WorldWideScience

Sample records for breast tumor imaging

  1. Primary Neuroendocrine Tumor of the Breast: Imaging Features

    International Nuclear Information System (INIS)

    Chang, Eun Deok; Kim, Min Kyun; Kim, Jeong Soo; Whang, In Yong

    2013-01-01

    Focal neuroendocrine differentiation can be found in diverse histological types of breast tumors. However, the term, neuroendocrine breast tumor, indicates the diffuse expression of neuroendocrine markers in more than 50% of the tumor cell population. The imaging features of neuroendocrine breast tumor have not been accurately described due to extreme rarity of this tumor type. We present a case of a pathologically confirmed, primary neuroendocrine breast tumor in a 42-year-old woman, with imaging findings difficult to be differentiated from that of invasive ductal carcinoma

  2. Imaging of breast tumors using MR-elastography

    International Nuclear Information System (INIS)

    Lorenzen, J.; Sinkus, R.; Leussler, C.; Dargatz, M.; Roeschmann, P.; Schrader, D.; Lorenzen, M.

    2001-01-01

    Purpose: Imaging of breast tumors using MR-Elastography. Material and method: Low-frequency mechanical waves are transmitted into breast-tissue by means of an oscillator. The local characteristics of the mechanical wave are determined by the elastic properties of the tissue. By means of a motion-sensitive spin-echo-sequence these waves can be displayed within the phase of the MR image. Subsequently, these images can be used to reconstruct the local distribution of elasticity. In-vivo measurements were performed in 3 female patients with malignant tumors of the breast. Results: All patients tolerated the measurement set-up without any untoward sensation in the contact area of skin and oscillator. The waves completely penetrated the breast, encompassing the axilla and regions close to the chest wall. All tumors were localized by MRE as structures of markedly stiffer tissue when compared to the surrounding tissue. Furthermore, in one patient, a metastasis in an axillary lymph node was detected. In all patients, local regions of increased elasticity were found in the remaining parenchyma of the breast, which, however, did not reach the high levels of elasticity found in the tumors. Conclusion: MRE is an imaging modality enabling adjunct tissue differentiation of mammary tumors. (orig.) [de

  3. Mesenchymal Tumors of the Breast: Imaging and the Histopathologic Correlation

    International Nuclear Information System (INIS)

    Kim, Bo Mi; Kim, Eun Kyung; You, Jae Kyoung; Kim, Yee Jeong

    2011-01-01

    Various benign and malignant mesenchymal tumors can occur in the breast. Most radiologists are unfamiliar with the imaging features of these tumors and the imaging features have not been described in the radiologic literature. It is important that radiologists should be familiar with the broad spectrum of imaging features of rare mesenchymal breast tumors. In this pictorial review, we demonstrate the sonographic findings and the corresponding pathologic findings of various mesenchymal tumors of the breast as defined by the World Health Organization classification system

  4. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors

    Science.gov (United States)

    Bowman, Tyler; Chavez, Tanny; Khan, Kamrul; Wu, Jingxian; Chakraborty, Avishek; Rajaram, Narasimhan; Bailey, Keith; El-Shenawee, Magda

    2018-02-01

    This paper investigates terahertz (THz) imaging and classification of freshly excised murine xenograft breast cancer tumors. These tumors are grown via injection of E0771 breast adenocarcinoma cells into the flank of mice maintained on high-fat diet. Within 1 h of excision, the tumor and adjacent tissues are imaged using a pulsed THz system in the reflection mode. The THz images are classified using a statistical Bayesian mixture model with unsupervised and supervised approaches. Correlation with digitized pathology images is conducted using classification images assigned by a modal class decision rule. The corresponding receiver operating characteristic curves are obtained based on the classification results. A total of 13 tumor samples obtained from 9 tumors are investigated. The results show good correlation of THz images with pathology results in all samples of cancer and fat tissues. For tumor samples of cancer, fat, and muscle tissues, THz images show reasonable correlation with pathology where the primary challenge lies in the overlapping dielectric properties of cancer and muscle tissues. The use of a supervised regression approach shows improvement in the classification images although not consistently in all tissue regions. Advancing THz imaging of breast tumors from mice and the development of accurate statistical models will ultimately progress the technique for the assessment of human breast tumor margins.

  5. Imaging findings in phyllodes tumors of the breast

    International Nuclear Information System (INIS)

    Tan Hongna; Zhang Shengjian; Liu Haiquan; Peng Weijun; Li Ruimin; Gu Yajia; Wang Xiaohong; Mao Jian; Shen Xigang

    2012-01-01

    Purpose: To study the radiological appearance and pathological features of breast phyllodes tumors (PTs), and to enhance the recognition of the tumor. Materials and methods: Clinical and imaging findings were retrospectively reviewed in 24 women with PTs confirmed by surgical pathology. All of the 24 patients had preoperative MRI and sonography, and 10 had preoperative mammography. Results: The histologic findings were benign, borderline and malignant PTs in 16.7% (4/24), 45.8% (11/24) and 37.5% (9/24) of cases, respectively. The tumor size (p = 0.001), irregular shape on sonographic imaging (p = 0.039), internal non-enhanced septations (p = 0.009), silt-like changes in enhanced images (p = 0.006) and signal changes from T2-weighted to enhanced images on MRI (p = 0.001) correlated significantly with the histologic grade; the BI-RADS category of the MRI could reflect the PT's histologic grade with a correlation coefficient of 0.440 (p = 0.031). If the category BI-RADS ≥4a was considered to be a suspicious malignant lesion, the diagnostic accuracy of mammography, US and MRI would be 70% (7/10), 62.5% (15/24) and 95.8% (23/24), respectively. Conclusion: The tumor size and several US and MRI findings can be used to help preoperatively determine the histologic grade of breast PTs. When a patient presents with a progressively enlarging, painless breast mass, MRI should be recommended first.

  6. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  7. Bromine-77-labeled estrogen receptor-binding radiopharmaceuticals for breast tumor imaging

    International Nuclear Information System (INIS)

    McElvany, K.D.

    1985-01-01

    Two derivatives of 16α-bromoestradiol, both with and without an 11β-methoxy substituent, have been labeled with bromine-77 and evaluated as potential breast tumor imaging agents. Extensive characterization of these radiotracers in animal models has demonstrated their effective concentration in estrogen target tissues. Preliminary clinical studies have demonstrated the potential of radiolabeled estrogens for breast tumor imaging; however, the suboptimal decay properties of bromine-77 limit the utility of these agents in imaging studies. These results with 77 -Br-labeled estrogens suggest that estrogen derivatives labeled with other radionuclides should provide enhanced image resolution with various imaging devices. Although the decay characteristics of bromine-77 are such that it is not ideally suited to imaging with conventional gamma cameras, it may be a useful radionuclide for therapeutic applications

  8. 3D tumor measurement in cone-beam CT breast imaging

    Science.gov (United States)

    Chen, Zikuan; Ning, Ruola

    2004-05-01

    Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).

  9. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI

    International Nuclear Information System (INIS)

    Pinker, K.; Marino, M.A.; Meyer-Baese, A.; Helbich, T.H.

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ( 1 H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ( 23 Na MRI), phosphorus spectroscopy ( 31 P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [de

  10. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    Science.gov (United States)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  11. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin; Hollingsworth, Alan B.; Qian, Wei

    2015-01-01

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy

  12. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin, E-mail: Bin.Zheng-1@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hollingsworth, Alan B. [Mercy Women’s Center, Mercy Health Center, Oklahoma City, Oklahoma 73120 (United States); Qian, Wei [Department of Electrical and Computer Engineering, University of Texas, El Paso, Texas 79968 (United States)

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  13. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    Science.gov (United States)

    Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-06-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.

  14. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling.

    Science.gov (United States)

    Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian

    2012-10-24

    Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.

  15. Human breast tumor imaging using 111In labeled monoclonal antibody: Anthymic mouse model

    International Nuclear Information System (INIS)

    Ban An Khaw; Massachusetts General Hospital, Boston; Bailes, J.S.; Schneider, S.L.; Lancaster, J.; Lasher, J.C.; McGuire, W.L.; Powers, J.; Strauss, H.W.

    1988-01-01

    The monoclonal antibody (MoAb) 323/A3, an IgG1, was raised against the human breast tumor cell line MCF-7 and recognized a 43 Kd membrane associated glycoprotein. Histochemical studies with the antibody detected 75% of metastatic lymph nodes, 59% of primary breast tumors, and showed some staining in 20% of benign breast lesions. For radionuclide imaging, the MoAb 323/A3 was labeled with both 125 I and 111 In, via covalently coupled diethylenetriaminepentaacetic acid (DTPA) by the mixed anhydride method. The antibody activity of the DTPA modified 323/A3 was assessed by an immunoassay using viable and fixed MCF-7 target cells. Male athymic nude mice bearing BT-20 human mammary tumors were injected with dual 125 I/ 111 In labeled DTPA 323/A3 via the tail veins. The animals were imaged with a gamma camera equipped with a pinhole collimator at 1-3 h, 1, 2, 3, 4 and 5 days after the tracer administration. On day 5 or 6, the animals were killed, and the biodistribution of the radiotracers was determined for the blood, thyroid, heart, lungs, liver, spleen, kidneys, gastro-intestinal tract and tumor. Target to blood ratio at 6 days for the 111 In tracer was 24:1 in the group with a mean tumor weight of 0.492 g, and 13:1 in another group with a mean tumor weight of 0.1906 g (day 5). However, the 125 I activity showed only 3.6:1 and 5.4:1 target to blood ratios in the corresponding groups. The larger tumors localized less 111 I tracer (27.13%±7.57% injected dose/g, Mean±SD) than the smaller tumors (52.75%±22.25% ID/g). Analysis of the gamma images showed that the maximum tracer concentration occurred in the tumors at about 2 to 3 days after intravenous tracer administration. The excellent tumor resolution observed with BT-20 tumors may be due to increased 43 Kd glycoprotein antigen density in this tumor cell line. (orig.)

  16. Ability of subtraction and dynamic MR imaging to detect breast tumors. Comparison with ultrasonography and mammography

    International Nuclear Information System (INIS)

    Terao, Eri; Takeuchi, Hiroaki; Iwamura, Akira; Murakami, Yoshitaka; Harada, Junta; Tada, Shinpei

    1994-01-01

    We evaluated the ability of subtraction and dynamic MR imaging to accurately detect breast tumors. Sixty-five breast carcinomas and 24 fibroadenomas were examined by an SE pulse sequence using a 0.2 Tesla unit. Subtraction MR images were obtained every minute during dynamic study with Gd-DTPA. Almost all breast tumors were seen as very bright masses, and the margin of the mass was clearly demonstrated on subtraction MR images. Breast carcinomas and fibroadenomas showed characteristic time-intensity curves on dynamic study. Time-intensity curves of the early peak type and plateau type were seen in 97% of breast carcinomas, while the gradually increasing type was seen in 92% of fibroadenomas. The detectability of breast carcinoma was 98% by MRI, 98% by ultrasonography, and 87% by mammography. That of fibroadenoma was 95% by MRI, 91% by ultrasonography and 60% by mammography. Sensitivity and specificity for breast carcinoma were 98% and 92% for MRI and 97% and 71% for ultrasonography. For fibroadenoma, they were 96% and 98% for MRI and 89% and 92% for ultrasonography. (author)

  17. Ability of subtraction and dynamic MR imaging to detect breast tumors. Comparison with ultrasonography and mammography

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Eri; Takeuchi, Hiroaki; Iwamura, Akira; Murakami, Yoshitaka; Harada, Junta; Tada, Shinpei (Jikei Univ., Tokyo (Japan). School of Medicine)

    1994-09-01

    We evaluated the ability of subtraction and dynamic MR imaging to accurately detect breast tumors. Sixty-five breast carcinomas and 24 fibroadenomas were examined by an SE pulse sequence using a 0.2 Tesla unit. Subtraction MR images were obtained every minute during dynamic study with Gd-DTPA. Almost all breast tumors were seen as very bright masses, and the margin of the mass was clearly demonstrated on subtraction MR images. Breast carcinomas and fibroadenomas showed characteristic time-intensity curves on dynamic study. Time-intensity curves of the early peak type and plateau type were seen in 97% of breast carcinomas, while the gradually increasing type was seen in 92% of fibroadenomas. The detectability of breast carcinoma was 98% by MRI, 98% by ultrasonography, and 87% by mammography. That of fibroadenoma was 95% by MRI, 91% by ultrasonography and 60% by mammography. Sensitivity and specificity for breast carcinoma were 98% and 92% for MRI and 97% and 71% for ultrasonography. For fibroadenoma, they were 96% and 98% for MRI and 89% and 92% for ultrasonography. (author).

  18. Discrimination of Breast Tumors in Ultrasonic Images by Classifier Ensemble Trained with AdaBoost

    Science.gov (United States)

    Takemura, Atsushi; Shimizu, Akinobu; Hamamoto, Kazuhiko

    In this paper, we propose a novel method for acurate automated discrimination of breast tumors (carcinoma, fibroadenoma, and cyst). We defined 199 features related to diagnositic observations noticed when a doctor judges breast tumors, such as internal echo, shape, and boundary echo. These features included novel features based on a parameter of log-compressed K distribution, which reflect physical characteristics of ultrasonic B-mode imaging. Furthermore, we propose a discrimination method of breast tumors by using an ensemble classifier based on the multi-class AdaBoost algorithm with effective features selection. Verification by analyzing 200 carcinomas, 30 fibroadenomas and 30 cycts showed the usefulness of the newly defined features and the effectiveness of the discrimination by using an ensemble classifier trained by AdaBoost.

  19. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    Science.gov (United States)

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular

  20. Quantitative diffusion weighted imaging parameters in tumor and peritumoral stroma for prediction of molecular subtypes in breast cancer

    Science.gov (United States)

    He, Ting; Fan, Ming; Zhang, Peng; Li, Hui; Zhang, Juan; Shao, Guoliang; Li, Lihua

    2018-03-01

    Breast cancer can be classified into four molecular subtypes of Luminal A, Luminal B, HER2 and Basal-like, which have significant differences in treatment and survival outcomes. We in this study aim to predict immunohistochemistry (IHC) determined molecular subtypes of breast cancer using image features derived from tumor and peritumoral stroma region based on diffusion weighted imaging (DWI). A dataset of 126 breast cancer patients were collected who underwent preoperative breast MRI with a 3T scanner. The apparent diffusion coefficients (ADCs) were recorded from DWI, and breast image was segmented into regions comprising the tumor and the surrounding stromal. Statistical characteristics in various breast tumor and peritumoral regions were computed, including mean, minimum, maximum, variance, interquartile range, range, skewness, and kurtosis of ADC values. Additionally, the difference of features between each two regions were also calculated. The univariate logistic based classifier was performed for evaluating the performance of the individual features for discriminating subtypes. For multi-class classification, multivariate logistic regression model was trained and validated. The results showed that the tumor boundary and proximal peritumoral stroma region derived features have a higher performance in classification compared to that of the other regions. Furthermore, the prediction model using statistical features, difference features and all the features combined from these regions generated AUC values of 0.774, 0.796 and 0.811, respectively. The results in this study indicate that ADC feature in tumor and peritumoral stromal region would be valuable for estimating the molecular subtype in breast cancer.

  1. Dual in vivo Photoacoustic and Fluorescence Imaging of HER2 Expression in Breast Tumors for Diagnosis, Margin Assessment, and Surgical Guidance

    Directory of Open Access Journals (Sweden)

    Azusa Maeda

    2015-01-01

    Full Text Available Biomarker-specific imaging probes offer ways to improve molecular diagnosis, intraoperative margin assessment, and tumor resection. Fluorescence and photoacoustic imaging probes are of particular interest for clinical applications because the combination enables deeper tissue penetration for tumor detection while maintaining imaging sensitivity compared to a single optical imaging modality. Here we describe the development of a human epidermal growth factor receptor 2 (HER2-targeting imaging probe to visualize differential levels of HER2 expression in a breast cancer model. Specifically, we labeled trastuzumab with Black Hole Quencher 3 (BHQ3 and fluorescein for photoacoustic and fluorescence imaging of HER2 overexpression, respectively. The dual-labeled trastuzumab was tested for its ability to detect HER2 overexpression in vitro and in vivo. We demonstrated an over twofold increase in the signal intensity for HER2-overexpressing tumors in vivo, compared to low–HER2-expressing tumors, using photoacoustic imaging. Furthermore, we demonstrated the feasibility of detecting tumors and positive surgical margins by fluorescence imaging. These results suggest that multimodal HER2-specific imaging of breast cancer using the BHQ3-fluorescein trastuzumab enables molecular-level detection and surgical margin assessment of breast tumors in vivo. This technique may have future clinical impact for primary lesion detection, as well as intraoperative molecular-level surgical guidance in breast cancer.

  2. 99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.

    Science.gov (United States)

    Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-02-19

    Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.

  3. Imaging diagnostics of breast metastases from extramammary tumors; Bildgebende Diagnostik bei Brustmetastasen extramammaerer Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Wienbeck, S.; Lotz, J. [Georg-August-Universitaet Goettingen, Institut fuer Diagnostische und Interventionelle Radiologie, Goettingen (Germany); Nemat, S. [Universitaet Homburg/Saar, Institut fuer Diagnostische und Interventionelle Radiologie, Homburg/Saar (Germany); Surov, A. [Universitaet Leipzig, Institut fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany)

    2017-06-15

    Breast metastases of solid extramammary tumors are very rare in comparison to primary malignancies of the breast and account for only 0.33-6.3% of all malignant neoplasms of the breast. The most common primary tumors are malignant melanoma, distant sarcomas, lung cancer, ovarian cancer, renal cell cancer and thyroid cancer in decreasing order of frequency. This review article summarizes the clinical features and the different imaging findings of breast metastases from different extramammary solid tumors. Breast metastases are often incidental findings in computed tomography (CT) or positron emission tomography CT (PET-CT) imaging. Mammography shows two different imaging patterns, namely focal lesions and diffuse architectural distortion with skin thickening. Breast metastases presenting as focal masses usually occur as solitary and more rarely as multiple round lesions with a smooth edge boundary. Associated calcifications are rare findings. Diffuse architectural distortion with skin thickening is more common in breast metastases from most gastric tumors, ovarian cancer and rhabdomyosarcoma. Using ultrasound most lesions are hypoechoic, oval or round with smooth boundaries and posterior acoustic enhancement. The magnetic resonance imaging (MRI) criteria of breast metastases show an inconstant signal behavior that cannot be safely classified as benign or malignant. In summary, in patients with known malignancies the presence of breast metastases should be considered even with imposing clinically and radiologically benign findings. (orig.) [German] Brustmetastasen solider extramammaerer Tumoren sind im Vergleich zu primaeren Malignomen der Brust mit einer Praevalenz von 0,33-6,3 % aller boesartigen Neubildungen in der Brust sehr selten. Die haeufigsten Primaertumoren sind dabei das maligne Melanom, ferner Sarkome, Bronchial-, Ovarial-, Nierenzell- und Schilddruesenkarzinome mit einer absteigenden Haeufigkeit ihres Auftretens. In dieser Uebersichtsarbeit werden die

  4. Primary extraskeletal Ewing's sarcoma/primitive neuroectodermal tumor of breast

    Directory of Open Access Journals (Sweden)

    Smita Srivastava

    2016-01-01

    Full Text Available Extraskeletal Ewing's sarcoma (EES is a rare soft tissue tumor that is morphologically indistinguishable from skeletal ES. We report a case of a 25-year-old female with recurrent EES/primitive neuroectodermal tumor of right breast with imaging findings on mammogram, ultrasound, magnetic resonance imaging breast, and positron emission tomography–computed tomography.

  5. Phylloedes tumor of breast: findings at mammography, sonography and color Doppler imaging

    International Nuclear Information System (INIS)

    Park, Kun Choon; Ahn, Sei Hyun; Kim, Young Hwan; Choi, Hye Yong; Baek, Seung Yon; Yoon, Jeong Hyun

    1994-01-01

    The phylloides tumor of the breast is rare. the purposes of this study were to find the characteristic findings at mammography, sonography, and color Doppler imaging and to evaluate the usefulness of color Doppler study as an additional modality in the diagnosis of phylloides tumor and differentiation between benign and malignant varieties. Eight cases, who were pathologically proven as pylloides tumors, were retrospectively studied. The findings at histologic examination suggested benign in five, malignantin two, and borderline in one. We analyzed the mammograms of all eight patients and sonogram and color Doppler images of four patients. Phylloides tumors were seen as dense masses with lobulated margins in mammograms. On sonography, they showed relatively well-defined masses with in homogenous internal echo pattern and central echogenic areas. They were characterized by the presence of arterial and venous flows in the center and periphery of the lesion on color Doppler imaging and spectral analysis. We conclude that mammographic, sonographic and even color Doppler findings are not predictive of benign or malignant nature of the phylloides tumor. However, mammography and sonography with color Doppler interrogation are helpful in the diagnosis of phylloides tumor

  6. Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors

    Science.gov (United States)

    Stantz, Keith M.; Cao, Minsong; Liu, Bo; Miller, Kathy D.; Guo, Lili

    2010-02-01

    Purpose: Our purpose is to develop and test a molecular probe that can detect the expression of neutropilin-1 receptor (NPR-1) in vivo using fluorescence imaging and photoacoustic spectroscopy. Introduction: NPR-1 is expressed on endothelial cells and some breast cancer cells, and binds to vascular endothelial growth factor VEGF165, a growth factor associated with pathological tumor angiogenesis. This receptor is coexpressed with VEGFR2 and shown to enhance the binding of VEGF165; therefore, it has the potential to be used as a marker of angiogenic activity and targeted for therapy. Material and Methods: A peptide specific to NPR-1 receptor was synthesized and conjugated to a NIR fluorochrome (IRDye800CW) and was intravenously injected into mice with breast tumors (MCF7VEGF). Probe kinetics was monitored in vivo via near infrared fluorescence (NIRF) within an optical imager for up to 72 hours within the tumor and compared to other organs (liver, muscle) for binding specificity. A multivariate fitting algorithm was used to spectrally deconvolve the IRDye800CW from endogenous hemoglobin signature (hemoglobin concentration and oxygen saturation). Results: Dynamics of the NIR fluorescence signal within the first hour after injection indicates specific binding compared to muscle, with an average tumor-to-muscle ration of 2.00 (+/- 0.27). Spectral analysis clearly indentified the presence of the NPR-1 probe. Based on calibration data, the average tumor concentration from both NIRF and PCT-S was measured to be ~200-300nM. Conclusion: These preliminary results show the capability of PCT to image an exogenous probe in vivo in addition to its hemoglobin state.

  7. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    Science.gov (United States)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem

  8. Phyllodes tumor of the breast

    International Nuclear Information System (INIS)

    Cubells, M.; Uixera, I.; Miranda, V.; Gil de Ramales, V.; Bulto, J. A.; Mendez, M.; Morcillo, E.

    1999-01-01

    To study the phyllodes tumors of the breast diagnosed in our hospital, assessing the clinical, mammographic, ultrasonographic and color Doppler ultrasound findings. A retrospective study was carried out of 20 histologically diagnosed cases of phyllodes tumor of the breast over a 20-year period, taking into account patient age, clinical signs, mammographic and ultrasonographic findings, surgical treatment and recurrences. The clinical presentation was that of a palpable, usually painless, mass with a firm, elastic consistency. Mammographic images showed a lesion of homogeneous density and well-defined, round or lobulated margins. Two tumors contained large calcifications associated with previous fibroadenoma. Ultrasound revealed a slightly enhanced solid nodule of homogeneous echogenicity. Color Doppler ultrasound disclosed the presence of hypervascularization. The lesions were treated by surgical enucleation with follow-up examination every 6 months. Recurrences were treated by radical mastectomy. The phyllodes tumor of the breast is difficult to diagnose because of its similarity to the fibroadenoma. However, it should be suspected in the presence of a late-developing, rapidly growing mass. Mammography and breast ultrasound are of diagnostic utility, but the definitive diagnosis requires biopsy. (Author) 12 refs

  9. Automatic detection and classification of breast tumors in ultrasonic images using texture and morphological features.

    Science.gov (United States)

    Su, Yanni; Wang, Yuanyuan; Jiao, Jing; Guo, Yi

    2011-01-01

    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity.

  10. Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value.

    Science.gov (United States)

    Wang, Lin-Wei; Qu, Ai-Ping; Yuan, Jing-Ping; Chen, Chuang; Sun, Sheng-Rong; Hu, Ming-Bai; Liu, Juan; Li, Yan

    2013-01-01

    The expending and invasive features of tumor nests could reflect the malignant biological behaviors of breast invasive ductal carcinoma. Useful information on cancer invasiveness hidden within tumor nests could be extracted and analyzed by computer image processing and big data analysis. Tissue microarrays from invasive ductal carcinoma (n = 202) were first stained with cytokeratin by immunohistochemical method to clearly demarcate the tumor nests. Then an expert-aided computer analysis system was developed to study the mathematical and geometrical features of the tumor nests. Computer recognition system and imaging analysis software extracted tumor nests information, and mathematical features of tumor nests were calculated. The relationship between tumor nests mathematical parameters and patients' 5-year disease free survival was studied. There were 8 mathematical parameters extracted by expert-aided computer analysis system. Three mathematical parameters (number, circularity and total perimeter) with area under curve >0.5 and 4 mathematical parameters (average area, average perimeter, total area/total perimeter, average (area/perimeter)) with area under curve nests could be a useful parameter to predict the prognosis of early stage breast invasive ductal carcinoma.

  11. Detecting somatostatin receptor in breast tumor tissue and its clinical significance

    International Nuclear Information System (INIS)

    Zhang Yongjian; Yu Xian; Lin Wei; Ding Xuan; Huang Shizhang; Lu Guangming

    2002-01-01

    The authors observe the difference of somatostatin receptor (SSR) between benign and malignant breast tumor and the relation between SSR and estrogen receptor (ER) or progesterone receptor (PR) in breast tumor tissue, and to predict the clinical value of detecting breast tumor by SSR receptor imaging. These tissues excised from operation in breast tumor were divided into 4 groups: breast malignant tumor group (BMTG) and its control group (C1G), breast benign tumor group (BBTG) and its control group (C2G). SSR was detected by radioligand binding assay (RBA) and ER, PR by LsAB method in these groups. Results is: (1) The SSR express quantity is 108.6 +- 67.3 fmol/mg pr, 37.2 +- 9.6 fmol/mg pr, 43.4 +- 12.6 fmol/mg pr 33.9 +- 10.2 fmol/mg pr respectively in BMTG, C1G, BBTG, C2G. The SSR of BMTG is the most among these groups, the difference is obvious, P 0.05); (2) The correlation coefficient of SSR and ER is 0.859, SSR and PR is 0.750. Most breast tumor tissues express high density SSR, the authors suppose that malignant tumor can been distinguished from benign tumor preliminarily by SSR receptor imaging. There is a good correlation between SSR and ER, PR, detecting SSR may predict the quality of tumor and the prognosis of the patient

  12. [Contrastive study on conventional ultrasound, compression elastography and acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant breast tumors].

    Science.gov (United States)

    Zhang, Lu; Zhou, Ping; Deng, Jin; Tian, Shuangming; Qian, Ying; Wu, Xiaomin; Ma, Shuhua; Li, Jiale

    2014-12-01

    To evaluate the diagnostic performance of conventional ultrasound, compression elastography (CE) and acoustic radiation force impulse imaging (ARFI) in differential diagnosis of benign and malignant breast tumors. A total of 98 patients with liver lesions were included in the study. The images of conventional ultrasound, CE and the values of virtual touch tissue quantification (VTQ) of breast lesions were obtained. The diagnostic performance of conventional ultrasound, CE and ARFI were assessed by using pathology as the gold standard, and then evaluate the diagnosis efficiency of these three approaches in differential diagnosing benign and malignant breast tumors. The specificity, sensitivity and accuracy in the diagnosis of malignant breast tumors for conventional ultrasound were 80.0%, 81.1% and 81.7%, respectively, whereas for CE elastic score were 85.7%, 86.7% and 86.3%, respectively. With a cutoff value of 3.71 for the SR, the sensitivity, specificity, accuracy in diagnosis of malignant breast tumors were 97.1%, 83.3% and 88.4%, respectively. With a cutoff value of 3.78 m/s for VTQ, the sensitivity, specificity, accuracy in diagnosis of malignant breast tumors were 94.3%, 91.7% and 92.6%, respectively. The difference in diagnosis efficiency among ARFI, CE and conventional ultrasound in differential diagnosis of benign and malignant breast tumors was significant (Pbenign and malignant breast tumors. But the diagnosis efficiency of ARFI is superior to CE and conventional ultrasound. The three approaches can help each other in differential diagnosis of benign and malignant breast tumors.

  13. Apparent diffusion coefficients of breast tumors. Clinical application

    International Nuclear Information System (INIS)

    Hatakenaka, Masamitsu; Soeda, Hiroyasu; Yabuuchi, Hidetake; Matsuo, Yoshio; Kamitani, Takeshi; Oda, Yoshinao; Tsuneyoshi, Masazumi; Honda, Hiroshi

    2008-01-01

    The purpose of this study was to evaluate the usefulness of apparent diffusion coefficient (ADC) for the differential diagnosis of breast tumors and to determine the relation between ADC and tumor cellularity. One hundred and thirty-six female patients (age range, 17-83 years; average age, 51.7 years) with 140 histologically proven breast tumors underwent diffusion-weighted magnetic resonance (MR) imaging (DWI) using the spin-echo echo-planar technique, and the ADCs of the tumors were calculated using 3 different b values, 0, 500, and 1000 s/mm 2 . The diagnoses consisted of fibroadenoma (FA, n=16), invasive ductal carcinoma, not otherwise specified (IDC, n=117), medullary carcinoma (ME, n=3) and mucinous carcinoma (MU, n=4). Tumor cellularity was calculated from surgical specimens. The ADCs of breast tumors and cellularity were compared between different histological types by analysis of variance and Scheffe's post hoc test. The correlation between tumor cellularity and ADC was analyzed by Pearson correlation test. Significant differences were observed in ADCs between FA and all types of cancers (P 2 =0.451). The ADC may potentially help in differentiating benign and malignant breast tumors. Tumor ADC correlates inversely with tumor cellularity. (author)

  14. Molecular Imaging and Precision Medicine in Breast Cancer.

    Science.gov (United States)

    Chudgar, Amy V; Mankoff, David A

    2017-01-01

    Precision medicine, basing treatment approaches on patient traits and specific molecular features of disease processes, has an important role in the management of patients with breast cancer as targeted therapies continue to improve. PET imaging offers noninvasive information that is complementary to traditional tissue biomarkers, including information about tumor burden, tumor metabolism, receptor status, and proliferation. Several PET agents that image breast cancer receptors can visually demonstrate the extent and heterogeneity of receptor-positive disease and help predict which tumors are likely to respond to targeted treatments. This review presents applications of PET imaging in the targeted treatment of breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 99mTc-glycopeptide: Synthesis, biodistribution and imaging in breast tumor-bearing rodents

    International Nuclear Information System (INIS)

    Wei, I-C.; Tsao Ning; Huang Yahui; Ho Yensheng; Wu Chungchin; Yu Dongfang; Yang, David J.

    2008-01-01

    This study was aimed to develop a glycopeptide (GP) to be used as a carrier for anti-cancer drug delivery. GP was synthesized by conjugating glutamate peptide and chitosan using carbodiimide as a coupling agent. Elemental analysis and capillary electrophoresis confirmed the purity was >95%. GP was labeled with sodium pertechnetate (Na 99m TcO 4 ) for in vitro and in vivo studies. Rhenium-GP was synthesized to support the binding site of 99m Tc at the glutamate positions 3-5. In vitro cellular uptake of 99m Tc-GP was performed in breast cancer cells. Cytosol had 60% whereas nucleus had 40% uptake of 99m Tc-GP. When cancer cells were incubated with glutamate or aspartate, followed by 99m Tc-GP, there was decreased uptake in cells treated with glutamate but not aspartate. The findings indicated that cellular uptake of 99m Tc-GP was via glutamate transporters. In addition, 99m Tc-GP was able to measure uptake differences after cells treated with paclitaxel. Biodistribution and planar imaging were conducted in breast tumor-bearing rats. Biodistribution of 99m Tc-GP showed increased tumor-to-tissue ratios as a function of time. Planar images confirmed that 99m Tc-GP could assess tumor uptake changes after paclitaxel treatment. In vitro and in vivo studies indicated that GP could target tumor cells, thus, GP may be a useful carrier for anti-cancer drug delivery

  16. Characterization of human breast cancer tissues by infrared imaging.

    Science.gov (United States)

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  17. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    Science.gov (United States)

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  18. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pengel, Kenneth E., E-mail: k.pengel@nki.nl [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Loo, Claudette E. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Wesseling, Jelle [Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Pijnappel, Ruud M. [Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rutgers, Emiel J.Th. [Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Gilhuijs, Kenneth G.A. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2014-02-15

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted.

  19. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    International Nuclear Information System (INIS)

    Pengel, Kenneth E.; Loo, Claudette E.; Wesseling, Jelle; Pijnappel, Ruud M.; Rutgers, Emiel J.Th.; Gilhuijs, Kenneth G.A.

    2014-01-01

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted

  20. The Contribution of Three-Dimensional Power Doppler Imaging in the Preoperative Assessment of Breast Tumors: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    K. Kalmantis

    2009-01-01

    Methods. One hundred and twenty five women with clinically or mammographically suspicious findings were referred for 3D Power Doppler ultrasound prior to surgery. Histological diagnosis was conducted after surgery and compared with ultrasound findings. Sonographic criteria used for breast cancer diagnosis were based on a system that included morphological characteristics and criteria of the vascular pattern of a breast mass by Power Doppler imaging. Results. Seventy-two lesions were histopathologically diagnosed as benign and 53 tumors as malignant. Three-dimensional ultrasound identified 49 out of 53 histologically confirmed breast cancers resulting in a sensitivity of 92.4% and a specificity of 86.1% in diagnosing breast malignancy (PPV: 0.83, NPV:0.94. Conclusions. 3D ultrasonography is a valuable tool in identifying preoperatively the possibility of a tumor to be malignant.

  1. [Fluorine-18 labeled androgens and progestins; imaging agents for tumors of prostate and breast]: Technical progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Katzenellenbogen, J.A.

    1987-01-01

    This project develops fluorine-18 labeled steroids that possess high binding affinity and selectivity for androgen and progesterone receptors and can be used as positron-emission tomographic imaging agents for prostate tumors and breast tumors, respectively. These novel diagnostic agents may enable an accurate estimation of tumor dissemination, such as metastasis of prostate cancer and lymph node involvement of breast cancer, and an in vivo determination of the endocrine responsiveness of these tumors. They will provide essential information for the selection of alternative therapies thereby improving the management of prostate and breast cancer patients. 14 refs., 1 tab

  2. A Simplified Approach to Measure the Effect of the Microvasculature in Diffusion-weighted MR Imaging Applied to Breast Tumors: Preliminary Results.

    Science.gov (United States)

    Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F

    2016-11-01

    Purpose To evaluate the relative change of the apparent diffusion coefficient (ADC) at low- and medium-b-value regimens as a surrogate marker of microcirculation, to study its correlation with dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging-derived parameters, and to assess its potential for differentiation between malignant and benign breast tumors. Materials and Methods Ethics approval and informed consent were obtained. From May 2013 to June 2015, 61 patients diagnosed with either malignant or benign breast tumors were prospectively recruited. All patients were scanned with a 3-T MR imager, including diffusion-weighted imaging (DWI) and DCE MR imaging. Parametric analysis of DWI and DCE MR imaging was performed, including a proposed marker, relative enhanced diffusivity (RED). Spearman correlation was calculated between DCE MR imaging and DWI parameters, and the potential of the different DWI-derived parameters for differentiation between malignant and benign breast tumors was analyzed by dividing the sample into equally sized training and test sets. Optimal cut-off values were determined with receiver operating characteristic curve analysis in the training set, which were then used to evaluate the independent test set. Results RED had a Spearman rank correlation of 0.61 with the initial area under the curve calculated from DCE MR imaging. Furthermore, RED differentiated cancers from benign tumors with an overall accuracy of 90% (27 of 30) on the test set with 88.2% (15 of 17) sensitivity and 92.3% (12 of 13) specificity. Conclusion This study presents promising results introducing a simplified approach to assess results from a DWI protocol sensitive to the intravoxel incoherent motion effect by using only three b values. This approach could potentially aid in the differentiation, characterization, and monitoring of breast pathologies. © RSNA, 2016 Online supplemental material is available for this article.

  3. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    Science.gov (United States)

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng; Liao, Yin-Yin

    2008-11-01

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 ± 0.01, 0.65 ± 0.05 and 0.98 ± 0.07, respectively, for six independent phantom measurements, and 0.14 ± 0.03, 0.67 ± 0.11 and 0.89 ± 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  4. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, P-H; Chang, C-C [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan (China); Yeh, C-K; Liao, Y-Y [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)], E-mail: mechang@gate.sinica.edu.tw, E-mail: ckyeh@mx.nthu.edu.tw

    2008-11-07

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 {+-} 0.01, 0.65 {+-} 0.05 and 0.98 {+-} 0.07, respectively, for six independent phantom measurements, and 0.14 {+-} 0.03, 0.67 {+-} 0.11 and 0.89 {+-} 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  5. Non-invasive thermal IR detection of breast tumor development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-03-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  6. Evaluation of Tumor Angiogenesis with a Second-Generation US Contrast Medium in a Rat Breast Tumor Model

    International Nuclear Information System (INIS)

    Ko, Eun Young; Lee, Sang Hoon; Kim, Hak Hee; Kim, Sung Moon; Shin, Myung Jin; Kim, Nam Kug; Gong, Gyung Yub

    2008-01-01

    Tumor angiogenesis is an important factor for tumor growth, treatment response and prognosis. Noninvasive imaging methods for the evaluation of tumor angiogenesis have been studied, but a method for the quantification of tumor angiogenesis has not been established. This study was designed to evaluate tumor angiogenesis in a rat breast tumor model by the use of a contrast enhanced ultrasound (US) examination with a second-generation US contrast agent. The alkylating agent 19N-ethyl-N-nitrosourea (ENU) was injected into the intraperitoneal cavity of 30-day-old female Sprague-Dawley rats. Three to four months later, breast tumors were detected along the mammary lines of the rats. A total of 17 breast tumors larger than 1 cm in nine rats were evaluated by gray-scale US, color Doppler US and contrast-enhanced US using SonoVue. The results were recorded as digital video images; time-intensity curves and hemodynamic parameters were analyzed. Pathological breast tumor specimens were obtained just after the US examinations. The tumor specimens were stained with hematoxylin and eosin (H and E) and the expression of CD31, an endothelial cell marker, was determined by immunohistochemical staining. We also evaluated the pathological diagnosis of the tumors and the microvessel density (MVD). Spearman's correlation and the Kruskal-Wallis test were used for the analysis. The pathological diagnoses were 11 invasive ductal carcinomas and six benign intraductal epithelial proliferations. The MVD did not correlate with the pathological diagnosis. However, blood volume (BV) showed a statistically significant correlation with MVD (Spearman's correlation, p < 0.05). Contrast-enhanced US using a second-generation US contrast material was useful for the evaluation of tumor angiogenesis of breast tumors in the rat

  7. Imaging breast tumor vascularization for detection and diagnosis of breast cancer

    NARCIS (Netherlands)

    Heijblom, M.; Klaase, J.M.; van den Engh, F.M.; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2011-01-01

    Breast cancer is one of the major causes of morbidity and mortality in western women. Current screening and diagnostic imaging modalities, like x-ray mammography and ultrasonography, focus on morphological changes of breast tissue. However, these techniques still miss some cancers and often falsely

  8. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    Science.gov (United States)

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  9. Gamma-ray detectors for breast imaging

    Science.gov (United States)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  10. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    Science.gov (United States)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  11. [Tumor and tumor-like benign mesenchymal lesions of the breast].

    Science.gov (United States)

    Bisceglia, M; Nirchio, V; Carosi, I; Cappucci, U; Decata, A; Paragone, T; Di Mattia, A L

    1995-02-01

    All the spectrum is encompassed of those miscellaneous pathologic entities occurring in the mammary stroma which are on record up to date other than "mixed fibroepithelial" tumors (fibroadenomas and phyllodes tumors) and tumors both "pure" and "mixed" originating from myoepithelium (adenomyoepitheliomas and pleomorphic adenomas). Also they were excluded those dysreactive-autoimmune diseases (sarcoidosis, sclerosing lymphocytic lobulitis, lobular granulomatous mastitis) and those inflammatory-infectious conditions (tuberculosis, actinomycosis, foreign body reactions, Mondor's disease) which can mimick breast tumors clinically or on image analysis, but on the contrary not evoking the idea of a tumor on histology. Specifically, inflammatory pseudotumor, myofibroblastoma, leiomyoma, neurinoma/neurofibroma, benign fibrous histiocytoma, hemangiopericytoma, fibromatosis, nodular fascitis, variants of lipoma, mesenchymoma, amartoma and its variants, hemangiomas, pseudoangiomatous hyperplasia of stroma, amyloid tumor, granular cell tumor, are consecutively described and discussed, with a large list of references enclosed to each rubric. Most of the pictures are taken from personally observed lesions of the breast. Only few pictures referred to are from their analogue lesions which occurred in soft parts of other locations, with specific mention of that when it was the case. Of note after reviewing the literature the fact that no glomus tumor, nor Kaposi's sarcoma either sporadic or in the context of any immunodeficiency, nor myelolipoma has been recorded yet.

  12. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  13. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    Science.gov (United States)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  14. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  15. 18F-Fluoride PET/CT tumor burden quantification predicts survival in breast cancer.

    Science.gov (United States)

    Brito, Ana E; Santos, Allan; Sasse, André Deeke; Cabello, Cesar; Oliveira, Paulo; Mosci, Camila; Souza, Tiago; Amorim, Barbara; Lima, Mariana; Ramos, Celso D; Etchebehere, Elba

    2017-05-30

    In bone-metastatic breast cancer patients, there are no current imaging biomarkers to identify which patients have worst prognosis. The purpose of our study was to investigate if skeletal tumor burden determined by 18F-Fluoride PET/CT correlates with clinical outcomes and may help define prognosis throughout the course of the disease. Bone metastases were present in 49 patients. On multivariable analysis, skeletal tumor burden was significantly and independently associated with overall survival (p breast cancer patients (40 for primary staging and the remainder for restaging after therapy). Clinical parameters, primary tumor characteristics and skeletal tumor burden were correlated to overall survival, progression free-survival and time to bone event. The median follow-up time was 19.5 months. 18F-Fluoride PET/CT skeletal tumor burden is a strong independent prognostic imaging biomarker in breast cancer patients.

  16. A novel duct-lobular segmentectomy for breast tumors with nipple discharge using near-infrared indocyanine green fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ohno

    2013-10-01

    Full Text Available A 44-year-old woman was referred to our hospital with pathological nipple discharge from her left breast. Ultrasonography revealed a solid tumor beneath her left areola that measured 17 mm in diameter with a dilated mammary duct. Contrast-enhanced magnetic resonance imaging showed an early-enhanced cystic tumor and a dilated mammary duct. We performed a duct-lobular segmentectomy using near-infrared indocyanine green (ICG-fluorescence imaging. Under general anesthesia, a silicone tube was inserted into an orifice of a fluid-discharging mammary duct, and 1 mL dye-fluorescence liquid containing ICG and indigo carmine was injected into the mammary duct. A periareolar incision was made, and the fluorescence image of the demarcated mammary duct segment was obtained. The mammary duct segment was dissected, along with the demarcation line. The cystic lesion and dilated mammary duct were fully resected, and the pathological diagnosis was intraductal papilloma of the breast. We report that near-infrared ICG fluorescence could be applied for imaging of the mammary duct segment, and the fluorescence image allowed for easier duct-lobular segmentectomy for nipple discharge.

  17. Usefulness and biological background of dynamic contrast-enhanced MR images in patients with primary breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Yutaka; Kurebayashi, Junichi; Sonoo, Hiroshi

    2002-01-01

    Dynamic contrast-enhanced MR images were obtained between September 1998 and May 2000 from 44 primary breast cancer patients who were scheduled to undergo breast-conserving surgery. The MR images and clinico-pathological findings were analyzed to investigate the risk factors for histologically positive margins and histologically positive lymph node metastases. We elucidated the relationship between MR images and the biological background of breast cancer. The following interesting findings were made from these analyses. An irregular shape and unclear border of the tumor mass and the coexistence of daughter nodule(s) were significant risk factors for positive-surgical margins; an irregularly shaped tumor mass and spiculated tumor mass were significant risk factors for positive lymph node metastases; breast tumors with a strand-like appearance had a significantly lower histological grade; breast tumors with high contrast enhancement ratios had a significantly higher nuclear grade and progesterone receptor negativity; and breast tumors showing a ring-like enhancement expressed a low level of VEGF. These findings suggest that preoperative MR images of primary breast cancer provide not only useful information on the extent of breast tumors and the possibility of lymph node metastasis but also on the malignant potency and hormone responsiveness of breast tumors. (author)

  18. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kühr, Marietta; Wolfgarten, Matthias; Stölzle, Marco; Leutner, Claudia; Höller, Tobias; Schrading, Simone; Kuhl, Christiane; Schild, Hans; Kuhn, Walther; Braun, Michael

    2011-01-01

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size ≤3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget’s disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  19. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuehr, Marietta, E-mail: marietta.kuehr@ukb.uni-bonn.de [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Wolfgarten, Matthias; Stoelzle, Marco [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Leutner, Claudia [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Hoeller, Tobias [Department of Medical Statistics and Epidemiology, University of Bonn, Bonn (Germany); Schrading, Simone; Kuhl, Christiane; Schild, Hans [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Kuhn, Walther; Braun, Michael [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany)

    2011-11-15

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size {<=}3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget's disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  20. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  1. Background parenchymal enhancement in breast MRIs of breast cancer patients: Impact on tumor size estimation

    International Nuclear Information System (INIS)

    Baek, Ji Eun; Kim, Sung Hun; Lee, Ah Won

    2014-01-01

    Objective: To evaluate whether the degree of background parenchymal enhancement affects the accuracy of tumor size estimation based on breast MRI. Methods: Three hundred and twenty-two patients who had known breast cancer and underwent breast MRIs were recruited in our study. The total number of breast cancer cases was 339. All images were assessed retrospectively for the level of background parenchymal enhancement based on the BI-RADS criteria. Maximal lesion diameters were measured on the MRIs, and tumor types (mass vs. non-mass) were assessed. Tumor size differences between the MRI-based estimates and estimates based on pathological examinations were analyzed. The relationship between accuracy and tumor types and clinicopathologic features were also evaluated. Results: The cases included minimal (47.5%), mild (28.9%), moderate (12.4%) and marked background parenchymal enhancement (11.2%). The tumors of patients with minimal or mild background parenchymal enhancement were more accurately estimated than those of patients with moderate or marked enhancement (72.1% vs. 56.8%; p = 0.003). The tumors of women with mass type lesions were significantly more accurately estimated than those of the women with non-mass type lesions (81.6% vs. 28.6%; p < 0.001). The tumor of women negative for HER2 was more accurately estimated than those of women positive for HER2 (72.2% vs. 51.6%; p = 0.047). Conclusion: Moderate and marked background parenchymal enhancement is related to the inaccurate estimation of tumor size based on MRI. Non-mass type breast cancer and HER2-positive breast cancer are other factors that may cause inaccurate assessment of tumor size

  2. Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images

    Science.gov (United States)

    Li, Jing; Fan, Ming; Zhang, Juan; Li, Lihua

    2017-03-01

    Convolutional neural networks (CNNs) are the state-of-the-art deep learning network architectures that can be used in a range of applications, including computer vision and medical image analysis. It exhibits a powerful representation learning mechanism with an automated design to learn features directly from the data. However, the common 2D CNNs only use the two dimension spatial information without evaluating the correlation between the adjoin slices. In this study, we established a method of 3D CNNs to discriminate between malignant and benign breast tumors. To this end, 143 patients were enrolled which include 66 benign and 77 malignant instances. The MRI images were pre-processed for noise reduction and breast tumor region segmentation. Data augmentation by spatial translating, rotating and vertical and horizontal flipping is applied to the cases to reduce possible over-fitting. A region-of-interest (ROI) and a volume-of-interest (VOI) were segmented in 2D and 3D DCE-MRI, respectively. The enhancement ratio for each MR series was calculated for the 2D and 3D images. The results for the enhancement ratio images in the two series are integrated for classification. The results of the area under the ROC curve(AUC) values are 0.739 and 0.801 for 2D and 3D methods, respectively. The results for 3D CNN which combined 5 slices for each enhancement ratio images achieved a high accuracy(Acc), sensitivity(Sens) and specificity(Spec) of 0.781, 0.744 and 0.823, respectively. This study indicates that 3D CNN deep learning methods can be a promising technology for breast tumor classification without manual feature extraction.

  3. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  4. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    Science.gov (United States)

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  5. In vivo 31P MR spectroscopy of breast tumors: preliminary results

    International Nuclear Information System (INIS)

    Choe, Bo Young; Kim, Hak Hee; Suh, Tae Suk; Shinn, Kyung Sub; Jung, Sang Seol

    1995-01-01

    To evaluate the various phosphorus metabolism of breast tumors with use of in vivo phosphorus-31 ( 31 P) MR spectroscopy (MRS). Five patients with breast tumor (benign in two, malignant in three) and three normal healthy volunteers participated in this study. All in vivo 31 P MRS examinations were performed on 1.5T whole-body MRI/MRS system by using a Free Induction Decay (FID) pulse sequence. T1-weighted MR images were used for localization of tumors. Peak areas for each phosphorus metabolite were measured using a Marquart algorithm. Breast carcinoma had a substantially larger phosphomonoester (PME) and a smaller phosphocreatine (PCr) peak intensity than normal breast tissue. This was reflected in the relatively higher PME/PCr ratio of breast carcinomas as well as phosphodiester (PDE)/PCr, inorganic phosphate (Pi)/PCr, and adenosine triphosphate (ATP)/PCr ratios, compared with normal controls. The mean pH value of breast tumor demonstrating the alkaline nature was higher than that of normal controls. Spectral patterns between benign breast disease and normal breast tissue were quite similar, and differentiation was not established. Our preliminary study suggests that in vivo 31 P MRS is a noninvasive examination which may be useful in the early differentiation of malignant breast tumors from normal and benign conditions. However, normal control and benign conditions could not be characterized on the basis of the phosphorus metabolite ratios

  6. TH-A-18A-01: Innovation in Clinical Breast Imaging

    International Nuclear Information System (INIS)

    Liu, B; Yang, K; Yaffe, M; Chen, J

    2014-01-01

    Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists. In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging

  7. Semi-automated delineation of breast cancer tumors and subsequent materialization using three-dimensional printing (rapid prototyping).

