in quality of life parameters and ideally survival for women

  16. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  17. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  18. Alternative RNA Structure-Coupled Gene Regulations in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Feng-Chi Chen

    2014-12-01

    Full Text Available Alternative RNA structures (ARSs, or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.

  19. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    International Nuclear Information System (INIS)

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  20. Sur8 mediates tumorigenesis and metastasis in colorectal cancer

    Science.gov (United States)

    Lee, Young-Mi; Kaduwal, Saluja; Lee, Kug Hwa; Park, Jong-Chan; Jeong, Woo-Jeong; Choi, Kang-Yell

    2016-01-01

    Sur8, a scaffold protein of the Ras pathway, interacts with Ras and Raf and modulates the Ras-extracellular signal-regulated kinase (ERK) pathway. Here we show that Sur8 is overexpressed in established human colorectal cancer (CRC) cell lines and CRC patient tissues. Moreover, Sur8 expression is increased during liver metastasis in CRC patients. Sur8 knockdown decreases ERK and Akt activities in CRC cell lines, regardless of their K-Ras, B-Raf or PI3K mutation status. Overexpression or knockdown of Sur8 increases or decreases, respectively, the proliferation or transformation of CRC cell lines. Sur8 knockdown attenuates the migration and invasion of HCT116 CRC cells. Subcutaneous or orthotopic injection of HCT116 cells harboring a doxycycline (Dox)-mediated Sur8 knockdown system in nude mice resulted in decreased tumorigenic potential and inhibited the liver metastatic potential of HCT116 cells. Taken together, our data support the role of Sur8 as a promoter of tumorigenesis and liver metastasis in CRC through its modulation of the Ras-ERK and PI3K-Akt signaling pathways. PMID:27469030

  1. Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure

    OpenAIRE

    Nagasubramanian, Ramamoorthy; Hansen, Ryan J.; Delaney, Shannon M.; Cherian, Mathew M.; Samson, Leona D.; Kogan, Scott C.; Dolan, M. Eileen

    2008-01-01

    O6-methylguanine DNA methyltransferase (MGMT) deficiency is associated with an increased susceptibility to alkylating agent toxicity. To understand the contribution of MGMT in protecting against cyclophosphamide (CP)-induced toxicity, mutagenesis and tumorigenesis, we compared the biological effects of this agent in transgenic Mgmt knockout and wild-type mice. In addition, neurofibromin (Nf1)+/− background was used to increase the likelihood of CP-induced tumorigenesis. Cohorts of Mgmt-profic...

  2. Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis

    OpenAIRE

    Li Zihai; Goldstein Mark G

    2009-01-01

    Abstract Inflammation is a necessary albeit insufficient component of tumorigenesis in some cancers. Infectious agents directly implicated in tumorigenesis have been shown to induce inflammation. This process involves both the innate and adaptive components of the immune system which contribute to tumor angiogenesis, tumor tolerance and metastatic properties of neoplasms. Recently, heat-shock proteins have been identified as mediators of this inflammatory process and thus may provide a link b...

  3. Breast MRI scan

    Science.gov (United States)

    MRI - breast; Magnetic resonance imaging - breast; Breast cancer - MRI; Breast cancer screening - MRI ... your stomach on a narrow table with your breasts hanging down into cushioned openings. The table slides ...

  4. Breast Cancer Treatment

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer Go to Health Professional Version Key Points Breast ...

  5. Stages of Breast Cancer

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer Go to Health Professional Version Key Points Breast ...

  6. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  7. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  8. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride.

    Science.gov (United States)

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana

    2015-05-01

    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  9. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  10. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Directory of Open Access Journals (Sweden)

    Aurelie de Thonel

    2011-03-01

    Full Text Available Heat Shock Factors (HSF form a family of transcription factors (four in mammals which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  11. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    Directory of Open Access Journals (Sweden)

    Òscar Martorell

    Full Text Available Whereas the series of genetic events leading to colorectal cancer (CRC have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  12. Molecular mechanisms of thyroid tumorigenesis; Molekulare Mechanismen der Schilddruesentumorgenese

    Energy Technology Data Exchange (ETDEWEB)

    Krause, K.; Fuehrer, D. [Universitaetsklinikum Leipzig (Germany). Abt. fuer Endokrinolgoie, Diabetologie und Nephrologie

    2008-09-15

    Thyroid nodules are the most frequent endocrine disorder and occur in approximately 30% of the German population. Thyroid nodular disease constitutes a very heterogeneous entity. A striking diversity of possible functional and morphological features of a thyroid tumour derived from the same thyroid ancestor cell, is a hallmark of thyroid tumorigenesis and is due to specific genetic alterations. Defects in known candidate genes can be found in up to 70% of differentiated thyroid carcinomas and determine the respective cancer phenotype. Papillary thyroid cancers (PTC) harbour BRAF (or much less frequently RAS) mutations in sporadically occurring tumours, while radiation-induced PTC display chromosomal rearrangements such as RET, TRK, APR9 / BRAF. These genetic events results in constitutive MAPKinase activation. Follicular thyroid cancers (FTC) harbour RAS mutations or PAX8/ PPAR{gamma} rearrangements, both of which, however have also been identified in follicular adenoma. In addition, recent studies show, that activation of PI3K/AKT signalling occurs with high frequency in follicular thyroid tumours. Undifferentiated (anaplastic) thyroid cancers (ATC) display genetic features of FTC or PTC, in addition to aberant activation of multiple tyrosinkinase pathways (overexpression or mutations in PI3K and MAPK pathways). This underscores the concept of a sequential evolution of ATC from differentiated thyroid cancer, a process widely conceived to be triggered by p53 inactivation. In contrast, the molecular pathogenesis of benign thyroid tumours, in particular cold thyroid nodules is less known, except for toxic thyroid nodules, which arise from constitutive activation of cAMP signalling, predominantly through TSHR mutations. (orig.)

  13. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    Directory of Open Access Journals (Sweden)

    Bobrowska-Korczak Barbara

    2012-04-01

    Full Text Available Abstract Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene, were treated with zinc ions (Zn or zinc ions + resveratrol (Zn + resveratrol or zinc ions + genistein (Zn + genistein via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein, DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of

  14. Update on clinical trials: genetic targets in breast cancer.

    Science.gov (United States)

    Lim, Bora; Cream, Leah V; Harvey, Harold A

    2013-01-01

    Breast cancer is the most commonly diagnosed cancer in women in United States. From data of American Cancer Society from 2007 reported total of 178,480 women diagnosed with breast cancer. The death rate from breast cancer has decreased in North America over time, but still accounts for second highest cancer death, following lung cancer. Breast cancer is staged based on tumor size, nodal involvement, and distant metastasis like any other solid tumors. However clinical staging is not the only important factor in management of breast cancer. Various molecular features divides breast cancer into many subgroups - that act differently, and respond differently from therapy. Thus the focus of breast cancer treatment has evolved focusing on specific targets. The most important biologic markers in subtyping of breast cancer so far are hormone receptor positivity and HER2/neu protein expression. Five molecular subtypes using intrinsic gene set include Basal mRNA, HER2 + mRNA, Luminal AmRNA, Luminal B mRNA, and Normal-like mRNA. In addition, better understanding of genetic target of breast cancer has given us arsenal of personalized, and more effective treatment approach.This review will focus on examples that highlight several mechanism of tumorigenesis, giving us not just understanding of gene pathways and the molecular biology, that could lead us to therapeutic target. Several important molecular targets have been investigated in preclinical and clinical trials, others are yet to be explored. We will also describe genetic mechanisms discovery related to overcoming resistance to current targeted therapies in breast cancer, including hormone receptor expression and HER 2- neu amplification. We will also review other exciting developments in understanding of breast cancer, the tumor microenvironment and cancer stem cells, and targeting agents in that area. PMID:23288634

  15. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B;

    2016-01-01

    and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according...... matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition......Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases...

  16. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  17. God’s immanency in Abraham’s response to revelation: from providence to omnipresence

    Directory of Open Access Journals (Sweden)

    Ciocan Tudor Cosmin

    2016-03-01

    Full Text Available My assertion is that God’s biblical image may not reflect entirely His existence in itself as well as His revealed image. Even if God in Himself is both transcendent and immanent at the same time, and He is revealing accordingly in the history of humankind, still the image of God constructed in the writings of the Old Testament is merely the perspective made upon God by His followers to whom the He has revealed. That could be the reason why for centuries God’s biblical image seems to emphasize more His immanence, starting with Pentateuch, where God cohabites with Adam on Earth, then He reveals Himself to Abraham and Moses and so on. Somewhere, after the Babylonian exile, the image suffers slightly differences tilting towards God’s transcendence. In a path already created and grounded by Israel’s ancestors, even this new color of transcendence bears the nuances of immanence. How can this be possible? Let’s take a look on the revelation received by Abraham from God and see how this can fit the profile. Instead of the transcendence of God regarded by others in the differentness of Yahweh appointed by Abraham in his walking out of Mesopotamia, I will prove otherwise, that Abraham is on the contrary proving God’s immanency in this very differentness of His in relation with other gods by providence and omnipresence, indwelling His creation.

  18. Freedom of language in theological discourse Foundation for an unprecedented language between revelation and culture

    Directory of Open Access Journals (Sweden)

    Hernán Pablo Fanuele

    2015-04-01

    Full Text Available In the present study will reflect on some prospects of that language that allows intellection of revelation in the fundamental stages of theological science or currents of specialized theology. The opportunity to find theological aspects in unexplored paths that provides freedom of speech as “incarnation” of the words of God and about God in cultures will be analyzed. Also be listed only in a theoretical register, some speculative discourses of theological-mystical tradition that thought how become human language the ineffable word of God. The experience of every man who is facing the mystery causes, a response. So we can say that the mystery causes mystical. In search of a theology targeted to all men and the whole man, can not dispense with the “credible” character of it. Therefore, the possibility of being nice, dear, audible and taken into account in all the speeches depends on the credibility, that does not negate the reasonableness, but the latter is enriched from the testimonial aspect. This particularity of theology has potential for development as far as experience and witness taking place in the structure of his speech.

  19. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats

    Science.gov (United States)

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2009-01-01

    We evaluated the effect of various light/dark regimens on the survival, life span and tumorigenesis in rats. Two hundred eight male and 203 females LIO rats were subdivided into 4 groups and kept at various light/dark regimens: standard 12:12 light/dark (LD); natural lighting of the North-West of Russia (NL); constant light (LL), and constant darkness (DD) since the age of 25 days until natural death. We found that exposure to NL and LL regimens accelerated development of metabolic syndrome and spontaneous tumorigenesis, shortened life span both in male and females rats as compared to the standard LD regimen. We conclude that circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. This observation supports the conclusion of the International Agency Research on Cancer that shift-work that involves circadian disruption is probably carcinogenic to humans. PMID:20157558

  20. The Yin-Yang of DNA Damage Response: Roles in Tumorigenesis and Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2013-01-01

    Full Text Available Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.

  1. Activation of the ATM-Snail pathway promotes breast cancer metastasis

    OpenAIRE

    Sun, Mianen; Guo, Xiaojing; Qian, Xiaolong; Wang, Haibo; Yang, Chunying; Brinkman, Kathryn L; Serrano-Gonzalez, Monica; Jope, Richard S.; Zhou, Binhua; Engler, David A.; Zhan, Ming; Wong, Stephen T. C.; Fu, Li; Xu, Bo

    2012-01-01

    The DNA damage response (DDR) is critical for the maintenance of genetic stability and serves as an anti-cancer barrier during early tumorigenesis. However, the role of the DDR in tumor progression and metastasis is less known. Here, we demonstrate that the ATM kinase, one of the critical DDR elements, is hyperactive in late stage breast tumor tissues with lymph-node metastasis and this hyperactivity correlates with elevated expression of the epithelial–mesenchymal transition marker, Snail. A...

  2. Attenuating Tumour Angiogenesis: A Preventive Role of Metformin against Breast Cancer

    OpenAIRE

    Shan Gao; Jingcheng Jiang; Pan Li; Huijuan Song; Weiwei Wang; Chen Li; Deling Kong

    2015-01-01

    Metformin is one of the most widely prescribed antidiabetics for type 2 diabetes. A critical role of metformin against tumorigenesis has recently been implicated, although several studies also reported the lack of anticancer property of the antidiabetics. Given the controversies regarding the potential role of metformin against tumour progression, the effect of metformin against breast, cervical, and ovarian tumour cell lines was examined followed by in vivo assessment of metformin on tumour ...

  3. Implications of the Cancer Stem-Cell Hypothesis for Breast Cancer Prevention and Therapy

    OpenAIRE

    Kakarala, Madhuri; Wicha, Max S.

    2008-01-01

    Recent research in breast biology has provided support for the cancer stem-cell hypothesis. Two important components of this hypothesis are that tumors originate in mammary stem or progenitor cells as a result of dysregulation of the normally tightly regulated process of self-renewal. As a result, tumors contain and are driven by a cellular subcomponent that retains key stem-cell properties including self-renewal, which drives tumorigenesis and differentiation that contributes to cellular het...

  4. Filariasis of The Breast

    OpenAIRE

    Subhash Bhardwaj, Deepti Mahajan,MRAttri*

    2007-01-01

    Filariasis of the breast presenting as a breast lump and clinically simulating a breast cancer is an unusualpresentation. The present case is of a 42 year old female whose breast lump was excised and histopathologyrevealed filariasis.

  5. Premenstrual breast changes

    Science.gov (United States)

    Premenstrual tenderness and swelling of the breasts; Breast tenderness - premenstrual; Breast swelling - premenstrual ... Symptoms of premenstrual breast tenderness may range from mild to ... most severe just before each menstrual period Improve during ...

  6. Breast enlargement in males

    Science.gov (United States)

    Gynecomastia; Breast enlargement in a male ... The condition may occur in one or both breasts. It begins as a small lump beneath the nipple, which may be tender. One breast may be larger than the other. Enlarged breasts ...

  7. Fibrocystic breast disease

    Science.gov (United States)

    Fibrocystic breast disease; Mammary dysplasia; Diffuse cystic mastopathy; Benign breast disease; Glandular breast changes ... made in the ovaries may make a woman's breasts feel swollen, lumpy, or painful before or during ...

  8. Breast Cancer: Treatment Options

    Science.gov (United States)

    ... Breast Cancer > Breast Cancer - Treatment Options Request Permissions Breast Cancer - Treatment Options Approved by the Cancer.Net Editorial ... recommendations for ovarian ablation . Hormonal therapy for metastatic breast cancer Hormonal therapies are also commonly used to treat ...

  9. Surgery for Breast Cancer

    Science.gov (United States)

    ... Next Topic Breast-conserving surgery (lumpectomy) Surgery for breast cancer Most women with breast cancer have some type ... Relieve symptoms of advanced cancer Surgery to remove breast cancer There are two main types of surgery to ...

  10. Learning about Breast Cancer

    Science.gov (United States)

    ... genetic terms used on this page Learning About Breast Cancer What do we know about heredity and breast ... Cancer What do we know about heredity and breast cancer? Breast cancer is a common disease. Each year, ...

  11. Breast Cancer

    Science.gov (United States)

    ... click the brackets in the lower right-hand corner of the video screen. To reduce the videos, ... with breast cancer are under way. With early detection, and prompt and appropriate treatment, the outlook for ...

  12. Breast cancer

    International Nuclear Information System (INIS)

    This article is about the diagnosis, treatment and monitoring of breast cancer. Positive diagnosis is based on clinical mammary exam, mammography, mammary ultrasonography, and histological study. Before the chemotherapy and radiotherapy treatment are evaluated the risks

  13. Breast ultrasound

    Science.gov (United States)

    Hacker NF, Friedland ML. Breast disease. In: Hacker NF, Gambone JC, Hobel CJ, eds. Hacker and Moore's Essentials of Obstetrics and Gynecology . 6th ed. Philadelphia, PA: Elsevier; 2016:chap 30. Harvey ...

  14. Breast Density and Your Breast Mammogram Report

    Science.gov (United States)

    Breast Density and Your Mammogram Report Regular mammograms are the best way to find breast cancer early. But if ... But in some women, there’s little change. Breast density is very common, and is not abnormal. How ...

  15. Screening for Breast Problems

    Science.gov (United States)

    ... a clinical breast exam done? • What is breast self-awareness? • How is breast self-awareness different from the traditional breast self-exam? •Glossary ... problems includes mammography , clinical breast exams, and breast self-awareness. What is mammography? Mammography is an X-ray ...

  16. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  17. Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis

    DEFF Research Database (Denmark)

    Mollenhauer, Jan; Helmke, Burkhard; Medina, Daniel;

    2004-01-01

    unambiguous inactivating DMBT1 mutations in breast cancer. Expression analyses in the human and mouse mammary glands pointed to the necessity of DMBT1 induction. While age-dependent and hormonal effects could be ruled out, 9 of 10 mice showed induction of Dmbt1 expression after administration...... of the carcinogen 7,12-dimethybenz(alpha)anthracene prior to the onset of tumorigenesis or other histopathological changes. DMBT1 displayed significant up-regulation in human tumor-flanking tissues compared to in normal breast tissues (P ... secretion to secretion to the extracellular matrix and a significant down-regulation compared to that in matched normal flanking tissues (P

  18. Breast fibromatosis associated with breast implants.

    Science.gov (United States)

    Seo, Yoon Nae; Park, Young Mi; Yoon, Hye Kyoung; Lee, Sun Joo; Choo, Hye Jung; Ryu, Ji Hwa

    2015-09-01

    Fibromatosis refers to an extra-abdominal desmoid tumor or aggressive fibromatosis. Breast fibromatosis can develop in association with the capsule around a breast implant, although reports of cases of fibromatosis associated with breast implants are rare. As the demand for breast augmentation has increased, it is important to understand the diseases associated with breast implants. In the present report, we describe a case of breast fibromatosis that developed adjacent to a breast implant and demonstrated a relatively well-defined border even though it invaded the surrounding structures. We also explore the specific imaging features for diagnosing breast fibromatosis in association with implants by reviewing previous literature.

  19. The role of composition in the interpretation of the Rider on the white horse and the seven seals in Revelation

    Directory of Open Access Journals (Sweden)

    Pieter G.R. de Villiers

    2004-11-01

    Full Text Available The article investigates the way in which the author of Revelation composed the seven seals: Formal elements group the seals in smaller patterns. It then explains how this reading of the composition contributes to the process of interpretation by analysing the Rider on the white horse as first seal. Other aspects of the author’s compositional skills are brought into discussion in a last part of the article where the meaning of the Rider on the white horse and the ambiguity of the symbols are discussed.

  20. Upregulation of the PI3K/Akt pathway in the tumorigenesis of canine thyroid carcinoma

    NARCIS (Netherlands)

    Campos, M; Kool, M M J; Daminet, S; Ducatelle, R; Rutteman, G; Kooistra, H S; Galac, S; Mol, J A

    2014-01-01

    BACKGROUND: Information on the genetic events leading to thyroid cancer in dogs is lacking. HYPOTHESIS/OBJECTIVES: Upregulation of the PI3K/Akt pathway has an important role in the tumorigenesis of thyroid carcinoma in dogs. ANIMALS: Fifty-nine dogs with thyroid carcinoma and 10 healthy controls. ME

  1. The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice

    Directory of Open Access Journals (Sweden)

    Sui Xiaomei

    2009-06-01

    Full Text Available Abstract Background Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions in vivo using model genetic systems. Methods Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm, we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the ApcMin model of intestinal carcinoma. Results En/Erm expression in the intestine, at levels not associated with overt crypt-villus dysmorphogenesis, results in a marked increase in tumor number in ApcMin animals. Moreover, when examined histologically, tumors from En/Erm-expressing animals show a trend toward greater stromal invasiveness. Detailed analysis of crypt-villus homeostasis in these En/Erm transgenic animals suggests increased epithelial turnover as one possible mechanism for the enhanced tumorigenesis. Conclusion Our findings provide in vivo evidence for a tumor-restricting function of endogenous Ets factors in the intestinal epithelium.

  2. Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development.

    NARCIS (Netherlands)

    Faucherre, A.F.J.A.; Taylor, G.S.; Overvoorde, J.; Dixon, J.E.; den Hertog, J.

    2008-01-01

    In human cancer, PTEN (Phosphatase and TENsin homolog on chromosome 10, also referred to as MMAC1 and TEP1) is a frequently mutated tumor suppressor gene. We have used the zebrafish as a model to investigate the role of Pten in embryonic development and tumorigenesis. The zebrafish genome encodes tw

  3. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongguo, E-mail: 1138303166@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Lu, Jianwei, E-mail: jianwei2010077@163.com [Cancer Hospital of Jiangsu Province, Nanjing, Jiangsu (China); Zhou, Jing, E-mail: 2310848@163.com [Department of Oncology, Taizhou People’ Hospital, Taizhou, Jiangsu (China); Tan, Xueming, E-mail: 843039795@qq.com [Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); He, Ye, E-mail: 2825636@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Ding, Jie, E-mail: 9111165@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Tian, Yun, E-mail: 1815857@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wang, Li, E-mail: 2376737@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wang, Keming, E-mail: wkmys@sohu.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-04-04

    Highlights: • First, we have shown that upregulated of the Loc554202 in breast cancer tissues. • Second, we demonstrated the function of Loc554202 in breast cancer cell. • Finally, we demonstrated that LOC554202 knockdown could inhibit tumor growth in vivo. - Abstract: Data derived from massive cloning and traditional sequencing methods have revealed that long non-coding RNAs (lncRNA) play important roles in the development and progression of cancer. Although many studies suggest that the lncRNAs have different cellular functions, many of them are not yet to be identified and characterized for the mechanism of their functions. To address this question, we assay the expression level of lncRNAs–Loc554202 in breast cancer tissues and find that Loc554202 is significantly increased compared with normal control, and associated with advanced pathologic stage and tumor size. Moreover, knockdown of Loc554202 decreased breast cancer cell proliferation, induced apoptosis and inhibits migration/invasion in vitro and impeded tumorigenesis in vivo. These data suggest an important role of Loc554202 in breast tumorigenesis.

  4. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  5. Breast self-exam

    Science.gov (United States)

    Self-examination of the breast; BSE; Breast cancer - BSE; Breast cancer screening - self exam ... The best time to do a monthly self-breast exam is about 3 to 5 days after your period starts. Do it at the same time every month. Your breasts are ...

  6. P21-activated kinase 1 and breast cancer

    Institute of Scientific and Technical Information of China (English)

    Jun-Xiang Zhang; Da-Qiang Li; Rakesh Kumar

    2010-01-01

    @@ The p21 activated kinase 1 (PAK1) belongs to PAKs family, a group of highly evolutionarily conserved protein family of serine/threonine kinases, which acts as a downstream effector of the small GTPases Cdc42 and Rac1, firstly reported in 1994[1]. As a serine/threonine kinase, PAK1 plays an important role in many cellular functions including cell morphogenesis, motility, survival, mitosis, angiogenesis, and tumorigenesis. More than 40 proteins have been reported to be phosphorylated by PAK1[2]. Accumulating experimental data in multiple experimental systems provide compelling evidence that PAK1 plays an important role in breast cancer promotion and progression. PAK1 is overexpressed and/or hyperactivated in more than 50% of breast cancers[3]. On the other hand, PAK1 overexpression in estrogen receptor alpha (ER α) positive breast cancer is also closely associated with a reduced responsiveness to tamoxifen therapy[4]. Since PAK1 plays such a vital role in breast cancer, PAK1 targeted therapeutic approaches are likely to be useful in breast cancer treatment as well as in other human cancers with PAK1 upregulation and/or hyperactivation[5].

  7. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.

  8. Stat3 mediates expression of autotaxin in breast cancer.

    Directory of Open Access Journals (Sweden)

    Janeen Azare

    Full Text Available We determined that signal transducer and activator of transcription 3 (Stat3 is tyrosine phosphorylated in 37% of primary breast tumors and 63% of paired metastatic axillary lymph nodes. Examination of the distribution of tyrosine phosphorylated (pStat3 in primary tumors revealed heterogenous expression within the tumor with the highest levels found in cells on the edge of tumors with relatively lower levels in the central portion of tumors. In order to determine Stat3 target genes that may be involved in migration and metastasis, we identified those genes that were differentially expressed in primary breast cancer samples as a function of pStat3 levels. In addition to known Stat3 transcriptional targets (Twist, Snail, Tenascin-C and IL-8, we identified ENPP2 as a novel Stat3 regulated gene, which encodes autotaxin (ATX, a secreted lysophospholipase which mediates mammary tumorigenesis and cancer cell migration. A positive correlation between nuclear pStat3 and ATX was determined by immunohistochemical analysis of primary breast cancer samples and matched axillary lymph nodes and in several breast cancer derived cell lines. Inhibition of pStat3 or reducing Stat3 expression led to a decrease in ATX levels and cell migration. An association between Stat3 and the ATX promoter, which contains a number of putative Stat3 binding sites, was determined by chromatin immunoprecipitation. These observations suggest that activated Stat3 may regulate the migration of breast cancer cells through the regulation of ATX.

  9. Low expression of leptin and its association with breast cancer: A transcriptomic study.

    Science.gov (United States)

    Karim, Sajjad; Merdad, Adnan; Schulten, Hans-Juergen; Jayapal, Manikandan; Dallol, Ashraf; Buhmeida, Abdelbaset; Al-Thubaity, Fatima; Mirza, Zeenat; Gari, Mamdooh A; Chaudhary, Adeel G; Abuzenadah, Adel M; Al-Qahtani, Mohammed H

    2016-07-01

    The incidence of breast cancer is alarmingly increasing worldwide and also among Saudi women. Obesity is linked with an increased cancer risk and studies have also revealed that leptin may be involved in breast tumorigenesis particularly among obese women. Numerous transcriptomic studies have been carried out worldwide; however, molecular studies among breast cancer patients of diverse ethnic groups from the Arabian Peninsula are scarce. In the present study, whole transcriptome analysis of 45 surgically resected breast tumors from Saudi Arabian female patients was carried out. Expression data were analyzed, and molecular networks and canonical pathways were identified. We identified 1,159 differentially expressed genes using p-value with a false discovery rate 2 as a cut-off. Using ingenuity pathway analysis tool, we identified many canonical pathways that were implicated in breast cancer for the first time. Notably, along with other lipid metabolism molecules, leptin (LEP)was one of the most downregulated genes (fold cut-off, -7.03) with significant differences between the breast cancer and the control groups (pcancer from a Saudi female population revealed downregulation of LEP. Molecular pathway analysis demonstrated the role of LEP and other associated molecules of the lipid metabolism pathway. Involvement of leptin and lipid metabolism in breast cancer was highlighted. The majority of cases presented were of late stage, stressing the need to educate individuals concerning early diagnostic testing and the life-style risk factors for breast cancer such as unhealthy diet and obesity. PMID:27177292

  10. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy

  11. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tian-Li [Department of General Surgery, The People’s Hospital of Wuqing, Tianjin (China); Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Yue [Department of Respiration, Affiliated Hospital of Medical College of Chinese People’s Armed Police Force, Tianjin (China); Chen, Ao-Xiang; Sun, Xuan [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie, E-mail: gejie198003@163.com [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  12. The role of circadian rhythm in breast cancer

    Science.gov (United States)

    Li, Shujing; Ao, Xiang

    2013-01-01

    The circadian rhythm is an endogenous time keeping system shared by most organisms. The circadian clock is comprised of both peripheral oscillators in most organ tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the central nervous system. The circadian rhythm is crucial in maintaining the normal physiology of the organism including, but not limited to, cell proliferation, cell cycle progression, and cellular metabolism; whereas disruption of the circadian rhythm is closely related to multi-tumorigenesis. In the past several years, studies from different fields have revealed that the genetic or functional disruption of the molecular circadian rhythm has been found in various cancers, such as breast, prostate, and ovarian. In this review, we will investigate and present an overview of the current research on the influence of circadian rhythm regulating proteins on breast cancer. PMID:23997531

  13. Breast cancer

    CERN Multimedia

    2002-01-01

    "Cancer specialists will soon be able to compare mammograms with computerized images of breast cancer from across Europe, in a bid to improve diagnosis and treatment....The new project, known as MammoGrid, brings together computer and medical imaging experts, cancer specialists, radiologists and epidemiologists from Bristol, Oxford, Cambridge, France and Italy" (1 page).

  14. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion

    OpenAIRE

    Xie Xiaofang; Wen Huiyan; Zhou Xiaoni; Feng Ping; Zhou Huiqin; Yang Huan; Shen Haiying; Zhu Xueming

    2010-01-01

    Abstract Background Tumor cell expression of Toll-like receptors (TLRs) can promote inflammation and cell survival in the tumor microenvironment. Toll-like receptor 4 (TLR4) signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. The expression of TLR4 in human breast cancer cell line MDA-MB-231 and its biological function in the development and progression of br...

  15. Ultrasound-Guided Breast Biopsy

    Science.gov (United States)

    ... Professions Site Index A-Z Ultrasound-Guided Breast Biopsy An ultrasound-guided breast biopsy uses sound waves ... Guided Breast Biopsy? What is Ultrasound-Guided Breast Biopsy? Lumps or abnormalities in the breast are often ...

  16. Stereotactic (Mammographically Guided) Breast Biopsy

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Stereotactic Breast Biopsy Stereotactic breast biopsy uses mammography – a specific type ... Breast Biopsy? What is Stereotactic (Mammographically Guided) Breast Biopsy? Lumps or abnormalities in the breast are often ...

  17. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53's transcriptional activity.

    Science.gov (United States)

    Sun, Lin; Li, Yu; Yang, Bangxiang

    2016-09-01

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53's transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53's transcriptional activity by decreasing MDM2's transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells' malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. PMID:27166155

  18. Different Identity Revelation Modes in an Online Peer-Assessment Learning Environment: Effects on Perceptions toward Assessors, Classroom Climate and Learning Activities

    Science.gov (United States)

    Yu, Fu-Yun; Wu, Chun-Ping

    2011-01-01

    The effects of four different identity revelation modes (three fixed modes: real-name, anonymity, nickname and one dynamic user self-choice mode) on participants' perceptions toward their assessors, classroom climate, and past experience with the learning activity in which they were engaged were examined. A pretest-posttest quasi-experimental…

  19. MiR-218 Mediates tumorigenesis and metastasis: Perspectives and implications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ying-fei [Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guangzhou (China); Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); Zhang, Li [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong (China); Waye, Mary Miu Yee [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Fu, Wei-ming, E-mail: wm.fu@giat.ac.cn [Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guangzhou (China); School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Jin-fang, E-mail: zhangjf06@cuhk.edu.hk [Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen (China)

    2015-05-15

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. As a highly conserved miRNA across a variety of species, microRNA-218 (miR-218) was found to play pivotal roles in tumorigenesis and progression. A group of evidence has demonstrated that miR-218 acts as a tumor suppressor by targeting many oncogenes related to proliferation, apoptosis and invasion. In this review, we provide a complex overview of miR-218, including its regulatory mechanisms, known functions in cancer and future challenges as a potential therapeutic target in human cancers. - Highlights: • miR-218 is frequently down regulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  20. Long Telomeres Bypass the Requirement for Telomere Maintenance in Human Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael A.S. Taboski

    2012-02-01

    Full Text Available Despite the importance of telomere maintenance in cancer cell survival via the elongation of telomeres by telomerase reverse transcriptase (TERT or alternative lengthening of telomeres (ALT, it had not been tested directly whether telomere maintenance is dispensable for human tumorigenesis. We engineered human tumor cells containing loxP-flanked hTERT to enable extensive telomere elongation prior to complete hTERT excision. Despite unabated telomere erosion, hTERT-excised cells formed tumors in mice and proliferated in vitro for up to 1 year. Telomerase reactivation or ALT was not observed, and the eventual loss of telomeric signal coincided with loss of tumorigenic potential and cell viability. Crisis was averted via the reintroduction of active but not inactive hTERT. Thus, telomere maintenance is dispensable for human tumorigenesis when telomere reserves are long. Yet, despite telomere instability and the presence of oncogenic RAS, human tumors remain susceptible to crisis induced by critically short telomeres.

  1. MiR-218 Mediates tumorigenesis and metastasis: Perspectives and implications

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. As a highly conserved miRNA across a variety of species, microRNA-218 (miR-218) was found to play pivotal roles in tumorigenesis and progression. A group of evidence has demonstrated that miR-218 acts as a tumor suppressor by targeting many oncogenes related to proliferation, apoptosis and invasion. In this review, we provide a complex overview of miR-218, including its regulatory mechanisms, known functions in cancer and future challenges as a potential therapeutic target in human cancers. - Highlights: • miR-218 is frequently down regulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways

  2. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery ... wait 1 to 3 months before the permanent breast implant is placed during the second stage. In the ... from your chest and replaces it with a breast implant. This surgery takes 1 to 2 hours. Before ...

  3. Breast lump removal

    Science.gov (United States)

    Lumpectomy; Wide local excision; Breast conservation surgery; Breast-sparing surgery; Partial mastectomy ... If the breast cancer can be seen on imaging tests but the doctor cannot feel it when examining you, a wire ...

  4. Breast Cancer Disparities

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  5. Breast cancer screenings

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000837.htm Breast cancer screenings To use the sharing features on this page, please enable JavaScript. Breast cancer screenings can help find breast cancer early, before ...

  6. Male Breast Cancer

    Science.gov (United States)

    Although breast cancer is much more common in women, men can get it too. It happens most often to men between ... 60 and 70. Breast lumps usually aren't cancer. However, most men with breast cancer have lumps. ...

  7. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape?

    OpenAIRE

    Valentin eBruttel; Jörg eWischhusen

    2014-01-01

    Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation.Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow stra...

  8. The heme–p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis

    OpenAIRE

    Shen, Jia; Sheng, Xiangpeng; Chang, ZeNan; Wu, Qian; Xie, Dong; Wang, Fudi; HU, Ronggui

    2014-01-01

    Recently, we reported that heme binds to tumor suppressor p53 protein (TP53, best known as p53) and promotes its nuclear export and cytosolic degradation, whereas iron chelation stabilizes p53 protein and suppresses tumors in a p53-dependent manner. This not only provides mechanistic insights into tumorigenesis associated with iron excess, but also helps guide the administration of chemotherapy based on iron deprivation in the clinic.

  9. Modulation of Colitis-associated Colon Tumorigenesis by Baicalein and Betaine

    OpenAIRE

    Kim, Dong Hwan; Sung, Bokyung; Chung, Hae Young; Kim, Nam Deuk

    2014-01-01

    In this review, we will summarize the current understanding of modulation of colitis-associated colon tumorigenesis by two natural products, baicalein and betaine, which have anti-inflammatory activities. Baicalein and betaine have been shown to provide various health benefits to organism in many ways. Baicalein is a phenolic flavonoid derived originally from the root of Scutellaria baicalensis Georgi. From ancient times, baicalein has widely been used in oriental medicines as an anti-inflamm...