    Science.gov (United States)

    Schulz-Wendtland, Rüdiger; Harz, Markus; Meier-Meitinger, Martina; Brehm, Barbara; Wacker, Till; Hahn, Horst K; Wagner, Florian; Wittenberg, Thomas; Beckmann, Matthias W; Uder, Michael; Fasching, Peter A; Emons, Julius

    2017-03-01

    Three-dimensional (3D) printing has become widely available, and a few cases of its use in clinical practice have been described. The aim of this study was to explore facilities for the semi-automated delineation of breast cancer tumors and to assess the feasibility of 3D printing of breast cancer tumors. In a case series of five patients, different 3D imaging methods-magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and 3D ultrasound-were used to capture 3D data for breast cancer tumors. The volumes of the breast tumors were calculated to assess the comparability of the breast tumor models, and the MRI information was used to render models on a commercially available 3D printer to materialize the tumors. The tumor volumes calculated from the different 3D methods appeared to be comparable. Tumor models with volumes between 325 mm 3 and 7,770 mm 3 were printed and compared with the models rendered from MRI. The materialization of the tumors reflected the computer models of them. 3D printing (rapid prototyping) appears to be feasible. Scenarios for the clinical use of the technology might include presenting the model to the surgeon to provide a better understanding of the tumor's spatial characteristics in the breast, in order to improve decision-making in relation to neoadjuvant chemotherapy or surgical approaches. J. Surg. Oncol. 2017;115:238-242. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Clinical and ultrasonographic features of male breast tumors: A retrospective analysis.

    Science.gov (United States)

    Yuan, Wei-Hsin; Li, Anna Fen-Yau; Chou, Yi-Hong; Hsu, Hui-Chen; Chen, Ying-Yuan

    2018-01-01

    The purpose of this study was to determine clinical and ultrasonographic characteristics of male breast tumors. The medical records of male patients with breast lesions were retrieved from an electronic medical record database and a pathology database and retrospectively reviewed. A total of 112 men (125 breast masses) with preoperative breast ultrasonography (US) were included (median age, 59.50 years; age range, 15-96 years). Data extracted included patient age, if the lesions were bilateral, palpable, and tender, and the presence of nipple discharge. Breast lesion features on static US images were reviewed by three experienced radiologists without knowledge of physical examination or pathology results, original breast US image interpretations, or surgical outcomes. The US features were documented according to the BI-RADS (Breast Imaging-Reporting and Data System) US lexicons. A forth radiologist compiled the data for analysis. Of the 125 breast masses, palpable tender lumps and bilateral synchronous masses were more likely to be benign than malignant (both, 100% vs 0%, P nipples were common in malignant lesions (P nipple, irregular shape, the presence of an echogenic halo, predominantly internal vascularity, and rich color flow signal on color Doppler ultrasound were significantly related to malignancy (all, P < 0.05). An echogenic halo and the presence of rich color flow signal were independent predictors of malignancy. Specific clinical and US characteristics of male breast tumors may help guide treatment, and determine if surgery or conservative treatment is preferable.

  9. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Vermeulen, Jeroen F; Brussel, Aram SA van; Groep, Petra van der; Morsink, Folkert HM; Bult, Peter; Wall, Elsken van der; Diest, Paul J van

    2012-01-01

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  10. Multicenter prospective study of magnetic resonance imaging prior to breast-conserving surgery for breast cancer.

    Science.gov (United States)

    Liu, Qian; Liu, Yinhua; Xu, Ling; Duan, Xuening; Li, Ting; Qin, Naishan; Kang, Hua; Jiang, Hongchuan; Yang, Deqi; Qu, Xiang; Jiang, Zefei; Yu, Chengze

    2014-01-01

    This multicenter prospective study aimed to assess the utility of dynamic enhanced magnetic resonance imaging (MRI) prior to breast-conserving surgery for breast cancer. The research subjects were drawn from patients with primary early resectable breast cancer treated in the breast disease centers of six three-level hospitals in Beijing from 1 January 2010 to 31 December 2012. The participants were allocated to a breast-conserving surgery group (breast-conserving group) or a total mastectomy group (total mastectomy group). Enhanced MRI was used to measure breast volume, longest diameter of tumor and tumor volume. The correlations between these measurements and those derived from histopathologic findings were assessed. The relationships between the success rate of breast-conserving surgery and MRI- and pathology-based measurement results were statistically analyzed in the breast-conserving group. The study included 461 cases in the total mastectomy group and 195 in the breast-conserving group. Allocation to these groups was based on clinical indications and patient preferences. The cut-off for concurrence between MRI- and pathology-based measurements of the longest diameter of tumor was set at 0.3 cm. In the total mastectomy group, the confidence interval for 95% concurrence of these measurements was 35.41%-44.63%. Correlation coefficients for MRI and histopathology-based measurements of breast volume, tumor volume and tumor volume/breast volume ratio were r = 0.861, 0.569, and 0.600, respectively (all P surgery were 100% and 88.54%, respectively. There were significant correlations between dynamic enhanced MRI- and histopathology-based measurements of the longest diameter of breast lesions, breast and tumor volumes, and breast volume/tumor volume ratios. Preoperative MRI examination improves the success rate of breast-conserving surgery.

  11. Breast cancer imaging with mouse monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Major, P.; Wang Taqui; Unger, M.; Rosenthall, L.

    1989-10-01

    The localization of /sup 111/In-labelled MA5 monoclonal antibody, reactive with a breast tumor associated antigen, was studied in 17 patients. MA5 was selected because (1) it reacts with >95% of primary and metastatic lesions, (2) the recognized antigen is present on the cell surface in vivo and (3) MA5 gives excellent localization in human breast tumor xenografts. Each patient received 2 mg antibody labeled with 5 mCi /sup 111/In and in some cases, 3 mg or 18 mg unlabeled carrier antibody. No serious allergic reactions were noted. There was a large uptake in the liver, less significant uptake in the spleen and bone and minimal accumulation in the bowel. Bone lesions, primary tumors, soft tissue recurrences and lung metastases larger than 3 cm diameter were imaged, while only 1 lesion smaller than 3 cm was detected. Non specific accumulation of tracer was noted at the site of a port-a-cath, in a hematoma, in fibrocystic lesions, and at sites of previous radiation treatment. Extensive fibrosis and poor vascularization characteristic of breast tumors may explain in part the limited sensitivity of the imaging. (orig.).

  12. MRI of breast tumors with emphasis on histopathologic correlation

    International Nuclear Information System (INIS)

    Kuwabara, Masako

    1991-01-01

    Breast MR imaging is now expected as the third most important diagnostic modality. The author investigated relationship between signal intensity of T2 weighted images (T2WI) and various pathological findings of 51 mass lesions in 51 female patients. T2WI were not effective in differentiation between malignant and benign lesions. High signal intensity areas defined visually well correlated with pathological tissues with large water content such as necrosis, edema, cyst, and dilatated ducts. There was also good correlation between low signal intensity areas and pathological tissue with less water content such as fibrosis, scar, and hyalinization. Signal intensity measured by tumor/fat ratio had no correlation with water content. It probably indicates that visually defined signal intensity is more reliable than the measured ratio. In conclusion, it is warrented to say that T2WI is a good tool for investigating secondary changes of breast tumors and helpful in diangosis of high intensity tumors described above. (author)

  13. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  14. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  15. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  16. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  17. Subtraction and dynamic MR images of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yoshitaka; Aoki, Manabu; Harada, Junta (Jikei Univ., Tokyo (Japan). School of Medicine)

    1993-04-01

    The purpose of this study was to evaluate the diagnostic effectiveness of subtraction and dynamic MR imaging in patients with breast masses. In 23 breast cancers and six fibroadenomas, spin echo T1 images were obtained at 0.2 Tesla before and every minute after intravenous injection of Gd-DTPA (0.1 or 0.2 mmol/kg). Subtraction images were obtained sequentially on the CRT monitor. All breast masses were enhanced after gadolinium and stood out as bright lesions on subtraction images. The tumor margin and its extension were more precisely evaluated on subtraction MR images than on conventional postcontrast MR images. Breast cancer showed a characteristic time-intensity curve with an early peak, in contrast to fibroadenoma, which showed a gradual increase in signal intensity. Subtraction MR imaging is a simple method for the evaluation of breast masses, and further, the time-intensity curve obtained by dynamic study is helpful in the differential diagnosis of lesions. (author).

  18. The usefulness of US with contrast agent on breast tumors

    International Nuclear Information System (INIS)

    Jung, Hye An; Jung, Jung Im; Kim, Hak Hee; Son, Sang Bum; Byun, Jae Young; Lee, Jae Mun; Hahn, Sung Tae; Kim, Choon Yul

    2000-01-01

    To evaluate the usefulness of US with contrast agent breast tumors. Fifteen breast tumors in fourteen patients underwent color Doppler US before and after intravenous injection of a microbubble contrast agent (Levovist, Schering AG, Berlin, Germany). Benign lesions were 8 and malignant lesions were 7 among these. Real-time power Doppler ultrasonographic images were recorded on a videotape and representative images were color-printed. Tumor vascularity was analyzed on real-time images in regard to its presence or absence, and changes in diameter and number of vessels, presence or absence of blush around the vessels. Two observers reached a consensus. Results of malignant tumors were compared with those of benign tumors. Color Doppler signal intensity increased in 12 of 15 cases (80%). Number of vessel increased in 9 of 15 cases (60%) and diameter of vessel increased in 12 of 15 cases (80%). Vascular blush around the enhanced vessel was present in 5 of 15 patients (53%). Color Doppler signal increased in 5 of 8 benign lesions (63%) and 7 of 7 malignant lesions (100%). Number of vessel increased in 4 of 8 benign lesion (50%) and 5 of 7 malignant lesions (71%). Diameter of vessel increased in 5 of 8 benign lesions (63%) and 7 of 7 malignant lesions (100%). Blush around the enhanced vessel was present in one of 8 benign lesions (13%) and 4 of 7 malignant lesions (57%). The time to peak enhancement was shorter in malignant cases (mean=45 sec) than benign cases (mean=82 sec). US with contrast agent on breast tumors is effective to detect blood flow within the mass and may be helpful to differentiate malignant from benign lesions.

  19. The development of fluoroandrogens and fluoroprogestins as potential imaging agents for receptor-positive prostate and breast tumors

    International Nuclear Information System (INIS)

    Brandes, S.J.; Katzenellenbogen, J.A.

    1986-01-01

    The assay of progesterone receptor (PR) concentration in breast tumors and androgen receptor (AR) concentration in prostate tumors enables hormone responsive neoplasms to be distinguished from those that are non-responsive. In principle, a positron-emitting progestin or androgen with suitably high affinity and selectivity for PR and AR, respectively, and an adequately high specific activity might provide a means for imaging receptor-positive tumors and quantifying their receptor content in vivo. The use of fluorine-18 as a radiolabel, coupled with the use of positron emission transaxial tomography, appears to be a most favorable approach in the development of receptor binding radiopharmaceuticals for in vivo imaging. Therefore, we have begun a systematic investigation of the development of fluorine-substituted androgens and progestins that might be prepared in F-18 labeled form as probes for AR and PR. (author)

  20. Value of multiparametric magnetic resonance imaging of the breast for the differentiation of fat necrosis and tumor recurrence after breast-conserving surgery. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, Jonas; Krug, Kathrin Barbara [University Hospital Cologne (Germany). Dept. of Diagnostic and Interventional Radiology; Malter, Wolfram [University Hospital Cologne (Germany). Dept. of Obstetrics and Gynaecology; Markiefka, Birgid [University Hospital Cologne (Germany). Inst. of Pathology

    2018-02-15

    In rare cases the differentiation of tumor recurrence and fat necrosis in patients with breast-conserving surgery with or without radiotherapy can be challenging. In such cases magnetic resonance imaging features, in particular strong vs. faint contrast enhancement and diffusion restriction vs. non-restriction can help to characterize such lesions.

  1. The quality of tumor size assessment by contrast-enhanced spectral mammography and the benefit of additional breast MRI.

    Science.gov (United States)

    Lobbes, Marc B I; Lalji, Ulrich C; Nelemans, Patty J; Houben, Ivo; Smidt, Marjolein L; Heuts, Esther; de Vries, Bart; Wildberger, Joachim E; Beets-Tan, Regina G

    2015-01-01

    Background - Contrast-enhanced spectral mammography (CESM) is a promising new breast imaging modality that is superior to conventional mammography for breast cancer detection. We aimed to evaluate correlation and agreement of tumor size measurements using CESM. As additional analysis, we evaluated whether measurements using an additional breast MRI exam would yield more accurate results. Methods - Between January 1(st) 2013 and April 1(st) 2014, 87 consecutive breast cancer cases that underwent CESM were collected and data on maximum tumor size measurements were gathered. In 57 cases, tumor size measurements were also available for breast MRI. Histopathological results of the surgical specimen served as gold standard in all cases. Results - The Pearson's correlation coefficients (PCC) of CESM versus histopathology and breast MRI versus histopathology were all >0.9, p1 cm between the two imaging modalities and histopathological results, we did not observe any advantage of performing an additional breast MRI after CESM in any of the cases. Conclusion - Quality of tumor size measurement using CESM is good and matches the quality of these measurement assessed by breast MRI. Additional measurements using breast MRI did not improve the quality of tumor size measurements.

  2. Needle-based polarization-sensitive OCT of breast tumor (Conference Presentation)

    Science.gov (United States)

    Villiger, Martin; Lorenser, Dirk; McLaughlin, Robert A.; Quirk, Bryden C.; Kirk, Rodney W.; Bouma, Brett E.; Sampson, David D.

    2016-03-01

    OCT imaging through miniature needle probes has extended the range of OCT and enabled structural imaging deep inside breast tissue, with the potential to assist in the intraoperative assessment of tumor margins. However, in many situations, scattering contrast alone is insufficient to clearly identify and delineate malignant areas. Here, we present a portable, depth-encoded polarization-sensitive OCT system, connected to a miniature needle probe. From the measured polarization states we constructed the tissue Mueller matrix at each sample location and improved the accuracy of the measured polarization states through incoherent averaging before retrieving the depth-resolved tissue birefringence. With the Mueller matrix at hand, additional polarization properties such as depolarization are readily available. We then imaged freshly excised breast tissue from a patient undergoing lumpectomy. The reconstructed local retardation highlighted regions of connective tissue, which exhibited birefringence due to the abundance of collagen fibers, and offered excellent contrast to areas of malignant tissue, which exhibited less birefringence due to their different tissue composition. Results were validated against co-located histology sections. The combination of needle-based imaging with the complementary contrast provided by polarization-sensitive analysis offers a powerful instrument for advanced tissue imaging and has potential to aid in the assessment of tumor margins during the resection of breast cancer.

  3. Clinical evaluation of fat suppressed fast-SPGR sequence of the breast MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mitsuyuki; Hasegawa, Makoto; Matsubara, Tadashi [Yokohama Sakae Kyosai Hospital (Japan)

    1998-05-01

    MR-mammography by fat suppressed Fast-SPGR was evaluated for diagnosis and determination of invasion of tumor. Dynamic MRIs were performed in 12 phases, such as, before infusion of contrast media, right after and one to ten minutes after infusion with interval of one minute. In 15 patients (breast cancer, fibroadenoma, lymphocytic lobulitits and cystic intraductal papilloma), underwent MRI, the images were compared with pathological findings. Ten cases were confirmed as malignancy among 11 cases of breast cancer (sensitivity 91%). Eleven cases were confirmed as breast cancer among 12 cases diagnosed as breast cancer by MRI (specificity 92%). In 12 of all 15 cases, benignity or malignancy was checked correctly (accuracy 80%). Invasion of breast cancer was defined as the deep color dyeing area which was neighbored with the tumor in early stage of cystography. Eight of 11 cases were diagnosed precisely with fat suppression image, and nine were by subtraction image. Diagnosis was possible only by subtraction image in a case of scirrhous carcinoma accompanied with intradutal invasion. The area of invasion was not defined correctly in the case accompanied by mastopathy. It is difficult to evaluate benignity or malignancy of mammary gland tumor only by dynamic MRI, it is necessary to diagnose the shape and deep color image of tumor generally. (K.H.)

  4. Robust linearized image reconstruction for multifrequency EIT of the breast.

    Science.gov (United States)

    Boverman, Gregory; Kao, Tzu-Jen; Kulkarni, Rujuta; Kim, Bong Seok; Isaacson, David; Saulnier, Gary J; Newell, Jonathan C

    2008-10-01

    Electrical impedance tomography (EIT) is a developing imaging modality that is beginning to show promise for detecting and characterizing tumors in the breast. At Rensselaer Polytechnic Institute, we have developed a combined EIT-tomosynthesis system that allows for the coregistered and simultaneous analysis of the breast using EIT and X-ray imaging. A significant challenge in EIT is the design of computationally efficient image reconstruction algorithms which are robust to various forms of model mismatch. Specifically, we have implemented a scaling procedure that is robust to the presence of a thin highly-resistive layer of skin at the boundary of the breast and we have developed an algorithm to detect and exclude from the image reconstruction electrodes that are in poor contact with the breast. In our initial clinical studies, it has been difficult to ensure that all electrodes make adequate contact with the breast, and thus procedures for the use of data sets containing poorly contacting electrodes are particularly important. We also present a novel, efficient method to compute the Jacobian matrix for our linearized image reconstruction algorithm by reducing the computation of the sensitivity for each voxel to a quadratic form. Initial clinical results are presented, showing the potential of our algorithms to detect and localize breast tumors.

  5. Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT

    International Nuclear Information System (INIS)

    Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.; Lindfors, Karen K.

    2015-01-01

    Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimal feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C_T) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C_T yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C_T were conducted. The results showed that C_T was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure

  6. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  7. Cone-beam volume CT breast imaging: Feasibility study

    International Nuclear Information System (INIS)

    Chen Biao; Ning Ruola

    2002-01-01

    X-ray projection mammography, using a film/screen combination, or digital techniques, has proven to be the most effective imaging modality currently available for early detection of breast cancer. However, the inherent superimposition of structures makes a small carcinoma (a few millimeters in size) difficult to detect when it is occult or in dense breasts, leading to a high false-positive biopsy rate. Cone-beam x-ray-projection-based volume imaging using flat panel detectors (FPDs) may allow obtaining three-dimensional breast images, resulting in more accurate diagnosis of structures and patterns of lesions while eliminating the hard compression of breasts. This article presents a novel cone-beam volume computed tomographic breast imaging (CBVCTBI) technique based on the above techniques. Through a variety of computer simulations, the key issues of the system and imaging techniques were addressed, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissue and lesions, x-ray setting techniques, the absorbed dose estimation, and the quantitative effect of x-ray scattering on image quality. The preliminary simulation results support the proposed CVBCTBI modality for breast imaging in respect to its feasibility and practicability. The absorbed dose level is comparable to that of current mammography and will not be a prominent problem for this imaging technique. Compared to conventional mammography, the proposed imaging technique with isotropic spatial resolution will potentially provide significantly better low-contrast detectability of breast tumors and more accurate location of breast lesions

  8. Characterization of benign and malignant solid breast masses in harmonic 3D power Doppler imaging

    International Nuclear Information System (INIS)

    Hsiao, Y.-H.; Huang, Y.-L.; Kuo, S.-J.; Liang, W.-M.; Chen, S.-T.; Chen, D.-R.

    2009-01-01

    Purpose: The authors assessed the characteristics of benign and malignant solid breast tumors in harmonic three-dimensional (3D) power Doppler imaging and proposed decision models to classify benign and malignant breast tumors. Materials and methods: A total of 86 malignant and 97 benign harmonic 3D power Doppler US images were analyzed. All the harmonic 3D power Doppler images were obtained using a Voluson730 US system (GE, Zipf, Austria) equipped with a RSP 6-12 transducer and tissue harmonic imaging modalities. Imaging analysis was performed using the Virtual Organ Computer-aided Analysis (VOCAL)-imaging program. Histogram indices, the vascularization index (VI), flow index (FI) and vascularization-flow index (VFI), were calculated for the intra-tumor and for shells with an outside thickness of 3 mm surrounding the breast tumors. The receiver operating characteristic (ROC) curves were calculated to estimate the diagnostic performances. Results: The results revealed that the choice of decision model comprised the parameters of patient age, intra-tumor VI, and tumor volume to classify benign and malignant breast tumors. The area under the ROC curve (Az) was 0.910, accuracy was 81.4%, and sensitivity and specificity were 81.4% and 81.4%, respectively. The parameter intra-tumor VI was the choice for all of the histogram indices in differentiating between malignant and benign lesions. Conclusion: The decision model, which was composed of patient age, tumor volume and intra-tumor VI, and a cut-off value for intra-tumor VI at the upper end of patient age and tumor volume, was recommended in clinical application.

  9. Role of magnetic resonance imaging in breast cancer management

    Directory of Open Access Journals (Sweden)

    Selvi Radhakrishna

    2018-01-01

    Full Text Available Magnetic resonance imaging (MRI of the breast is primarily used as a supplemental tool to breast screening with mammography or ultrasound. A breast MRI is mainly used for women who have been diagnosed with breast cancer, to help measure the size of the cancer, look for other tumors in the breast, and to check for tumors in the opposite breast. For certain women at high risk for breast cancer, a screening MRI is recommended along with a yearly mammogram. MRI is known to give some false positive results which mean more test and/or biopsies for the patient. Thus, although breast MRI is useful for women at high risk, it is rarely recommended as a screening test for women at average risk of breast cancer. Also, breast MRI does not show calcium deposits, known as micro-calcifications which can be a sign of breast cancer.

  10. A portable thermal imaging device as a feedback system for breast cancer treatment

    Science.gov (United States)

    Hoffer, Oshrit A.; Ben-David, Merav A.; Katz, Eyal; Sholomov, Meny; Kelson, Itzhak; Gannot, Israel

    2018-02-01

    Breast cancer is the most frequently diagnosed cancer among women in the Western world. Currently, no imaging technique assesses tumor heat generation and vasculature changes during radiotherapy in viable tumor and as adjuvant therapy. Thermography is a non-ionizing, non-invasive, portable and low-cost imaging modality. The purpose of this study was to investigate the use of thermography in cancer treatment monitoring for feedback purposes. Six stage-IV breast cancer patients with viable breast tumor and 8 patients (9 breasts) who underwent tumor resection were monitored by a thermal camera prior to radiotherapy sessions over several weeks of radiation treatment. The thermal changes over the treated breast were calculated and analyzed for comparison with healthy surrounded breast tissue or contralateral breast. A model of a breast with a tumor was created. The COMSOL FEM software was used to carry out the analysis. The effects of tumor metabolism and breast tissue perfusion on the temperature difference were analyzed. All patients with active tumors exhibited drops in maximal temperature of the tumor during radiation therapy. The patients who underwent radiotherapy as adjuvant treatment exhibited a rise in maximal temperature over the treated breast in correlation with skin erythema during radiation. This difference between the groups was statistically significant (P=0.001). The simulated human breast cancer models analysis showed that tumor aggressiveness reduction causes decrease in the tumor temperature. Inflammation causes vasodilatation and increases tissue perfusion, resulted in an increase in breast tissue temperature. A correlation was demonstrated between the clinical outcome and the simulation. We report a method for monitoring cancer response to radiation therapy, which measures the physiological response along with clinical response. These anticipatory efficacy evaluations of radiotherapy during treatment may further promote changes in treatment regimen

  11. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-11-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.

  12. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Directory of Open Access Journals (Sweden)

    Knopp Michael V

    2007-12-01

    Full Text Available Abstract Background 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing 18F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection. Methods Two breast cancer patients were evaluated. 18F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered 18F-FDG dose. Results One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions. Conclusion Immediate preoperative and postoperative PET/CT imaging, utilizing the same 18F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and

  13. Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

    Directory of Open Access Journals (Sweden)

    Jeroen F Vermeulen

    Full Text Available INTRODUCTION: Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. METHODS: Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. RESULTS: Growth factor receptors were variably expressed in 4.5% (MET up to 38.5% (IGF1-R of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. CONCLUSIONS: Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of

  14. Imaging tumor vascularization for detection and diagnosis of breast cancer

    NARCIS (Netherlands)

    Heijblom, M.; Klaase, J. M.; van den Engh, F. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2011-01-01

    Breast cancer is one of the major causes of morbidity and mortality in western women. Current screening and diagnostic imaging modalities, like x-ray mammography and ultrasonography, focus on morphological changes of breast tissue. However, these techniques still miss some cancers and often falsely

  15. Analogues of estradiol as potential breast tumor imaging agents

    International Nuclear Information System (INIS)

    Gibson, R.E.; Rzeszotarski, W.J.; Ferriera, N.L.; Jagoda, E.M.; Reba, R.C.; Eckelman, W.C.

    1984-01-01

    The radioiodinated analogue of estradiol, 11β-methoxy-17α-[/sup 125/I]iodovinylestradiol (MIVE/sub 2/), has been shown to be a good candidate for the imaging of estrogen dependent breast tumors. Although there has been no extensive study on the sensitivity of radiotracers of this type, the authors have not observed localization of the radiotracer in metastatic lesions containing less than 20 fmole estrogen receptor/mg protein or in bone metasteses. In order to improve the sensitivity, they have examined several structural analogues of moxestrol (the parent structure for MIVE/sub 2/) for affinity to the ER isolated from immature rat uterus. The 11β-ethyl analogue (EEE/sub 2/) of ethynyl estradiol (EE/sub 2/) exhibits the highest affinity with the 11β-methyl analogue second best. Although the lipophilicity is also very high this compound should not be much more lipophilic than 16-iodoestradiol or MIVE/sub 2/ since the introduction of iodine increases the log P by greater than 1. The distribution of the tritiated derivative of EEE/sub 2/ is under study

  16. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and Methylene Blue.

    Science.gov (United States)

    Tummers, Q R J G; Verbeek, F P R; Schaafsma, B E; Boonstra, M C; van der Vorst, J R; Liefers, G-J; van de Velde, C J H; Frangioni, J V; Vahrmeijer, A L

    2014-07-01

    Despite recent developments in preoperative breast cancer imaging, intraoperative localization of tumor tissue can be challenging, resulting in tumor-positive resection margins during breast conserving surgery. Based on certain physicochemical similarities between Technetium((99m)Tc)-sestamibi (MIBI), an SPECT radiodiagnostic with a sensitivity of 83-90% to detect breast cancer preoperatively, and the near-infrared (NIR) fluorophore Methylene Blue (MB), we hypothesized that MB might detect breast cancer intraoperatively using NIR fluorescence imaging. Twenty-four patients with breast cancer, planned for surgical resection, were included. Patients were divided in 2 administration groups, which differed with respect to the timing of MB administration. N = 12 patients per group were administered 1.0 mg/kg MB intravenously either immediately or 3 h before surgery. The mini-FLARE imaging system was used to identify the NIR fluorescent signal during surgery and on post-resected specimens transferred to the pathology department. Results were confirmed by NIR fluorescence microscopy. 20/24 (83%) of breast tumors (carcinoma in N = 21 and ductal carcinoma in situ in N = 3) were identified in the resected specimen using NIR fluorescence imaging. Patients with non-detectable tumors were significantly older. No significant relation to receptor status or tumor grade was seen. Overall tumor-to-background ratio (TBR) was 2.4 ± 0.8. There was no significant difference between TBR and background signal between administration groups. In 2/4 patients with positive resection margins, breast cancer tissue identified in the wound bed during surgery would have changed surgical management. Histology confirmed the concordance of fluorescence signal and tumor tissue. This feasibility study demonstrated an overall breast cancer identification rate using MB of 83%, with real-time intraoperative guidance having the potential to alter patient management. Copyright © 2014 Elsevier Ltd. All

  17. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    Merchant, T.E.

    1992-01-01

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy ( 31 P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31 P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  18. The Human Cell Surfaceome of Breast Tumors

    Science.gov (United States)

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  19. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  20. Phantom experiments using soft-prior regularization EIT for breast cancer imaging.

    Science.gov (United States)

    Murphy, Ethan K; Mahara, Aditya; Wu, Xiaotian; Halter, Ryan J

    2017-06-01

    A soft-prior regularization (SR) electrical impedance tomography (EIT) technique for breast cancer imaging is described, which shows an ability to accurately reconstruct tumor/inclusion conductivity values within a dense breast model investigated using a cylindrical and a breast-shaped tank. The SR-EIT method relies on knowing the spatial location of a suspicious lesion initially detected from a second imaging modality. Standard approaches (using Laplace smoothing and total variation regularization) without prior structural information are unable to accurately reconstruct or detect the tumors. The soft-prior approach represents a very significant improvement to these standard approaches, and has the potential to improve conventional imaging techniques, such as automated whole breast ultrasound (AWB-US), by providing electrical property information of suspicious lesions to improve AWB-US's ability to discriminate benign from cancerous lesions. Specifically, the best soft-regularization technique found average absolute tumor/inclusion errors of 0.015 S m -1 for the cylindrical test and 0.055 S m -1 and 0.080 S m -1 for the breast-shaped tank for 1.8 cm and 2.5 cm inclusions, respectively. The standard approaches were statistically unable to distinguish the tumor from the mammary gland tissue. An analysis of false tumors (benign suspicious lesions) provides extra insight into the potential and challenges EIT has for providing clinically relevant information. The ability to obtain accurate conductivity values of a suspicious lesion (>1.8 cm) detected from another modality (e.g. AWB-US) could significantly reduce false positives and result in a clinically important technology.

  1. The use of image morphing to improve the detection of tumors in emission imaging

    International Nuclear Information System (INIS)

    Dykstra, C.; Greer, K.; Jaszczak, R.; Celler, A.

    1999-01-01

    Two of the limitations on the utility of SPECT and planar scintigraphy for the non-invasive detection of carcinoma are the small sizes of many tumors and the possible low contrast between tumor uptake and background. This is particularly true for breast imaging. Use of some form of image processing can improve the visibility of tumors which are at the limit of hardware resolution. Smoothing, by some form of image averaging, either during or post-reconstruction, is widely used to reduce noise and thereby improve the detectability of regions of elevated activity. However, smoothing degrades resolution and, by averaging together closely spaced noise, may make noise look like a valid region of increased uptake. Image morphing by erosion and dilation does not average together image values; it instead selectively removes small features and irregularities from an image without changing the larger features. Application of morphing to emission images has shown that it does not, therefore, degrade resolution and does not always degrade contrast. For these reasons it may be a better method of image processing for noise removal in some images. In this paper the authors present a comparison of the effects of smoothing and morphing using breast and liver studies

  2. Assessment of breast tumor size in electrical impedance scanning

    International Nuclear Information System (INIS)

    Kim, Sungwhan

    2012-01-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility. (paper)

  3. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast. A comparative study with MRI

    International Nuclear Information System (INIS)

    Kim, Bom Sahn

    2012-01-01

    The aim of this study was to evaluate the adjunctive benefits of breast-specific gamma imaging (BSGI) versus magnetic resonance imaging (MRI) in breast cancer patients with dense breasts. This study included a total of 66 patients (44.1±8.2 years) with dense breasts (breast density >50%) and already biopsy-confirmed breast cancer. All of the patients underwent BSGI and MRI as part of an adjunct modality before the initial therapy. Of 66 patients, the 97 undetermined breast lesions were newly detected and correlated with the biopsy results. Twenty-six of the 97 breast lesions proved to be malignant tumors (invasive ductal cancer, n=16; ductal carcinoma in situ, n=6; mixed or other malignancies, n=4); the remaining 71 lesions were diagnosed as benign tumors. The sensitivity and specificity of BSGI were 88.8% (confidence interval (CI), 69.8-97.6%) and 90.1% (CI, 80.7-95.9%), respectively, while the sensitivity and specificity of MRI were 92.3% (CI, 74.9-99.1%) and 39.4% (CI, 28.0-51.7%), respectively (p<0.0001). MRI detected 43 false-positive breast lesions, 37 (86.0%) of which were correctly diagnosed as benign lesions using BSGI. In 12 malignant lesions <1 cm, the sensitivities of BSGI and MR imaging were 83.3% (CI, 51.6-97.9%) and 91.7% (CI, 61.5-99.8%), respectively. BSGI showed an equivocal sensitivity and a high specificity compared to MRI in the diagnosis of breast lesions. In addition, BSGI had a good sensitivity in discriminating breast cancers ≤1 cm. The results of this study suggest that BSGI could play a crucial role as an adjunctive imaging modality which can be used to evaluate breast cancer patients with dense breasts. (author)

  4. Noninvasive imaging of breast cancer

    International Nuclear Information System (INIS)

    Medarova, Z.

    2009-01-01

    With the development of molecularly targeted cancer therapies, it is highly advantageous to be able to determine their efficacy, to improve overall patient survival. Non-invasive imaging techniques are currently available for visualizing different pathological conditions of the human body, but their use for cancer monitoring is limited due to the lack of tumor-specific imaging probes. This review will attempt to summarize the current clinical diagnostic approaches for breast cancer detection, staging, and therapy assessment. In addition, I will present some novel concepts from the field of molecular imaging that form the basis of some of our research. We believe that this general imaging strategy has the potential of significantly advancing our ability to diagnose breast cancer at the earliest stages of the pathology, before any overt clinical symptoms have developed, as well as to better direct the development of molecularly-targeted individualized therapy protocols.

  5. CYBPET: a cylindrical PET system for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj, Iran, Islamic Republic of and Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Rome (Italy)]. E-mail: akarimian@nrcam.org; Thompson, C.J. [Montreal Neurological Institute, McGill University, Montreal QC (Canada); Sarkar, S. [Medical physics Department of Tehran University of Medical Sciences and (RCSTIM), Tehran (Iran, Islamic Republic of); Raisali, G. [Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj (Iran, Islamic Republic of); Pani, R. [Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome (Italy); Davilu, H. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sardari, D. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2005-06-11

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 {mu}Ci/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  6. CYBPET: a cylindrical PET system for breast imaging

    International Nuclear Information System (INIS)

    Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-01-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET

  7. Differentiation of recurrent breast cancer from radiation fibrosis with dynamic gadolinium-enhanced MR imaging

    International Nuclear Information System (INIS)

    Dao, T.H.; Campana, F.; Fourquet, A.; Rahmouni, A.

    1991-01-01

    This paper assesses the ability of dynamic gadolinium-enhanced MR imaging to differentiate radiation fibrosis from tumor recurrence of breast cancer after conservative treatment. Twenty-five women with previous breast cancer treated with radiation therapy underwent MR imaging examination. Tumor recurrence was suspected on palpation of masses (18 cases) or at mammography (7 cases). The MR imaging protocol was performed on a 0.5-T imager with a breast coil and included T1 and T2 spin-echo, short To inversion recovery (STIR), and dynamic gadolinium-enhanced T1-weighted sequenced to evaluate the hemokinetics of the lesion. Ratios of signal intensity of suspected lesions to that of fat, surrounding breast gland, and background noise were calculated. Percutaneous biopsies were performed in all cases after MR imaging. Curves of signal-to-noise ratio of recurrences (5 cases) showed an early enhancement within the first minutes after injection, although localized fibrosis (20 cases) was not significantly enhanced. T2 and STIR sequences were not contributive in differentiating fibrosis from tumor recurrence

  8. Innovative biomagnetic imaging sensors for breast cancer: A model-based study

    International Nuclear Information System (INIS)

    Deng, Y.; Golkowski, M.

    2012-01-01

    Breast cancer is a serious potential health problem for all women and is the second leading cause of cancer deaths in the United States. The current screening procedures and imaging techniques, including x-ray mammography, clinical biopsy, ultrasound imaging, and magnetic resonance imaging, provide only 73% accuracy in detecting breast cancer. This gives the impetus to explore alternate techniques for imaging the breast and detecting early stage tumors. Among the complementary methods, the noninvasive biomagnetic breast imaging is attractive and promising, because both ionizing radiation and breast compressions that the prevalent x-ray mammography suffers from are avoided. It furthermore offers very high contrast because of the significant electromagnetic properties' differences between the cancerous, benign, and normal breast tissues. In this paper, a hybrid and accurate modeling tool for biomagnetic breast imaging is developed, which couples the electromagnetic and ultrasonic energies, and initial validations between the model predication and experimental findings are conducted.

  9. A Quantitative Diffuse Reflectance Imaging (QDRI System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Brandon S Nichols

    Full Text Available In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS, our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI system utilizing a wide-field (imaging area = 17 cm(2 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1 and scattering (μs' = 7.0-9.7 cm(-1 coefficients. Very low inter-channel and CCD crosstalk was observed (2% max when used on turbid media (including breast tissue. A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm of an entire margin (area = 17 cm(2 in 13.8 minutes (1.23 cm(2/min. Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative

  10. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Breast cancer imaging: Mammography among women of up to 45 years

    International Nuclear Information System (INIS)

    Schnejder-Wilk, A.

    2010-01-01

    Background: Among women under the age of 40, screening mammography examinations are not performed routinely. An ultrasonography scan is considered to be a basic breast imaging examination among younger women. The purpose of this study was to analyze mammography images, as well as to evaluate the usefulness and role of mammography in breast cancer diagnostic processes in women of up to 45 years, based on own experience. Material/Methods: A retrospective analysis of mammography images, including 144 cases of breast cancer diagnosed in the group of 140 women of 45 years of age. All the patients underwent pre-treatment mammography and surgery procedure. The images were evaluated in accordance to BIRADS criteria. Lesions detectable in mammography were grouped as follows: spiculated mass; nonmicrocalcified oval/round mass; microcalcified mass (regardless of shape); microcalcifications; architectural distortion; breast tissue asymmetry. Results: The most common mammographic symptom was solid tumor (41%), followed by microcalcified tumors (20.8%). Clusters of microcalcifications constituted 17.4% of mammography findings. In 4.9% of mammography scans, examination did not reveal any pathological lesions. Conclusions: Breast cancer mammograms of women aged up to 45 years do not differ from diagnostic pictures of breast cancer in older women. The diagnostic appearance of breast cancer in 1/3 of the patients involved microcalcifications detectable only on mammograms. All the women with suspicion of breast cancer should have their mammography examinations performed, irrespective of ultrasonography scans. (author)

  12. Interobserver variability in identification of breast tumors in MRI and its implications for prognostic biomarkers and radiogenomics

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ashirbani, E-mail: as698@duke.edu; Grimm, Lars J., E-mail: lars.grimm@duke.edu; Harowicz, Michael, E-mail: michael.harowicz@duke.edu; Ghate, Sujata V., E-mail: sujata.ghate@duke.edu; Kim, Connie, E-mail: connie.kim@duke.edu; Walsh, Ruth, E-mail: ruth.walsh@duke.edu; Mazurowski, Maciej A., E-mail: maciej.mazurowski@duke.edu [Department of Radiology, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705 (United States)

    2016-08-15

    Purpose: To assess the interobserver variability of readers when outlining breast tumors in MRI, study the reasons behind the variability, and quantify the effect of the variability on algorithmic imaging features extracted from breast MRI. Methods: Four readers annotated breast tumors from the MRI examinations of 50 patients from one institution using a bounding box to indicate a tumor. All of the annotated tumors were biopsy proven cancers. The similarity of bounding boxes was analyzed using Dice coefficients. An automatic tumor segmentation algorithm was used to segment tumors from the readers’ annotations. The segmented tumors were then compared between readers using Dice coefficients as the similarity metric. Cases showing high interobserver variability (average Dice coefficient <0.8) after segmentation were analyzed by a panel of radiologists to identify the reasons causing the low level of agreement. Furthermore, an imaging feature, quantifying tumor and breast tissue enhancement dynamics, was extracted from each segmented tumor for a patient. Pearson’s correlation coefficients were computed between the features for each pair of readers to assess the effect of the annotation on the feature values. Finally, the authors quantified the extent of variation in feature values caused by each of the individual reasons for low agreement. Results: The average agreement between readers in terms of the overlap (Dice coefficient) of the bounding box was 0.60. Automatic segmentation of tumor improved the average Dice coefficient for 92% of the cases to the average value of 0.77. The mean agreement between readers expressed by the correlation coefficient for the imaging feature was 0.96. Conclusions: There is a moderate variability between readers when identifying the rectangular outline of breast tumors on MRI. This variability is alleviated by the automatic segmentation of the tumors. Furthermore, the moderate interobserver variability in terms of the bounding box

  13. Nuclear medicine in breast cancer diagnostics: Primary tumor and lymphatic metastasis

    Science.gov (United States)

    Sinilkin, I.; Medvedeva, A.; Chernov, V.; Slonimskaya, E.; Zelchan, R.; Bragina, O.

    2017-09-01

    The purpose of the study: to assess the possibility of using nuclear medicine techniques at the stages of diagnosis and treatment of breast cancer. Materials and Methods: The study included 290 patients with breast cancer and 70 patients with benign breast tumors. The study was used as a radiopharmaceutical 99mTc-MIBI, 199Tl for imaging tumors and colloid 99mTc-Aloteh for visualization sentinel lymph nodes (SLN), colloid was injected peritumoral in four points to 80 MBq one day prior to the planned operation. Results: The sensitivity of SPECT using both 99mTc-MIBI and 199Tl for breast cancer detection was shown to be rather high, being 98.5% and 98%, respectively. It should be noted that the sensitivity of SPECT in detection of small tumors (less than 1 cm in diameter) and multicentric tumors was not high irrespective of the radioisotope used (60% and 65% with 99mTc-MIBI and 65% and 59% with 199Tl, respectively). The difference in the sensitivity was found between 99mTc-MIBI and 199T for the detection of regional lymph node metastasis (91% vs 70%). SLN were detected in 31 patients. The most commonly SLN were defined in the axillary region of 96.7%. In 22 (70.9%) patients there was no metastasis SLN. The sensitivity of the method was 91.2%, specificity of 100%. Conclusion: The specificity of SPECT with 199Tl was higher than that with 99mTc-MIBI. The data obtained show that SPECT with 199Tl can be recommended for its use as an additional breast cancer detection method in cases when other imaging techniques and histological findings are not accurate enough. The clinical study of 99mTc-Aloteh, a new radiopharmaceutical agent, has shown that the studied colloid has high uptake level in SLN and can be successfully used for visualization of SLN in patients with breast cancer.

  14. Breast cancer tumor classification using LASSO method selection approach

    International Nuclear Information System (INIS)

    Celaya P, J. M.; Ortiz M, J. A.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Ortiz R, J. M.

    2016-10-01

    Breast cancer is one of the leading causes of deaths worldwide among women. Early tumor detection is key in reducing breast cancer deaths and screening mammography is the widest available method for early detection. Mammography is the most common and effective breast cancer screening test. However, the rate of positive findings is very low, making the radiologic interpretation monotonous and biased toward errors. In an attempt to alleviate radiological workload, this work presents a computer-aided diagnosis (CAD x) method aimed to automatically classify tumor lesions into malign or benign as a means to a second opinion. The CAD x methos, extracts image features, and classifies the screening mammogram abnormality into one of two categories: subject at risk of having malignant tumor (malign), and healthy subject (benign). In this study, 143 abnormal segmentation s (57 malign and 86 benign) from the Breast Cancer Digital Repository (BCD R) public database were used to train and evaluate the CAD x system. Percentile-rank (p-rank) was used to standardize the data. Using the LASSO feature selection methodology, the model achieved a Leave-one-out-cross-validation area under the receiver operating characteristic curve (Auc) of 0.950. The proposed method has the potential to rank abnormal lesions with high probability of malignant findings aiding in the detection of potential malign cases as a second opinion to the radiologist. (Author)

  15. Breast cancer tumor classification using LASSO method selection approach

    Energy Technology Data Exchange (ETDEWEB)

    Celaya P, J. M.; Ortiz M, J. A.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Ortiz R, J. M., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico)

    2016-10-15

    Breast cancer is one of the leading causes of deaths worldwide among women. Early tumor detection is key in reducing breast cancer deaths and screening mammography is the widest available method for early detection. Mammography is the most common and effective breast cancer screening test. However, the rate of positive findings is very low, making the radiologic interpretation monotonous and biased toward errors. In an attempt to alleviate radiological workload, this work presents a computer-aided diagnosis (CAD x) method aimed to automatically classify tumor lesions into malign or benign as a means to a second opinion. The CAD x methos, extracts image features, and classifies the screening mammogram abnormality into one of two categories: subject at risk of having malignant tumor (malign), and healthy subject (benign). In this study, 143 abnormal segmentation s (57 malign and 86 benign) from the Breast Cancer Digital Repository (BCD R) public database were used to train and evaluate the CAD x system. Percentile-rank (p-rank) was used to standardize the data. Using the LASSO feature selection methodology, the model achieved a Leave-one-out-cross-validation area under the receiver operating characteristic curve (Auc) of 0.950. The proposed method has the potential to rank abnormal lesions with high probability of malignant findings aiding in the detection of potential malign cases as a second opinion to the radiologist. (Author)

  16. International study on inter-reader variability for circulating tumor cells in breast cancer

    NARCIS (Netherlands)

    Ignatiadis, Michail; Riethdorf, Sabine; Bidard, François-Clement; Vaucher, Isabelle; Khazour, Mustapha; Rothe, Francoise; Metallo, Jessica; Rouas, Ghizlane; Payne, Rachel E.; Coombes, Raoul Charles; Teufel, Ingrid; Andergassen, Ulrich; Apostolaki, Stella; Politaki, Eleni; Mavroudis, Dimitris; Bessi, Silvia; Pestrin, Martta; di Leo, Angelo; Campion, Michael; Reinholz, Monica; Perez, Edith; Piccart, Martine; Borgen, Elin; Naume, Bjorn; Jimenez, Jose; Aura, Claudia Monica; Zorzino, Laura; Cassatella, Maria Cristina; Sandri, Maria Teresa; Mostert, Bianca; Sleijfer, Stefan; Kraan, Jaco; Janni, Wolfgang; Fehm, Tanja; Rack, Brigitte; Terstappen, Leonardus Wendelinus Mathias Marie; Repollet, Madeline; Pierga, Jean-Yves; Miller, Craig; Sotiriou, Christos; Michiels, Stefan; Pantel, Klaus

    2014-01-01

    IntroductionCirculating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement. MethodsCellSearch® images (N = 272) of either CTCs or white blood cells or

  17. Tumor scintigraphy using 123I-labelled estradiol in breast cancer - receptor scintigraphy

    International Nuclear Information System (INIS)

    Scheidhauer, K.; Mueller, S.; Smolarz, K.; Braeutigam, P.; Briele, B.

    1991-01-01

    16-α- 123 I-Iodestradiol-17β ( 123 I-E 2 ) as a receptor-specific radiopharmacon was used for scintigraphic tumor detection in 62 patients suspected of breast cancer. The studies were performed as a multicenter trial to validate the method and to overcome methodical problems. A fast tracer elimination from the blood pool into the liver was seen, followed by biliary excretion allowing early imaging of the thorax due to low background activity but resulting in difficult imaging conditions of the abdomen. In 42 patients (30 carcinomas, 12 benign lesions) are overall sensitivity was 66%. Some patients with breast cancer showed focal or diffuse uptake in the area of primary lymph drainage without any clinical correlation. There was only one false-positive result in a receptor-negative primary carcinoma. The sensitivity of 123 I-E 2 in the detection of primary breast cancer or metastases and recurrences is low compared to mammography and other methods. Differentiation of malignant and benign tissue is difficult as both may have a positive ER status, in. Nevertheless, 123 I-E 2 scintigraphy is an in vivo imaging technique for the detection of breast cancer depending on the ER status and provides information about tumor localisation. It may become a specific method for the non-invasive diagnosis of the ER status and may be helpful in follow-up studies. As a receptor-specific agent 123 I-E 2 may give answers to questions of tumor heterogeneity and changes of the ER status during therapy. (orig./MG) [de

  18. Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT.

    Science.gov (United States)

    Teixeira, Suzana C; Rebolleda, José Ferrér; Koolen, Bas B; Wesseling, Jelle; Jurado, Raúl Sánchez; Stokkel, Marcel P M; Del Puig Cózar Santiago, María; van der Noort, Vincent; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2016-06-01

    The purposes of this study were to evaluate the performance of a mammography with molecular imaging PET (MAMMI-PET) system for breast imaging in the hanging-breast position for the visualization of primary breast cancer lesions and to compare this method with whole-body PET/CT. Between March 2011 and March 2014, a prospective evaluation included women with one or more histologically confirmed primary breast cancer lesions (index lesions). After injection of 180-240 MBq of (18)F-FDG, whole-body PET/CT and MAMMI-PET acquisitions were performed, index lesions were scored 0, 1, or 2 for FDG uptake relative to background. Detection and FDG uptake were compared by breast length, maximal tumor diameter, affected breast quadrants, tumor grade, and histologic and immunologic sub-types. Finally, the two PET modalities were compared for detection of index lesions. For 234 index lesions (diameter, 5-170 mm), the overall sensitivity was 88.9% for MAMMI-PET and 91% for PET/CT (p = 0.61). Twenty-three (9.8%) index lesions located too close to the pectoral muscle were missed with MAMMI-PET, and 20 index lesions were missed with PET/CT. Lesion visibility on MAMMI-PET images was influenced by tumor grade (p = 0.034) but not by cancer subtype (p = 0.65). Although in an overall evaluation MAMMI-PET was not superior to PET/CT, MAMMI-PET does have higher sensitivity for primary breast cancer lesions within the scanning range of the device. Optimization of the positioning device may increase visualization of the most dorsal lesions.

  19. MR imaging of the breast with Gd-DTPA enhancement

    International Nuclear Information System (INIS)

    Hachiya, Junichi; Seki, Tsuneaki; Okada, Minoru; Nitatori, Toshiaki; Korenaga, Tateo; Furuya, Yoshiro

    1991-01-01

    The accuracy of MR imaging with Gd-DTPA enhancement was compared with mammography and ultrasonography in 52 patients with clinically palpable benign and malignant breast masses (36 carcinomas, 2 malignant phyllodes tumors, 7 fibroadenomas, 7 cysts). On dynamic MR imaging, carcinomas and fibroadenomas were discriminated by their different dynamic enhancement profiles. In carcinomas, signal intensity increased rapidly, reaching a peak or plateau within 2 min after the injection of contrast medium. In fibroadenomas, signal intensity showed a much slower continuous increase without ceasing until about 8 min after injection. Malignant phyllodes tumors showed a dynamic enhancement profile identical to that of benign fibroadenomas. MR imaging correctly identified 84% of malignant tumors, 86% of fibroadenomas, and 100% of cysts, and was substantially more accurate in tissue characterization than mammography. The results of ultrasonography were highly similar to those of MR imaging. However, no single modality was infallible, and the three modalities were complementary rather than competitive. Considering the high cost and long examination time of MR imaging, mammography supplemented by ultrasonography seems to be the method of choice in the diagnosis of breast lesions. Nevertheless, MR imaging can add important information when the results of mammography and ultrasonography are insufficient or contradictory. (author)

  20. Bilateral malignant phyllodes tumor of the breast | Odik | Nigerian ...

    African Journals Online (AJOL)

    ... biphasic tumors, arising from the intra-lobular breast stroma. It constitutes less than 1%of all breast tumors. Bilateralmalignant phyllodes tumor is uncommon.We report a case of 32-year oldmultiparouswoman who died of multi-organ metastatic disease. The diagnosis was based on histology report of the breast specimen.

  1. Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection

    Science.gov (United States)

    Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.

  2. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions

    Science.gov (United States)

    Robbins, Constance M.; Raghavan, Guruprasad; Antaki, James F.; Kainerstorfer, Jana M.

    2017-12-01

    In breast cancer diagnosis and therapy monitoring, there is a need for frequent, noninvasive disease progression evaluation. Breast tumors differ from healthy tissue in mechanical stiffness as well as optical properties, which allows optical methods to detect and monitor breast lesions noninvasively. Spatial frequency-domain imaging (SFDI) is a reflectance-based diffuse optical method that can yield two-dimensional images of absolute optical properties of tissue with an inexpensive and portable system, although depth penetration is limited. Since the absorption coefficient of breast tissue is relatively low and the tissue is quite flexible, there is an opportunity for compression of tissue to bring stiff, palpable breast lesions within the detection range of SFDI. Sixteen breast tissue-mimicking phantoms were fabricated containing stiffer, more highly absorbing tumor-mimicking inclusions of varying absorption contrast and depth. These phantoms were imaged with an SFDI system at five levels of compression. An increase in absorption contrast was observed with compression, and reliable detection of each inclusion was achieved when compression was sufficient to bring the inclusion center within ˜12 mm of the phantom surface. At highest compression level, contrasts achieved with this system were comparable to those measured with single source-detector near-infrared spectroscopy.

  3. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning.

    Science.gov (United States)

    Mani, Subramani; Chen, Yukun; Arlinghaus, Lori R; Li, Xia; Chakravarthy, A Bapsi; Bhave, Sandeep R; Welch, E Brian; Levy, Mia A; Yankeelov, Thomas E

    2011-01-01

    The ability to predict early in the course of treatment the response of breast tumors to neoadjuvant chemotherapy can stratify patients based on response for patient-specific treatment strategies. Currently response to neoadjuvant chemotherapy is evaluated based on physical exam or breast imaging (mammogram, ultrasound or conventional breast MRI). There is a poor correlation among these measurements and with the actual tumor size when measured by the pathologist during definitive surgery. We tested the feasibility of using quantitative MRI as a tool for early prediction of tumor response. Between 2007 and 2010 twenty consecutive patients diagnosed with Stage II/III breast cancer and receiving neoadjuvant chemotherapy were enrolled on a prospective imaging study. Our study showed that quantitative MRI parameters along with routine clinical measures can predict responders from non-responders to neoadjuvant chemotherapy. The best predictive model had an accuracy of 0.9, a positive predictive value of 0.91 and an AUC of 0.96.

  4. Digital optical tomography system for dynamic breast imaging

    Science.gov (United States)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  5. Tumor bed delineation for external beam accelerated partial breast irradiation: A systematic review

    International Nuclear Information System (INIS)

    Yang, T. Jonathan; Tao, Randa; Elkhuizen, Paula H.M.; Vliet-Vroegindeweij, Corine van; Li, Guang; Powell, Simon N.

    2013-01-01

    In recent years, accelerated partial breast irradiation (APBI) has been considered an alternative to whole breast irradiation for patients undergoing breast-conserving therapy. APBI delivers higher doses of radiation in fewer fractions to the post-lumpectomy tumor bed with a 1–2 cm margin, targeting the area at the highest risk of local recurrence while sparing normal breast tissue. However, there are inherent challenges in defining accurate target volumes for APBI. Studies have shown that significant interobserver variation exists among radiation oncologists defining the lumpectomy cavity, which raises the question of how to improve the accuracy and consistency in the delineation of tumor bed volumes. The combination of standardized guidelines and surgical clips significantly improves an observer’s ability in delineation, and it is the standard in multiple ongoing external-beam APBI trials. However, questions about the accuracy of the clips to mark the lumpectomy cavity remain, as clips only define a few points at the margin of the cavity. This paper reviews the techniques that have been developed so far to improve target delineation in APBI delivered by conformal external beam radiation therapy, including the use of standardized guidelines, surgical clips or fiducial markers, pre-operative computed tomography imaging, and additional imaging modalities, including magnetic resonance imaging, ultrasound imaging, and positron emission tomography/computed tomography. Alternatives to post-operative APBI, future directions, and clinical recommendations were also discussed

  6. Role of magnetic resonance imaging (MRI), MR spectroscopy (MRS) and other imaging modalities in breast cancer

    International Nuclear Information System (INIS)

    Sharma, Uma; Virendra Kumar; Jagannathan, N.R.

    2004-01-01

    Breast cancer is the commonest cancer among women world over and the diagnosis continues to generate fear and turmoil in the life of patients and their families. This article describes the currently available techniques used for screening primary and recurrent breast cancers and the evaluation of therapeutic response of breast cancer with special emphasis on MRI and MRS techniques. MRI, a noninvasive technique, provides anatomic images in multiple planes enabling tissue characterization. Contrast enhanced MR studies have been found to be useful in the diagnosis of small tumors in dense breast benign diseases from malignant ones. In vivo magnetic resonance spectroscopy (MRS) is another useful technique for diagnosis and for assessing the biochemical status of normal and diseased tissues. Being noninvasive, MR techniques can be used repetitively for assessment of response of the tumor to various therapeutic regimens and for evaluating the efficacy of drugs at both the structural and molecular level. An overview of the various aspects of different imaging modalities used in breast cancer research including various in vivo MR methodologies with clinical examples is presented in this review. (author)

  7. Differential diagnosis of benign and malignant breast tumors by high frequency molybdenum-target X-ray photography

    International Nuclear Information System (INIS)

    Mai Yuanqi; Wang Maosheng; Huang Jian; Cui Guoru; Liang Zhicong; Lu Yingying

    2008-01-01

    Objective: To explore the X-ray Image of benign and malignant breast lesions (tumors) in order to improve their differcatial diagnostic level. Methods: X-ray image changes of 63 malignant breast neoplasms were described by the mammography and in comparision with those of 43 benign masses. Results: The accordance percentages between the X-ray and histological examinations for the benign and malignant neoplasms were shown as 85% and 90.6% respectively. Spiculated mass, calcification granules in clusters and other images were found to be indication of benign or malignant breast lesion. Conclusion: The High Frequency Molybdenum-target X-ray Photography can provide effective imaging data for diagnosis and distinguish between the benign and malignant breast lesions. (authors)

  8. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  9. Towards intraoperative assessment of tumor margins in breast surgery using optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Kennedy, Brendan F.; Wijesinghe, Philip; Allen, Wes M.; Chin, Lixin; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.

    2016-03-01

    Surgical excision of tumor is a critical factor in the management of breast cancer. The most common surgical procedure is breast-conserving surgery. The surgeon's goal is to remove the tumor and a rim of healthy tissue surrounding the tumor: the surgical margin. A major issue in breast-conserving surgery is the absence of a reliable tool to guide the surgeon in intraoperatively assessing the margin. A number of techniques have been proposed; however, the re-excision rate remains high and has been reported to be in the range 30-60%. New tools are needed to address this issue. Optical coherence elastography (OCE) shows promise as a tool for intraoperative tumor margin assessment in breast-conserving surgery. Further advances towards clinical translation are limited by long scan times and small fields of view. In particular, scanning over sufficient areas to assess the entire margin in an intraoperative timeframe has not been shown to be feasible. Here, we present a protocol allowing ~75% of the surgical margins to be assessed within 30 minutes. To achieve this, we have incorporated a 65 mm-diameter (internal), wide-aperture annular piezoelectric transducer, allowing the entire surface of the excised tumor mass to be automatically imaged in an OCT mosaic comprised of 10 × 10 mm tiles. As OCT is effective in identifying adipose tissue, our protocol uses the wide-field OCT to selectively guide subsequent local OCE scanning to regions of solid tissue which often present low contrast in OCT images. We present promising examples from freshly excised human breast tissue.

  10. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  11. Deep learning based classification of breast tumors with shear-wave elastography.

    Science.gov (United States)

    Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong

    2016-12-01

    This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. One-Step 18F-Labeling of Estradiol Derivative for PET Imaging of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Hongbo Huang

    2018-01-01

    Full Text Available Positron emission tomography (PET imaging is a useful method to evaluate in situ estrogen receptor (ER status for the early diagnosis of breast cancer and optimization of the appropriate treatment strategy. The 18F-labeled estradiol derivative has been successfully used to clinically assess the ER level of breast cancer. In order to simplify the radiosynthesis process, one-step 18F-19F isotope exchange reaction was employed for the 18F-fluorination of the tracer of [18F]AmBF3-TEG-ES. The radiotracer was obtained with the radiochemical yield (RCY of ~61% and the radiochemical purity (RCP of >98% within 40 min. Cell uptake and blocking assays indicated that the tracer could selectively accumulate in the ER-positive human breast cancer cell lines MCF-7 and T47D. In vivo PET imaging on the MCF-7 tumor-bearing mice showed relatively high tumor uptake (1.4~2.3 %D/g and tumor/muscle uptake ratio (4~6. These results indicated that the tracer is a promising PET imaging agent for ER-positive breast cancers.

  13. DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers

    KAUST Repository

    Fan, Ming

    2017-12-08

    Breast tumor heterogeneity is related to risk factors that lead to worse prognosis, yet such heterogeneity has not been well studied.To predict the Ki-67 status of estrogen receptor (ER)-positive breast cancer patients via analysis of tumor heterogeneity with subgroup identification based on patterns of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Retrospective study.Seventy-seven breast cancer patients with ER-positive breast cancer were investigated, of whom 51 had low Ki-67 expression.T1 -weighted 3.0T DCE-MR images.Each tumor was partitioned into multiple subregions using three methods based on patterns of dynamic enhancement: 1) time to peak (TTP), 2) peak enhancement rate (PER), and 3) kinetic pattern clustering (KPC). In each tumor subregion, 18 texture features were computed.Univariate and multivariate logistic regression analyses were performed using a leave-one-out-based cross-validation (LOOCV) method. The partitioning results were compared with the same feature extraction methods across the whole tumor.In the univariate analysis, the best-performing feature was the texture statistic of sum variance in the tumor subregion with early TTP for differentiating between patients with high and low Ki-67 expression (area under the receiver operating characteristic curves, AUC = 0.748). Multivariate analysis showed that features from the tumor subregion associated with early TTP yielded the highest performance (AUC = 0.807) among the subregions for predicting the Ki-67 status. Among all regions, the tumor area with high PER at a precontrast MR image achieved the highest performance (AUC = 0.722), while the subregion that exhibited the highest overall enhancement rate based on KPC had an AUC of 0.731. These three models based on intratumoral texture analysis significantly (P < 0.01) outperformed the model using features from the whole tumor (AUC = 0.59).Texture analysis of intratumoral heterogeneity has the potential to serve as a valuable

  14. Breast cancer imaging

    International Nuclear Information System (INIS)

    Funke, M.; Villena, C.

    2008-01-01

    Advances in female breast imaging have substantially influenced the diagnosis, therapy, and prognosis of breast cancer in the past few years. Mammography using conventional or digital technique is considered the gold standard for the early detection of breast cancer. Other modalities such as breast ultrasound and contrast-enhanced magnetic resonance imaging of the breast play an important role in diagnostic imaging, staging, and follow-up of breast cancer. Percutaneous needle biopsy is a faster, less invasive, and more cost-effective method than surgical biopsy for verifying the histological diagnosis. New methods such as breast tomosynthesis, contrast-enhanced mammography, and positron emission tomography promise to further improve breast imaging. Further studies are mandatory to adapt these new methods to clinical needs and to evaluate their performance in clinical practice. (orig.) [de

  15. Effect of background parenchymal enhancement on breast cancer detection with magnetic resonance imaging.

    Science.gov (United States)

    Telegrafo, M; Rella, L; Stabile Ianora, A A; Angelelli, G; Moschetta, M

    2016-03-01

    To investigate whether background parenchymal enhancement (BPE) may influence the sensitivity of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in breast cancer detection. A total of 180 consecutive women with 194 breast cancers underwent MR imaging examination. Women were assigned to two different groups depending on the degree of BPE. Group 1 consisted of women with minimal or mild BPE and group 2 of women with moderate or marked BPE. The distributions of histotypes of tumors within the two groups were compared using the χ(2) test. Difference in sensitivities of DCE-MR imaging for tumor detection between the two groups was searched for using the Student t-test. No differences in terms of distributions of histotypes of tumors between the two groups of women were found (P=0.5). The 11% difference in sensitivity of DCE-MR imaging for tumor detection between group 1 (91/92; 99%; 95% CI: 94-100%) and group 2 (90/102; 88%; 95% CI: 80-94%) was statistically significant (P=0.0058). The sensitivity of DCE-MR imaging is significantly lower in women with moderate and marked BPE as compared with women with minimal and mild BPE regardless of cancer histotype. BPE could represent a limitation for breast MR imaging interpretation and should be indicated in MR imaging reports. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  16. Usefulness of 3D-VIBE method in breast dynamic MRI. Imaging parameters and contrasting effects

    International Nuclear Information System (INIS)

    Uchikoshi, Masato; Ueda, Takashi; Nishiki, Shigeo; Satou, Kouichi; Wada, Akihiko; Imaoka, Izumi; Matsuo, Michimasa

    2003-01-01

    MR imaging (MRI) has been reported to be a useful modality to characterize breast tumors and to evaluate disease extent. Contrast-enhanced dynamic MRI, in particular, allows breast lesions to be characterized with high sensitivity and specificity. Our study was designed to develop three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) techniques for the evaluation of breast tumors. First, agarose/Gd-DTPA phantoms with various concentrations of Gd-DTPA were imaged using 3D-VIBE and turbo spin echo (TSE). Second, one of the phantoms was imaged with 3D-VIBE using different flip angles. Finally, water excitation (WE) and a chemical shift-selective (CHESS) pulse were applied to the images. Each image was analyzed for signal intensity, signal-to-noise ratio (1.25*Ms/Mb) (SNR), and contrast ratio [(Ms1-Ms2)/{(Ms1+Ms2)/2}]. The results showed that 3D-VIBE provided better contrast ratios with a linear fit than TSE, although 3D-VIBE showed a lower SNR. To reach the best contrast ratio, the optimized flip angle was found to be 30 deg for contrast-enhanced dynamic study. Both WE and CHESS pulses were reliable for obtaining fat- suppressed images. In conclusion, the 3D-VIBE technique can image the entire breast area with high resolution and provide better contrast than TSE. Our phantom study suggests that optimized 3D-VIBE may be useful for the assessment of breast tumors. (author)

  17. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2006-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth spread and angiogenesis as well as quantifying alpha-v integrin expression level during breast tumor neovascularization over time. (3...

  18. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2007-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth spread and angiogenesis as well as quantifying alpha v-integrin expression level during breast tumor neovascularization over time. (3...

  19. Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent

    Science.gov (United States)

    Cruz-Roa, Angel; Gilmore, Hannah; Basavanhally, Ajay; Feldman, Michael; Ganesan, Shridar; Shih, Natalie N. C.; Tomaszewski, John; González, Fabio A.; Madabhushi, Anant

    2017-04-01

    With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability. For computerized methods to be useful as decision support tools, they need to be resilient to data acquired from different sources, different staining and cutting protocols and different scanners. The objective of this study was to evaluate the accuracy and robustness of a deep learning-based method to automatically identify the extent of invasive tumor on digitized images. Here, we present a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually annotated regions of invasive ductal carcinoma.

  20. FGFR2 promotes breast tumorigenicity through maintenance of breast tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Sungeun Kim

    Full Text Available Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.

  1. Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors.

    Science.gov (United States)

    Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming

    2017-11-09

    The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P  .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review.

    Science.gov (United States)

    Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan

    2017-03-01

    With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.

  3. Contrast-enhanced color Doppler ultrasound characteristics in hypervascular breast tumors: comparison with MRI

    International Nuclear Information System (INIS)

    Alamo, L.; Fischer, U.

    2001-01-01

    The aim of this study was to evaluate the accuracy of contrast-enhanced color Doppler ultrasound (CE-US) in comparison with contrast-enhanced MR imaging (CE-MRI) in the discrimination of hypervascularized breast tumors. An additional CE-US of the breast was preoperatively performed in 40 patients with a hypervascular breast lesion detected on CE-MRI. The presence of blood flow signals and the morphological characteristics of the vessels in the breast lesions were evaluated pre- and post-contrast administration, as well as the dynamic aspects of the Doppler signal, including time interval to maximum signal enhancement and persistence of the signal enhancement. Twenty-three carcinomas and 17 fibroadenomas were explored. Considering initial signal enhancement > 100 % after the administration of contrast material as a criterion suggesting malignancy, CE-MRI showed a sensitivity of 100 % and a specificity of 76.5 % in the detection of malignant breast tumors. Color Doppler signals were consistently demonstrated in all carcinomas and in 68.7 % of fibroadenomas after the administration of Levovist, with CE-US showing a sensitivity of 95.6 % and a specificity of 5.9 %. Neither the mean number of vessels per tumor, nor the location of vessels, the time to maximum increase of the Doppler signal or the persistence of signal enhancement showed significant differences between benign and malignant lesions. Additional CE-US does not increase the low specificity of MRI in patients with hypervascularized breast tumors. (orig.)

  4. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages......Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...... and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined....

  5. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    Science.gov (United States)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  6. Adjuvant radiotherapy for phyllodes tumor of the breast

    International Nuclear Information System (INIS)

    Chaney, Arthur W.; Pollack, Alan; Zagars, Gunar K.

    1997-01-01

    Purpose/Objective: The role of radiotherapy for the treatment of phyllodes tumors of the breast remains controversial. Adjuvant radiotherapy is often cited in the existing literature as not providing any benefit over surgical treatment alone. The data supporting this belief are anecdotal. There are also anecdotal reports that radiotherapy may have a role in cases wherein the risk of local failure is high. As with breast carcinomas, conservative surgery (wide local excision) for phyllodes tumors is associated with about a 50% local recurrence rate; diffuse or bulky disease and/or malignant histology are also associated with high local failure rates. We are unaware of any series that examines the role of adjuvant radiotherapy in the management of phyllodes tumor of the breast. We present here a retrospective study of eight patients so treated at MD Anderson Cancer Center. Materials and Methods: Eight patients have been treated with radiotherapy for non-metastatic phyllodes tumor of the breast at MD Anderson Cancer Center between December 1988 and August 1993. All patients were female; the median age was 43 years, with a range of 19 to 62 years. All patients presented with a breast mass, which was associated with pain in one patient, and was ulcerative in three. Results: Tumor size ranged from 3.5 to 16 cm, with a median diameter of 10.4 cm. Six patients had tumors in the upper outer quadrant, and two patients had upper inner tumors. Five patients had malignant tumors, two patients were classified as benign, and one was of indeterminate malignant potential. All five of the malignant tumors displayed stromal overgrowth on pathologic review. The remaining benign and indeterminate tumors lacked this feature. One patient with a benign tumor had a history of two prior recurrences. Primary surgery consisted of either lumpectomy in two patients or mastectomy in six patients. Axillary level I/II lymph node dissections were performed in 5 patients and no involvement was seen

  7. Full-view 3D imaging system for functional and anatomical screening of the breast

    Science.gov (United States)

    Oraevsky, Alexander; Su, Richard; Nguyen, Ha; Moore, James; Lou, Yang; Bhadra, Sayantan; Forte, Luca; Anastasio, Mark; Yang, Wei

    2018-04-01

    Laser Optoacoustic Ultrasonic Imaging System Assembly (LOUISA-3D) was developed in response to demand of diagnostic radiologists for an advanced screening system for the breast to improve on low sensitivity of x-ray based modalities of mammography and tomosynthesis in the dense and heterogeneous breast and low specificity magnetic resonance imaging. It is our working hypothesis that co-registration of quantitatively accurate functional images of the breast vasculature and microvasculature, and anatomical images of breast morphological structures will provide a clinically viable solution for the breast cancer care. Functional imaging is LOUISA-3D is enabled by the full view 3D optoacoustic images acquired at two rapidly toggling laser wavelengths in the near-infrared spectral range. 3D images of the breast anatomical background is enabled in LOUISA-3D by a sequence of B-mode ultrasound slices acquired with a transducer array rotating around the breast. This creates the possibility to visualize distributions of the total hemoglobin and blood oxygen saturation within specific morphological structures such as tumor angiogenesis microvasculature and larger vasculature in proximity of the tumor. The system has four major components: (i) a pulsed dual wavelength laser with fiberoptic light delivery system, (ii) an imaging module with two arc shaped probes (optoacoustic and ultrasonic) placed in a transparent bowl that rotates around the breast, (iii) a multichannel electronic system with analog preamplifiers and digital data acquisition boards, and (iv) computer for the system control, data processing and image reconstruction. The most important advancement of this latest system design compared with previously reported systems is the full breast illumination accomplished for each rotational step of the optoacoustic transducer array using fiberoptic illuminator rotating around the breast independently from rotation of the detector probe. We report here a pilot case studies

  8. Prevalence of papillomaviruses, polyomaviruses, and herpesviruses in triple-negative and inflammatory breast tumors from algeria compared with other types of breast cancer tumors.

    Directory of Open Access Journals (Sweden)

    Marilys Corbex

    Full Text Available The possible role of viruses in breast cancer etiology remains an unresolved question. We hypothesized that if some viruses are involved, it may be in a subgroup of breast cancers only. Epidemiological arguments drove our interest in breast cancer subgroups that are more frequent in Africa, namely inflammatory breast cancer (IBC and triple-negative breast cancer. We tested whether viral prevalence was significantly higher in these subgroups.One hundred fifty-five paraffin-embedded malignant breast tumors were randomly selected at the pathology laboratory of the University Hospital of Annaba (Algeria to include one third of IBC and two thirds of non-IBC. They were tested for the presence of DNA from 61 viral agents (46 human papillomaviruses, 10 polyomaviruses, and 5 herpesviruses using type-specific multiplex genotyping assays, which combine multiplex PCR and bead-based Luminex technology.Viral DNA was found in 22 (17.9% of 123 tumors. The most prevalent viruses were EBV1 and HPV16. IBC tumors carried significantly more viruses (any type than non-IBC tumors (30% vs. 13%, p<0.04. Similarly, triple-negative tumors displayed higher virus-positivity than non-triple-negative tumors (44% vs. 14%, p<0.009.Our results suggest an association between the presence of viral DNA and aggressive breast cancer phenotypes (IBC, triple-negative. While preliminary, they underline the importance of focusing on subgroups when studying viral etiology in breast cancer. Further studies on viruses in breast cancer should be conducted in much larger samples to confirm these initial findings.

  9. TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy

    International Nuclear Information System (INIS)

    Wu, J; Gong, G; Cui, Y; Li, R

    2016-01-01

    Purpose: To predict early pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods: In this institution review board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Results: Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 0.002) in leave-one-out cross validation. This improved upon conventional imaging predictors such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis (AUC=0.65). Conclusion: The heterogeneity of the tumor subregion associated with fast wash-out on DCE-MRI predicted early pathological response to neoadjuvant chemotherapy in breast cancer.

  10. TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J; Gong, G; Cui, Y; Li, R [Stanford University, Palo Alto, CA (United States)

    2016-06-15

    Purpose: To predict early pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods: In this institution review board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Results: Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 0.002) in leave-one-out cross validation. This improved upon conventional imaging predictors such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis (AUC=0.65). Conclusion: The heterogeneity of the tumor subregion associated with fast wash-out on DCE-MRI predicted early pathological response to neoadjuvant chemotherapy in breast cancer.

  11. A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Science.gov (United States)

    Nichols, Brandon S; Schindler, Christine E; Brown, Jonathon Q; Wilke, Lee G; Mulvey, Christine S; Krieger, Marlee S; Gallagher, Jennifer; Geradts, Joseph; Greenup, Rachel A; Von Windheim, Jesko A; Ramanujam, Nirmala

    2015-01-01

    In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17 cm(2)) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1)) and scattering (μs' = 7.0-9.7 cm(-1)) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm) of an entire margin (area = 17 cm(2)) in 13.8 minutes (1.23 cm(2)/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing operative time scales with improved sensitivity to regions of focal disease that may otherwise be overlooked.

  12. Brca1/p53 deficient mouse breast tumor hemodynamics during hyperoxic respiratory challenge monitored by a novel wide-field functional imaging (WiFI) system

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Tromberg, Bruce; Cerussi, Albert; Choi, Bernard

    2009-02-01

    Current imaging modalities allow precise visualization of tumors but do not enable quantitative characterization of the tumor metabolic state. Such quantitative information would enhance our understanding of tumor progression and response to treatment, and to our overall understanding of tumor biology. To address this problem, we have developed a wide-field functional imaging (WiFI) instrument which combines two optical imaging modalities, spatially modulated imaging (MI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm × 5 cm) field of view. Using MI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are estimated using a Monte Carlo model. From the spatial maps of local absorption and reduced scattering coefficients, tissue composition information is extracted in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. Using LSI, the reflectance of a 785 nm laser speckle pattern on the tissue is acquired and analyzed to compute maps of blood perfusion in the tissue. Tissue metabolism state is estimated from the values of blood perfusion, volume and oxygenation state. We currently are employing the WiFI instrument to study tumor development in a BRCA1/p53 deficient mice breast tumor model. The animals are monitored with WiFI during hyperoxic respiratory challenge. At present, four tumors have been measured with WiFI, and preliminary data suggest that tumor metabolic changes during hyperoxic respiratory challenge can be determined.

  13. Comparative analysis of full-field digital mammography and magnetic resonance imaging in the diagnosis of malignant breast tumor

    International Nuclear Information System (INIS)

    Xu Chuan; Meng Xiaochun; Kong Qingcong; Wang Xiaohong; Zhang Jiansheng

    2007-01-01

    Objective: To retrospectively compare the efficacy of full-field digital mammography (FFDM) and magnetic resonance imaging (MRI) in the diagnosis of mammary cancer. Methods: 93 cases suspected mammary lesions both received FFDM and MRI examinations. Compared with pathology, we analyzed the imaging features of mammary cancer in these two methods and investigated the capability of these two methods in mammary cancer diagnosis. Results: The sensitivity, specificity, predictive value of positive cases, predictive value of negative cases and accuracy of FFDM in mammary cancer were 84.48%, 80.00%, 87.50%, 75.68% and 82.80% respectively; the detection rate for multi-focus was 55.56%. And the detection rate for microcalcifications in FFDM examination (29/69) was much higher than in MR/(7/69). The sensitivity, specificity, predictive value of positive cases, predictive value of negative cases and accuracy of MR/in mammary cancer diagnosis were 94.82%, 97.14%, 98.21%, 91.89% and 95.69%, respectively; the detection rate for multi-focus was 83.33%. The spiculate margin, ringed enhancement of the peripheral part of tumor and the fast-in-and-fast-out type of the time-signal intensity curve were the diagnostic signs of breast cancer. Conclusion: FFDM was sensitive for breast microcalcifications and could be feasible for breast cancer screening. MR/had a high sensitivity and specificity for breast cancer diagnosis, which could be effective for pre-operation estimation. (authors)

  14. 3. Erasmus course on magnetic resonance imaging: breast module. Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The third Erasmus Course provides an overwiew of the NMR imaging success of mammary gland cancers. Emphasis is taken on contrast media, postprocessing, technocal problems and pitfalls, as well as the clinical relevance of tumor angiogenesis, histopathology, diagnostic criteria of fast imaging and ultrafast imaging, benign and malignant lesions, prognosis, prosthesis, metastases, multicentricity, chemotherapy and indications of breast cancer

  15. Pathogenesis and progression of fibroepithelial breast tumors

    NARCIS (Netherlands)

    Kuijper, Arno

    2006-01-01

    Fibroadenoma and phyllodes tumor are fibroepithelial breast tumors. These tumors are biphasic, i.e. they are composed of stroma and epithelium. The behavior of fibroadenomas is benign, whereas phyllodes tumors can recur and even metastasize. Classification criteria for both tumors show considerable

  16. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  17. Imaging-Assisted Large-Format Breast Pathology: Program Rationale and Development in a Nonprofit Health System in the United States

    Directory of Open Access Journals (Sweden)

    F. Lee Tucker

    2012-01-01

    Full Text Available Modern breast imaging, including magnetic resonance imaging, provides an increasingly clear depiction of breast cancer extent, often with suboptimal pathologic confirmation. Pathologic findings guide management decisions, and small increments in reported tumor characteristics may rationalize significant changes in therapy and staging. Pathologic techniques to grossly examine resected breast tissue have changed little during this era of improved breast imaging and still rely primarily on the techniques of gross inspection and specimen palpation. Only limited imaging information is typically conveyed to pathologists, typically in the form of wire-localization images from breast-conserving procedures. Conventional techniques of specimen dissection and section submission destroy the three-dimensional integrity of the breast anatomy and tumor distribution. These traditional methods of breast specimen examination impose unnecessary limitations on correlation with imaging studies, measurement of cancer extent, multifocality, and margin distance. Improvements in pathologic diagnosis, reporting, and correlation of breast cancer characteristics can be achieved by integrating breast imagers into the specimen examination process and the use of large-format sections which preserve local anatomy. This paper describes the successful creation of a large-format pathology program to routinely serve all patients in a busy interdisciplinary breast center associated with a community-based nonprofit health system in the United States.

  18. Can We Predict Phyllodes Tumor among Fibroepithelial Lesions with Cellular Stroma Diagnosed at Breast Core Needle Biopsy?

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Kyoung; Ko, Kyung Hee; Rho, Ji Young [Dept. of Radiology, CHA University College of Medicine, Seoul (Korea, Republic of); Moon, Hee Jung; Kim, Eun Kyung; Kim, Min Jung; Park, Byeong Woo [Dept. of Radiology, Yensei University College of Medicine, Seoul (Korea, Republic of)

    2011-06-15

    To evaluate the surgical outcomes of fibroepithelial lesion with cellular stroma (FELCS) diagnosed at sonography guided core needle biopsy of breast masses, and to determine whether the clinical and imaging features of this lesion could predict the presence of a phyllodes tumor. We retrospectively reviewed the pathologic results of sonography guided core needle biopsy of solid breast masses. A total of 55 FELCS diagnosed with this procedure that underwent subsequent surgical excision were included in this study; their medical records and radiologic images were retrospectively reviewed. The results of the surgical excision revealed 22 (40%) phyllodes tumors and 33 (60%) non-phyllodes tumors: 30 (54.6%) fibroadenomas, 1 (1.8%) adenosis, 1 (1.8%) fibrocystic changes and 1 (1.8%) fibroadenomatous hyperplasia. Lesion size and patient age were significantly different between phyllodes tumors and nonphyllodes tumors groups (32.2 {+-} 14.07 mm/22.4 {+-} 13.64 mm, p=0.0078, 43.5 {+-} 11.60 years/36.5 {+-} 10.25 years, p=0.0207). Among the sonographic features, only cleft was significantly more visible in phyllodes tumors than in non-phyllodes tumors (n=14 (70%)/n=6 (30%), p=0.0016). The size of the lesions, the age of the patients, and the sonographic features of cleft were the significant helpful variables to predict phyllodes tumors among FELCS diagnosed at breast core biopsy.

  19. Can We Predict Phyllodes Tumor among Fibroepithelial Lesions with Cellular Stroma Diagnosed at Breast Core Needle Biopsy?

    International Nuclear Information System (INIS)

    Jung, Hae Kyoung; Ko, Kyung Hee; Rho, Ji Young; Moon, Hee Jung; Kim, Eun Kyung; Kim, Min Jung; Park, Byeong Woo

    2011-01-01

    To evaluate the surgical outcomes of fibroepithelial lesion with cellular stroma (FELCS) diagnosed at sonography guided core needle biopsy of breast masses, and to determine whether the clinical and imaging features of this lesion could predict the presence of a phyllodes tumor. We retrospectively reviewed the pathologic results of sonography guided core needle biopsy of solid breast masses. A total of 55 FELCS diagnosed with this procedure that underwent subsequent surgical excision were included in this study; their medical records and radiologic images were retrospectively reviewed. The results of the surgical excision revealed 22 (40%) phyllodes tumors and 33 (60%) non-phyllodes tumors: 30 (54.6%) fibroadenomas, 1 (1.8%) adenosis, 1 (1.8%) fibrocystic changes and 1 (1.8%) fibroadenomatous hyperplasia. Lesion size and patient age were significantly different between phyllodes tumors and nonphyllodes tumors groups (32.2 ± 14.07 mm/22.4 ± 13.64 mm, p=0.0078, 43.5 ± 11.60 years/36.5 ± 10.25 years, p=0.0207). Among the sonographic features, only cleft was significantly more visible in phyllodes tumors than in non-phyllodes tumors (n=14 (70%)/n=6 (30%), p=0.0016). The size of the lesions, the age of the patients, and the sonographic features of cleft were the significant helpful variables to predict phyllodes tumors among FELCS diagnosed at breast core biopsy.

  20. Contrast-enhanced MR imaging of the breast in patients with breast implants after cancer surgery

    International Nuclear Information System (INIS)

    Bone, B.; Aspelin, P.; Isberg, B.; Perbeck, L.; Veress, B.

    1995-01-01

    The purpose of the study was to determine the value of contrast-enhanced MR imaging in the assessment of local recurrence in breast cancer patients who underwent mastectomy and breast reconstruction with an implant. Eighty-three patients have been evaluated by semidynamic contrast-enhanced MR imaging. The T1-weighted FLASH 3-D sequence was repeated twice postcontrast for evaluation of the entire breast bilaterally. The findings were compared to physical examination, mammography and histopathology. Recurrence verified by histopathology occurred in 14 of 83 patients (17%). Contrast-enhanced MR imaging was superior to palpation and mammography in revealing recurrences, especially when these were located close to the chest wall. MR was also more sensitive in detecting multiple foci of cancers. Our study revealed that MR imaging was influenced by size, type and composition of the tumor, as illustrated by the false-negative results. Therefore, the use of all 3 investigation methods is necessary for detecting recurrence at an early stage during the postoperative follow-up. (orig.)

  1. Radiologic images of an aggressive implant-associated fibromatosis of the breast and chest wall: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lourdes Alanis, MD, MPH

    2017-09-01

    Full Text Available Fibromatosis of the breast is a rare benign disease compromising <0.2% of all primary breast tumors. Although the chest wall is a common location, occurrences of implant-associated fibromatosis of the breast are extremely rare; only 33 cases have been reported. We present a case of a 42-year-old female who underwent breast augmentation with silicone breast implants, and 2 years later developed an aggressive implant-associated fibromatosis of the breast and chest wall. On imaging studies, the tumor mimicked breast carcinoma, and despite chemotherapy, the fibromatosis rapidly enlarged and was locally invasive requiring wide surgical excision. Unlike previously reported imaging findings, magnetic resonance imaging revealed an oval circumscribed mass with fringe-like internal architecture. We provide a review of the literature and discuss the imaging features of implant-associated fibromatosis of the breast.

  2. Radiation-associated breast tumors display a distinct gene expression profile

    DEFF Research Database (Denmark)

    Broeks, Annegien; Braaf, Linde M; Wessels, Lodewyk F A

    2010-01-01

    PURPOSE: Women who received irradiation for Hodgkin's lymphoma have a strong increased risk for developing breast cancer. Approximately 90% of the breast cancers in these patients can be attributed to their radiation treatment, rendering such series extremely useful to determine whether a common...... radiation-associated cause underlies the carcinogenic process. METHODS AND MATERIALS: In this study we used gene expression profiling technology to assess gene expression changes in radiation-associated breast tumors compared with a set of control breast tumors of women unexposed to radiation, diagnosed...... at the same age. RNA was obtained from fresh frozen tissue samples from 22 patients who developed breast cancer after Hodgkin's lymphoma (BfHL) and from 20 control breast tumors. RESULTS: Unsupervised hierarchical clustering of the profile data resulted in a clustering of the radiation-associated tumors...

  3. Optical Imaging of the Breast

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun Kyung

    2011-01-01

    As the increased prevalence of breast cancer and the advances in breast evaluation awareness have resulted in an increased number of breast examinations and benign breast biopsies, several investigations have been performed to improve the diagnostic accuracy for breast lesions. Optical imaging of the breast that uses nearinfrared light to assess the optical properties of breast tissue is a novel non-invasive imaging technique to characterize breast lesions in clinical practice. This review provides a summary of the current state of optical breast imaging and it describes the basic concepts of optical imaging, the potential clinical applications for breast cancer imaging and its potential incorporation with other imaging modalities

  4. Clinical experiences with photoacoustic breast imaging: the appearance of suspicious lesions

    NARCIS (Netherlands)

    Heijblom, M.

    2014-01-01

    This thesis describes photoacoustic (PA) imaging of suspicious breast lesions. In PA imaging, the tissue of interest is illuminated by short pulses of laser light, usually in the near infrared (NIR) regime. Upon absorption by primarily the tumor vasculature, the light causes a small temperature

  5. Influence of mammographic density on the diagnostic accuracy of tumor size assessment and association with breast cancer tumor characteristics

    International Nuclear Information System (INIS)

    Fasching, Peter A.; Heusinger, Katharina; Loehberg, Christian R.; Wenkel, Evelyn; Lux, Michael P.; Schrauder, Michael; Koscheck, Thomas; Bautz, Werner; Schulz-Wendtland, Ruediger; Beckmann, Matthias W.; Bani, Mayada R.

    2006-01-01

    Purpose: The accuracy of breast cancer staging involves the estimation of the tumor size for the initial decision-making in the treatment. We investigated the accuracy of tumor size estimation and the association between tumor characteristics and breast density (BD). Materials and methods: A total of 434 women with a primary diagnosis of breast cancer were included in this prospective study at a specialist breast unit. Estimated tumor characteristics included tumor size, nodal status, estrogen/progesterone receptor status, Ki-67, HER2/neu, vascular invasion. Radiomorphological data included tumor size as assessed by mammography, breast ultrasonography, and clinical examination, and American College of Radiology (ACR) categories for BD. Results: BD did not have a significant impact on the assessment of tumor size using breast ultrasound (deviation from ACR categories 1-4: 0.55-0.68 cm; P = 0.331). The deviation in mammography was significantly different dependent on BD (0.42-0.9 cm; P 2 cm). Conclusion: Breast ultrasonography is more accurate than mammography for assessing tumor size in breasts with a higher BD. The difference in tumor size assessment needs to be taken into consideration in the design of clinical trials and treatment decisions

  6. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    Science.gov (United States)

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20

  7. Characterization of breast masses by dynamic enhanced MR imaging. A logistic regression analysis

    International Nuclear Information System (INIS)

    Ikeda, O.; Morishita, S.; Kido, T.; Kitajima, M.; Yamashita, Y.; Takahashi, M.; Okamura, K.; Fukuda, S.

    1999-01-01

    Purpose: To identify features useful for differentiation between malignant and benign breast neoplasms using multivariate analysis of findings by MR imaging. Material and Methods: In a retrospective analysis, 61 patients with 64 breast masses underwent MR imaging and the time-signal intensity curves for precontrast dynamic postcontrast images were quantitatively analyzed. Statistical analysis was performed using a logistic regression model, which was prospectively tested in another 34 patients with suspected breast masses. Results: Univariate analysis revealed that the reliable indicators for malignancy were first the appearance of the tumor border, followed by the washout ratio, internal architecture after contrast enhancement, and peak time. The factors significantly associated with malignancy were irregular tumor border, followed by washout ratio, internal architecture, and peak time. For differentiation between benignity and malignancy, the maximum cut-off point was to be found between 0.47 and 0.51. In a prospective application of this model, 91% of the lesions were accurately discriminated as benign or malignant lesions. Conclusion: Combination of contrast-enhanced dynamic and postcontrast-enhanced MR imaging provided accurate data for the diagnosis of malignant neoplasms of the breast. The model had an accuracy of 91% (sensitivity 90%, specificity 93%). (orig.)

  8. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients

    International Nuclear Information System (INIS)

    Medrek, Catharina; Pontén, Fredrik; Jirström, Karin; Leandersson, Karin

    2012-01-01

    Tumor associated macrophages (TAMs) are alternatively activated macrophages that enhance tumor progression by promoting tumor cell invasion, migration and angiogenesis. TAMs have an anti-inflammatory function resembling M2 macrophages. CD163 is regarded as a highly specific monocyte/macrophage marker for M2 macrophages. In this study we evaluated the specificity of using the M2 macrophage marker CD163 as a TAM marker and compared its prognostic value with the more frequently used pan-macrophage marker CD68. We also analyzed the prognostic value of the localization of CD163 + and CD68 + myeloid cells in human breast cancer. The extent of infiltrating CD163 + or CD68 + myeloid cells in tumor nest versus tumor stroma was evaluated by immunohistochemistry in tissue microarrays with tumors from 144 breast cancer cases. Spearman’s Rho and χ 2 tests were used to examine the correlations between CD163 + or CD68 + myeloid cells and clinicopathological parameters. Kaplan Meier analysis and Cox proportional hazards modeling were used to assess the impact of CD163 + and CD68 + myeloid cells in tumor stroma and tumor nest, respectively, on recurrence free survival, breast cancer specific and overall survival. We found that infiltration of CD163 + and CD68 + macrophages into tumor stroma, but not into tumor nest, were of clinical relevance. CD163 + macrophages in tumor stroma positively correlated with higher grade, larger tumor size, Ki67 positivity, estrogen receptor negativity, progesterone receptor negativity, triple-negative/basal-like breast cancer and inversely correlated with luminal A breast cancer. Some CD163 + areas lacked CD68 expression, suggesting that CD163 could be used as a general anti-inflammatory myeloid marker with prognostic impact. CD68 + macrophages in tumor stroma positively correlated to tumor size and inversely correlated to luminal A breast cancer. More importantly, CD68 in tumor stroma was an independent prognostic factor for reduced breast cancer

  9. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  10. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  11. ADC mapping of benign and malignant breast tumors

    International Nuclear Information System (INIS)

    Woodhams, R.; Matsunaga, Keiji; Kan, Shinichi; Hata, Hirofumi; Iwabuchi, Keiichi; Kuranami, Masaru; Watanabe, Masahiko; Hayakawa, Kazushige; Ozaki, Masanori

    2005-01-01

    The purpose of this study was to investigate the utility of diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) value in differentiating benign and malignant breast lesions and evaluating the detection accuracy of the cancer extension. We used DWI to obtain images of 191 benign and malignant lesions (24 benign, 167 malignant) before surgical excision. The ADC values of the benign and malignant lesions were compared, as were the values of noninvasive ductal carcinoma (NIDC) and invasive ductal carcinoma (IDC). We also evaluated the ADC map, which represents the distribution of ADC values, and compared it with the cancer extension. The mean ADC value of each type of lesion was as follows: malignant lesions, 1.22±0.31 x 10 -3 mm 2 /s; benign lesions, 1.67±0.54 x 10 -3 mm 2 /s; normal tissues, 2.09±0.27 x 10 -3 mm 2 /s. The mean ADC value of the malignant lesions was statistically lower than that of the benign lesions and normal breast tissues. The ADC value of IDC was statistically lower than that of NIDC. The sensitivity of the ADC value for malignant lesions with a threshold of less than 1.6 x 10 -3 mm 2 /s was 95% and the specificity was 46%. A full 75% of all malignant cases exhibited a near precise distribution of low ADC values on ADC maps to describe malignant lesions. The main causes of false negative and underestimation of cancer spread were susceptibility artifact because of bleeding and tumor structure. Major histologic types of false-positive lesions were intraductal papilloma and fibrocystic diseases. Fibrocystic diseases also resulted in overestimation of cancer extension. DWI has the potential in clinical appreciation to detect malignant breast tumors and support the evaluation of tumor extension. However, the benign proliferative change remains to be studied as it mimics the malignant phenomenon on the ADC map. (author)

  12. Ipsilateral Breast Tumor Relapse: Local Recurrence Versus New Primary Tumor and the Effect of Whole-Breast Radiotherapy on the Rate of New Primaries

    International Nuclear Information System (INIS)

    Gujral, Dorothy M.; Sumo, Georges; Owen, John R.; Ashton, Anita; Bliss, Judith M.; Haviland, Joanne; Yarnold, John R.

    2011-01-01

    Purpose: The justification for partial breast radiotherapy after breast conservation surgery assumes that ipsilateral breast tumor relapses (IBTR) outside the index quadrant are mostly new primary (NP) tumors that develop despite radiotherapy. We tested the hypothesis that whole-breast radiotherapy (WBRT) is ineffective in preventing NP by comparing development rates in irradiated and contralateral breasts after tumor excision and WBRT. Methods and Materials: We retrospectively reviewed 1,410 women with breast cancer who were entered into a prospective randomized trial of radiotherapy fractionation and monitored annually for ipsilateral breast tumor relapses (IBTR) and contralateral breast cancer (CLBC). Cases of IBTR were classified into local recurrence (LR) or NP tumors based on location and histology and were subdivided as definite or likely depending on clinical data. Rates of ipsilateral NP and CLBC were compared over a 15-year period of follow-up. Results: At a median follow-up of 10.1 years, there were 150 documented cases of IBTR: 118 (79%) cases were definite or likely LR; 27 (18%) cases were definite or likely NP; and 5 (3%) cases could not be classified. There were 71 cases of CLBC. The crude proportion of definite-plus-likely NP was 1.9% (27/1,410) patients compared with 5% (71/1,410) CLBC patients. Cumulative incidence rates at 5, 10, and 15 years were 0.8%, 2.0%, and 3.5%, respectively, for definite-plus-likely NP and 2.4%, 5.8%, and 7.9%, respectively for CLBC, suggesting a difference in the rates of NP and CLBC. Conclusions: This analysis suggests that WBRT reduces the rate of ipsilateral NP tumors. The late presentation of NP has implications for the reporting of trials that are testing partial breast radiotherapy.

  13. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtype...... stratification might help in the identification and characterization of novel risk factors for breast cancer subtypes. This may eventually result in further improvements in prevention, early detection and treatment.......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  14. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Science.gov (United States)

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  15. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    International Nuclear Information System (INIS)

    Drukker, Karen; Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-01

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V ® ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation

  16. An algorithm for longitudinal registration of PET/CT images acquired during neoadjuvant chemotherapy in breast cancer: preliminary results.

    Science.gov (United States)

    Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E

    2012-11-16

    By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0

  17. TH-AB-209-10: Breast Cancer Identification Through X-Ray Coherent Scatter Spectral Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, A; Morris, R; Albanese, K; Spencer, J; McCall, S; Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: We have previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer. Our prior evaluations were performed using either tissue surrogate phantoms or formalin-fixed tissue obtained from pathology. Here we present the first results from a scatter imaging study using fresh breast tumor tissues obtained through surgical excision. Methods: A coherent-scatter imaging system was built using a clinical X-ray tube, photon counting detectors, and custom-designed coded-apertures. System performance was characterized using calibration phantoms of biological materials. Fresh breast tumors were obtained from patients undergoing mastectomy and lumpectomy surgeries for breast cancer. Each specimen was vacuum-sealed, scanned using the scatter imaging system, and then sent to pathology for histological workup. Scatter images were generated separately for each tissue specimen and analyzed to identify voxels containing malignant tissue. The images were compared against histological analysis (H&E + pathologist identification of tumors) to assess the match between scatter-based and histological diagnosis. Results: In all specimens scanned, the scatter images showed the location of cancerous regions within the specimen. The detection and classification was performed through automated spectral matching without the need for manual intervention. The scatter spectra corresponding to cancer tissue were found to be in agreement with those reported in literature. Inter-patient variability was found to be within limits reported in literature. The scatter images showed agreement with pathologist-identified regions of cancer. Spatial resolution for this configuration of the scanner was determined to be 2–3 mm, and the total scan time for each specimen was under 15 minutes. Conclusion: This work demonstrates the utility of coherent scatter imaging in identifying cancer based on the scatter properties of the tissue. It

  18. How to Boost the Breast Tumor Bed? A Multidisciplinary Approach in Eight Steps

    International Nuclear Information System (INIS)

    Kirova, Youlia M.; Fournier-Bidoz, Nathalie; Servois, Vincent; Laki, Fatima; Pollet, Guillaume A.; Salmon, Remy; Thomas, Alexandra; Dendale, Remi; Bollet, Marc A.; Campana, Francois M.D.; Fourquet, Alain

    2008-01-01

    Purpose: To describe a new procedure for breast radiotherapy that will improve tumor bed localization and radiotherapy treatment using a multidisciplinary approach. Patients and Methods: This pilot study was conducted by departments of radiation oncology, surgery, and radiology. A new procedure has been implemented, summarized as eight steps: from pre-surgery contrast CT to surgery, tumor bed planning target volume (PTV) determination, and finally breast and tumor bed irradiation. Results: Twenty patients presenting with T1N0M0 tumors were enrolled in the study. All patients underwent lumpectomy with the placement of surgical clips in the tumor bed region. During surgery, 1 to 5 clips were placed in the lumpectomy cavity before the plastic procedure. All patients underwent pre- and postoperative CT scans in the treatment position. The two sets of images were registered with a match-point registration. All volumes were contoured and the results evaluated. The PTV included the clips region, the gross tumor volume, and the surgical scar, with an overall margin of 5-10 mm in all directions, corresponding to localization and setup uncertainties. For each patient the boost PTV was discussed and compared with our standard forward-planned PTV. Conclusions: We demonstrate the feasibility of a tumor bed localization and treatment procedure that seems adaptable to routine practice. Our study shows the advantages of a multidisciplinary approach for tumor bed localization and treatment. The use of more than 1 clip associated with pre- to postoperative CT image registration allows better definition of the PTV boost volume

  19. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging

    National Research Council Canada - National Science Library

    Antich, Peter P; Constantinescu, Anca; Lewis, Matthew; Mason, Ralph; Richer, Edmond

    2005-01-01

    The goal of our project is to image tumor growth, metastatic development and vascular changes, both to characterize tumor dynamics during growth for application in diagnostic and prognostic imaging...

  20. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    Science.gov (United States)

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  1. Multimodality assessment of breast tumor physiology and metabolism

    Science.gov (United States)

    Chaudhry, Muhammad; Rosen, Mark; Schultz, Susan; Englander, Sarah; Sehgal, S.; Tomaszewski, M.; Schnall, Mitchell

    2005-04-01

    The objective is to compare power Doppler sonography (PD) and dynamic contrast-enhanced MRI (MR) and PET SUV in assessing the vascularity of benign and malignant breast lesions. Sixty two patients with 89 lesions (59 malignant lesions, 30 benign lesions) were evaluated by PD, MRI (MR) and PET SUV prior to surgery. Each imaging modality was evaluated independently. Lesion vascularity on PD was graded as avascular, intermediately vascular, or hypervascular. On MR, degree of maximal enhancement (minimal, moderate, or marked) and the kinetic pattern of enhancement (persistent, plateau, washout) were graded separately. For malignant lesions, PET SUV values were correlated with MRI kinetics. Gamma variable analysis was performed to assess the degree of correlation. Of the 89 lesions 44 were invasive ductal carcinoma, 2 were intraductal cancers, 6 were invasive lobular carcinoma, and 7 were invasive cancers with mixture of ductal and lobular features. There was a high degree of correlation between degree of maximal enhancement and enhancement kinetics on MRI (G=0.074, pInvasive malignancy demonstrated moderate correlation between SUV and MRI kinetics (G=0.64, p=0.14). There is a variable degree of correlation between various imaging modalities in assessing breast lesion vascularity. Further evaluation on the relationship between subjective reader assessment and objective quantitative image analysis is required to elucidate the differences in these measures of breast tumor physiology. This work was supported in part by the NIH grant P01CA085424-03.