  10. Long Telomeres Bypass the Requirement for Telomere Maintenance in Human Tumorigenesis

    OpenAIRE

    Taboski, Michael A. S.; Sealey, David C.F.; Dorrens, Jennifer; Tayade, Chandrakant; Dean H Betts; Harrington, Lea

    2012-01-01

    Despite the importance of telomere maintenance in cancer cell survival via the elongation of telomeres by telomerase reverse transcriptase (TERT) or alternativelengthening of telomeres (ALT), it had not been tested directly whether telomere maintenance is dispensable for human tumorigenesis. We engineered human tumor cells containing loxP-flanked hTERT to enable extensive telomere elongation prior to complete hTERT excision. Despite unabated telomere erosion, hTERT-excised cells formed tumors...

  11. Ras-Related Tumorigenesis Is Suppressed by BNIP3-Mediated Autophagy through Inhibition of Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Shan-Ying Wu

    2011-12-01

    Full Text Available Autophagy plays diverse roles in Ras-related tumorigenesis. H-rasval12 induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa–interacting protein 3 (BNIP3 is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-rasval12 at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-rasval12–induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3 and Atg5 (shAtg5 using mouse NIH3T3 and embryo fibroblast cells. H-rasval12 induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-rasval12–induced tumor formation and reveals that H-rasval12 induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-rasval12–induced tumorigenesis. Our findings combined with others’ reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.

  12. ADAM17-mediated CD44 cleavage promotes orasphere formation or stemness and tumorigenesis in HNSCC

    International Nuclear Information System (INIS)

    CD44, an extracellular matrix (ECM) receptor, has been described as a cancer stem cell marker in multiple cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC orasphere formation or stemness was characterized by cleavage of CD44, and thus we hypothesized that this proteolytic processing may be critical to stemness and tumorigenesis. We tested this hypothesis by examining the mechanisms that regulate this process in vitro and in vivo, and by exploring its clinical relevance in human specimens. Sphere assays have been used to evaluate stemness in vitro. Spheres comprised of HNSCC cells or oraspheres and an oral cancer mouse model were used to examine the significance of CD44 cleavage using stable suppression and inhibition approaches. These mechanisms were also examined in HNSCC specimens. Oraspheres exhibited increased levels of CD44 cleavage compared to their adherent counterparts. Given that disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a major matrix metalloproteinase known to cleave CD44, we chemically inhibited and stably suppressed ADAM17 expression in HNSCC cells and found that these treatments blocked CD44 cleavage and abrogated orasphere formation. Furthermore, stable suppression of ADAM17 in HNSCC cells also diminished tumorigenesis in an oral cancer mouse model. Consistently, stable suppression of CD44 in HNSCC cells abrogated orasphere formation and inhibited tumorigenesis in vivo. The clinical relevance of these findings was confirmed in matched primary and metastatic human HNSCC specimens, which exhibited increased levels of ADAM17 expression and concomitant CD44 cleavage compared to controls. CD44 cleavage by ADAM17 is critical to orasphere formation or stemness and HNSCC tumorigenesis

  13. Impact of the REVEL Project: How Do Science Teachers Change by Doing Cutting-Edge Oceanographic Research?

    Science.gov (United States)

    Windschitl, M. A.; Robigou, V.

    2005-12-01

    The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional and personal development program for K-12 science teachers. REVEL teachers are motivated to use genuine, deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today the project offers teachers throughout the U.S. an opportunity to participate and contribute to multidisciplinary, deep-sea research in the Northeast Pacific Ocean. From the past two years of this program we have conducted intensive research and evaluation of the teachers themselves. Among our key findings: 1) The research experience provided participants with deep content knowledge and the skills not only to do inquiry with students in their classrooms, but to give students ownership over the process of asking and answering their own questions, 2) Participants understood scientists to be resourceful and flexible in their thinking. Participants carried these observations back to their classrooms, encouraging students to believe that they can "be scientists" by overcoming set-backs and complications in doing investigative work, and 3) Most participants shifted their identities from "just a teacher" to "a teacher who does science." Their students, colleagues, and community members looked upon them differently. They also acquire a different status with their peers. We advocate for more rigorous investigations to be conducted on research-partnership professional development programs, specifically on how they influence the thinking, identity, and eventual pedagogy of educators. The body of research available on teacher professional development is extensive but the impact of

  14. The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma.

    Science.gov (United States)

    Benhamou, Y; Picco, V; Pagès, G

    2016-06-01

    The "Hallmarks of Cancer" describe the ways by which cancer cells bypass homeostasis. Escape from replicative senescence is one of the earliest features of cancer cells. Maintenance of the telomeres through reactivation of telomerase was initially associated with replicative immortality in various cancers. The shelterin complex, a telomeric hexaprotein association, plays a key role in telomere maintenance and in the hallmarks of cancer. Some shelterin proteins are overexpressed in diverse cancers and can promote tumorigenesis in animal models. Shelterin can also have an impact on tumor size, tumor growth and resistance to treatment. Studies into the expression level of shelterin in oral squamous cell carcinoma (OSCC) report contradictory results. Moreover, the exact role of these proteins in OSCC tumorigenesis remains uncertain. In this review, we examined the data linking telomeres and hallmarks of OSCC. Furthermore, we examined the literature concerning telomeres and the clinical outcome of OSCC. Finally, we propose a model encompassing the role of shelterin proteins in oral tumorigenesis and treatment outcome. PMID:27208844

  15. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    Science.gov (United States)

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation. PMID:27181404

  16. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range.

    Science.gov (United States)

    Chernet, Brook T; Levin, Michael

    2014-05-30

    The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction - endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling. PMID:24830454

  17. Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity

    Directory of Open Access Journals (Sweden)

    Wang Jufang

    2011-08-01

    Full Text Available Abstract Background Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that Atm/Brca1 double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in Atm and Brca1 heterozygosity. Methods Wild type cells, Atm or Brca1 single heterozygous cells, and Atm/Brca1 double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation. Results Remarkable high transformation frequency was confirmed in Atm/Brca1 double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways. Conclusions The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.

  18. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer.

    Science.gov (United States)

    Edmonds, Mick D; Boyd, Kelli L; Moyo, Tamara; Mitra, Ramkrishna; Duszynski, Robert; Arrate, Maria Pia; Chen, Xi; Zhao, Zhongming; Blackwell, Timothy S; Andl, Thomas; Eischen, Christine M

    2016-01-01

    MicroRNA (miR) are important regulators of gene expression, and aberrant miR expression has been linked to oncogenesis; however, little is understood about their contribution to lung tumorigenesis. Here, we determined that miR-31 is overexpressed in human lung adenocarcinoma and this overexpression independently correlates with decreased patient survival. We developed a transgenic mouse model that allows for lung-specific expression of miR-31 to test the oncogenic potential of miR-31 in the lung. Using this model, we observed that miR-31 induction results in lung hyperplasia, followed by adenoma formation and later adenocarcinoma development. Moreover, induced expression of miR-31 in mice cooperated with mutant KRAS to accelerate lung tumorigenesis. We determined that miR-31 regulates lung epithelial cell growth and identified 6 negative regulators of RAS/MAPK signaling as direct targets of miR-31. Our study distinguishes miR-31 as a driver of lung tumorigenesis that promotes mutant KRAS-mediated oncogenesis and reveals that miR-31 directly targets and reduces expression of negative regulators of RAS/MAPK signaling.

  19. Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish

    Science.gov (United States)

    Park, Hyewon; Galbraith, Richard; Turner, Thaddeus; Mehojah, Justin; Azuma, Mizuki

    2016-01-01

    The Ewing sarcoma family of tumors expresses aberrant EWSR1- (EWS) fusion genes that are derived from chromosomal translocation. Although these fusion genes are well characterized as transcription factors, their formation leaves a single EWS allele in the sarcoma cells, and the contribution that the loss of EWS makes towards disease pathogenesis is unknown. To address this question, we utilized zebrafish mutants for ewsa and tp53. The zebrafish tp53(M214K)w/m line and the ewsaw/m, zygotic ewsam/m, and Maternal-Zygotic (MZ) ewsam/m lines all displayed zero to low incidence of tumorigenesis. However, when the ewsa and tp53 mutant lines were crossed with each other, the incidence of tumorigenesis drastically increased. Furthermore, 27 hour post fertilization (hpf) MZ ewsam/m mutant embryos displayed a higher incidence of aberrant chromosome numbers and mitotic dysfunction compared to wildtype zebrafish embryos. Consistent with this finding, tumor samples obtained from ewsam/m;tp53w/m zebrafish displayed loss of heterozygosity (LOH) for the wildtype tp53 locus. These results suggest that wildtype Ewsa inhibits LOH induction, possibly by maintaining chromosomal stability. We propose that the loss of ewsa promotes tumorigenesis, and EWS deficiency may contribute to the pathogenesis of EWS-fusion-expressing sarcomas. PMID:27557633

  20. Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Can Zhang; Bo Liu; Guangyao Li; Lei Zhou

    2011-01-01

    Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity.PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications,respectively,and thus maintaining the expression status of homeotic genes.Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers.Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis.Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer.It is anticipated that Drosophila melanogaster,the model organism that contributed significantly to our understanding of the functional role of histone regulation in development,could also provide unique insight for our understanding of how histone dysregulation can lead to cancer.In this review,we will discuss several recent advances in this regard.

  1. Mouse EP3 α, β, and γ Receptor Variants Reduce Tumor Cell Proliferation and Tumorigenesis in Vivo*

    OpenAIRE

    Macias-Perez, Ines M.; Zent, Roy; Carmosino, Monica; Breyer, Matthew D.; Breyer, Richard M.; Pozzi, Ambra

    2008-01-01

    Prostaglandin E2, which exerts its functions by binding to four G protein-coupled receptors (EP1-4), is implicated in tumorigenesis. Among the four E-prostanoid (EP) receptors, EP3 is unique in that it exists as alternatively spliced variants, characterized by differences in the cytoplasmic C-terminal tail. Although three EP3 variants, α, β, and γ, have been described in mice, their functional significance in regulating tumorigenesis is unknown. In this study we provid...

  2. Does tumorigenesis select for or against mutations of the DNA repair-associated genes BRCA2 and MRE11?: Considerations from somatic mutations in microsatellite unstable (MSI gastrointestinal cancers

    Directory of Open Access Journals (Sweden)

    Elghalbzouri-Maghrani Elhaam

    2006-01-01

    Full Text Available Abstract Background The BRCA2 and MRE11 proteins participate in the repair of double-strand DNA breaks by homologous recombination. Germline BRCA2 mutations predispose to ovarian, breast and pancreatic cancer, while a germline MRE11 mutation is associated with an ataxia telangiectasia-like disorder. Somatic mutations of BRCA2 are rare in typical sporadic cancers. In tumors having microsatellite instability (MSI, somatic truncating mutations in a poly [A] tract of BRCA2 are reported on occasion. Results We analyzed gastrointestinal MSI cancers by whole gene BRCA2 sequencing, finding heterozygous truncating mutations in seven (47% of 15 patients. There was no cellular functional defect in RAD51 focus-formation in three heterozygously mutated lines studied, although other potential functions of the BRCA2 protein could still be affected. A prior report of mutations in primary MSI tumors affecting the IVS5-(5–15 poly [T] tract of the MRE11 gene was confirmed and extended by analysis of the genomic sequence and protein expression in MSI cancer cell lines. Statistical analysis of the published MRE11 mutation rate in MSI tumors did not provide evidence for a selective pressure favoring biallelic mutations at this repeat. Conclusion Perhaps conflicting with common suspicions, the data are not compatible with selective pressures during tumorigenesis promoting the functional loss of BRCA2 and MRE11 in MSI tumors. Instead, these data fit closely with an absence of selective pressures acting on BRCA2 and MRE11 gene status during tumorigenesis.

  3. Trianthema portulacastrum Linn. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 signaling pathways.

    Science.gov (United States)

    Mandal, Animesh; Bishayee, Anupam

    2015-01-01

    Trianthema portulacastrum, a medicinal and dietary plant, has gained substantial importance due to its various pharmacological properties, including anti-inflammatory and anticarcinogenic activities. We have recently reported that a characterized T. portulacastrum extract (TPE) affords a considerable chemoprevention of 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumorigenesis though the underlying mechanisms are not completely understood. The objective of this study was to investigate anti-inflammatory mechanisms of TPE during DMBA mammary carcinogenesis in rats by monitoring cyclooxygenase-2 (COX-2), heat shock protein 90 (HSP90), nuclear factor-kappaB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). Mammary tumors were harvested from our previous study in which TPE (50-200 mg/kg) was found to inhibit mammary tumorigenesis in a dose-response manner. The expressions of intratumor COX-2, HSP90, NF-κB, inhibitory kappaB-alpha (IκBα) and Nrf2 were determined by immunohistochemistry. TPE downregulated the expression of COX-2 and HSP90, blocked the degradation of IκBα, hampered the translocation of NF-κB from cytosol to nucleus and upregulated the expression and nuclear translocation of Nrf2 during DMBA mammary carcinogenesis. These results in conjunction with our previous findings suggest that TPE prevents DMBA-induced breast neoplasia by anti-inflammatory mechanisms mediated through simultaneous and differential modulation of two interconnected molecular circuits, namely NF-κB and Nrf2 signaling pathways. PMID:25622256

  4. Embodied Revelation: A Classic Grounded Theory of Heart Failure Patient Decision Making Surrounding Primary Prevention Implantable Cardioverter Defibrillator Therapy

    Directory of Open Access Journals (Sweden)

    Vera Barton-Caro Ph.D.,

    2015-12-01

    Full Text Available The purpose of this classic grounded theory study was to explain the complex decision making process of heart failure (HF patients considering primary prevention implantable cardioverter defibrillator (ICD therapy. Sudden cardiac death (SCD is the leading cause of death for people with HF as well as the primary cause of death in the United States (US. ICDs represent the standard of care as the only effective therapy for primary prevention of SCD. However, a significant proportion of qualifying HF patients declines this invasive, yet life-saving device. The grounded theory is of Embodied revelation. The threat of SCD for ICD candidates consists of four stages: living in conscious denial, heightening of awareness, sanctioning ICD therapy, and living in new assurance. The first stage ends abruptly with the critical juncture of grasping the threat of SCD. This grounded theory has implications for research, nursing and medical practice, as well as bioethical considerations.

  5. Individual preferences revelation mechanism and incentive to choose green electricity: an analysis of the consumer decision process

    International Nuclear Information System (INIS)

    Marketing opening in the electric sector and green electricity products supply increase opportunity for households to voluntarily support renewable energy production. Despite the general development of committed actions, and in the lack of public intervention on prices, subscription rates are strongly below consumers' interest announcements and stated willingness to pay. This thesis analyses green electricity subscription factors: how to promote subscription in the case of individual sensitive and rather favourable attitude toward green electricity? Is it possible to encourage preference revelation? Answering these questions requires combining economics analysis and psychological concepts. In that aim, we employ the Theory of Planned Behavior, a social psychology model able to articulate theoretical analysis, psychological concepts and an empirical survey carried out in St Gallen (Switzerland). This survey is based on experimental method and commits, firstly, in testing our hypothesis, secondly in providing a method to influence individual beliefs in order to reinforce subscription intention. Finally, the survey is employed as an incentive tool for concretizing the intention and then promoting individual subscription. We determine that even though the premium to be paid may be an obstacle to subscription, other behavioral and attitudinal factors can explain the construction of individual preferences, intention and action. Analysing the various green electricity demand motivations as well as supply determinants enables to introduce the concept of 'certainty of subscription benefit'. The more the consciousness of personal benefit, the less price an obstacle to subscribe. As a result, our work aims firstly at providing analytical explanations to decision makers concerning the origin of the voluntary individual contribution to public goods as the environment, secondly, at developing green electricity preferences revelation mechanism. This kind of analysis is

  6. The association between phosphatase and tensin homolog hypermethylation and patients with breast cancer, a meta-analysis and literature review

    Science.gov (United States)

    Lu, Yi-Min; Cheng, Feng; Teng, Li-Song

    2016-01-01

    The Phosphatase and tensin homolog (PTEN) protein is a negative regulator of the Akt pathway, leading to suppression of apoptois and increased cell survival. Its role as a tumor-suppressor gene has been adequately substantiated, and PTEN hypermethylation has been demonstrated in familial and sporadic cancers. However, the association and clinical significance between PTEN hypermethylation and breast cancer remains unclear. In this study, we systematically reviewed studies of PTEN hypermethylation and breast cancer and quantify the association between PTEN hypermethylation and breast cancer using meta-analysis methods. The pooled OR, 22.30, 95% confidential intervals, CI = 1.98–251.51, P = 0.01, which demonstrates that loss of PTEN expression by hypermethylation plays a critical role in the early tumorigenesis of ductal carcinoma in situ (DCIS). In addition, PTEN hypermethylation also is detected in invasive ductal carcinomas (IDCs) and is significantly higher than in normal controls, OR = 23.32, 95% CI = 10.43–52.13, P < 0.00001. Further analysis did not show significant correlation between PTEN hypermethylation and the progression of breast cancer, estrogen receptor (ER), progesterone receptor (PgR), as well as HER2 status. These results indicate the PTEN hypermethylation is significantly associated with both DCIS and IDCs. The detection of PTEN hypermethylation could be an early tumorigenesis marker for breast cancer patients. PMID:27620353

  7. Breast Milk Best from the Breast?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159054.html Breast Milk Best From the Breast? Babies were more likely ... get ear infections if they were fed pumped milk, study found To use the sharing features on ...

  8. Establishment and characterization of two primary breast cancer cell lines from young Indian breast cancer patients: mutation analysis.

    Science.gov (United States)

    Pandrangi, Santhi Latha; Raju Bagadi, Sarangadhara Appala; Sinha, Navin Kumar; Kumar, Manoj; Dada, Rima; Lakhanpal, Meena; Soni, Abha; Malvia, Shreshtha; Simon, Sheeba; Chintamani, Chintamani; Mohil, Ravindar Singh; Bhatnagar, Dinesh; Saxena, Sunita

    2014-01-01

    Two novel triple negative breast cancer cell lines, NIPBC-1 and NIPBC-2 were successfully established from primary tumors of two young breast cancer patients aged 39 and 38 years respectively, diagnosed as infiltrating duct carcinoma of breast. Characterization of these cell lines showed luminal origin with expression of epithelial specific antigen and cytokeratin 18 and presence of microfilaments and secretary vesicles, microvilli, tight junctions and desmosomes on ultra-structural analysis. Both the cell lines showed anchorage independent growth and invasion of matrigel coated membranes. Karyotype analysis showed aneuploidy, deletions and multiple rearrangements in chromosomes 7, 9, X and 11 and isochromosomes 17q in both the cell lines. P53 mutational analysis revealed no mutation in the coding region in both the cell lines; however NIPBC-2 cell line showed presence of heterozygous C/G polymorphism, g.417 C > G (NM_000546.5) resulting in Arg/Pro allele at codon 72 of exon 4. Screening for mutations in BRCA1&2 genes revealed presence of three heterozygous polymorphisms in exon 11 of BRCA1 and 2 polymorphisms in exons 11, and14 of BRCA2 gene in both the cell lines. Both the cell lines showed presence of CD 44+/24-breast cancer stem cells and capability of producing mammosphere on culture. The two triple negative breast cancer cell lines established from early onset breast tumors can serve as novel invitro models to study mechanisms underlying breast tumorigenesis in younger age group patients and also identification of new therapeutic modalities targeting cancer stem cells. PMID:24502646

  9. Attenuating Tumour Angiogenesis: A Preventive Role of Metformin against Breast Cancer

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2015-01-01

    Full Text Available Metformin is one of the most widely prescribed antidiabetics for type 2 diabetes. A critical role of metformin against tumorigenesis has recently been implicated, although several studies also reported the lack of anticancer property of the antidiabetics. Given the controversies regarding the potential role of metformin against tumour progression, the effect of metformin against breast, cervical, and ovarian tumour cell lines was examined followed by in vivo assessment of metformin on tumour growth using xenograft breast cancer models. Significant inhibitory impact of metformin was observed in MCF-7, HeLa, and SKOV-3 cells, suggesting an antiproliferative property of metformin against breast, cervical, and ovarian tumour cells, respectively, with the breast tumour cells, MCF-7, being the most responsive. In vivo assessment was subsequently carried out, where mice with breast tumours were treated with metformin (20 mg/kg body weight or sterile PBS solution for 15 consecutive days. No inhibition of breast tumour progression was detected. However, tumour necrosis was significantly increased in the metformin-treated group, accompanied by decreased capillary formation within the tumours. Thus, despite the lack of short-term benefit of metformin against tumour progression, a preventive role of metformin against breast cancer was implicated, which is at partially attributable to the attenuation of tumour angiogenesis.

  10. Attenuating tumour angiogenesis: a preventive role of metformin against breast cancer.

    Science.gov (United States)

    Gao, Shan; Jiang, Jingcheng; Li, Pan; Song, Huijuan; Wang, Weiwei; Li, Chen; Kong, Deling

    2015-01-01

    Metformin is one of the most widely prescribed antidiabetics for type 2 diabetes. A critical role of metformin against tumorigenesis has recently been implicated, although several studies also reported the lack of anticancer property of the antidiabetics. Given the controversies regarding the potential role of metformin against tumour progression, the effect of metformin against breast, cervical, and ovarian tumour cell lines was examined followed by in vivo assessment of metformin on tumour growth using xenograft breast cancer models. Significant inhibitory impact of metformin was observed in MCF-7, HeLa, and SKOV-3 cells, suggesting an antiproliferative property of metformin against breast, cervical, and ovarian tumour cells, respectively, with the breast tumour cells, MCF-7, being the most responsive. In vivo assessment was subsequently carried out, where mice with breast tumours were treated with metformin (20 mg/kg body weight) or sterile PBS solution for 15 consecutive days. No inhibition of breast tumour progression was detected. However, tumour necrosis was significantly increased in the metformin-treated group, accompanied by decreased capillary formation within the tumours. Thus, despite the lack of short-term benefit of metformin against tumour progression, a preventive role of metformin against breast cancer was implicated, which is at partially attributable to the attenuation of tumour angiogenesis. PMID:25883966

  11. Lentivirus-Mediated Knockdown of Myosin VI Inhibits Cell Proliferation of Breast Cancer Cell.

    Science.gov (United States)

    Wang, Hong; Wang, Biyun; Zhu, Wei; Yang, Ziang

    2015-10-01

    Myosin VI (MYO6) is a unique member of the myosin superfamily, and almost no experimental studies link MYO6 to tumorigenesis of breast cancer. However, previous microarray data demonstrated that MYO6 was frequently overexpressed in breast cancer tissues. In this study, to further develop its role in breast cancer, endogenous expression of MYO6 was significantly inhibited in breast cancer ZR-75-30 and MDA-MB-231 cells using lentivirus-mediated RNA interference. Quantitative polymerase chain reaction and western blot were applied to detect the expression level of MYO6. Cell viability of both cell lines was measured by methylthiazol tetrazolium and colony formation assays. Besides, cell cycle assay was utilized to acquire the distribution information of cell phase. The results demonstrated that knockdown of MYO6 markedly reduced cell viability and colony formation, as well as suppressed cell cycle progression in breast cancer cells. The results suggested that MYO6 played a vital role in breast cancer cells and might provide useful information for diagnosis and therapy of human breast cancer in future. PMID:26407123

  12. Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas.

    Science.gov (United States)

    Ebbesen, Saya H; Scaltriti, Maurizio; Bialucha, Carl U; Morse, Natasha; Kastenhuber, Edward R; Wen, Hannah Y; Dow, Lukas E; Baselga, José; Lowe, Scott W

    2016-03-15

    Loss of the tumor suppressor gene PTEN is implicated in breast cancer progression and resistance to targeted therapies, and is thought to promote tumorigenesis by activating PI3K signaling. In a transgenic model of breast cancer, Pten suppression using a tetracycline-regulatable short hairpin (sh)RNA cooperates with human epidermal growth factor receptor 2 (HER2/neu), leading to aggressive and metastatic disease with elevated signaling through PI3K and, surprisingly, the mitogen-activated protein kinase (MAPK) pathway. Restoring Pten function is sufficient to down-regulate both PI3K and MAPK signaling and triggers dramatic tumor regression. Pharmacologic inhibition of MAPK signaling produces similar effects to Pten restoration, suggesting that the MAPK pathway contributes to the maintenance of advanced breast cancers harboring Pten loss. PMID:26929372

  13. Breast Cancer Overview

    Science.gov (United States)

    ... Other less common types of breast cancer include: Medullary Mucinous Tubular Metaplastic Papillary breast cancer Inflammatory breast cancer is a faster-growing type of cancer that accounts for about 1% to 5% of all breast cancers. Paget’s disease is a type of cancer that begins in ...

  14. Breast Cancer -- Male

    Science.gov (United States)

    ... Home > Types of Cancer > Breast Cancer in Men Breast Cancer in Men This is Cancer.Net’s Guide to Breast Cancer in Men. Use the menu below to choose ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer in Men Overview Statistics Risk Factors and Prevention ...

  15. Breast cancer in men

    Science.gov (United States)

    ... in situ-male; Intraductal carcinoma-male; Inflammatory breast cancer-male; Paget disease of the nipple-male; Breast cancer-male ... The cause of breast cancer is not clear. But there are risk ... breast cancer more likely in men: Exposure to radiation Higher ...

  16. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  17. BREAST IMPLANT SURFACE DEVELOPMENT

    OpenAIRE

    Valencia Lazenco, Anai Alicia

    2015-01-01

    Bilateral breast augmentation is one of the most common cosmetic surgical procedures carried out on women in the western world. Breast augmentation involves increasing the volume of a woman‘s breasts through surgery by placing a silicone implant in the subglandular or subpectoral cavity. Although a capsule forms inevitably around breast implants as a natural part of healing, it can cause significant morbidity if the capsule becomes firm and contracted, a condition known as breast capsular con...

  18. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    Science.gov (United States)

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  19. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis.

    Science.gov (United States)

    Izaguirre, Daisy I; Zhu, Wen; Hai, Tao; Cheung, Hannah C; Krahe, Ralf; Cote, Gilbert J

    2012-11-01

    Aberrant RNA splicing is thought to play a key role in tumorigenesis. The assessment of its specific contributions is limited by the complexity of information derived from genome-wide array-based approaches. We describe how performing splicing factor-specific comparisons using both tumor and cell line data sets may more readily identify physiologically relevant tumor-specific splicing events. Affymetrix exon array data derived from glioblastoma (GBM) tumor samples with defined polypyrimidine tract-binding protein 1 (PTBP1) levels were compared with data from U251 GBM cells with and without PTBP1 knockdown. This comparison yielded overlapping gene sets that comprised only a minor fraction of each data set. The identification of a novel GBM-specific splicing event involving the USP5 gene led us to further examine its role in tumorigenesis. In GBM, USP5 generates a shorter isoform 2 through recognition of a 5' splice site within exon 15. Production of the USP5 isoform 2 was strongly correlated with PTBP1 expression in GBM tumor samples and cell lines. Splicing regulation was consistent with the presence of an intronic PTBP1 binding site and could be modulated through antisense targeting of the isoform 2 splice site to force expression of isoform 1 in GBM cells. The forced expression of USP5 isoform 1 in two GBM cell lines inhibited cell growth and migration, implying an important role for USP5 splicing in gliomagenesis. These results support a role for aberrant RNA splicing in tumorigenesis and suggest that changes in relatively few genes may be sufficient to drive the process.

  20. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    Science.gov (United States)

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  1. Significance of β-tubulin Expression in Breast Premalignant Lesions and Carcinomas

    Institute of Scientific and Technical Information of China (English)

    Yuxia Gao; Yun Niu; Xiumin Ding; Yong Yu

    2008-01-01

    OBJECTIVE To explore the expression of β-tubulin in premalignant lesions and carcinomas of the breast, and to observe the relationship of its expression with breast cancer pathological features.METHODS The expression of β-tubulin was detected immunohistochemically in 50 specimens of premalignant lesions of the breast (ADH and Peri-PM with ADH), 50 specimens of breast in situ ductal carcinomas (DCIS), and 50 specimens of invasive ductal carcinomas (IDC). Thirty specimens of normal breast tissues served as a control group.RESULTS Immunohistochemical analysis showed that: the differences among the 4 groups (normal breast tissues, breast premalignant lesions, DCIS and IDC, P < 0.05) were significant,and there were also statistically significant differences between any 2 groups (P < 0.05) except for the β-tubulin positive expression comparing DCIS versus IDC (P > 0.05). In addition, β-tubulin was expressed at a higher level in Peri-PM with ADH compared to ADH (P < 0.05). Following the degree of breast epithelial hyperplasia involved, and its development into carcinoma, the β-tubulin positive expression displayed an elevating tendency.We also found a significant positive relationship of β-tubulin expression with lymph node metastasis (P < 0.05), but no significant correlation with histological grading and nuclear grade.CONCLUSION Centrosome defects may be an early event in the development of breast cancer and they can also promote tumor progression. Studies of aberrations of centrosomal proteins provide a new way to explore the mechanism of breast tumorigenesis.

  2. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity

    DEFF Research Database (Denmark)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana;

    2006-01-01

    HMGA2 gene amplification and overexpression in human prolactinomas and the development of pituitary adenomas in HMGA2 transgenic mice showed that HMGA2 plays a crucial role in pituitary tumorigenesis. We have explored the pRB/E2F1 pathway to investigate the mechanism by which HMGA2 acts. Here we......2 mice. Thus, HMGA2-mediated E2F1 activation is a crucial event in the onset of these tumors in transgenic mice and probably also in human prolactinomas....

  3. Microarray gene expression analysis of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Meng Lian

    Full Text Available BACKGROUND: Laryngeal squamous cell carcinoma (LSCC is the most common type in head and neck squamous cell carcinoma (HNSCC, and the development and progression of LSCC are multistep processes accompanied by changes of molecular biology. OBJECTIVE: The purpose of this study was to investigate the molecular basis of tumorigenesis and regional lymph node metastasis in LSCC, and provide a set of genes that may be useful for the development of novel diagnostic markers and/or more effective therapeutic strategies. METHODS: A total number of 10 patients who underwent surgery for primary laryngeal squamous cell carcinoma were recruited for microarray analysis. LSCC tissues compared with corresponding adjacent non-neoplastic tissues were analysed by Illumina mRNA microarrays, and LSCC tissues with regional lymph node metastasis and LSCC tissues without regional lymph node metastasis were analyzed in the same manner. The most frequently differently expressed genes screened by microarrays were also validated by qRT-PCR in another 42 patients diagnosed for LSCC. RESULTS: Analysed by Illumina mRNA microarrays, there were 361 genes significantly related to tumorigenesis while 246 genes significantly related to regional lymph node metastasis in LSCC. We found that the six genes (CDK1, CDK2, CDK4, MCM2, MCM3, MCM4 were most frequently differently expressed functional genes related to tumorigenesis while eIF3a and RPN2 were most frequently differently expressed functional genes related to regional lymph node metastasis in LSCC. The expressions of these genes were also validated by qRT-PCR. CONCLUSIONS: The research revealed a gene expression signature of tumorigenesis and regional lymph node metastasis in laryngeal squamous cell carcinoma. Of the total, the deregulation of several genes (CDK1, CDK2, CDK4, MCM2, MCM3, MCM4, EIF3a and RPN2 were potentially associated with disease development and progression. The result will contribute to the understanding of the

  4. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis

    Science.gov (United States)

    Tomasetti, Marco; Amati, Monica; Santarelli, Lory; Neuzil, Jiri

    2016-01-01

    The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs). The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance. PMID:27213336

  5. Intestinal Peyer’s patches prevent tumorigenesis in Apc Min/+ mice

    OpenAIRE

    Fujimoto, Kyoko; Fujii, Gen; Sakurai, Hitomi; Yoshitome, Hiroko; Mutoh, Michihiro; Wada, Morimasa

    2014-01-01

    Peyer’s patches are nodules that play a central role in intestinal immunity. Few studies demonstrate the relationship between the number of Peyer’s patches and intestinal polyps. Here we identify a statistically significant inverse correlation between the quantity of Peyer’s patches and of the development of intestinal polyps in Apc Min/+ mice, which are a useful model to clarify the role of Peyer’s patches in intestinal tumorigenesis. Using this model, we increased the number of Peyer’s patc...

  6. Crosstalk between Desmoglein 2 and Patched 1 accelerates chemical-induced skin tumorigenesis

    OpenAIRE

    Brennan-Crispi, DM; Hossain, C; Sahu, J; Brady, M.; Riobo, NA; Mahoney, MG

    2015-01-01

    Aberrant activation of Hedgehog (Hh) signaling is causative of BCCs and has been associated with a fraction of SCCs. Desmoglein 2 (Dsg2) is an adhesion protein that is upregulated in many cancers and overexpression of Dsg2 in the epidermis renders mice more susceptible to squamous-derived neoplasia. Here we examined a potential crosstalk between Dsg2 and Hh signaling in skin tumorigenesis. Our findings show that Dsg2 modulates Gli1 expression, in vitro and in vivo. Ectopic expression of Dsg2 ...

  7. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis

    DEFF Research Database (Denmark)

    Tort, F.; Bartkova, J.; Sehested, M.;

    2006-01-01

    culture models with differential defects of retinoblastoma pathway components, as overexpression of cyclin D1 or lack of p16(Ink4a), either alone or combined, did not elicit detectable DDR. In contrast, inactivation of pRb, the key component of the pathway, activated the DDR in cultured human or mouse...... with their hierarchical positions along the retinoblastoma pathway. Our data provide new insights into oncogene-evoked DDR in human tumorigenesis, with potential implications for individualized management of tumors with elevated cyclin D1 versus cyclin E, due to their distinct clinical variables and biological behavior....

  8. Induction of persistent hypersensitivity to lung tumorigenesis by in utero X-radiation in mice

    International Nuclear Information System (INIS)

    A single dose (36 rad) of X rays was given to mouse embryos and neonates that were then treated with urethane at 21 days of age. Although in utero X-radiation to mice was not tumorigenic, it significantly increased lung tumor susceptibility to a postnatally-given carcinogen, urethane. X-ray induction of persistent hypersensitivity to lung tumorigenesis was apparent at all stages during days 0 to 14 of gestation (except on day 6), but was not observed at late fetal and neonatal stages

  9. Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells

    Science.gov (United States)

    Ding, Hanzhi; Quan, Hong; Yan, Weiguo; Han, Jing

    2016-01-01

    Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell-fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral shRNAs to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and protein levels of MMP9 and Twist, while notably increased E-cadherin. Moreover, SOX12 knockdown significantly inhibited the proliferation of breast cancer cells in vitro and the growth of xenograft tumours in vivo. Flow cytometry analysis revealed that breast cancer cells with SOX12 knockdown showed cell cycle arrest and decreased mRNA and protein levels of proliferating cell nuclear antigen (PCNA), CDK2 and Cyclin D1. Taken together, SOX12 plays an important role in growth inhibition through cell-cycle arrest, as well as migration and invasion of breast cancer cells. PMID:27582508

  10. Astemizole Synergizes Calcitriol Antiproliferative Activity by Inhibiting CYP24A1 and Upregulating VDR: A Novel Approach for Breast Cancer Therapy

    OpenAIRE

    Janice García-Quiroz; Rocío García-Becerra; David Barrera; Nancy Santos; Euclides Avila; David Ordaz-Rosado; Mariana Rivas-Suárez; Ali Halhali; Pamela Rodríguez; Armando Gamboa-Domínguez; Heriberto Medina-Franco; Javier Camacho; Fernando Larrea; Lorenza Díaz

    2012-01-01

    BACKGROUND: Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1) expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antiproliferative action in SUM-229PE, T-47D and primary tumor-derived breast cancer cells. METHODOLOGY/P...

  11. Integrated genomic analysis of breast cancers.

    Science.gov (United States)

    Addou-Klouche, L; Adélaïde, J; Cornen, S; Bekhouche, I; Finetti, P; Guille, A; Sircoulomb, F; Raynaud, S; Bertucci, F; Birnbaum, D; Chaffanet, M

    2012-12-01

    Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0-75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically

  12. Comparison of Clinicopathological Features and Treatments between Young (≤40 Years) and Older (>40 Years) Female Breast Cancer Patients in West China: A Retrospective, Epidemiological, Multicenter, Case Only Study

    Science.gov (United States)

    Li, Hongyuan; Zheng, Ke; Jiang, Jun; Zou, Tianning; Ma, Binlin; Li, Hui; Liu, Qilun; Ou, Jianghua; Wang, Ling; Wei, Wei; He, Jianjun; Ren, Guosheng

    2016-01-01

    The incidence of young cases of breast cancer is higher in China compared to the western world. We aimed to explore differences in risk factors, clinicopathological features and treatment modes of young female breast cancer compared to older patients in West China. We collected clinical information from 12,209 female breast cancer patients in West China, including risk factors, clinicopathological features and treatment modes, from January 2010 to December 2012. Chi-square tests and the multivariate logistic regression analysis were applied for statistical analysis. There were 2,682 young (≤40 years) cases and 9,527 older cases at the time of breast cancer diagnosis. Young patients had a greater tumor diameter at diagnosis, and a higher probability of axillary lymph node and distant metastasis (P menarche was earlier, they had lower marriage rates, fewer pregnancies and births, and a lower breastfeeding rate (P 40 years) female breast cancer patients in West China. As some of these results differ from those found in the western female population, it is likely that the mechanism of tumorigenesis of young female breast cancer patients in West China may differ from that in western developed countries. Further investigation into the regional differences in breast cancer tumorigenesis is warranted. PMID:27031236

  13. Comparison of Clinicopathological Features and Treatments between Young (≤40 Years and Older (>40 Years Female Breast Cancer Patients in West China: A Retrospective, Epidemiological, Multicenter, Case Only Study.

    Directory of Open Access Journals (Sweden)

    Ke Wang

    Full Text Available The incidence of young cases of breast cancer is higher in China compared to the western world. We aimed to explore differences in risk factors, clinicopathological features and treatment modes of young female breast cancer compared to older patients in West China. We collected clinical information from 12,209 female breast cancer patients in West China, including risk factors, clinicopathological features and treatment modes, from January 2010 to December 2012. Chi-square tests and the multivariate logistic regression analysis were applied for statistical analysis. There were 2,682 young (≤40 years cases and 9,527 older cases at the time of breast cancer diagnosis. Young patients had a greater tumor diameter at diagnosis, and a higher probability of axillary lymph node and distant metastasis (P 40 years female breast cancer patients in West China. As some of these results differ from those found in the western female population, it is likely that the mechanism of tumorigenesis of young female breast cancer patients in West China may differ from that in western developed countries. Further investigation into the regional differences in breast cancer tumorigenesis is warranted.

  14. Comparison of Clinicopathological Features and Treatments between Young (≤40 Years) and Older (>40 Years) Female Breast Cancer Patients in West China: A Retrospective, Epidemiological, Multicenter, Case Only Study.

    Science.gov (United States)

    Wang, Ke; Ren, Yu; Li, Hongyuan; Zheng, Ke; Jiang, Jun; Zou, Tianning; Ma, Binlin; Li, Hui; Liu, Qilun; Ou, Jianghua; Wang, Ling; Wei, Wei; He, Jianjun; Ren, Guosheng

    2016-01-01

    The incidence of young cases of breast cancer is higher in China compared to the western world. We aimed to explore differences in risk factors, clinicopathological features and treatment modes of young female breast cancer compared to older patients in West China. We collected clinical information from 12,209 female breast cancer patients in West China, including risk factors, clinicopathological features and treatment modes, from January 2010 to December 2012. Chi-square tests and the multivariate logistic regression analysis were applied for statistical analysis. There were 2,682 young (≤40 years) cases and 9,527 older cases at the time of breast cancer diagnosis. Young patients had a greater tumor diameter at diagnosis, and a higher probability of axillary lymph node and distant metastasis (P 40 years) female breast cancer patients in West China. As some of these results differ from those found in the western female population, it is likely that the mechanism of tumorigenesis of young female breast cancer patients in West China may differ from that in western developed countries. Further investigation into the regional differences in breast cancer tumorigenesis is warranted.

  15. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes.

    Science.gov (United States)

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M

    2015-12-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage-tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types and the signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective.

  16. Revelation 1:7 − A roadmap of God’s τέλοςfor his creation

    Directory of Open Access Journals (Sweden)

    Kobus de Smidt

    2013-11-01

    Full Text Available Revelation 1:7 points to an anticipated final appearance of Jesus at the consummation. This κηρύσσω developed from the late Jewish apocalyptic eschatology. This apocalyptic end time dawned with Jesus. The present time is thus simultaneously the end time, though the consummation is still in the future. As Jesus appeared on earth with his resurrection, so will he appear at the consummation − his resurrection appearance is a simile of his appearance at the consummation. He will appear in a corporeal form. The writer encourages the second-generation marginalised Christians. The Roman emperor is not the victor − Jesus is the axis mundi of God’s final purpose for his creation. The final appearance of Jesus will bring redemption for the believers and mourning for the unbelievers. The κηρύσσω of Revelation 1:7 is diametrically the opposite of the chiliasts. The country of Israel and her present inhabitants have no eschatological role to fulfil at the consummation. Openbaring 1:7 dui op ’n geantisipeerde finale verskyning van Jesus met die voleinding. Hierdie κηρύσσω het uit die Joodse laat-apokaliptiese eskatologie ontwikkel. Die apokaliptiese eindtyd het met Jesus se opstanding plaasgevind en die Nuwe-Testamentiese hede is dus alreeds die eindtyd. Die voleinding is egter nog in die toekoms. Jesus se verskyning met sy opstanding is ’n metafoor vir sy koms by die voleinding. Hy sal liggaamlik verskyn. Die skrywer bemoedig die gemarginaliseerde tweede generasie Christene. Die Romeinse keiser is nie die oorwinnaar nie − Jesus is die axis mundi van God se finale plan vir sy skepping. Die finale verskyning van Jesus sal vir die gelowiges ewige verlossing bewerk, maar die ongelowiges sal in rou gedompel word. Die κηρύσσω van Openbaring 1:7 is die teenoorgestelde van die standpunt van die chiliasme. Die land en huidige volk van Israel vervul geen eskatologiese rol by die voleinding nie.

  17. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Qian-Qian; Zhou, Da-Lei; Lei, Yan; Zheng, Li; Chen, Sheng-Xia; Gou, Hong-Ju; Gu, Qu-Liang; He, Xiao-Dong; Lan, Tian; Qi, Cui-Ling; Li, Jiang-Chao; Ding, Yan-Qing; Qiao, Liang; Wang, Li-Jing

    2015-02-20

    Slit2 is often overexpressed in cancers. Slit2 is a secreted protein that binds to Roundabout (Robo) receptors to regulate cell growth and migration. Here, we employed several complementary mouse models of intestinal cancers, including the Slit2 transgenic mice, the ApcMin/+ spontaneous intestinal adenoma mouse model, and the DMH/DSS-induced colorectal carcinoma model to clarify function of Slit2/Robo1 signaling in intestinal tumorigenesis. We showed that Slit2 and Robo1 are overexpressed in intestinal tumors and may contribute to tumor generation. The Slit2/Robo1 signaling can induce precancerous lesions of the intestine and tumor progression. Ectopic expression of Slit2 activated Slit2/Robo1 signaling and promoted tumorigenesis and tumor growth. This was mediated in part through activation of the Src signaling, which then down-regulated E-cadherin, thereby activating Wnt/β-catenin signaling. Thus, Slit2/Robo1 signaling is oncogenic in intestinal tumorigenesis.

  18. PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis.

    Directory of Open Access Journals (Sweden)

    JingPing Cao

    Full Text Available Promyelocytic leukemia zinc finger (PLZF protein expression is closely related to the progression of human cancers, including prostate cancer (PCa. However, the according context of a signaling pathway for PLZF to suppress prostate tumorigenesis remains greatly unknown. Here we report that PLZF is a downstream mediator of the PTEN signaling pathway in PCa. We found that PLZF expression is closely correlated with PTEN expression in a cohort of prostate cancer specimens. Interestingly, both PTEN rescue and phosphoinositide 3-kinase (PI3K inhibitor LY294002 treatment increase the PLZF expression in prostate cancer cell lines. Further, luciferase reporter assay and chromatin immunoprecipitation assay demonstrate that FOXO3a, a transcriptional factor phosphorylated by PI3K/AKT, could directly bind to the promoter of PLZF gene. These results indicate that PTEN regulates PLZF expression by AKT/FOXO3a. Moreover, our animal experiments also demonstrate that PLZF is capable of inhibiting prostate tumorigenesis in vivo. Taken together, our study defines a PTEN/PLZF pathway and would shed new lights for developing therapeutic strategy of prostate cancer.

  19. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1.

    Science.gov (United States)

    Joo, Nam E; Ritchie, Kathryn; Kamarajan, Pachiyappan; Miao, Di; Kapila, Yvonne L

    2012-12-01

    Nisin, a bacteriocin and commonly used food preservative, may serve as a novel potential therapeutic for treating head and neck squamous cell carcinoma (HNSCC), as it induces preferential apoptosis, cell cycle arrest, and reduces cell proliferation in HNSCC cells, compared with primary keratinocytes. Nisin also reduces HNSCC tumorigenesis in vivo. Mechanistically, nisin exerts these effects on HNSCC, in part, through CHAC1, a proapoptotic cation transport regulator, and through a concomitant CHAC1-independent influx of extracellular calcium. In addition, although CHAC1 is known as an apoptotic mediator, its effects on cancer cell apoptosis have not been examined. Our studies are the first to report CHAC1's new role in promoting cancer cell apoptosis under nisin treatment. These data support the concept that nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC, and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated.

  20. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zane Linda

    2012-12-01

    Full Text Available Abstract Background Human T-cell Leukemia Virus type 1 (HTLV-1 infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL, a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype. Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice.

  1. miR-92a family and their target genes in tumorigenesis and metastasis

    International Nuclear Information System (INIS)

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis

  2. Autophagy-preferential degradation of MIR224 participates in hepatocellular carcinoma tumorigenesis.

    Science.gov (United States)

    Lan, Sheng-Hui; Wu, Shan-Ying; Zuchini, Roberto; Lin, Xi-Zhang; Su, Ih-Jen; Tsai, Ting-Fen; Lin, Yen-Ju; Wu, Cheng-Tao; Liu, Hsiao-Sheng

    2014-09-01

    Autophagy and microRNA (miRNA) are important regulators during cancer cell tumorigenesis. Impaired autophagy and high expression of the oncogenic microRNA MIR224 are prevalent in hepatocellular carcinoma (HCC); however, the relationship between the 2 phenomena remains elusive. In this study, we are the first to reveal that autophagy selectively regulates MIR224 expression through an autophagosome-mediated degradation system. Based on this finding, we further demonstrated that in hepatitis B virus (HBV)-related HCC, aberrant autophagy (low autophagic activity) results in accumulation of MIR224 and decreased expression of the target gene Smad4, which leads to increased cell migration and tumor formation. Preferential recruitment of MIR224 into the autophagosome was clearly demonstrated by a) miRNA in situ hybridization under confocal microscopy, and b) immunogold labeling of MIR224 under electron microscopy compared with a ubiquitously expressed microRNA MIRlet7e/let-7. Furthermore, we found that off-label use of amiodarone, an antiarrhythmic agent, effectively suppressed HCC tumorigenesis through autophagy-mediated MIR224 degradation both in vitro and in vivo. In summary, we identified amiodarone as a new autophagy inducer, which may provide an alternative approach in HCC therapy through a novel tumor suppression mechanism.

  3. Modulation of Colitis-associated Colon Tumorigenesis by Baicalein and Betaine.

    Science.gov (United States)

    Kim, Dong Hwan; Sung, Bokyung; Chung, Hae Young; Kim, Nam Deuk

    2014-09-01

    In this review, we will summarize the current understanding of modulation of colitis-associated colon tumorigenesis by two natural products, baicalein and betaine, which have anti-inflammatory activities. Baicalein and betaine have been shown to provide various health benefits to organism in many ways. Baicalein is a phenolic flavonoid derived originally from the root of Scutellaria baicalensis Georgi. From ancient times, baicalein has widely been used in oriental medicines as an anti-inflammatory and anti-cancer therapy. Betaine, trimethylglycine, is an essential biochemical molecule of the methionine/homocysteine cycle and is synthesized by conversion of choline. Betaine is an important human nutrient obtained from various foods including sugar beet and lycium. Betaine has provided various health benefits including disease prevention. However, the action mechanisms of their activity remain poorly understood. Recent studies reported the effects of baicalein and betaine on cytotoxicity against colon cancer cells and chemically induced colitis-associated colon tumorigenesis in mice. Administrations of baicalein and betaine containing diets significantly inhibited the incidence of tumors and hyperplasia with down-regulation of inflammation. Therefore, baicalein and betaine might be applicable to the prevention of inflammation-associated colon carcinogenesis. PMID:25337584

  4. Synergistic interaction of Rnf8 and p53 in the protection against genomic instability and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    Full Text Available Rnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8(-/- mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8(-/- mice in a tissue- and cell type-specific manner. To investigate the role of the p53-pathway inactivation on the phenotype observed in Rnf8(-/- mice, we have generated Rnf8(-/-p53(-/- mice. Double-knockout mice showed similar growth retardation defects and impaired class switch recombination compared to Rnf8(-/- mice. In contrast, loss of p53 fully rescued the increased apoptosis and reduced number of thymocytes and splenocytes in Rnf8(-/- mice. Similarly, the senescence phenotype of Rnf8(-/- mouse embryonic fibroblasts was rescued in p53 null background. Rnf8(-/-p53(-/- cells displayed defective cell cycle checkpoints and DNA double-strand break repair. In addition, Rnf8(-/-p53(-/- mice had increased levels of genomic instability and a remarkably elevated tumor incidence compared to either Rnf8(-/- or p53(-/- mice. Altogether, the data in this study highlight the importance of p53-pathway activation upon loss of Rnf8, suggesting that Rnf8 and p53 functionally interact to protect against genomic instability and tumorigenesis.

  5. miR-128 and its target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Dalian Medical University, Dalian 116044 (China); Fu, Weiming [Center for Food Safety and Environmental Technology, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458 (China); Wo, Lulu; Shu, Xiaohong [Dalian Medical University, Dalian 116044 (China); Liu, Fang [The second affiliated hospital of Dalian Medical University, Dalian 116023 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [The second affiliated hospital of Dalian Medical University, Dalian 116023 (China)

    2013-12-10

    MicroRNAs (miRNAs) are a class of endogenous, non-coding, 18–24 nucleotide length single-strand RNAs that could modulate gene expression at post-transcriptional level. Previous studies have shown that miR-128 enriched in the brain plays an important role in the development of nervous system and the maintenance of normal physical functions. Aberrant expression of miR-128 has been detected in many types of human tumors and its validated target genes are involved in cancer-related biological processes such as cell proliferation, differentiation and apoptosis. In this review, we will summarize the roles of miR-128 and its target genes in tumorigenesis and metastasis. - Highlights: • Aberrant expression of miR-128 can be observed in many kinds of malignant tumors. • The molecular mechanisms regulating miR-128 expression are elucidated. • Roles of miR-128 and its target genes in tumorigenesis and metastasis are summarized.

  6. Expression of vascular endothelial growth factor and microvessel density in oral tumorigenesis

    Directory of Open Access Journals (Sweden)

    Madhusudan Astekar

    2012-01-01

    Full Text Available Context: Significant increase in vascularity occurs during the transition from normal oral mucosa, through differing degrees of dysplasia, to invasive squamous cell carcinoma (SCC. Aims: To evaluate microvessel density (MVD and vascular endothelial growth factor (VEGF expression in oral tumorigenesis and correlate it with the clinicopathological characteristics. Settings and Design: VEGF expression and MVD were quantified immunohistochemically using anti-VEGF and anti-CD34 antibody. Materials and Methods: For this study we used a total of 60 archival specimens, including 10 normal oral mucosa (NOM, 7 mild epithelial dysplasia (Mild ED, 8 moderate epithelial dysplasia (Mod ED, 5 severe epithelial dysplasia (SED, 14 well-differentiated SCC, 11 moderately-differentiated SCC, and 5 poorly-differentiated SCC. VEGF expression was assessed in relation to the localization, intensity, and area of the immunohistochemically stained cells. MVD was evaluated using the Image-Pro® Plus software. Statistical Analysis: One-way ANOVA (F test was carried out for comparing the parameters for multiple groups such as different histopathological grades of dysplasia and carcinoma. Comparison between groups was carried out using the Student′s ′t′ test. Correlations between VEGF score and MVD were estimated using the Karl Pearson coefficient of correlation. Results: VEGF and MVD appeared to increase with disease progression and were statistically higher in oral SCC than in epithelial dysplasia and normal buccal mucosa. There was significant correlation between VEGF expression and MVD. Conclusions: These findings indicate that VEGF expression is upregulated during head and neck tumorigenesis.

  7. miR-92a family and their target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Guan, Xingfang; Sun, Yuqiang [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Mi, Jun [Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Shu, Xiaohong [College of Pharmacy, Dalian Medical University Cancer Center, Dalian 116044 (China); Liu, Fang [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China)

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  8. Loss of p53 Ser18 and Atm results in embryonic lethality without cooperation in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Heather L Armata

    Full Text Available Phosphorylation at murine Serine 18 (human Serine 15 is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM and ATM-related (ATR protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53(S18A mice have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm(-/- animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53(S18A and Atm(-/- animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm(-/- animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.

  9. CYLD Inhibits Tumorigenesis and Metastasis by Blocking JNK/AP1 Signaling at Multiple Levels

    Science.gov (United States)

    de Marval, Paula Miliani; Lutfeali, Shazia; Jin, Jane Y.; Leshin, Benjamin; Selim, M. Angelica; Zhang, Jennifer Y.

    2011-01-01

    CYLD has been recognized as a tumor suppressor due to its dominant genetic linkage to multiple types of epidermal tumors and a range of other cancers. The molecular mechanisms governing CYLD control of skin cancer are still unclear. Here, we demonstrated that K14-driven epidermal expression of a patient relevant and catalytically deficient CYLD truncation mutant (CYLDm) sensitized mice to skin tumor development in response to DMBA/TPA-challenge. Tumors developed on transgenic mice were prone to malignant progression and lymph node metastasis, and displayed increased activation of JNK and the downstream c-Jun and c-Fos proteins. Most importantly, topical application of a pharmacological JNK inhibitor significantly reduced tumor development and abolished metastasis in the transgenic mice. Further in line with these animal data, exogenous expression of CYLDm in A431, a human squamous cell carcinoma (SCC) cell line, markedly enhanced cell growth, migration and subcutaneous tumor growth in an AP1-depdendent manner. In contrast, expression of the wild type CYLD inhibited SCC tumorigenesis and AP1 function. Most importantly, CYLDm not only increased JNK activation but also induced an upregulation of K63-ubiquitination on both c-Jun and c-Fos, leading to sustained AP1 activation. Our findings uncovered c-Jun and c-Fos as novel CYLD-targets and underscore that CYLD controls epidermal tumorigenesis through blocking the JNK/AP1 signaling pathway at multiple levels. PMID:21478324

  10. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis.

    Science.gov (United States)

    Fernández-Martínez, P; Zahonero, C; Sánchez-Gómez, P

    2015-01-01

    DYRK1A (dual-specificity tyrosine-regulated kinase 1A) is a kinase with multiple implications for embryonic development, especially in the nervous system where it regulates the balance between proliferation and differentiation of neural progenitors. The DYRK1A gene is located in the Down syndrome critical region and may play a significant role in the developmental brain defects, early neurodegeneration, and cancer susceptibility of individuals with this syndrome. DYRK1A is also expressed in adults, where it might participate in the regulation of cell cycle, survival, and tumorigenesis, thus representing a potential therapeutic target for certain types of cancer. However, the final readout of DYRK1A overexpression or inhibition depends strongly on the cellular context, as it has both tumor suppressor and oncogenic activities. Here, we will discuss the functions and substrates of DYRK1A associated with the control of cell growth and tumorigenesis with a focus on the potential use of DYRK1A inhibitors in cancer therapy. PMID:27308401

  11. Breast metastases from rectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    LI Jia; FANG Yu; LI Ang; LI Fei

    2011-01-01

    Metastases to the breast from extramammary neoplasms are very rare, constituting 2.7% of all malignant breast tumours. The most common primary tumor metastatic to the breast is primary breast cancer. Rectal cancer metastasizing to the breast is extremely rare. We report a case of aggressive rectal carcinoma with metastasis to the breast.

  12. Down-regulation of p73 correlates with high histological grade in Japanese with breast carcinomas

    Institute of Scientific and Technical Information of China (English)

    DU Cai-wen; Izo Kimijima; Toru Otake; Rikiya Abe; Seiichi Takenoshita; ZHANG Guo-jun

    2011-01-01

    Background p73, a homologue of p53, has been located at chromosome 1 p36-33, a region of frequently observed loss of heterozygosity in breast cancers. The objective of the present study was to investigate the function of p73 in Japanese with breast cancers. Methods Sixty Japanese patients with breast cancer were assessed by polymerase chain reaction single strand confirmation polymorphism analysis and direct sequencing to detect the p73 allele. p73 mRNA levels were also determined in 40 out of 60 patients by reverse-transcriptional polymerase chain reaction. Results We analyzed the entire open reading frame of the p73 gene by polymerase chain reaction single strand confirmation polymorphism and sequencing, and failed to identify any mutations of p73 in the encoding regions detected.Loss of heterozygosity of p73 was infrequent and only found in 9% of breast carcinomas. We revealed a few polymorphisms with a frequency of 13%-29%, which had been reported previously. Down-regulation of p73 mRNA expression was observed in tumor tissues in comparison to the normal breast tissues. A significant inverse correlation was found between p73 transcripts and high histological grade, suggesting that down-regulated p73 expression could be related to poor prognosis in those patients. Conclusion Our results suggest that p73 may serve as a tumor suppressor gene and its expression plays a role in tumorigenesis in Japanese patients with breast cancer.

  13. The progesterone receptor Val660→Leu polymorphism and breast cancer risk

    International Nuclear Information System (INIS)

    Recent evidence suggests a role for progesterone in breast cancer development and tumorigenesis. Progesterone exerts its effect on target cells by interacting with its receptor; thus, genetic variations, which might cause alterations in the biological function in the progesterone receptor (PGR), can potentially contribute to an individual's susceptibility to breast cancer. It has been reported that the PROGINS allele, which is in complete linkage disequilibrium with a missense substitution in exon 4 (G/T, valine→leucine, at codon 660), is associated with a decreased risk for breast cancer. Using a nested case-control study design within the Nurses' Health Study cohort, we genotyped 1252 cases and 1660 matched controls with the use of the Taqman assay. We did not observe any association of breast cancer risk with carrying the G/T (Val660→Leu) polymorphism (odds ratio 1.10, 95% confidence interval 0.93–1.30). In addition, we did not observe an interaction between this allele and menopausal status and family history of breast cancer as reported previously. Overall, our study does not support an association between the Val660→Leu PROGINS polymorphism and breast cancer risk

  14. The association between phosphatase and tensin homolog hypermethylation and patients with breast cancer, a meta-analysis and literature review.

    Science.gov (United States)

    Lu, Yi-Min; Cheng, Feng; Teng, Li-Song

    2016-01-01

    The Phosphatase and tensin homolog (PTEN) protein is a negative regulator of the Akt pathway, leading to suppression of apoptois and increased cell survival. Its role as a tumor-suppressor gene has been adequately substantiated, and PTEN hypermethylation has been demonstrated in familial and sporadic cancers. However, the association and clinical significance between PTEN hypermethylation and breast cancer remains unclear. In this study, we systematically reviewed studies of PTEN hypermethylation and breast cancer and quantify the association between PTEN hypermethylation and breast cancer using meta-analysis methods. The pooled OR, 22.30, 95% confidential intervals, CI = 1.98-251.51, P = 0.01, which demonstrates that loss of PTEN expression by hypermethylation plays a critical role in the early tumorigenesis of ductal carcinoma in situ (DCIS). In addition, PTEN hypermethylation also is detected in invasive ductal carcinomas (IDCs) and is significantly higher than in normal controls, OR = 23.32, 95% CI = 10.43-52.13, P detection of PTEN hypermethylation could be an early tumorigenesis marker for breast cancer patients. PMID:27620353

  15. Accelerated partial breast irradiation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Whole breast radiotherapy afier tumor lumpectomy is based on the premise that that the breast cancer recurrence rate is reduced through the elimination of residual cancer foci in the remaining tissue immediately adjacent to the lumpectomy site and occult multicentric areas of in situ or infiltrating cancer in remote areas of the breast. The relevance of remote foci to ipsilateral breast failure rates after breast conserving treatment is debatable, because 65%~100% of recurrences develop in the same quadrant as the initial tumor. This has led several investigators to question whether radiotherapy must be administered to the entire breast.

  16. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  17. Reason vs Revelation: Feminism, Malthus, and the New Poor Law in Narratives by Harriet Martineau and Charlotte Elizabeth Tonna

    Directory of Open Access Journals (Sweden)

    Ella Dzelzainis

    2006-04-01

    Full Text Available My article examines the profoundly influential presence of eighteenth-century stadial or ‘four stages' theory in industrial fiction of the early Victorian period. Axiomatic within this Enlightenment theory was the assumption that the treatment of women was a reliable index to the civilized status of any society. The two women writers studied here, Harriet Martineau (1802-76 and Charlotte Elizabeth Tonna (1790-1846, took opposing sides in the debate over Malthusian political economy and interpreted stadial theory in correspondingly different ways. Martineau's enthusiastic Malthusianism in the 'Illustrations of Political Economy '(1832-4 foresaw a feminist future brought about by illimitable progress and the spread of reason. With the deliberate aim of countering Martineau's views, the pre-Millenarian Evangelical Tonna asserted the truth of revelation in 'The Wrongs of Woman' (1843-4 and positioned women's domestic subordination as integral to England's continued pre-eminence as a commercial nation. This essay examines the religious, social and political grounds on which these two adversaries staked their arguments, and does so through an analysis of their fictional accounts of the status, role, and treatment of working women in an industrializing society.

  18. The conqueror motif in chapters 12-13: a heavenly and an earthly perspective in the Book of Revelation

    Directory of Open Access Journals (Sweden)

    EC Shin

    2007-09-01

    Full Text Available The theme of the conqueror motif in the book of Revelation is one of the prominent themes. The theme of the conqueror motif provides various symbolical messages from an exegetical and theological perspective. An alternative symbolic perspective provides a heavenly perspective and the symbolic transformation. Various images such as salvation for the conquerors and judgment of the evil ones, or victory of the Lamb and defeat of Satan, transform our earthly perspective into the heavenly perspective, and give us a new understanding as to how the conquerors should see the world. To provide the conquerors with a new understanding is to give them a reversed effect as a marginalized group and to reveal deep spiritual conflict between God and Satan. Who� is in control in history? With the result of the heavenly war between Michael and the dragon in 12:7-9, John proclaims the victory of God, who is the real conqueror, and provides the heavenly perspective that God is in control of the cosmos, as well as of history.

  19. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    Science.gov (United States)

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  20. Breastfeeding and Breast Milk

    Science.gov (United States)

    ... Clinical Trials Resources and Publications Breastfeeding and Breast Milk: Condition Information Skip sharing on social media links Share this: Page Content Breastfeeding and Breast Milk: Condition Information​ ​​Breastfeeding, also called nursing, is the ...

  1. Types of Breast Cancers

    Science.gov (United States)

    ... about this condition, see Inflammatory Breast Cancer . Paget disease of the nipple This type of breast cancer ... carcinoma (this is a type of metaplastic carcinoma) Medullary carcinoma Mucinous (or colloid) carcinoma Papillary carcinoma Tubular ...

  2. Breast Reconstruction After Mastectomy

    Science.gov (United States)

    ... reconstruction with or without radiotherapy. Current Opinion in Obstetrics and Gynecology 2011;23(1):44–50. [PubMed Abstract] Barry M, Kell MR. Radiotherapy and breast reconstruction: a meta-analysis. Breast ...

  3. Breast cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000911.htm Breast cancer staging To use the sharing features on this ... Once your health care team knows you have breast cancer , they will do more tests to stage it. ...

  4. miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4.

    Science.gov (United States)

    Zhao, Lifen; Feng, Xiaobin; Song, Xiaobo; Zhou, Huimin; Zhao, Yongfu; Cheng, Lei; Jia, Li

    2016-08-01

    Breast cancer is a leading cause of cancer-related mortality among women. Altered fucosylation was found to be closely associated with tumorigenesis and metastasis of breast cancer. MicroRNAs (miRNAs) are important regulators of cell proliferation and metastasis, and aberrant miRNA expression has been observed in breast cancer. The present study aimed to evaluate the level of fucosyltransferase IV (FUT4) and miR-493-5p in breast cancer and investigate their relationship. In the present study, we demonstrated the differential expressional profiles of FUT4 and miR‑493-5p in 29 clinical breast cancer tissues, matched adjacent tissue samples and two breast carcinoma cell lines (MCF-7 and MDA-MB-231). Briefly, altered expression levels of FUT4 modified the invasive activities and tumorigenicity of the MCF-7 and MDA-MB-231 cells. Further study demonstrated that miR-493-5p plays a role as a suppressor in breast cancer cell invasion and tumorigenicity. Moreover, the expression levels of miR-493-5p were inversely proportional to those of FUT4 both at the mRNA and protein levels. Luciferase reporter assays confirmed that miR‑493-5p bound to the 3'-untranslated (3'-UTR) region of FUT4, and inhibited the expression of FUT4 in breast cancer cells. Taken together, our data suggest that FUT4 may have a potential role in the treatment of breast cancer, as well as miR-493-5p is a novel regulator of invasiveness and tumorigenicity of breast cancer cells through targeting FUT4. The miR-493-5p/FUT4 pathway has therapeutic potential in breast cancer. PMID:27375041

  5. Breast Tissue Composition and Susceptibility to Breast Cancer

    OpenAIRE

    Boyd, Norman F.; Lisa J Martin; Bronskill, Michael; Martin J. Yaffe; Duric, Neb; Minkin, Salomon

    2010-01-01

    Breast density, as assessed by mammography, reflects breast tissue composition. Breast epithelium and stroma attenuate x-rays more than fat and thus appear light on mammograms while fat appears dark. In this review, we provide an overview of selected areas of current knowledge about the relationship between breast density and susceptibility to breast cancer. We review the evidence that breast density is a risk factor for breast cancer, the histological and other risk factors that are associat...

  6. Breast sarcomas. Literature review

    Directory of Open Access Journals (Sweden)

    D. A. Ryabchikov

    2014-01-01

    Full Text Available The article presents an overview of the literature about breast sarcomas (nonepithelial malignances. Primary sarcomas are extremely rare, with less than 1 % of all malignant tumors of the breast. Breast carcinomas cause an increased interest of the scientists due to their unique clinical and pathological features and unpredictable prognosis.

  7. Oncoplastic breast conserving surgery

    OpenAIRE

    Mansfield, Lucy; Agrawal, Avi; Cutress, Ramsey I.

    2013-01-01

    Oncoplastic breast conserving surgery is a fundamental component of the repertoire for the management of breast cancer. It facilitates removal of large volumes of breast tissue, and can improve cosmetic outcomes and patient satisfaction whilst maintaining good oncological principles, reducing re-excision and mastectomy rates and assisting in adjuvant radiotherapy planning.

  8. Breast lift (mastopexy) - slideshow

    Science.gov (United States)

    ... for drooping breasts, which may occur after a woman has had children. Mammograms (breast X-rays) and a routine breast exam are required before surgery. Update Date 2/12/2013 Updated by: David A. Lickstein, MD, FACS, specializing in cosmetic and reconstructive plastic surgery, Palm Beach Gardens, FL. ...

  9. Breast Cancer (For Kids)

    Science.gov (United States)

    ... With Breast Cancer Breast Cancer Prevention en español Cáncer de mama You may have heard about special events, like walks or races, to raise money for breast cancer research. Or maybe you've seen people wear ...

  10. Optical breast imaging

    NARCIS (Netherlands)

    van de Ven, S.M.W.Y.

    2011-01-01

    Optical breast imaging uses near-infrared light to assess the optical properties of breast tissue. It can be performed relying on intrinsic breast tissue contrast alone or with the use of exogenous imaging agents that accumulate at the tumor site. Different tissue components have unique scattering a

  11. Do myoepithelial cells hold the key for breast tumorprogression?

    Energy Technology Data Exchange (ETDEWEB)

    Polyak, Kornelia; Hu, Min

    2005-11-18

    Mammary myoepithelial cells have been the foster child of breast cancer biology and have been largely ignored since they were considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge in stem cell biology and the cellular microenvironment has been increasing myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis if myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and if myoepithelial cells are part of the mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for cell cycle arrest, establishing epithelial cell polarity, and inhibiting migration and invasion. Based on these functions normal mammary myoepithelial cells have been called ''natural tumor suppressors''. However, during tumor progression myoepithelial cells seem to loose these properties and eventually they themselves diminish as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.

  12. Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Zhimin Lu

    2012-01-01

    Pyruvate kinase catalyzes the rate-limiting final step of glycolysis,generating adenosine triphosphate (ATP) and pyruvate.The M2 tumor-specific isoform of pyruvate kinase (PKM2) promotes glucose uptake and lactate production in the presence of oxygen,known as aerobic glycolysis or the Warburg effect.As recently reported in Nature,PKM2,besides its metabolic function,has a nonmetabolic function in the direct control of cell cycle progression by activating β-catenin and inducing expression of the β-catenin downstream gene CCND1 (encoding for cyclin D1).This nonmetabolic function of PKM2 is essential for epidermal growth factor receptor (EGFR) activation-induced tumorigenesis.