  2. Differential diagnosis of breast tumors on the basis of radiothermometric findings

    Directory of Open Access Journals (Sweden)

    V. I. Vidyukov

    2016-01-01

    Full Text Available The paper presents a method for the differential diagnosis of breast tumors in accordance with radiothermometric findings, which is based on the authors’ developed diagnostic technique (Patent No. 2532372 dated 5 September 2014. The radiometric method was used to examine 119 patients with malignant breast tumors, 53 patients with benign breast tumors, and 60 women without breast involvement. The data were obtained in 3 institutions: the Russian Medical Academy of Postgraduate Education, the N.N. Blokhin Russian Cancer Research Center, and Moscow Oncology Dispensary Five. A microwave radiothermometer was used to measure core and skin temperatures in 9 symmetrical points of each breast. Using the findings as a basis, the authors proposed quantitative criteria that ensured that breast tumors should be differentially diagnosed with high specificity.

  3. Imaging of the Adolescent Breast

    Science.gov (United States)

    Jones, Katie N.

    2013-01-01

    The mainstay of breast imaging in the adolescent is ultrasonography. There is occasionally a need for additional imaging, particularly with magnetic resonance imaging (MRI). Imaging of the adolescent breast differs substantially from the adult in both the imaging modalities utilized and the relative likelihood of pathologies encountered. The majority of lesions in the adolescent are benign, but the presence of a breast lesion may cause anxiety to patients and their families due to the wide awareness of breast malignancy in the adult population. It is important to be aware of the imaging modalities available to image the adolescent breast to prevent unnecessary radiation exposure while answering the clinical question. The current recommendations for adolescent diagnostic and screening breast imaging will be reviewed. Benign breast lesions such as fibroadenomas, fibrocystic change, pseudoangiomatous stromal hyperplasia, gynecomastia, and posttraumatic or infectious lesions with their associated imaging findings and management will be outlined. Additionally, review of breast malignancies that can affect adolescents will provide the reader with features to distinguish benign from malignant processes in the adolescent based on imaging findings and clinical presentation. PMID:24872737

  4. Clear cell hidradenocarcinoma of the breast: a very rare breast skin tumor.

    Science.gov (United States)

    Mezzabotta, Maurizio; Declich, Paolo; Cardarelli, Mery; Bellone, Stefano; Pacilli, Paolo; Riggio, Eliana; Pallino, Antonio

    2012-01-01

    Hidradenocarcinoma is an uncommon malignant intradermal tumor of sweat gland origin with a predilection for the face and extremities. It is encountered equally in males and females, usually in the second half of life. These tumors tend to be locally aggressive. In our case, the tumor was located relatively superficially but without any apparent connection to the overlying skin. The typical disease course includes local and sometimes multiple recurrences, and some patients develop regional lymph node and distant metastases. These type of tumors in the parenchyma of the breast are extremely rare. We report a case of hidradenocarcinoma in a 77-year-old woman who presented with a palpable inflammatory nodule in the right breast.

  5. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Gerwin P. [Institute of Clinical Radiology, University Hospitals Munich-Grosshadern, Marchioninistr. 15, 81377 Munich (Germany)], E-mail: gerwin.schmidt@med.uni-muenchen.de; Baur-Melnyk, Andrea [Institute of Clinical Radiology, University Hospitals Munich-Grosshadern, Marchioninistr. 15, 81377 Munich (Germany); Haug, Alexander [Department of Nuclear Medicine, University Hospitals Munich-Grosshadern, 81377 Munich (Germany); Heinemann, Volker [Department of Internal Medicine III, University Hospitals Munich-Grosshadern, 81377 Munich (Germany); Bauerfeind, Ingo [Department of Obstetrics and Gynecology, University Hospitals Munich-Grosshadern, 81377 Munich (Germany); Reiser, Maximilian F. [Institute of Clinical Radiology, University Hospitals Munich-Grosshadern, Marchioninistr. 15, 81377 Munich (Germany); Schoenberg, Stefan O. [Institute of Clinical Radiology University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg (Germany)

    2008-01-15

    Purpose: To compare the diagnostic accuracy for the detection of tumor recurrence in breast cancer patients using whole-body-MRI (WB-MRI) at 1.5 or 3 T compared to FDG-PET-CT. Materials and methods: Thirty-three female patients with breast cancer and suspicion of recurrence underwent FDG-PET-CT and WB-MRI. Coronal T1w-TSE- and STIR-sequences, HASTE-imaging of the lungs, contrast-enhanced T1w- and T2w-TSE-sequences of the liver, brain and abdomen were performed, using a WB-MRI-scanner at 1.5 (n = 23) or 3 T (n = 10). Presence of local recurrence, lymph node involvement and distant metastatic disease was assessed using clinical and radiological follow-up as a standard of reference. Results: Tumor recurrence was found in 20 of 33 patients. Overall 186 malignant foci were detected with WB-MRI and PET-CT. Both modalities revealed two recurrent tumors of the breast. PET-CT detected more lymph node metastases (n = 21) than WB-MRI (n = 16). WB-MRI was more precise in the detection of distant metastases (n = 154 versus n = 147). Sensitivity was 93% (172/186) and 91% (170/186) for WB-MRI and PET-CT, specificity was 86% (66/77) and 90% (69/77), respectively. Examination times for WB-MRI at 1.5 and 3 T were 51 and 43 min, respectively, examination time for PET-CT was 103 min. Conclusion: WB-MRI and PET-CT are useful for the detection of tumor recurrence in the follow-up of breast cancer. WB-MRI is highly sensitive to distant metastatic disease. PET-CT is more sensitive in detecting lymph node involvement. Tumor screening with WB-MRI is feasible at 1.5 and 3 T, scan time is further reduced at 3 T with identical resolution.

  6. Contrast-enhanced color Doppler US in breast cancer: Tumoral vascularity correlated with angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun A; Yoon, Kwon Ha; Yun, Ki Jung; Lee, Kwang Man; Park, Ki Han; Juhng, Seon Kwan; Won, Jong Jin [Wonkwang University School of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To evaluate the effects of contrast-enhanced color Doppler ultrasonography (CDUS) on the depiction of vascularity and flow pattern in breast cancer and to determine the relationship between tumoral vascularity and angiogenesis. Twenty-one patients with breast cancer were prospectively evaluated with CDUS before and after injection of the contrast agent (SH U 508A, 2.5g, 300 mg/ml ). The tumoral vascularity was expressed as percentage of color Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The flow pattern (four-patterns; spotty, linear, branching, marginal) of the vascularity was analyzed. After surgery, tumor angiogenesis was assessed by microvessel density. The relationship between the vascularity on CDUS and microvessel density was statistically analyzed. At unenhanced CDUS, tumoral flow signals were detected in 12 lesions (48%); at contrast-enhanced CDUS, 18 lesions (86%). All These 18 lesions showed increased signals, compared with those at unenhanced CDUS. The percentage color Doppler area was 1.86 {+-} 0.48% at unenhanced CDUS and 5.23 {+-} 1.18% at contrast-enhanced CDUS. The flow patterns before contrast injection were spotty pattern in 11 tumors and linear pattern in one; after contrast injection, spotty in 8, linear in 4, branching in 5, and marginal in one. The tumoral vascularity at contrast-enhanced CDUS showed no significant correlation with microvessel density. Contrast-enhanced CDUS seems to be a valuable tool in the depiction of vascularity and characterization of flow pattern in breast cancer. However, tumoral vascularity on CDUS may not reflect tumoral angiogenesis.

  7. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  8. Scintimammography: The new role of Technetium-99 m Sestamibi imaging for the diagnosis of breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Khalkhali, I.; Diggles, L. E.; Cutrone, J. A.; Mishkin, F. S. [Los Angeles Medical Center, Torrance (United States). Dept. of Radiology; Iraniha, S. [Los Angeles Medical Center, Torrance (United States). Surgery

    1997-09-01

    Technetium-99-Sestamibi scintimammography has emerged as a new procedure for the imaging of breast tumors, Currently, a large clinical experience has been developed and the results published. At the present time, the major drawback of this procedure appears to be its low sensitivity for the detection of breast carcinomas smaller than 1 cm in diameter. There are other biologic and technical issues that remain to be overcome to optimally image the breasts. Some of these include: development of a dedicated breast imager using nuclear medicine techniques, development of stereotactic needle localization of the abnormalities that demonstrate focal increase uptake in women with normal mammogram and breast physical examination, manufacturing of a breast compression device so that they can immobilize the breast in place for more adequate imaging, overcoming the issue of unilateral or bilateral diffuse breast uptake that is noted in 7 - 10 percent of the cases and finally determination of optimal dose and imaging factors. This review includes their experience at Harbor-University of California, Los Angeles Medical Center with the use of this agent for breast imaging since 1992.

  9. Scintimammography: The new role of Technetium-99 m Sestamibi imaging for the diagnosis of breast carcinoma

    International Nuclear Information System (INIS)

    Khalkhali, I.; Diggles, L. E.; Cutrone, J. A.; Mishkin, F. S.; Iraniha, S.

    1997-01-01

    Technetium-99-Sestamibi scintimammography has emerged as a new procedure for the imaging of breast tumors, Currently, a large clinical experience has been developed and the results published. At the present time, the major drawback of this procedure appears to be its low sensitivity for the detection of breast carcinomas smaller than 1 cm in diameter. There are other biologic and technical issues that remain to be overcome to optimally image the breasts. Some of these include: development of a dedicated breast imager using nuclear medicine techniques, development of stereotactic needle localization of the abnormalities that demonstrate focal increase uptake in women with normal mammogram and breast physical examination, manufacturing of a breast compression device so that they can immobilize the breast in place for more adequate imaging, overcoming the issue of unilateral or bilateral diffuse breast uptake that is noted in 7 - 10 percent of the cases and finally determination of optimal dose and imaging factors. This review includes their experience at Harbor-University of California, Los Angeles Medical Center with the use of this agent for breast imaging since 1992

  10. Magnetic resonance imaging of the human female breast. Current status and pathologic correlations

    International Nuclear Information System (INIS)

    Powell, D.E.; Stelling, C.B.

    1988-01-01

    In the field of breast cancer, attention has focused on the problem of detection and diagnosis of the tumor in its early stages as the best means of reducing mortality. Many imaging modalities have been applied to breast cancer, including mammography, ultrasonography, computerized tomography, and thermography. More recently interest has turned to NMR or magnetic resonance (MR) imaging (as it is termed in more current usage) for the detection of breast disease and particularly carcinoma of the breast. This review discusses the present role of MR imaging in the diagnosis of breast lesions based on work from several institutions. Possible areas for future development to increase the usefulness of MR as a diagnostic modality are discussed. For those not familiar with terminology used in the field of MR, a short glossary of terms is supplied at the end of the chapter. Some general references on MR imaging are give at the end of the references for those wishing to review the subject in general

  11. Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors.

    Science.gov (United States)

    Saha, Ashirbani; Harowicz, Michael R; Mazurowski, Maciej A

    2018-04-16

    To review features used in MRI radiomics of breast cancer and study the inter-reader stability of the features METHODS: We implemented 529 algorithmic features that can be extracted from tumor and fibroglandular tissue (FGT) in breast MRIs. The features were identified based on a review of the existing literature with consideration of their usage, prognostic ability, and uniqueness. The set was then extended so that it comprehensively describes breast cancer imaging characteristics. The features were classified into 10 groups based on the type of data used to extract them and the type of calculation being performed. For the assessment of inter-reader variability, 4 fellowship-trained readers annotated tumors on pre-operative dynamic contrast enhanced MRIs for 50 breast cancer patients. Based on the annotations, an algorithm automatically segmented the image and extracted all features resulting in one set of features for each reader. For a given feature, the inter-reader stability was defined as the intra-class correlation coefficient (ICC) computed using the feature values obtained through all readers for all cases. The average inter-reader stability for all features was 0.8474 (95% CI: 0.8068-0.8858). The mean inter-reader stability was lower for tumor-based features (0.6348, 95% CI: 0.5391-0.7257) than FGT-based features (0.9984, 95% CI: 0.9970-0.9992). The feature group with the highest inter-reader stability quantifies breast and FGT volume. The feature group with the lowest inter-reader stability quantifies variations in tumor enhancement. Breast MRI radiomics features widely vary in terms of their stability in the presence of inter-reader variability. Appropriate measures need to be taken for reducing this variability in tumor-based radiomics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI; Multiparametrische und molekulare Bildgebung von Brusttumoren mit MRT und PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Memorial Sloan-Kettering Cancer Center, Department of Radiology, Molecular Imaging and Therapy Service, New York (United States); State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Marino, M.A. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Policlinico Universitario G. Martino, University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Messina (Italy); Meyer-Baese, A. [State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Helbich, T.H. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria)

    2016-07-15

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ({sup 1}H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ({sup 23}Na MRI), phosphorus spectroscopy ({sup 31}P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [German] Die Magnetresonanztomographie (MRT) der Brust ist ein etabliertes nichtinvasives bildgebendes Verfahren mit vielfaeltigen Indikationen. In den letzten Jahren wurden zahlreiche funktionelle MRT- und Positronenemissionstomographie(PET)-Parameter in der Brustbildgebung evaluiert, und ihre kombinierte Anwendung ist als multiparametrische Bildgebung definiert. Bisherige Daten legen nahe, dass die multiparametrische Bildgebung mit MRT und PET

  13. Enhancement and denoising of mammographic images for breast disease detection

    International Nuclear Information System (INIS)

    Yazdani, S.; Yusof, R.; Karimian, A.; Hematian, A.; Yousefi, M.

    2012-01-01

    In these two decades breast cancer is one of the leading cause of death among women. In breast cancer research, Mammographic Image is being assessed as a potential tool for detecting breast disease and investigating response to chemotherapy. In first stage of breast disease discovery, the density measurement of the breast in mammographic images provides very useful information. Because of the importance of the role of mammographic images the need for accurate and robust automated image enhancement techniques is becoming clear. Mammographic images have some disadvantages such as, the high dependence of contrast upon the way the image is acquired, weak distinction in splitting cyst from tumor, intensity non uniformity, the existence of noise, etc. These limitations make problem to detect the typical signs such as masses and microcalcifications. For this reason, denoising and enhancing the quality of mammographic images is very important. The method which is used in this paper is in spatial domain which its input includes high, intermediate and even very low contrast mammographic images based on specialist physician's view, while its output is processed images that show the input images with higher quality, more contrast and more details. In this research, 38 mammographic images have been used. The result of purposed method shows details of abnormal zones and the areas with defects so that specialist could explore these zones more accurately and it could be deemed as an index for cancer diagnosis. In this study, mammographic images are initially converted into digital images and then to increase spatial resolution power, their noise is reduced and consequently their contrast is improved. The results demonstrate effectiveness and efficiency of the proposed methods. (authors)

  14. Altered expression of estrogen receptor-α variant messenger RNAs between adjacent normal breast and breast tumor tissues

    International Nuclear Information System (INIS)

    Leygue, Etienne; Dotzlaw, Helmut; Watson, Peter H; Murphy, Leigh C

    2000-01-01

    Using semiquantitative reverse transcription-polymerase chain reaction assays, we investigated the expression of variant messenger RNAs relative to wild-type estrogen receptor (ER)-α messenger RNA in normal breast tissues and their adjacent matched breast tumor tissues. Higher ER variant truncated after sequences encoding exon 2 of the wild-type ER-α (ERC4) messenger RNA and a lower exon 3 deleted ER-α variant (ERD3) messenger RNA relative expression in the tumor compartment were observed in the ER-positive/PR-positive and the ER-positive subsets, respectively. A significantly higher relative expression of exon 5 deleted ER-α varient (ERD5) messenger RNA was observed in tumor components overall. These data demonstrate that changes in the relative expression of ER-α variant messenger RNAs occur between adjacent normal and neoplastic breast tissues. We suggest that these changes might be involved in the mechanisms that underlie breast tumorigenesis. Estrogen receptor (ER)-α and ER-β are believed to mediate the action of estradiol in target tissues. Several ER-α and ER-β variant messenger RNAs have been identified in both normal and neoplastic human tissues. Most of these variants contain a deletion of one or more exons of the wild-type (WT) ER messenger RNAs. The putative proteins that are encoded by these variant messenger RNAs would therefore be missing some functional domains of the WT receptors, and might interfere with WT-ER signaling pathways. The detection of ER-α variants in both normal and neoplastic human breast tissues raised the question of their possible role in breast tumorigenesis. We have previously reported an increased relative expression of exon 5 deleted ER-α variant (ERD5) messenger RNA and of another ER-α variant truncated of all sequences following the exon 2 of the WT ER-α (ERC4) messenger RNA in breast tumor samples versus independent normal breast tissues. In contrast, a decreased relative expression of exon 3 deleted ER

  15. Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer.

    Science.gov (United States)

    Wu, Mingxiang; Ma, Jie

    2017-04-01

    Breast cancer can be divided into four major molecular subtypes based on the expression of hormone receptor (estrogen receptor and progesterone receptor), human epidermal growth factor receptor 2, HER2 status, and molecular proliferation rate (Ki67). In this study, we sought to investigate the association between breast cancer subtype and radiological findings in the Chinese population. Medical records of 300 consecutive invasive breast cancer patients were reviewed from the database: the Breast Imaging Reporting and Data System. The imaging characteristics of the lesions were evaluated. The molecular subtypes of breast cancer were classified into four types: luminal A, luminal B, HER2 overexpressed (HER2), and basal-like breast cancer (BLBC). Univariate and multivariate logistic regression analyses were performed to assess the association between the subtype (dependent variable) and mammography or 15 magnetic resonance imaging (MRI) indicators (independent variables). Luminal A and B subtypes were commonly associated with "clustered calcification distribution," "nipple invasion," or "skin invasion" (P cancers showed association with persistent enhancement in the delayed phase on MRI and "clustered calcification distribution" on mammography (P breast tumor, which are potentially useful tools in the diagnosis and subtyping of breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy

    Science.gov (United States)

    Lee, Songhyun; Jeong, Hyeryun; Seong, Myeongsu; Kim, Jae Gwan

    2017-12-01

    Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.

  17. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    Science.gov (United States)

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  18. Breast-conserving surgery in locally advanced breast cancer submitted to neoadjuvant chemotherapy. Safety and effectiveness based on ipsilateral breast tumor recurrence and long-term follow-up

    Directory of Open Access Journals (Sweden)

    Guilherme Freire Angotti Carrara

    Full Text Available OBJECTIVE: To evaluate ipsilateral breast tumor recurrence after breast-conserving surgery for locally advanced breast cancer. METHODS: A retrospective observational cohort study was performed in patients with locally advanced breast cancer submitted to breast-conserving surgery after neoadjuvant chemotherapy based on an adriamycin-cyclophosphamide-paclitaxel regimen. We evaluated the clinical, pathologic, immunohistochemistry, and surgical factors that contribute to ipsilateral breast tumor recurrence and locoregional recurrence. A Kaplan-Meier analysis and Cox model were used to evaluate the main factors related to disease-free survival. RESULTS: Of the 449 patients who received neoadjuvant chemotherapy, 98 underwent breast-conserving surgery. The average diameter of the tumors was 5.3 cm, and 87.2% reached a size of up to 3 cm. Moreover, 86.7% were classified as clinical stage III, 74.5% had T3-T4 tumors, 80.5% had N1-N2 axilla, and 89.8% had invasive ductal carcinoma. A pathologic complete response was observed in 27.6% of the tumors, and 100.0% of samples had free margins. The 5-year actuarial overall survival rate was 81.2%, and the mean follow-up was 72.8 months. The rates of ipsilateral breast tumor recurrence and locoregional recurrence were 11.2% and 15.3%, respectively. Multifocal morphology response was the only factor related to ipsilateral breast tumor recurrence disease-free survival (p=0.04. A multivariate analysis showed that the pathologic response evaluation criteria in solid tumors (RECIST-breast cutoff was the only factor related to locoregional recurrence disease-free survival (p=0.01. CONCLUSIONS: Breast-conserving surgery is a safe and effective therapy for selected locally advanced breast tumors.

  19. Glutathione Transferase GSTπ In Breast Tumors Evaluated By Three Techniques

    Directory of Open Access Journals (Sweden)

    Rafael Molina

    1993-01-01

    Full Text Available The glutathione transferases are involved in intracellular detoxification reactions. One of these, GSTπ, is elevated in some breast cancer cells, particularly cells selected for resistance to anticancer agents. We evaluated GSTπ expression in 60 human breast tumors by three techniques, immunohistochemistry, Northern hybridization, and Western blot analysis. There was a significant positive correlation between the three methods, with complete concordance seen in 64% of the tumors. There was strong, inverse relationship between GSTπ expression and steroid receptor status with all of the techniques utili zed. [n addition, there was a trend toward higher GSTπ expression in poorly differentiated tumors, but no correlation was found between tumor GSTπ content and DNA ploidy or %S-phase. GSTπ expression was also detected in adjacent benign breast tissue as well as infiltrating lymphocytes; this expression may contribute to GSTπ measurements using either Northern hybridization or Western blot analysis. These re sults suggest that immunohistochemistry is the method of choice for measuring GSTπ in breast tumors.

  20. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    Science.gov (United States)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  1. Predicting local recurrence following breast-conserving treatment: parenchymal signal enhancement ratio (SER) around the tumor on preoperative MRI

    International Nuclear Information System (INIS)

    Kim, Mi Young; Cho, Nariya; Koo, Hye Ryoung; Yun, Bo La; Bae, Min Sun; Moon, Woo Kyung; Chie, Eui Kyu

    2013-01-01

    Background: The level of background parenchymal enhancement around tumor is known to be associated with breast cancer risk. However, there is no study investigating predictive power of parenchymal signal enhancement ratio (SER) around tumor for ipsilateral breast tumor recurrence (IBTR). Purpose: To investigate whether the breast parenchymal SER around the tumor on preoperative dynamic contrast-enhanced magnetic resonance imaging (MRI) is associated with subsequent IBTR in breast cancer patients who had undergone breast-conserving treatment. Material and Methods: Nineteen consecutive women (mean age, 44 years; range, 34-63 years) with breast cancer who developed IBTR following breast-conserving treatment and 114 control women matched for age, as well as T and N stages were included. We compared the clinicopathologic features of the two groups including nuclear grade, histologic grade, hormonal receptor status, human epidermal growth factor receptor-2 (HER-2) status, lymphovascular invasion, negative margin width, use of adjuvant therapy, and parenchymal SER around the tumor on preoperative DCE-MRI. The SER was measured on a slice showing the largest dimension of the tumor. Multivariate conditional logistic regression analysis was used to identify independent factors associated with IBTR. Results: In univariate analysis, ER negativity (odds ratio [OR] = 4.7; P = 0.040), PR negativity (OR = 4.0; P = 0.013), HER-2 positivity (OR = 3.6; P = 0.026), and a parenchymal SER greater than 0.53 (OR = 23.3; P = 0.011) were associated with IBTR. In multivariate analysis, ER negativity (OR = 3.8; P = 0.015) and a parenchymal SER greater than 0.53 (OR = 13.2; P = 0.040) on preoperative MRI were independent factors associated with IBTR. Conclusion: In addition to ER negativity, a higher parenchymal SER on preoperative MRI was an independent factor associated with subsequent IBTR in patients with breast cancer who had undergone breast-conserving treatment

  2. Imaging biomarkers to predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer

    Science.gov (United States)

    Shah, Chirayu; Miller, Todd W.; Wyatt, Shelby K.; McKinley, Eliot T.; Olivares, Maria Graciela; Sanchez, Violeta; Nolting, Donald D.; Buck, Jason R.; Zhao, Ping; Ansari, M. Sib; Baldwin, Ronald M.; Gore, John C.; Schiff, Rachel; Arteaga, Carlos L.; Manning, H. Charles

    2010-01-01

    Purpose To evaluate non-invasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and non-responding tumor-bearing cohorts. Experimental Design Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin-V accumulation), glucose metabolism ([18F]FDG-PET), and proliferation ([18F]FLT-PET) were evaluated throughout a bi-weekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical (IHC) analysis of cleaved caspase-3, phosphorylated AKT (p-AKT) and Ki67. Results NIR700-Annexin-V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed, but not in non-responding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and IHC analysis. Conclusions Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2(+) tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not appear to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer. PMID:19584166

  3. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI.

    Science.gov (United States)

    Parekh, Vishwa S; Jacobs, Michael A

    2017-01-01

    Radiomics deals with the high throughput extraction of quantitative textural information from radiological images that not visually perceivable by radiologists. However, the biological correlation between radiomic features and different tissues of interest has not been established. To that end, we present the radiomic feature mapping framework to generate radiomic MRI texture image representations called the radiomic feature maps (RFM) and correlate the RFMs with quantitative texture values, breast tissue biology using quantitative MRI and classify benign from malignant tumors. We tested our radiomic feature mapping framework on a retrospective cohort of 124 patients (26 benign and 98 malignant) who underwent multiparametric breast MR imaging at 3 T. The MRI parameters used were T1-weighted imaging, T2-weighted imaging, dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted imaging (DWI). The RFMs were computed by convolving MRI images with statistical filters based on first order statistics and gray level co-occurrence matrix features. Malignant lesions demonstrated significantly higher entropy on both post contrast DCE-MRI (Benign-DCE entropy: 5.72 ± 0.12, Malignant-DCE entropy: 6.29 ± 0.06, p  = 0.0002) and apparent diffusion coefficient (ADC) maps as compared to benign lesions (Benign-ADC entropy: 5.65 ± 0.15, Malignant ADC entropy: 6.20 ± 0.07, p  = 0.002). There was no significant difference between glandular tissue entropy values in the two groups. Furthermore, the RFMs from DCE-MRI and DWI demonstrated significantly different RFM curves for benign and malignant lesions indicating their correlation to tumor vascular and cellular heterogeneity respectively. There were significant differences in the quantitative MRI metrics of ADC and perfusion. The multiview IsoSVM model classified benign and malignant breast tumors with sensitivity and specificity of 93 and 85%, respectively, with an AUC of 0.91.

  4. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    Science.gov (United States)

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  5. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    International Nuclear Information System (INIS)

    Chandler, E M; Saunders, M P; Yoon, C J; Fischbach, C; Gourdon, D

    2011-01-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies

  6. Magnetic resonance characterization of tumor microvessels in experimental breast tumors using a slow clearance blood pool contrast agent (carboxymethyldextran-A2-Gd-DOTA) with histopathological correlation

    International Nuclear Information System (INIS)

    Preda, Anda; Novikov, Viktor; Moeglich, Martina; Turetschek, Karl; Shames, David M.; Roberts, Timothy P.L.; Brasch, Robert C.; Floyd, Eugenia; Carter, Wayne O.; Corot, Claire

    2005-01-01

    Carboxymethyldextran (CMD)-A2-Gd-DOTA, a slow clearance blood pool contrast agent with a molecular weight of 52.1 kDa, designed to have intravascular residence for more than 1 h, was evaluated for its potential to characterize and differentiate the microvessels of malignant and benign breast tumors. Precontrast single-slice inversion-recovery snapshot FLASH and dynamic contrast-enhanced MRI using an axial T1-weighted three-dimensional spoiled gradient recalled sequence was performed in 30 Sprague-Dawley rats with chemically induced breast tumors. Endothelial transfer coefficient and fractional plasma volume of the breast tumors were estimated from MRI data acquired with CMD-A2-Gd-DOTA enhancement injected at a dose of 0.1 mmol Gd/kg body weight using a two-compartment bidirectional model of the tumor tissue. The correlation between MRI microvessel characteristics and histopathological tumor grade was determined using the Scarff-Bloom-Richardson method. Using CMD-A2-Gd-DOTA, no significant correlations were found between the MR-estimated endothelial transfer coefficient or plasma volumes with histological tumor grade. Analysis of CMD-A2-Gd-DOTA-enhanced MR kinetic data failed to demonstrate feasibility for the differentiation of benign from malignant tumors or for image-based tumor grading. (orig.)

  7. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    Science.gov (United States)

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  8. Malignant phyllodes tumor of the breast with heterologous high-grade angiosarcoma

    Directory of Open Access Journals (Sweden)

    Ghassan Tranesh

    2017-03-01

    Full Text Available Phyllodes tumors (PTs account for <3% of fibroepithelial breast lesions and for 0.3% to 1.0% of primary breast tumors. They occur predominantly in middle-aged women (mean age range, 40–50 years. PTs can be categorized into benign, borderline, and malignant; the first 2 categories are distinguished only by degree of cellular atypia and mitotic activity. Malignant PTs are more frequent among persons of Hispanic ethnicity, especially those born in Central America or South America. Heterologous sarcomatous elements may be present in malignant PTs, predominantly liposarcoma and rarely fibrosarcoma, rhabdomyosarcoma, leiomyosarcoma, osteosarcoma, and chondrosarcoma. Breast angiosarcoma (BA is a rare heterologous, sarcomatous element that may arise secondary to malignant PT. We report a 47-year-old woman with no history of previous surgery or radiation therapy who presented to the emergency department with a painful right breast mass. She admittedly noticed the right breast mass for many years; however, recently it increased in size. Mammography and ultrasonography identified a partially cystic mass. Core needle biopsy showed dense hyalinized fibrous tissue with old blood clots, suggestive of infarcted fibroadenoma. The patient received antibiotics and analgesics; however, she reported intractable pain and a worsening skin rash of her right breast. Chest computed tomography and magnetic resonance imaging showed a doubling in mass size, with pectoralis major muscle involvement. Incisional biopsy showed malignant PT with heterologous high-grade angiosarcoma. The diagnosis of angiosarcoma was confirmed through immunoreactivity for CD31, FLI1, and ERG immunostains.

  9. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/tk-luc human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-F. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Lin, Y.-Y. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Wang, H.-E. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Liu, R.-S. [Department of Nuclear Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Nuclear Medicine Department, Veterans General Hospital, Taipei, Taiwan (China); Pang Fei [Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Hwang, J.-J. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1-tk) and luciferase (luc). Both {sup 131}I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  10. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/tk-luc human breast cancer xenografts

    International Nuclear Information System (INIS)

    Chang, Y.-F.; Lin, Y.-Y.; Wang, H.-E.; Liu, R.-S.; Pang Fei; Hwang, J.-J.

    2007-01-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1-tk) and luciferase (luc). Both 131 I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis

  11. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response.

    Science.gov (United States)

    Heppner, K. J.; Matrisian, L. M.; Jensen, R. A.; Rodgers, W. H.

    1996-01-01

    Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8686751

  12. Optical redox imaging of fixed unstained tissue slides to identify biomarkers for breast cancer diagnosis/prognosis: feasibility study

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Li, Yusheng; Feng, Min; Zhang, Paul; Quinn, William J.; Baur, Joseph A.; Li, Lin Z.

    2018-02-01

    We previously showed that optical redox imaging (ORI) of snap-frozen breast biopsies by the Chance redox scanner readily discriminates cancer from normal tissue. Moreover, indices of redox heterogeneity differentiate among tumor xenografts with different metastatic potential. These observations suggest that ORI of fluorescence of NADH and oxidized flavoproteins (Fp) may provide diagnostic/prognostic value for clinical applications. In this work, we investigate whether ORI of formalin-fixed-paraffin-embedded (FFPE) unstained clinical tissue slides of breast tumors is feasible and comparable to ORI of snap-frozen tumors. If ORI of FFPE is validated, it will enhance the versatility of ORI as a novel diagnostic/prognostic assay as FFPE samples are readily available. ORI of fixed tissue slides was performed using a fluorescence microscope equipped with a precision automated stage and appropriate optical filters. We developed a vignette correction algorithm to remove the tiling effect of stitched-images. The preliminary data from imaging fixed slides of breast tumor xenografts showed intratumor redox heterogeneity patterns similar to that of the frozen tissues imaged by the Chance redox scanner. From ORI of human breast tissue slides we identified certain redox differences among normal, ductal carcinoma in situ, and invasive carcinoma. We found paraformaldehyde fixation causes no change in NADH signals but enhances Fp signals of fresh muscle fibers. We also investigated the stability of the fluorescence microscope and reproducibility of tissue slide fluorescence signals. We plan to validate the diagnostic/prognostic value of ORI using clinically annotated breast cancer sample set from patients with long-term follow-up data.

  13. Breast tumor targeting with 99mTc-HYNIC-PR81 complex as a new biologic radiopharmaceutical

    International Nuclear Information System (INIS)

    Salouti, Mojtaba; Rajabi, Hossein; Babaei, Mohammad Hossein; Rasaee, Mohammad Javad

    2008-01-01

    Human epithelial mucin, MUC1, is commonly overexpressed in adenocarcinoma that includes more than 80% of breast cancers. The PR81 is a murine anti-MUC1 monoclonal antibody (MAb) that was prepared against the human breast cancer. We developed an indirect method for labeling of this antibody with 99m Tc in order to use the new preparation in immunoscintigraphy studies of BALB/c mice bearing breast tumors. The 99m Tc-PR81 complex was prepared using the HYNIC as a chelator and tricine as a coligand. The labeling efficiency determined by instant thin-layer chromatography (ITLC) was 89.2%±4.7%, and radiocolloides measured by cellulose nitrate electrophoresis were 3.4%±0.9%. The in vitro stability of labeled product was determined at room temperature by ITLC and in human serum by gel filtration chromatography - 88.3%±4.6% and 79.8%±5.7% over 24 h, respectively. The integrity of labeled MAb was checked by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis, and no significant fragmentation was seen. The results of cell binding studies showed that both labeled and unlabeled PR81 were able to compete for binding to MCF 7 cells. Biodistribution studies performed in female BALB/c mice with breast tumor xenografts at 4, 16 and 24 h after the 99m Tc-HYNIC-PR81 injection demonstrated a specific localization of the compound at the site of tumors and minimum accumulation in non target organs. The tumor imaging was performed in BALB/c mice with breast xenograft tumors at 4, 8, 12, 16, 20, 24, 28, 32 and 36 h after the complex injection. The tumors were visualized with high sensitivity after 8 h. The findings showed that the new radiopharmaceutical is a promising candidate for radioimmunoscintigraphy of the human breast cancer

  14. Characterization of adjacent breast tumors using oligonucleotide microarrays

    International Nuclear Information System (INIS)

    Unger, Meredith A; Rishi, Mazhar; Clemmer, Virginia B; Hartman, Jennifer L; Keiper, Elizabeth A; Greshock, Joel D; Chodosh, Lewis A; Liebman, Michael N; Weber, Barbara L

    2001-01-01

    Current methodology often cannot distinguish second primary breast cancers from multifocal disease, a potentially important distinction for clinical management. In the present study we evaluated the use of oligonucleotide-based microarray analysis in determining the clonality of tumors by comparing gene expression profiles. Total RNA was extracted from two tumors with no apparent physical connection that were located in the right breast of an 87-year-old woman diagnosed with invasive ductal carcinoma (IDC). The RNA was hybridized to the Affymetrix Human Genome U95A Gene Chip ® (12,500 known human genes) and analyzed using the Gene Chip Analysis Suite ® 3.3 (Affymetrix, Inc, Santa Clara, CA, USA) and JMPIN ® 3.2.6 (SAS Institute, Inc, Cary, NC, USA). Gene expression profiles of tumors from five additional patients were compared in order to evaluate the heterogeneity in gene expression between tumors with similar clinical characteristics. The adjacent breast tumors had a pairwise correlation coefficient of 0.987, and were essentially indistinguishable by microarray analysis. Analysis of gene expression profiles from different individuals, however, generated a pairwise correlation coefficient of 0.710. Transcriptional profiling may be a useful diagnostic tool for determining tumor clonality and heterogeneity, and may ultimately impact on therapeutic decision making

  15. N-(n-benzylpiperidin-4-yl)-2-[18f]fluorobenzamide: a potential ligand for PET imaging of breast cancer

    International Nuclear Information System (INIS)

    Shiue, Chyng-Yann; Shiue, Grace G.; Benard, Francois; Visonneau, Sophie; Santoli, Daniela; Alavi, Abass A.

    2000-01-01

    N-(N-Benzylpiperidin-4-yl)-2-[ 18 F]fluorobenzamide (2), a potential ligand for PET imaging of sigma receptor, has been found to be a potential agent for detection of breast cancer. In vivo studies in severe combined immunodeficient (SCID) mice bearing MDA-MB231 tumors showed that the uptake of compound 2 in these tumors was high (3.8%/g); the ratios of tumor/muscle and tumor/blood were 6.2 and 7.0, respectively, at 1 h postinjection. Pretreatment of SCID mice with haldol increased the uptake of compound 2 in blood, muscle, and other well-perfused organs while decreasing its uptake in tumors. The ratios of tumor/muscle and tumor/blood decreased from 6.2 and 7.0 to 1.3 and 1.1, respectively, at 1 h postinjection. At 2 h postinjection, the ratios of tumor/muscle and tumor/blood decreased from 4.9 and 7.8 to 1.4 and 1.4, respectively. The tumor uptake of compound 2 in SCID mice bearing primary tumor explants from a human breast cancer patient was lower than that in MDA-MB231 tumors (1.66%/g versus 3.78%/g), and the ratios of tumor/muscle and tumor/blood were 3.5 and 3.7, respectively, at 1 h postinjection. These results suggest that compound 2 may be a potential ligand for PET imaging of breast cancer

  16. Optimized production, quality control, biological evaluation and PET/CT imaging of {sup 68}Ga-PSMA-617 in breast adenocarcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mehdi; Yousefnia, Hassan; Bahrami-Samani, Ali; Zolghadri, Samaneh; Alirezapour, Behrouz [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Jalilian, Amir Reza; Geramifa, Parham; Beiki, Davood [Tehran Univ. of Medical Sciences (Iran, Islamic Republic of). Research Center for Nuclear Medicine; Maus, Stephan [Univ. Medical Centre Mainz (Germany). Clinic of Nuclear Medicine

    2017-08-01

    Optimized production, quality control and preclinical evaluation of {sup 68}Ga-PSMA-617 as a PET radiotracer for PSMA-positive malignancies as well as successful application in imaging of breast adenocarcinomas are reported. {sup 68}Ga-PSMA-617 radiolabeling and QC optimization, stability, log P, biodistribution in breast adenocarcinomas-bearing mice (direct and blockade studies) and also PET/CT imaging was performed. {sup 68}Ga-PSMA-617 complex was prepared in high radiochemical purity (>96%, ITLC, HPLC) and specific activity of 300-310 GBq/mM at 95 C using 2-4 micrograms of the peptide in 10 min followed by solid phase purification. The tracer was stable in serum and final formulation for at least 120 min. The log P was -1.98. Western blot test on the tumor cell homogenates demonstrated distinct existence of the PSMA on the surface. The biodistribution of the tracer demonstrated specific kidney and tumor significant uptake using blocking study. Significant tumor:blood and tumor:muscle ratio uptake observed at 30 min post-injection (2.69 and 19.1, respectively). A reduction of 40-80% off tumor uptake in the study time period observed using blocking test. {sup 68}Ga-PSMA-617 can be proposing a possible tracer for PET imaging of breast adenocarcinomas and other breast malignancies.

  17. Investigating the KLF4 Gene Expression as a New Molecular Marker in Breast Tumors

    Directory of Open Access Journals (Sweden)

    MA Hosseinpour Feizi

    2013-12-01

    Results: The results showed that: 1 KLF4 is over expressed in Breast tumors rather than adjacent normal tissues. 2 KLF4 is an oncogene in breast tumors (at least in IDC type. 3 The KLF4 expression levels are related significantly with nature of malignant breast tumors. Conclusion: Findings do not confirm KLF4 as a diagnostic marker in classification and identification of tumoral tissues from non-tumoral ones in breast, but we can use this marker to identify at least 50% of invasive Ductal Carcinoma in breast and utilize it as a potential predictive factor to demonstrate severity degree in various tumors.

  18. Optical tomographic imaging for breast cancer detection

    Science.gov (United States)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  19. Impact of breast cancer family history on tumor detection and tumor size in women newly-diagnosed with invasive breast cancer.

    Science.gov (United States)

    Schwab, Fabienne Dominique; Bürki, Nicole; Huang, Dorothy Jane; Heinzelmann-Schwarz, Viola; Schmid, Seraina Margaretha; Vetter, Marcus; Schötzau, Andreas; Güth, Uwe

    2014-03-01

    This study evaluated the impact of family history (FH) on tumor detection, the patient's age and tumor size at diagnosis in breast cancer (BC). Furthermore, we investigated whether the impact of FH on these features was dependent on degree of relationship, number of relatives with a BC history, or the age of the affected relative at the time that her BC was diagnosed. Out of the entire cohort (n = 1,037), 244 patients (23.5%) had a positive FH; 159 (15.3%) had first-degree relatives affected with BC and 85 patients (8.2%) had second-degree affected relatives. Compared to women who had no BC-affected relatives, the tumors of women who had positive FH were more often found by radiological breast examination (RBE: 31.7%/27.2%, p = 0.008), and they were smaller (general tumor size: 21.8 mm/26.4 mm, p = 0.003; size of tumors found by breast self-examination (BSE): 26.1 mm/30.6 mm, p = 0.041). However, this positive effect of increased use of BC screening and smaller tumor sizes was only observed in patients whose first-degree relatives were affected (comparison with second-degree affected relatives: RBE: 43.8%/24.7%; odds ratio 2.38, p = 0.007; general tumor size: 19.3 mm/26.3 mm; mean difference (MD) -6.9, p = 0.025; tumor size found by BSE: 22.5 mm/31.0 mm; MD -8.5, p = 0.044). When more second-degree relatives or older relatives were diagnosed with BC, the tumors of these patients were similarly often detected by RBE (relationship: 24.7%/27.2%, p = 0.641; age: 33.7 %/27.2 %, p = 0.177) and had similar tumor sizes (general size: 26.3 mm/26.4 mm, p = 0.960; BSE: 31.0 mm/30.6 mm, p = 0.902) as those of women without a FH. Women with a positive FH generally use mammography screening more often and perceive changes in the breast earlier than women without such history. The increased awareness of BC risk decreases if the relationship is more distant.

  20. Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging

    Science.gov (United States)

    Kopeć, Monika; Abramczyk, Halina

    2018-06-01

    Combined micro-Raman imaging and AFM imaging are efficient methods for analyzing human tissue due to their high spatial and spectral resolution as well as sensitivity to subtle chemical, structural and topographical changes. The aim of this study was to determine biochemical composition and mechanical topography around blood vessels in the tumor mass of human breast tissue. Significant alterations of the chemical composition and structural architecture around the blood vessel were found compared to the normal breast tissue. A pronounced increase of collagen-fibroblast-glycocalyx network, as well as enhanced lactic acid, and glycogen activity in patients affected by breast cancer were reported.

  1. Morphologic classification of ductal breast tumors on ultrasound : differential diagnosis of benign and malignant tumors

    International Nuclear Information System (INIS)

    Won, Mi Sook; Chung, Soo Young; Yang, Ik; Lee, Yul; Park, Hai Jung; Lee, Myoung Hwan; Yoon, In Sook; Koh, Mi Gyoung

    1997-01-01

    To evaluate the morphologic differential diagnosis of benign and malignant ductal breast tumors, as seen on US US findings in 29 pathologically proven cases of ductal breast tumor were retrospectively reviewed. All patients were female and their mean age was 42 years. Nineteen tumors were benign and ten were malignant, and all ductal or cystic lesions showed solid masses. According to the location of the mural nodule, we classified the sonographic appearance of these tumors into three types:intraductal, intracystic and amorphic. The intraductal type was divided into three subtypes:incompletely obstructive, completely obstructive and multiple mural nodules. For the intracystic type, too, three subtypes were designated:the intracystic mural nodule (mural cyst), intracystic mural nodule with the duct (mural cyst+duct) and intracystic multiple mural nodules. The amorphic type is defined as an atypical ductal tumor with the mural nodule extending into adjacent parenchyma. The margin of the duct or cyst was smooth in 68.4% of benign, and irregular in 90% of malignant ductal tumors. Internal echogeneity of the duct or cyst usually showed homogeneity in both benign and malignant tumors. 73.7% of tumors connecting the duct were benign and 50% were malignant. In benign tumors, 52.6% of mural nodule had an irregular margin, while in malignant tumors, the corresponding proportion was 100%;both types usually showed heterogeneous hypoechogeneity. Among benign tumors, the most common morphologic type was the intraductal incompletely obstructive subtype (36.8%);among those that were malignant, the amorphic type was most common, accounting for 40% of tumors. No amorphic type was benign and no incompletely obstructive subtype was malignant. When ductal breast tumors are morphologically classified on the basis of sonographic findings, the intraductal incompletely obstructive subtype suggests benignancy, and the amorphic type, malignancy. The morphologic classification of ductal

  2. Quantum dot loaded immunomicelles for tumor imaging

    Directory of Open Access Journals (Sweden)

    Levchenko Tatyana

    2010-10-01

    Full Text Available Abstract Background Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum dot (QD-containing polymeric micelles, prepared from a polyethylene glycol/phosphatidylethanolamine (PEG-PE conjugate. Its production is simple and involves no special equipment. Its imaging potential is great since the fluorescence intensity in the tumor is twofold that of non-targeted QD-loaded PEG-PE micelles at one hour after injection. Methods Para-nitrophenol-containing (5% PEG-PE quantum dot micelles were produced by the thin layer method. Following hydration, 2C5 antibody was attached to the PEG-PE micelles and the QD-micelles were purified using dialysis. 4T1 breast tumors were inoculated subcutaneously in the flank of the animals. A lung pseudometastatic B16F10 melanoma model was developed using tail vein injection. The contrast agents were injected via the tail vein and mice were depilated, anesthetized and imaged on a Kodak Image Station. Images were taken at one, two, and four hours and analyzed using a methodology that produces normalized signal-to-noise data. This allowed for the comparison between different subjects and time points. For the pseudometastatic model, lungs were removed and imaged ex vivo at one and twenty four hours. Results The contrast agent signal intensity at the tumor was double that of the passively targeted QD-micelles with equally fast and sharply contrasted images. With the side views of the animals only tumor is visible, while in the dorsal view internal organs including liver and kidney are visible. Ex vivo results demonstrated that the agent detects melanoma nodes in a lung

  3. A therapeutic and diagnostic dilemma: granular cell tumor of the breast.

    Science.gov (United States)

    Pergel, Ahmet; Yucel, Ahmet Fikret; Karaca, A Serdar; Aydin, Ibrahim; Sahin, Dursun Ali; Demirbag, Nilgun

    2011-01-01

    Six to eight percent of granular cell tumors are seen in the breast. Although mostly benign, they rarely have malignant features clinically and radiologically reminding of breast cancer. This may lead to a potential misdiagnosis of breast carcinoma and overtreatment of patients. The final diagnosis is made by immunohistochemical examination. We performed excisional biopsy on a patient who was diagnosed to have a breast mass. The histopathological examination of the mass revealed granular cell tumor.

  4. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    Science.gov (United States)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  5. Imaging HER2 in response to T-DM1 therapy in breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Massicano, Adriana Vidal; Aweda, Tolulope; Marqueznostra, Bernadette; El Sayed, Reeta; Beacham, Rebecca; Lapi, Suzanne [University Of Alabama, Birmingham, AL (United States)

    2017-07-01

    days post injection. After baseline imaging, mice received saline (control group) or 15 mg/kg TDM1 (study group) via tail-vein and the imaging schedule was repeated two weeks post T-DM1 injection. The tumor sizes were measured with calipers weekly. Results: Pertuzumab was conjugated to p-NCS-Bz-DFO at a molar ratio of 1:16 and successfully radiolabeled with {sup 89}Zr (20 μCi/μg) with radiochemical yield higher than 95%. {sup 89}Zr-Pertuzumab has shown good stability in NaCl 0.9% at room temperature and at 4 °C as well in human serum and PBS at 37 °C. Two weeks post T-DM1 therapy, the tumor volume in control group increased in 219% whereas, in the study group, the tumors decreased 48% in volume. The {sup 18}F-FDG images showed non-specific uptake in heart and brown fat with relatively little tumor uptake. In contrast, {sup 89}Zr-Pertuzumab images showed more specificity in vivo with good tumor delineation which lead to a clear visualization of changes in tumors size after T-DM1 therapy. Conclusions: {sup 89}Zr-Pertuzumab may provide a novel imaging probe for monitoring the response of breast cancer patients to T-DM1 therapy. (author)

  6. The tumor macroenvironment and systemic regulation of breast cancer progression.

    Science.gov (United States)

    Castaño, Zafira; Tracy, Kristin; McAllister, Sandra S

    2011-01-01

    Breast cancer is the most common malignancy among women worldwide and is the most common cause of death for women between 35 and 50 years of age. Women with breast cancer are at risk of developing metastases for their entire lifetime and, despite local and systemic therapies, approximately 30% of breast cancer patients will relapse (Jemal et al., 2010). Nearly all breast cancer related deaths are due to metastatic disease, even though metastasis is considered to be an inefficient process. In some cases, tumor cells disseminate from primary sites at an early stage, but remain indolent for protracted periods of time before becoming overt, life-threatening tumors. Little is known about the mechanisms that cause these indolent tumors to grow into malignant disease. Because of this gap in our understanding, we are unable to predict which breast cancer patients are likely to experience disease relapse or develop metastases years after treatment of their primary tumor. A better understanding of the mechanisms and signals involved in the exit of tumor cells from dormancy would not only allow for more accurate selection of patients that would benefit from systemic therapy, but could also lead to the development of more targeted therapies to inhibit the signals that promote disease progression. In this review, we address the systemic, or "macroenvironmental", contribution to tumor initiation and progression and what is known about how a pro-tumorigenic systemic environment is established.

  7. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  8. Segmentation of breast ultrasound images based on active contours using neutrosophic theory.

    Science.gov (United States)

    Lotfollahi, Mahsa; Gity, Masoumeh; Ye, Jing Yong; Mahlooji Far, A

    2018-04-01

    Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.

  9. Rapid in vivo Taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-Methyl-N-Nitrosourea induced breast tumors in rats

    Directory of Open Access Journals (Sweden)

    Wu Ed X

    2005-08-01

    Full Text Available Abstract Background Sodium weighted images can indicate sodium signal intensities from different features in the tumor before and 24 hours following administration of Taxotere. Aim To evaluate the association of in vivo intracellular sodium magnetic resonance image intensities with immuno-biomarkers and histopathological features to monitor the early tumor response to Taxotere chemotherapy in Methyl-Nitroso-Urea induced rat xenograft breast tumors. Methods and Materials Methyl-Nitroso-Urea (MNU induced rat xenograft breast tumors were imaged for sodium MRI and compared with tumor histology, immunostaining after 24 hours chemotherapy. Results Sodium MRI signal intensities represented sodium concentrations. Excised tumor histological sections showed different in vitro histological end points i.e. single strand DNA content of cell nuclei during cell cycle (G1/S-G2/M, distinct S or M histograms (Feulgen labeling to nuclear DNA content by CAS 200, mitotic figures and apoptosis at different locations of breast tumors. Necrosis and cystic fluid appeared gray on intracellular (IC sodium images while apoptosis rich regions appeared brighter on IC sodium images. After 24 hours Taxotere-treated tumors showed lower 'IC/EC ratio' of viable cells (65–76% with higher mitotic index; apoptotic tumor cells at high risk due to cytotoxicity (>70% with high apoptotic index; reduced proliferation index (270 vs 120 per high power field associated with enhanced IC sodium in vivo MR image intensities and decreased tumor size (3%; p in vivo associated with apoptosis and different pre-malignant features within 24 hours of exposure of cancer cells to anti-neoplastic Taxotere drug. Conclusion Sodium MRI imaging may be used as in vivo rapid drug monitoring method to evaluate Taxotere chemosensitivity response associated with neoplasia, apoptosis and tumor histology features.