  13. Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis

    Science.gov (United States)

    Ma, Li; Tao, Yongzhen; Duran, Angeles; Llado, Victoria; Galvez, Anita; Barger, Jennifer F.; Castilla, Elias A.; Chen, Jing; Yajima, Tomoko; Porollo, Aleksey; Medvedovic, Mario; Brill, Laurence M.; Plas, David R.; Riedl, Stefan J.; Leitges, Michael; Diaz-Meco, Maria T.; Richardson, Adam D.; Moscat, Jorge

    2013-01-01

    SUMMARY Tumor cells have high-energetic and anabolic needs and are known to adapt their metabolism to be able to survive and keep proliferating under conditions of nutrient stress. We show that PKCζ deficiency promotes the plasticity necessary for cancer cells to reprogram their metabolism to utilize glutamine through the serine biosynthetic pathway in the absence of glucose. PKCζ represses the expression of two key enzymes of the pathway, PHGDH and PSAT1, and phosphorylates PHGDH at key residues to inhibit its enzymatic activity. Interestingly, the loss of PKCζ in mice results in enhanced intestinal tumorigenesis and increased levels of these two metabolic enzymes, whereas patients with low levels of PKCζ have a poor prognosis. Furthermore, PKCζ and caspase-3 activities are correlated with PHGDH levels in human intestinal tumors. Taken together, this demonstrates that PKCζ is a critical metabolic tumor suppressor in mouse and human cancer. PMID:23374352

  14. The Role of HPV in Head and Neck Cancer Stem Cell Formation and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mark S. Swanson

    2016-02-01

    Full Text Available The cancer stem cell (CSC theory proposes that a minority of tumor cells are capable of self-replication and tumorigenesis. It is these minority of cells that are responsible for cancer metastasis and recurrence in head and neck squamous cell cancers (HNSCC. Human papilloma virus (HPV-related cancer of the oropharynx is becoming more prevalent, which makes understanding of the relationship between HPV and CSCs more important than ever. This relationship is critical because CSC behavior can be predicted based on cell surface markers, which makes them a suitable candidate for targeted therapy. New therapies are an exciting opportunity to advance past the stalled outcomes in HNSCC that have plagued patients and clinicians for several decades.

  15. Brain diseases and tumorigenesis: The good and bad cops of pentraxin3.

    Science.gov (United States)

    Fornai, Francesco; Carrizzo, Albino; Ferrucci, Michela; Damato, Antonio; Biagioni, Francesca; Gaglione, Anderson; Puca, Annibale Alessandro; Vecchione, Carmine

    2015-12-01

    The prototype of long pentraxins, Pentraxin 3 (PTX3), is an evolutionarily conserved multifunctional, pattern-recognition protein constituted by a cyclic multimeric structure. PTX3 interacts with a variety of ligands, such as growth factors, extracellular matrix components, molecules of the complement cascade, pathogens recognition proteins, angiogenetic and adhesion molecules. PTX3 could be considered as a molecular link between innate and adaptive immunity as well as between focal and circulating responses during inflammation. In fact, it modulates the functions of resident dendritic cells and circulating lymphocytes. Recent evidence demonstrates that manipulation of PTX3 may produce even opposite effects depending on which target organ is considered and the physiopathological context. In the present review we discuss the good and bad cops of PTX3 concerning multifacted effects on inflammation, innate immunity, brain diseases and tumorigenesis. Finally, a perspective on PTX3 and autophagy is provided as a convergent pathway. PMID:26485684

  16. Epigenetic Effects and Molecular Mechanisms of Tumorigenesis Induced by Cigarette Smoke: An Overview

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    2011-01-01

    Full Text Available Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1 receptors, (2 cell cycle regulators, (3 signaling pathways, (4 apoptosis mediators, (5 angiogenic factors, and (6 invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.

  17. Wnt signaling and colon tumorigenesis — A view from the periphery

    International Nuclear Information System (INIS)

    In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the β-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of β-catenin is contrasted with roles for phospho-β-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and β-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stem cell localization and crypt fission are considered.

  18. Models of breast cancer: quo vadis, animal modeling?

    International Nuclear Information System (INIS)

    Rodent models for breast cancer have for many decades provided unparalleled insights into cellular and molecular aspects of neoplastic transformation and tumorigenesis. Despite recent improvements in the fidelity of genetically engineered mice, rodent models are still being criticized by many colleagues for not being 'authentic' enough to the human disease. Motives for this criticism are manifold and range from a very general antipathy against the rodent model system to well-founded arguments that highlight physiological variations between species. Newly proposed differences in genetic pathways that cause cancer in humans and mice invigorated the ongoing discussion about the legitimacy of the murine system to model the human disease. The present commentary intends to stimulate a debate on this subject by providing the background about new developments in animal modeling, by disputing suggested limitations of genetically engineered mice, and by discussing improvements but also ambiguous expectations on the authenticity of xenograft models to faithfully mimic the human disease

  19. Inheritance of proliferative breast disease in breast cancer kindreds

    International Nuclear Information System (INIS)

    Previous studies have emphasized that genetic susceptibility to breast cancer is rare and is expressed primarily as premenopausal breast cancer, bilateral breast cancer, or both. Proliferative breast disease (PBD) is a significant risk factor for the development of breast cancer and appears to be a precursor lesion. PBD and breast cancer were studied in 103 women from 20 kindreds that were selected for the presence of two first degree relatives with breast cancer and in 31 control women. Physical examination, screening mammography, and four-quadrant fine-needle breast aspirates were performed. Cytologic analysis of breast aspirates revealed PBD in 35% of clinically normal female first degree relatives of breast cancer cases and in 13% of controls. Genetic analysis suggests that genetic susceptibility causes both PBD and breast cancer in these kindreds. This study supports the hypothesis that this susceptibility is responsible for a considerable portion of breast cancer, including unilateral and postmenopausal breast cancer

  20. A Requirement for SOCS-1 and SOCS-3 Phosphorylation in Bcr-Abl-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Xiaoxue Qiu

    2012-06-01

    Full Text Available Suppressors of cytokine signaling 1 and 3 (SOCS-1 and SOCS-3 are inhibitors of the Janus tyrosine kinase (JAK/signal transducers and activators of transcription (STAT pathway and function in a negative feedback loop during cytokine signaling. Abl transformation is associated with constitutive activation of JAK/STAT-dependent signaling. However, the mechanism by which Abl oncoproteins bypass SOCS inhibitory regulation remains poorly defined. Here, we demonstrate that coexpression of Bcr-Abl with SOCS-1 or SOCS-3 results in tyrosine phosphorylation of these SOCS proteins. Interestingly, SOCS-1 is highly tyrosine phosphorylated in one of five primary chronic myelogenous leukemia samples. Bcr-Abl-dependent tyrosine phosphorylation of SOCS-1 and SOCS-3 occurs mainly on Tyr 155 and Tyr 204 residues of SOCS-1 and on Tyr 221 residue of SOCS-3. We observed that phosphorylation of these SOCS proteins was associated with their binding to Bcr-Abl. Bcr-Abl-dependent phosphorylation of SOCS-1 and SOCS-3 diminished their inhibitory effects on the activation of JAK and STAT5 and thereby enhanced JAK/STAT5 signaling. Strikingly, disrupting the tyrosine phosphorylation of SOCS-1 or SOCS-3 impaired the expression of Bcl-XL protein and sensitized K562 leukemic cells to undergo apoptosis. Moreover, selective mutation of tyrosine phosphorylation sites of SOCS-1 or SOCS-3 significantly blocked Bcr-Abl-mediated tumorigenesis in nude mice and inhibited Bcr-Abl-mediated murine bone marrow transformation. Together, these results reveal a mechanism of how Bcr-Abl may overcome SOCS-1 and SOCS-3 inhibition to constitutively activate the JAK/STAT-dependent signaling, and suggest that Bcr-Abl may critically requires tyrosine phosphorylation of SOCS-1 and SOCS-3 to mediate tumorigenesis when these SOCS proteins are present in cells.

  1. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

    Science.gov (United States)

    Park, Mi-Young; Kim, Min Young; Seo, Young Rok; Kim, Jong-Sang; Sung, Mi-Kyung

    2016-01-01

    Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in ApcMin/+ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2′-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis. PMID:27390738

  2. Rewiring drug-activated p53-regulatory network from suppressing to promoting tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Jiguang Wang; Ying Yang; Naihe Jing; Xiangsun Zhang; Luonan Chen; Jiarui Wu

    2012-01-01

    Many of oncogenes and tumor suppressor genes have been found to exert variable and even opposing roles in different kinds of tumors or at different stages of cancer development.Here we showed that tumorigenic potential of mouse embryonic carcinoma P19 cells cultured in adherent plates (attached-P19-cells) was suppressed by a chemotherapeutic agent,5-aza-2'-deoxycytidine (ZdCyd),whereas the higher pro-tumorigenicity of P19 cells growing in suspension (detached-P19-cells) was generated by the ZdCyd treatment.Surprisingly,p53 activity was highly up-regulated by ZdCyd in both growing conditions.By our developed computational approaches,we revealed that there was a significant enrichment of apoptotic pathways in the ZdCyd-induced p53-dominant gene-regulatory network in attached P19 cells,whereas the pro-survival genes were significantly enriched in the ZdCyd-induced p53 network in detached P19 cells.The protein-protein interaction network of the ZdCyd-treated detached P19 cells was significantly different from that of ZdCyd-treated attached P19 cells.On the other hand,inhibition of pS3 expression by siRNA suppressed the ZdCyd-induced tumorigenesis of detached P19 cells,suggesting that the ZdCyd-activated p53 plays oncogenic function in detached P19 cells.Taken together,these results indicate a context-dependent role for the ZdCyd-activated p53-dominant network in tumorigenesis.

  3. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Yuwaraj Kadariya

    Full Text Available The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/- .Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+ and Mtap (+/+ mice.Survival in both models was significantly decreased in Mtap(lacZ/+ compared to Mtap(+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+ and Eµ-myc Mtap(+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+ and Mtap(lacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01. Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer.Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice.

  4. Suppression of intracranial glioma tumorigenesis with vascular endothelial growth factor antisense oligonucleotide in rats

    Institute of Scientific and Technical Information of China (English)

    李维方; 张光霁; 朱诚; 金由辛; 卢亦成

    2003-01-01

    Objective: To observe the inhibition of intracranial glioma tumorigenesis by vascular endothelial growth factor (VEGF) antisense oligodeoxynucleotide (ODN) in rats. Methods: Totally 20 μl Hank's liquid containing 1×106 C6 glioma cells was seeded into rat right caudate putamen in high-flow microinfusion with stereotactic technique. VEGF antisense ODN was simultaneously used with glioma cell. Each rat of the treated groupⅠ and the treated group Ⅱ was treated with 1 000 μmol/L VEGF antisense ODN. Each rat of the treated group Ⅲ and the treated group Ⅳ was treated with 2 000 μmol/L VEGF antisense ODN. The experimental periods of the treated group Ⅰ, the treated group Ⅲ and the control group Ⅰ were 2 weeks, those of the treated group Ⅱ, the treated group Ⅳ and the control group Ⅱ were 3 weeks. Before sacrifice, MRI was performed on each rat. Tumor magnitude and pathologic examination were detected after samples were dissected. Results: The survival state of all treated rats was better, and that of the control rats was in severe danger. The tumor volumes of the treated group Ⅰ and the treated group Ⅱ were remarkably lessened. Tumor tissue could not be found macroscopically in the brain samples of the treated group Ⅲ and the treated group Ⅳ, but tumor nest could be found with microscopy. Tumors of the treated groupⅠand the treated group Ⅱ had weak expressions of VEGF mRNA and VEGF, while normal brains and the samples of the treated group Ⅲ and the treated group Ⅳ had negative expressions, but tumors of the control groups had strong expressions. Conclusion: VEGF antisense ODN used early in situ can suppress angiogenesis and growth of rat intracranial glioma to retard tumorigenesis.

  5. ∆DNMT3B4-del Contributes to Aberrant DNA Methylation Patterns in Lung Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mark Z. Ma

    2015-10-01

    Full Text Available Aberrant DNA methylation is a hallmark of cancer but mechanisms contributing to the abnormality remain elusive. We have previously shown that ∆DNMT3B is the predominantly expressed form of DNMT3B. In this study, we found that most of the lung cancer cell lines tested predominantly expressed DNMT3B isoforms without exons 21, 22 or both 21 and 22 (a region corresponding to the enzymatic domain of DNMT3B termed DNMT3B/∆DNMT3B-del. In normal bronchial epithelial cells, DNMT3B/ΔDNMT3B and DNMT3B/∆DNMT3B-del displayed equal levels of expression. In contrast, in patients with non-small cell lung cancer NSCLC, 111 (93% of the 119 tumors predominantly expressed DNMT3B/ΔDNMT3B-del, including 47 (39% tumors with no detectable DNMT3B/∆DNMT3B. Using a transgenic mouse model, we further demonstrated the biological impact of ∆DNMT3B4-del, the ∆DNMT3B-del isoform most abundantly expressed in NSCLC, in global DNA methylation patterns and lung tumorigenesis. Expression of ∆DNMT3B4-del in the mouse lungs resulted in an increased global DNA hypomethylation, focal DNA hypermethylation, epithelial hyperplastia and tumor formation when challenged with a tobacco carcinogen. Our results demonstrate ∆DNMT3B4-del as a critical factor in developing aberrant DNA methylation patterns during lung tumorigenesis and suggest that ∆DNMT3B4-del may be a target for lung cancer prevention.

  6. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  7. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos.

    Science.gov (United States)

    Chernet, Brook T; Fields, Chris; Levin, Michael

    2014-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions-key mediators of cell-cell communication-in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  8. Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis.

    Science.gov (United States)

    He, Feng; Mo, Lan; Zheng, Xiao-Yong; Hu, Changkun; Lepor, Herbert; Lee, Eva Y-H P; Sun, Tung-Tien; Wu, Xue-Ru

    2009-12-15

    Defects in pRb tumor suppressor pathway occur in approximately 50% of the deadly muscle-invasive urothelial carcinomas in humans and urothelial carcinoma is the most prevalent epithelial cancer in long-term survivors of hereditary retinoblastomas caused by loss-of-function RB1 mutations. Here, we show that conditional inactivation of both RB1 alleles in mouse urothelium failed to accelerate urothelial proliferation. Instead, it profoundly activated the p53 pathway, leading to extensive apoptosis, and selectively induced pRb family member p107. Thus, pRb loss triggered multiple fail-safe mechanisms whereby urothelial cells evade tumorigenesis. Additional loss of p53 in pRb-deficient urothelial cells removed these p53-dependent tumor barriers, resulting in late-onset hyperplasia, umbrella cell nuclear atypia, and rare-occurring low-grade, superficial papillary bladder tumors, without eliciting invasive carcinomas. Importantly, mice deficient in both pRb and p53, but not those deficient in either protein alone, were highly susceptible to subthreshold carcinogen exposure and developed invasive urothelial carcinomas that strongly resembled the human counterparts. The invasive lesions had a marked reduction of p107 but not p130 of the pRb family. Our data provide compelling evidence, indicating that urothelium, one of the slowest cycling epithelia, is remarkably resistant to transformation by pRb or p53 deficiency; that concurrent loss of these two tumor suppressors is necessary but insufficient to initiate urothelial tumorigenesis along the invasive pathway; that p107 may play a critical role in suppressing invasive urothelial tumor formation; and that replacing/restoring the function of pRb, p107, or p53 could be explored as a potential therapeutic strategy to block urothelial tumor progression.

  9. The role of Med19 in the proliferation and tumorigenesis of human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Shao-wu ZOU; Kai-xing AI; Zhi-gang WANG; Zhou YUAN; Jun YAN; Qi ZHENG

    2011-01-01

    Aim: To explore the role of Med19, a component of the Mediator complex that coactivates DNA-binding transcription factors, in the proliferation and tumorigenesis of human hepatocellular carcinoma cells.Methods: The human hepatocellular carcinoma cell lines HepG2 and Hep3B were infected with lentiviral vectors encoding interfering RNA (RNAi) targeting the Med19 gene. To further confirm the inhibitory effects of RNAi vectors on Med19 gene expression, quantitative real-time RT-PCR and Western blotting assays were used. The proliferation of HepG2 and Hep3B cells after transduction with the Med19-RNAi-Lentivirus vector was evaluated by MTT conversion, BrdU incorporation, colony formation, and cell-cycle assays in vitro.In addition, the ability of the Med19-RNAi-Lentivirus vector-infected Hep3B cells to form tumors after inoculation into nude mice was determined.Results: Recombinant lentiviral vectors expressing small interfering RNA (siRNA) against Med19 were constructed and were found to efficiently downregulate Med19 mRNA and protein levels in HepG2 and Hep3B cells. Furthermore, the inhibition of Med19 by RNAi dramatically reduced hepatocellular carcinoma cell proliferation, induced cell-cycle arrest in the G0/G1 phase, and suppressed tumor formation.Conclusion: These results provide new evidence of an important role for Med19 in the development of hepatocellular carcinomas, suggesting that lentivirus-mediated RNAi to target Med19 is a potential tool for inhibiting cancer cell proliferation and tumorigenesis.

  10. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Science.gov (United States)

    Chernet, Brook T.; Fields, Chris; Levin, Michael

    2015-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions—key mediators of cell-cell communication—in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  11. FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Julia Brun

    Full Text Available BACKGROUND: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2 acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model. METHODOLOGY/PRINCIPAL FINDINGS: Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/β-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.

  12. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis.

    Directory of Open Access Journals (Sweden)

    I-Ching Wang

    Full Text Available The Forkhead Box m1 (Foxm1 protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1(-/- mice prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA/butylated hydroxytoluene (BHT. Decreased lung tumorigenesis in epFoxm1(-/- mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2alpha (TOPO-2alpha, a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2alpha mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2alpha promoter region, indicating that TOPO-2alpha is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2alpha expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.

  13. A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response.

    Science.gov (United States)

    Lin, Xiaozeng; Ojo, Diane; Wei, Fengxiang; Wong, Nicholas; Gu, Yan; Tang, Damu

    2015-01-01

    BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub), BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR). In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs) through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis. PMID:26633535

  14. PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lin Yang; Li-Ge Kuang; Hua-Chuan Zheng; Jin-Yi Li; Dong-Ying Wu; Su-Min Zhang; Yan Xin

    2003-01-01

    AIM: To detect the expression of PTEN encoding productin normal mucosa, intestinal metaplasia (IM), dysplasia andcarcinoma of the stomach, and to investigate its clinicalimplication in tumorigenesis and progression of gastriccarcinoma.METHODS: Formalin-fixed paraffin embedded specimens from184 cases of gastric carcinoma, their adjacent normal mucosa,IM and dysplasia were evaluated for PTEN protein expressionby SABC immunohistochemistry. PTEN expression wascompared with tumor stage, lymph node metastasis, Lauren'sand WHO's histological classification of gastric carcinoma.Expression of VEGF was also detected in 60 cases of gastriccarcinoma and its correlation with PTEN was concerned.RESULTS: The positive rates of PTEN protein were 100 %(102/102), 98.5 %(65/66), 66.7 % (4/6) and 47.8 %(88/184)in normal mucosa, IM, dysplasia and carcinoma of the stomach,respectively. The positive rates in dysplasia and carcinomawere lower than in normal mucosa and IM (P<0.01).Advanced gastric cancers expressed less frequent PTEN thanearly gastric cancer (42.9 % v567.6 %, P<0.01). The positiverate of PTEN protein was lower in gastric cancer with thanwithout lymph node metastasis (40.3 % v563.3 %, P<0.01).PTEN was less expressed in diffuse-type than in intestinal-type gastric cancer (41.5 % v557.8 %,P<0.05). Signet ringcell carcinoma showed the expression of PTEN at the lowestlevel (25.0 %, 7/28); less than well and moderatelydifferentiated ones (P<0.01). Expression of PTEN was notcorrelated with expression of VEGF (P>0.05).CONCLUSION: Loss or reduced expression of PTEN proteinoccures commonly in tumorigenesis and progression of gastriccarcinoma. It is suggested that PTEN can be an objective markerfor pathologically biological behaviors of gastric carcinoma.

  15. Mdm2 Deficiency Suppresses MYCN-Driven Neuroblastoma Tumorigenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Zaowen Chen

    2009-08-01

    Full Text Available Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-mediated tumor suppression during pathogenesis. Amplification of the MYCN oncogene correlates with the most clinically aggressive form of the cancer, and MDM2, a primary inhibitor of the p53 tumor suppressor, is a direct transcriptional target of, and positively regulated by, both MYCN and MYCC. We hypothesize that MDM2 contributes to MYCN-driven tumorigenesis helping to ameliorate p53-dependent apoptotic oncogenic stress during tumor initiation and progression. To study the interaction of MYCN and MDM2, we generated an Mdm2 haploinsufficient transgenic animal model of neuroblastoma. In Mdm2+/-MYCN transgenics, tumor latency and animal survival are remarkably extended, whereas tumor incidence and growth are reduced. Analysis of the Mdm2/p53 pathway reveals remarkable p53 stabilization counterbalanced by epigenetic silencing of the p19Arf gene in the Mdm2 haploinsufficient tumors. In human neuroblastoma xenograft models, conditional small interfering RNA-mediated knockdown of MDM2 in cells expressing wild-type p53 dramatically suppresses tumor growth in a p53-dependent manner. In summary, we provided evidence for a crucial role for direct inhibition of p53 by MDM2 and suppression of the p19ARF/p53 axis in neuroblastoma tumorigenesis, supporting the development of therapies targeting these pathways.

  16. Gossypiboma after Breast Augmentation

    OpenAIRE

    Kira Lundin; Allen, Julie E.; Lene Birk-Soerensen

    2013-01-01

    A 39-year-old woman was referred for removal of cosmetic breast implants and related siliconoma. After an exchange of breast implants at a private clinic a year previously, she had asymmetry of the right breast, persistent pain, and a generally unacceptable cosmetic result. An MRI had shown a well-defined area with spots of silicone-like material at the upper pole of the right breast. Surgical removal of presumed silicone-imbibed breast tissue was undertaken, and surprisingly a gossypiboma wa...

  17. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2011-01-01

    Studies of complications following reconstructive surgery with implants among women with breast cancer are needed. As the, to our knowledge, first prospective long-term study we evaluated the occurrence of complications following delayed breast reconstruction separately for one- and two......-stage procedures. From the Danish Registry for Plastic Surgery of the Breast, which has prospectively registered data for women undergoing breast implantations since 1999, we identified 559 women without a history of radiation therapy undergoing 592 delayed breast reconstructions following breast cancer during...... of reoperation was significantly higher following the one-stage procedure. For both procedures, the majority of reoperations were due to asymmetry or displacement of the implant. In conclusion, non-radiated one- and two-stage delayed breast implant reconstructions are associated with substantial risks...

  18. Expression of Toll-Like Receptors on Breast Tumors: Taking a Toll on Tumor Microenvironment

    International Nuclear Information System (INIS)

    Breast cancer remains a major cause of death in women in the developed world. As Toll-like receptors (TLRs) are widely expressed on tumor cells and play important roles in the initiation and progression of cancer, they may thus serve as important targets and have an effective perspective on breast cancer treatment. Expression of TLRs on breast cancer cells and mononuclear inflammatory cells can promote inflammation and cell survival in the tumor microenvironment. Inflammation and cancer are related. It is well known that persistent inflammatory conditions can induce cancer formation, due to production of cytokines and chemokines, which play a crucial role in promoting angiogenesis, metastasis, and subversion of adaptive immunity. TLR signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. This paper delineates the expression of various TLRs in promotion of inflammation and development of mammary tumors. Understanding the mechanisms through which TLRs on breast cancer cells and inflammatory cells regulate growth, survival, and metastatic progression can make them potential targets for breast cancer therapy

  19. Expression of nerve growth factor and heme oxygenase-1 predict poor survival of breast carcinoma patients

    International Nuclear Information System (INIS)

    Nerve growth factor (NGF) is a neurotrophin and has been suggested to induce heme oxygenase-1 (HO1) expression. Although the role of HO1 in tumorigenesis remains controversial, recent evidence suggests NGF and HO1 as tumor-progressing factors. However, the correlative role of NGF and HO1 and their prognostic impact in breast carcinoma is unknown. We investigated the expression and prognostic significance of the expression of NGF and HO1 in 145 cases of breast carcinoma. Immunohistochemical expression of NGF and HO1 was observed in 31% and 49% of breast carcinoma, respectively. The expression of NGF and HO1 significantly associated with each other, and both have a significant association with histologic grade, HER2 expression, and latent distant metastasis. The expression of NGF and HO1 predicted shorter overall survival of breast carcinoma by univariate and multivariate analysis. NGF expression was an independent prognostic indicator for relapse-free survival by multivariate analysis. The combined expression pattern of NGF and HO1 was also an independent prognostic indicator of overall survival and relapse-free survival. The patients with tumors expressing NGF had the shortest survival and the patients with tumor, which did not express NGF or HO1 showed the longest survival time. This study has demonstrated that individual expression of NGF or HO1, and the combined NGF/HO1 expression pattern could be prognostic indicators for breast carcinoma patients

  20. Breast abscesses after breast conserving therapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhisa [National Kyoto Hospital (Japan)

    2001-09-01

    Breast abscess after breast conserving therapy is a rare complication and the study of this cause has not been reported. A retrospective review of 190 patients undergoing breast conserving therapy in our institution revealed 4 patients with breast abscess (mean age, 50.6 years; range, 47-57 years and median follow up 4 months; 1-11 months). Risk factors which were common to all patients were: fine needle aspiration (FNA), surgical treatment; wide excision, adjuvant therapy; oral administration of tamoxifen (TAM), radiation therapy (RT) to ipsilateral whole breast; total dose of 50 Gy and skin desquamation by RT; level I or II. Other important risk factors in 3 patients were repeated aspirations of seroma post operatively and 2 patients received chemotherapy; CAF. Cultures from one abscess grew staphylococcus aureus, one grew staphylococcus epidermidis, and two were sterile. Breast abscess may be caused by a variety of factors and it is often difficult to specify the cause. This suggests that careful observation will be necessary to determine the cause. (author)

  1. Analysis of secretome of breast cancer cell line with an optimized semi-shotgun method

    International Nuclear Information System (INIS)

    Secretome, the totality of secreted proteins, is viewed as a promising pool of candidate cancer biomarkers. Simple and reliable methods for identifying secreted proteins are highly desired. We used an optimized semi-shotgun liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) method to analyze the secretome of breast cancer cell line MDA-MB-231. A total of 464 proteins were identified. About 63% of the proteins were classified as secreted proteins, including many promising breast cancer biomarkers, which were thought to be correlated with tumorigenesis, tumor development and metastasis. These results suggest that the optimized method may be a powerful strategy for cell line secretome profiling, and can be used to find potential cancer biomarkers with great clinical significance. (authors)

  2. Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers

    Science.gov (United States)

    Sanchez-Garcia, Félix; Villagrasa, Patricia; Matsui, Junji; Kotliar, Dylan; Castro, Verónica; Akavia, Uri-David; Chen, Bo-Juen; Saucedo-Cuevas, Laura; Barrueco, Ruth Rodriguez; Llobet-Navas, David; Silva, Jose M.; Pe’er, Dana

    2014-01-01

    Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, a novel algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p-value < e−14). 9/10 top scoring Helios genes are known drivers of breast cancer and in vitro validation of 12 novel candidates predicted by Helios found 10 conferred enhanced anchorage independent growth, demonstrating Helios’s exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying novel driver genes and how it can yield important insights into cancer. PMID:25433701

  3. Analysis of secretome of breast cancer cell line with an optimized semi-shotgun method

    Institute of Scientific and Technical Information of China (English)

    TANG Xiaorong; YAO Ling; CHEN Keying; HU Xiaofang; XU Lisa X.; FAN Chunhai

    2009-01-01

    Secretome,the totality of secreted proteins,is viewed as a promising pool of candidate cancer biomarkers.Simple and reliable methods for identifying secreted proteins are highly desired.We used an optimized semi-shotgun liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) method to analyze the secretome of breast cancer cell line MDA-MB-231.A total of 464 proteins were identified.About 63% of the proteins were classified as secreted proteins,including many promising breast cancer biomarkers,which were thought to be correlated with tumorigenesis,tumor development and metastasis.These results suggest that the optimized method may be a powerful strategy for cell line secretome profiling,and can be used to find potential cancer biomarkers with great clinical significance.

  4. Wiskott-Aldrich Syndrome Protein Regulates Leukocyte-Dependent Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Dan Ishihara

    2013-08-01

    Full Text Available A paracrine interaction between epidermal growth factor (EGF-secreting tumor-associated macrophages (TAMs and colony-stimulating factor 1 (CSF-1-secreting breast carcinoma cells promotes invasion and metastasis. Here, we show that mice deficient in the hematopoietic-cell-specific Wiskott-Aldrich syndrome protein (WASp are unable to support TAM-dependent carcinoma cell invasion and metastasis in both orthotopic and transgenic models of mammary tumorigenesis. Motility and invasion defects of tumor cells were recapitulated ex vivo upon coculture with WASp−/− macrophages. Mechanistically, WASp is required for macrophages to migrate toward CSF-1-producing carcinoma cells, as well as for the release of EGF through metalloprotease-dependent shedding of EGF from the cell surface of macrophages. Our findings suggest that WASp acts to support both the migration of TAMs and the production of EGF, which in concert promote breast tumor metastasis.

  5. Dysregulated miR-183 inhibits migration in breast cancer cells.

    LENUS (Irish Health Repository)

    Lowery, Aoife J

    2010-01-01

    The involvement of miRNAs in the regulation of fundamental cellular functions has placed them at the fore of ongoing investigations into the processes underlying carcinogenesis. MiRNA expression patterns have been shown to be dysregulated in numerous human malignancies, including breast cancer, suggesting their probable involvement as novel classes of oncogenes or tumour suppressor genes. The identification of differentially expressed miRNAs and elucidation of their functional roles may provide insight into the complex and diverse molecular mechanisms of tumorigenesis. MiR-183 is located on chromosome 7q32 and is part of a miRNA family which are dysregulated in numerous cancers. The aims of this study were to further examine the expression and functional role of miR-183 in breast cancer.

  6. The dual role of FOXF2 in regulation of DNA replication and the epithelial-mesenchymal transition in breast cancer progression.

    Science.gov (United States)

    Lo, Pang-Kuo; Lee, Ji Shin; Liang, Xiaohui; Sukumar, Saraswati

    2016-10-01

    Dysregulation of Forkhead-box (FOX) transcription factors is linked to cancers of numerous tissue types. Here, we report that FOXF2 is frequently silenced in luminal-type and HER2-positive breast cancers, but is overexpressed in basal-like breast cancers; thus, FOXF2 appears to play distinct roles in different breast cancer subtypes. Inactivation of FOXF2 in luminal-type and HER2-positive breast cancers is attributable to epigenetic silencing. Silencing of FOXF2 is associated with poor prognosis in luminal-type breast cancer. Ectopic expression of FOXF2 in luminal and HER2-positive breast cancer cells suppresses their tumorigenic properties in vitro and in vivo via inhibition of the CDK2-RB-E2F cascade. The in vivo function of FOXF2 is to maintain the stringency of DNA replication, and its loss triggers dysregulation of DNA replication, which in turn activates the p53 checkpoint pathway. Besides its role in cell cycle regulation, FOXF2 is functionally required for mobility and epithelial-to-mesenchymal transition (EMT) of normal breast epithelial cells. In basal-like breast cancer cells, the cell-cycle function of FOXF2 is impaired. However, the EMT function of FOXF2 is still required for mobility, invasiveness and anchorage-independent growth of basal-like breast cancer cells. Our gene expression profiling studies demonstrate that FOXF2 regulates the expression of genes implicated in cell cycle and EMT regulation. Moreover, FOXF2 is highly co-expressed with basal- and metastasis-related genes in breast cancer. These findings suggest that FOXF2 has a dual role in breast tumorigenesis and functions as either a tumor suppressor or an oncogene depending on the breast tumor subtype. PMID:27377963

  7. Breast Cancer Risk in American Women

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Risk in American Women On This Page What ... risk of developing the disease. Personal history of breast cancer : Women who have had breast cancer are more ...

  8. Contralateral breast cancer risk

    International Nuclear Information System (INIS)

    The use of breast-conserving treatment approaches for breast cancer has now become a standard option for early stage disease. Numerous randomized studies have shown medical equivalence when mastectomy is compared to lumpectomy followed by radiotherapy for the local management of this common problem. With an increased emphasis on patient involvement in the therapeutic decision making process, it is important to identify and quantify any unforeseen risks of the conservation approach. One concern that has been raised is the question of radiation- related contralateral breast cancer after breast radiotherapy. Although most studies do not show statistically significant evidence that patients treated with breast radiotherapy are at increased risk of developing contralateral breast cancer when compared to control groups treated with mastectomy alone, there are clear data showing the amount of scattered radiation absorbed by the contralateral breast during a routine course of breast radiotherapy is considerable (several Gy) and is therefore within the range where one might be concerned about radiogenic contralateral tumors. While radiation related risks of contralateral breast cancer appear to be small enough to be statistically insignificant for the majority of patients, there may exist a smaller subset which, for genetic or environmental reasons, is at special risk for scatter related second tumors. If such a group could be predicted, it would seem appropriate to offer either special counselling or special prevention procedures aimed at mitigating this second tumor risk. The use of genetic testing, detailed analysis of breast cancer family history, and the identification of patients who acquired their first breast cancer at a very early age may all be candidate screening procedures useful in identifying such at- risk groups. Since some risk mitigation strategies are convenient and easy to utilize, it makes sense to follow the classic 'ALARA' (as low as reasonably

  9. Separation Anxiety: Detachment from the Extracellular Matrix Induces Metabolic Changes that Can Stimulate Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Magdalena A. Cichon; Derek C. Radisky

    2010-01-01

    @@ One of the earliest stages of tumor progression involves the ability of cells to survive and proliferate when not attached to the extracellular matrix (ECM). New research using a physiologically relevant breast cancer model reveals how separation from the ECM stimulates metabolic changes characteristic of developing tumors.

  10. 6 Common Cancers - Breast Cancer

    Science.gov (United States)

    ... Home Current Issue Past Issues 6 Common Cancers - Breast Cancer Past Issues / Spring 2007 Table of Contents For ... slow her down. Photo: AP Photo/Brett Flashnick Breast Cancer Breast cancer is a malignant (cancerous) growth that ...

  11. Breast Cancer Rates by State

    Science.gov (United States)

    ... Associated Lung Ovarian Prostate Skin Uterine Cancer Home Breast Cancer Rates by State Language: English Español (Spanish) Recommend ... from breast cancer each year. Rates of Getting Breast Cancer by State The number of people who get ...

  12. CDC Vital Signs: Breast Cancer

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  13. Breast motion asymmetry during running

    OpenAIRE

    Mills, Chris; Risius, Debbie; Scurr, Joanna

    2015-01-01

    Breast asymmetry is common in females, despite a similar driving force; dynamic activity may result in asymmetrical breast motion. This preliminary study investigated how breast categorisation (left/right or dominant/non-dominant) may affect breast support recommendations and its relationship with breast pain. Ten females ran on a treadmill at 10 kph in three breast supports (no bra, everyday bra, sports bra). Five reflective markers on the thorax and nipples were tracked using infrared camer...

  14. Breast reconstruction after mastectomy

    Directory of Open Access Journals (Sweden)

    Daniel eSchmauss

    2016-01-01

    Full Text Available Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays breast reconstruction should be individualized at its best, first of all taking into consideration oncological aspects of the tumor, neo-/adjuvant treatment and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction, as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue, the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction.

  15. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    Science.gov (United States)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  16. Familial breast cancer.

    OpenAIRE

    Phipps, R. F.; Perry, P M

    1988-01-01

    Familial breast cancer is important because of all the known risk factors associated with developing the disease. The one with the most predictability is a positive family history. It is also important because a family history causes anxiety in the families concerned, and young women will often ask their chance of developing the disease. This form of breast cancer accounts for 10% of causes and has factors that distinguish it from the sporadic variety. Relatives of familial breast cancer pati...

  17. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B; Behrens, Sabine; Goode, Ellen L; Bolla, Manjeet K; Dennis, Joe; Dunning, Alison M; Easton, Douglas F; Wang, Qin; Benitez, Javier; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Fasching, Peter A; Haeberle, Lothar; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marmé, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Nielsen, Sune F; Nordestgaard, Børge G; González-Neira, Anna; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Fagerholm, Rainer; Dörk, Thilo; Bogdanova, Natalia V; Mannermaa, Arto; Hartikainen, Jaana M; Van Dijck, Laurien; Smeets, Ann; Flesch-Janys, Dieter; Eilber, Ursula; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J; Hallberg, Emily; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Schumacher, Fredrick; Simard, Jacques; Goldberg, Mark S; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Winqvist, Robert; Grip, Mervi; Andrulis, Irene L; Glendon, Gord; García-Closas, Montserrat; Figueroa, Jonine; Czene, Kamila; Brand, Judith S; Darabi, Hatef; Eriksson, Mikael; Hall, Per; Li, Jingmei; Cox, Angela; Cross, Simon S; Pharoah, Paul D P; Shah, Mitul; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Ademuyiwa, Foluso; Ambrosone, Christine B; Swerdlow, Anthony; Jones, Michael; Chang-Claude, Jenny

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry. PMID:26621531

  18. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis.

    Science.gov (United States)

    Weaver, Kelly L; Alves-Guerra, Marie-Clotilde; Jin, Ke; Wang, Zhiqiang; Han, Xiaoqing; Ranganathan, Prathibha; Zhu, Xiaoxia; DaSilva, Thiago; Liu, Wei; Ratti, Francesca; Demarest, Renee M; Tzimas, Cristos; Rice, Meghan; Vasquez-Del Carpio, Rodrigo; Dahmane, Nadia; Robbins, David J; Capobianco, Anthony J

    2014-09-01

    The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are coexpressed during mouse development and that homozygous loss of NACK is embryonic lethal. Finally, we show that NACK is also a Notch target gene, establishing a feed-forward loop. Thus, our data indicate that NACK is a key component of the Notch transcriptional complex and is an essential regulator of Notch-mediated tumorigenesis and development.

  19. Effect of Rosmarinus officinalis in modulating 7,12-dimethylbenz(a)anthracene induced skin tumorigenesis in mice.

    Science.gov (United States)

    Sancheti, Garima; Goyal, P K

    2006-11-01

    The chemopreventive potential of rosemary (Rosmarinus officinalis) on 7,12-dimethlybenz(a)anthracene (DMBA) initiated and croton oil promoted mouse skin tumorigenesis was assessed. The modulatory effects of R. officinalis was monitored on the basis of the average latency period, tumor incidence, tumor burden, tumor yield, tumor weight and diameter as well as lipid peroxidation and glutathione level. The results indicate that R. officinalis leaves extract could prolong the latency period of tumor occurrence, decrease the tumor incidence, tumor burden and tumor yield. The average weight and diameter of tumors recorded were comparatively lower in the rosemary extract treated mouse groups. The level of lipid peroxidation was significantly reduced in blood serum and liver. Furthermore, depleted levels of glutathione were restored in RE-administered animal groups. Thus, at a dose rate of 500 mg/kg body wt/mouse, the oral administration of rosemary extract was found to be significantly protective against two-stage skin tumorigenesis. PMID:16927448

  20. Genetic variations in the Hippo signaling pathway and breast cancer risk in African American women in the AMBER Consortium.

    Science.gov (United States)

    Zhang, Jianmin; Yao, Song; Hu, Qiang; Zhu, Qianqian; Liu, Song; Lunetta, Kathryn L; Haddad, Stephen A; Yang, Nuo; Shen, He; Hong, Chi-Chen; Sucheston-Campbell, Lara; Ruiz-Narvaez, Edward A; Bensen, Jeannette T; Troester, Melissa A; Bandera, Elisa V; Rosenberg, Lynn; Haiman, Christopher A; Olshan, Andrew F; Palmer, Julie R; Ambrosone, Christine B

    2016-10-01

    The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Dysfunction of the Hippo pathway components has been linked with breast cancer stem cell regulation, as well as breast tumor progression and metastasis. TAZ, a key component of the Hippo pathway, is highly expressed in triple negative breast cancer; however, the associations of genetic variations in this important pathway with breast cancer risk remain largely unexplored. Here, we analyzed 8309 germline variants in 15 genes from the Hippo pathway with a total of 3663 cases and 4687 controls from the African American Breast Cancer Epidemiology and Risk Consortium. Odds ratios (ORs) were estimated using logistic regression for overall breast cancer, by estrogen receptor (ER) status (1983 ER positive and 1098 ER negative), and for case-only analyses by ER status. The Hippo signaling pathway was significantly associated with ER-negative breast cancer (pathway level P = 0.02). Gene-based analyses revealed that CDH1 was responsible for the pathway association (P CDH1 statistically significant after gene-level adjustment for multiple comparisons (P = 9.2×10(-5), corrected P = 0.02). rs142697907 in PTPN14 was associated with ER-positive breast cancer and rs2456773 in CDK1 with ER-negativity in case-only analysis after gene-level correction for multiple comparisons (corrected P < 0.05). In conclusion, common genetic variations in the Hippo signaling pathway may contribute to both ER-negative and ER+ breast cancer risk in AA women.

  1. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  2. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer.

    Directory of Open Access Journals (Sweden)

    Peyman Björklund

    Full Text Available BACKGROUND: Breast cancer is a common malignant disease, which may be caused by a number of genes deregulated by genomic or epigenomic events. Deregulated WNT/beta-catenin signaling with accumulation of beta-catenin is common in breast tumors, but mutations in WNT signaling pathway components have been rare. An aberrantly spliced internally truncated LRP5 receptor (LRP5Delta666-809, LRP5Delta was shown recently to be resistant to DKK1 inhibition, and was required for beta-catenin accumulation in hyperparathyroid tumors and parathyroid tumor growth. METHODOLOGY/PRINCIPAL FINDINGS: Here we show, by reverse transcription PCR and Western blot analysis, that LRP5Delta is frequently expressed in breast tumors of different cancer stage (58-100%, including carcinoma in situ and metastatic carcinoma. LRP5Delta was required in MCF7 breast cancer cells for the non-phosphorylated active beta-catenin level, transcription activity of beta-catenin, cell growth in vitro, and breast tumor growth in a xenograft SCID mouse model. WNT3 ligand, but not WNT1 and WNT3A augmented the endogenous beta-catenin activity of MCF7 cells in a DKK1-insensitive manner. Furthermore, an anti-LRP5 antibody attenuated beta-catenin activity, inhibited cell growth, and induced apoptosis in LRP5Delta-positive MCF7 and T-47D breast cancer cells, but not in control cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the LRP5Delta receptor is strongly implicated in mammary gland tumorigenesis and that its aberrant expression present an early event during disease progression. LRP5 antibody therapy may have a significant role in the treatment of breast cancer.

  3. Bmi1 promotes prostate tumorigenesis via inhibiting p16INK4A and p14ARF expression

    OpenAIRE

    Fan, Catherine; He, Lizhi; Kapoor, Anil; Gillis, Aubrey; Rybak, Adrian P.; Cutz, Jean-Claude; Tang, Damu

    2008-01-01

    Bmi1 promotes prostate tumorigenesis via inhibiting p16INK4A and p14ARF expression correspondence: Corresponding authors. Anil Kapoor is to be contacted at Tel.: +1 (905) 522 1155, ext. 33218; fax: +1 (905) 521 6195. Damu Tang, T3310, St. Joseph?s Hospital, 50 Charlton Ave East, Hamilton, ON, Canada L8N 4A6. Tel.: +1 (905) 522 1155, ext. 35168; fax: +1 (905) 521 6181. (Kapoor, Anil) correspondence: Corresponding authors. Anil Ka...

  4. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression

    Science.gov (United States)

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  5. A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis

    Directory of Open Access Journals (Sweden)

    Stefanie W. Leacock

    2012-01-01

    Ewing’s sarcoma, a malignant bone tumor of children and young adults, is a member of the small-round-blue-cell tumor family. Ewing’s sarcoma family tumors (ESFTs, which include peripheral primitive neuroectodermal tumors (PNETs, are characterized by chromosomal translocations that generate fusions between the EWS gene and ETS-family transcription factors, most commonly FLI1. The EWS-FLI1 fusion oncoprotein represents an attractive therapeutic target for treatment of Ewing’s sarcoma. The cell of origin of ESFT and the molecular mechanisms by which EWS-FLI1 mediates tumorigenesis remain unknown, and few animal models of Ewing’s sarcoma exist. Here, we report the use of zebrafish as a vertebrate model of EWS-FLI1 function and tumorigenesis. Mosaic expression of the human EWS-FLI1 fusion protein in zebrafish caused the development of tumors with histology strongly resembling that of human Ewing’s sarcoma. The incidence of tumors increased in a p53 mutant background, suggesting that the p53 pathway suppresses EWS-FLI1-driven tumorigenesis. Gene expression profiling of the zebrafish tumors defined a set of genes that might be regulated by EWS-FLI1, including the zebrafish ortholog of a crucial EWS-FLI1 target gene in humans. Stable zebrafish transgenic lines expressing EWS-FLI1 under the control of the heat-shock promoter exhibit altered embryonic development and defective convergence and extension, suggesting that EWS-FLI1 interacts with conserved developmental pathways. These results indicate that functional targets of EWS-FLI1 that mediate tumorigenesis are conserved from zebrafish to human and provide a novel context in which to study the function of this fusion oncogene.

  6. P-Selectin-Mediated Adhesion between Platelets and Tumor Cells Promotes Intestinal Tumorigenesis in ApcMin/+ Mice

    OpenAIRE

    Qi, Cuiling; Li, Bin; Guo, Simei; WEI, BO; Shao, Chunkui; LI, JIALIN; Yang, Yang; Zhang, Qianqian; Li, Jiangchao; He, Xiaodong; Wang, Lijing; Zhang, Yajie

    2015-01-01

    Studies have indicated that platelets play an important role in tumorigenesis, and an abundance of platelets accumulate in the ovarian tumor microenvironment outside the vasculature. However, whether cancer cells recruit platelets within intestinal tumors and how they signal adherent platelets to enter intestinal tumor tissues remain unknown. Here, we unexpectedly found that large numbers of platelets were deposited within human colorectal tumor specimens using immunohistochemical staining, a...

  7. Human Cancer Xenografts in Outbred Nude Mice Can Be Confounded by Polymorphisms in a Modifier of Tumorigenesis

    OpenAIRE

    Zeineldin, Maged; Jensen, Derek; Paranjape, Smita R.; Parelkar, Nikhil K.; Jokar, Iman; Vielhauer, George A.; Neufeld, Kristi L.

    2014-01-01

    Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are hetero...

  8. Influence of dietary menhaden oil on 7,12-dimethylbenzanthracene induced mammary tumorigenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, T.P.; Peterson, F.; Campbell, T.C.

    1986-03-05

    The effect of dietary menhaden oil on 7,12-dimethylbenzanthracene (DMBA) induced mammary tumorigenesis was examined in female Sprague-Dawley rats. Rats were obtained at age 28 days and acclimated until age 50 days when they received a single i.g. dose of 5 mg DMBA dissolved in 1 ml corn oil. Rats were then randomly assigned to one of four treatment groups with 25 rats per group. One group was fed a diet based on fish protein (freeze-dried cod) and corn oil (F/C). The second group received a diet based on fish protein and menhaden oil (F/M). The third group received a casein based diet with corn oil as the lipid source (C/C). The fourth group was fed a casein based diet with menhaden oil as the lipid source (C/M). Both the protein and lipid sources were fed at a level of 20% by weight of the diets. Rats were palpated weekly to check for mammary tumor development and the experiment was terminated 24 weeks after DMBA administration. Rats fed menhaden oil as a lipid source (F/M and C/M groups) developed significantly fewer mammary tumors than animals on the corn oil based diets (F/C and C/C groups, respectively). Thus, menhaden oil, rich in omega-3 fatty acids, significantly inhibited the development of DMBA induced mammary tumors in this experiment.

  9. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats.

    Directory of Open Access Journals (Sweden)

    Jun-Chao Guo

    Full Text Available The extremely dismal prognosis of pancreatic cancer (PC is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.

  10. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance.

    Science.gov (United States)

    Zhou, Xiaolong; Chen, Jin; Tang, Wenru

    2014-12-01

    Long non-coding RNAs have been reported to play an important role in cellular metabolism and development. Homeobox transcript antisense intergenic RNA (HOTAIR), a long non-coding RNA, is pervasively over-expressed in most human cancers compared with non-cancerous adjacent tissues. Although many articles have reported that HOTAIR is closely associated with metastasis, epithelial-mesenchymal transition, advanced pathological stage, drug resistance, and poor prognosis, the role of HOTAIR in gene regulation and tumor development is largely unknown, and the potential molecular mechanisms are not completely clear yet. In this review, we summarized the recent progress in the study of the major functions of HOTAIR. miR-331-3p, miR-130a, miR-7, miR-141, HER2, c-MYC, WIF-1, RBM38, PTEN, and Col-1 are involved in the HOTAIR regulation network. We tried to elucidate the molecular mechanisms of HOTAIR in the aspects of tumorigenesis, metastasis, drug resistance, and regulation. PMID:25385164

  11. MicroRNA-24 Modulates Aflatoxin B1-Related Hepatocellular Carcinoma Prognosis and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yi-Xiao Liu

    2014-01-01

    Full Text Available MicroRNA-24 (miR-24 may be involved in neoplastic process; however, the role of this microRNA in the hepatocellular carcinoma (HCC related to aflatoxin B1 (AFB1 has not been well elaborated. Here, we tested miR-24 expression in 207 pathology-diagnosed HCC cases from high AFB1 exposure areas and HCC cells. We found that miR-24 was upregulated in HCC tumor tissues relative to adjacent noncancerous tissue samples, and that the high expression of miR-24 was significantly correlated with larger tumor size, higher microvessel density, and tumor dedifferentiation. Additionally, this microRNA overexpression modified the recurrence-free survival (relative hazard ratio [HR], 4.75; 95% confidence interval [CI], 2.66–8.47 and overall survival (HR=3.58, 95% CI = 2.34–5.46 of HCC patients. Furthermore, we observed some evidence of joint effects between miR-24 and AFB1 exposure on HCC prognosis. Functionally, miR-24 overexpression progressed tumor cells proliferation, inhibited cell apoptosis, and developed the formation of AFB1-DNA adducts. These results indicate for the first time that miR-24 may modify AFB1-related HCC prognosis and tumorigenesis.

  12. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  13. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival.

    Science.gov (United States)

    Kamarajan, Pachiyappan; Hayami, Takayuki; Matte, Bibiana; Liu, Yang; Danciu, Theodora; Ramamoorthy, Ayyalusamy; Worden, Francis; Kapila, Sunil; Kapila, Yvonne

    2015-01-01

    The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.

  14. RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis.

    Science.gov (United States)

    Taulli, Riccardo; Accornero, Paolo; Follenzi, Antonia; Mangano, Tony; Morotti, Alessandro; Scuoppo, Claudio; Forni, Paolo E; Bersani, Francesca; Crepaldi, Tiziana; Chiarle, Roberto; Naldini, Luigi; Ponzetto, Carola

    2005-05-01

    Tpr-Met, the oncogenic counterpart of the Met receptor, has been detected in gastric cancers, as well as in precursor lesions and in the adjacent normal gastric mucosa. This has prompted the suggestion that Tpr-Met may predispose to the development of gastric tumors. Given the sequence specificity of RNA interference, oncogenes activated by point mutation or rearrangements can be targeted while spearing the product of the wild-type allele. In this work, we report specific suppression of Tpr-Met expression and inhibition of Tpr-Met-mediated transformation and tumorigenesis by means of a short interfering RNA (siRNA) directed toward the Tpr-Met junction (anti-TM2). When delivered by a lentiviral vector, anti-TM2 siRNA was effective also in mouse embryonal fibroblasts or epithelial cells expressing high levels of Tpr-Met. Our results suggest that lentiviral-mediated delivery of anti-TM2 siRNA may be developed into a powerful tool to treat Tpr-Met-positive cancers.

  15. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage

    Science.gov (United States)

    Barrett, Caitlyn W.; Reddy, Vishruth K.; Short, Sarah P.; Motley, Amy K.; Lintel, Mary K.; Bradley, Amber M.; Freeman, Tanner; Vallance, Jefferson; Ning, Wei; Parang, Bobak; Poindexter, Shenika V.; Fingleton, Barbara; Chen, Xi; Washington, Mary K.; Wilson, Keith T.; Shroyer, Noah F.; Hill, Kristina E.; Burk, Raymond F.; Williams, Christopher S.

    2015-01-01

    Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions. PMID:26053663

  16. T-cell activation promotes tumorigenesis in inflammation-associated cancer

    Directory of Open Access Journals (Sweden)

    Lairmore Michael

    2009-12-01

    Full Text Available Abstract Chronic inflammation has long been associated with a wide range of malignancies, is now widely accepted as a risk factor for development of cancer, and has been implicated as a promoter of a variety of cancers including hematopoietic malignancies. We have described a mouse model uniquely suited to examine the link between inflammation and lymphoma in which the Tax oncogene, expressed in activated T and NK cells, perpetuates chronic inflammation that begins as microscopic intraepithelial lesions and develops into inflammatory nodules, subcutaneous tumors, and large granular lymphocytic leukemia. The use of bioluminescent imaging in these mice has expanded our ability to interrogate aspects of inflammation and tumorigenesis non-invasively. Here we demonstrate that bioluminescence induction in these mice correlated with inflammation resulting from wounding, T cell activation, and exposure to chemical agents. In experiments in which long-term effects of inflammation on disease outcome were monitored, the development of lymphoma was promoted by an inflammatory stimulus. Finally we demonstrated that activation of T-cells in T-cell receptor (TCR transgenic TAX-LUC animals dramatically exacerbated the development of subcutaneous TCR- CD16+ LGL tumors. The role of activated T-cells and acquired immunity in inflammation-associated cancers is broadly applicable to hematopoietic malignancies, and we propose these mice will be of use in dissecting mechanisms by which activated T-cells promote lymphomagenesis in vivo.

  17. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    International Nuclear Information System (INIS)

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.

  18. JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer

    Science.gov (United States)

    Zhao, Yu; Qian, Chenchen; Wang, Liguo; Qi, Jun

    2016-01-01

    Bladder cancer is one of the most common malignancies of the urinary system, and the 5-year survival rate remains low. A comprehensive understanding of the carcinogenesis and progression of bladder cancer is urgently needed to advance treatment. c-Jun N-terminal kinase-2 (JNK2) exhibits both tumor promoter and tumor suppressor actions, depending on tumor type. Here, we analyzed the JNK2 function in bladder cancer. Using gene expression microarrays, we demonstrated that JNK2 mRNA is downregulated in an orthotopic rat model of bladder cancer. JNK2 protein levels were lower in rat and human bladder cancer tissues than in normal tissues, and the levels correlated with those of p53. Moreover, JNK2 phosphorylated p53 at Thr-81, thus protecting p53 from MDM2-induced proteasome degradation. Decreased expression of JNK2 in T24 cells conferred resistance to cell death induced by mitomycin C. Furthermore, lower JNK2 expression was associated with poorer overall survival among patients who underwent radical cystectomy. These results indicate that JNK2 acts as a tumor suppressor in bladder cancer, and that decreased JNK2 expression promotes bladder cancer tumorigenesis. PMID:27147566

  19. Tumorigenesis and Greenhouse-Effect System Dynamics: Phenomenally Diverse, but Noumenally Similar?

    Science.gov (United States)

    Prakash, Sai

    We present a physicochemical model of tumorigenesis leading to cancer invasion and metastasis. The continuum-theoretic model, congruent with recent experiments, analyzes the plausibility of oncogenic neoplasia-induced cavitation or tensile yielding (plasticity) of the tumoral basement membrane (BM) to activate stromal invasion. The model abstracts a spheroid of normal and cancer cells that grows radially via water and nutrient influx while constrained by a stiffer BM and cell adhesion molecules. It is based on coupled fluid-solid mechanics and ATP-fueled mechano-damped cell kinetics, and uses empirical data alone as parameters. The model predicts the dynamic force and exergy (ATP) fields, and tumor size among other variables, and generates the sigmoidal dynamics of far-from-equilibrium biota. Simulations show that the tumor-membrane system, on neoplastic perturbation, evolves from one homeostatic steady state to another over time. Integrated with system dynamics theory, the model renders a key, emergent tissue-level feedback control perspective of malignancy: neoplastic tumors coupled with pathologically-softened BMs appear to participate in altered autoregulatory behavior, and likely undergo BM cavitation and stress-localized ruptures to their adhesome, with or without invadopoiesis, thereby, initiating invasion. Serendipitously, the results also reveal a noumenal similarity of the tumor-membrane to the earth-atmosphere open reactive system as concerns self-regulation.

  20. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis

    Indian Academy of Sciences (India)

    Niladri Ganguly; Suraj P Parihar

    2009-03-01

    Human papillomavirus (HPV) is small, double-stranded DNA virus that infects mucosal and cutaneous epithelial tissue. HPV is sexually transmitted and the viral DNA replicates extrachromosomally. The virus is non-enveloped and has an icosahedral capsid. There are approximately 118 types of HPV, which are characterized as high-risk or low-risk types. High-risk HPVs cause malignant transformation while the low-risk ones cause benign warts and lesions. The expression of E6 and E7 is normally controlled during the normal viral life cycle when viral DNA replicates extrachromosomally. HPV E6 and E7 oncoproteins are overexpressed when the viral genome integrates into the host DNA. Deregulated overexpression of E6 and E7 oncoproteins can cause several changes in cellular pathways and functions leading to malignant transformation of cells and tumorigenesis. In this review, we focus on several cellular mechanisms and pathways that are altered in the presence of E6 and E7, the target proteins of E6 and E7 inside the host cell and how they contribute to the development of the transformed phenotype..

  1. The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability

    Institute of Scientific and Technical Information of China (English)

    Yi Liang; Hui Zhang; Qi-Sheng Feng; Man-Bo Cai; Wen Deng; Dajiang Qin; Jing-Ping Yun

    2013-01-01

    The discovery of induced pluripotent stem cells (iPSCs) is a promising advancement in the field of regenerative medicine.Previous studies have indicated that the teratoma-forming propensity of iPSCs is variable; however,the relationship between tumorigenic potential and genomic instability in human iPSCs (HiPSCs) remains to be fully elucidated.Here,we evaluated the malignant potential of HiPSCs by using both colony formation assays and tumorigenicity tests.We demonstrated that HiPSCs formed tumorigenic colonies when grown in cancer cell culture medium and produced malignancies in immunodeficient mice.Furthermore,we analyzed genomic instability in HiPSCs using whole-genome copy number variation analysis and determined that the extent of genomic instability was related with both the cells' propensity to form colonies and their potential for tumorigenesis.These findings indicate a risk for potential malignancy of HiPSCs derived from genomic instability and suggest that quality control tests,including comprehensive tumorigenicity assays and genomic integrity validation,should be rigorously executed before the clinical application of HiPSCs.In addition,HiPSCs should be generated through the use of combined factors or other approaches that decrease the likelihood of genomic instability.

  2. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: Role of aldose reductase

    Institute of Scientific and Technical Information of China (English)

    Safinaz S Ibrahim; Noha N Nassar

    2008-01-01

    AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection. Liver energy metabolism was assessed in terms of lactate, pyruvate, lactate/pyruvate, ATP levels, lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities. In addition, membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products, measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase), catalase (CAT) and superoxide dismutase (SOD) activities. Uver DNA level, glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices. Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups. RESULTS: NDEA significantly disturbed liver functions and most of the aforementioned indices. Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation. CONCLUSION: We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA, as well as improving cancer-cell sensitivity to chemotherapy. This is mediated through combating oxidative stress of free radicals, improving the energy metabolic state of the cell, and enhancing the activity of G6Pase, GST and AR enzymes.

  3. Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis

    Science.gov (United States)

    Qin, Hai-De; Liao, Xiao-Yu; Chen, Yuan-Bin; Huang, Shao-Yi; Xue, Wen-Qiong; Li, Fang-Fang; Ge, Xiao-Song; Liu, De-Qing; Cai, Qiuyin; Long, Jirong; Li, Xi-Zhao; Hu, Ye-Zhu; Zhang, Shao-Dan; Zhang, Lan-Jun; Lehrman, Benjamin; Scott, Alan F.; Lin, Dongxin; Zeng, Yi-Xin; Shugart, Yin Yao; Jia, Wei-Hua

    2016-01-01

    The genetic mechanisms underlying the poor prognosis of esophageal squamous cell carcinoma (ESCC) are not well understood. Here, we report somatic mutations found in ESCC from sequencing 10 whole-genome and 57 whole-exome matched tumor-normal sample pairs. Among the identified genes, we characterized mutations in VANGL1 and showed that they accelerated cell growth in vitro. We also found that five other genes, including three coding genes (SHANK2, MYBL2, FADD) and two non-coding genes (miR-4707-5p, PCAT1), were involved in somatic copy-number alterations (SCNAs) or structural variants (SVs). A survival analysis based on the expression profiles of 321 individuals with ESCC indicated that these genes were significantly associated with poorer survival. Subsequently, we performed functional studies, which showed that miR-4707-5p and MYBL2 promoted proliferation and metastasis. Together, our results shed light on somatic mutations and genomic events that contribute to ESCC tumorigenesis and prognosis and might suggest therapeutic targets. PMID:27058444

  4. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis.

    Science.gov (United States)

    Pozo, Karine; Hillmann, Antje; Augustyn, Alexander; Plattner, Florian; Hai, Tao; Singh, Tanvir; Ramezani, Saleh; Sun, Xiankai; Pfragner, Roswitha; Minna, John D; Cote, Gilbert J; Chen, Herbert; Bibb, James A; Nwariaku, Fiemu E

    2015-05-20

    Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer of thyroid C-cells, for which few treatment options are available. We have recently reported a role for cyclin-dependent kinase 5 (CDK5) in MTC pathogenesis. We have generated a mouse model, in which MTC proliferation is induced upon conditional overexpression of the CDK5 activator, p25, in C-cells, and arrested by interrupting p25 overexpression. Here, we identify genes and proteins that are differentially expressed in proliferating versus arrested benign mouse MTC. We find that downstream target genes of the tumor suppressor, retinoblastoma protein, including genes encoding cell cycle regulators such as CDKs, cyclins and CDK inhibitors, are significantly upregulated in malignant mouse tumors in a CDK5-dependent manner. Reducing CDK5 activity in human MTC cells down-regulated these cell cycle regulators suggesting that CDK5 activity is critical for cell cycle progression and MTC proliferation. Finally, the same set of cell cycle proteins was consistently overexpressed in human sporadic MTC but not in hereditary MTC. Together these findings suggest that aberrant CDK5 activity precedes cell cycle initiation and thus may function as a tumor-promoting factor facilitating cell cycle protein expression in MTC. Targeting aberrant CDK5 or its downstream effectors may be a strategy to halt MTC tumorigenesis. PMID:25900242

  5. The Role of c-KIT in Tumorigenesis: Evaluation in Canine Cutaneous Mast Cell Tumors

    Directory of Open Access Journals (Sweden)

    Joshua D. Webster

    2006-02-01

    Full Text Available The c-KIT proto-oncogene has been implicated in the pathogenesis of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and mast cell tumors (MCTs in canines. Cutaneous MCTs are common neoplasms in dogs and have a variable biologic behavior. The goal of this study was to define the prognostic significance of c-KIT mutations identified in canine MCTs and the associations between c-KIT mutations, KIT localization, and KIT expression levels. Microdissection and polymerase chain reaction were performed on 60 MCTs to identify c-KIT mutations. Anti-KIT antibodies were used for immunohistochemical evaluation of KIT localization. Forty-two MCTs were included in a tissue microarray, and KIT expression was quantified using immunofluorescence. Canine MCTs with c-KIT mutations were significantly associated with an increased incidence of recurrent disease and death. c-KIT mutations were also significantly associated with aberrant protein localization; however, the level of KIT expression did not correlate with either c-KIT mutations or changes in protein localization. Considering the high prevalence of canine MCTs and the central role of c-KIT in the tumorigenesis of certain tumors, canine MCTs are an excellent model for characterizing the role of c-KIT in neoplastic diseases and is a potential target for novel therapeutic agents in clinical trials.

  6. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    2011-03-01

    Full Text Available Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38 was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2 is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target.

  7. Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart.

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhang

    Full Text Available BACKGROUND: Induced pluripotent stem cells (iPSCs are a novel candidate for use in cardiac stem cell therapy. However, their intrinsic tumorigenicity requires further investigation prior to use in a clinical setting. In this study we investigated whether undifferentiated iPSCs are tumorigenic after intramyocardial transplantation into immunocompetent allogeneic recipients. METHODOLOGY/PRINCIPAL FINDINGS: We transplanted 2 × 10(4, 2 × 10(5, or 2 × 10(6 cells from the established rat iPSC line M13 intramyocardially into intact or infarcted hearts of immunocompetent allogeneic rats. Transplant duration was 2, 4, or 6 weeks. Histological examination with hematoxylin-eosin staining confirmed that undifferentiated rat iPSCs could generate heterogeneous tumors in both intracardiac and extracardiac sites. Furthermore, tumor incidence was independent of cell dose, transplant duration, and the presence or absence of myocardial infarction. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that allogeneic iPSC transplantation in the heart will likely result in in situ tumorigenesis, and that cells leaked from the beating heart are a potential source of tumor spread, underscoring the importance of evaluating the safety of future iPSC therapy for cardiac disease.

  8. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Noriko Okumura

    Full Text Available The canonical Wnt/β-catenin signaling pathway plays a crucial role in the maintenance of the balance between proliferation and differentiation throughout embryogenesis and tissue homeostasis. β-Catenin, encoded by the Ctnnb1 gene, mediates an intracellular signaling cascade activated by Wnt. It also plays an important role in the maintenance of various types of stem cells including adult stem cells and cancer stem cells. However, it is unclear if β-catenin is required for the derivation of mouse embryo-derived stem cells. Here, we established β-catenin-deficient (β-cat(Δ/Δ mouse embryo-derived stem cells and showed that β-catenin is not essential for acquiring self-renewal potential in the derivation of mouse embryonic stem cells (ESCs. However, teratomas formed from embryo-derived β-cat(Δ/Δ ESCs were immature germ cell tumors without multilineage differentiated cell types. Re-expression of functional β-catenin eliminated their neoplastic, transformed phenotype and restored pluripotency, thereby rescuing the mutant ESCs. Our findings demonstrate that β-catenin has pleiotropic effects in ESCs; it is required for the differentiation of ESCs and prevents them from acquiring tumorigenic character. These results highlight β-catenin as the gatekeeper in differentiation and tumorigenesis in ESCs.

  9. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    International Nuclear Information System (INIS)

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation

  10. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer.

    Science.gov (United States)

    Jan, Chia-Ing; Tsai, Ming-Hsui; Chiu, Chang-Fang; Huang, Yi-Ping; Liu, Chia Jen; Chang, Nai Wen

    2016-01-01

    One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied with increasing extracellular acidification rate (ECAR) and reducing ATP content. Moreover, fenofibrate caused changes in the protein expressions of hexokinase II (HK II), pyruvate kinase, pyruvate dehydrogenase, and voltage-dependent anion channel (VDAC), which are associated with the Warburg effect. In addition, fenofibrate reprogrammed the metabolic pathway by interrupting the binding of HK II to VDAC. In an oral cancer mouse model, fenofibrate exhibited both preventive and therapeutic efficacy on oral tumorigenesis. Fenofibrate administration suppressed the incidence rate of tongue lesions, reduced the tumor sizes, decreased the tumor multiplicity, and decreased the immunoreactivities of VDAC and mTOR. The molecular mechanisms involved in fenofibrate's ability to delay tumor development included the down-regulation of mTOR activity via TSC1/2-dependent signaling through activation of AMPK and inactivation of Akt, or via a TSC1/2-independent pathway through direct suppression of raptor. Our findings provide a molecular rationale whereby fenofibrate exerts anticancer and additional beneficial effects for the treatment of oral cancer patients. PMID:27313493

  11. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase

    Science.gov (United States)

    Qu, Hongxia; Zheng, Liduan; Jiao, Wanju; Mei, Hong; Li, Dan; Song, Huajie; Fang, Erhu; Wang, Xiaojing; Li, Shiwang; Huang, Kai; Tong, Qiangsong

    2016-01-01

    Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression. PMID:27595937

  12. GATA4 is a critical regulator of gonadectomy-induced adrenocortical tumorigenesis in mice.

    Science.gov (United States)

    Krachulec, Justyna; Vetter, Melanie; Schrade, Anja; Löbs, Ann-Kathrin; Bielinska, Malgorzata; Cochran, Rebecca; Kyrönlahti, Antti; Pihlajoki, Marjut; Parviainen, Helka; Jay, Patrick Y; Heikinheimo, Markku; Wilson, David B

    2012-06-01

    In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4(+/-) B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2-cre-mediated deletion of floxed Gata4 (Gata4(F)) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4(F) dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation.

  13. Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKCλ/ι.

    Science.gov (United States)

    Nakanishi, Yuki; Reina-Campos, Miguel; Nakanishi, Naoko; Llado, Victoria; Elmen, Lisa; Peterson, Scott; Campos, Alex; De, Surya K; Leitges, Michael; Ikeuchi, Hiroki; Pellecchia, Maurizio; Blumberg, Richard S; Diaz-Meco, Maria T; Moscat, Jorge

    2016-09-20

    Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5(+) stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn's disease. Kaplan-Meier survival analysis of colorectal cancer (CRC) patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis. PMID:27653691

  14. Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis.