  10. Clinicopathological study of rare invasive epithelial tumors of breast: An institutional study

    Directory of Open Access Journals (Sweden)

    Karthik Kasireddy

    2016-01-01

    Full Text Available Introduction: Invasive breast cancer (BC is the most common carcinoma in women. It accounts for 22% of all female cancers. Most tumors are derived from mammary duct epithelium, and up to 75% of BCs are ductal carcinomas. The second most common tumor is invasive lobular carcinoma. However, there are many variants which are less common but well defined by the World Health Organization classification. They comprise <10% of breast tumors. Their clinical behavior differs greatly. Hence, it is important to know their main histomorphological features to make the best treatment of choice and to foresee prognosis. Aims and Objectives: To study the histomorphological features, incidence, and clinical features of rare invasive epithelial tumors of the breast. Materials and Methods: This study was done in the department of pathology, Sri Devaraj Urs Medical College, Kolar. All the neoplastic breast lesions over a period of 5 years (July 2010-September 2015 are included in the study. Clinical features and other details (estrogen receptor/progesterone receptor, human epidermal receptor-2, lymph nodes are obtained from the department (surgery records. Specimens are received and preserved in 10% formalin and are subjected to routine histopathological processing. Hematoxylin and eosin sections are studied, and a morphological diagnosis is given. All rare invasive epithelial breast tumors will be reviewed meticulously. Results and Conclusion: A total number of invasive epithelial tumors of breast were 105. The most common presenting symptom was breast lump. Rare invasive epithelial breast tumors account to 28.5%. The age range from 15 to 70 years. Most common, rare invasive epithelial tumor in our study is medullary carcinoma. Hence, it is imperative to always maintain a Hawks vigil during microscopic diagnosis to know prognosis of the condition and to facilitate early and prompt treatment to the patient.

  11. Augmented reality for breast imaging.

    Science.gov (United States)

    Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio

    2018-02-21

    Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented Breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. The contrast agent used was (CA) gadolinium (Gd) injection (0.1 mmol/kg at 2 ml/s) by a programmable power injector. Dicom formated images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into Augmented reality images. Augmented breast imaging (ABI) demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. Augmented breast imaging (ABI) to the breast can improve clinical outcomes, giving an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.

  12. A Therapeutic and Diagnostic Dilemma: Granular Cell Tumor of the Breast

    Directory of Open Access Journals (Sweden)

    Ahmet Pergel

    2011-01-01

    Full Text Available Six to eight percent of granular cell tumors are seen in the breast. Although mostly benign, they rarely have malignant features clinically and radiologically reminding of breast cancer. This may lead to a potential misdiagnosis of breast carcinoma and overtreatment of patients. The final diagnosis is made by immunohistochemical examination. We performed excisional biopsy on a patient who was diagnosed to have a breast mass. The histopathological examination of the mass revealed granular cell tumor.

  13. Breast tumor size assessment: comparison of conventional ultrasound and contrast-enhanced ultrasound.

    Science.gov (United States)

    Jiang, Yu-Xin; Liu, He; Liu, Ji-Bin; Zhu, Qing-Li; Sun, Qiang; Chang, Xiao-Yan

    2007-12-01

    Accurate assessment of tumor size is necessary when selecting patients for breast-conserving surgery. In the study of breast contrast-enhanced ultrasound (CEUS), we found that tumor size discrepancy between CEUS and conventional ultrasound (US) existed in some breast lesions, for which the reasons are not clear. Breast CEUS examinations were performed in 104 patients with breast lesions. The measurement of the 104 breast tumors on conventional US was obtained and compared with the measurement on CEUS. A difference in measuring tumor size of >3 mm for tumors up to 1.7 cm and 4 mm for tumors >or=1.7 cm, was defined as a significant discrepancy between conventional US and CEUS. The histopathological examination of size discrepancy was performed and the margin characteristics of breast cancers with larger measurements were compared with those with unchanged measurements. Among the 104 lesions (43 malignant, 60 benign, 1 borderline), the size of 27 breast cancers and one granulomatous mastitis appeared larger at CEUS. Pathologic examinations of the region corresponding to the measurement discrepancy were mainly ductal carcinomas in situ (DCIS), invasive carcinoma with a DCIS component, adenosis with lobular hyperplasia in breast cancers and inflammatory cell infiltration in one granulomatous mastitis. Well-defined margin characteristics were significantly different between breast cancers with larger measurements at CEUS and those with unchanged measurements of size (p = 0.002), whereas no significant difference was found between the two groups in ill-defined, spiculated, hyperechoic halo, microlobulated and angulated margins (p = 0.463, 0.117, 0.194, 0.666 and 0.780, respectively). This initial study suggests that significant discrepancy of breast lesion measurement between conventional US and CEUS is more likely presented in breast cancer than benign lesions. The pathologic findings corresponding to the region of size increased at CEUS are malignant in most malignant

  14. Dose determination in breast tumor in brachytherapy using Iridium-192

    International Nuclear Information System (INIS)

    Okuno, S.F.

    1984-01-01

    Thermoluminescent dosimetry studies in vivo and in vitro aiming to determing radiation dose in the breast tumor, in brachytherapy using Iridium-192 was done. The correlation between radiation doses in tumor and external surface of the breast was investigated for correcting the time interval of radiation source implantation. (author) [pt

  15. Breast tumor targeting with {sup 99m}Tc-HYNIC-PR81 complex as a new biologic radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Salouti, Mojtaba [Department of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rajabi, Hossein [Department of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)], E-mail: hrajabi@modares.ac.ir; Babaei, Mohammad Hossein [Department of Radioisotope, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Rasaee, Mohammad Javad [Department of Medical Biotechnology, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-10-15

    Human epithelial mucin, MUC1, is commonly overexpressed in adenocarcinoma that includes more than 80% of breast cancers. The PR81 is a murine anti-MUC1 monoclonal antibody (MAb) that was prepared against the human breast cancer. We developed an indirect method for labeling of this antibody with {sup 99m}Tc in order to use the new preparation in immunoscintigraphy studies of BALB/c mice bearing breast tumors. The {sup 99m}Tc-PR81 complex was prepared using the HYNIC as a chelator and tricine as a coligand. The labeling efficiency determined by instant thin-layer chromatography (ITLC) was 89.2%{+-}4.7%, and radiocolloides measured by cellulose nitrate electrophoresis were 3.4%{+-}0.9%. The in vitro stability of labeled product was determined at room temperature by ITLC and in human serum by gel filtration chromatography - 88.3%{+-}4.6% and 79.8%{+-}5.7% over 24 h, respectively. The integrity of labeled MAb was checked by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis, and no significant fragmentation was seen. The results of cell binding studies showed that both labeled and unlabeled PR81 were able to compete for binding to MCF 7 cells. Biodistribution studies performed in female BALB/c mice with breast tumor xenografts at 4, 16 and 24 h after the {sup 99m}Tc-HYNIC-PR81 injection demonstrated a specific localization of the compound at the site of tumors and minimum accumulation in non target organs. The tumor imaging was performed in BALB/c mice with breast xenograft tumors at 4, 8, 12, 16, 20, 24, 28, 32 and 36 h after the complex injection. The tumors were visualized with high sensitivity after 8 h. The findings showed that the new radiopharmaceutical is a promising candidate for radioimmunoscintigraphy of the human breast cancer.

  16. Comparisons of three alternative breast modalities in a common phantom imaging experiment

    International Nuclear Information System (INIS)

    Li Dun; Meaney, Paul M.; Tosteson, Tor D.; Jiang Shudong; Kerner, Todd E.; McBride, Troy O.; Pogue, Brian W.; Hartov, Alexander; Paulsen, Keith D.

    2003-01-01

    Four model-based imaging systems are currently being developed for breast cancer detection at Dartmouth College. A potential advantage of multimodality imaging is the prospect of combining information collected from each system to provide a more complete diagnostic tool that covers the full range of the patient and pathology spectra. In this paper it is shown through common phantom experiments on three of these imaging systems that it was possible to correlate different types of image information to potentially improve the reliability of tumor detection. Imaging experiments were conducted with common phantoms which mimic both dielectric and optical properties of the human breast. Cross modality comparison was investigated through a statistical study based on the repeated data sets of reconstructed parameters for each modality. The system standard error between all methods was generally less than 10% and the correlation coefficient across modalities ranged from 0.68 to 0.91. Future work includes the minimization of bias (artifacts) on the periphery of electrical impedance spectroscopy images to improve cross modality correlation and implementation of the multimodality diagnosis for breast cancer detection

  17. In vivo measurement of tumor estradiol and Vascular Endothelial Growth Factor in breast cancer patients

    International Nuclear Information System (INIS)

    Garvin, Stina; Dabrosin, Charlotta

    2008-01-01

    Angiogenesis, crucial for tumor progression, is a process regulated in the tissue micro-environment. Vascular endothelial growth factor (VEGF) is a potent stimulatory factor of angiogenesis and a negative prognostic indicator of breast cancer. VEGF is biologically active in the extracellular space and hitherto, there has been a lack of techniques enabling sampling of angiogenic molecules such as VEGF in situ. The majority of breast cancers are estrogen-dependent, and estrogen has been shown to regulate VEGF in normal breast tissue and experimental breast cancer. We investigated if microdialysis may be applicable in human breast cancer for sampling of extracellular VEGF in situ and to explore if there is an association with local estradiol and VEGF levels in normal and cancerous breast tissue. Microdialysis was used to sample VEGF and estradiol in tumors and adjacent normal breast tissue in postmenopausal breast cancer patients. VEGF and estradiol were also measured in plasma, and immunohistochemical staining for VEGF was performed on tumor sections. We show that in vivo levels of extracellular VEGF were significantly higher in breast cancer tumors than in normal adjacent breast tissue. There was a significant positive correlation between estradiol and extracellular VEGF in normal breast tissue. However, no correlation was detected between estradiol and VEGF in tumors or between tumor VEGF and plasma VEGF. We conclude that VEGF and estradiol correlates significantly in normal breast tissue. Microdialysis may be used to provide novel insight in breast tumor biology and the regulation of molecules in the extracellular space of human breast tumors in vivo

  18. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Schilling, Kathy; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine; Narayanan, Deepa; Kalinyak, Judith E.

    2011-01-01

    The objective of this study was to compare the performance characteristics of 18 F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget's disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar's test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size

  19. A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data.

    Science.gov (United States)

    Plancoulaine, Benoit; Laurinaviciene, Aida; Herlin, Paulette; Besusparis, Justinas; Meskauskas, Raimundas; Baltrusaityte, Indra; Iqbal, Yasir; Laurinavicius, Arvydas

    2015-10-19

    Digital image analysis (DIA) enables higher accuracy, reproducibility, and capacity to enumerate cell populations by immunohistochemistry; however, the most unique benefits may be obtained by evaluating the spatial distribution and intra-tissue variance of markers. The proliferative activity of breast cancer tissue, estimated by the Ki67 labeling index (Ki67 LI), is a prognostic and predictive biomarker requiring robust measurement methodologies. We performed DIA on whole-slide images (WSI) of 302 surgically removed Ki67-stained breast cancer specimens; the tumour classifier algorithm was used to automatically detect tumour tissue but was not trained to distinguish between invasive and non-invasive carcinoma cells. The WSI DIA-generated data were subsampled by hexagonal tiling (HexT). Distribution and texture parameters were compared to conventional WSI DIA and pathology report data. Factor analysis of the data set, including total numbers of tumor cells, the Ki67 LI and Ki67 distribution, and texture indicators, extracted 4 factors, identified as entropy, proliferation, bimodality, and cellularity. The factor scores were further utilized in cluster analysis, outlining subcategories of heterogeneous tumors with predominant entropy, bimodality, or both at different levels of proliferative activity. The methodology also allowed the visualization of Ki67 LI heterogeneity in tumors and the automated detection and quantitative evaluation of Ki67 hotspots, based on the upper quintile of the HexT data, conceptualized as the "Pareto hotspot". We conclude that systematic subsampling of DIA-generated data into HexT enables comprehensive Ki67 LI analysis that reflects aspects of intra-tumor heterogeneity and may serve as a methodology to improve digital immunohistochemistry in general.

  20. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise.In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in breast cancer management.

  1. A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection

    Science.gov (United States)

    Motta, A.; Righi, S.; Del Guerra, A.; Belcari, N.; Vaiano, A.; De Domenico, G.; Zavattini, G.; Campanini, R.; Lanconelli, N.; Riccardi, A.

    2004-07-01

    A prototype for Positron Emission Mammography, the YAP-PEM, is under development within a collaboration of the Italian Universities of Pisa, Ferrara, and Bologna. The aim is to detect breast lesions, with dimensions of 5 mm in diameter, and with a specific activity ratio of 10:1 between the cancer and breast tissue. The YAP-PEM is composed of two stationary detection heads of 6×6 cm 2, composed of a matrix of 30×30 YAP:Ce finger crystals of 2×2×30 mm 3 each. The EGSnrc Monte Carlo code has been used to simulate several characteristics of the prototype. A fast EM algorithm has been adapted to reconstruct all of the collected lines of flight, also at large incidence angles, by achieving 3D positioning capability of the lesion in the FOV. The role of the breast compression has been studied. The performed study shows that a 5 mm diameter tumor of 37 kBq/cm 3 (1 μCi/cm 3), embedded in active breast tissue with 10:1 tumor/background specific activity ratio, is detected in 10 min with a Signal-to-Noise Ratio of 8.7±1.0. Two hot lesions in the active breast phantom are clearly visible in the reconstructed image.

  2. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Directory of Open Access Journals (Sweden)

    Katsinis Constantine

    2006-10-01

    Full Text Available Abstract Background Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E stained tissue sections based on cancer tissue texture features. Methods Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. Results The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1 the number density of cell nuclei with dispersed chromatin and (2 the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. Conclusion The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process.

  3. β class II tubulin predominates in normal and tumor breast tissues

    International Nuclear Information System (INIS)

    Dozier, James H; Hiser, Laree; Davis, Jennifer A; Thomas, Nancy Stubbs; Tucci, Michelle A; Benghuzzi, Hamed A; Frankfurter, Anthony; Correia, John J; Lobert, Sharon

    2003-01-01

    Antimitotic chemotherapeutic agents target tubulin, the major protein in mitotic spindles. Tubulin isotype composition is thought to be both diagnostic of tumor progression and a determinant of the cellular response to chemotherapy. This implies that there is a difference in isotype composition between normal and tumor tissues. To determine whether such a difference occurs in breast tissues, total tubulin was fractionated from lysates of paired normal and tumor breast tissues, and the amounts of β-tubulin classes I + IV, II, and III were measured by competitive enzyme-linked immunosorbent assay (ELISA). Only primary tumor tissues, before chemotherapy, were examined. Her2/neu protein amplification occurs in about 30% of breast tumors and is considered a marker for poor prognosis. To gain insight into whether tubulin isotype levels might be correlated with prognosis, ELISAs were used to quantify Her2/neu protein levels in these tissues. β-Tubulin isotype distributions in normal and tumor breast tissues were similar. The most abundant β-tubulin isotypes in these tissues were β-tubulin classes II and I + IV. Her2/neu levels in tumor tissues were 5–30-fold those in normal tissues, although there was no correlation between the Her2/neu biomarker and tubulin isotype levels. These results suggest that tubulin isotype levels, alone or in combination with Her2/neu protein levels, might not be diagnostic of tumorigenesis in breast cancer. However, the presence of a broad distribution of these tubulin isotypes (for example, 40–75% β-tubulin class II) in breast tissue, in conjunction with other factors, might still be relevant to disease progression and cellular response to antimitotic drugs

  4. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy.

    Science.gov (United States)

    Wu, Jia; Gong, Guanghua; Cui, Yi; Li, Ruijiang

    2016-11-01

    To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). In this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65). The heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Circulating tumor cells in breast cancer.

    Science.gov (United States)

    Bidard, Francois-Clement; Proudhon, Charlotte; Pierga, Jean-Yves

    2016-03-01

    Over the past decade, technically reliable circulating tumor cell (CTC) detection methods allowed the collection of large datasets of CTC counts in cancer patients. These data can be used either as a dynamic prognostic biomarker or as tumor material for "liquid biopsy". Breast cancer appears to be the cancer type in which CTC have been the most extensively studied so far, with level-of-evidence-1 studies supporting the clinical validity of CTC count in both early and metastatic stage. This review summarizes and discusses the clinical results obtained in breast cancer patients, the issues faced by the molecular characterization of CTC and the biological findings about cancer biology and metastasis that were obtained from CTC. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Evaluation of diagnostic procedures such as plain-film scintigraphy and MR imaging for spinal metastases in relation to biological characteristics in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Hiroya; Nagao, Kazuharu; Nishimura, Reiki; Matsuda, Kazumasa; Baba, Kenichiro; Matsuoka, Yukio; Fukuda, Makoto; Higuchi, Akihiro; Saeki, Takahito [Kumamoto City Hospital (Japan)

    1995-09-01

    The relationship between spinal metastases diagnosed by plain-film, bone scintigraphy, and MR imaging and biological characteristics in 26 patients with breast cancer was investigated retrospectively. It was found that bone scintigraphy is useful for detecting metastases in case with slow-growing tumors determined by DNA polymerase {alpha} or with estrogen-receptor (ER) positivity. In contrast, cases with rapidly growing tumors showed false-negative plain-film or bone scintigraphy results, including cases with ER-negative tumors or DNA polymerase {alpha} of more than 20%. MR imaging was found to be highly sensitive in detecting spinal metastases even in aggressive cases. MR imaging was found to have greater reliability in detecting spinal metastases of breast cancer compared to bone scintigraphy. In conclusion, it may be important to consider the degree of malignancy of each case with spinal metastases of breast cancer in evaluating imaging diagnosis. (author).

  7. Evaluation of diagnostic procedures such as plain-film scintigraphy and MR imaging for spinal metastases in relation to biological characteristics in breast cancer

    International Nuclear Information System (INIS)

    Yamashita, Hiroya; Nagao, Kazuharu; Nishimura, Reiki; Matsuda, Kazumasa; Baba, Kenichiro; Matsuoka, Yukio; Fukuda, Makoto; Higuchi, Akihiro; Saeki, Takahito

    1995-01-01

    The relationship between spinal metastases diagnosed by plain-film, bone scintigraphy, and MR imaging and biological characteristics in 26 patients with breast cancer was investigated retrospectively. It was found that bone scintigraphy is useful for detecting metastases in case with slow-growing tumors determined by DNA polymerase α or with estrogen-receptor (ER) positivity. In contrast, cases with rapidly growing tumors showed false-negative plain-film or bone scintigraphy results, including cases with ER-negative tumors or DNA polymerase α of more than 20%. MR imaging was found to be highly sensitive in detecting spinal metastases even in aggressive cases. MR imaging was found to have greater reliability in detecting spinal metastases of breast cancer compared to bone scintigraphy. In conclusion, it may be important to consider the degree of malignancy of each case with spinal metastases of breast cancer in evaluating imaging diagnosis. (author)

  8. Texture analysis of high-resolution dedicated breast {sup 18}F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, Alexis; Dominguez-Prado, Ines; Herranz, Michel; Argibay, Sonia; Silva-Rodriguez, Jesus [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); Ruibal, Alvaro [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); University of Santiago de Compostela (USC), Molecular Imaging Group, Department of Radiology, Faculty of Medicine, Santiago de Compostela (Spain); Fundacion Tejerina, Madrid (Spain); Fernandez-Ferreiro, Anxo [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Pharmacy Department and Pharmacology Group, Santiago de Compostela (Spain); Albaina, Luis [University Hospital A Coruna (SERGAS), Department of General Surgery, A Coruna (Spain); Pardo-Montero, Juan [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Medical Physics Department, Santiago de Compostela (Spain); Aguiar, Pablo [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); University of Santiago de Compostela (USC), Molecular Imaging Group, Department of Radiology, Faculty of Medicine, Santiago de Compostela (Spain)

    2018-02-15

    This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors. One hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a {sup 18}F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUV{sub m} {sub a} {sub x}, SUV{sub m} {sub e} {sub a} {sub n}, metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 - (LB -), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests. Along with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB - (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features. PET parameters

  9. MED12 exon 2 mutations in phyllodes tumors of the breast

    International Nuclear Information System (INIS)

    Nagasawa, Satoi; Maeda, Ichiro; Fukuda, Takayo; Wu, Wenwen; Hayami, Ryosuke; Kojima, Yasuyuki; Tsugawa, Ko-ichiro; Ohta, Tomohiko

    2015-01-01

    Exon 2 of MED12, a subunit of the transcriptional mediator complex, has been frequently mutated in uterine leiomyomas and breast fibroadenomas; however, it has been rarely mutated in other tumors. Although the mutations were also found in uterine leiomyosarcomas, the frequency was significantly lower than in uterine leiomyomas. Here, we examined the MED12 mutation in phyllodes tumors, another biphasic tumor with epithelial and stromal components related to breast fibroadenomas. Mutations in MED12 exon 2 were analyzed in nine fibroadenomas and eleven phyllodes tumors via Sanger sequencing. A panel of cancer- and sarcoma-related genes was also analyzed using Ion Torrent next-generation sequencing. Six mutations in fibroadenomas, including those previously reported (6/9, 67%), and five mutations in phyllodes tumors (5/11, 45%) were observed. Three mutations in the phyllodes tumors were missense mutations at Gly44, which is common in uterine leiomyomas and breast fibroadenomas. In addition, two deletion mutations (in-frame c.133-144del12 and loss of splice acceptor c.100-68-137del106) were observed in the phyllodes tumors. No other recurrent mutation was observed with next-generation sequencing. Frequent mutations in MED12 exon 2 in the phyllodes tumors suggest that it may share genetic etiology with uterine leiomyoma, a subgroup of uterine leiomyosarcomas and breast fibroadenoma

  10. Department of Defense Era of Hope Scholar Award Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    Science.gov (United States)

    2009-07-01

    detection, and management of breast cancer today. A variety of imaging methods including screening and diagnostic x- ray mammography and resonance...profile of a tumor. In addition, techniques such as x- ray imaging and MRI are not able to detect small early cancers or pre-cancerous breast...227 (2007). 18. S. Oldenburg , J. Jackson, S. Westcott, and N. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897

  11. MR diffusion weighted imaging with background signal suppression in breast cancer

    International Nuclear Information System (INIS)

    Li Ming; Zhang Bing; Zhou Zhengyang; Yu Haiping; Yuan Lei; Zhu Bin

    2009-01-01

    Objective: To explore the feasibility of echo planar imaging with short time inversion recovery (STIR-EPI) diffusion weighted imaging with background signal (DWIBS) suppression in breast cancer. Methods: The diffusion weighted imaging (DWI)with background suppression (b=800 mm 2 /s) was performed in 26 patients with breast cancer. Apparent diffusion coefficient(ADC) of all lesions were measured and compared. 3D maximum intensity projection (3D-MIP)and reverse black and white technique were used to show the lesions. DWI and DWIBS were performed and compared for the detection of breast cancer. Randomized blocks analysis of variance was used for the ADC values in different breast tissues, the ADC values in breast cancer and benign lesion were compared using t test. The paired chi square test was used for the detection rate of breast cancer in two different imaging methods. Results: Most of the breast cancers were hyperintense on DWI (b=800 mm 2 /s). The ADC value of cancer tissue was (0.93±0.25) x 10 -3 mm 2 /s, tumor necrosis was (2.06±0.17) x 10 -3 mm 2 /s, normal breast tissue was (1.92±0.23) x 10 -3 mm 2 /s and metastatic lymph node was (1.10±0.14) x 10 -3 mm 2 /s and the differences were statistically significant between two structures (P 2 =8.307, P 2 = 12.235, P -3 mm 2 /s and benign lesion (2.15±0.53) x 10 -3 mm 2 /s had significant statistical differences (t=8.626,P<0.05). Conclusion: Diffusion weighted MRI with background suppression can detect more lesions than DWI and can be potentially applied for the detection of the breast cancer combining the ADC value. (authors)

  12. {sup 68}Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Sathekge, Mike; Lengana, Thabo; Modiselle, Moshe; Vorster, Mariza; Zeevaart, JanRijn; Ebenhan, Thomas [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); Maes, Alex [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); AZ Groeninge, Department of Nuclear Medicine, Kortrijk (Belgium); Wiele, Christophe van de [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); University Ghent, Department of Radiology and Nuclear Medicine, Ghent (Belgium)

    2017-04-15

    To report on imaging findings using {sup 68}Ga-PSMA-HBED-CC PET in a series of 19 breast carcinoma patients. {sup 68}Ga-PSMA-HBED-CC PET imaging results obtained were compared to routinely performed staging examinations and analyzed as to lesion location and progesterone receptor status. Out of 81 tumor lesions identified, 84% were identified on {sup 68}Ga-PSMA-HBED-CC PET. {sup 68}Ga-PSMA-HBED-CC SUVmean values of distant metastases proved significantly higher (mean, 6.86, SD, 5.68) when compared to those of primary or local recurrences (mean, 2.45, SD, 2.55, p = 0.04) or involved lymph nodes (mean, 3.18, SD, 1.79, p = 0.011). SUVmean values of progesterone receptor-positive lesions proved not significantly different from progesterone receptor-negative lesions. SUV values derived from FDG PET/CT, available in seven patients, and {sup 68}Ga-PSMA-HBED-CC PET/CT imaging proved weakly correlated (r = 0.407, p = 0.015). {sup 68}Ga-PSMA-HBED-CC PET/CT imaging in breast carcinoma confirms the reported considerable variation of PSMA expression on human solid tumors using immunohistochemistry. (orig.)

  13. Giant phyllodes tumor of the breast: a clinical observation

    OpenAIRE

    A. A. Volchenko; D. D. Pak; F. N. Usov; E. Yu. Fetisova

    2012-01-01

    The paper describes a case of giant phyllodes tumor of the breast. Phyllodes tumor is a rare type of fibroepithelial tumor composed of epithelial and connective tissue with the predominant development of a connective tissue component. Surgery is the only radical treatment.

  14. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355 (Korea, Republic of)

    2016-11-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  15. Real-time MRI navigated ultrasound for preoperative tumor evaluation in breast cancer patients: Technique and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of)

    2016-09-15

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  16. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  17. Clinical impact of [18F]FDG-PET in patients with suspected recurrent breast cancer based on asymptomatically elevated tumor marker serum levels. A preliminary report

    International Nuclear Information System (INIS)

    Liu, Chiu-Shong; Lin, Cheng-Chieh; Kao, Chia-Hung; Yen, Ruoh-Fang

    2002-01-01

    The purpose of this study was to evaluate retrospectively the impact of [ 18 F]fluorodeoxyglucose positron emission tomography (FDG-PET) on the detection of recurrent breast cancer based on asymptomatically elevated tumor markers levels. Whole-body FDG-PET was performed in 30 patients with suspected recurrent breast cancer and asymptomatic tumor marker increase but negative or equivocal other imaging modality results. A blood sample was drawn in each case for marker assay (CA 15-3 and CEA) on the same day as the FDG-PET. All of these 30 asymptomatic patients had either CA 15-3>32 U/ml or CEA>5 ng/ml. The final diagnosis of recurrent breast cancer was established by operation/biopsy histopathological findings or clinical follow-up for >1 year by additional morphological imaging techniques. Among the 30 patients, the final diagnosis of recurrent breast cancer was established in 38 sites in 28 patients. FDG-PET accurately detected 35/38 sites in 25/28 patients with recurrence. The diagnostic sensitivity and accuracy of FDG-PET in patients with suspected recurrent breast cancer and asymptomatically elevated tumor markers were 96 and 90%, respectively. FDG-PET is a useful technique for detecting recurrent breast cancer suspected from asymptomatically elevated tumor markers levels and has an important clinical impact on the management of these patients. (author)

  18. Efficacy of helical CT in evaluating local tumor extent of breast cancer

    International Nuclear Information System (INIS)

    Ozaki, Yutaka

    2001-01-01

    The purpose of this study is to clarify the diagnostic accuracy of helical CT (HCT) in the determination of local tumor extent of breast cancer. One hundred forty consecutive patients with breast cancer, including 87 invasive ductal carcinomas without extensive intraductal components (EIC), 44 invasive ductal carcinomas with EIC, 2 non-invasive ductal carcinomas, and 7 invasive lobular carcinomas, were included in the study. Three-dimensional tumor diameter including whole extent was measured on HCT, and the amount of invasion to fat tissue, skin, pectoral muscle, and chest wall was estimated using a three-step scale. These results were then compared with the pathological findings. Breast cancers appeared as areas of high attenuation compared with the surrounding breast tissue in all patients. Tumor extent was correctly diagnosed by HCT to within a maximum difference of 1 cm in 88 patients (63%) and within 2 cm in 122 patients (87%). Sensitivity, specificity, and accuracy in diagnosing muscular invasion of breast cancer using HCT were 100%, 99%, and 99%, respectively. Sensitivity, specificity, and accuracy in diagnosing skin invasion of breast cancer using HCT were 84%, 93%, and 91%, respectively. HCT was able to visualize all of the tumors and detect the correct tumor extent in most patients. (author)

  19. Efficacy of helical CT in evaluating local tumor extent of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Yutaka [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2001-04-01

    The purpose of this study is to clarify the diagnostic accuracy of helical CT (HCT) in the determination of local tumor extent of breast cancer. One hundred forty consecutive patients with breast cancer, including 87 invasive ductal carcinomas without extensive intraductal components (EIC), 44 invasive ductal carcinomas with EIC, 2 non-invasive ductal carcinomas, and 7 invasive lobular carcinomas, were included in the study. Three-dimensional tumor diameter including whole extent was measured on HCT, and the amount of invasion to fat tissue, skin, pectoral muscle, and chest wall was estimated using a three-step scale. These results were then compared with the pathological findings. Breast cancers appeared as areas of high attenuation compared with the surrounding breast tissue in all patients. Tumor extent was correctly diagnosed by HCT to within a maximum difference of 1 cm in 88 patients (63%) and within 2 cm in 122 patients (87%). Sensitivity, specificity, and accuracy in diagnosing muscular invasion of breast cancer using HCT were 100%, 99%, and 99%, respectively. Sensitivity, specificity, and accuracy in diagnosing skin invasion of breast cancer using HCT were 84%, 93%, and 91%, respectively. HCT was able to visualize all of the tumors and detect the correct tumor extent in most patients. (author)

  20. TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.

    Science.gov (United States)

    Ibberson, Mark; Bron, Sylvian; Guex, Nicolas; Faes-van't Hull, Eveline; Ifticene-Treboux, Assia; Henry, Luc; Lehr, Hans-Anton; Delaloye, Jean-François; Coukos, George; Xenarios, Ioannis; Doucey, Marie-Agnès

    2013-07-01

    Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. ©2013 AACR.

  1. Breast imaging with the SoftVue imaging system: first results

    Science.gov (United States)

    Duric, Neb; Littrup, Peter; Schmidt, Steven; Li, Cuiping; Roy, Olivier; Bey-Knight, Lisa; Janer, Roman; Kunz, Dave; Chen, Xiaoyang; Goll, Jeffrey; Wallen, Andrea; Zafar, Fouzaan; Allada, Veerendra; West, Erik; Jovanovic, Ivana; Li, Kuo; Greenway, William

    2013-03-01

    For women with dense breast tissue, who are at much higher risk for developing breast cancer, the performance of mammography is at its worst. Consequently, many early cancers go undetected when they are the most treatable. Improved cancer detection for women with dense breasts would decrease the proportion of breast cancers diagnosed at later stages, which would significantly lower the mortality rate. The emergence of whole breast ultrasound provides good performance for women with dense breast tissue, and may eliminate the current trade-off between the cost effectiveness of mammography and the imaging performance of more expensive systems such as magnetic resonance imaging. We report on the performance of SoftVue, a whole breast ultrasound imaging system, based on the principles of ultrasound tomography. SoftVue was developed by Delphinus Medical Technologies and builds on an early prototype developed at the Karmanos Cancer Institute. We present results from preliminary testing of the SoftVue system, performed both in the lab and in the clinic. These tests aimed to validate the expected improvements in image performance. Initial qualitative analyses showed major improvements in image quality, thereby validating the new imaging system design. Specifically, SoftVue's imaging performance was consistent across all breast density categories and had much better resolution and contrast. The implications of these results for clinical breast imaging are discussed and future work is described.

  2. Giant phyllodes tumor of the breast: a clinical observation

    Directory of Open Access Journals (Sweden)

    A. A. Volchenko

    2012-01-01

    Full Text Available The paper describes a case of giant phyllodes tumor of the breast. Phyllodes tumor is a rare type of fibroepithelial tumor composed of epithelial and connective tissue with the predominant development of a connective tissue component. Surgery is the only radical treatment.

  3. In-vivo-receptor scintigraphy with [sup 111]In-octreotid in patients with breast tumors. In-vivo-Rezeptorszintigraphie mit [sup 111]In-Octreotid bei Patientinnen mit palpablen Mammatumoren

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, U.J. (Frauenklinik, Koeln Univ. (Germany)); Scheidhauer, K. (Klinik fuer Nuklearmedizin, Koeln Univ. (Germany)); Schomaecker, K. (Klinik fuer Nuklearmedizin, Koeln Univ. (Germany)); Scharl, A. (Frauenklinik, Koeln Univ. (Germany))

    1993-12-01

    Somatostatin is a ligand for a transmembrane peptid receptor protein, which is frequently expressed in breast cancer. We injected the radiolabeled somatostatin analogon In-111-pentatreotid in 19 patients suspicious for breast carcinoma. Planar imaging of the thorax was performed up to 15 minutes p.i. and 3-5 hours p.i. Single photon emission computed tomography (SPECT) was additionaly performed 3-5 hours p.i. Radioactivity was rapidly cleared from blood; concentration in serum decreased by 75% within 1 h. 78% of activity was excreted in urine within 8 h. Positive imaging was seen in 2 of 5 patients with benign breast tumors (fibroadenoma). 11 of 14 carcinomas yielded concentration of 111-In-pentatreotid. 4 of 8 patients with axillary node metastases displayed axillar activity, which was not seen in any patient without node involvement (n=6). These date demonstrate, that radiolabeled pentatreotide binds to certain breast tumors. There is evidence, that in-vivo-imaging of peptid receptors in breast carcinomas is feasible. (orig.)

  4. Quantitative evaluation of small breast masses using a compartment model analysis on dynamic MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Osamu; Morishita, Shoji; Kido, Taeko; Kitajima, Mika; Okamura, Kenji; Fukuda, Seiji [Kumamoto Rosai Hospital, Yatsushiro (Japan); Yamashita, Yasuyuki; Takahashi, Mutsumasa

    1998-07-01

    To differentiate between malignant and benign breast masses using a compartmental analysis, 55 patients with breast masses (fibroadenoma, n=22; invasive ductal carcinoma, n=29; noninvasive ductal carcinoma, n=8) underwent Gd-DTPA enhanced dynamic MR imaging. Dynamic MR images obtained using two-dimensional fat-saturated fast multiplanar corrupted gradient echo technique over 10 minutes following bolus injection of Gd-DTPA. The triexponential concentration curve of Gd-DTPA was fitted to a theoretical model based on compartmental analysis. Using this method, the transfer constant (or permeability surface product per unit volume of component k) and f{sub 3}/f{sub 1}=f were measured, where f{sub 1} represents tumor vessel volume and f{sub 3} represents extracellular volume. The k value was significantly greater (p<0.01) for malignant tumors, and the k value seen in cases of noninvasive ductal carcinoma was less than that for invasive ductal carcinoma. The f value was significantly smaller (p<0.01) for malignant tumors, whereas the f value for noninvasive ductal carcinoma was not significantly different from that for invasive ductal carcinoma. We believe that this type of compartmental analysis may be of value for the evaluation of breast masses. (author)

  5. Audit of fibroepithelial tumors of the breast in a Nigerian tertiary ...

    African Journals Online (AJOL)

    2016-01-15

    Jan 15, 2016 ... Dr. AO Daramola,. Department of Anatomic and Molecular Pathology, ... accounts for the vast majority of benign breast tumor especially in the young.[1] .... subtypes except in very few ambiguous conditions where ... and prognosis of patients with phyllodes tumor of the breast: An analysis of. 170 cases.

  6. Metaplastic carcinoma of the breast: multimodality imaging and histopathologic assessment

    International Nuclear Information System (INIS)

    Choi, Bo Bae; Shu, Kwang Sun

    2012-01-01

    Background Metaplastic carcinomas are ductal carcinomas that display metaplastic transformation of the glandular epithelium to non-glandular mesenchymal tissue. Metaplastic carcinoma has a poorer prognosis than most other breast cancers, so the differential diagnosis is important. Although many clinical and pathologic findings have been reported, to our knowledge, few imaging findings related to metaplastic carcinoma have been reported. Purpose To investigate whole-breast imaging findings, including mammography, sonography, MRI, and pathologic findings, including immunohistochemical studies of metaplastic carcinomas of the breast. Material and Methods We analyzed 33 cases of metaplastic carcinoma between January 2001 and January 2011. Mammography, ultrasonography, and MRI were recorded retrospectively using the American College of Radiology (ACR) breast imaging reporting and data system (BI-RADS) lexicon. Immunohistochemical studies of estrogen receptor (ER), progesterone receptor (PR), p53, and C-erbB-2 were performed. Results The most common mammographic findings were oval shape (37%), circumscribed margin (59%), and high density (74%). The most common sonogfindings were irregular shape (59.4%), microlobulated margin (41%), complex echogenicity (81%), parallel orientation (97%), and posterior acoustic enhancement (50%). Axillary lymph node metastases were noted for 25% of the sonographic examinations. On MRI, the most common findings of margin and shape were irregularity (57% and 52.4%, respectively). High signal intensity was the most common finding on T2-weighted images (57%). Immunohistochemical profile was negative for ER (91%, 29/32) and PR (81%, 26/32). Conclusion Metaplastic carcinomas might display more benign features and less axillary lymph node metastasis than IDC. High signal intensity on T2 MRI images and hormone receptor negativity would be helpful in differentiating this tumor from other breast cancers

  7. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  8. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  9. Detection of breast cancer microcalcification using 99mTc-MDP SPECT or Osteosense 750EX FMT imaging

    International Nuclear Information System (INIS)

    Felix, Dayo D.; Gore, John C.; Yankeelov, Thomas E.

    2015-01-01

    Background: In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used 18 F-NaF to detect these types of cancers in mouse models as the free fluorine, 18 F − , binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including 99m Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. Methods: Thirteen mice were injected subcutaneously in the right flank with 10 6 MDA-MB-231 cells. When the tumor size reached ~ 0.6 cm 3 , mice (n = 9) were injected with ~ 37 MBq of 99m Tc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n = 4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 μm slices, and underwent autoradiography or von Kossa staining to correlate 99m Tc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. Results: Uptake of 99m Tc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34 ± 1.46 (mean ± SD), 2.22 ± 0.95, and 0.05 ± 0.04 %ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35 ± 0.07 (mean ± SD) and 0.04 ± 0.01 picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between

  10. Second harmonic generation reveals matrix alterations during breast tumor progression

    Science.gov (United States)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  11. The molecular portraits of breast tumors are conserved across microarray platforms

    Directory of Open Access Journals (Sweden)

    Perreard Laurent

    2006-04-01

    Full Text Available Abstract Background Validation of a novel gene expression signature in independent data sets is a critical step in the development of a clinically useful test for cancer patient risk-stratification. However, validation is often unconvincing because the size of the test set is typically small. To overcome this problem we used publicly available breast cancer gene expression data sets and a novel approach to data fusion, in order to validate a new breast tumor intrinsic list. Results A 105-tumor training set containing 26 sample pairs was used to derive a new breast tumor intrinsic gene list. This intrinsic list contained 1300 genes and a proliferation signature that was not present in previous breast intrinsic gene sets. We tested this list as a survival predictor on a data set of 311 tumors compiled from three independent microarray studies that were fused into a single data set using Distance Weighted Discrimination. When the new intrinsic gene set was used to hierarchically cluster this combined test set, tumors were grouped into LumA, LumB, Basal-like, HER2+/ER-, and Normal Breast-like tumor subtypes that we demonstrated in previous datasets. These subtypes were associated with significant differences in Relapse-Free and Overall Survival. Multivariate Cox analysis of the combined test set showed that the intrinsic subtype classifications added significant prognostic information that was independent of standard clinical predictors. From the combined test set, we developed an objective and unchanging classifier based upon five intrinsic subtype mean expression profiles (i.e. centroids, which is designed for single sample predictions (SSP. The SSP approach was applied to two additional independent data sets and consistently predicted survival in both systemically treated and untreated patient groups. Conclusion This study validates the "breast tumor intrinsic" subtype classification as an objective means of tumor classification that should be

  12. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Khamis, Z.I.; Sang, Q.A.; Sahab, Z.J.

    2012-01-01

    Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome

  13. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  14. Pattern of Tumor Shrinkage during Neoadjuvant Chemotherapy Is Associated with Prognosis in Low-Grade Luminal Early Breast Cancer.

    Science.gov (United States)

    Fukada, Ippei; Araki, Kazuhiro; Kobayashi, Kokoro; Shibayama, Tomoko; Takahashi, Shunji; Gomi, Naoya; Kokubu, Yumi; Oikado, Katsunori; Horii, Rie; Akiyama, Futoshi; Iwase, Takuji; Ohno, Shinji; Hatake, Kiyohiko; Sata, Naohiro; Ito, Yoshinori

    2018-01-01

    Purpose To evaluate the association between tumor shrinkage patterns shown with magnetic resonance (MR) imaging during neoadjuvant chemotherapy (NAC) and prognosis in patients with low-grade luminal breast cancer. Materials and Methods This retrospective study was approved by the institutional review board and informed consent was obtained from all subjects. The low-grade luminal breast cancer was defined as hormone receptor-positive and human epidermal growth factor receptor 2-negative with nuclear grades 1 or 2. The patterns of tumor shrinkage as revealed at MR imaging were categorized into two types: concentric shrinkage (CS) and non-CS. Among 854 patients who had received NAC in a single institution from January 2000 to December 2009, 183 patients with low-grade luminal breast cancer were retrospectively evaluated for the development set. Another data set from 292 patients who had received NAC in the same institution between January 2010 and December 2012 was used for the validation set. Among these 292 patients, 121 patients with low-grade luminal breast cancer were retrospectively evaluated. Results In the development set, the median observation period was 67.9 months. Recurrence was observed in 31 patients, and 16 deaths were related to breast cancer. There were statistically significant differences in both the disease-free survival (DFS) and overall survival (OS) rates between patterns of tumor shrinkage (P breast cancer. DFS rate was significantly longer in patients with the CS pattern (72.8 months; 95% confidence interval [CI]: 69.9, 75.6 months) than in those with the non-CS pattern (56.0 months; 95% CI: 49.1, 62.9 months; P ≤ .001). The CS pattern was associated with an excellent prognosis (median OS, 80.6 months; 95% CI: 79.3, 81.8 months vs 65.0 months; 95% CI: 60.1, 69.8 months; P = .004). Multivariate analysis demonstrated that the CS pattern had the only significant independent association with DFS (P = .007) and OS (P = .037) rates. Conclusion

  15. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Yibin Kang

    2016-06-01

    Full Text Available Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1 in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis.

  16. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    Science.gov (United States)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  17. Clinical impact of [{sup 18}F]FDG-PET in patients with suspected recurrent breast cancer based on asymptomatically elevated tumor marker serum levels. A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chiu-Shong; Lin, Cheng-Chieh; Kao, Chia-Hung [China Medical Coll., Taichung, Taiwan (China). Hospital; Shen, Yeh-You [Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Yen, Ruoh-Fang [National Taiwan Univ., Taipei, Taiwan (China). Hospital

    2002-07-01

    The purpose of this study was to evaluate retrospectively the impact of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) on the detection of recurrent breast cancer based on asymptomatically elevated tumor markers levels. Whole-body FDG-PET was performed in 30 patients with suspected recurrent breast cancer and asymptomatic tumor marker increase but negative or equivocal other imaging modality results. A blood sample was drawn in each case for marker assay (CA 15-3 and CEA) on the same day as the FDG-PET. All of these 30 asymptomatic patients had either CA 15-3>32 U/ml or CEA>5 ng/ml. The final diagnosis of recurrent breast cancer was established by operation/biopsy histopathological findings or clinical follow-up for >1 year by additional morphological imaging techniques. Among the 30 patients, the final diagnosis of recurrent breast cancer was established in 38 sites in 28 patients. FDG-PET accurately detected 35/38 sites in 25/28 patients with recurrence. The diagnostic sensitivity and accuracy of FDG-PET in patients with suspected recurrent breast cancer and asymptomatically elevated tumor markers were 96 and 90%, respectively. FDG-PET is a useful technique for detecting recurrent breast cancer suspected from asymptomatically elevated tumor markers levels and has an important clinical impact on the management of these patients. (author)

  18. Mammographic density and histopathologic characteristics of screen-detected tumors in the Norwegian Breast Cancer Screening Program

    International Nuclear Information System (INIS)

    Moshina, Nataliia; Ursin, Giske; Hoff, Solveig Roth; Akslen, Lars A; Roman, Marta; Sebuødegård, Sofie; Hofvind, Solveig

    2015-01-01

    High mammographic density might mask breast tumors, resulting in delayed diagnosis or missed cancers. To investigate the association between mammographic density and histopathologic tumor characteristics (histologic type, size, grade, and lymph node status) among women screened in the Norwegian Breast Cancer Screening Program. Information about 1760 screen-detected ductal carcinoma in situ (DCIS) and 7366 invasive breast cancers diagnosed among women aged 50–69 years, 1996–2010, was analyzed. The screening mammograms were classified subjectively according to the amount of fibroglandular tissue into fatty, medium dense, and dense by breast radiologists. Chi-square test was used to compare the distribution of tumor characteristics by mammographic density. Odds ratio (OR) of tumor characteristics by density was estimated by means of logistic regression, adjusting for screening mode (screen-film and full-field digital mammography), and age. Mean and median tumor size of invasive breast cancers was 13.8 and 12 mm, respectively, for women with fatty breasts, and 16.2 and 14 mm for those with dense breasts. Lymph node positive tumors were identified among 20.6% of women with fatty breasts compared with 27.2% of those with dense breasts (P < 0.001). The proportion of DCIS was significantly lower for women with fatty (15.8%) compared with dense breasts (22.0%). Women with dense breasts had an increased risk of large (OR, 1.44; 95% CI, 1.18–1.73) and lymph node positive tumors (OR, 1.26; 95% CI, 1.05–1.51) compared with women with fatty and medium dense breasts. High mammographic density was positively associated with tumor size and lymph node positive tumors

  19. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise. In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in beast cancer management.

  20. The impact of breast cancer biological subtyping on tumor size assessment by ultrasound and mammography - a retrospective multicenter cohort study of 6543 primary breast cancer patients

    International Nuclear Information System (INIS)

    Stein, Roland Gregor; Wollschläger, Daniel; Kreienberg, Rolf; Janni, Wolfgang; Wischnewsky, Manfred; Diessner, Joachim; Stüber, Tanja; Bartmann, Catharina; Krockenberger, Mathias; Wischhusen, Jörg; Wöckel, Achim; Blettner, Maria; Schwentner, Lukas

    2016-01-01

    Mammography and ultrasound are the gold standard imaging techniques for preoperative assessment and for monitoring the efficacy of neoadjuvant chemotherapy in breast cancer. Maximum accuracy in predicting pathological tumor size non-invasively is critical for individualized therapy and surgical planning. We therefore aimed to assess the accuracy of tumor size measurement by ultrasound and mammography in a multicentered health services research study. We retrospectively analyzed data from 6543 patients with unifocal, unilateral primary breast cancer. The maximum tumor diameter was measured by ultrasound and/or mammographic imaging. All measurements were compared to final tumor diameter determined by postoperative histopathological examination. We compared the precision of each imaging method across different patient subgroups as well as the method-specific accuracy in each patient subgroup. Overall, the correlation with histology was 0.61 for mammography and 0.60 for ultrasound. Both correlations were higher in pT2 cancers than in pT1 and pT3. Ultrasound as well as mammography revealed a significantly higher correlation with histology in invasive ductal compared to lobular cancers (p < 0.01). For invasive lobular cancers, the mammography showed better correlation with histology than ultrasound (p = 0.01), whereas there was no such advantage for invasive ductal cancers. Ultrasound was significantly superior for HR negative cancers (p < 0.001). HER2/neu positive cancers were also more precisely assessed by ultrasound (p < 0.001). The size of HER2/neu negative cancers could be more accurately predicted by mammography (p < 0.001). This multicentered health services research approach demonstrates that predicting tumor size by mammography and ultrasound provides accurate results. Biological tumor features do, however, affect the diagnostic precision

  1. Benign tumors of the breast in Kano, Northern Nigeria: A 10-year experience and review of literature

    Directory of Open Access Journals (Sweden)

    Mohammed Ibrahim Imam

    2016-01-01

    Full Text Available Background: Benign breast tumors are common worldwide and various reports suggest an increasing incidence in Nigeria which necessitates an urgent need to differentiate it from malignant tumors. The study was carried out to classify and determine the pattern, frequency, age, and sex distribution of benign breast tumors seen in a tertiary hospital. Materials and Methods: This was a 10-year retrospective study of all benign breast tumors diagnosed at the Pathology Department of a teaching hospital from January 1 2001 to December 31 2010. Results: A total of 1566 breast tumors were diagnosed during the study period, 1035 cases of benign breast tumors constituting 66.3% of all breast tumors were seen. The female to male ratio was 72.9:1. The overall mean age for benign breast tumor was 29 years with a peak age occurrence in the third decade. Fibroadenoma (FA was the most common benign breast tumor followed by fibrocystic change and they accounted for 47.1% and 25.4% of benign breast tumors with mean age of 24.7 years and 33.4 years, respectively. FA has a peak occurrence in the third decade while fibrocystic change has a peak occurrence in the fourth decade. Other major tumors encountered were tubular adenoma (6.0%, lactating adenoma (5.6%, benign phyllodes (4.8%, sclerosing adenoma (3.3%, and blunt duct adenoma (2.5%. Gynecomastia (1.4% was the only benign breast tumor seen in males.Conclusions: Benign breast tumors are quite common, presenting mostly as FA and fibrocystic change. The tumors are seen in both sexes with a striking female preponderance and occurred predominantly in young females with a peak in the third decade. The findings are generally similar to the most previous studies from Nigeria, Africa, and the Western world with minimal variations.