    Science.gov (United States)

    Zhang, Min; Wang, Wei; Li, Tianyue; Yu, Xiaodong; Zhu, Yufeng; Ding, Feng; Li, Dongsheng; Yang, Tao

    2016-05-01

    Hepatocellular carcinoma (HCC) is the main cause of cancer mortality worldwide. Its poor prognosis is mainly ascribed to high recurrence rate. Identifying novel prognostic biomarkers and therapeutic targets would be vital for HCC management. Long noncoding RNA (lncRNA) is a class of RNA with various roles in tumorigenesis. The aim of this study was to investigate the clinical significance and functions of lncRNA-small nucleolar RNA host gene 1 (SNHG1) in HCC. In this study, we found SNHG1 was upregulated in HCC tissues in comparison with adjacent liver tissues in both publicly available microarray data and our own cohort. High SNHG1 expression was correlated with large tumor size, poor differentiation, and aggressive BCLC stage. Kaplan-Meier survival analysis demonstrated that high SNHG1 expression predicts poor prognosis of HCC patients. Gain-of-function and loss-of function experiments showed that SNHG1 promotes HCC cells proliferation, cell cycle progression, and inhibits HCC cells apoptosis. Further experiments revealed that SNHG1 promotes HCC cells proliferation through inhibiting p53 and p53-target genes expression. Collectively, our results demonstrated the clinical prognostic significance and roles of SNHG1 in HCC, and suggested that SNHG1 may be considered as a prognostic biomarker and therapeutic target for HCC. PMID:27133041

  15. Electroporation markedly improves Sleeping Beauty transposon-induced tumorigenesis in mice.

    Science.gov (United States)

    Jung, S; Choi, H-J; Park, H-K; Jo, W; Jang, S; Ryu, J-E; Kim, W-J; Yu, E-S; Son, W-C

    2014-08-01

    The Sleeping Beauty (SB) transposon system is an important tool for genetic studies. It is used to insert a gene of interest into the host chromosome, thus enabling permanent gene expression. However, this system is less useful in higher eukaryotes because the transposition frequency is low. Efforts to improve the efficacy of the SB transposon system have focused on the method of gene delivery, but although electroporation has recently attracted much attention as an in vivo gene delivery tool, the simultaneous use of electroporation and the SB transposon system has not been studied for gene transfer in mice. In this study, electroporation was used in a model of SB transposon-induced insertional tumorigenesis. Electroporation increased the rate of tumor development to three times that of the control group. There was no difference in phenotype between tumors induced with the SB transposon system alone and those induced by the SB transposon and electroporation. Electroporation therefore may be an efficient means of improving the efficacy of gene transfer via the SB transposon system.

  16. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  17. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Si [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); He, Pei-Juin [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Tsai, Nu-Man [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Li, Chi-Han; Yang, Shang-Chih; Hsu, Wei-Tung [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Wu, Ming-Shiang [Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Wu, Chang-Jer [Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (China); Cheng, Tain-Lu [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liao, Kuang-Wen, E-mail: kitchhen@yahoo.com.tw [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China)

    2010-02-05

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.

  18. Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis.

    Science.gov (United States)

    Ferreira, Humberto J; Heyn, Holger; Garcia del Muro, Xavier; Vidal, August; Larriba, Sara; Muñoz, Clara; Villanueva, Alberto; Esteller, Manel

    2014-01-01

    Although most cancer research has focused in mRNA, non-coding RNAs are also an essential player in tumorigenesis. In addition to the well-recognized microRNAs, recent studies have also shown that epigenetic silencing by CpG island hypermethylation of other classes of non-coding RNAs, such as transcribed ultraconserved regions (T-UCRs) or small nucleolar RNAs (snoRNAs), also occur in human neoplasia. Herein we have studied the putative existence of epigenetic aberrations in the activity of PIWI proteins, an Argonaute family protein subclass, and the small regulatory PIWI-interacting RNAs (piRNAs) in testicular cancer, as the PIWI/piRNA pathway plays a critical role in male germline development. We have observed the existence of promoter CpG island hypermethylation-associated silencing of PIWIL1, PIWIL2, PIWIL4, and TDRD1 in primary seminoma and non-seminoma testicular tumors, in addition to testicular germ cell tumor cell lines. Most importantly, these epigenetic lesions occur in a context of piRNA downregulation and loss of DNA methylation of the LINE-1 repetitive sequences, one of the target genomic loci where the PIWI/piRNA machinery acts as a caretaker in non-transformed cells.

  19. HSPB1 Inhibits the Endothelial-to-Mesenchymal Transition to Suppress Pulmonary Fibrosis and Lung Tumorigenesis.

    Science.gov (United States)

    Choi, Seo-Hyun; Nam, Jae-Kyung; Kim, Bu-Yeo; Jang, Junho; Jin, Young-Bae; Lee, Hae-June; Park, Seungwoo; Ji, Young Hoon; Cho, Jaeho; Lee, Yoon-Jin

    2016-03-01

    The endothelial-to-mesenchymal transition (EndMT) contributes to cancer, fibrosis, and other pathologic processes. However, the underlying mechanisms are poorly understood. Endothelial HSP1 (HSPB1) protects against cellular stress and has been implicated in cancer progression and pulmonary fibrosis. In this study, we investigated the role of HSPB1 in mediating the EndMT during the development of pulmonary fibrosis and lung cancer. HSPB1 silencing in human pulmonary endothelial cells accelerated emergence of the fibrotic phenotype after treatment with TGFβ or other cytokines linked to pulmonary fibrosis, suggesting that HSPB1 maintains endothelial cell identity. In mice, endothelial-specific overexpression of HSPB1 was sufficient to inhibit pulmonary fibrosis by blocking the EndMT. Conversely, HSPB1 depletion in a mouse model of lung tumorigenesis induced the EndMT. In clinical specimens of non-small cell lung cancer, HSPB1 expression was absent from tumor endothelial cells undergoing the EndMT. Our results showed that HSPB1 regulated the EndMT in lung fibrosis and cancer, suggesting that HSPB1-targeted therapeutic strategies may be applicable for treating an array of fibrotic diseases.

  20. The role of the mtDNA set point in differentiation, development and tumorigenesis.

    Science.gov (United States)

    Sun, Xin; St John, Justin C

    2016-10-01

    Mitochondrial DNA replication is critical for maintaining mtDNA copy number to generate sufficient cellular energy that is required for development and for functional cells. In early development, mtDNA copy number is strictly regulated at different stages, and, as a result, the establishment of the mtDNA set point is required for sequential cell lineage commitment. The failure to establish the mtDNA set point results in incomplete differentiation or embryonic arrest. The regulation of mtDNA copy number during differentiation is closely associated with cellular gene expression, especially with the pluripotency network, and DNA methylation profiles. The findings from cancer research highlight the relationship between mitochondrial function, mtDNA copy number and DNA methylation in regulating differentiation. DNA methylation at exon 2 of DNA polymerase gamma subunit A (POLGA) has been shown to be a key factor, which can be modulated to change the mtDNA copy number and cell fate of differentiating and tumour cells. The present review combines multi-disciplinary data from mitochondria, development, epigenetics and tumorigenesis, which could provide novel insights for further research, especially for developmental disorders and cancers. PMID:27679856

  1. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.

    Science.gov (United States)

    Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao

    2012-10-01

    Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic. PMID:22238064

  2. EXPRESSION OF ANNEXIN I IN TUMORIGENESIS OF ESOPHAGEAL SQUAMOUS CELL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    吕宁; 薛丽燕; 林冬梅; 谢永强; 温芃; 何祖根

    2004-01-01

    Objective: To detect the expression of annexin I in esophageal squamous cell carcinoma and precursor lesions,and evaluate its effect on the tumorigenesis. Methods: The immunohistochemistry S-P method was used to determine the expression of annexin I in 135 cases of esophageal squamous cell carcinoma, in which precursor lesions were found in some cases, and in the corresponding normal controls. Results: Of 135 cases, 35 (25.9%) were strongly positive, 60 (44.4%) were weakly positive and 40 (29.6%)negative, while in the corresponding normal controls, 129(95.6%) were strongly positive, 6 (6.4%) weakly positive.The expression of annexin I was decreased in esophageal squamous cell carcinoma (P<0.0001), and the degree and rate of the decrease did not show correlation with age,gender, differentiation, and lymph node metastasis (P>0.05).The expression of annexin I was also decreased in the lesions of dysplasia and carcinoma in situ, with 2 (4.3%) strongly positive, 17 (37.0%) weakly positive and 27(58.7%) negative (P<0.0001). Conclusion: Annexin I may be useful in early detection of esophageal squamous cell carcinoma and in evaluation of predisposition for the risk of cancerization of precursor lesions.

  3. TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system.

    Science.gov (United States)

    Lin, Shin-Jen; Lee, Soo Ok; Lee, Yi-Fen; Miyamoto, Hiroshi; Yang, Dong-Rong; Li, Gonghui; Chang, Chawnshang

    2014-06-01

    Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, plays important roles in metabolism, fertility and aging. The linkage of TR4 functions in cancer progression, however, remains unclear. Using three different mouse models, we found TR4 could prevent or delay prostate cancer (PCa)/prostatic intraepithelial neoplasia development. Knocking down TR4 in human RWPE1 and mouse mPrE normal prostate cells promoted tumorigenesis under carcinogen challenge, suggesting TR4 may play a suppressor role in PCa initiation. Mechanism dissection in both in vitro cell lines and in vivo mice studies found that knocking down TR4 led to increased DNA damage with altered DNA repair system that involved the modulation of ATM expression at the transcriptional level, and addition of ATM partially interrupted the TR4 small interfering RNA-induced tumorigenesis in cell transformation assays. Immunohistochemical staining in human PCa tissue microarrays revealed ATM expression is highly correlated with TR4 expression. Together, these results suggest TR4 may function as a tumor suppressor to prevent or delay prostate tumorigenesis via regulating ATM expression at the transcriptional level. PMID:24583925

  4. Mammary tumorigenesis in APC{sup min/+} mice is enhanced by X-irradiation with a characteristic age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuhiko, Imaoka; Mayumi, Nishimura; Shizuko, Kakinuma; Yoshiya, Shimada [National Institute of Radiological Sciences, Experimental Radiobiology for Children' s Health Research Group, Research, Center for Radiation Protection (Japan); Mieko, Okamoto [Tokyo Metropolitan Institute of Medical Science (Japan)

    2006-07-01

    The ApcM{sup min/+} (Min) mouse is a genetically predisposed model of both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X-rays at 2, 5, 7 and 10 weeks and sacrificed at 18 weeks of age. Min mice irradiated at 7 to 10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type litter-mates did not. Interestingly, irradiation of Min mice at 2 to 5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling. (author)

  5. Racing to block tumorigenesis after pRb loss: an innocuous point mutation wins with synthetic lethality.

    Science.gov (United States)

    Bauzon, Frederick; Zhu, Liang

    2010-06-01

    A major goal of tumor suppressor research is to neutralize the tumorigenic effects of their loss. Since loss of pRb does not induce tumorigenesis in many types of cells, natural mechanisms may neutralize the tumorigenic effects of pRb loss in these cells. For susceptible cells, neutralizing the tumorigenic effects of pRb loss could logically be achieved by correcting the deregulated activities of pRb targets to render pRb-deficient cells less abnormal. This line of research has unexpectedly revealed that knocking out the pRb target Skp2 did not render Rb1 deficient cells less abnormal but, rather, induced apoptosis in them, thereby completely blocking tumorigenesis in Rb1+/- mice and after targeted deletion of Rb1 in pituitary intermediate lobe (IL). Skp2 is a substrate-recruiting component of the SCFSkp2 E3 biquitin ligase; one of its substrates is Thr187-phosphorylated p27Kip1. A p27T187A knockin (KI) mutation phenocopied Skp2 knockout (KO) in inducing apoptosis following Rb1 loss. Thus, Skp2 KO or p27T187A KI are synthetic lethal with pRb inactivation. Since homozygous p27T187A KI mutations show no adverse effects in mice, inhibiting p27T187 phosphorylation or p27T187p ubiquitination could be a highly therapeutic and minimally toxic intervention strategy for pRb deficiency-induced tumorigenesis.

  6. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang, E-mail: zgliu@helix.nih.gov [Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80{sup +} macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206{sup +} TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  7. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats

    Science.gov (United States)

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Ilyukha, Viktor A.; Khizhkin, Evgeniy A.; Lotosh, Tatiana A.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2010-01-01

    We evaluated the effect of exposure to constant light started at the age of 1 month and at the age of 14 months on the survival, life span, tumorigenesis and age-related dynamics of antioxidant enzymes activity in various organs in comparison to the rats maintained at the standard (12:12 light/dark) light/dark regimen. We found that exposure to constant light started at the age of 1 month accelerated spontaneous tumorigenesis and shortened life span both in male and female rats as compared to the standard regimen. At the same time, the exposure to constant light started at the age of 14 months failed to influence survival of male and female rats. While delaying tumors in males, constant light accelerated tumors in females. We conclude that circadian disruption induced by light-at-night started at the age of 1 month accelerates aging and promotes tumorigenesis in rats, however failed affect survival when started at the age of 14 months. PMID:20354269

  8. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  9. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  10. Endocrine determinants of breast density and breast cancer

    NARCIS (Netherlands)

    Verheus, M.

    2007-01-01

    Worldwide, breast cancer is the most common malignancy among females. The total breast area on a mammogram can be dived in a radiologicaly dense area (glandular and stromal tissue) and a non-dense area (mainly fat tissue). Women with a high proportion of dense breast tissue (percent breast density)

  11. Synchronous bilateral breast cancer in a male

    OpenAIRE

    Rubio Hernández, María Caridad; Díaz Prado, Yenia Ivet; Pérez, Suanly Rodríguez; Díaz, Ronald Rodríguez; Aleaga, Zaili Gutiérrez

    2013-01-01

    Male breast cancer, which represents only 1% of all breast cancers, is occasionally associated with a family history of breast cancer. Sporadic male breast cancers presenting with another primary breast cancer are extremely rare. In this article, we report on a 70-year-old male patient with bilateral multifocal and synchronous breast cancer and without a family history of breast cancer.

  12. SHOX2 Is a Direct miR-375 Target and a Novel Epithelial-to-Mesenchymal Transition Inducer in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sungguan Hong

    2014-04-01

    Full Text Available MicroRNAs have added a new dimension to our understanding of tumorigenesis and associated processes like epithelial-to-mesenchymal transition (EMT. Here, we show that miR-375 is elevated in epithelial-like breast cancer cells, and ectopic miR-375 expression suppresses EMT in mesenchymal-like breast cancer cells. We identified short stature homeobox 2 (SHOX2 as a miR-375 target, and miR-375–mediated suppression in EMT was reversed by forced SHOX2 expression. Ectopic SHOX2 expression can induce EMT in epithelial-like breast cancer cells, whereas SHOX2 knockdown diminishes EMT traits in mesenchymal-like breast cancer cells, demonstrating SHOX2 as an EMT inducer. We show that SHOX2 acts as a transcription factor to upregulate transforming growth factor β receptor I (TβR-I expression, and TβR-I inhibitor LY364947 abolishes EMT elicited by ectopic SHOX2 expression, suggesting that transforming growth factor β signaling is essential for SHOX2-induced EMT. Manipulating SHOX2 abundance in breast cancer cells impact in vitro invasion and in vivo dissemination. Analysis of breast tumor microarray database revealed that high SHOX2 expression significantly correlates with poor patient survival. Our study supports a critical role of SHOX2 in breast tumorigenicity.

  13. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing (China); Ming, Jia [Department of Breast, Thyroid and Pancreas Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xu, Yan [Department of Breast and Thyroid Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing (China); Zhang, Yi, E-mail: zy53810@163.com [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing (China); Jiang, Jun, E-mail: Jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing (China)

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.

  14. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Rivenbark Ashley G

    2008-01-01

    Full Text Available Abstract Background DNA hypermethylation events and other epimutations occur in many neoplasms, producing gene expression changes that contribute to neoplastic transformation, tumorigenesis, and tumor behavior. Some human cancers exhibit a hypermethylator phenotype, characterized by concurrent DNA methylation-dependent silencing of multiple genes. To determine if a hypermethylation defect occurs in breast cancer, the expression profile and promoter methylation status of methylation-sensitive genes were evaluated among breast cancer cell lines. Results The relationship between gene expression (assessed by RT-PCR and quantitative real-time PCR, promoter methylation (assessed by methylation-specific PCR, bisulfite sequencing, and 5-aza-2'deoxycytidine treatment, and the DNA methyltransferase machinery (total DNMT activity and expression of DNMT1, DNMT3a, and DNMT3b proteins were examined in 12 breast cancer cell lines. Unsupervised cluster analysis of the expression of 64 methylation-sensitive genes revealed two groups of cell lines that possess distinct methylation signatures: (i hypermethylator cell lines, and (ii low-frequency methylator cell lines. The hypermethylator cell lines are characterized by high rates of concurrent methylation of six genes (CDH1, CEACAM6, CST6, ESR1, LCN2, SCNN1A, whereas the low-frequency methylator cell lines do not methylate these genes. Hypermethylator cell lines coordinately overexpress total DNMT activity and DNMT3b protein levels compared to normal breast epithelial cells. In contrast, most low-frequency methylator cell lines possess DNMT activity and protein levels that are indistinguishable from normal. Microarray data mining identified a strong cluster of primary breast tumors that express the hypermethylation signature defined by CDH1, CEACAM6, CST6, ESR1, LCN2, and SCNN1A. This subset of breast cancers represents 18/88 (20% tumors in the dataset analyzed, and 100% of these tumors were classified as basal

  15. Narrative Theology as Revelation

    Science.gov (United States)

    Gilmour, Peter

    2008-01-01

    In this article, the author shares how his dissatisfaction with religion textbooks led him to use novels as texts for his religion classes. Among the novels that he used were "To A God Unknown" by John Steinbeck, "The Stranger" by Albert Camus, "A Burnt-Out Case" by Graham Greene, "A Canticle for Leibowitz" by Walter M. Miller, Jr., and "Franny…

  16. Early breast cancer

    International Nuclear Information System (INIS)

    The therapy of early breast cancer has been changing during the last decennium. It requires a multi-disciplinary approach and in each of these disciplines improvements have been implemented. The result is that treatment schedules can now be adapted to specific subgroups. In this review early breast cancer is defined as operable disease, using the criteria set out by Haagensen. Emphasis is given to describing the new developments in prognostic criteria, since these form the basis for creating subgroups for specific treatment schedules. Distinction is made between the factors relating to growth rate and those relating to metastatic potential. Data on screening promises a beneficial effect of the implementation of screening in national health care programs. Important shifts are seen in treatment schedules; the place of postoperative radiotherapy after classic ablative treatment is being challenged, whereas it plays a major role in the new breast conserving therapy schedules. The data mentioned in the review suggest that a large proportion of 'operable' cases can be treated with breast conservation but details in the technique of breast conserving therapy are still under investigation. They form a major part of the coming prospective studies in breast cancer. Improvements in reconstruction techniques, creating better cosmetic results, make reconstruction more competitive with breast conserving therapy. The use of chemotherapy and endocrine manipulation in early breast cancer has now been clearly confirmed by the overview technique by the Peto-group, thanks to all efforts of individual trialists together. (orig.)

  17. Breast reconstruction - natural tissue

    Science.gov (United States)

    ... muscle flap; TRAM; Latissimus muscle flap with a breast implant; DIEP flap; DIEAP flap; Gluteal free flap; ... If you are having breast reconstruction at the same time as mastectomy, the surgeon may do either of the following: Skin-sparing mastectomy. This means ...

  18. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  19. Androgens and the breast.

    Science.gov (United States)

    Dimitrakakis, Constantine; Bondy, Carolyn

    2009-01-01

    Androgens have important physiological effects in women while at the same time they may be implicated in breast cancer pathologies. However, data on the effects of androgens on mammary epithelial proliferation and/or breast cancer incidence are not in full agreement. We performed a literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia. Epidemiological studies appear to have significant methodological limitations and thus provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer is still in its infancy. Clinical and nonhuman primate studies suggest that androgens inhibit mammary epithelial proliferation and breast growth while conventional estrogen treatment suppresses endogenous androgens. Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial proliferation and breast growth. Suppression of androgens using conventional estrogen treatment may thus enhance estrogenic breast stimulation and possibly breast cancer risk. Addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation.

  20. Types of Breast Pumps

    Science.gov (United States)

    ... breast-shield. Some experts discourage the use of bicycle horn pumps because they may be difficult to clean and dry. Battery-Powered and Electric Pumps A powered breast pump uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that ...

  1. Inflammatory Breast Cancer

    Science.gov (United States)

    ... breast cancer: consensus statement for standardized diagnosis and treatment. Annals of Oncology 2011; 22(3):515-523. [PubMed Abstract] Fouad TM, Kogawa T, Reuben JM, Ueno NT. The role of inflammation in inflammatory breast cancer. Advances in Experimental Medicine and Biology 2014; 816:53-73. [PubMed ...

  2. Investigation of single-strand conformational polymorphism of the TP53 gene in women with a family history of breast cancer

    Directory of Open Access Journals (Sweden)

    R.R. Burbano

    2000-11-01

    Full Text Available Breast cancer in families with germ line mutations in the TP53 gene has been described in the medical literature. Mutation screening for susceptibility genes should allow effective prophylactic and preventive measures. Using single-strand conformational polymorphism, we screened for mutations in exons 5, 6, 7 and 8 of gene TP53 in the peripheral blood of 8 young non-affected members (17 to 36 years old of families with a history of breast cancer. Studies of this type on young patients (mean age, 25 years are very rare in the literature. The identification of these mutations would contribute to genetic counseling of members of families with predisposition to breast cancer. The results obtained did not show any polymorphism indicating mutation. In our sample, the familial tumorigenesis is probably related to other gene etiologies.

  3. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo

    DEFF Research Database (Denmark)

    Ardini, E; Agresti, R; Tagliabue, E;

    2000-01-01

    of Src family kinases, and regulation of integrin signaling, cell adhesion, and growth factor responsiveness. To explore its potential contribution to human neoplasia, we surveyed RPTPalpha protein levels in primary human breast cancer. We found RPTPalpha levels to vary widely among tumors, with 29......% of cases manifesting significant overexpression. High RPTPalpha protein levels correlated significantly with low tumor grade and positive estrogen receptor status. Expression of RPTPalpha in breast carcinoma cells led to growth inhibition, associated with increased accumulation in G0 and G1, and delayed......Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activation...

  4. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers

    DEFF Research Database (Denmark)

    Cox, David G; Simard, Jacques; Sinnett, Daniel;

    2011-01-01

    Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly...... instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation...... carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence...

  5. Gossypiboma after Breast Augmentation

    Directory of Open Access Journals (Sweden)

    Kira Lundin

    2013-01-01

    Full Text Available A 39-year-old woman was referred for removal of cosmetic breast implants and related siliconoma. After an exchange of breast implants at a private clinic a year previously, she had asymmetry of the right breast, persistent pain, and a generally unacceptable cosmetic result. An MRI had shown a well-defined area with spots of silicone-like material at the upper pole of the right breast. Surgical removal of presumed silicone-imbibed breast tissue was undertaken, and surprisingly a gossypiboma was found in its place, which had not been identified on the MRI. Gossypiboma is the condition of an accidentally retained surgical sponge. This complication is also known as a textiloma, gauzoma, or muslinoma and is well described in other surgical specialties. However, it is extremely rare after plastic surgery, and this case illustrates the need for continued attention to the surgical count of sponges and instruments.

  6. Breast Cancer and Bone Loss

    Science.gov (United States)

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  7. [Management of breast cancer in a woman with breast implants].

    Science.gov (United States)

    Remacle, S; Lifrange, E; Nizet, J-L

    2015-01-01

    The incidence of breast cancer, currently one woman on eight, also concerns patients who underwent augmentation surgery. Breast implants have already been the subject of numerous publications concerning the risk of inducing breast cancer or of delaying its diagnosis; however, no significant causal relationship has been established. The purpose of this article is to assess the diagnostic and therapeutic consequences when breast cancer is identified in a patient with breast implants.

  8. RhoC impacts the metastatic potential and abundance of breast cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Devin T Rosenthal

    Full Text Available Cancer stem cells (CSCs have been shown to promote tumorigenesis of many tumor types, including breast, although their relevance to cancer metastasis remains unclear. While subpopulations of CSCs required for metastasis have been identified, to date there are no known molecular regulators of breast CSC (BCSC metastasis. Here we identify RhoC GTPase as an important regulator of BCSC metastasis, and present evidence suggesting that RhoC also modulates the frequency of BCSCs within a population. Using an orthotopic xenograft model of spontaneous metastasis we discover that RhoC is both necessary and sufficient to promote SUM149 and MCF-10A BCSC metastasis--often independent from primary tumor formation--and can even induce metastasis of non-BCSCs within these cell lines. The relationship between RhoC and BCSCs persists in breast cancer patients, as expression of RhoC and the BCSC marker ALDH1 are highly correlated in clinical specimens. These results suggest new avenues to combating the deadliest cells driving the most lethal stage of breast cancer progression.

  9. Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity

    Institute of Scientific and Technical Information of China (English)

    韩明勇; 郑树; 于金明; 彭佳萍; 郭其森; 王家林

    2004-01-01

    To study the effect of interleukin-18 gene transfection on the tumorigenesis of breast cancer cell line Bacp37, human breast cancer cell line Bcap37 were transfected with Lipofectamine and selected by G418. The biological expression of rhIL-18 was tested by RT-PCR and ELISA method; nude mice were injected with Bcap37 cell with or without the hIL-18 gene. The hIL-18 cDNA was successfully integrated into Bcap37 cell; 126.3±4.5 pg hIL-18 secreted by one million transduced cells in 24 hours. Nude mice injected with IL-18 gene engineered Bcap37 cell had no tumor growth. These findings indicated that human breast cancer cells were successfully modified by the gene of IL-18 cytokine; the IL-18 gene engineered Bcap37 cells secreted hIL-18 and lost their tumorigenicity. The Bcap37 cells transduced with IL-18 gene may be used as breast cancer vaccine.

  10. Role of Erbin in ErbB2-dependent breast tumor growth.

    Science.gov (United States)

    Tao, Yanmei; Shen, Chengyong; Luo, Shiwen; Traoré, Wilfried; Marchetto, Sylvie; Santoni, Marie-Josée; Xu, Linlin; Wu, Biao; Shi, Chao; Mei, Jinghong; Bates, Ryan; Liu, Xihui; Zhao, Kai; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2014-10-21

    ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression.

  11. Clinical evidence of the efficacy of everolimus and its potential in the treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Saksena R

    2013-05-01

    Full Text Available Rujuta Saksena, Serena T WongThe Cancer Institute of New Jersey, New Brunswick, NJ, USAAbstract: The PI3K/Akt/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway regulates several key cellular functions and its dysregulation creates an environment that promotes tumorigenesis as well as resistance to therapy. The mTOR inhibitor everolimus has emerged as a promising agent in the treatment of breast cancer and was recently approved in combination with exemestane for advanced hormone receptor–positive disease after progression on a nonsteroidal aromatase inhibitor. Everolimus may also be effective in combination with cytotoxic and human epidermal growth factor receptor-2-directed therapies for the treatment of other subtypes of breast cancer. This paper highlights preclinical and clinical data that have emerged on the role of mTOR inhibition in breast cancer. Although generally well tolerated, everolimus carries a unique side effect profile of which both patients and providers should be made aware. Recommendations related to the administration of everolimus in the clinical setting are also discussed.Keywords: everolimus, breast cancer, mTOR inhibition

  12. Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization.

    Science.gov (United States)

    Gronwald, Jacek; Jauch, Anna; Cybulski, Cezary; Schoell, Brigitte; Böhm-Steuer, Barbara; Lener, Marcin; Grabowska, Ewa; Górski, Bohdan; Jakubowska, Anna; Domagała, Wenancjusz; Chosia, Maria; Scott, Rodney J; Lubiński, Jan

    2005-03-20

    Very little is known about the chromosomal regions harbouring genes involved in initiation and progression of BRCAX-associated breast cancers. We applied comparative genomic hybridization (CGH) to identify the most frequent genomic imbalances in 18 BRCAX hereditary breast cancers and compared them to chromosomal aberrations detected in a group of 27 sporadic breast cancers. The aberrations observed most frequently in BRCAX tumours were gains of 8q (83%), 19q (67%), 19p (61%), 20q (61%), 1q (56%), 17q (56%) and losses of 8p (56%), 11q (44%) and 13q (33%). The sporadic cases most frequently showed gains of 1q (67%), 8q (48%), 17q (37%), 16p (33%), 19q (33%) and losses of 11q (26%), 8p (22%) and 16q (19%). Losses of 8p and gains 8q, 19 as well as gains of 20q (with respect to ductal tumours only) were detected significantly more often in BRCAX than in sporadic breast cancers. Analysis of 8p-losses and 8q-gains showed that these aberrations are early events in the tumorigenesis of BRCAX tumors. The findings of this report indicate similarities between BRCAX and BRCA2 tumours, possibly suggesting a common pathway of disease. These findings need confirmation by more extensive studies because only a limited number of cases were analysed and there are relatively few reports published. PMID:15540206

  13. Sulforaphene Interferes with Human Breast Cancer Cell Migration and Invasion through Inhibition of Hedgehog Signaling.

    Science.gov (United States)

    Bao, Cheng; Kim, Min Chae; Chen, Jing; Song, Jieun; Ko, Hyuk Wan; Lee, Hong Jin

    2016-07-13

    Although inhibition of mammary tumorigenesis by isothiocyanates has been widely studied, little is known about the effects of sulforaphene on invasiveness of breast cancer. Here, sulforaphene significantly inhibited the migration and invasion of triple-negative SUM159 human breast cancer cells and suppressed the expression and activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9). The Hedgehog (Hh) pathway, as an upstream signaling modulator, was significantly suppressed by sulforaphene. In particular, ciliary localization of Gli1 and its nuclear translocation were blocked by sulforaphene in a time-dependent manner. Consistently, downregulation of Hh signaling by vismodegib and Gli1 knockdown reduced the cellular migration and invasion as well as the expression of MMP-2 and MMP-9. These results indicate that the suppression of Hh/Gli1 signaling by sulforaphene may reduce the MMP-2 and MMP-9 activities and cellular invasiveness of human breast cancer cells, suggesting the potential efficacy of sulforaphene against breast cancer invasion and metastasis. PMID:27327035

  14. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    Directory of Open Access Journals (Sweden)

    Jimann Shin

    2012-11-01

    Neurofibromatosis type 1 (NF1 is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1 gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML, optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs. In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs, dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.

  15. Maspin expression and its clinicopathological significance in tumorigenesis and progression of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Meng-Chun Wang; Yan-Min Yang; Xiao-Han Li; Fang Dong; Yan Li

    2004-01-01

    AIM: To investigate maspin expression in tumorigenesis and progression of gastric cancer and to explore its relevant molecular mechanisms.METHODS: Formalin-fixed and paraffin-embedded tissues from normal mucosa (n=182), dysplasia (n=69), cancer (n=113) of the stomach were studied for maspin expression by immunohistochemistry. Microvessel density (MVD) in gastric cancer was labeled using anti-CD34 antibody. Maspin expression was compared with clinical parameters and MVD of tumors. Caspase-3 expression was also detected in gastric carcinoma by immunohistochemistry. The relationship between Caspase-3 and maspin expression was concerned as well.RESULTS: The positive rates of maspin expression were 79.8%(145/182), 75.4%(52/69) and 50.4%(57/113) in normal mucosa, dysplasia and cancer of the stomach,respectively. Cancer less frequently expressed maspin than normal mucosa and dysplasia (P<0.05). Maspin expression showed a significantly negative association with invasive depth, metastasis, Lauren's and Nakamura's classification (P<0.05), but not with tumor size, Borrmann's classification,growth pattern or TNM staging (P>0.05). The positive rate of Caspase-3 was significantly lower in gastric cancer than in normal gastric mucosa (P<0.05,32.7% vs 50.4%). It was noteworthy that maspin expression was negatively correlated with MVD, but positively correlated with expression of Caspase-3 in gastric cancer (P<0.05).CONCLUSION: Down-regulated maspin expression is a late molecular event in gastric carcinogenesis. Reduced expression of maspin contributes to progression of gastric cancer probably by inhibiting cell adhesion, enhancing cell mobility,decreasing cell apoptosis and facilitating angiogenesis.Additionally altered expression of maspin underlies the molecular mechanism of differentiation of gastric cancer and supports the different histogenetic pathways of intestinal and diffuse gastric cancers. Maspin expression can be considered as an effective and objective

  16. A protein knockdown strategy to study the function of β-catenin in tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhou Pengbo

    2003-09-01

    Full Text Available Abstract Background The Wnt signaling pathway plays critical roles in cell proliferation and cell fate determination at many stages of development. A critical downstream target of Wnt signaling is the cytosolic β-catenin, which is stabilized upon Wnt activation and promotes transcription of a variety of target genes including c-myc and cyclin D. Aberrant Wnt signaling, which results from mutations of either β-catenin or adenomatous polyposis coli (APC, renders β-catenin resistant to degradation, and has been associated with multiple types of human cancers. Results A protein knockdown strategy was designed to reduce the cytosolic β-catenin levels through accelerating its turnover rate. By engineering a chimeric protein with the β-catenin binding domain of E-cadherin fused to βTrCP ubiquitin-protein ligase, the stable β-catenin mutant was recruited to the cellular SCF (Skp1, Cullin 1, and F-box-containing substrate receptor ubiquitination machinery for ubiquitination and degradation. The DLD1 colon cancer cells express wild type β-catenin at abnormally high levels due to loss of APC. Remarkably, conditional expression of βTrCP-E-cadherin under the control of a tetracycline-repressive promoter in DLD1 cells selectively knocked down the cytosolic, but not membrane-associated subpopulation of β-catenin. As a result, DLD1 cells were impaired in their growth and clonogenic ability in vitro, and lost their tumorigenic potential in nude mice. Conclusion We have designed a novel approach to induce degradation of stabilized/mutated β-catenin. Our results suggest that a high concentration of cytoplasmic β-catenin is critical for the growth of colorectal tumor cells. The protein knockdown strategy can be utilized not only as a novel method to dissect the role of oncoproteins in tumorigenesis, but also as a unique tool to delineate the function of a subpopulation of proteins localized to a specific subcellular compartment.

  17. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival.

    Directory of Open Access Journals (Sweden)

    Pachiyappan Kamarajan

    Full Text Available The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content has antitumor potential in head and neck squamous cell carcinoma (HNSCC in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.