  2. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  3. Dosimetric investigation depending on tumor location in patient breast in partial breast irradiation

    International Nuclear Information System (INIS)

    Kim, Min Joo; Park, So Hyun; Jung, Joo Young; Woong, Cho; Suh, Tae Suk

    2012-01-01

    The Partial Breast Irradiation (PBI) technique, which involves radiation beam delivery techniques that use a limited range of treatment volumes, has been a challenging approach that is worthy of consideration compared to whole-breast radiation therapy (WBRT). Because of a small target volumes used in the PBI technique, the radiation dose can be safely delivered to the targeted tissue without the unwanted delivery of radiation to normal breast tissues and organ at risk (OAR), such as contralateral breast, lung and heart.Through PBI technique, better cosmetic outcomes and minimizing damages to OARs could be expected and also the daily dose can be increased with smaller number of fractionation in radiation therapy. The purpose of this study was to evaluate the dosimetric effects according to tumor locations in patient's breast for Partial Breast Irradiation (PBI) technique using three Dimensional Conformal Radiation Therapy (3DCRT), Electron Beam Radiation therapy (EBRT) and Helical-tomotherapy (H-TOMO). Dosimetric comparisons of PBI technique for 3DCRT, EBRT, and H-TOMO depending on the classified tumor locations were performed. H-TOMO delivered the low dose to lager volume to surrounding normal tissue, such as the heart and lungs compared to 3DCRT and EBRT although it had the same degree of target coverage as the other methods (3DCRT, EBRT). EBRT had a curative effect for early-stage breast cancers located in the lower and inner sections (LIQ-S, LIQ-D)

  4. Assessment of basal-like breast cancer by circulating tumor DNA analysis.

    Science.gov (United States)

    Wei, Wei; Zhang, Xianyu; Sun, Shanshan; Xia, Bingshu; Liang, Xiaoshuan; Cui, Yan; Gao, Song; Pang, Da

    2018-05-01

    Standardized methods for the detection and assessment of circulating tumor DNA (ctDNA) in breast cancer are not sufficient. In the present study, the method and the potential application of ctDNA in the diagnosis of breast cancer were explored. DNA was extracted from the tumor tissues, plasma and peripheral blood cells of 11 patients with early-stage invasive breast cancer. Primers were designed against the exons of phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit α, p53, epidermal growth factor receptor, Akt and phosphatase and tensin homolog. The amplicon-based method for whole-exon sequencing was performed. The associations between the ctDNA mutant frequency with the tumor DNA mutant frequency, and the ctDNA concentration with clinical data were analyzed. A linear association was identified between the concentration of ctDNA and the tumor volume for the 3 patients with basal-like breast cancer, and not in other subtypes. The mutation frequency differed the least between ctDNA and tissue DNA in basal-like breast cancer. ctDNA retained the constituent ratio of gene mutations identified in the corresponding tumor tissue. The ctDNA detection rate depended to a certain extent on the mutation frequency in tumor tissue; for example, a mutant locus with a mutation frequency of >30% in tissues presented a detection rate of >40% in plasma samples, whereas a locus with a mutation frequency of <10% in tissue was associated with a detection rate of ≤1% in the plasma. Therefore, ctDNA may reflect the mutations observed in cancer. Compared with other subtypes, ctDNA may be a more sensitive biomarker for the assessment of mutation and cancer burden in basal-like breast cancer relative to other subtypes.

  5. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    Science.gov (United States)

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  6. Fundamental considerations in the design of fluorine-18 labeled progestins and androgens as imaging agents for receptor-positive tumors of the breast and prostate

    International Nuclear Information System (INIS)

    Brandes, S.J.; Katzenellenbogen, J.A.

    1988-01-01

    A review is given of the structural and functional features which are important in the design and development of imaging agents for the progesterone receptor (PR) and the androgen receptor (AR) directed towards imaging receptor-positive tumors in the breast and prostate respectively. In particular the effects of various substituents on the biological activities and homologous receptor binding of progesterone, testosterone, nortestosterone and dihydrotestosterone are discussed. The effect of fluorine substitution on the affinities of progestins and androgens for their respective receptors is described. Other ligand systems that have high affinity for AR and PR and which may provide good bases for the design of fluorine-substituted imaging agents are also discussed. Finally, previous studies with radiolabelled progestins and androgens are described. (U.K.)

  7. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Shoya Shiromizu

    2018-04-01

    Full Text Available Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Keywords: l-asparaginase, Asparagine, Solid tumor, Chrono-pharmacotherapy

  8. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    Science.gov (United States)

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  9. Breast MR imaging in women at high-risk of breast cancer. Is something changing in early breast cancer detection?

    International Nuclear Information System (INIS)

    Sardanelli, Francesco; Podo, Franca

    2007-01-01

    In the last few years, several papers have addressed the introduction of contrast-enhanced MR imaging for screening women at high risk for breast cancer. Taking in consideration five prospective studies, on 3,571 screened women with hereditary predisposition to the disease and 9,652 rounds, we found that 168 patients were diagnosed with breast cancer (155 screen-detected, eight interval, and five cancers excluded from analysis) with a detection rate per year of 1.7%. These cancers were small (49% equal to or less than 10 mm in diameter) but aggressive, 82% being invasive and 49% with histologic grade 3; however, only 19% of these invasive cancers were associated with nodal involvement. The pooled sensitivity was 16% for clinical breast examination, 40% for mammography, 43% for ultrasound, and 81% for MR. The positive predictive value (calculated on the basis of the number of invasive diagnostic procedures due to false positives) was 33%, 47%, 18%, and 53%, respectively. Aim of the present article is to present the historical development of MR imaging of breast tumors that made this application theoretically and technically possible, to explain what strategic problems we face in the presence of a hereditary predisposition to the disease, to review the main results of the published studies, and to outline open problems and future perspectives. (orig.)

  10. The Royal College of Radiologists Breast Group breast imaging classification

    International Nuclear Information System (INIS)

    Maxwell, A.J.; Ridley, N.T.; Rubin, G.; Wallis, M.G.; Gilbert, F.J.; Michell, M.J.

    2009-01-01

    Standardisation of the classification of breast imaging reports will improve communication between the referrer and the radiologist and avoid ambiguity, which may otherwise lead to mismanagement of patients. Following wide consultation, Royal College of Radiologists Breast Group has produced a scoring system for the classification of breast imaging. This will facilitate audit and the development of nationally agreed standards for the investigation of women with breast disease. This five-point system is as follows: 1, normal; 2, benign findings; 3, indeterminate/probably benign findings; 4, findings suspicious of malignancy; 5, findings highly suspicious of malignancy. It is recommended that this be used in the reporting of all breast imaging examinations in the UK.

  11. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography.

    Science.gov (United States)

    Deng, Bin; Lundqvist, Mats; Fang, Qianqian; Carp, Stefan A

    2018-03-01

    Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the

  12. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Naito, Kumiko; Usui, Shuji; Akiyama, Mitoshi; Murakami, Shigeru; Arihiro, Koji; Akiyama, Yuji

    2010-01-01

    In vivo, the attenuation of diffusion-weighted imaging (DWI) signal at high b-values is sometimes nonlinear when plotted with semilogarithmic function and is fit well by a biexponential function. Previous reports have indicated that the fast and slow component fractions of the apparent diffusion coefficient (ADC) can be derived by biexponential fitting and that these fractions correspond to the actual diffusion components in the extra- and intracellular space. In this study, we investigated the clinical utility of DWI for the breast by performing DWI using multiple b-factors on healthy volunteers and clinical subjects, analyzing the signal by fitting it with a biexponential equation, and comparing the fitting parameters of breast lesions. We investigated 8 healthy women as normal cases and 80 female patients with a total of 100 breast tumors (42 benign, 58 malignant tumors) as clinical cases. We performed DWI using 12 b-values for the healthy cases and 6 b-values for the clinical cases, up to a maximum b-value of 3500 s/mm 2 . Decay of DWI signal of normal mammary glands, most cysts, and some fibroadenomas showed a monoexponential relationship, and conversely, that of intraductal papilloma (IDP) and malignant tumors was well fitted by a biexponential function. Comparison of parameters derived from biexponential fitting demonstrated no significant difference between benign and malignant lesions. For malignant tumor subtype, the fast component fraction of noninvasive ductal carcinoma was statistically greater than that of invasive ductal carcinoma. Although the parameters from biexponential fitting may reflect the character of tumor cellularity, because pathological diagnosis was performed with an emphasis on cell configuration or shape rather than cellularity, it was difficult to distinguish malignant from benign tumors, including many IDPs, or to distinguish tissue types using DWI signal attenuation alone. (author)

  13. Magnetic Resonance Spectroscopic Imaging of Tumor Metabolic Markers for Cancer Diagnosis, Metabolic Phenotyping, and Characterization of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Qiuhong He

    2004-01-01

    Full Text Available Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors modify their biochemical pathways, which results in abnormal tumor metabolism. An elevation in glycolysis known as the “Warburg effect” and changes in lipid synthesis and oxidation occur. Magnetic resonance spectroscopy (MRS has been used to study tumor metabolism in preclinical animal models and in clinical research on human breast, brain, and prostate cancers. This technique can identify specific genetic and metabolic changes that occur in malignant tumors. Therefore, the metabolic markers, detectable by MRS, not only provide information on biochemical changes but also define different metabolic tumor phenotypes. When combined with the contrast-enhanced Magnetic Resonance Imaging (MRI, which has a high sensitivity for cancer diagnosis, in vivo magnetic resonance spectroscopic imaging (MRSI improves the diagnostic specificity of malignant human cancers and is becoming an important clinical tool for cancer management and care. This article reviews the MRSI techniques as molecular imaging methods to detect and quantify metabolic changes in various tumor tissue types, especially in extracranial tumor tissues that contain high concentrations of fat. MRI/MRSI methods have been used to characterize tumor microenvironments in terms of blood volume and vessel permeability. Measurements of tissue oxygenation and glycolytic rates by MRS also are described to illustrate the capability of the MR technology in probing molecular information non-invasively in tumor tissues and its important potential for studying molecular mechanisms of human cancers in physiological conditions.

  14. How to measure breast cancer tumoral size at MR imaging?

    International Nuclear Information System (INIS)

    Thomassin-Naggara, I.; Siles, Pascale; Trop, I.; Chopier, J.; Darai, E.; Bazot, M.

    2013-01-01

    Objective: To compare the accuracy of different MR sequences to measure tumor size. Methods: Eighty-six women (mean age: 53 years (30–78)) who underwent preoperative MRI for breast cancer were included. Maximal diameters of the index tumor (IT) and of the whole extent of the tumor (WET) were measured on T2-weighted (T2W) sequences, on dynamic contrast-enhanced (DCE) T1-weighted (T1W) sequences and on Maximal Intensity Projection (MIP) reconstructions. Agreements with pathological size were evaluated using concordance correlation coefficient (k). Results: Median pathological size of IT was 20 mm (13–25 mm, interquartile range). Median pathological size of the WET was 29 mm (16–50 mm, interquartile range). Measurement of IT showed a good concordance with pathological size, with best results using T2W (k = 0.690) compared to MIP (k = 0.667), early-subtracted DCE frame (k = 0.630) and early-native DCE frame (k = 0.588). IT was visible on T2W in 83.7% and accurately measured within 5 mm in 69.9%. Measurement of WET was superior using early-subtracted DCE frame (k = 0.642) compared to late-native frame (k = 0.635), early-native frame (k = 0.631), late-subtracted frame (k = 0.620) and MIP (k = 0.565). However, even using early-subtracted frame, WET was accurately measured within 5 mm only 39.3%. Conclusion: If visible, IT size is best measured on T2W with a good accuracy (69%) whereas WET is best estimated on early-subtracted DCE frame. However, when adjacent additional sites exist around IT, suspected surrounding disease components need to be proved by pathological analysis

  15. Differentiating cancerous from normal breast tissue by redox imaging

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (pcancerous tissues than in the normal ones (pcancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  16. Ewing’s sarcoma: an uncommon breast tumor

    Directory of Open Access Journals (Sweden)

    Sawsen Meddeb

    2014-10-01

    Full Text Available Ewing’s sarcoma/primitive neuroectodermal tumors (EWS/PNET are rare malignant and aggressive tumors, usually seen in the trunk and lower limbs of children and young adults. They are uncommon in the breast. We report a case of a 43-year-old woman who developed a painless breast mass. An initial core needle biopsy concluded to a fibrocystic dystrophy contrasting with a rapidly growing mass; thus a large lumpectomy was done. Diagnosis of primary PNET of the breast was established, based on both histopathological examination and immunohistochemical findings. Surgical margins were positive, therefore, left modified radical mastectomy with axillary lymph nodes dissection was performed. The patient was given 6 cycles of adjuvant chemotherapy containing cyclophosphamide, adriamycin and vincristine. Twenty months later, she is in life without recurrence or metastasis. EWS/PNET may impose a diagnostic challenge. Indeed, mammography and ultrasonography features are non specific. The histopathological pattern is variable depending on the degree of neuroectodermal differentiation. Immuno-phenotyping is necessary and genetic study is the only confirmatory tool of diagnosis showing a characteristic cytogenetic anomaly; t (11; 22 translocation.

  17. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    Science.gov (United States)

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. MR imaging of multiple fibroadenoma in breast: comparison with color doppler images and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soo Young; Yang, Ik; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Ahn, Hye Kyung [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To understand the different signal intensities seen on contrast enhanced magnetic resonance imaging (MRI) in multiple fibroadenoma of the breast, and to compare these with color Doppler ultrasonographic (CDUS) and histologic findings. MRI (1.0 Tesla, TIWI, T2WI, 3D-gradient echo dynamic contrast enhancement study) findings of 24 histologically proven cases of fibroadenoma in five patients were evaluated and compared with the histologic components (myxoid, adenomatous, fibrous). In addition, vascular flow, as seen on CDUS and histologic section, was compared. The observed degree of signal intensity waw classified into three groups, as follows: negative, 8.3%, mild to moderate, 54.2%; marked, 37.5%. On histologic section, the greater the fibrotic component, the higher the intensity of MRI enhancement, the greater the glandular component, and the intensity. CDUS showed vascular flow in only one tumor larger than 3cm in diameter. Vascular patterns of tumors on CDUS were dots in mass and detouring pattern, but in this case and in strongly enhanced cases, tumor vascularity-as seen on histologic section-showed no significant increase. Different signal intensities seen on contrast enhanced MRI in multiple fibroadenoma of the breast may be related more to the amount of glandular and fibrotic component than to increased tumor vascularity.

  19. MR imaging of multiple fibroadenoma in breast: comparison with color doppler images and histologic findings

    International Nuclear Information System (INIS)

    Chung, Soo Young; Yang, Ik; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Ahn, Hye Kyung

    1997-01-01

    To understand the different signal intensities seen on contrast enhanced magnetic resonance imaging (MRI) in multiple fibroadenoma of the breast, and to compare these with color Doppler ultrasonographic (CDUS) and histologic findings. MRI (1.0 Tesla, TIWI, T2WI, 3D-gradient echo dynamic contrast enhancement study) findings of 24 histologically proven cases of fibroadenoma in five patients were evaluated and compared with the histologic components (myxoid, adenomatous, fibrous). In addition, vascular flow, as seen on CDUS and histologic section, was compared. The observed degree of signal intensity waw classified into three groups, as follows: negative, 8.3%, mild to moderate, 54.2%; marked, 37.5%. On histologic section, the greater the fibrotic component, the higher the intensity of MRI enhancement, the greater the glandular component, and the intensity. CDUS showed vascular flow in only one tumor larger than 3cm in diameter. Vascular patterns of tumors on CDUS were dots in mass and detouring pattern, but in this case and in strongly enhanced cases, tumor vascularity-as seen on histologic section-showed no significant increase. Different signal intensities seen on contrast enhanced MRI in multiple fibroadenoma of the breast may be related more to the amount of glandular and fibrotic component than to increased tumor vascularity

  20. 3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging

    NARCIS (Netherlands)

    Mertzanidou, T.; Hipwell, J.H.; Reis, S.; Hawkes, D.J.; Ehteshami Bejnordi, B.; Dalmis, M.U.; Vreemann, S.; Platel, B.; Laak, J.A. van der; Karssemeijer, N.; Hermsen, M.; Bult, P.; Mann, R.M.

    2017-01-01

    PURPOSE: In breast imaging, radiological in vivo images, such as x-ray mammography and magnetic resonance imaging (MRI), are used for tumor detection, diagnosis, and size determination. After excision, the specimen is typically sliced into slabs and a small subset is sampled. Histopathological

  1. A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paul Savage

    2017-10-01

    Full Text Available Summary: Therapies targeting epidermal growth factor receptor (EGFR have variable and unpredictable responses in breast cancer. Screening triple-negative breast cancer (TNBC patient-derived xenografts (PDXs, we identify a subset responsive to EGFR inhibition by gefitinib, which displays heterogeneous expression of wild-type EGFR. Deep single-cell RNA sequencing of 3,500 cells from an exceptional responder identified subpopulations displaying distinct biological features, where elevated EGFR expression was significantly enriched in a mesenchymal/stem-like cellular cluster. Sorted EGFRhi subpopulations exhibited enhanced stem-like features, including ALDH activity, sphere-forming efficiency, and tumorigenic and metastatic potential. EGFRhi cells gave rise to EGFRhi and EGFRlo cells in primary and metastatic tumors, demonstrating an EGFR-dependent expansion and hierarchical state transition. Similar tumorigenic EGFRhi subpopulations were identified in independent PDXs, where heterogeneous EGFR expression correlated with gefitinib sensitivity. This provides new understanding for an EGFR-dependent hierarchy in TNBC and for patient stratification for therapeutic intervention. : Savage et al. demonstrate that sensitivity to EGFR inhibitor, gefitinib, in triple-negative breast cancer is paradoxically associated with EGFR heterogeneity. Using single-cell RNA sequencing in conjunction with functional assays, they identify TNBC tumors in which EGFR expression identifies cells with tumor-initiating capacity whose proliferative expansion is sensitive to EGFR inhibition. Keywords: breast cancer, tumor heterogeneity, patient-derived xenograft, single-cell RNA sequencing, EGFR inhibition, therapeutic response, tumor-initiating cell, cell hierarchy, BRCA1 mutation

  2. Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ivan J Cohen

    2017-09-01

    Full Text Available Immunotherapy is revolutionizing cancer care across disciplines. The original success of immune checkpoint blockade in melanoma has already been translated to Food and Drug Administration–approved therapies in a number of other cancers, and a large number of clinical trials are underway in many other disease types, including breast cancer. Here, we review the basic requirements for a successful antitumor immune response, with a focus on the metabolic and physical barriers encountered by lymphocytes entering breast tumors. We also review recent clinical trials of immunotherapy in breast cancer and provide a number of interesting questions that will need to be answered for successful breast cancer immunotherapy.

  3. FIBROMATOSIS (DESMOID TUMOR OF THE BREAST. Fibromatosis (tumor desmoide de mama

    Directory of Open Access Journals (Sweden)

    Zhaneta P Boceska

    2016-03-01

    Full Text Available El tumor desmoide (fibromatosis es una entidad patológica extremadamente rara que se desarrolla de la fascia muscular y la aponeusorsis. Aunque sin potencial metastático, estos tumores son localmente muy agresivos y tienden a infiltrarse en los tejidos circundantes. Nosotros presentamos un caso de tumour desmoide de mama, que tuvo apariencias clínicas sugestivas a carcinoma. La paciente, de 56 años presentó una masa palpable de mama derecho. La citología por aspiracion con aguja fina (AGF no detectó ninguna célula maligna, por lo que se hizo una escisión local conservadora. La paciente no recibió ningun tratamiento postoperatorio adicional, y continúa viva y sana en los siguientes 18 meses. Desmoid tumor (fibromatosis is extremely rare benign pathological entity that develops from muscular fasciae and aponeuroses. Although without metastatic potential, these tumors are locally very aggressive and tend to infiltrate the surrounding tissues. We present a case of a desmoid tumor of the breast that had clinical appearance suggestive of carcinoma. The patient was 56 years old female with a previous history of surgical trauma who presented with a palpable mass in the right breast. A fine needle aspiration (FNA cytology did not reveal any malignant cells, thus conservative local excision was performed. The patient did not receive any additional postoperative treatment and was alive and free of disease after 18 months of follow-up. 

  4. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W; Bissell, Mina J

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.

  5. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  6. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  7. Genomic Heterogeneity of Breast Tumor Pathogenesis

    Science.gov (United States)

    Ellsworth, Rachel E.; Hooke, Jeffrey A.; Shriver, Craig D.; Ellsworth, Darrell L.

    2009-01-01

    Pathological grade is a useful prognostic factor for stratifying breast cancer patients into favorable (low-grade, well-differentiated tumors) and less favorable (high-grade, poorly-differentiated tumors) outcome groups. Under the current system of tumor grading, however, a large proportion of tumors are characterized as intermediate-grade, making determination of optimal treatments difficult. In an effort to increase objectivity in the pathological assessment of tumor grade, differences in chromosomal alterations and gene expression patterns have been characterized in low-grade, intermediate-grade, and high-grade disease. In this review, we outline molecular data supporting a linear model of progression from low-grade to high-grade carcinomas, as well as contradicting genetic data suggesting that low-grade and high-grade tumors develop independently. While debate regarding specific pathways of development continues, molecular data suggest that intermediate-grade tumors do not comprise an independent disease subtype, but represent clinical and molecular hybrids between low-grade and high-grade tumors. Finally, we discuss the clinical implications associated with different pathways of development, including a new clinical test to assign grade and guide treatment options. PMID:20689613

  8. Using tumor phenotype, histological tumor distribution, and mammographic appearance to explain the survival differences between screen-detected and clinically detected breast cancers.

    Science.gov (United States)

    Chuang, Shu-Lin; Chen, Sam Li-Sheng; Yu, Cheng-Ping; Chang, King-Jen; Yen, Amy Ming-Fang; Chiu, Sherry Yueh-Hsia; Fann, Jean Ching-Yuan; Tabár, László; Stephen, Duffy W; Smith, Robert A; Chen, Hsiu-Hsi

    2014-08-01

    In the era of mass screening for breast cancer with mammography, it has been noted that conventional tumor attributes and mammographic appearance are insufficient to account for the better prognosis of screen-detected tumors. Such prognostication may require additional updated pathological information regarding tumor phenotype (e.g., basal status) and histological tumor distribution (focality). We investigated this hypothesis using a Bayesian approach to analyze breast cancer data from Dalarna County, Sweden. We used data for tumors diagnosed in the Swedish Two-County Trial and early service screening period, 1977-1995, and from the mature service screening period, 1996-1998. In the early period of mammographic screening (1977-1995), the crude hazard ratio (HR) of breast cancer death for screen-detected cases compared with symptomatic ones was 0.22 (95% CI: 0.17-0.29) compared with 0.53 (95% CI: 0.34-0.76) when adjusted for conventional tumor attributes only. Using the data from the mature service screening period, 1996-1998, the HR was 0.23 (95% CI: 0.08-0.44) unadjusted and 0.71 (95% CI: 0.26-1.47) after adjustment for tumor phenotype, mammographic appearance, histological tumor distribution, and conventional tumor attributes. The area under the ROC curve (AUC) for the prediction of breast cancer deaths using these variables without the detection mode was 0.82, only slightly less than that observed when additionally including the detection mode (AUC=0.83). Using Freedman statistics, conventional tumor attributes and mammographic appearances explained 58% (95% CI: 57.5-58.6%) of the difference of breast cancer survival between the screen-detected and the clinically detected breast cancers, whereas the corresponding figure was increased to 77% (95% CI: 75.6-77.6%) when adding the two information on tumor phenotype and histological tumor distribution. The results indicated that conventional tumor attributes and mammographic appearance are not sufficient to be

  9. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies

    DEFF Research Database (Denmark)

    Yang, Xiaohong R; Chang-Claude, Jenny; Goode, Ellen L

    2011-01-01

    Previous studies have suggested that breast cancer risk factors are associated with estrogen receptor (ER) and progesterone receptor (PR) expression status of the tumors.......Previous studies have suggested that breast cancer risk factors are associated with estrogen receptor (ER) and progesterone receptor (PR) expression status of the tumors....

  10. The use of breast conserving surgery: linking insurance claims with tumor registry data

    International Nuclear Information System (INIS)

    Maskarinec, Gertraud; Dhakal, Sanjaya; Yamashiro, Gladys; Issell, Brian F

    2002-01-01

    The purpose of this study was to use insurance claims and tumor registry data to examine determinants of breast conserving surgery (BCS) in women with early stage breast cancer. Breast cancer cases registered in the Hawaii Tumor Registry (HTR) from 1995 to 1998 were linked with insurance claims from a local health plan. We identified 722 breast cancer cases with stage I and II disease. Surgical treatment patterns and comorbidities were identified using diagnostic and procedural codes in the claims data. The HTR database provided information on demographics and disease characteristics. We used logistic regression to assess determinants of BCS vs. mastectomy. The linked data set represented 32.8% of all early stage breast cancer cases recorded in the HTR during the study period. Due to the nature of the health plan, 79% of the cases were younger than 65 years. Women with early stage breast cancer living on Oahu were 70% more likely to receive BCS than women living on the outer islands. In the univariate analysis, older age at diagnosis, lower tumor stage, smaller tumor size, and well-differentiated tumor grade were related to receiving BCS. Ethnicity, comorbidity count, menopausal and marital status were not associated with treatment type. In addition to developing solutions that facilitate access to radiation facilities for breast cancer patients residing in remote locations, future qualitative research may help to elucidate how women and oncologists choose between BCS and mastectomy

  11. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment.

    Science.gov (United States)

    Pan, Changqie; Liu, Yuqing; Zhou, Minyu; Wang, Wensheng; Shi, Min; Xing, Malcolm; Liao, Wangjun

    2018-01-01

    A multifunctional theranostic nanoplatform integrated with environmental responses has been developed rapidly over the past few years as a novel treatment strategy for several solid tumors. We synthesized pH-sensitive poly(β-thiopropionate) nanoparticles with a supermagnetic core and folic acid (FA) conjugation (FA-doxorubicin-iron oxide nanoparticles [FA-DOX@ IONPs]) to deliver an antineoplastic drug, DOX, for the treatment of folate receptor (FR)-overexpressed breast cancer. In addition to an imaging function, the nanoparticles can release their payloads in response to an environment of pH 5, such as the acidic environment found in tumors. After chemical ( 1 H nuclear magnetic resonance) and physical (morphology and super-magnetic) characterization, FA-DOX@IONPs were shown to demonstrate pH-dependent drug release profiles. Western blotting analysis revealed the expression of FRs in three breast cancer cell lines, MCF-7, BT549, and MD-MBA-231. The cell counting kit-8 assay and transmission electron microscopy showed that FA-DOX@IONPs had the strongest cytotoxicity against breast cancer cells, compared with free DOX and non-FR targeted nanoparticles (DOX@IONPs), and caused cellular apoptosis. The FA-DOX@IONP-mediated cellular uptake and intracellular internalization were clarified by fluorescence microscopy. FA-DOX@IONPs plus magnetic field treatment suppressed in vivo tumor growth in mice to a greater extent than either treatment alone; furthermore, the nanoparticles exerted no toxicity against healthy organs. Magnetic resonance imaging was successfully applied to monitor the nanoparticle accumulation. Our results suggest that theranostic pH-sensitive nanoparticles with dual targeting could enhance the available therapies for cancer.

  12. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    Science.gov (United States)

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis.

  13. [Right Hemi-Colectomy for a Metastatic Transverse Colon Tumor from Breast Cancer Following Bilateral Breast Cancer Resection - A Case Report].

    Science.gov (United States)

    Okamura, Shu; Yanagisawa, Tetsu; Ohishi, Kazuhito; Murata, Kohei; Nushijima, Yoichiro; Hamano, Rie; Fukuchi, Nariaki; Ebisui, Chikara; Yokouchi, Hideoki; Kinuta, Masakatsu

    2016-11-01

    We herein report the case of a 75-year-old female patient who underwent 4 surgeries for bilateral breast cancer and its recurrence. When she presented at a clinic with an irritable colon, a fist-sized tumor was palpated in the right upper abdomen at her first medical examination. Abdominal CT scan at the clinic revealed a tumor with a maximum diameter of 10 cm on the right side of the transverse colon and multiple swollen mesenteric lymph nodes. Therefore, the patient was referred to our hospital for surgery. Colonoscopy revealed stenosis of the same lesion with an edematous mucosa and sclerosis. Using immunohistochemistry, a biopsy specimen from the lesion tested positive for CK AE1+AE3, and negative for CD20(-)and CD3 (-). As a result, the tumor was diagnosed as a poorly differentiated adenocarcinoma. We performed right hemicolectomy to avoid her intestinal obstruction. Tumor cells were mainly present at the subserosa, according to HEstaining. Using immunostaining, the cells were tested for the following markers: CDX2(-), GCDFP15(weakly positive), CK7(strongly positive), CD20(partially positive), E R(+), PgR(-), and HER2(1+), characterizing the tumor as metastasis of breast cancer. Although gastro-intestinal metastasis from breast cancer is rare, and colon metastasis is even rarer, it might be necessary to rule out the possibility of a metastatic colon tumor from breast cancer when treating patients with a colon tumor who have undergone surgery for breast cancer.

  14. Granular cell tumor of the breast: a report of the three cases

    International Nuclear Information System (INIS)

    Mellado, M.; Pina, L.; Cojo, R.; Arias-Camison, I.

    2000-01-01

    Granular cell tumors (GCT) of the breast are uncommon benign neoplasms that are usually indistinguishable from breast cancer with respect to their clinical and radiological presentation. FNAB can be a usefull diagnostic tool, but histological examination is essential for the correct diagnosis. This benign tumor should be considered among the diagnostic possibilities in the presence of a lesion with mammographic and ultrasonographic indications of highly probable malignancy. We present three cases of breast GCT that mimicked primary breast cancer. Benign neoplasm was diagnosed and local excision was carried out rather than mastectomy and lymphadenectomy. (Author) 9 refs

  15. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  16. Asymmetric Cancer Hallmarks in Breast Tumors on Different Sides of the Body.

    Directory of Open Access Journals (Sweden)

    Emanuel M Campoy

    Full Text Available During the last decades it has been established that breast cancer arises through the accumulation of genetic and epigenetic alterations in different cancer related genes. These alterations confer the tumor oncogenic abilities, which can be resumed as cancer hallmarks (CH. The purpose of this study was to establish the methylation profile of CpG sites located in cancer genes in breast tumors so as to infer their potential impact on 6 CH: i.e. sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, genome instability and invasion and metastasis. For 51 breast carcinomas, MS-MLPA derived-methylation profiles of 81 CpG sites were converted into 6 CH profiles. CH profiles distribution was tested by different statistical methods and correlated with clinical-pathological data. Unsupervised Hierarchical Cluster Analysis revealed that CH profiles segregate in two main groups (bootstrapping 90-100%, which correlate with breast laterality (p = 0.05. For validating these observations, gene expression data was obtained by RealTime-PCR in a different cohort of 25 tumors and converted into CH profiles. This analyses confirmed the same clustering and a tendency of association with breast laterality (p = 0.15. In silico analyses on gene expression data from TCGA Breast dataset from left and right breast tumors showed that they differed significantly when data was previously converted into CH profiles (p = 0.033. We show here for the first time, that breast carcinomas arising on different sides of the body present differential cancer traits inferred from methylation and expression profiles. Our results indicate that by converting methylation or expression profiles in terms of Cancer Hallmarks, it would allow to uncover veiled associations with clinical features. These results contribute with a new finding to the better understanding of breast tumor behavior, and can moreover serve as proof of

  17. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    Science.gov (United States)

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as

  18. Correlation of breast image alignment using biomechanical modelling

    Science.gov (United States)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  19. Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial.

    Science.gov (United States)

    Sorace, Anna G; Partridge, Savannah C; Li, Xia; Virostko, Jack; Barnes, Stephanie L; Hippe, Daniel S; Huang, Wei; Yankeelov, Thomas E

    2018-01-01

    Comparative preliminary analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data collected in the International Breast MR Consortium 6883 multicenter trial was performed to distinguish benign and malignant breast tumors. Prebiopsy DCE-MRI data from 45 patients with suspicious breast lesions were obtained. Semiquantitative mean signal-enhancement ratio ([Formula: see text]) was calculated for all lesions, and quantitative pharmacokinetic, parameters [Formula: see text], [Formula: see text], and [Formula: see text], were calculated for the subset with available [Formula: see text] maps ([Formula: see text]). Diagnostic performance was estimated for DCE-MRI parameters and compared to standard clinical MRI assessment. Quantitative and semiquantitative metrics discriminated benign and malignant lesions, with receiver operating characteristic area under the curve (AUC) values of 0.71, 0.70, and 0.82 for [Formula: see text], [Formula: see text], and [Formula: see text], respectively ([Formula: see text]). At equal 94% sensitivity, the specificity and positive predictive value of [Formula: see text] (53% and 63%, respectively) and K trans (42% and 58%) were higher than clinical MRI assessment (32% and 54%). A multivariable model combining [Formula: see text] and clinical MRI assessment had an AUC value of 0.87. Quantitative pharmacokinetic and semiquantitative analyses of DCE-MRI improves discrimination of benign and malignant breast tumors, with our findings suggesting higher diagnostic accuracy using [Formula: see text]. [Formula: see text] has potential to help reduce unnecessary biopsies resulting from routine breast imaging.

  20. Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors

    International Nuclear Information System (INIS)

    Li, Zidong; Chen, Bo; Wu, Yiqing; Jin, Feng; Xia, Yongjing; Liu, Xiangjun

    2010-01-01

    Beclin 1, an important autophagy-related protein in human cells, is involved in cell death and cell survival. Beclin 1 mapped to human chromosome 17q21. It is widely expressed in normal mammary epithelial cells. Although down-regulated expression with mono-allelic deletions of beclin 1 gene was frequently observed in breast tumors, whether there was other regulatory mechanism of beclin 1 was to be investigated. We studied the expression of beclin 1 and explored the possible regulatory mechanisms on its expression in breast tumors. 20 pairs of tumors and adjacent normal tissues from patients with sporadic breast invasive ductal cancer (IDCs) were collected. The mRNA expression of beclin 1 was detected by real-time quantitative RT-PCR. Loss of heterozygosity (LOH) was determined by real-time quantitative PCR and microsatellite methods. The protein expression of beclin 1, p53, BRCA1 and BRCA2 was assessed by immunohistochemistry. CpG islands in 5' genomic region of beclin 1 gene were identified using MethylPrimer Program. Sodium bisulfite sequencing was used in examining the methylation status of each CpG island. Decreased beclin 1 mRNA expression was detected in 70% of the breast tumors, and the protein levels were co-related to the mRNA levels. Expression of beclin 1 mRNA was demonstrated to be much higher in the BRCA1 positive tumors than that in the BRCA1 negative ones. Loss of heterozygosity was detected in more than 45% of the breast tumors, and a dense cluster of CpG islands was found from the 5' end to the intron 2 of the beclin 1 gene. Methylation analysis showed that the promoter and the intron 2 of beclin 1 were aberrantly methylated in the tumors with decreased expression. These data indicated that LOH and aberrant DNA methylation might be the possible reasons of the decreased expression of beclin 1 in the breast tumors. The findings here shed some new light on the regulatory mechanisms of beclin 1 in breast cancer

  1. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...... and conductivity in the breast. In this paper two nonlinear tomographic algorithms are compared – one is a single-frequency algorithm and the other is a time-domain algorithm....

  2. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    International Nuclear Information System (INIS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-01-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed. - Highlights: • Optimization of the image quality in digital breast tomosynthesis. • Calculation of photon energies that maximize the signal difference to noise ratio. • Projections images and dose calculations through the Monte Carlo (MC) method. • Tumor masses and microcalcifications included in the MC model. • A dose saving of about 30% can be reached if optimal photon energies are used

  3. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  4. Análise computacional da textura de tumores de mama em imagens por ultrassom de pacientes submetidas a cirurgia conservadora Computer-assisted analysis of breast tumors texture on sonographic images of patients submitted to breast-conserving surgery

    Directory of Open Access Journals (Sweden)

    Carolina Maria de Azevedo

    2009-12-01

    Full Text Available OBJETIVO: Avaliar as características de textura de lesões de mama em imagens por ultrassom de pacientes submetidas a cirurgia conservadora que apresentaram, ou não, recidiva. MATERIAIS E MÉTODOS: As imagens de ultrassom de 36 pacientes submetidas a cirurgia conservadora, com 12 tendo apresentado recidiva local e 24 que não apresentaram recidiva no local da cirurgia, foram divididas em: 3 malignas na mama oposta, 7 nódulos benignos, 5 hiperplasias atípicas e 9 alterações fibrocísticas. A textura das lesões foi quantificada utilizando-se dez parâmetros calculados da matriz de coocorrência e da curva de complexidade. Análise discriminante linear foi aplicada aos parâmetros para discriminação de lesões de mama em pacientes submetidas a cirurgia conservadora que apresentaram, ou não, recidiva. RESULTADOS: Avaliando-se a capacidade dos parâmetros em distinguir as recidivas do grupo composto por lesões não recidivas benignas e hiperplasias atípicas, obteve-se especificidade de 100%, com valores de acurácia e sensibilidade superiores a 91%. Num segundo teste, foi possível distinguir as cinco hiperplasias, das lesões não recidivas benignas. CONCLUSÃO: Apesar do número reduzido de casos, os resultados obtidos são encorajadores, sugerindo que o uso da quantificação da textura pode auxiliar na diferenciação entre lesões benignas, hiperplasias atípicas e lesões malignas de origem recidiva.OBJECTIVE: The purpose of this study was to assess the features of breast lesion texture on sonographic images of patients submitted to breast-conserving surgery, with or without tumor recurrence. MATERIALS AND METHODS: Sonographic images of 36 patients submitted to conservative surgery for breast cancer, 12 of them with, and 24 without local recurrence, included 3 contralateral malignant lesions, 7 benign lumps (3 cysts and 4 fibroadenomas, 5 atypical hyperplasias and 9 fibrocystic changes. The quantification of features of breast

  5. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Directory of Open Access Journals (Sweden)

    Konsti Juho

    2012-03-01

    Full Text Available Abstract Background Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC stainings and automated tumor segmentation. Methods Two tissue microarray (TMA slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images. Results Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and

  6. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine.

    Science.gov (United States)

    Manning, H Charles; Buck, Jason R; Cook, Rebecca S

    2016-02-01

    Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. A volume indicator for breast tumors

    International Nuclear Information System (INIS)

    Cardno, P.A.; Nicoll, J.J.

    1996-01-01

    The development of a technique that could measure quickly and accurately the change in breast cancer dimensions would be of particular benefit for elderly women where the first line of treatment in non surgical. Non surgical treatments have varying responses on the individual patient and it is important to establish as early as possible whether or not a tratment is effective. This paper looks at developing a technique that uses a series of parallel ultrasound images (1mm separation), of the breast cancer (in-vivo). These images, obtained using a 7.5 MHz linear array probe are processed to give tumour dimensions using three different methods which rely on thresholding individual images and linking the tumour peices. (author)

  8. Effect of Depleting Tumor-Associated Macrophages on Breast Cancer Growth and Response to Chemotherapy

    National Research Council Canada - National Science Library

    Tsan, Min-Fu; Gao, Baochong

    2005-01-01

    Tumor-associated macrophages may comprise up to 50% of the tumor mass in breast cancer and are capable of producing estrogen and angiogenic cytokines that regulate the growth and angiogenesis of breast cancer...

  9. Tomosynthesis Breast Imaging Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    2000-01-01

    A digital tomosynthesis mammography method was developed with which to obtain tomographic images of the breast by acquiring a series of low radiation dose images as the x-ray tube moves in an arc above the breast...

  10. Mueller matrix polarimetry imaging for breast cancer analysis (Conference Presentation)

    Science.gov (United States)

    Gribble, Adam; Vitkin, Alex

    2017-02-01

    Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its biological composition, both structural and functional. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. However, determination of the Mueller matrix requires tissue analysis under many different states of polarized light; a time consuming and measurement intensive process. Here we address this limitation with a new rapid polarimetry system, and use this polarimetry platform to investigate a variety of tissue changes associated with breast cancer. We have recently developed a rapid polarimetry imaging platform based on four photoelastic modulators (PEMs). The PEMs generate fast polarization modulations that allow the complete sample Mueller matrix to be imaged over a large field of view, with no moving parts. This polarimetry system is then demonstrated to be sensitive to a variety of tissue changes that are relevant to breast cancer. Specifically, we show that changes in depolarization can reveal tumor margins, and can differentiate between viable and necrotic breast cancer metastasized to the lymph nodes. Furthermore, the polarimetric property of linear retardance (related to birefringence) is dependent on collagen organization in the extracellular matrix. These findings indicate that our polarimetry platform may have future applications in fields such as breast cancer diagnosis, improving the speed and efficacy of intraoperative pathology, and providing prognostic information that may be beneficial for guiding treatment.

  11. Magnetic Resonance Evaluation of the Presence of an Extensive Intraductal Component in Breast Cancer

    International Nuclear Information System (INIS)

    Ikeda, O.; Nishimura, R.; Miyayama, H.; Yasunaga, T.; Ozaki, Y.; Tsuji, A.; Yamashita, Y.

    2004-01-01

    Purpose: To determine whether the presence of extensive intraductal components (EIC) in breast carcinomas can be accurately evaluated on magnetic resonance (MR) images. Material and Methods: Ninety-three women with breast cancer, aged between 32 and 79 years (mean 54 years), underwent three-dimensional dynamic MR imaging (dyMRI) with fat suppression and magnetization transfer contrast before breast-conserving surgery. The tumors were classified on dyMRI as circumscribed, microlobulated, and/or speculated, and their size was measured. Spotty or linear continuous enhancement (SLE) from the main tumor to the nipple and segmental enhancement surrounding the main tumor (SE) were considered indicative of intraductal tumor spread. The correlation between preoperative MRI and macroscopic and microscopic findings was examined. Results: On MR images, the tumor sizes ranged from 0.8 to 3.4 cm. These measurements coincided with histologic measurements in circumscribed tumors. However, in tumors with microlobulated or spiculated borders, tumor size tended to be underestimated on MR images. Of 93 patients, 59 (63.4%) had histologically confirmed EIC; 42 of the 59 cancers (71.2%) manifested SLE or SE on MR images. The sensitivity, specificity, and accuracy of MR imaging in detecting EIC were 71%, 85%, and 76%, respectively. Conclusion: MR imaging facilitates the detection of EIC in breast masses. This information is valuable for the planning of breast-conserving surgery

  12. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  13. Effect of Depleting Tumor-Associated Macrophages on Breast Cancer Growth and Response to Chemotherapy

    National Research Council Canada - National Science Library

    Tsan, Min-Fu

    2004-01-01

    Tumor-associated macrophages (TAM) may comprise up to 50% of the tumor mass in breast cancer and are capable of producing estrogen and angiogenic cytokines that regulate the growth and angiogenesis of breast cancer...

  14. Optical computed tomography for imaging the breast: first look

    Science.gov (United States)

    Grable, Richard J.; Ponder, Steven L.; Gkanatsios, Nikolaos A.; Dieckmann, William; Olivier, Patrick F.; Wake, Robert H.; Zeng, Yueping

    2000-07-01

    The purpose of the study is to compare computed tomography optical imaging with traditional breast imaging techniques. Images produced by computed tomography laser mammography (CTLMTM) scanner are compared with images obtained from mammography, and in some cases ultrasound and/or magnetic resonance imaging (MRI). During the CTLM procedure, a near infrared laser irradiates the breast and an array of photodiodes detectors records light scattered through the breast tissue. The laser and detectors rotate synchronously around the breast to acquire a series of slice data along the coronal place. The procedure is performed without any breast compression or optical matching fluid. Cross-sectional slices of the breast are produced using a reconstruction algorithm. Reconstruction based on the diffusion theory is used to produce cross-sectional slices of the breast. Multiple slice images are combined to produce a three dimensional volumetric array of the imaged breast. This array is used to derive axial and sagittal images of the breast corresponding to cranio-caudal and medio-lateral images used in mammography. Over 200 women and 3 men have been scanned in clinical trials. The most obvious features seen in images produced by the optical tomography scanner are vascularization and significant lesions. Breast features caused by fibrocystic changes and cysts are less obvious. Breast density does not appear to be a significant factor in the quality of the image. We see correlation of the optical image structure with that seen with traditional breast imaging techniques. Further testing is being conducted to explore the sensitivity and specificity of optical tomography of the breast.

  15. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Kowalchik, Kristin V.; Vallow, Laura A.; McDonough, Michelle; Thomas, Colleen S.; Heckman, Michael G.; Peterson, Jennifer L.; Adkisson, Cameron D.; Serago, Christopher; McLaughlin, Sarah A.

    2013-01-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  16. Human dosimetry and preliminary tumor distribution of 18F-fluoropaclitaxel in healthy volunteers and newly diagnosed breast cancer patients using PET/CT.

    Science.gov (United States)

    Kurdziel, Karen A; Kalen, Joseph D; Hirsch, Jerry I; Wilson, John D; Bear, Harry D; Logan, Jean; McCumisky, James; Moorman-Sykes, Kathy; Adler, Stephen; Choyke, Peter L

    2011-09-01

    (18)F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that (18)F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, (18)F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of (18)F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ (18)F residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Dosimetry calculations showed that the gallbladder received the highest dose (229.50 μGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 μGy/MBq [0.597 rad/mCi] and 184.59 μGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 μGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of (18)F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. This study demonstrates the feasibility of using (18)F

  17. Human Dosimetry and Preliminary Tumor Distribution of 18F-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast Cancer Patients Using PET/CT

    International Nuclear Information System (INIS)

    Kurdziel, K.A.; Logan, J.; Kalen, J.D.; Hirsch, J.I.; Wilson, J.D.; Bear, H.D.; McCumisky, J.; Moorman-Sykes, K.; Adler, S.; Choyke, P.L.

    2011-01-01

    18 F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that 18 F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, 18 F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of 18 F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ 18 F residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Dosimetry calculations showed that the gallbladder received the highest dose (229.50 μGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 μGy/MBq [0.597 rad/mCi] and 184.59 μGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 μGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of 18 F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. This study demonstrates the feasibility of using 18 F

  18. [Diagnostic imaging of breast cancer : An update].

    Science.gov (United States)

    Funke, M

    2016-10-01

    Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.

  19. An Optimized Online Verification Imaging Procedure for External Beam Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Willis, David J.; Kron, Tomas; Chua, Boon

    2011-01-01

    The purpose of this study was to evaluate the capabilities of a kilovoltage (kV) on-board imager (OBI)-equipped linear accelerator in the setting of on-line verification imaging for external-beam partial breast irradiation. Available imaging techniques were optimized and assessed for image quality using a modified anthropomorphic phantom. Imaging dose was also assessed. Imaging techniques were assessed for physical clearance between patient and treatment machine using a volunteer. Nonorthogonal kV image pairs were identified as optimal in terms of image quality, clearance, and dose. After institutional review board approval, this approach was used for 17 patients receiving accelerated partial breast irradiation. Imaging was performed before every fraction verification with online correction of setup deviations >5 mm (total image sessions = 170). Treatment staff rated risk of collision and visibility of tumor bed surgical clips where present. Image session duration and detected setup deviations were recorded. For all cases, both image projections (n = 34) had low collision risk. Surgical clips were rated as well as visualized in all cases where they were present (n = 5). The average imaging session time was 6 min, 16 sec, and a reduction in duration was observed as staff became familiar with the technique. Setup deviations of up to 1.3 cm were detected before treatment and subsequently confirmed offline. Nonorthogonal kV image pairs allowed effective and efficient online verification for partial breast irradiation. It has yet to be tested in a multicenter study to determine whether it is dependent on skilled treatment staff.

  20. Combined calcitriol and menadione reduces experimental murine triple negative breast tumor.

    Science.gov (United States)

    Bohl, Luciana; Guizzardi, Solange; Rodríguez, Valeria; Hinrichsen, Lucila; Rozados, Viviana; Cremonezzi, David; Tolosa de Talamoni, Nori; Picotto, Gabriela

    2017-10-01

    Calcitriol (D) or 1,25(OH) 2 D 3 inhibits the growth of several tumor cells including breast cancer cells, by activating cell death pathways. Menadione (MEN), a glutathione-depleting compound, may be used to potentiate the antiproliferative actions of D on cancer cells. We have previously shown in vitro that MEN improved D-induced growth arrest on breast cancer cell lines, inducing oxidative stress and DNA damage via ROS generation. Treatment with MEN+D resulted more effective than D or MEN alone. To study the in vivo effect of calcitriol, MEN or their combination on the development of murine transplantable triple negative breast tumor M-406 in its syngeneic host. Tumor M-406 was inoculated s.c., and when tumors reached the desired size, animals were randomly assigned to one of four groups receiving daily i.p. injections of either sterile saline solution (controls, C), MEN, D, or both (MEN+D). Body weight and tumor volume were recorded three times a week. Serum calcium was determined before and at the end of the treatment, at which time tumor samples were obtained for histological examination. None of the drugs, alone or in combination, affected mice body weight in the period studied. The combined treatment reduced tumor growth rate (C vs. MEN+D, P<0.05) and the corresponding histological sections exhibited small remaining areas of viable tumor only in the periphery. A concomitant DNA fragmentation was observed in all treated groups and MEN potentiated the calcitriol effect on tumor growth. As previously observed in vitro, treatment with MEN and D delayed tumor growth in vivo more efficiently than the individual drugs, with evident signals of apoptosis induction. Our results propose an alternative protocol to treat triple negative breast cancer, using GSH depleting drugs together with calcitriol, which would allow lower doses of the steroid to maintain the antitumor effect while diminishing its adverse pharmacological effects. Copyright © 2017. Published by

  1. Photothermal ablation of inflammatory breast cancer tumor emboli using plasmonic gold nanostars

    Directory of Open Access Journals (Sweden)

    Crawford BM

    2017-08-01

    Full Text Available Bridget M Crawford,1,2,* Ronnie L Shammas,3,* Andrew M Fales,1,2 David A Brown,4 Scott T Hollenbeck,4 Tuan Vo-Dinh,1,2,5 Gayathri R Devi6,7 1Fitzpatrick Institute for Photonics, Duke University, 2Department of Biomedical Engineering, Duke University, 3Duke University School of Medicine, 4Department of Surgery, Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center, 5Department of Chemistry, Duke University, 6Department of Surgery, Division of Surgical Sciences, 7Duke Cancer Institute, Women’s Cancer Program, Duke University School of Medicine, Durham, NC, USA *These authors contributed equally to this work Abstract: Inflammatory breast cancer (IBC is rare, but it is the most aggressive subtype of breast cancer. IBC has a unique presentation of diffuse tumor cell clusters called tumor emboli in the dermis of the chest wall that block lymph vessels causing a painful, erythematous, and edematous breast. Lack of effective therapeutic treatments has caused mortality rates of this cancer to reach 20%–30% in case of women with stage III–IV disease. Plasmonic nanoparticles, via photothermal ablation, are emerging as lead candidates in next-generation cancer treatment for site-specific cell death. Plasmonic gold nanostars (GNS have an extremely large two-photon luminescence cross-section that allows real-time imaging through multiphoton microscopy, as well as superior photothermal conversion efficiency with highly concentrated heating due to its tip-enhanced plasmonic effect. To effectively study the use of GNS as a clinically plausible treatment of IBC, accurate three-dimensional (3D preclinical models are needed. Here, we demonstrate a unique in vitro preclinical model that mimics the tumor emboli structures assumed by IBC in vivo using IBC cell lines SUM149 and SUM190. Furthermore, we demonstrate that GNS are endocytosed into multiple cancer cell lines irrespective of receptor status or drug resistance and that

  2. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    Science.gov (United States)

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  3. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    Science.gov (United States)

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  4. Evaluation of optimized magnetic resonance perfusion imaging scanning time window after contrast agent injection for differentiating benign and malignant breast lesions.

    Science.gov (United States)

    Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong

    2017-03-01

    The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (K trans ), rate constant (K ep ) and extravascular extracellular volume fraction (V e )] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of K trans and K ep at all phases were statistically significant in differentiating benign and malignant tumors (P0.05); ii) values of V e in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of V e values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the V e value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of V e is able to serve as a diagnostic reference.

  5. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  6. Correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer

    International Nuclear Information System (INIS)

    Zhang Yili; Du Hongwen; Zhang Yun; Zhang Yuelang; Kuang Fangjun; Guo Zuomin

    2004-01-01

    Objective: To discuss the correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer for early diagnosis and forecast of its prognoses. Methods: Fifty-four breast cancers and 26 benign diseases were proved by pathologic methods and all cases underwent mammography. Immunohistochemical technique was used to measure the expression of bcl-2 and bax proteins in these tissues. The correlation of imaging signs with the expression of bcl-2 and bax proteins in breast cancer and benign lesion was analyzed. Results: The expression of bcl-2 or bax protein in the breast cancer was higher than that in breast benign diseases (χ 2 =15.116, 11.361, P 2 =10.358, 12.818, P 2 =10.996, 10.667, P 2 =10.405, P 2 =6.841, P<0.05). Conclusion: Some imaging signs of breast cancer were closely related to the expression of bcl-2 and bax proteins and these signs could reflect the biological behavior of tumor cells and prognoses. Therefore it could be helpful to the early diagnosis and treatment of breast cancer. (authors)

  7. A novel high resolution and high efficiency dual head detector for molecular breast imaging: New results from clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, F., E-mail: franco.garibaldi@iss.infn.i [ISS and INFN Roma, gr. Sanita, Rome (Italy); Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M.L.; Santavenere, F.; Torrioli, S. [ISS and INFN Roma, gr. Sanita, Rome (Italy); Musico, P. [INFN Genova, Genova (Italy); Argentieri, A. [INFN Bari, Bari (Italy); Cossu, E.; Padovano, F.; Simonetti, G. [ISS and INFN Roma, gr. Sanita, Rome (Italy); Schillaci, O. [University of Tor Vergata, Rome (Italy); Majewski, S. [West Virginia University, Morgantown, West Virginia (United States)

    2010-05-21

    Detecting small breast tumors is a challenging task. Molecular Breast Imaging with radionuclides has a central role to play in this respect. Our group has recently designed and implemented a dual detector setup that allows spot compression and improves significantly the performance of the system. The single head detector has been successfully used for clinical trials with 10 patients in comparison with a commercial high resolution detector. Then the dual head system has been showed to have significant advantages for the detection of small tumors.

  8. Diffusion-weighted imaging and dynamic contrast-enhanced MRI of experimental breast cancer bone metastases – A correlation study with histology

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Maximilian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Seyler, Lisa; Bretschi, Maren; Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Bäuerle, Tobias, E-mail: tobias.baeuerle@uk-erlangen.de [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Radiology, University Medical Center Erlangen, Palmsanlage 5, 90154 Erlangen (Germany)

    2015-04-15

    Purpose: To validate imaging parameters from diffusion-weighted imaging and dynamic contrast-enhanced MRI with immunohistology and to non-invasively assess microstructure of experimental breast cancer bone metastases. Materials and methods: Animals bearing breast cancer bone metastases were imaged in a clinical 1.5 T MRI scanner. HASTE sequences were performed to calculate apparent diffusion coefficients. Saturation recovery turbo FLASH sequences were conducted while infusing 0.1 mmol/l Gd–DTPA for dynamic contrast-enhanced MRI to quantify parameters amplitude A and exchange rate constant k{sub ep}. After imaging, bone metastases were analyzed immunohistologically. Results: We found correlations of the apparent diffusion coefficients from diffusion-weighted imaging with tumor cellularity as assessed with cell nuclei staining. Histological vessel maturity was correlated negatively with parameters A and k{sub ep} from dynamic contrast-enhanced MRI. Tumor size correlated inversely with cell density and vessel permeability as well as positively with mean vessel calibers. Parameters from the rim of bone metastases differed significantly from values of the center. Conclusion: In vivo diffusion-weighted imaging and dynamic contrast-enhanced MRI in experimental bone metastases provide information about tumor cellularity and vascularity and correlate well with immunohistology.

  9. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    Science.gov (United States)

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer.

    Science.gov (United States)

    Tamura, Kenji; Kurihara, Hiroaki; Yonemori, Kan; Tsuda, Hitoshi; Suzuki, Junko; Kono, Yuzuru; Honda, Natsuki; Kodaira, Makoto; Yamamoto, Harukaze; Yunokawa, Mayu; Shimizu, Chikako; Hasegawa, Koki; Kanayama, Yousuke; Nozaki, Satoshi; Kinoshita, Takayuki; Wada, Yasuhiro; Tazawa, Shusaku; Takahashi, Kazuhiro; Watanabe, Yasuyoshi; Fujiwara, Yasuhiro

    2013-11-01

    The purpose of this study was to determine the safety, distribution, internal dosimetry, and initial human epidermal growth factor receptor 2 (HER2)-positive tumor images of (64)Cu-DOTA-trastuzumab in humans. PET was performed on 6 patients with primary or metastatic HER2-positive breast cancer at 1, 24, and 48 h after injection of approximately 130 MBq of the probe (64)Cu-DOTA-trastuzumab. Radioactivity data were collected from the blood, urine, and normal-tissue samples of these 6 patients, and the multiorgan biodistribution and internal dosimetry of the probe were evaluated. Safety data were collected for all the patients after the administration of (64)Cu-DOTA-trastuzumab and during the 1-wk follow-up period. According to our results, the best timing for the assessment of (64)Cu-DOTA-trastuzumab uptake by the tumor was 48 h after injection. Radiation exposure during (64)Cu-DOTA-trastuzumab PET was equivalent to that during conventional (18)F-FDG PET. The radioactivity in the blood was high, but uptake of (64)Cu-DOTA-trastuzumab in normal tissues was low. In 2 patients, (64)Cu-DOTA-trastuzumab PET showed brain metastases, indicative of blood-brain barrier disruptions. In 3 patients, (64)Cu-DOTA-trastuzumab PET imaging also revealed primary breast tumors at the lesion sites initially identified by CT. The findings of this study indicated that (64)Cu-DOTA-trastuzumab PET is feasible for the identification of HER2-positive lesions in patients with primary and metastatic breast cancer. The dosimetry and pharmacologic safety results were acceptable at the dose required for adequate PET imaging.

  11. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  12. Detection of Metastatic Breast and Thyroid Cancer in Lymph Nodes by Desorption Electrospray Ionization Mass Spectrometry Imaging

    Science.gov (United States)

    Zhang, Jialing; Feider, Clara L.; Nagi, Chandandeep; Yu, Wendong; Carter, Stacey A.; Suliburk, James; Cao, Hop S. Tran; Eberlin, Livia S.

    2017-06-01

    Ambient ionization mass spectrometry has been widely applied to image lipids and metabolites in primary cancer tissues with the purpose of detecting and understanding metabolic changes associated with cancer development and progression. Here, we report the use of desorption electrospray ionization mass spectrometry (DESI-MS) to image metastatic breast and thyroid cancer in human lymph node tissues. Our results show clear alterations in lipid and metabolite distributions detected in the mass spectra profiles from 42 samples of metastatic thyroid tumors, metastatic breast tumors, and normal lymph node tissues. 2D DESI-MS ion images of selected molecular species allowed discrimination and visualization of specific histologic features within tissue sections, including regions of metastatic cancer, adjacent normal lymph node, and fibrosis or adipose tissues, which strongly correlated with pathologic findings. In thyroid cancer metastasis, increased relative abundances of ceramides and glycerophosphoinisitols were observed. In breast cancer metastasis, increased relative abundances of various fatty acids and specific glycerophospholipids were seen. Trends in the alterations in fatty acyl chain composition of lipid species were also observed through detailed mass spectra evaluation and chemical identification of molecular species. The results obtained demonstrate DESI-MSI as a potential clinical tool for the detection of breast and thyroid cancer metastasis in lymph nodes, although further validation is needed. [Figure not available: see fulltext.

  13. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Gregory J. [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm3 in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera.

  14. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    International Nuclear Information System (INIS)

    Gruber, Gregory J.

    2000-01-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm 3 in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera

  15. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    OpenAIRE

    Xiang, Meixian; Su, Hanwen; Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and ...

  16. The Impact of Epithelial Stromal Interactions on Human Breast Tumor Heterogeneity

    Science.gov (United States)

    2016-12-01

    Identification of a novel tumor  necrosis  factor‐alpha‐inducible gene, SCC‐S2, containing the consensus sequence of a death effector domain of fas...microdissected breast cancer microvasculature identifies distinct tumor  vascular  subtypes. Breast Cancer Res 2012;14:R120. 32. Iorio MV,  Ferracin M

  17. Computer-aided diagnosis with morphological features for breast lesion on sonograms

    International Nuclear Information System (INIS)

    Huang Yu-Len; Jiang Yu-Ru; Shiu Jia-Jia; Chen Dar-Ren; Moon Woo Kyung

    2007-01-01

    Information about shape, provided by a breast tumor contour is important to physicians in making diagnostic decisions. To avoid needless biopsy and enhance the diagnostic accuracy, a computer-aided diagnosis (CAD) system can provide a second beneficial support reference. This paper aimed to evaluate the potential role of the CAD with automatic contouring and morphologic analysis in the differential of breast tumors for ultrasound (US) images. This study evaluated 118 breast lesions. The suspicious tumor contour in the digitized US image was automatically extracted by the proposed contouring algorithm. Then 20 practical morphologic features from the extracted contour were calculated and a support vector machine (SVM) classifier identified the breast tumor as benign or malignant. The area (Az) under the receiver operating characteristic (ROC) curve for the proposed CAD system was 0.91 ± 0.03. This system differentiates benign from malignant breast tumors with relative high accuracy and is therefore clinically useful to reduce patients needed for dispensable breast biopsy. (orig.)

  18. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  19. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R; Albanese, K; Lakshmanan, M; Greenberg, J; Kapadia, A [Duke University Medical Center, Durham, NC, Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2015-06-15

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality for breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded

  20. Evolution of modern nuclear medicine tumor-imaging diagnostics in clinical oncology

    International Nuclear Information System (INIS)

    Piperkova, E.

    2000-01-01

    The evolution of current nuclear medicine diagnostic is closely related to the technical progress in imaging equipment development, and application of radiopharmaceuticals (Rphs) with a different tumor-uptake mechanism. It is the aim of the study to present groups of tumor-imaging Rphs differing by tumor uptake mechanisms, used in clinical oncology. The obtained results are described, and compared with the ones reported by other researchers. Sensitivity and specificity of Rphs for cardio-scintigraphy with 99m Tc - MIBI and 201 Tl are relatively high, amounting to 93.7% and 60% respectively, in the various tumors. These indicators depend on the stage, location, histopathology, level of malignancy and biological activity of the neoplasm. 99m Tc - MIBI scintigraphy is endowed with considerable diagnostic potential for assaying multiple drug resistance (MDR), and is also a good criterion for its elimination following anti-MDR therapy. The obtained results show that radioimmunoscintigraphy (RIS) using different radiolabeled monoclonal antibodies (MoAb) have high sensitivity and specificity respectively: 86% and 80% in ovarian carcinoma with B72.3 antiTAG; 68.6% and 92.5% in colorectal carcinoma with B73.2 antiTAG, antiCEA, antiCA 19-9; 92% and 83% in breast cancer with antiCEA, 86.8% and 67-69% in malignant melanoma with 225.28s. Receptor scintigraphy may reach up to 86% sensitivity and 100% specificity in tumors saturated with somatostatin receptors. Positron emission tomography (PET) with 18F-FDG enhances the metabolic activity of tumor cells, and attains tumor-detecting rate amounting to 97%. Tumor imaging evolution characterized by the introduction and practical implementation of different Rphs, visualizing the functional and biochemical activity of tumor cells in the primary neoplasm, sentinel lymph nodes and distant metastases. radiolabelling of a variety of new biochemical substances, including DNA and RNA, drugs and lysosomes contributes to a successful imaging

  1. Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer

    International Nuclear Information System (INIS)

    Lei, Fangyong; Zhang, Longjuan; Li, Xinghua; Lin, Xi; Wu, Shu; Li, Fengyan; Liu, Junling

    2014-01-01

    Prostate tumor overexpressed 1 (PTOV1) was demonstrated to play an important role in cancer progression and was correlated with unfavorable clinical outcome. However, the clinical role of PTOV1 in cancer remains largely unknown. This study aimed to investigate the expression and clinicopathological significance of PTOV1 in breast cancer. The mRNA and protein expression levels of PTOV1 were analyzed in 12 breast cancer cell lines and eight paired breast cancer tumors by semi-quantitative real time-PCR and western blotting, respectively. Immunohistochemistry was performed to assess PTOV1 protein expression in 169 paraffin-embedded, archived breast cancer samples. Survival analysis and Cox regression analysis were performed to investigate the clinicopathological significance of PTOV1 expression. Our data revealed that PTOV1 was frequently overexpressed in breast cancer cell lines compared to normal human breast epithelial cells and in primary breast cancer samples compared to adjacent noncancerous breast tissues, at both the mRNA and protein levels. Moreover, high expression of PTOV1 in breast cancer is strongly associated with clinicopathological characteristics and estrogen receptor expression status (P = 0.003). Breast cancer patients with higher PTOV1 expression had substantially shorter survival times than patients with lower PTOV1 expression (P < 0.001). Univariate and multivariate analysis revealed that PTOV1 might be an independent prognostic factor for breast cancer patients (P = 0.005). Our study showed that PTOV1 is upregulated in breast cancer cell lines and clinical samples, and its expression was positively associated with progression and aggressiveness of breast cancer, suggesting that PTOV1 could serve as an independent prognostic marker

  2. Comparative Analysis of Logistic Regression, Support Vector Machine and Artificial Neural Network for the Differential Diagnosis of Benign and Malignant Solid Breast Tumors by the Use of Three-Dimensional Power Doppler Imaging

    International Nuclear Information System (INIS)

    Chen, Shou Tung; Hsiao, Yi Hsuan; Kuo, Shou Jen; Tseng, Hsin Shun; Wu, Hwa Koon; Chen, Dar Ren; Huang, Yu Len

    2009-01-01

    Logistic regression analysis (LRA), Support Vector Machine (SVM) and a neural network (NN) are commonly used statistical models in computeraided diagnostic (CAD) systems for breast ultrasonography (US). The aim of this study was to clarify the diagnostic ability of the use of these statistical models for future applications of CAD systems, such as three-dimensional (3D) power Doppler imaging, vascularity evaluation and the differentiation of a solid mass. A database that contained 3D power Doppler imaging pairs of non-harmonic and tissue harmonic images for 97 benign and 86 malignant solid tumors was utilized. The virtual organ computer-aided analysis-imaging program was used to analyze the stored volumes of the 183 solid breast tumors. LRA, an SVM and NN were employed in comparative analyses for the characterization of benign and malignant solid breast masses from the database. The values of area under receiver operating characteristic (ROC) curve, referred to as Az values for the use of non-harmonic 3D power Doppler US with LRA, SVM and NN were 0.9341, 0.9185 and 0.9086, respectively. The Az values for the use of harmonic 3D power Doppler US with LRA, SVM and NN were 0.9286, 0.8979 and 0.9009, respectively. The Az values of six ROC curves for the use of LRA, SVM and NN for non-harmonic or harmonic 3D power Doppler imaging were similar. The diagnostic performances of these three models (LRA, SVM and NN) are not different as demonstrated by ROC curve analysis. Depending on user emphasis for the use of ROC curve findings, the use of LRA appears to provide better sensitivity as compared to the other statistical models

  3. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors

    Science.gov (United States)

    Feng, Shangyuan; Huang, Shaohua; Lin, Duo; Chen, Guannan; Xu, Yuanji; Li, Yongzeng; Huang, Zufang; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2015-01-01

    The capability of saliva protein analysis, based on membrane protein purification and surface-enhanced Raman spectroscopy (SERS), for detecting benign and malignant breast tumors is presented in this paper. A total of 97 SERS spectra from purified saliva proteins were acquired from samples obtained from three groups: 33 healthy subjects; 33 patients with benign breast tumors; and 31 patients with malignant breast tumors. Subtle but discernible changes in the mean SERS spectra of the three groups were observed. Tentative assignments of the saliva protein SERS spectra demonstrated that benign and malignant breast tumors led to several specific biomolecular changes of the saliva proteins. Multiclass partial least squares–discriminant analysis was utilized to analyze and classify the saliva protein SERS spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor patients, yielding diagnostic sensitivities of 75.75%, 72.73%, and 74.19%, as well as specificities of 93.75%, 81.25%, and 86.36%, respectively. The results from this exploratory work demonstrate that saliva protein SERS analysis combined with partial least squares–discriminant analysis diagnostic algorithms has great potential for the noninvasive and label-free detection of breast cancer. PMID:25609959

  4. Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms

    Science.gov (United States)

    Li, Xia; Dawant, Benoit M.; Welch, E. Brian; Chakravarthy, A. Bapsi; Xu, Lei; Mayer, Ingrid; Kelley, Mark; Meszoely, Ingrid; Means-Powell, Julie; Gore, John C.; Yankeelov, Thomas E.

    2010-01-01

    Purpose: The authors present a method to validate coregistration of breast magnetic resonance images obtained at multiple time points during the course of treatment. In performing sequential registration of breast images, the effects of patient repositioning, as well as possible changes in tumor shape and volume, must be considered. The authors accomplish this by extending the adaptive bases algorithm (ABA) to include a tumor-volume preserving constraint in the cost function. In this study, the authors evaluate this approach using a novel validation method that simulates not only the bulk deformation associated with breast MR images obtained at different time points, but also the reduction in tumor volume typically observed as a response to neoadjuvant chemotherapy. Methods: For each of the six patients, high-resolution 3D contrast enhanced T1-weighted images were obtained before treatment, after one cycle of chemotherapy and at the conclusion of chemotherapy. To evaluate the effects of decreasing tumor size during the course of therapy, simulations were run in which the tumor in the original images was contracted by 25%, 50%, 75%, and 95%, respectively. The contracted area was then filled using texture from local healthy appearing tissue. Next, to simulate the post-treatment data, the simulated (i.e., contracted tumor) images were coregistered to the experimentally measured post-treatment images using a surface registration. By comparing the deformations generated by the constrained and unconstrained version of ABA, the authors assessed the accuracy of the registration algorithms. The authors also applied the two algorithms on experimental data to study the tumor volume changes, the value of the constraint, and the smoothness of transformations. Results: For the six patient data sets, the average voxel shift error (mean±standard deviation) for the ABA with constraint was 0.45±0.37, 0.97±0.83, 1.43±0.96, and 1.80±1.17 mm for the 25%, 50%, 75%, and 95

  5. Deciphering the Correlation between Breast Tumor Samples and Cell Lines by Integrating Copy Number Changes and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2015-01-01

    Full Text Available Breast cancer is one of the most common cancers with high incident rate and high mortality rate worldwide. Although different breast cancer cell lines were widely used in laboratory investigations, accumulated evidences have indicated that genomic differences exist between cancer cell lines and tissue samples in the past decades. The abundant molecular profiles of cancer cell lines and tumor samples deposited in the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas now allow a systematical comparison of the breast cancer cell lines with breast tumors. We depicted the genomic characteristics of breast primary tumors based on the copy number variation and gene expression profiles and the breast cancer cell lines were compared to different subgroups of breast tumors. We identified that some of the breast cancer cell lines show high correlation with the tumor group that agrees with previous knowledge, while a big part of them do not, including the most used MCF7, MDA-MB-231, and T-47D. We presented a computational framework to identify cell lines that mostly resemble a certain tumor group for the breast tumor study. Our investigation presents a useful guide to bridge the gap between cell lines and tumors and helps to select the most suitable cell line models for personalized cancer studies.

  6. MRI evaluation of residual breast cancer after neoadjuvant chemotherapy: influence of patient, tumor and chemotherapy characteristics on the correlation with pathological response.

    Science.gov (United States)

    Diguisto, Caroline; Ouldamer, Lobna; Arbion, Flavie; Vildé, Anne; Body, Gilles

    2015-01-01

    The aim of this study was to evaluate the correlation between the residual tumor measured on magnetic resonance imaging and pathological results and to assess whether this correlation varies according to patient, tumor or chemotherapy characteristics. The study population included women treated for breast cancer with indication of neoadjuvant chemotherapy in our tertiary breast cancer Unit between January 2008 and December 2011. Factors related to patients, tumor and chemotherapy were studied. Pearson's correlation coefficient between the size of the tumor on MRI and pathological response was calculated for the entire population. It was also calculated according to patient, tumor and chemotherapy characteristics. During the study period, 107 consecutive women were included. The size of residual tumor on the MRI significantly correlated with the size on pathological result with a Pearson correlation coefficient of 0.52 (pcorrelation was stronger for women aged 50 years and older (r=0.64, pcorrelation was stronger for those with triple-negative tumors (r=0.69, p=0.002) but weaker for those with tumors with a ductal carcinoma in situ component (r =0.18, p=0.42). The size of breast cancer obtained by MRI is significantly correlated to the pathological size of the tumor. This correlation was stronger among women aged 50 years and more, among post-menopausal women, and among women who had triple-negative tumors. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Role of Erbin in ErbB2-dependent breast tumor growth

    Science.gov (United States)

    Tao, Yanmei; Shen, Chengyong; Luo, Shiwen; Traoré, Wilfried; Marchetto, Sylvie; Santoni, Marie-Josée; Xu, Linlin; Wu, Biao; Shi, Chao; Mei, Jinghong; Bates, Ryan; Liu, Xihui; Zhao, Kai; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2014-01-01

    ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression. PMID:25288731

  8. A review of biomechanically informed breast image registration

    International Nuclear Information System (INIS)

    Hipwell, John H; Vavourakis, Vasileios; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J; Han, Lianghao

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. (topical review)

  9. Relationship between morphological features and kinetic patterns of enhancement of the dynamic breast magnetic resonance imaging and clinico-pathological and biological factors in invasive breast cancer

    International Nuclear Information System (INIS)

    Fernández-Guinea, Oscar; Andicoechea, Alejandro; González, Luis O; González-Reyes, Salomé; Merino, Antonio M; Hernández, Luis C; López-Muñiz, Alfonso; García-Pravia, Paz; Vizoso, Francisco J

    2010-01-01

    To investigate the relationship between the magnetic resonance imaging (MRI) features of breast cancer and its clinicopathological and biological factors. Dynamic MRI parameters of 68 invasive breast carcinomas were investigated. We also analyzed microvessel density (MVD), estrogen and progesterone receptor status, and expression of p53, HER2, ki67, VEGFR-1 and 2. Homogeneous enhancement was significantly associated with smaller tumor size (T1: < 2 cm) (p = 0.015). Tumors with irregular or spiculated margins had a significantly higher MVD than tumors with smooth margins (p = 0.038). Tumors showing a maximum enhancement peak at two minutes, or longer, after injecting the contrast, had a significantly higher MVD count than those which reached this point sooner (p = 0.012). The percentage of tumors with vascular invasion or high mitotic index was significantly higher among those showing a low percentage (≤ 150%) of maximum enhancement before two minutes than among those ones showing a high percentage (>150%) of enhancement rate (p = 0.016 and p = 0.03, respectively). However, there was a significant and positive association between the mitotic index and the peak of maximum intensity (p = 0.036). Peritumor inflammation was significantly associated with washout curve type III (p = 0.042). Variations in the early phase of dynamic MRI seem to be associated with parameters indicatives of tumor aggressiveness in breast cancer

  10. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    Science.gov (United States)

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  11. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    International Nuclear Information System (INIS)

    Chang, Ruey-Feng; Hou, Yu-Ling; Lo, Chung-Ming; Huang, Chiun-Sheng; Chen, Jeon-Hor; Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung

    2015-01-01

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future

  12. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruey-Feng [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan and Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hou, Yu-Ling [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (China); Lo, Chung-Ming [Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chiun-Sheng [Department of Surgery, National Taiwan University Hospital, Taipei 10617, Taiwan (China); Chen, Jeon-Hor [Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan and Tu and Yuen Center for Functional Onco-Imaging and Department of Radiological Science, University of California, Irvine, California 92697 (United States); Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-08-15

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future.

  13. Decreased background parenchymal enhancement of the contralateral breast after two cycles of neoadjuvant chemotherapy is associated with tumor response in HER2-positive breast cancer.

    Science.gov (United States)

    You, Chao; Gu, Yajia; Peng, Wen; Li, Jianwei; Shen, Xuxia; Liu, Guangyu; Peng, Weijun

    2018-07-01

    Background Several recent studies have focused on the association between background parenchymal enhancement (BPE) and tumor response to neoadjuvant chemotherapy (NAC), but early prediction of tumor response based on BPE has yet not been investigated. Purpose To retrospectively investigate whether changes in the BPE of the contralateral breast following NAC could help predict tumor response in early stage HER2-positive breast cancer. Material and Methods Data from 71 patients who were diagnosed with unilateral HER2 positive breast cancer and then underwent NAC with trastuzumab before surgery were analyzed retrospectively. Two experienced radiologists independently categorized the patients' levels of BPE of the contralateral breast into four categories (1 = minimal, 2 = mild, 3 = moderate, 4 = marked) at baseline and after the second cycle of NAC. After undergoing surgery, 34 patients achieved pathologic complete response (pCR) and 37 patients had residual disease (non-pCR). The association between BPE and histopathologic tumor response was analyzed. Result The level of BPE was higher in premenopausal than post-menopausal women both at baseline and after the second cycle of NAC ( P < 0.005). A significant reduction in BPE ( P < 0.001) was observed after the second NAC cycle; however, a more obvious decrease in BPE was identified in premenopausal relative to post-menopausal women ( P = 0.041). No significant association was identified between pCR and baseline BPE ( P = 0.287). However, after the second NAC cycle, decreased BPE was significantly associated with pCR ( P = 0.003). Conclusion For HER2-positive patients, changes in BPE may serve as an additional imaging biomarker of treatment response at an early stage.

  14. Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1-T2N0 breast cancer.

    Science.gov (United States)

    Bae, Min Sun; Shin, Sung Ui; Song, Sung Eun; Ryu, Han Suk; Han, Wonshik; Moon, Woo Kyung

    2018-04-01

    Background Most patients with early-stage breast cancer have clinically negative lymph nodes (LNs). However, 15-20% of patients have axillary nodal metastasis based on the sentinel LN biopsy. Purpose To assess whether ultrasound (US) features of a primary tumor are associated with axillary LN metastasis in patients with clinical T1-T2N0 breast cancer. Material and Methods This retrospective study included 138 consecutive patients (median age = 51 years; age range = 27-78 years) who underwent breast surgery with axillary LN evaluation for clinically node-negative T1-T2 breast cancer. Three radiologists blinded to the axillary surgery results independently reviewed the US images. Tumor distance from the skin and distance from the nipple were determined based on the US report. Association between US features of a breast tumor and axillary LN metastasis was assessed using a multivariate logistic regression model after controlling for clinicopathologic variables. Results Of the 138 patients, 28 (20.3%) had nodal metastasis. At univariate analysis, tumor distance from the skin ( P = 0.019), tumor size on US ( P = 0.023), calcifications ( P = 0.036), architectural distortion ( P = 0.001), and lymphovascular invasion ( P = 0.049) were associated with axillary LN metastasis. At multivariate analysis, shorter skin-to-tumor distance (odds ratio [OR] = 4.15; 95% confidence interval [CI] = 1.01-16.19; P = 0.040) and masses with associated architectural distortion (OR = 3.80; 95% CI = 1.57-9.19; P = 0.003) were independent predictors of axillary LN metastasis. Conclusion US features of breast cancer can be promising factors associated with axillary LN metastasis in patients with clinically node-negative early-stage breast cancer.

  15. MRI findings and correlation with pathological features in breast phyllodes tumor

    International Nuclear Information System (INIS)

    Shen Xigang; Tan Hongna; Peng Weijun; Li Ruimin; Gu Yajia; Huang Dan; Mao Jian; Zhou Liangping

    2011-01-01

    Objective: To study the MR Imaging features of breast phyllodes tumor (PT), and to correlate it with pathological results. Method: Clinical and MRI findings were retrospectively reviewed in twenty-seven women with 28 PTs lesions confirmed by surgical pathology. Statistical analyses were one-way ANOVA for size analysis, Fisher exact test for analysis of MR appearances and Spearman correlation to study the relationship between MRI findings and BI-RADS categories. Results: (1) The histologic findings were benign, borderline and malignant PTs in 14.3% (4/28), 53.6% (15/28) and 32.1% (9/28) of lesions, respectively. (2) The mean maximum-diameter were (6.4±3.9) cm, (5.7±2.2) cm in borderline type and (4.8±1.8) cm in benign type respectively. The results showed differences in lesion's size among the three type (F= 287.541, P=0.000), especially between malignant and benign type (P=0.033). (3) Internal non-enhanced septation and silt-like changes on enhanced images, as well as time-signal curve on MRI correlated significantly with the histological grade (P<0.05). (4) If the category BI-RADS ≥ 4a was considered to be a suspicious sign for malignant lesion, the diagnostic accuracy of MRI would be 96.4% (27/28), and the BI-RADS category of the MRI could reflect the PT's histological grade with a low correlation coefficient (r=0.382, P=0.045). Conclusion: The findings of PT on MRI have some characteristics, with tumor size and several MRI features correlating with the histological grade of breast PT. (authors)

  16. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer

    DEFF Research Database (Denmark)

    Tvedskov, Tove F; Jensen, Maj-Britt; Kroman, Niels

    2012-01-01

    Isolated tumor cells (ITC) are more common in the sentinel node (SN) after needle biopsy of a breast cancer, indicating iatrogenic displacement of tumor cells. We here investigate whether similar iatrogenic displacement occurs after surgical excision of a breast tumor. We compared the incidence...

  17. Canonical and Non-Canonical NF-κB Signaling Promotes Breast Cancer Tumor-Initiating Cells

    Science.gov (United States)

    Kendellen, Megan F.; Bradford, Jennifer W.; Lawrence, Cortney L.; Clark, Kelly S.; Baldwin, Albert S.

    2014-01-01

    Tumor-initiating cells (TICs) are a sub-population of cells that exhibit a robust ability to self-renew and contribute to the formation of primary tumors, the relapse of previously treated tumors, and the development of metastases. TICs have been identified in various tumors, including those of the breast, and are particularly enriched in the basal-like and claudin-low subtypes of breast cancer. The signaling pathways that contribute to the function and maintenance of TICs are under intense study. We explored the potential involvement of the NF-κB family of transcription factors in TICs in cell lines that are representative of basal-like and claudin-low breast cancer. NF-κB was found to be activated in breast cancer cells that form tumorspheres efficiently. Moreover, both canonical and non-canonical NF-κB signaling is required for these cells to self-renew in vitro and to form xenograft tumors efficiently in vivo using limiting dilutions of cells. Consistent with this, canonical and non-canonical NF-κB signaling is activated in TICs isolated from breast cancer cell lines. Experimental results indicate that NF-κB promotes the function of TICs by stimulating epithelial-to-mesenchymal transition (EMT) and by upregulating the expression of the inflammatory cytokines IL-1β and IL-6. The results suggest the use of NF-κB inhibitors for clinical therapy of certain breast cancers. PMID:23474754

  18. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    International Nuclear Information System (INIS)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto; Cleary, Margot P.; Gonzalez-Perez, Ruben R.; Torroella-Kouri, Marta

    2015-01-01

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity

  19. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Cleary, Margot P. [Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gonzalez-Perez, Ruben R. [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314 (United States); Torroella-Kouri, Marta, E-mail: mtorroella@med.miami.edu [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 (United States)

    2015-01-15

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  20. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire.

    Science.gov (United States)

    Beausang, John F; Wheeler, Amanda J; Chan, Natalie H; Hanft, Violet R; Dirbas, Frederick M; Jeffrey, Stefanie S; Quake, Stephen R

    2017-11-28

    Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment. Copyright © 2017 the Author(s). Published by PNAS.

  1. Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Breast cancers have been shown to elicit tumor-specific immune responses. As in other types of cancer, the antitumor immune response fails to contain breast tumor growth, and a reduction in both the quantity and cytotoxic effectiveness of tumor-infiltrating lymphocytes (TILs) is associated with a poorer prognosis. Fas ligand (FasL) induces apoptotic death of activated lymphocytes that express its cell surface receptor, FasR (CD95\\/APO-1). FasL-mediated apoptosis of activated lymphocytes contributes to normal immune downregulation through its roles in tolerance acquisition, immune response termination, and maintenance of immune privilege in the eye, testis, and fetus. In this report, we demonstrate that breast carcinomas express FasL. Using in situ hybridization and immunohistochemistry, we show that breast tumors constitutively express FasL at both the mRNA and protein levels, respectively. FasL expression is prevalent in breast cancer: 100% of breast tumors (17 of 17) were found to express FasL, and expression occurred over more than 50% of the tumor area in all cases. By immunohistochemistry, FasR was found to be coexpressed with FasL throughout large areas of all the breast tumors. This suggests that the tumor cells had acquired intracellular defects in FasL-mediated apoptotic signaling. FasL and FasR expression were independent of tumor type or infiltrative capacity. FasL expressed by tumor cells has previously been shown to kill Fas-sensitive lymphoid cells in vitro and has been associated with apoptosis of TILs in vivo. We conclude that mammary carcinomas express FasL in vivo as a potential inhibitor of the antitumor immune response.

  2. Sentinel node biopsy and concomitant probe-guided tumor excision of nonpalpable breast cancer.

    Science.gov (United States)

    van Rijk, Maartje C; Tanis, Pieter J; Nieweg, Omgo E; Loo, Claudette E; Olmos, Renato A Valdés; Oldenburg, Hester S A; Rutgers, Emiel J Th; Hoefnagel, Cornelis A; Kroon, Bin B R

    2007-02-01

    Preliminary data have shown encouraging results of a single intratumoral radiopharmaceutical injection that enables both sentinel node biopsy and probe-guided excision of the primary tumor in patients with nonpalpable breast cancer. The aim of the study was to evaluate this approach in a large group of patients. Lymphoscintigraphy was performed in 368 patients with nonpalpable breast cancer after intratumoral injection of (99m)Tc-nanocolloid (.2 mL, 123 MBq, 3.3 mCi) guided by ultrasound or stereotaxis. The sentinel node was pursued with the aid of vital blue dye (1.0 mL, intratumoral) and a gamma ray detection probe. In case of breast-conserving surgery, the probe was used to guide the excision. At least one sentinel node could be identified intraoperatively in 357 patients (97%), of whom 69 had involved nodes (19%). Age over 60 years was associated with less frequent nonaxillary lymphatic drainage and absence of internal mammary chain dissemination. Tumor-free margins were obtained in 262 (89%) of the 293 patients who underwent segmental excision. Re-excision of the primary tumor bed was performed in six patients (2%). During a median follow-up of 22 months, one breast recurrence and one axillary recurrence were observed. Lymphatic mapping and probe-guided tumor excision of nonpalpable breast cancer by intralesional administration of a single dose of (99m)Tc-nanocolloid and blue dye resulted in 97% identification of the sentinel node and in tumor-free margins in 89% of the patients who underwent breast-conserving surgery. Longer follow-up is needed to substantiate the accuracy and safety of this technique.

  3. Evaluating Surveillance Breast Imaging and Biopsy in Older Breast Cancer Survivors

    Directory of Open Access Journals (Sweden)

    Tracy Onega

    2012-01-01

    Full Text Available Background. Patterns of surveillance among breast cancer survivors are not well characterized and lack evidence-based practice guidelines, particularly for imaging modalities other than mammography. We characterized breast imaging and related biopsy longitudinally among breast cancer survivors in relation to women’s characteristics. Methods. Using data from a state-wide (New Hampshire breast cancer screening registry linked to Medicare claims, we examined use of mammography, ultrasound (US, magnetic resonance imaging (MRI, and biopsy among breast cancer survivors. We used generalized estimating equations (GEE to model associations of breast surveillance with women’s characteristics. Results. The proportion of women with mammography was high over the follow-up period (81.5% at 78 months, but use of US or MRI was much lower (8.0%—first follow-up window, 4.7% by 78 months. Biopsy use was consistent throughout surveillance periods (7.4%–9.4%. Surveillance was lower among older women and for those with a higher stage of diagnosis. Primary therapy was significantly associated with greater likelihood of breast surveillance. Conclusions. Breast cancer surveillance patterns for mammography, US, MRI, and related biopsy seem to be associated with age, stage, and treatment, but need a larger evidence-base for clinical recommendations.

  4. Racial and Ethnic Disparity in Symptomatic Breast Cancer Awareness despite a Recent Screen: The Role of Tumor Biology and Mammography Facility Characteristics.

    Science.gov (United States)

    Mortel, Mylove; Rauscher, Garth H; Murphy, Anne Marie; Hoskins, Kent; Warnecke, Richard B

    2015-10-01

    In a racially and ethnically diverse sample of recently diagnosed urban patients with breast cancer, we examined associations of patient, tumor biology, and mammography facility characteristics on the probability of symptomatic discovery of their breast cancer despite a recent prior screening mammogram. In the Breast Cancer Care in Chicago study, self-reports at interview were used to define patients as having a screen-detected breast cancer or having symptomatic awareness despite a recent screening mammogram (SADRS), in the past 1 or 2 years. Patients with symptomatic breast cancer who did not report a recent prior screen were excluded from these analyses. Characteristics associated with more aggressive disease [estrogen receptor (ER)- and progesterone receptor (PR)-negative status and higher tumor grade] were abstracted from medical records. Mammogram facility characteristics that might indicate aspects of screening quality were defined and controlled for in some analyses. SADRS was more common among non-Hispanic black and Hispanic than among non-Hispanic white patients (36% and 42% vs. 25%, respectively, P = 0.0004). SADRS was associated with ER/PR-negative and higher-grade disease. Patients screened at sites that relied on dedicated radiologists and sites that were breast imaging centers of excellence were less likely to report SADRS. Tumor and facility factors together accounted for two thirds of the disparity in SADRS (proportion mediated = 70%, P = 0.02). Facility resources and tumor aggressiveness explain much of the racial/ethnic disparity in symptomatic breast cancer among recently screened patients. A more equitable distribution of high-quality screening would ameliorate but not eliminate this disparity. ©2015 American Association for Cancer Research.

  5. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity

    International Nuclear Information System (INIS)

    Chen Chuang; Li Yan; Peng Jun; Xu Hao; Tang Hongwu; Zhang Zhiling; Pang Daiwen; Xia Heshun; Wu Qiongshui; Zeng Libo; Zhu Xiaobo

    2010-01-01

    Breast cancer (BC) is a heterogeneous tumor, and better understanding of its heterogeneity is essential to improving treatment effect. Quantum dot (QD)-based immunofluorescent nanotechnology (QD-IHC) for molecular pathology has potential advantages in delineating tumor heterogeneity. This potential is explored in this paper by QD-IHC imaging of HER2 and ER. BC heterogeneity can be displayed more clearly and sensitively by QD-IHC than conventional IHC in BC tissue microarrays. Furthermore, the simultaneous imaging of ER and HER2 might help understand their interactions during the process of evolution of heterogeneous BC.

  6. Breast Cancer Screening in Denmark: A Cohort Study of Tumor Size and Overdiagnosis.

    Science.gov (United States)

    Jørgensen, Karsten Juhl; Gøtzsche, Peter C; Kalager, Mette; Zahl, Per-Henrik

    2017-03-07

    Effective breast cancer screening should detect early-stage cancer and prevent advanced disease. To assess the association between screening and the size of detected tumors and to estimate overdiagnosis (detection of tumors that would not become clinically relevant). Cohort study. Denmark from 1980 to 2010. Women aged 35 to 84 years. Screening programs offering biennial mammography for women aged 50 to 69 years beginning in different regions at different times. Trends in the incidence of advanced (>20 mm) and nonadvanced (≤20 mm) breast cancer tumors in screened and nonscreened women were measured. Two approaches were used to estimate the amount of overdiagnosis: comparing the incidence of advanced and nonadvanced tumors among women aged 50 to 84 years in screening and nonscreening areas; and comparing the incidence for nonadvanced tumors among women aged 35 to 49, 50 to 69, and 70 to 84 years in screening and nonscreening areas. Screening was not associated with lower incidence of advanced tumors. The incidence of nonadvanced tumors increased in the screening versus prescreening periods (incidence rate ratio, 1.49 [95% CI, 1.43 to 1.54]). The first estimation approach found that 271 invasive breast cancer tumors and 179 ductal carcinoma in situ (DCIS) lesions were overdiagnosed in 2010 (overdiagnosis rate of 24.4% [including DCIS] and 14.7% [excluding DCIS]). The second approach, which accounted for regional differences in women younger than the screening age, found that 711 invasive tumors and 180 cases of DCIS were overdiagnosed in 2010 (overdiagnosis rate of 48.3% [including DCIS] and 38.6% [excluding DCIS]). Regional differences complicate interpretation. Breast cancer screening was not associated with a reduction in the incidence of advanced cancer. It is likely that 1 in every 3 invasive tumors and cases of DCIS diagnosed in women offered screening represent overdiagnosis (incidence increase of 48.3%). None.

  7. Imaging of pancreatic tumors

    International Nuclear Information System (INIS)

    Brambs, Hans-Juergen; Juchems, Markus

    2010-01-01

    Ductal adenocarcinoma is the most frequent solid tumor of the pancreas. This tumor has distinct features including early obstruction of the pancreatic duct, diminished enhancement after administration of contrast material due to desmoplastic growth, high propensity to infiltrate adjacent structures and to metastasize into the liver and the peritoneum. Hormone active endocrine tumors cause specific clinical symptoms. Imaging is aimed at localization of these hypervascular tumors. Non hormone active tumors are most frequently malignant and demonstrate very varying features. Cystic pancreatic tumors are increasingly detected by means of cross sectional imaging. Exact classification can be achieved with knowledge of the macropathology and considering clinical presentation as well as age and gender of the patients. (orig.)

  8. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Malgorzata Banys

    2014-01-01

    Full Text Available Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  9. MR images of rupture and leakage of breast implants

    International Nuclear Information System (INIS)

    Fang Ling; Liu Pengcheng; Huang Rong; Hu Huaxin; Chen Zaizhong; Du Duanming; Liu Hanqiao; Feng Fei

    2002-01-01

    Objective: To investigate the diagnostic value of magnetic resonance imaging in detecting rupture and leakage of breast implants. Methods: Seventeen cases with breast implants were imaged by MR scanner. 1 normal silicone breast implant outside the body was scanned by MR as an consultative standard. MR images of silicone implants and polypropylene acyl amine implants were classified and analyzed. Results: In 7 cases, 12 single lumen silicone implants were intact, among them 8 were silicone gel-filled implants, 4 were physiological saline-filled implants. 2 physiological saline-filled implants ruptured, among them 1 belonged to intracapsular silicone implant rupture with subsided silicone gel capsule which presented as long T 1 signal and short T 2 signal on MR images; The other belonged to extracapsular silicone implant rapture with physiological saline granule outside breast on MR images. 20 breast implants in 10 cases were injected by polypropylene acyl amine, among them 2 breast implants were intact, 16 breast implants ruptured completely with pieces and nodes of long T 1 signal and long T 2 signal on MR images, 14 of 16 also presented polypropylene acyl amine granule outside breast; 2 breast implants splited inside with linguine sign. Conclusion: The magnetic resonance imaging can make clear the type and the seat of breast implants, the type of rupture of breast implants, and the distribution of leakage material. Therefore magnetic resonance imaging can be an effective guidance for clinical operation and can be an consultative standard for follow-up

  10. Tumor-infiltrating lymphocytes and ductal carcinoma in situ of the breast: friends or foes?

    Science.gov (United States)

    Agahozo, Marie Colombe; Hammerl, Dora; Debets, Reno; Kok, Marleen; van Deurzen, Carolien H M

    2018-02-20

    In the past three decades, the detection rate of ductal carcinoma in situ of the breast has dramatically increased due to breast screening programs. As a consequence, about 20% of all breast cancer cases are detected in this early in situ stage. Some ductal carcinoma in situ cases will progress to invasive breast cancer, while other cases are likely to have an indolent biological behavior. The presence of tumor-infiltrating lymphocytes is seen as a promising prognostic and predictive marker in invasive breast cancer, mainly in HER2-positive and triple-negative subtypes. Here, we summarize the current understanding regarding immune infiltrates in invasive breast cancer and highlight recent observations regarding the presence and potential clinical significance of such immune infiltrates in patients with ductal carcinoma in situ. The presence of tumor-infiltrating lymphocytes, their numbers, composition, and potential relationship with genomic status will be discussed. Finally, we propose that a combination of genetic and immune markers may better stratify ductal carcinoma in situ subtypes with respect to tumor evolution.

  11. Ultrasonic elastography features of phyllodes tumors of the breast: a clinical research.

    Directory of Open Access Journals (Sweden)

    Lu-Jing Li

    Full Text Available The purpose of this study was to analyze the ultrasonic elastography features of phyllodes tumors of the breast comparing with fibroadenomas. A retrospective database was queried for the patients diagnosed as phyllodes tumors and fibroadenomas at Sun Yat-sen Memorial Hospital from January 2008 to August 2012. Three hundred and fifty lesions from 323 consecutive patients were included in the study. All the cases were examined by conventional ultrasonography and ultrasound elastography. Ultrasound elastography was used to calculate strain ratio of the lesions with bilateral breast tissue at the same depth as reference. There were 36 phyllodes tumors (27 benign, 8 borderline, 1 malignant and 314 fibroadenomas (158 the pericanalicular type, 103 the intracanalicular type, 53 other special types. The strain ratio for phyllodes tumors (3.19 ± 2.33 was significantly higher than for fibroadenomas (1.69 ± 0.88 (p<0.05. The Spearman(.s correlation coefficient between strain ratio of ultrasound elastography and pathological groups was significant, with a value of 0.17 (p<0.05. Ultrasound elastography could provide additional information to differentiate phyllodes tumors from fibroadenoma in breast.

  12. The correlation of background parenchymal enhancement in the contralateral breast with patient and tumor characteristics of MRI-screen detected breast cancers.

    Science.gov (United States)

    Vreemann, Suzan; Gubern-Mérida, Albert; Borelli, Cristina; Bult, Peter; Karssemeijer, Nico; Mann, Ritse M

    2018-01-01

    Higher background parenchymal enhancement (BPE) could be used for stratification of MRI screening programs since it might be related to a higher breast cancer risk. Therefore, the purpose of this study is to correlate BPE to patient and tumor characteristics in women with unilateral MRI-screen detected breast cancer who participated in an intermediate and high risk screening program. As BPE in the affected breast may be difficult to discern from enhancing cancer, we assumed that BPE in the contralateral breast is a representative measure for BPE in women with unilateral breast cancer. This retrospective study was approved by our local institutional board and a waiver for consent was granted. MR-examinations of women with unilateral breast cancers screen-detected on breast MRI were evaluated by two readers. BPE in the contralateral breast was rated according to BI-RADS. Univariate analyses were performed to study associations. Observer variability was computed. Analysis included 77 breast cancers in 76 patients (age: 48±9.8 years), including 62 invasive and 15 pure ductal carcinoma in-situ cases. A negative association between BPE and tumor grade (p≤0.016) and a positive association with progesterone status (p≤0.021) was found. The correlation was stronger when only considering invasive disease. Inter-reader agreement was substantial. Lower BPE in the contralateral breast in women with unilateral breast cancer might be associated to higher tumor grade and progesterone receptor negativity. Great care should be taken using BPE for stratification of patients to tailored screening programs.

  13. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  14. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging

    Science.gov (United States)

    Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura

    2018-01-01

    Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.

  15. Anti-tumor effects of 125I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice

    International Nuclear Information System (INIS)

    Xiao Zhongdi; Liang Chunlin; Zhang Guoli; Jing Yue; Zhang Yucheng; Gai Baodong

    2011-01-01

    Objective: To study the anti-tumor effects of 125 I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice and clarify their anti-tumor mechanisms. Methods 120 nude mice transplantated with human breast cancer cells MCF-7 were randomly divided into 3 groups (n=40): 125 I radioactive particles implanted group, non-radioactive particles implanted group and non-particles implanted group. The articles were implanted into mice according to Pairs system principle. The expressions of Fas mRNA and protein and the activaties of caspase-3 and caspase-8 enzyme were detected by RT-PCR and Western blotting. The changes of cell cycle were detected by flow cytometry. Results: Compared with non-radioactive particles implanted group and non-particles implanted group, the size of cancer tissues in 125 I radioactive particles implanted group was reduced significantly (P 0 /G 1 phase was significantly increased (P 125 I radioactive particles into transplantated tumor model of human breast cancer cells can kill tumor cells, inhibit the growth cycle of tumor cells and induce the apoptosis of tumor cells in nude mice. (authors)

  16. In vivo assessment of 111In-labeled hematoporphyrin derivative in breast tumor-bearing animals

    International Nuclear Information System (INIS)

    Wong, D.W.; Mandal, Ashis; Brown, Jerry; Reese, I.C.; Siegler, Richard; Hyman, Shigeyo

    1989-01-01

    The biological behavior of 111 In-labeled HPD has been investigated in tumor-bearing animals. Mice mammary adenocarcinomas and 7,12-dimethylbenz(a)anthracine induced breast tumors in Sprague-Dawley female rats were clearly visualized by 111 In-HPD nuclear scintigraphy. Optimal scans were obtained after a 48 h delay. In normal and tumor-bearing animals, the highest uptake of 111 In-HPD 72 h post-injection was found in the liver, the spleen and the kidneys. Depending on the size and the extent of necrosis, the uptake of 111 In-HPD by malignant breast tumors varied from 2.5% injected dose (ID) in mice to 1% ID in rats. Benign breast tumor uptake of 111 In-HPD was less than 1% ID. No significant amount of the radiopharmaceutical was found in pulmonary abscesses and abdominal cysts. Scintigrams of these infectious or inflammatory lesions were normal. Malignant tumor to blood, heart and lung ratios averaged 50:1, 10:1 and 3:1 respectively. Tumor to brain ratio ranged from 72 to 444:1. (author)

  17. Adenosis tumor of the breast: a case report

    International Nuclear Information System (INIS)

    Yoon, Pyeong Ho; Oh, Ki Keun; Jung, Mi Kyeong; Jung, Woo Hee; Shim, Jung Yeon

    1995-01-01

    Adenosis tumor is a rare tumor of the breast and primarily consists of adenosis. Authors report a case of surgically proved adenosis tumor in a 31-year-old woman. Mammogram showed a lobulated, well-circumscribed mass with several surrounding radiolucent halos. In the center of the mass several linear radiolucent densities were seen with the appearance of a conglomerated well-circumscribed mass such as fibroadenoma. These linear radiolucent densities were consistent with the fat between the fibrous sclerosis in pathologic specimen. Ultrasonogram showed a well-circumscribed mass with homogeneous low echogenicity, partial posterior enhancement, and bilateral acoustic shadowings

  18. Adenosis tumor of the breast: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Pyeong Ho; Oh, Ki Keun; Jung, Mi Kyeong; Jung, Woo Hee; Shim, Jung Yeon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1995-05-15

    Adenosis tumor is a rare tumor of the breast and primarily consists of adenosis. Authors report a case of surgically proved adenosis tumor in a 31-year-old woman. Mammogram showed a lobulated, well-circumscribed mass with several surrounding radiolucent halos. In the center of the mass several linear radiolucent densities were seen with the appearance of a conglomerated well-circumscribed mass such as fibroadenoma. These linear radiolucent densities were consistent with the fat between the fibrous sclerosis in pathologic specimen. Ultrasonogram showed a well-circumscribed mass with homogeneous low echogenicity, partial posterior enhancement, and bilateral acoustic shadowings.