  18. Hyperglycemia promotes K-Ras-induced lung tumorigenesis through BASCs amplification.

    Directory of Open Access Journals (Sweden)

    Carla Micucci

    Full Text Available Oncogenic K-Ras represents the most common molecular change in human lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC. The presence of K-Ras mutation is associated with a poor prognosis, but no effective treatment strategies are available for K-Ras -mutant NSCLC. Epidemiological studies report higher lung cancer mortality rates in patients with type 2 diabetes. Here, we use a mouse model of K-Ras-mediated lung cancer on a background of chronic hyperglycemia to determine whether elevated circulating glycemic levels could influence oncogenic K-Ras-mediated tumor development. Inducible oncogenic K-Ras mouse model was treated with subtoxic doses of streptozotocin (STZ to induce chronic hyperglycemia. We observed increased tumor mass and higher grade of malignancy in STZ treated diabetic mice analyzed at 4, 12 and 24 weeks, suggesting that oncogenic K-Ras increased lung tumorigenesis in hyperglycemic condition. This promoting effect is achieved by expansion of tumor-initiating lung bronchio-alveolar stem cells (BASCs in bronchio-alveolar duct junction, indicating a role of hyperglycemia in the activity of K-Ras-transformed putative lung stem cells. Notably, after oncogene K-Ras activation, BASCs show upregulation of the glucose transporter (Glut1/Slc2a1, considered as an important player of the active control of tumor cell metabolism by oncogenic K-Ras. Our novel findings suggest that anti-hyperglycemic drugs, such as metformin, may act as therapeutic agent to restrict lung neoplasia promotion and progression.

  19. Gene expression in human thyrocytes and autonomous adenomas reveals suppression of negative feedbacks in tumorigenesis

    Science.gov (United States)

    van Staveren, Wilma C. G.; Solís, David Weiss; Delys, Laurent; Venet, David; Cappello, Matteo; Andry, Guy; Dumont, Jacques E.; Libert, Frédérick; Detours, Vincent; Maenhaut, Carine

    2006-01-01

    The cAMP signaling pathway regulates growth of many cell types, including somatotrophs, thyrocytes, melanocytes, ovarian follicular granulosa cells, adrenocortical cells, and keratinocytes. Mutations of partners from the cAMP signaling cascade are involved in tumor formation. Thyroid-stimulating hormone (TSH) receptor and Gsα activating mutations have been detected in thyroid autonomous adenomas, Gsα mutations in growth hormone-secreting pituitary adenomas, and PKAR1A mutations in Carney complex, a multiple neoplasia syndrome. To gain more insight into the role of cAMP signaling in tumor formation, human primary cultures of thyrocytes were treated for different times (1.5, 3, 16, 24, and 48 h) with TSH to characterize modulations in gene expression using cDNA microarrays. This kinetic study showed a clear difference in expression, early (1.5 and 3 h) and late (16–48 h) after the onset of TSH stimulation. This result suggests a progressive sequential process leading to a change of cell program. The gene expression profile of the long-term stimulated cultures resembled the autonomous adenomas, but not papillary carcinomas. The molecular phenotype of the adenomas thus confirms the role of long-term stimulation of the TSH–cAMP cascade in the pathology. TSH induced a striking up-regulation of different negative feedback modulators of the cAMP cascade, presumably insuring the one-shot effect of the stimulus. Some were down- or nonregulated in adenomas, suggesting a loss of negative feedback control in the tumors. These results suggest that in tumorigenesis, activation of proliferation pathways may be complemented by suppression of multiple corresponding negative feedbacks, i.e., specific tumor suppressors. PMID:16381821

  20. Loss of disabled-2 expression is an early event in esophageal squamous tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Kumar Anupam; Chatopadhyay Tusharkant; Siddhartha Datta Gupta; Ralhan Ranju

    2006-01-01

    AIM: Disabled-2 (D4B2) is a candidate tumor-suppressor gene identified in ovarian cancer that negatively influences mitogenic signal transduction of growth factors and blocks ras activity. In a recent study, we observed down-regulation of DAB2 transcripts in ESCCs using cDNA microarrays. In the present study, we aimed to determine the clinical significance of loss of DAB2protein in esophageal tumorigenesis, hypothesizing that DAB2 promoter hypermethylation-mediated gene silencing may account for loss of the protein.METHODS: DAB2 expression was analyzed by immunohistochemistry in 50 primary esophageal squamous cell carcinomas (ESCCs), 30 distinct hyperplasia, 15 dysplasia and 10 non-malignant esophageal tissues. To determine whether promoter hypermethylation contributes to loss of DAB2 expression in ESCCs, methylation status of DAB2 promoter was analyzed in DAB2 immuno-negative tumors using methylation-specific PCR.RESULTS: Loss of DAB2 protein was observed in 5/30 (17%) hyperplasia, 10/15 (67%) dysplasia and 34/50 (68%) ESCCs. Significant loss of DAB2 protein was observed from esophageal normal mucosa to hyperplasia, dysplasia and invasive cancer (Ptrend < 0.001).Promoter hypermethylation of DAB2 was observed in 2of 10 (20%) DAB2 immuno-negative ESCCs.CONCLUSION: Loss of DAB2 protein expression occurs in early pre-neoplastic stages of development of esophageal cancer and is sustained down the tumorigenic pathway. Infrequent DAB2 promoter methylation in ESCCs suggests that epigenetic gene silencing is only one of the mechanisms causing loss of DAB2 expression in ESCCs.

  1. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis

    Directory of Open Access Journals (Sweden)

    Nezaket Turkel

    2015-08-01

    Full Text Available The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib and overexpression of the BTB-ZF protein Abrupt (Ab. Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.

  2. Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Rene Rodriguez

    2009-04-01

    Full Text Available There is growing evidence about the role of mesenchymal stem cells (MSCs as cancer stem cells in many sarcomas. Nevertheless, little is still known about the cellular and molecular mechanisms underlying MSCs transformation. We aimed at investigating the role of p53 and p21, two important regulators of the cell cycle progression and apoptosis normally involved in protection against tumorigenesis. Mesenchymal stem cells from wild-type, p21-/-p53+/+, and p21-/-p53+/- mice were cultured in vitro and analyzed for the appearance of tumoral transformation properties after low, medium, and high number of passages both in vitro and in vivo. Wild-type or p21-/-p53+/+ MSCs did not show any sign of tumoral transformation. Indeed, after short-term in vitro culture, wild-type MSCs became senescent, and p21-/-p53+/+ MSCs showed an elevated spontaneous apoptosis rate. Conversely, MSCs carrying a mutation in one allele of the p53 gene (p21-/-p53+/- MSCs completely lost p53 expression after in vitro long-term culture. Loss of p53 was accompanied by a significant increase in the growth rate, gain of karyotypic instability, loss of p16 expression, and lack of senescence response. Finally, these cells were able to form fibrosarcomas partially differentiated into different mesenchymal lineages when injected in immunodeficient mice both after subcutaneous and intrafemoral injection. These findings show that MSCs are very sensitive to mutations in genes involved in cell cycle control and that these deficiencies can be at the origin of some mesodermic tumors.

  3. Extensive metabolic disorders are present in APC(min) tumorigenesis mice.

    Science.gov (United States)

    Liu, Zhenzhen; Xiao, Yi; Zhou, Zhengxiang; Mao, Xiaoxiao; Cai, Jinxing; Xiong, Lu; Liao, Chaonan; Huang, Fulian; Liu, Zehao; Ali Sheikh, Md Sayed; Plutzky, Jorge; Huang, He; Yang, Tianlun; Duan, Qiong

    2016-05-15

    Wnt signaling plays essential role in mesenchymal stem cell (MSC) differentiation. Activation of Wnt signaling suppresses adipogenesis, but promotes osteogenesis in MSC. Adenomatous polyposis coli (APC) is a negative regulator of β-catenin and Wnt signaling activity. The mutation of APC gene leads to the activation of Wnt signaling and is responsible for tumorigenesis in APC(min) mouse; however, very few studies focused on its metabolic abnormalities. The present study reports a widespread metabolic disorder phenotype in APC(min) mice. The old APC(min) mice have decreased body weight and impaired adipogenesis, but severe hyperlipidemia, which mimic the phenotypes of Familial Adenomatous Polyposis (FAP), an inherited disease also caused by APC gene mutation in human. We found that the expression of lipid metabolism and free fat acids (FA) use genes in the white adipose tissue (WAT) of the APC(min) mice is much lower than those of control. The changed gene expression pattern may lead to the disability of circulatory lipid transportation and storage at WAT. Moreover, the APC(min) mice could not maintain the core body temperature in cold condition. PET-CT determination revealed that the BAT of APC(min) mice has significantly impaired ability to take up (18)FDG from the blood. Morphological studies identified that the brown adipocytes of APC(min) mice were filled with lipid droplets but fewer mitochondria. These results matched with the findings of impaired BAT function in APC(min) mice. Collectively, our study explores a new mechanism that explains abnormal metabolism in APC(min) mice and provides insights into studying the metabolic disorders of FAP patients. PMID:26948948

  4. Oncoplastic breast surgery in Denmark

    DEFF Research Database (Denmark)

    Klit, Anders; Henriksen, Trine Foged; Siersen, Hans Erik;

    2014-01-01

    With improved survival rates after breast cancer treatment, more attention is drawn to improve the cosmetic outcome after surgical treatment of breast cancer. In this process the oncoplastic breast surgery was conceived. It supplements the traditional surgical treatments (mastectomy and breast...... conserving surgery) with increased focus on individualized therapy. The ambition is to obtain the best possible cosmetic outcome without compromising recurrence rates and survival. This article provides an overview of the current oncoplastic breast surgery treatment offered in Denmark....

  5. Ultrasound characterization of breast masses

    International Nuclear Information System (INIS)

    A lump in the breast is a cause of great concern. High frequency, high-resolution USG helps in its evaluation. This is exemplified in women with dense breast tissue where USG is useful in detecting small breast cancers that are not seen on mammography. Several studies in the past have addressed the issue of differentiating benign from malignant lesions in the breast. The American College of Radiology has also brought out a BIRADS-US classification system for categorizing focal breast lesions

  6. Tyrosine phosphatase Shp2 mediates the estrogen biological action in breast cancer via interaction with the estrogen extranuclear receptor.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available The extranuclear estrogen receptor pathway opens up novel perspectives in many physiological and pathological processes, especially in breast carcinogenesis. However, its function and mechanisms are not fully understood. Herein we present data identifying Shp2, a SH2-containing tyrosine phosphatase, as a critical component of extranuclear ER pathway in breast cancer. The research checked that the effect of Shp2 on the tumor formation and growth in animal model and investigated the regulation of Shp2 on the bio-effect and signaling transduction of estrogen in breast cancer cell lines. The results showed that Shp2 was highly expressed in more than 60% of total 151 breast cancer cases. The inhibition of Shp2 activity by PHPS1 (a Shp2 inhibitor delayed the development of dimethylbenz(aanthracene (DMBA-induced tumors in the rat mammary gland and also blocked tumor formation in MMTV-pyvt transgenic mice. Estradiol (E2 stimulated protein expression and phosphorylation of Shp2, and induced Shp2 binding to ERα and IGF-1R around the membrane to facilitate the phosphorylation of Erk and Akt in breast cancer cells MCF7. Shp2 was also involved in several biological effects of the extranuclear ER-initiated pathway in breast cancer cells. Specific inhibitors (phps1, phps4 and NSC87877 or small interference RNAs (siRNA of Shp2 remarkably suppressed E2-induced gene transcription (Cyclin D1 and trefoil factor 1 (TFF1, rapid DNA synthesis and late effects on cell growth. These results introduced a new mechanism for Shp2 oncogenic action and shed new light on extranuclear ER-initiated action in breast tumorigenesis by identifying a novel associated protein, Shp2, for extranuclear ER pathway, which might benefit the therapy of breast cancer.

  7. Regulation of macrophage inhibitory factor (MIF) by epidermal growth factor receptor (EGFR) in the MCF10AT model of breast cancer progression.

    Science.gov (United States)

    Lim, Simin; Choong, Lee-Yee; Kuan, Chong Poh; Yunhao, Chen; Lim, Yoon-Pin

    2009-08-01

    Genetic aberration of EGFR is one of the major molecular characteristics of breast cancer. However, the molecular changes associated with EGFR signaling during different stages of breast cancer development have not been studied. In this study, complementary two-dimensional-DIGE and iTRAQ technologies were used to profile the expression level of proteins in 4 isogenic cell lines in the MCF10AT model of breast cancer progression following a time course of EGF stimulation. A total of 80 proteins (67 from iTRAQ, 15 from DIGE, 2 common in both) were identified to be up- or down-regulated by EGF treatment. Following EGF stimulation, the expression level of MIF, a cytokine that has been implicated in many human cancers, was decreased in MCF10A1 normal breast mammary epithelial cells, increased in MCF10AT1k preneoplastic and MCF10CA1h low grade breast cancer cells, but showed no obvious difference in the MCF10CA1a high grade cancer cells. The increase in MIF expression level following EGF treatment could also be observed in A431 cervical cancer cells. EGF-induced increases of MIF expression levels in CA1h breast cancer cells were abrogated when MEK, but not PIK3CA, was knocked down. In addition, silencing of MIF diminished the proliferation of EGF-stimulated CA1h cells when compared to control cells. Taken together, our data suggested an EGFR --> MEK --> MIF proliferative pathway that has never been reported previously and that this pathway "evolves" during disease progression as modeled by the MCF10AT system. Revelation of the novel relationship between MIF and EGF may contribute to an integrated understanding of the roles of these oncogenic factors during breast cancer development.

  8. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression.

    Science.gov (United States)

    Esber, Nathalie; Le Billan, Florian; Resche-Rigon, Michèle; Loosfelt, Hugues; Lombès, Marc; Chabbert-Buffet, Nathalie

    2015-01-01

    The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required. PMID:26474308

  9. The cyclin-like protein Spy1/RINGO promotes mammary transformation and is elevated in human breast cancer

    International Nuclear Information System (INIS)

    Spy1 is a novel 'cyclin-like' activator of the G1/S transition capable of enhancing cell proliferation as well as inhibiting apoptosis. Spy1 protein levels are tightly regulated during normal mammary development and forced overexpression in mammary mouse models accelerates mammary tumorigenesis. Using human tissue samples, cell culture models and in vivo analysis we study the implications of Spy1 as a mediator of mammary transformation and breast cancer proliferation. We demonstrate that this protein can facilitate transformation in a manner dependent upon the activation of the G2/M Cdk, Cdk1, and the subsequent inhibition of the anti-apoptotic regulator FOXO1. Importantly, we show for the first time that enhanced levels of Spy1 protein are found in a large number of human breast cancers and that knockdown of Spy1 impairs breast cancer cell proliferation. Collectively, this work supports that Spy1 is a unique activator of Cdk1 in breast cancer cells and may represent a valuable drug target and/or a prognostic marker for subsets of breast cancers

  10. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression.

    Directory of Open Access Journals (Sweden)

    Nathalie Esber

    Full Text Available The progesterone receptor (PR with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4 and ulipristal acetate (UPA, a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required.

  11. Herpesviruses and breast milk

    Directory of Open Access Journals (Sweden)

    C. Pietrasanta

    2014-06-01

    Full Text Available Breast milk has always been the best source of nourishment for newborns. However, breast milk can carry a risk of infection, as it can be contaminated with bacterial or viral pathogens. This paper reviews the risk of acquisition of varicella-zoster virus (VZV and cytomegalovirus (CMV, herpesviruses frequently detected in breastfeeding mothers, via breast milk, focusing on the clinical consequences of this transmission and the possible strategies for preventing it. Maternal VZV infections are conditions during which breastfeeding may be temporarily contraindicated, but expressed breast milk should always be given to the infant. CMV infection acquired through breast milk rarely causes disease in healthy term newborns; an increased risk of CMV disease has been documented in preterm infants. However, the American Academy of Pediatrics (AAP does not regard maternal CMV seropositivity as a contraindication to breastfeeding; according to the AAP, in newborns weighing less than 1500 g, the decision should be taken after weighing the benefits of breast milk against the risk of transmission of infection. The real efficacy of the different methods of inactivating CMV in breast milk should be compared in controlled clinical trials, rigorously examining the negative consequences that each of these methods can have on the immunological and nutritional properties of the milk itself, with a view to establish the best risk-benefit ratio of these strategies before they are recommended for use in clinical practice.

  12. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1–Rok–Myosin-II and JNK signalling

    Directory of Open Access Journals (Sweden)

    Peytee Khoo

    2013-05-01

    The Ras oncogene contributes to ∼30% of human cancers, but alone is not sufficient for tumorigenesis. In a Drosophila screen for oncogenes that cooperate with an activated allele of Ras (RasACT to promote tissue overgrowth and invasion, we identified the GTP exchange factor RhoGEF2, an activator of Rho-family signalling. Here, we show that RhoGEF2 also cooperates with an activated allele of a downstream effector of Ras, Raf (RafGOF. We dissect the downstream pathways through which RhoGEF2 cooperates with RasACT (and RafGOF, and show that RhoGEF2 requires Rho1, but not Rac, for tumorigenesis. Furthermore, of the Rho1 effectors, we show that RhoGEF2 + Ras (Raf-mediated tumorigenesis requires the Rho kinase (Rok–Myosin-II pathway, but not Diaphanous, Lim kinase or protein kinase N. The Rho1–Rok–Myosin-II pathway leads to the activation of Jun kinase (JNK, in cooperation with RasACT. Moreover, we show that activation of Rok or Myosin II, using constitutively active transgenes, is sufficient for cooperative tumorigenesis with RasACT, and together with RasACT leads to strong activation of JNK. Our results show that Rok–Myosin-II activity is necessary and sufficient for Ras-mediated tumorigenesis. Our observation that activation of Myosin II, which regulates Filamentous actin (F-actin contractility without affecting F-actin levels, cooperates with RasACT to promote JNK activation and tumorigenesis, suggests that increased cell contractility is a key factor in tumorigenesis. Furthermore, we show that signalling via the Tumour necrosis factor (TNF; also known as Egr-ligand–JNK pathway is most likely the predominant pathway that activates JNK upon Rok activation. Overall, our analysis highlights the need for further analysis of the Rok–Myosin-II pathway in cooperation with Ras in human cancers.

  13. HEX expression and localization in normal mammary gland and breast carcinoma

    Directory of Open Access Journals (Sweden)

    Pandolfi Maura

    2006-07-01

    occurs during lactation and tumorigenesis, we suggest that HEX may play a role in differentiation of the epithelial breast cell.

  14. HER2 drives Mucin-like 1 to control proliferation in breast cancer cells

    Science.gov (United States)

    Conley, S J; Bosco, E E; Tice, D A; Hollingsworth, R E; Herbst, R; Xiao, Z

    2016-01-01

    Mucin-like 1 (MUCL1) was first identified as a breast-specific gene over a decade ago. Based on its highly restricted mRNA expression in breast tissue and continued expression during breast tumorigenesis and progression, MUCL1 is an attractive tumor-associated antigen and a potential therapeutic target. However, very little is known about the cellular location, biological functions and regulation of the MUCL1 protein, which will have a major impact on its druggability. Here we describe our efforts to fully characterize the cellular localization of MUCL1, investigate its regulation by key breast cancer oncogenes such as human epidermal growth factor receptor 2 (HER2) and discover its functional roles in breast cancer. Although some mucins are membrane bound, our data indicate that MUCL1 is secreted by some breast cancer cells, whereas others only express high levels of intracellular MUCL1. MUCL1 expression is highest in HER2-amplified breast tumors and inhibiting HER2 activity in tumor cells resulted in a decreased MUCL1 expression. In-depth investigation demonstrated that phosphoinositide3-kinase/Akt pathway, but not Ras/MEK pathway, controls MUCL1 expression downstream of HER2. Phenotypic assays revealed a strong dependence of HER2-positive cells on MUCL1 for cell proliferation. We further identified the mechanism by which MUCL1 regulates cell growth. Knockdown of MUCL1 induced a G1/S phase arrest concomitant with decreased cyclin D and increased p21 and p27 levels. Finally, we investigated the impact of MUCL1 loss on kinase signaling pathways in breast cancer cells through phospho-kinase array profiling. MUCL1 silencing abrogated phospho-focal adhesion kinase (FAK), Jun NH2-terminal kinase (JNK) and c-Jun signals, but not extracellular signal-regulated kinase or Akt pathway activities, thereby pointing to FAK/JNK pathway as the downstream effector of MUCL1 signaling. We are the first to identify an important role for MUCL1 in the proliferation of breast cancer

  15. The Revelation of John Locke's Education Thought on China%洛克教育思想对我国的启示

    Institute of Scientific and Technical Information of China (English)

    张锐颖

    2014-01-01

    本文将通过简述洛克绅士教育思想的基本内容,结合对当代中国教育发展现状的分析,指出目前中国教育存在的问题,进而详细阐释洛克绅士教育思想对当代中国教育的启示,为中国当代教育提出相应建议。%This article will briefly introduce the content of gentle-man education thought of John Locke. With analysis of the con-temporary status of Chinese education, this article will note the problems, and elaborate the revelation of gentleman education thought on Chinese education, by giving some recommendations.

  16. Analysis and Revelation of Foreign Innovative Research Model%国外创新科研模式分析与启示

    Institute of Scientific and Technical Information of China (English)

    曾琪; 孙雪梅; 冀晓燕; 任雪勇

    2015-01-01

    文章分析了国外新型科研机构的运行模式和改革举措,列举了民间资本资助科学研究的案例,总结了国外创新科研模式的启示,探讨了我国科研机构如何在新形势下走出“创新”之路。%This paper analyzes the operating mode and the reform initiatives of overseas research institutions ,and cites the case of private capital to finance scientific research.Besides ,this paper also summarizes the revelation of foreign innovative research model,and explores the "innovation"road of Chinese research institutions in the new situation .

  17. 新加坡城市公共交通管理对广西的启示%Revelation of Singapore Urban Public Transport Management on Guangxi

    Institute of Scientific and Technical Information of China (English)

    陆正业

    2012-01-01

    文章从组织管理与规划管理两方面介绍了新加坡城市公共交通管理的成功经验,分析了该经验给广西城市公共交通管理所带来的启示,提出了广西城市公共交通的发展策略。%From two aspects of organizational management and planning management,t he article introduced the successful experience of urban public transport management in Singapore, analyzed the revelation of these experiences brought to urban public transport management in Guangxi, and proposed the development strategy of Guangxi urban public transport.

  18. Intensity Modulated Accelerated Partial Breast Irradiation Before Surgery in Treating Older Patients With Hormone Responsive Stage 0-I Breast Cancer

    Science.gov (United States)

    2016-05-04

    Ductal Breast Carcinoma in Situ; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Ductal Breast Carcinoma With Predominant Intraductal Component; Lobular Breast Carcinoma in Situ; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Progesterone Receptor-positive Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Tubular Ductal Breast Carcinoma

  19. Primary breast lymphoma in the right breast during treatment for left breast cancer

    OpenAIRE

    Fukuzawa Kengo; Kinoshita Tadahiko; Iwashita Yukio; Nishimura Ataru; Nagata Shigeyuki; Tashiro Hideya; Wakasugi Kenzo

    2007-01-01

    Abstract Background Primary breast lymphoma is a rare condition, and distinguishing it from breast cancer is important because their treatments differ radically. Moreover, a recent report showed that mastectomy offered no benefit in the treatment of primary breast lymphoma. Case presentation A 59-year-old woman was treated with adjuvant chemotherapy and local radiation after surgery for left breast cancer. She presented with a rapidly growing mass in the right breast at 20 months after surger...

  20. Ets-1 controls breast cancer cell balance between invasion and growth.

    Science.gov (United States)

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models.

  1. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2012-01-01

    We evaluated the association between radiation therapy and severe capsular contracture or reoperation after 717 delayed breast implant reconstruction procedures (288 1- and 429 2-stage procedures) identified in the prospective database of the Danish Registry for Plastic Surgery of the Breast during...... of radiation therapy was associated with a non-significantly increased risk of reoperation after both 1-stage (HR = 1.4; 95% CI: 0.7-2.5) and 2-stage (HR = 1.6; 95% CI: 0.9-3.1) procedures. Reconstruction failure was highest (13.2%) in the 2-stage procedures with a history of radiation therapy. Breast...

  2. Management of Breast Sarcoma.

    Science.gov (United States)

    Hsu, Cary; McCloskey, Susan A; Peddi, Parvin F

    2016-10-01

    Breast sarcomas are exceptionally rare mesenchymal neoplasms composed of many histologic subtypes. Therapy is guided by principles established in the management of extremity sarcomas. The anatomic site does influence treatment decisions, particularly the surgical management. Surgery should be undertaken with the aim of achieving a widely negative margin. Selected patients can be managed with breast-conserving surgery. Breast reconstruction is increasingly being undertaken for selected patients. Radiation therapy and chemotherapy are used selectively for large, high-grade sarcomas for which there is significant concern for local and distant recurrence. PMID:27542642

  3. Methylxanthines and breast cancer.

    Science.gov (United States)

    Schairer, C; Brinton, L A; Hoover, R N

    1987-10-15

    We investigated the relationship between methylxanthine consumption and breast cancer using data from a case-control study which included 1,510 cases and 1,882 controls identified through a nation-wide breast cancer screening program. There was no evidence of a positive association between methylxanthine consumption and risk of breast cancer. In fact, there was some suggestion of a negative association, particularly in women diagnosed after age 50. In addition, there was no evidence of increased risk with past or recent methylxanthine consumption, or with the consumption of caffeine or specific beverages, most notably brewed or instant caffeinated coffee and tea. PMID:3117709

  4. Developmental and lactational exposure to dieldrin alters mammary tumorigenesis in Her2/neu transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heather L Cameron

    Full Text Available Breast cancer is the most common cancer in Western women and while its precise etiology is unknown, environmental factors are thought to play a role. The organochlorine pesticide dieldrin is a persistent environmental toxicant thought to increase the risk of breast cancer and reduce survival in the human population. The objective of this study was to define the effect of developmental exposure to environmentally relevant concentrations of dieldrin, on mammary tumor development in the offspring. Sexually mature FVB-MMTV/neu female mice were treated with vehicle (corn oil, or dieldrin (0.45, 2.25, and 4.5 microg/g body weight daily by gavage for 5 days prior to mating and then once weekly throughout gestation and lactation until weaning. Dieldrin concentrations were selected to produce serum levels representative of human background body burdens, occupational exposure, and overt toxicity. Treatment had no effect on litter size, birth weight or the number of pups surviving to weaning. The highest dose of dieldrin significantly increased the total tumor burden and the volume and number of tumors found in the thoracic mammary glands. Increased mRNA and protein expression of the neurotrophin BDNF and its receptor TrkB was increased in tumors from the offspring of dieldrin treated dams. This study indicates that developmental exposure to the environmental contaminant dieldrin causes increased tumor burden in genetically predisposed mice. Dieldrin exposure also altered the expression of BNDF and TrkB, novel modulators of cancer pathogenesis.

  5. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death.

    Science.gov (United States)

    Bhatelia, Khyati; Singh, Aru; Tomar, Dhanendra; Singh, Kritarth; Sripada, Lakshmi; Chagtoo, Megha; Prajapati, Paresh; Singh, Rochika; Godbole, Madan M; Singh, Rajesh

    2014-02-01

    Emerging evidences suggest that chronic inflammation is one of the major causes of tumorigenesis. The role of inflammation in regulation of breast cancer progression is not well established. Recently Mediator of IRF3 Activation (MITA) protein has been identified that regulates NF-κB and IFN pathways. Role of MITA in the context of inflammation and cancer progression has not been investigated. In the current report, we studied the role of MITA in the regulation of cross talk between cell death and inflammation in breast cancer cells. The expression of MITA was significantly lower on in estrogen receptor (ER) positive breast cancer cells than ER negative cells. Similarly, it was significantly down regulated in tumor tissue as compared to the normal tissue. The overexpression of MITA in MCF-7 and T47D decreases the cell proliferation and increases the cell death by activation of caspases. MITA positively regulates NF-κB transcription factor, which is essential for MITA induced cell death. The activation of NF-κB induces TNF-α production which further sensitizes MITA induced cell death by activation of death receptor pathway through capsase-8. MITA expression decreases the colony forming units and migration ability of MCF-7 cells. Thus, our finding suggests that MITA acts as a tumor suppressor which is down regulated during tumorigenesis providing survival advantage to tumor cell.

  6. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to γ Rays

    International Nuclear Information System (INIS)

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of γ rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-α were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of γ rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-α in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  7. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    Energy Technology Data Exchange (ETDEWEB)

    Trani, Daniela [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Maastricht Radiation Oncology (MaastRO) Lab, GROW-School for Oncology and Developmental Biology, University of Maastricht (Netherlands); Moon, Bo-Hyun [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Kallakury, Bhaskar; Hartmann, Dan P. [Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Datta, Kamal [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Fornace, Albert J., E-mail: af294@georgetown.edu [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  8. EFFECTS OF MUTATION AND EXPRESSION OF PTEN GENE mRNA ON TUMORIGENESIS AND PROGRESSION OF EPITHELIAL OVARIAN CANCER

    Institute of Scientific and Technical Information of China (English)

    陈颖; 郑华川; 杨雪飞; 孙丽梅; 辛彦

    2004-01-01

    Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in normal ovary (n = 5), ovarian cyst (n =5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60), and ovarian cancer cell line (n= 1)by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). mRNA expression of PTEN gene was evaluated in corresponding tissues and cell line by reverse transcription polymerase chain reaction(RT-PCR). The mutation and mRNA expression of PTEN gene were compared with clinicopathological features of ovarian cancer. Results Mutated exon 5 of PTEN gene was detected only in 5 (7.1%) cases of epithelial ovarian cancer. mRNA expression level of PTEN gene in ovarian borderline tumor or ovarian cancer was lower than that in normal ovary or ovarian cyst (P < 0.05). The level of PTEN gene mRNA expression was negatively correlated with clinicopathological staging of ovarian cancer, whereas positively correlated with histological differentiation (P < 0.05). mRNA expression level of PTEN gene in ovarian endometrioid cancer was significantly lower than that in ovarian serous or mucinous cancer (P < 0.05). Conclusions Mutation of PTEN gene occurs in ovarian cancer. Down-regulated expression of PTEN is probably an important molecular event in tumorigenesis of ovarian cancer. Abnormal expression of PTEN gene is involved in progression of ovarian cancer. Reduced expression of PTEN gene is closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid cancer.

  9. Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis.

    Science.gov (United States)

    Macias, Everardo; Kim, Yongbaek; Miliani de Marval, Paula L; Klein-Szanto, Andres; Rodriguez-Puebla, Marcelo L

    2007-10-15

    We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinoma (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development, causing a selection of cells bearing activating Ha-ras mutations. We have also shown that myc-induced epidermal proliferation and oral tumorigenesis (K5Myc mice) depends on CDK4 expression. Biochemical analysis of K5CDK4 and K5Myc epidermis as well as skin tumors showed that keratinocyte proliferation is mediated by CDK4 sequestration of p27Kip1 and p21Cip1, and activation of CDK2. Here, we studied the role of CDK2 in epithelial tumorigenesis. In normal skin, loss of CDK2 rescues CDK4-induced, but not myc-induced epidermal hyperproliferation. Ablation of CDK2 in K5CDK4 mice results in decreased incidences and multiplicity of skin tumors as well as malignant progression to SCC. Histopathologic analysis showed that K5CDK4 tumors are drastically more aggressive than K5CDK4/CDK2-/- tumors. On the other hand, we show that CDK2 is dispensable for myc-induced tumorigenesis. In contrast to our previous report of K5Myc/CDK4-/-, K5Myc/CDK2-/- mice developed oral tumors with the same frequency as K5Myc mice. Overall, we have established that ras-induced tumors are more susceptible to CDK2 ablation than myc-induced tumors, suggesting that the efficacy of targeting CDK2 in tumor development and malignant progression is dependent on the oncogenic pathway involved.

  10. Cdk2 deficiency decrease ras/cdk4-dependent malignant progression, but not myc-induced tumorigenesis

    Science.gov (United States)

    Macias, Everardo; Kim, Yongbaek; Miliani de Marval, Paula L.; Klein-Szanto, Andres; Rodriguez-Puebla, Marcelo L.

    2010-01-01

    We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinomas (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development causing a selection of cells bearing activating Ha-ras mutations. We have also demonstrated that myc-induced epidermal proliferation and oral tumorigenesis (K5Myc mice) depends on CDK4 expression. Biochemical analysis of K5CDK4 and K5Myc epidermis as well as skin tumors showed that keratinocyte proliferation is mediated by CDK4 sequestration of p27Kip1 and p21Cip1, and activation of CDK2. Here, we studied the role of CDK2 in epithelial tumorigenesis. In normal skin loss of CDK2 rescues CDK4-induced, but not myc-induce epidermal hyperproliferation. Ablation of CDK2 in K5CDK4 mice results in decrease incidences and multiplicity of skin tumors as well as malignant progression to SCC. Histopathological analysis showed that K5CDK4 tumors are drastically more aggressive than K5CDK4/CDK2−/− tumors. On the other hand, we show that CDK2 is dispensable for myc-induced tumorigenesis. In contrast to our previous report K5Myc/CDK4−/− mice, K5Myc/CDK2−/− mice developed oral tumors with the same frequency as K5Myc mice. Overall we have established that ras-induced tumors are more susceptible to CDK2 ablation than myc-induced tumors, suggesting that the efficacy of targeting CDK2 in tumor development and malignant progression is dependent on the oncogenic pathway involved. PMID:17942901

  11. A strain of hairless mouse susceptible to tumorigenesis by TPA alone: studies with 8-methoxypsoralen and solar simulated radiation.

    Science.gov (United States)

    Gibbs, N K; Young, A R; Magnus, I A

    1985-05-01

    Hairless albino mice were painted with 8-methoxypsoralen (8-MOP) and exposed to solar simulated radiation (SSR) for 0, 3 or 6 weeks and subsequently treated with the promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). TPA was highly tumourigenic in non-pretreated mice. Pretreatment with 8-MOP + SSR did not increase this level of tumorigenesis. It is proposed that 8-MOP + SSR tumour induction was the result of promotion of innate initiated cells and that this mouse strain might be useful as a promoter testing model.

  12. Changes in the distribution pattern of Claudin tight junction proteins during the progression of mouse skin tumorigenesis

    International Nuclear Information System (INIS)

    Despite the fact that morphological and physiological observations suggest that the tight junction (TJ)-based permeability barrier is modified/disrupted in tumorigenesis, the role of members of the Claudin (Cldn) family of TJ proteins is not well-understood. Using a well-established two-stage chemical carcinogenesis model, we investigated the temporal and spatial changes in expression of those Cldns that we have previously demonstrated to be important in epidermal differentiation and the formation of the epidermal permeability barrier, i.e., Cldn1, Cldn6, Cldn11, Cldn12 and Cldn18. The lower dorsal backskin of mice was treated topically with 7,12-dimethylbenz(a)anthracene (DMBA; 0.25 mg/ml in acetone) and following a 10-day incubation period, 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 25 μg/ml in acetone) was applied three times a week to the same area. Backskin samples were dissected 2, 4, 6, 8 and 12 weeks after the initiation of the experimental protocol and immunohistochemistry was performed on sections using antibodies against the following: Cldn1, Cldn6, Cldn11, Cldn12, Cldn18, Ki67 and CD3. Our data indicate that along with the changes in epidermal cell morphology and differentiation that occur during tumor formation, there is a dramatic change in Cldn distribution consistent with cell polarity and barrier selectivity changes. Specifically, in the early stages of DMBA/TPA treatment, the suprabasal-specific Cldns occupy an expanded zone of expression corresponding to an increased number of suprabasal epidermal cell layers. As tumorigenesis progressed, the number of suprabasal epidermal layers positive for Cldn6, Cldn11, Cldn12 and Cldn18 was reduced, especially in the lower strata of the expanded suprabasal zone. In addition, a variably reduced cell membrane association of those differentiation-specific Cldns was observed, especially within the infiltrating epidermal structures. In contrast, Cldn1 (which is normally expressed in all the living layers of the

  13. Sulfotyrosines of the Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Promote Tumorigenesis through Autocrine Activation▿

    OpenAIRE

    Feng, Hao; Sun, Zhifeng; Farzan, Michael R.; Feng, Pinghui

    2010-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) is a bona fide signaling molecule that is implicated in KSHV-associated malignancies. Whereas vGPCR activates specific cellular signaling pathways in a chemokine-independent fashion, vGPCR binds a broad spectrum of CC and CXC chemokines, and the roles of chemokines in vGPCR tumorigenesis remain poorly understood. We report here that vGPCR is posttranslationally modified by sulfate groups at tyrosine residues...

  14. S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Xiaoxuan Ning

    Full Text Available Calcyclin-binding protein (CacyBP/SIP, identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100. The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer.

  15. Breast Cancer Prevention

    Science.gov (United States)

    ... the risk of breast cancer: Having an abortion. Making diet changes such as eating less fat or more ... does not give formal guidelines or recommendations for making decisions about health care. Reviewers and Updates Editorial Boards ...

  16. Living Beyond Breast Cancer

    Science.gov (United States)

    ... Prosthesis Complementary Therapy Types of Complementary Therapy Acupuncture Art Therapy Diet, Nutrition and Exercise Expressive Writing Guided Imagery Hypnosis Massage Therapy Mindfulness-Based Stress Reduction Yoga and Breast Cancer Getting ...

  17. Breast cancer (metastatic)

    OpenAIRE

    Stebbing, Justin; Slater, Sarah; Slevin, Maurice

    2007-01-01

    Median survival from metastatic breast cancer is 12 months without treatment, but young people can survive up to 20 years with the disease, whereas in other metastatic cancers this would be considered very unusual.

  18. Primary breast sarcoma

    DEFF Research Database (Denmark)

    Holm, Maibritt; Aggerholm-Pedersen, Ninna; Mele, Marco;

    2016-01-01

    AIM: The aim of this study was to contribute to the collected knowledge of prognostic factors in primary breast sarcomas (PBS) to the benefit of possible future prospective studies and therapeutic guidelines. METHOD: All patients with pathologically verified PBS in the period of 1979-2014 were...... in those with superficial tumors was observed as well as an increased incidence in radiation-induced angiosarcoma (AS) of the breast, however, prognosis was no different from non-radiation-induced AS. CONCLUSION: Prognostic factors in PBS patients were size and grade with a trend towards better survival...... in those with superficial tumors. There was no difference in survival between radiation-induced and spontaneous breast sarcomas. High rate of local recurrence suggests the need for aggressive surgical approach or the routine addition of postoperative radiotherapy in those selected for breast conserving...

  19. The evolving breast reconstruction

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Gunnarsson, Gudjon Leifur

    2014-01-01

    The aim of this editorial is to give an update on the use of the propeller thoracodorsal artery perforator flap (TAP/TDAP-flap) within the field of breast reconstruction. The TAP-flap can be dissected by a combined use of a monopolar cautery and a scalpel. Microsurgical instruments are generally...... not needed. The propeller TAP-flap can be designed in different ways, three of these have been published: (I) an oblique upwards design; (II) a horizontal design; (III) an oblique downward design. The latissimus dorsi-flap is a good and reliable option for breast reconstruction, but has been criticized...... for oncoplastic and reconstructive breast surgery and will certainly become an invaluable addition to breast reconstructive methods....

  20. Preeclampsia and breast cancer

    DEFF Research Database (Denmark)

    Pacheco, Nadja Livia Pekkola; Andersen, Anne-Marie Nybo; Kamper-Jørgensen, Mads

    2015-01-01

    BACKGROUND: In parous women preeclampsia has been associated with reduced risk of developing breast cancer. Characteristics of births following preeclamptic pregnancies may help understand mechanisms involved in the breast cancer risk reduction inferred by preeclampsia. METHODS: We conducted...... a register-based cohort study of all Danish women giving birth during 1978-2010 (n = 778,701). The association between preeclampsia and breast cancer was evaluated overall and according to birth characteristics by means of incidence rate ratios (IRR) estimated in Poisson regression models. RESULTS: Compared...... with women with non-preeclamptic pregnancies only, women with one or more preeclamptic pregnancies were 19% significantly less likely to develop breast cancer (IRR = 0.81 [95% CI 0.72-0.93]). We found some indication of greater risk reduction in women with term births, one or more previous births...

  1. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  2. Breast Reconstruction Alternatives

    Science.gov (United States)

    ... Cancer? Breast Cancer Colon/Rectum Cancer Lung Cancer Prostate Cancer Skin Cancer Show All Cancer Types News and Features Cancer Glossary ACS Bookstore Cancer Information Cancer Basics Cancer Prevention & Detection Signs & Symptoms of Cancer Treatments & Side Effects ...

  3. Breast Reconstruction Options

    Science.gov (United States)

    ... Cancer? Breast Cancer Colon/Rectum Cancer Lung Cancer Prostate Cancer Skin Cancer Show All Cancer Types News and Features Cancer Glossary ACS Bookstore Cancer Information Cancer Basics Cancer Prevention & Detection Signs & Symptoms of Cancer Treatments & Side Effects ...

  4. Using a Breast Pump

    Science.gov (United States)

    ... you can relax and not be disturbed while pumping. If you have an electric pump, find an ... otherwise irritating your nipple or breast tissue. Begin Pumping If your pump is electric or battery-powered, ...

  5. The breast cancer conundrum

    OpenAIRE

    2013-01-01

    For decades, rates of breast cancer have been going up faster in rich countries than in poor ones. Scientists are beginning to understand more about its causes but unanswered questions remain. Patrick Adams reports.

  6. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  7. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    genes associated with tumorigenesis. Black-Right-Pointing-Pointer MMP-9 is up-regulated and Col1a1 is down-regulated in mutant cybrids. Black-Right-Pointing-Pointer GM6001 reduced the enhanced motility of mutant cybrids caused by up-regulated MMP-9. Black-Right-Pointing-Pointer The MMP-9 expression and invasiveness of mutant cybrids were reduced by Bay 11-7802.

  8. Modulatory effects of Azadirachta indica on benzo(a)pyrene-induced forestomach tumorigenesis in mice

    Institute of Scientific and Technical Information of China (English)

    Subhash Chander Gangar; Rajat Sandhir; Durg Vijay Rai; Ashwani Koul

    2006-01-01

    AIM: To evaluate the chemopreventive effects of aqueous Azadirachta indica (A indica) leaf extract (AAILE)against benzo(a)pyrene [B(a)P]-induced forestomach tumorigenesis in Balb/c mice.METHODS: Female Balb/c mice were divided into four groups of 10-12 animals each. For induction of forestomach tumors, starting from d 14 of the experiment, mice of B(a)P and B(a)P+A indica groups were given intra-gastric instillations of B(a)P (40 mg/kg), twice a week for four weeks. Mice of A indica and B(a)P+A indica groups were orally administered with AAILE (100mg/kg), two weeks prior to B(a)P instillations till the end of the experiment. After 22 wk of the first B(a)P instillation, mice were sacrificed and the forestomachs were analyzed for development of tumors, scanning electron microscopy (SEM) and histopathology.RESULTS: Tumor incidence was observed to be 100%in mice that received only B(a)P. However, treatment with AAILE reduced the tumor incidence by 58.4%as observed in mice of B(a)P+A indica group when compared to that of B(a)P group. Similarly, the tumor burden and multiplicity were seen to decrease by 87.3% and 69.6% respectively in mice of B(a)P+A indica group when compared to those of B(a)P group.Scanning electron microscopy analysis showed that AAILE treatment itself did not cause any abnormalities on the surface architecture of forestomach epithelium.In tumorous forestomach, surface disruption was observed. Over the forestomach tumors of B(a)P group of mice certain rounded structures were seen in addition to closely placed tongue-shaped squamous cells. Interestingly, these rounded structures were not observed in B(a)P + A indica group of mice.Histopathalogically, the tumors were identical and diagnosed to be papillomas. Mice from control and A indica groups of mice did not develop any forestomach tumors and showed normal histo-architecture.CONCLUSION: The present data suggest that A indica exerts chemopreventive effects against B(a)P-induced forestomach tumors in

  9. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Science.gov (United States)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  10. Multiplanar breast kinematics during different exercise modalities

    OpenAIRE

    Risius, Debbie; Milligan, Alexandra; Mills, Chris; Scurr, Joanna

    2015-01-01

    Multiplanar breast movement reduction is crucial to increasing physical activity participation amongst women. To date, research has focused on breast movement during running, but until breast movement is understood during different exercise modalities, the breast support requirements for specific activities are unknown. To understand breast support requirements during different exercise modalities, this study aimed to determine multiplanar breast kinematics during running, jumping and agility...

  11. Breast cancer stem cells

    OpenAIRE

    Owens, Thomas W.; Naylor, Matthew J.

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to th...

  12. Women and breast cancer.

    OpenAIRE

    Lippman, M E

    1987-01-01

    One in every 12 women will develop breast cancer; the incidence increases with age, dietary fat intake, caloric intake, height, and weight. The 10-year survival rate of breast cancer patients who refuse therapy is virtually zero. Segmental mastectomy plus radiation and lumpectomy, combined with systemic (adjuvant)chemotherapy, are alternatives under investigation at the National Institutes of Health that may increase the survival rate by decreasing metastatic complications.

  13. Novel Stromal Biomarkers in Human Breast Cancer Tissues Provide Evidence for the More Malignant Phenotype of Estrogen Receptor-Negative Tumors

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2011-01-01

    Full Text Available Research efforts were focused on genetic alterations in epithelial cancer cells. Epithelial-stromal interactions play a crucial role in cancer initiation, progression, invasion, angiogenesis, and metastasis; however, the active role of stroma in human breast tumorigenesis in relation to estrogen receptor (ER status of epithelial cells has not been explored. Using proteomics and biochemical approaches, we identified two stromal proteins in ER-positive and ER-negative human breast cancer tissues that may affect malignant transformation in breast cancer. Two putative biomarkers, T-cell receptor alpha (TCR-α and zinc finger and BRCA1-interacting protein with a KRAB domain (ZBRK1, were detected in leukocytes of ER-positive and endothelial cells of ER-negative tissues, respectively. Our data suggest an immunosuppressive role of leukocytes in invasive breast tumors, propose a multifunctional nature of ZBRK1 in estrogen receptor regulation and angiogenesis, and demonstrate the aggressiveness of ER-negative human breast carcinomas. This research project may identify new stromal drug targets for the treatment of breast cancer patients.

  14. p70S6 kinase mediates breast cancer cell survival in response to surgical wound fluid stimulation.

    Science.gov (United States)

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Fabris, Linda; Armenia, Joshua; Mileto, Mario; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-05-01

    In early breast cancer, local relapses represent a determinant and not simply an indicator of risk for distant relapse and death. Notably, 90% of local recurrences occur at or close to the same quadrant of the primary cancer. Relevance of PI3K/mTOR/p70S6K signaling in breast tumorigenesis is very well documented. However, the pathway/s involved in the process of breast cancer local relapse are not well understood. The ribosomal protein p70S6K has been implicated in breast cancer cell response to post-surgical inflammation, supporting the hypothesis that it may be crucial also for breast cancer recurrence. Here, we show that p70S6K activity is required for the survival of breast cancer cells challenged in "hostile" microenvironments. We found that impairment of p70S6K activity in breast cancer cells strongly decreased their tumor take rate in nude mice. In line with this observation, if cells were challenged to grow in anchorage independence or in clonogenic assay, growth of colonies was strongly dependent on an intact p70S6K signaling. This in vitro finding was particularly evident when breast cancer cells were grown in the presence of wound fluids harvested following surgery from breast cancer patients, suggesting that the stimuli present in the post-surgical setting at least partially relied on activity of p70S6K to stimulate breast cancer relapse. From a mechanistic point of view, our results indicated that p70S6K signaling was able to activate Gli1 and up-regulate the anti-apoptotic protein Bcl2, thereby activating a survival response in breast cancer cells challenged in hostile settings. Our work highlights a previously poorly recognized function of p70S6K in preserving breast cancer cell survival, which could eventually be responsible for local relapse and opens the way to the design of new and more specific therapies aiming to restrain the deleterious effects of wound response.

  15. Pertuzumab, Trastuzumab, and Paclitaxel Albumin-Stabilized Nanoparticle Formulation in Treating Patients With HER2-Positive Advanced Breast Cancer

    Science.gov (United States)

    2016-06-23

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Breast Adenocarcinoma; Inflammatory Breast Carcinoma

  16. Ska2/FAM33A: A Novel Gene Implicated in Cell Cycle and Tumorigenesis%Ska2/FAM33A:一个参与细胞周期调控与肿瘤发生的新基因

    Institute of Scientific and Technical Information of China (English)

    谢濛宇; 张莹; 张春冬; 卜友泉

    2013-01-01

    Ska2(spindle and KT associated 2),也称FAM33A(family with sequence similarity 33,member A),是一个最近鉴定的参与细胞周期调控与肿瘤发生发展的新基因.现有研究初步证实,Ska2参与组成Ska复合体,在有丝分裂中期纺锤体检验点关闭中起重要作用;Ska2在小细胞肺癌和乳腺癌中呈现表达上调,可通过糖皮质激素受体等途径参与细胞增殖调节和肿瘤发生发展;NF-KB和CREB等转录因子可能参与Ska2的表达调控.Ska2有望成为一个恶性肿瘤诊断和靶向治疗的新靶点.%Ska2 (spindle and KT associated 2), also known as FAM33A (family with sequence similarity 33, member A), is a recently identified gene involved in cell cycle regulation and tumorigenesis. It has been demonstrated that Ska2, along with its coworkers Skal and Ska3, constitutes the Ska complex which plays a critical role in the maintenance of the metaphase plate and/or spindle checkpoint silencing during mitosis. RNAi-mediated Ska2 depletion results into a prolonged checkpoint-dependent delay in a metaphase-like state. Ska2 is over-expressed both in cancer cell lines and clinical samples including small cell lung cancer and breast cancer. Ska2 regulates both cell proliferation and tumorigenesis at least by interacting with glucocorticoid receptor. Ska2 overexpression increases GC transactivation whereas its knockdown decreases transactivation and prevents dexamethasone inhibition of proliferation. Several classical transcription factors including NF-KB and CREB regulate the expression of Ska2 mRNA by directly binding to its promoter. Intriguingly, pre-miRNA-301 is located at the first intron of Ska2 gene, and the mature miRNA-301 can further regulate Ska2 transcription via targeting the NF-KB and EPK/CREB pathways, thus forming positive feed-back loops. Taken together, this novel cell cycle related gene, Ska2, might serve as a novel target for the diagnosis and treatment of cancers, and thus deserves further

  17. Bacteria, plankton, and trace metal, and other data from bottle and CTD casts in the Antarctic from the NATHANIEL B. PALMER and ROGER REVELL in support of the US Joint Global Ocean Flux Study / Antarctic Environments Southern Ocean Process Study (JGOFS /AESOPS) from 1996-10-17 to 1998-03-15 (NODC Accession 0000504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton and other data were collected in the Antarctic from the NATHANIEL B. PALMER and ROGER REVELL from 17 October 1996 to 15 March 1998. Bottle data...

  18. Effect of chronic 60-Hz electric field exposure on mammary tumorigenesis in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Leung, F.C.; Rommereim, D.N.; Buschbom, R.L.; Wilson, B.W.; Stevens, R.G.

    1989-07-01

    Female rats were administered a single dosage of 7 or 10 mg of DMBA intragastrically between 50 and 55 days of age and palpated weekly for mammary tumors in two experiments. Rats were either exposed to a 40 kV/m 60-Hz electric field or sham-exposed in utero through 18 or 23 weeks of age. There was no difference between electric field exposed and sham-exposed in incidence of first tumor. When the results of the two experiments were combined, the electric field exposed groups had significantly more tumors per tumor-bearing animal than the sham-groups. These results may have implications for the role of electric power use in the etiology and promotion of breast cancer. 21 refs., 1 fig., 1 tab.

  19. FOXR2 Interacts with MYC to Promote Its Transcriptional Activities and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Xu Li

    2016-07-01

    Full Text Available By combining the results of a large-scale proteomic analysis of the human transcription factor interaction network with knowledge databases, we identified FOXR2 as one of the top-ranked candidate proto-oncogenes. Here, we show that FOXR2 forms a stable complex with MYC and MAX and subsequently regulates cell proliferation by promoting MYC’s transcriptional activities. We demonstrate that FOXR2 is highly expressed in several breast, lung, and liver cancer cell lines and related patient tumor samples, while reduction of FOXR2 expression in a xenograft model inhibits tumor growth. These results indicate that FOXR2 acts with MYC to promote cancer cell proliferation, which is a potential tumor-specific target for therapeutic intervention against MYC-driven cancers.

  20. FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma

    Directory of Open Access Journals (Sweden)

    Brunello Eleonora

    2012-12-01

    Full Text Available Abstract Background Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed. Methods Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases. FGFR-1 gene (8p12 amplification was evaluated by chromogenic in situ hybridization (CISH analysis. Her-2/neu and topoisomerase-IIα gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals versus gains (3–6 signals of the locus specific FGFR-1 gene. Results Three (20% primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification, six cases (40% had a mean of three (range 3–6 chromogenic signals (gains whereas in 6 (40% was not observed any abnormality. Three of 15 metastasis (20% were amplified, 2/15 (13,4% did not. The ten remaining cases (66,6% showed three chromogenic signals. The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6% case. Topoisomerase-IIα was not amplified in all cases. Conclusions 1 a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2 a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3 in the

  1. Breast Total Male Breast Reconstruction with Fat Grafting

    OpenAIRE

    Al-Kalla, Tarik; Komorowska-Timek, Ewa

    2014-01-01

    Summary: Cancer of a male breast represents less than 1% of all breast cancer. As with to female patients, mastectomy in men creates a substantial emotional burden. Breast reconstruction may improve the patient’s psychological well-being, compliance with adjuvant treatments, and overall outcome. However, due to the unique anatomy of the male breast, standard reconstructive strategies using anatomic or prosthetic modalities are not entirely applicable. We describe a case of a 68-year-old male ...

  2. Mitochondrial DNA A10398G Mutation is not Associated with Breast Cancer Risk in a Sample of Iraqi Women

    Directory of Open Access Journals (Sweden)

    Rawaa A. Zahid

    2013-05-01

    Full Text Available The aim of this study was to investigate if there is a relationship between mtDNA polymorphism (A10398G and breast cancer in a sample of 59 Iraqi women. Breast cancer is the second most common diagnosed cause of cancer death in the developed countries and accounts for 23% of the total cancers. Different studies reported that breast cancer accounts for 14% of all cancer deaths in females. It is well documented that the different factors such as genetics and environment factors are involved in tumorigenesis. Mutations in the mitochondrial DNA D-loop region and somatic mutations are emerging as early genetic markers of cancer. Identification of such markers for breast cancer would prevent late detection and increase the chance of recovery and survival rate. In breast cancer different mtDNA alterations were reported. The A10398G mutation in NADH Dehyrogenase (ND3 a subunit of complex I of the Oxidative Phosphorylation process (OXPHOS is perhaps one of the most studied mutations with conflicting reports of its association with breast cancer. Genomic DNA was extracted from 21 unrelated women with malignant tumors, 22 women with benign tumors and 16 healthy women blood donors. Subsequently, PCR amplification was performed using specific primers, PCR products were subjected to a suitable restriction enzyme. No genetic variants were identified in mtDNA among malignant tumoral group and controls while 9% of benign tumor cases exhibited the variant. Our finding indicated that A10398G polymorphism cannot be used as a biomarker for breast cancer detection in Iraqi women.

  3. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com; Liang, Hui-Fang, E-mail: lianghuifang1997@126.com; Zhang, Bi-Xiang, E-mail: bixiangzhang@163.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  4. Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression.

    Science.gov (United States)

    Pan, Yi; Li, Jing; Zhang, Yaqin; Wang, Nan; Liang, Hongwei; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke; Gu, Hongwei

    2016-01-01

    It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells. Profiling the predicted E-cadherin-targeting miRNAs in breast cancer tissues and cells showed that miR-221 was abundantly expressed in breast tumor and metastatic MDA-MB-231 cells and its level was significantly higher in breast tumor or MDA-MB-231 cells than in distal non-tumor tissue and low-metastatic MCF-7 cells, respectively. MiR-221, which level inversely correlated with E-cadherin level in breast cancer cells, targeted E-cadherin mRNA open reading frame (ORF) and suppressed E-cadherin protein expression. Depleting or increasing miR-221 level in breast cancer cells induced or decreased E-cadherin protein level, leading to suppressing or promoting tumor cell progression, respectively. Moreover, miR-221 was specifically upregulated by Slug but not Snail. TGF-β treatment enhanced Slug activity and thus increased miR-221 level in MCF-7 cells. In summary, our results provide the first evidence that Slug-upregulated miR-221 promotes breast cancer progression via reducing E-cadherin expression. PMID:27174021

  5. Mouse EP3 α, β, and γ Receptor Variants Reduce Tumor Cell Proliferation and Tumorigenesis in Vivo*

    Science.gov (United States)

    Macias-Perez, Ines M.; Zent, Roy; Carmosino, Monica; Breyer, Matthew D.; Breyer, Richard M.; Pozzi, Ambra

    2008-01-01

    Prostaglandin E2, which exerts its functions by binding to four G protein-coupled receptors (EP1-4), is implicated in tumorigenesis. Among the four E-prostanoid (EP) receptors, EP3 is unique in that it exists as alternatively spliced variants, characterized by differences in the cytoplasmic C-terminal tail. Although three EP3 variants, α, β, and γ, have been described in mice, their functional significance in regulating tumorigenesis is unknown. In this study we provide evidence that expressing murine EP3 α, β, and γ receptor variants in tumor cells reduces to the same degree their tumorigenic potential in vivo. In addition, activation of each of the three mEP3 variants induces enhanced cell-cell contact and reduces cell proliferation in vitro in a Rho-dependent manner. Finally, we demonstrate that EP3-mediated RhoA activation requires the engagement of the heterotrimeric G protein G12. Thus, our study provides strong evidence that selective activation of each of the three variants of the EP3 receptor suppresses tumor cell function by activating a G12-RhoA pathway. PMID:18230618

  6. Bach1 Deficiency and Accompanying Overexpression of Heme Oxygenase-1 Do Not Influence Aging or Tumorigenesis in Mice

    Directory of Open Access Journals (Sweden)

    Kazushige Ota

    2014-01-01

    Full Text Available Oxidative stress contributes to both aging and tumorigenesis. The transcription factor Bach1, a regulator of oxidative stress response, augments oxidative stress by repressing the expression of heme oxygenase-1 (HO-1 gene (Hmox1 and suppresses oxidative stress-induced cellular senescence by restricting the p53 transcriptional activity. Here we investigated the lifelong effects of Bach1 deficiency on mice. Bach1-deficient mice showed longevity similar to wild-type mice. Although HO-1 was upregulated in the cells of Bach1-deficient animals, the levels of ROS in Bach1-deficient HSCs were comparable to those in wild-type cells. Bach1−/−; p53−/− mice succumbed to spontaneous cancers as frequently as p53-deficient mice. Bach1 deficiency significantly altered transcriptome in the liver of the young mice, which surprisingly became similar to that of wild-type mice during the course of aging. The transcriptome adaptation to Bach1 deficiency may reflect how oxidative stress response is tuned upon genetic and environmental perturbations. We concluded that Bach1 deficiency and accompanying overexpression of HO-1 did not influence aging or p53 deficiency-driven tumorigenesis. Our results suggest that it is useful to target Bach1 for acute injury responses without inducing any apparent deteriorative effect.

  7. Maslinic acid-enriched diet decreases intestinal tumorigenesis in Apc(Min/+ mice through transcriptomic and metabolomic reprogramming.

    Directory of Open Access Journals (Sweden)

    Susana Sánchez-Tena

    Full Text Available Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA, a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in Apc(Min/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid-supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01. Putative molecular mechanisms associated with suppressing intestinal polyposis in Apc(Min/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the Apc(Min/+ mice model, suggesting its chemopreventive potential against colorectal cancer.

  8. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis.

    Science.gov (United States)

    Li, Xinjian; Jiang, Yuhui; Meisenhelder, Jill; Yang, Weiwei; Hawke, David H; Zheng, Yanhua; Xia, Yan; Aldape, Kenneth; He, Jie; Hunter, Tony; Wang, Liwei; Lu, Zhimin

    2016-03-01

    It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis.

  9. The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis

    International Nuclear Information System (INIS)

    In recent research of arsenic carcinogenesis, many researchers have directed their attention to methylated metabolites of inorganic arsenics. Because of its high cytotoxicity and genotoxicity, trivalent dimethylated arsenic, which can be produced by the metabolic reduction of dimethylarsinic acid (DMA), has attracted considerable attention from the standpoint of arsenic carcinogenesis. In the present paper, we examined trivalent dimethylated arsenic and its further metabolites for their chemical properties and biological behavior such as genotoxicity and tumorigenicity. Our in vitro and in vivo experiments suggested that the formation of cis-thymine glycol in DNA was induced via the production of dimethylated arsenic peroxide by the reaction of trivalent dimethylated arsenic with molecular oxygen, but not via the production of common reactive oxygen species (ROS; superoxide, hydrogen peroxide, hydroxyl radical, etc.). Thus, dimethylated arsenic peroxide may be the main species responsible for the tumor promotion in skin tumorigenesis induced by exposure to DMA. Free radical species, such as dimethylarsenic radical [(CH3)2As·] and dimethylarsenic peroxy radical [(CH3)2AsOO·], that are produced by the reaction of molecular oxygen and dimethylarsine [(CH3)2AsH], which is probably a further reductive metabolite of trivalent dimethylated arsenic, may be main agents for initiation in mouse lung tumorigenesis

  10. Dark Aberrant Crypt Foci with activated Wnt pathway are related to tumorigenesis in the colon of AOM-treated rat

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2008-08-01

    Full Text Available Abstract Background To evaluate the relationship between Aberrant Crypt Foci (ACF and tumorigenesis, we observed the sequential development from ACF to tumor in the colon of azoxymethane-exposed wistar rats. Methods Sixty wistar rats were sacrificed at different time points after exposure to azoxymethane and the colons were stained with methylene blue for stereomicroscopic analysis. Results We found two types of early lesions: classic ACF and dark ACF. Dark ACF were characterized by dark blue staining, mildly enlarged or small compressed crypts that are not elevated from the surrounding epithelium. Large dark ACF and nascent tumors displayed the same surface morphology. Furthermore, dark ACF grew significantly faster than classic ACF and showed dysplasia without hyperplasia. In contrast, classic ACF showed hyperplasia without dysplasia. Dark ACF has significant higher expression rate of β-catenin (100% and MMP-7 (81.82% compared with the expression of β-catenin and MMP-7 in classic ACF (4.84% and 7.87%, respectively. Conclusion Our data indicated that dark ACF is closely related to tumorigenesis while classic ACF is not. Furthermore, Wnt signal pathway was activated during the early period of dark ACF.

  11. Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b suppresses lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Seong-Ho Hong

    Full Text Available The sodium-dependent phosphate co-transporter 2b (NPT2b plays an important role in maintaining phosphate homeostasis. In previous studies, we have shown that high dietary inorganic phosphate (Pi consumption in mice stimulated lung tumorigenesis and increased NPT2b expression. NPT2b has also been found to be highly expressed in human lung cancer tissues. The association of high expression of NPT2b in the lung with poor prognosis in oncogenic lung diseases prompted us to test whether knockdown of NPT2b may regulate lung cancer growth. To address this issue, aerosols that contained small interfering RNA (siRNA directed against NPT2b (siNPT2b were delivered into the lungs of K-ras (LA1 mice, which constitute a murine model reflecting human lung cancer. Our results clearly showed that repeated aerosol delivery of siNPT2b successfully suppressed lung cancer growth and decreased cancer cell proliferation and angiogenesis, while facilitating apoptosis. These results strongly suggest that NPT2b plays a role lung tumorigenesis and represents a novel target for lung cancer therapy.

  12. CDC25A Protein Stability Represents a Previously Unrecognized Target of HER2 Signaling in Human Breast Cancer: Implication for a Potential Clinical Relevance in Trastuzumab Treatment

    Directory of Open Access Journals (Sweden)

    Emanuela Brunetto

    2013-06-01

    Full Text Available The CDC25A-CDK2 pathway has been proposed as critical for the oncogenic action of human epidermal growth factor receptor 2 (HER2 in mammary epithelial cells. In particular, transgenic expression of CDC25A cooperates with HER2 in promoting mammary tumors, whereas CDC25A hemizygous loss attenuates the HER2-induced tumorigenesis penetrance. On the basis of this evidence of a synergism between HER2 and the cell cycle regulator CDC25A in a mouse model of mammary tumorigenesis, we investigated the role of CDC25A in human HER2-positive breast cancer and its possible implications in therapeutic response. HER2 status and CDC25A expression were assessed in 313 breast cancer patients and we found statistically significant correlation between HER2 and CDC25A (P = .007. Moreover, an HER2-positive breast cancer subgroup with high levels of CDC25A and very aggressive phenotype was identified (P = .005. Importantly, our in vitro studies on breast cancer cell lines showed that the HER2 inhibitor efficacy on cell growth and viability relied also on CDC25A expression and that such inhibition induces CDC25A down-regulation through phosphatidylinositol 3-kinase/protein kinase B pathway and DNA damage response activation. In line with this observation, we found a statistical significant association between CDC25A overexpression and trastuzumab-combined therapy response rate in two different HER2-positive cohorts of trastuzumab-treated patients in either metastatic or neoadjuvant setting (P = .018 for the metastatic cohort and P = .021 for the neoadjuvant cohort. Our findings highlight a link between HER2 and CDC25A that positively modulates HER2- targeted therapy response, suggesting that, in HER2-positive breast cancer patients, CDC25A overexpression affects trastuzumab sensitivity.

  13. Life After Breast Cancer Treatment

    Science.gov (United States)

    FACTS FOR LIFE Life After Breast Cancer Treatment Once breast cancer treatment ends, you may face a new set of issues and concerns. ... fear. If fear starts to disrupt your daily life, talk to your doctor. Getting the support and ...

  14. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... inhibitor, can do an even better job of preventing breast cancer than the SERMs. Aromatase inhibitors stop an enzyme ...

  15. Vitamin D and Breast Cancer

    OpenAIRE

    Shao, Theresa; Klein, Paula; Grossbard, Michael L.

    2012-01-01

    Vitamin D metabolism and its mechanism of action, the current evidence on the relationship between vitamin D and breast cancer, and the optimal dosing of vitamin D for breast cancer prevention are summarized.

  16. Does Aluminium Trigger Breast Cancer?

    OpenAIRE

    Peter Jennrich; Claus Schulte-Uebbing

    2016-01-01

    Summary. Breast cancer is by far the most common cancer in women in the western world. In 90% of breast cancers, environmental factors are among the causes. The frequency with which the tumour occurs in the outer upper part of the breast has risen with above average rates in recent decades. Aluminium salts as ingredients in deodorants and antiperspirants are being absorbed by the body to a greater extent than hitherto assumed. Their toxicity for healthy and diseased breast tissue cells includ...

  17. Oncoplastic breast surgery: current strategies

    OpenAIRE

    Piper, Merisa; Peled, Anne Warren; Sbitany, Hani

    2015-01-01

    The surgical management of breast cancer has dramatically evolved over the past 20 years, with oncoplastic surgery gaining increased popularity. This field of breast surgery allows for complete resection of tumor, preservation of normal parenchyma tissue, and the use of local or regional tissue for immediate breast reconstruction at the time of partial mastectomy. These techniques extend the options for breast conservation surgery, improve aesthetic outcomes, have high patient satisfaction an...

  18. Breast Reduction Using Liposuction Alone

    OpenAIRE

    Moskovitz, Martin J.; Baxt, Sherwood A.

    2004-01-01

    Liposuction alone as a treatment of breast hypertrophy has been mentioned in the literature for the past decade but has been limited in its application. Our experience in over 350 cases has shown that liposuction breast reduction is an excellent method of breast reduction when applied to the proper patient. The techniques involved in liposuction breast reduction mirror those used in standard liposuction cases, so most plastic surgeons will find the learning curve for this procedure to be very...

  19. Ultrasonography of the male breast

    OpenAIRE

    Draghi, F.; Tarantino, C.C.; Madonia, L.; Ferrozzi, G.

    2011-01-01

    The male breast has been insufficiently explored in the medical literature, particularly that dealing with ultrasonography, although this topic is almost as vast and varied as that of the female breast. The purpose of this article is to provide a schematic review of the most frequent breast lesions encountered in males and their sonographic appearances. After a brief introduction on the anatomy of the male breast, the authors review the non-neoplastic (gynecomastia, pseudogynecomastia, cysts,...

  20. Anaplastic large cell lymphoma (ALCL) and breast implants: breaking down the evidence.

    Science.gov (United States)

    Ye, Xuan; Shokrollahi, Kayvan; Rozen, Warren M; Conyers, Rachel; Wright, Penny; Kenner, Lukas; Turner, Suzanne D; Whitaker, Iain S

    2014-01-01

    Systemic anaplastic large cell lymphoma (ALCL) is a distinct disease classification provisionally sub-divided into ALCL, Anaplastic Lymphoma Kinase (ALK)(+) and ALCL, ALK(-) entities. More recently, another category of ALCL has been increasingly reported in the literature and is associated with the presence of breast implants. A comprehensive review of the 71 reported cases of breast implant associated ALCL (iALCL) is presented indicating the apparent risk factors and main characteristics of this rare cancer. The average patient is 50 years of age and most cases present in the capsule surrounding the implant as part of the periprosthetic fluid or the capsule itself on average at 10 years post-surgery suggesting that iALCL is a late complication. The absolute risk is low ranging from 1:500,000 to 1:3,000,000 patients with breast implants per year. The majority of cases are ALK-negative, yet are associated with silicone-coated implants suggestive of the mechanism of tumorigenesis which is discussed in relation to chronic inflammation, immunogenicity of the implants and sub-clinical infection. In particular, capsulotomy alone seems to be sufficient for the treatment of many cases suggesting the implants provide the biological stimulus whereas others require further treatment including chemo- and radiotherapy although reported cases remain too low to recommend a therapeutic approach. However, CD30-based therapeutics might be a future option.