  19. Metabolic imaging for breast cancer detection and treatment: a role for mitochondrial Complex I function

    Science.gov (United States)

    Ramanujan, V. Krishnan

    2018-02-01

    Cancer cells are known to display a variety of metabolic reprogramming strategies to fulfill their own growth and proliferative agenda. With the advent of high resolution imaging strategies, metabolomics techniques etc., there is an increasing appreciation of critical role that tumor cell metabolism plays in the overall breast cancer (BC) growth. A recent study from our laboratory demonstrated that the development of invasive cancers could be causally connected to deficits in mitochondrial function. Using this study as a rationale, we hypothesize that the widely accepted multistep tumor growth model might have a strong metabolic component as well. In this study, we explore the possibility of targeting mitochondrial Complex I enzyme system for not only metabolic detection of cancer-associated redox changes but also for modulating breast cancer cell growth characteristics. As a proof-of-principle, we demonstrate two approaches (pharmacological and genetic) for modulating mitochondrial Complex I function so as to achieve breast cancer control.

  20. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    Science.gov (United States)

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  1. Molecular subtypes and imaging phenotypes of breast cancer

    Directory of Open Access Journals (Sweden)

    Nariya Cho

    2016-10-01

    Full Text Available During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2, and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics.

  2. Molecular subtypes and imaging phenotypes of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nariya [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-08-15

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics.

  3. Molecular subtypes and imaging phenotypes of breast cancer

    International Nuclear Information System (INIS)

    Cho, Nariya

    2016-01-01

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics

  4. Breast Imaging: The Face of Imaging 3.0.

    Science.gov (United States)

    Mayo, Ray Cody; Parikh, Jay R

    2016-08-01

    In preparation for impending changes to the health care delivery and reimbursement models, the ACR has provided a roadmap for success via the Imaging 3.0 (®)platform. The authors illustrate how the field of breast imaging demonstrates the following Imaging 3.0 concepts: value, patient-centered care, clinical integration, structured reporting, outcome metrics, and radiology's role in the accountable care organization environment. Much of breast imaging's success may be adapted and adopted by other fields in radiology to ensure that all radiologists become more visible and provide the value sought by patients and payers. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Improved tumor imaging with radiolabeled monoclonal antibodies by plasma clearance with anti-antibody column

    International Nuclear Information System (INIS)

    Lear, J.L.; Kasliwal, R.; Feyerabend, A.; Bunn, P.; Dienhart, D.G.; Johnson, T.K.; Glenn, S.D.; Maddock, S.W.

    1990-01-01

    This paper reports on imaging of tumors with use of radiolabeled monoclonal antibodies (MoAs) that often hindered by high levels of background activity. The ability to lower blood pool MoA activity at a selected time after injection offers a potential method to reduce background while preserving tumor uptake. Toward this goal, the authors investigated the process of clearing MoA from patients' plasma with use of an anti-antibody column. One patient with breast cancer and four with lung cancer were given intravenous injection of 5 mCi of indium-111 KC4 (Coulter Immunology) and imaged at 20, 24, 48, and 72 hours with use of a whole-body canner coupled to a computer. Plasma clearance was performed between the 20- and 24-hour images with use of a COBEIA system. Images were inspected visually and analyzed by region-of-interest quantification

  6. Breast Cancer in Men. Case report

    Directory of Open Access Journals (Sweden)

    Dianarelys Villafuerte Delgado

    2016-09-01

    Full Text Available Breast cancer in men is a rare and infrequent disease, which occurs in a very small proportion with respect to different types of cancers. Such entity is the 0.2 to 1.5 % of all malignant tumors in men. Imaging studies have a very precise diagnostic value in these entities. It is presented the case of a male patient with apparent healthy history who comes the consultation due to palpating a "ball" in the left breast, this patient went to the Imaging Department for conducting a mammography as well performing a study with oblique craniocaudal views and a middle lateral of both nipples. Breast ultrasonography showed a nodular, homogeneous image. It was made a referral to multidiscipline breast consultation with surgical possibilities for the tumor. Due to the infrequent appearance of this entity in men, it is decided to make this case report.

  7. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    Science.gov (United States)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  8. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    International Nuclear Information System (INIS)

    Ellsworth, R.E.; Field, L.A.; Kane, J.L.; Love, B.; Hooke, J.A.; Shriver, C.D.

    2011-01-01

    Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (n=41) and positive (n=35) lymph node status matched for possible confounding factors were subjected to laser micro dissection and gene expression data generated. Although ANOVA analysis (P 1.5) revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis

  9. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Science.gov (United States)

    Ellsworth, Rachel E.; Field, Lori A.; Love, Brad; Kane, Jennifer L.; Hooke, Jeffrey A.; Shriver, Craig D.

    2011-01-01

    Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (n = 41) and positive (n = 35) lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (P 1.5) revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis. PMID:22295210

  10. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Directory of Open Access Journals (Sweden)

    Rachel E. Ellsworth

    2011-01-01

    Full Text Available Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (=41 and positive (=35 lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (1.5 revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis.

  11. Tryptophan metabolism in breast cancers: molecular imaging and immunohistochemistry studies

    International Nuclear Information System (INIS)

    Juhász, Csaba; Nahleh, Zeina; Zitron, Ian; Chugani, Diane C.; Janabi, Majid Z.; Bandyopadhyay, Sudeshna; Ali-Fehmi, Rouba; Mangner, Thomas J.; Chakraborty, Pulak K.; Mittal, Sandeep; Muzik, Otto

    2012-01-01

    Introduction: Tryptophan oxidation via the kynurenine pathway is an important mechanism of tumoral immunoresistance. Increased tryptophan metabolism via the serotonin pathway has been linked to malignant progression in breast cancer. In this study, we combined quantitative positron emission tomography (PET) with tumor immunohistochemistry to analyze tryptophan transport and metabolism in breast cancer. Methods: Dynamic α-[ 11 C]methyl-L-tryptophan (AMT) PET was performed in nine women with stage II–IV breast cancer. PET tracer kinetic modeling was performed in all tumors. Expression of L-type amino acid transporter 1 (LAT1), indoleamine 2,3-dioxygenase (IDO; the initial and rate-limiting enzyme of the kynurenine pathway) and tryptophan hydroxylase 1 (TPH1; the initial enzyme of the serotonin pathway) was assessed by immunostaining of resected tumor specimens. Results: Tumor AMT uptake peaked at 5–20 min postinjection in seven tumors; the other two cases showed protracted tracer accumulation. Tumor standardized uptake values (SUVs) varied widely (2.6–9.8) and showed a strong positive correlation with volume of distribution values derived from kinetic analysis (P < .01). Invasive ductal carcinomas (n = 6) showed particularly high AMT SUVs (range, 4.7–9.8). Moderate to strong immunostaining for LAT1, IDO and TPH1 was detected in most tumor cells. Conclusions: Breast cancers show differential tryptophan kinetics on dynamic PET. SUVs measured 5–20 min postinjection reflect reasonably the tracer's volume of distribution. Further studies are warranted to determine if in vivo AMT accumulation in these tumors is related to tryptophan metabolism via the kynurenine and serotonin pathways.

  12. Positron emission tomography imaging of CD105 expression during tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hao [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Yang, Yunan [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Third Military Medical University, Department of Ultrasound, Xinqiao Hospital, Chongqing (China); Zhang, Yin; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Leigh, Bryan R. [TRACON Pharmaceuticals, Inc., San Diego, CA (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin - Madison, Departments of Radiology and Medical Physics, School of Medicine and Public Health, Madison, WI (United States)

    2011-07-15

    Overexpression of CD105 (endoglin) correlates with poor prognosis in many solid tumor types. Tumor microvessel density (MVD) assessed by CD105 staining is the current gold standard for evaluating tumor angiogenesis in the clinic. The goal of this study was to develop a positron emission tomography (PET) tracer for imaging CD105 expression. TRC105, a chimeric anti-CD105 monoclonal antibody, was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with {sup 64}Cu. FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and DOTA-TRC105. PET imaging, biodistribution, blocking, and ex vivo histology studies were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of {sup 64}Cu-DOTA-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and DOTA-TRC105, which was further validated by fluorescence microscopy. {sup 64}Cu labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the 4T1 tumor uptake of the tracer was 8.0 {+-} 0.5, 10.4 {+-} 2.8, and 9.7 {+-} 1.8%ID/g at 4, 24, and 48 h post-injection, respectively (n = 3), higher than most organs at late time points which provided excellent tumor contrast. Biodistribution data as measured by gamma counting were consistent with the PET findings. Blocking experiments, control studies with {sup 64}Cu-DOTA-cetuximab, as well as ex vivo histology all confirmed the in vivo target specificity of {sup 64}Cu-DOTA-TRC105. This is the first successful PET imaging study of CD105 expression. Fast, prominent, persistent, and CD105-specific uptake of the tracer in the 4T1 tumor was observed. Further studies are warranted and currently underway. (orig.)

  13. Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Nilsen, Line; Olsen, Dag Rune; Seierstad, Therese; Fangberget, Anne; Geier, Oliver

    2010-01-01

    Background. For patients with locally advanced breast cancer (LABC) undergoing neoadjuvant chemotherapy (NACT), the European Guidelines for Breast Imaging recommends magnetic resonance imaging (MRI) to be performed before start of NACT, when half of the NACT has been administered and prior to surgery. This is the first study addressing the value of flow-insensitive apparent diffusion coefficients (ADCs) obtained from diffusion-weighted (DW) MRI at the recommended time points for pretreatment prediction and monitoring of treatment response. Materials and methods. Twenty-five LABC patients were included in this prospective study. DW MRI was performed using single-shot spin-echo echo-planar imaging with b-values of 100, 250 and 800 s/mm 2 prior to NACT, after four cycles of NACT and at the conclusion of therapy using a 1.5 T MR scanner. ADC in the breast tumor was calculated from each assessment. The strength of correlation between pretreatment ADC, ADC changes and tumor volume changes were examined using Spearman's rho correlation test. Results. Mean pretreatment ADC was 1.11 ± 0.21 x 10 -3 mm 2 /s. After 4 cycles of NACT, ADC was significantly increased (1.39 ± 0.36 x 10 -3 mm 2 /s; p=0.018). There was no correlation between individual pretreatment breast tumor ADC and MR response measured after four cycles of NACT (p=0.816) or prior to surgery (p=0.620). Conclusion. Pretreatment tumor ADC does not predict treatment response for patients with LABC undergoing NACT. Furthermore, ADC increase observed mid-way in the course of NACT does not correlate with tumor volume changes.

  14. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    Science.gov (United States)

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  15. Evaluation of Tumor Angiogenesis Using Dynamic Enhanced Magnetic Resonance Imaging: Comparison of Plasma Vascular Endothelial Growth Factor, Hemodynamic, and Pharmacokinetic Parameters

    International Nuclear Information System (INIS)

    Ikeda, O.; Nishimura, R.; Miyayama, H.; Yasunaga, T.; Ozaki, Y.; Tuji, A.; Yamashita, Y.

    2004-01-01

    Purpose: To assess whether tumor angiogenesis of breast cancers can be predicted on the basis of dynamic magnetic resonance imaging (MRI). Material and Methods: Seventy-one patients with 71 breast cancers underwent Gd-DTPA enhanced dynamic MRI. Two regions of interest measurements were obtained in the periphery and in the center of the breast cancers. Hemodynamic parameters obtained by dynamic MRI included peak time, contrast enhancement ratio (CE ratio), and washout ratio. The triexponential concentration curve of Gd-DTPA was fitted to a theoretical model based on compartmental analysis. The transfer constant (or permeability surface product per unit volume of compartment 'k') was obtained using this method. Tumor angiogenesis was assessed by plasma vascular endothelial growth factor (P-VEGF). Results: The P-VEGF was positive in 28 of 71 tumors (39%). The CE ratio, washout ratio, and k in the periphery in P-VEGF positive breast cancers (mean 178%, 18%, and 1.5x10 -2 (s-1)) were significantly greater (P -2 (s-1)). The peak time in the periphery in P-VEGF positive breast cancers was more marked than for P-VEGF negative breast cancers, but this difference was not significant. Conclusion: The hemodynamic and pharmacokinetic analysis of MRI provides valuable information about angiogenesis of breast cancers

  16. The usefulness of dynamic magnetic resonance imaging in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Rugala, A.

    2003-01-01

    The purpose of this study was to determine the usefulness of dynamic MR in evaluation of breast cancer and to compare it with conventional mammography and US. The findings in 103 women were analyzed. MR examinations were performed on 0.5 Tesla system, using a dynamic sequence. All images were digitally subtracted. Histologic findings were correlated with preoperative mammographic, US and MR results.The combination of dynamic MR examination with mammography and sonography had the highest sensitivity: 87 from 90 focuses of cancer were correctly diagnosed. Malignant lesions in the standard method were found in 66 cases. Contrast enhanced MR imaging was superior to mammography and US when cancer was located close to the chest wall. Mammography and US were less accurate in identifying multifocal and multicentric cancer, when additional lesions were less then 2 cm. MR results proved to be the most accurate for the tumor size assessment. The combined method can be recommended where the highest possible sensitivity is desired. For correct diagnosis the digital subtraction technique of dynamic study is essential. MR imaging can facilitate the decision on the therapeutic approach in women with breast cancer, especially, when breast conserving therapy is considered. (author)

  17. The Use of Novel PET Tracers to Image Breast Cancer Biologic Processes Such as Proliferation, DNA Damage and Repair, and Angiogenesis.

    Science.gov (United States)

    Kenny, Laura

    2016-02-01

    The balance between proliferation and cell death is pivotal to breast tumor growth. Because of a combination of environmental and genetic factors leading to activation of oncogenes or inactivation of tumor suppressor genes, these processes become deregulated in cancer. PET imaging of proliferation, angiogenesis, and DNA damage and repair offers the opportunity to monitor therapeutic efficacy to detect changes in tumor biology that may precede physical size reduction and simultaneously allows the study of intratumoral and intertumoral heterogeneity.This review examines recent developments in breast cancer imaging using novel probes. The probes discussed here are not licensed for routine use and are at various stages of development ranging from preclinical development (e.g., the DNA repair marker γH2AX) to clinical validation in larger studies (such as the proliferation probe 3'-deoxy-3'-(18)F-fluorothymidine [(18)F-FLT]). In breast cancer, most studies have focused on proliferation imaging mainly based on (18)F-labeled thymidine analogs. Initial studies have been promising; however, the results of larger validation studies are necessary before being incorporated into routine clinical use. Although there are distinct advantages in using process-specific probes, properties such as metabolism need careful consideration, because high background uptake in the liver due to glucuronidation in the case of (18)F-FLT may limit utility for imaging of liver metastases.Targeting angiogenesis has had some success in tumors such as renal cell carcinoma; however, angiogenesis inhibitors have not been particularly successful in the clinical treatment of breast cancer. This could be potentially attributed to patient selection due to the lack of validated predictive and responsive biomarkers; the quest for a successful noninvasive biomarker for angiogenesis could solve this challenge. Finally, we look at cell death including apoptosis and DNA damage and repair probes, the most well

  18. THE CLINICAL SIGNIFICANCE OF 99mTc-MIBI BREAST IMAGING IN THE DIAGNOSIS OF EARLY BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    任长才; 金少津; 邹强; 朱汇庆; 王红鹰; 梁春立

    2001-01-01

    Objective: To find an effective, sensitive, specific and noninvasive diagnostic method of breast cancer. Methods: 109 masses of 102 patients with breast lesions smaller than 2 cm in diameter were divided into three groups to undergo 99mTc-MIBI imaging and compared with the results of pathology examination. 20 cases without breast lesions were selected as control. Abnormal condensation of 99mTc-MIBI in the breast reaching 10% higher than that in the counterpart of the healthy breast was regarded as positive. Results: Of 32 breast cancers, positive imaging appeared in 25. Negative imaging were found in 31 of 38 benign breast lesions. Of 39 occult breast lesions, positive imaging appeared in 6 and 3 of them were breast cancer, 2 of 3 patients with slightly increased 99mTc-MIBI imaging threshold were breast cancer also. No positive imaging was found in the control group. The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value of 99mTc-MIBI was 88.4%, 89.2%, 88.0%, 75.0% and 95.3%, respectively. Conclusion: 99mTc-MIBI imaging had higher sensitivity and accuracy in the diagnosis of breast cancer and differentiation between benign and malignant breast lesions. It could provide useful information for the diagnosis of clinically suspected breast cancer.

  19. Oestrogen receptors in tumors of breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Levin, J; Kay, G; Da Fonseca, M [University of the Witwatersrand, Johannesburg (South Africa). Department of Nuclear Medicine; Lange, M [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Surgery; De Moor, N G [University of the Witwatersrand, Johannesburg (South Africa). Department of Radiation Therapy; Savage, N [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiological Chemistry

    1978-04-15

    Oestrogen receptors were measured in the cytoplasmic fraction of tumors from patients with breast cancer. Receptors were detected in 48% of patients, and 52% showed no receptors. A follow-up study of a small group of patients on hormone therapy is reported.

  20. Imaging findings of sacral tumors

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Hong, Sung Hwan; Choi, Ja Young; Koh, Sung Hye; Chung, Hye Won; Choi, Jung Ah; Kang, Heung Sik

    2003-01-01

    The various pathologic conditions detected at CT and MRI and subsumed by the term 'sacral tumor' include primary bone tumors, sacral canal tumors and metastases. Among these, metastases are much more common than primary bone tumors, of which chordoma is the most common. Although the imaging findings of sacral tumors are nonspecific, a patient's age and sex, and specific findings such as calcification or fluid-fluid levels, can help radiologists in their differential diagnosis. We describe the imaging findings of primary sacral tumors, emphasizing the MRI findings

  1. Usefulness of breast MRI for diagnosing an extensive intraductal component of breast cancer: comparison with mammography and ultrasonography

    International Nuclear Information System (INIS)

    Kim, Tae Hee; Kang, Doo Kyung; Jung, Yong Sik; Yim, Hyun Ee

    2006-01-01

    An extensive intraductal component of breast cancer is a principal risk factor for local recurrence, and this is difficult to diagnose with performing only mammography. We investigated the usefulness of breast MRI for evaluating an extensive intraductal component of breast cancer, and we compared this modality with mammography and ultrasonography (US). From March 2003 to July 2004, 90 patients underwent breast MRI among all the patients who were suffering with breast cancer and for whom and EIC was ultimately revealed to be present or not. A total 83 patients with stage I and II breast cancer were finally included in this study. EIC positivity was defined according to the imaging data as follows: 1) microcalcifications beyond the tumor shadow or malignant microcalcifications without a tumor mass on mammography, 2) tubular hypoechoic structures adjacent to the tumor or architectural distortion with calcifications beyond the tumor on US, and 3) linear or ductal enhancement, segmental or regional clumped enhancement, and spotty nodular or reticular enhancement adjacent to the tumor on MRI. EIC was present in 41 patients and this finding was negative in 42 patients. The results were then compared those results from mammography and US. The sensitivities of detecting EIC by mammography, US and MRI were 48.6%, 67.5% and 80.5%, respectively, and the corresponding specificities were 92.3%, 73.2% and 69.0%, respectively. In the cases that were suspected to be EIC positive on more than two imaging modality, the positive predictive value (PPV) was 78.1%. In cases that were suspected of being EIC positive on just one imaging modality, the negative predictive value (NPV) was 75.0%. Breast MRI provides good information about an EIC of breast cancer and it is a more sensitive study than mammography and US, yet the specificity for the detection of EIC is highest on mammography. A combined evaluation by mammography, US and MRI is the most accurate way to diagnose an EIC of breast

  2. Analysis of DCE-MRI features in tumor and the surrounding stroma for prediction of Ki-67 proliferation status in breast cancer

    Science.gov (United States)

    Li, Hui; Fan, Ming; Zhang, Peng; Li, Yuanzhe; Cheng, Hu; Zhang, Juan; Shao, Guoliang; Li, Lihua

    2018-03-01

    Breast cancer, with its high heterogeneity, is the most common malignancies in women. In addition to the entire tumor itself, tumor microenvironment could also play a fundamental role on the occurrence and development of tumors. The aim of this study is to investigate the role of heterogeneity within a tumor and the surrounding stromal tissue in predicting the Ki-67 proliferation status of oestrogen receptor (ER)-positive breast cancer patients. To this end, we collected 62 patients imaged with preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for analysis. The tumor and the peritumoral stromal tissue were segmented into 8 shells with 5 mm width outside of tumor. The mean enhancement rate in the stromal shells showed a decreasing order if their distances to the tumor increase. Statistical and texture features were extracted from the tumor and the surrounding stromal bands, and multivariate logistic regression classifiers were trained and tested based on these features. An area under the receiver operating characteristic curve (AUC) were calculated to evaluate performance of the classifiers. Furthermore, the statistical model using features extracted from boundary shell next to the tumor produced AUC of 0.796+/-0.076, which is better than that using features from the other subregions. Furthermore, the prediction model using 7 features from the entire tumor produced an AUC value of 0.855+/-0.065. The classifier based on 9 selected features extracted from peritumoral stromal region showed an AUC value of 0.870+/-0.050. Finally, after fusion of the predictive model obtained from entire tumor and the peritumoral stromal regions, the classifier performance was significantly improved with AUC of 0.920. The results indicated that heterogeneity in tumor boundary and peritumoral stromal region could be valuable in predicting the indicator associated with prognosis.

  3. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  4. Different Array CGH profiles within hereditary breast cancer tumors associated to BRCA1 expression and overall survival

    International Nuclear Information System (INIS)

    Alvarez, Carolina; Aravena, Andrés; Tapia, Teresa; Rozenblum, Ester; Solís, Luisa; Corvalán, Alejandro; Camus, Mauricio; Alvarez, Manuel; Munroe, David; Maass, Alejandro; Carvallo, Pilar

    2016-01-01

    Array CGH analysis of breast tumors has contributed to the identification of different genomic profiles in these tumors. Loss of DNA repair by BRCA1 functional deficiency in breast cancer has been proposed as a relevant contribution to breast cancer progression for tumors with no germline mutation. Identifying the genomic alterations taking place in BRCA1 not expressing tumors will lead us to a better understanding of the cellular functions affected in this heterogeneous disease. Moreover, specific genomic alterations may contribute to the identification of potential therapeutic targets and offer a more personalized treatment to breast cancer patients. Forty seven tumors from hereditary breast cancer cases, previously analyzed for BRCA1 expression, and screened for germline BRCA1 and 2 mutations, were analyzed by Array based Comparative Genomic Hybridization (aCGH) using Agilent 4x44K arrays. Overall survival was established for tumors in different clusters using Log-rank (Mantel-Cox) Test. Gene lists obtained from aCGH analysis were analyzed for Gene Ontology enrichment using GOrilla and DAVID tools. Genomic profiling of the tumors showed specific alterations associated to BRCA1 or 2 mutation status, and BRCA1 expression in the tumors, affecting relevant cellular processes. Similar cellular functions were found affected in BRCA1 not expressing and BRCA1 or 2 mutated tumors. Hierarchical clustering classified hereditary breast tumors in four major, groups according to the type and amount of genomic alterations, showing one group with a significantly poor overall survival (p = 0.0221). Within this cluster, deletion of PLEKHO1, GDF11, DARC, DAG1 and CD63 may be associated to the worse outcome of the patients. These results support the fact that BRCA1 lack of expression in tumors should be used as a marker for BRCAness and to select these patients for synthetic lethality approaches such as treatment with PARP inhibitors. In addition, the identification of specific

  5. Imaging Breast Density: Established and Emerging Modalities

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2015-12-01

    Full Text Available Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature.

  6. Label-free detection of breast masses using multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Xiufeng Wu

    Full Text Available Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues that are first imaged (fresh, unfixed, and unstained with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.

  7. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients - association with tumor biology and clinical outcome.

    Science.gov (United States)

    Terkelsen, Thilde; Haakensen, Vilde D; Saldova, Radka; Gromov, Pavel; Hansen, Merete Kjaer; Stöckmann, Henning; Lingjaerde, Ole Christian; Børresen-Dale, Anne-Lise; Papaleo, Elena; Helland, Åslaug; Rudd, Pauline M; Gromova, Irina

    2018-04-26

    Particular N-glycan structures are known to be associated with breast malignancies by coordinating various regulatory events within the tumor and corresponding microenvironment, thus implying that N-glycan patterns may be used for cancer stratification and as predictive or prognostic biomarkers. However, the association between N-glycans secreted by breast tumor and corresponding clinical relevance remain to be elucidated. We profiled N-glycans by HILIC UPLC across a discovery dataset composed of tumor interstitial fluids (TIF, n=85), paired normal interstitial fluids (NIF, n=54) and serum samples (n=28) followed by independent evaluation, with the ultimate goal of identifying tumor-related N-glycan patterns in blood of breast cancer patients. The segregation of N-linked oligosaccharides revealed 33 compositions, which exhibited differential abundances between TIF and NIF. TIFs were depleted of bisecting N-glycans, which are known to play essential roles in tumor suppression. An increased level of simple high mannose N-glycans in TIF strongly correlated with the presence of tumor infiltrating lymphocytes within tumor. At the same time, a low level of highly complex N-glycans in TIF inversely correlated with the presence of infiltrating lymphocytes within tumor. Survival analysis showed that patients exhibiting increased TIF abundance of GP24 had better outcomes, whereas low levels of GP10, GP23, GP38, and coreF were associated with poor prognosis. Levels of GP1, GP8, GP9, GP14, GP23, GP28, GP37, GP38, and coreF were significantly correlated between TIF and paired serum samples. Cross-validation analysis using an independent serum dataset supported the observed correlation between TIF and serum, for five out of nine N-glycan groups: GP8, GP9, GP14, GP23, and coreF. Collectively, our results imply that profiling of N-glycans from proximal breast tumor fluids is a promising strategy for determining tumor-derived glyco-signature(s) in the blood. N-glycans structures

  8. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  9. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  10. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  11. Breast Imaging: How We Manage Diagnostic Technology at a Multidisciplinary Breast Center

    Directory of Open Access Journals (Sweden)

    Alejandro Tejerina Bernal

    2012-01-01

    Full Text Available This paper discusses the most important aspects and problems related to the management of breast cancer imaging, at a center specialized in breast pathology. We review the established and emerging diagnostic techniques, their indications, and peculiarities: digital mammography, CAD systems, and the recent digital breast tomosynthesis, ultrasound and complementary elastography, molecular imaging techniques, magnetic resonance imaging, advanced sequences (diffusion, and positron emission mammography (PEM. The adequate integration and rational management of these techniques is essential, but this is not always easy, in order to achieve a successful diagnosis.

  12. [Common benign breast tumors including fibroadenoma, phyllodes tumors, and papillary lesions: Guidelines].

    Science.gov (United States)

    Bendifallah, S; Canlorbe, G

    2015-12-01

    To provide guidelines for clinical practice from the French College of Obstetrics and Gynecology (CNGOF), based on the best evidence available, concerning common benign breast tumors: fibroadenoma (FA), phyllodes breast tumors (PBT), and papillary lesions (BPL). Bibliographical search in French and English languages by consultation of PubMed, Cochrane and international databases. In case of percutaneous biopsy diagnosis of FA, clinico-radiologic and pathologic discordance or complex FA or proliferative lesions or atypia with FA, a family history of cancer, it seems legitimate to discuss management in a multidisciplinary meeting. When surgery is proposed for FA, periareolar compared to direct incision is associated with more insensitive nipple but better aesthetic results (LE4). When surgery is proposed for FA, indirect incision is preferable for better cosmetic results (Grade C). Techniques of percutaneous destruction or resection can be used (Grade C). The WHO classification distinguishes three categories of phyllodes tumors (PBT): benign (grade 1), borderline (grade 2) and malignant (grade 3). For grade 1 PBT, the risk of local recurrence after surgical excision increases when PBT lesion is in contact with surgical limits (not in sano). After in sano resection, there is no correlation between margin size and the risk of recurrence (LE4). For grade 2 PBT, local recurrence after surgical excision increases for margins under 10mm margins (LE4). For grade 1-2 PBT, in sano excision is recommended. For grade 2 PBT, 10-mm margins are recommended (Grade C). No lymph node evaluation or neither systematic mastectomy is recommended (Grade C). Breast papillary lesion (BPL) without atypia, complete resection of radiologic signal is recommended (Grade C). For BPL with atypia, complete excisional surgery is recommended (Grade C). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Imaging Tumor Necrosis with Ferumoxytol.

    Directory of Open Access Journals (Sweden)

    Maryam Aghighi

    Full Text Available Ultra-small superparamagnetic iron oxide nanoparticles (USPIO are promising contrast agents for magnetic resonance imaging (MRI. USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We compared the T1- and T2-enhancement pattern of intracellular and extracellular USPIO in mouse models of cancer and pilot data from patients. A better understanding of these MR signal effects will enable non-invasive characterizations of the composition of the tumor microenvironment.Six 4T1 and six MMTV-PyMT mammary tumors were grown in mice and imaged with ferumoxytol-enhanced MRI. R1 relaxation rates were calculated for different tumor types and different tumor areas and compared with histology. The transendothelial leakage rate of ferumoxytol was obtained by our measured relaxivity of ferumoxytol and compared between different tumor types, using a t-test. Additionally, 3 patients with malignant sarcomas were imaged with ferumoxytol-enhanced MRI. T1- and T2-enhancement patterns were compared with histopathology in a descriptive manner as a proof of concept for clinical translation of our observations.4T1 tumors showed central areas of high signal on T1 and low signal on T2 weighted MR images, which corresponded to extracellular nanoparticles in a necrotic core on histopathology. MMTV-PyMT tumors showed little change on T1 but decreased signal on T2 weighted images, which correlated to compartmentalized nanoparticles in tumor associated macrophages. Only 4T1 tumors demonstrated significantly increased R1 relaxation rates of the tumor core compared to the tumor periphery (p<0.001. Transendothelial USPIO leakage was significantly higher for 4T1 tumors (3.4±0.9x10-3 mL/min/100cm3 compared to MMTV-PyMT tumors (1.0±0.9x10-3 mL/min/100 cm3. Likewise, ferumoxytol imaging in patients showed similar findings with

  14. Body image dissatisfaction in patients undergoing breast reconstruction: Examining the roles of breast symmetry and appearance investment.

    Science.gov (United States)

    Teo, Irene; Reece, Gregory P; Huang, Sheng-Cheng; Mahajan, Kanika; Andon, Johnny; Khanal, Pujjal; Sun, Clement; Nicklaus, Krista; Merchant, Fatima; Markey, Mia K; Fingeret, Michelle Cororve

    2018-03-01

    Reconstruction as part of treatment for breast cancer is aimed at mitigating body image concerns after mastectomy. Although algorithms have been developed to objectively assess breast reconstruction outcomes, associations between objectively quantified breast aesthetic appearance and patient-reported body image outcomes have not been examined. Further, the role of appearance investment in explaining a patient's body image is not well understood. We investigated the extent to which objectively quantified breast symmetry and patient-reported appearance investment were associated with body image dissatisfaction in patients undergoing cancer-related breast reconstruction. Breast cancer patients in different stages of reconstruction (n = 190) completed self-report measures of appearance investment and body image dissatisfaction. Vertical extent and horizontal extent symmetry values, which are indicators of breast symmetry, were calculated from clinical photographs. Associations among breast symmetry, appearance investment, body image dissatisfaction, and patient clinical factors were examined. Multi-variable regression was used to evaluate the extent to which symmetry and appearance investment were associated with body image dissatisfaction. Vertical extent symmetry, but not horizontal extent symmetry, was associated with body image dissatisfaction. Decreased vertical extent symmetry (β = -.19, P image dissatisfaction while controlling for clinical factors. Breast symmetry and patient appearance investment both significantly contribute to an understanding of patient-reported body image satisfaction during breast reconstruction treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  15. MR imaging of the brain: tumors

    International Nuclear Information System (INIS)

    Sartor, K.

    1999-01-01

    The radiologic modality that most likely provides the imaging information needed in a patient suspected of having a brain tumor is MR imaging. A brain tumor can be reliably ruled out if the MR examination is performed properly and experts interpret the results as negative. If there is a tumor, however, its exact location and topography must be determined. Important for therapy and prognosis are also tumor properties such as histologic type and grade, as well as effects on adjacent brain structures. Although potentially a noninvasive method of in vivo neuropathology, MR is still far from being sufficiently specific, as dissimilar lesions may look the same despite the use of refined imaging protocols. The evolution of MR imaging continues, however, making further methodologic improvement likely. Presently, advanced methods, such as diffusion- and perfusion-weighted MR imaging, functional MR imaging, neuronavigation based on MR imaging data, and the use of MR imaging during surgery (intraoperative MR imaging), influence the way patients are treated. Likewise, follow-up imaging (monitoring) of tumor patients by MR has become more effective, and experience has shown how to distinguish reactive changes from recurrent tumor. In the future, MR imaging may gain importance in the development of novel therapeutic concepts. (orig.)

  16. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  17. Emotional distress in women presenting for breast imaging

    International Nuclear Information System (INIS)

    Gupta, R.; Roy, S.; Nayak, Madhabika B.; Khoursheed, M.

    1999-01-01

    The aim of this study was to assess anxiety and depression in a sample of women presenting for imaging of breast following a clinical referral. Emotional distress in the women was also assessed in relation to demographic factors, reason for referral, presence for breast symptoms, type of imaging procedure performed and self-reported pain and discomfort during imaging. The study comprised 167 patients. The Hopkins Symptom Checklist-25 (HSCL-25) and a discomfort rating scale were used to assess emotional distress and discomfort or pain experienced during the imaging. While less than 10% of all subjects scored above psychiatric cut-off points for anxiety and depression, 25% and 20% reported significant distress associated with anxiety and depression symptoms respectively. Education alone was associated with higher anxiety scores, while the presence of breast symptoms significantly increased depression scores and reports of specific nonsomatic symptoms of depression. Higher anxiety and depression scores were also associated with pain experienced during the imaging procedure. Emotional distress may negatively impact women's experience of breast imaging. Screening for emotional distress is important within the context of breast imaging. (author)

  18. Should breast density influence patient selection for breast-conserving surgery?

    Science.gov (United States)

    Kapoor, Nimmi S; Eaton, Anne; King, Tari A; Patil, Sujata; Stempel, Michelle; Morris, Elizabeth; Brogi, Edi; Morrow, Monica

    2013-02-01

    In a previous study of the relationship between breast density and primary tumor features, we observed a higher mastectomy rate in patients with extremely dense breasts. Here we examine possible reasons for this finding. Data were obtained from a prospectively maintained database of 1,056 invasive breast cancer patients from January 2005 to June 2007. Mammographic density was assigned by Breast Imaging-Reporting and Data System (BI-RADS) classification. Initial and final surgical procedures, and patient and tumor variables were recorded. Breast-conserving surgery (BCS) was attempted in 758 patients (72 %), 385 (51 %) of whom had preoperative magnetic resonance imaging (MRI). Initial BCS was less common among patients with the highest (BI-RADS 4) breast density compared to patients with less-dense breasts (52 vs. 74 %; p mastectomy compared to patients with less-dense breasts. After initial BCS, 387 patients (51 %) had positive shaved margins, 96 (25 %) of whom converted to mastectomy. MRI did not correlate with the rate of positive margins overall or among those with dense breasts. Adjusting for clinical and pathologic variables, density did not predict margin status or conversion to mastectomy. In a multivariate model, age, histologic grade, extensive intraductal component, and multicentricity/multifocality were independently associated with conversion to mastectomy. Density alone seems to influence the decision to proceed with initial mastectomy. When BCS was attempted, breast density was not associated with positive margins or conversion to mastectomy. A benefit of MRI in decreasing positive margins was not observed. These data do not support the use of breast density as a selection criterion for BCS.

  19. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  20. Requirements for effective functional breast imaging

    International Nuclear Information System (INIS)

    Weinberg, I.N.; Zawarzin, V.; Adler, L.P.; Pani, R.; DeVincentis, G.; Khalkhali, I.; Vargas, H.; Venegas, R.; Kim, S.C.; Bakale, G.; Levine, E.; Perrier, N.; Freimanis, R.I.; Lesko, N.M.; Newman, D.P.; Geisinger, K.R.; Berg, W.A.; Masood, S.

    2003-01-01

    Most nuclear medicine physicists were trained on devices aimed at functional neuroimaging. The clinical goals of brain-centered devices differ dramatically from the parameters needed to be useful in the breast clinic. We will discuss similarities and differences that impact on design considerations, and describe our latest generation of positron emission mammography and intraoperative products. - Source of physiologic contrast: Clinical neuroimaging depends on flow agents to detect the presence of breaks in the blood-brain barrier. Breast flow agents are nonspecific, and may miss preinvasive lesions. - Resolution: Brain cancers are generally diagnosed at late stages, so resolution is not so critical. Detecting early breast cancers, and specifying margins for surgery requires 3 mm spatial resolution or better. - Prevalence: Primary brain cancer is uncommon, and lesions mimicking brain cancer are rare. Primary breast cancer is common, and benign lesions are even more common, so specificity and biopsy capability are very important. - Anatomic references: Brain structure is standard, while breast structure is highly variable, requiring immobilization/compression for physiologic imaging and biopsy. - Surgery: Complete cancer resections for brain are very rare, but are possible for breast with appropriate imaging guidance, implying the need for rapid and reliable imaging. To summarize, the breast clinic needs a rapid and highly sensitive method of assessing breast physiology, compatible with biopsy and surgery. Positron emission mammography devices, in handheld and X-ray platform based configurations, are ideal for this mission

  1. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  2. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  3. Applicability of active infrared thermography for screening of human breast: a numerical study

    Science.gov (United States)

    Dua, Geetika; Mulaveesala, Ravibabu

    2018-03-01

    Active infrared thermography is a fast, painless, noncontact, and noninvasive imaging method, complementary to mammography, ultrasound, and magnetic resonance imaging methods for early diagnosis of breast cancer. This technique plays an important role in early detection of breast cancer to women of all ages, including pregnant or nursing women, with different sizes of breast, irrespective of either fatty or dense breast. This proposed complementary technique makes use of infrared emission emanating from the breast. Emanating radiations from the surface of the breast under test are detected with an infrared camera to map the thermal gradients over it, in order to reveal hidden tumors inside it. One of the reliable active infrared thermographic technique, linear frequency modulated thermal wave imaging is adopted to detect tumors present inside the breast. Further, phase and amplitude images are constructed using frequency and time-domain data analysis schemes. Obtained results show the potential of the proposed technique for early diagnosis of breast cancer in fatty as well as dense breasts.

  4. Breast tissue classification in digital breast tomosynthesis images using texture features: a feasibility study

    Science.gov (United States)

    Kontos, Despina; Berger, Rachelle; Bakic, Predrag R.; Maidment, Andrew D. A.

    2009-02-01

    Mammographic breast density is a known breast cancer risk factor. Studies have shown the potential to automate breast density estimation by using computerized texture-based segmentation of the dense tissue in mammograms. Digital breast tomosynthesis (DBT) is a tomographic x-ray breast imaging modality that could allow volumetric breast density estimation. We evaluated the feasibility of distinguishing between dense and fatty breast regions in DBT using computer-extracted texture features. Our long-term hypothesis is that DBT texture analysis can be used to develop 3D dense tissue segmentation algorithms for estimating volumetric breast density. DBT images from 40 women were analyzed. The dense tissue area was delineated within each central source projection (CSP) image using a thresholding technique (Cumulus, Univ. Toronto). Two (2.5cm)2 ROIs were manually selected: one within the dense tissue region and another within the fatty region. Corresponding (2.5cm)3 ROIs were placed within the reconstructed DBT images. Texture features, previously used for mammographic dense tissue segmentation, were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance. Different texture features appeared to perform best in the 3D reconstructed DBT compared to the 2D CSP images. Fractal dimension was superior in DBT (AUC=0.90), while contrast was best in CSP images (AUC=0.92). We attribute these differences to the effects of tissue superimposition in CSP and the volumetric visualization of the breast tissue in DBT. Our results suggest that novel approaches, different than those conventionally used in projection mammography, need to be investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast density.

  5. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Science.gov (United States)

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  6. Macromolecular contrast media. A new approach for characterising breast tumors with MR-mammography

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Gossmann, A.; Koeln Univ.; Wendland, M.; Brasch, R.C.; Rosenau, W.

    1997-01-01

    The value of macromolecular contrast agents (MMCM) for the characterization of benign and malignant breast tumors will be demonstrated in this review. Animal studies suggest a high potential of MMCM to increase the specificity of MR-mammography. The concept of tumor differentiation is based on the pathological hyperpermeability of microvessels in malignant tumors. MMCM show a leak into the interstitium of carcinomas, whereas they are confined to the intravascular space in benign tumors. Capabilities and limitations of the MMCM-prototype. Albumin-Gd-DTPA, for breast tumor characterization will be summarized and compared to the standard low molecular weight contrast agent Gd-DTPA. Initial experience with new MMCM, such as Dendrimers, Gd-DTPA-Polylysine and MS-325 will be outlined. The potential of 'blood-pool'-iron oxides, such as AMI-227 for the evaluation of tumor microvascular permeabilities will be discussed. (orig.) [de

  7. The usefulness of [sup 201]TlCl scintigraphy for the diagnosis of breast tumor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tamami; Moriya, Etsuo; Miyamoto, Yukio; Kawakami, Kenji; Kubo, Hirotaka; Uchida, Takeshi [Jikei Univ., Tokyo (Japan). School of Medicine

    1994-06-01

    The usefulness of [sup 201]TlCl SPECT (Tl SPECT) for the diagnosis of breast cancer was evaluated in 14 patients with various breast tumors (9 with invasive ductal carcinoma, 2 with fibroadenoma and 3 with benign process). These tumors ranged in size from 1.5 cm x 1.5 cm to 15.0 cm x 14.0 cm. Tl SPECT was carried out 2 hours after the intravenous injection of [sup 201]TlCl (185 MBq). For quantitative study, ROIs were set in the tumor (T), normal tissue of the opposite breast (B) and myocardium (M). Count ratios of T/B and T/M were calculated. Eight patients with breast cancer and a case of fibroadenoma showed intense accumulation of [sup 201]TlCl in the tumors. The T/B ratio was 1.20[+-]0.68 and the T/M ratio was 0.68[+-]0.31 in the 9 cases. Lymph node metastasis was detected in 2 of 6 cases that were confirmed at operation. No remarkable accumulation of [sup 201]TlCl was seen in 4 patients with benign process. One patient with benign tumor showed a false positive result. The rates of accuracy of mammography and ultrasonography for the same subjects were 82% and 84%, respectively. The results suggest that [sup 201]TlCl SPECT might be useful to assess breast cancer in cases in which the findings of other modalities are equivocal. (author).

  8. Fibromatosis-like carcinoma-an unusual phenotype of a metaplastic breast tumor associated with a micropapilloma

    Directory of Open Access Journals (Sweden)

    Badwe Rajan A

    2007-02-01

    Full Text Available Abstract Background Fibromatosis-like metaplastic carcinoma is a newly described metaplastic breast tumor, literature on which is still evolving. Case presentation A 77-year-old lady presented with a 2 × 2 cm mass with irregular margins in the upper and outer quadrant of left breast. Fine needle aspiration cytology (FNAC from the lump was inconclusive. A lumpectomy was performed and sent for frozen section, which revealed presence of spindle cells showing mild atypia in a sclerotic stroma. The tumor cells revealed prominent infiltration into the adjacent fat. A differential diagnosis of a low-grade sarcoma vs. a metaplastic carcinoma, favoring the former, was offered. Final histology sections revealed an infiltrating tumor with predominant spindle cells in a collagenous background, simulating a fibromatosis. Adjacent to the tumor were foci of benign ductal hyperplasia and a micropapilloma. Immunohistochemistry (IHC showed diffuse co-expression of epithelial markers i.e. cytokeratins (CK, HMWCK, CK7 and EMA along with a mesenchymal marker i.e. vimentin in the tumor cells. Myoepithelial markers (SMA and p63 showed focal positivity. A diagnosis of a low-grade fibromatosis-like carcinoma breast associated with a micropapilloma was formed. Conclusion Fibromatosis-like carcinoma is a rare form of a metaplastic breast tumor. This diagnosis requires an index of suspicion while dealing with spindle cell breast tumors. The importance of making this diagnosis to facilitate an intra operative surgical planning is marred by diagnostic difficulties. In such cases, IHC is imperative in forming an objective diagnosis.

  9. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  10. CISS MR imaging findings of epidermoid tumor : comparison with spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Woo; Kim, Hak Jin; Choi, Sang Yoel; Heo, Jin Sam; Jung, Hoon Sik; Lee, Suck Hong; Kim, Byung Soo [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Lee, Jong Wha [Ulsan Univ. Hospital, Ulsan (Korea, Republic of)

    1999-03-01

    To evaluate CISS MR imaging findings of epidermoid tumor in comparison with conventional spin-echo images. We studied 6 cases of epidermoid tumor in the subarachnoid space. We used a 1.5T MR unit to obtain CISS images(TR/TE/FA ; 12.3msec/5.9 msec/700) and T1- and T2- weighted spin-echo images. CISS MR imaging findings were evaluated with respect to tumor's signal intensity , contour, and relation with adjacent structures. Conspicuity of the tumor was compared between CISS and spin-echo images. A quantitative analysis was performed by measuring tumor to CSF contrast. In qualitative analysis, three radiologists independently compared CISS image and conventional spin-echo images for visibility of the tumor and graded them into three categories( poor, good, and excellent). Epidermoid tumors were located in the cerebellopontine angle in 4 cases, the prepontine cisstern in 1 case, and the cerebellopontine angle-prepontine cistern in 1 case. The tumors were hyperintense relative to brain parenchyma and hypointense relative to CSF on CISS images, were lobulated, encased adjacent cranial nerve and vessels, and invaginated into brain parenchyma. In qualitative analysis, CISS images showed clear demarcation between tumor and CSF, exact tumor extension, and tumor's relation with cranial nerves and vessels better than conventional spin-echo images. In quantitative analysis, the mean contrast values of tumor to CSF on T1-, T2-weighted images, and CISS images were 0.12, 0.06, and 0.52, respectively. The contrast value for CISS images was significantly higher than that for T1-and T2-weighted images(p<0.05). Epidermoid tumors in the subarachnoid space are better demonstrated on CISS images than on conventional spin-echo images. This special MR sequence can be added as a routine protocol in the diagnosis of subarachnoid epidermoid tumor.

  11. Breast cancer staging with MR imaging

    International Nuclear Information System (INIS)

    Smathers, R.L.; D'Amelio, F.; Stockdale, F.

    1989-01-01

    Forty-three patients with biopsy-proved breast cancer underwent MR staging of the cervicothoracic spine, lumbosacral spine, liver, and thorax. In all cases, these findings have been compared with the results of clinical staging, laboratory tests, chest radiography, and radionuclide bone scanning. MR imaging was a valuable staging tool for patients with more than minimal breast cancer and indications for radionuclide bone scanning. MR imaging had the greatest clinical importance when it identified thoracic soft-tissue abnormalities, including axillary., lateral thoracic, supraclavicular, and mediastinal lymphadenopathy. The coronal and sagittal views were very valuable for detection of chest wall invasion, sternal involvement, and internal mammary adenopathy. Negative MR staging clinically reassured patients that aggressive local therapy bad curative potential. Positive MR staging avoided inappropriate aggressive local therapy and mastectomy. MR imaging can be recommended for improved breast cancer staging in patients with newly diagnosed breast cancer who have more than minimal disease

  12. True Local Recurrence Rate in the Conserved Breast After Magnetic Resonance Imaging-Targeted Radiotherapy

    International Nuclear Information System (INIS)

    Whipp, Elisabeth; Beresford, Mark; Sawyer, Elinor; Halliwell, Michael

    2010-01-01

    Purpose: Better accuracy of local radiotherapy may substantially improve local control and thus long-term breast cancer survival. Magnetic resonance imaging (MRI) has high resolution and sensitivity in breast tissue and may depict the tumor bed more accurately than conventional planning techniques. A postoperative complex (POCx) comprises all visible changes thought to be related to surgery within the breast and acts as a surrogate for the tumor bed. This study reports on local recurrence rates after MRI-assisted radiotherapy planning to ensure adequate coverage of the POCx. Methods and Materials: Simple opposed tangential fields were defined by surface anatomy in the conventional manner in 221 consecutive patients. After MRI, fields were modified by a single radiation oncologist to ensure encompassment of the POCx with a 10-mm margin. Genetic analysis was performed on all local relapses (LRs) to distinguish true recurrences (TRs) from new primaries (NPs). Results: This was a high risk cohort at 5 years: only 9.5% were classified as low risk (St Gallen): 43.4% were Grade 3 and 19.9% had surgical margins <1 mm; 62.4% of patients received boosts. Adjustments of standard field margins were required in 69%. After a median follow-up of 5 years, there were 3 LRs (1.3%) as the site of first relapse in 221 patients, comprising two TRs (0.9%) and one NP (0.4%). Conclusions: Accurate targeting of the true tumor bed is critical. MRI may better define the tumor bed.

  13. Breast Fibroadenoma With Increased Activity on 68Ga DOTATATE PET/CT.

    Science.gov (United States)

    Papadakis, Georgios Z; Millo, Corina; Sadowski, Samira M; Karantanas, Apostolos H; Bagci, Ulas; Patronas, Nicholas J

    2017-02-01

    Fibroadenoma is the most common benign breast tumor in women of reproductive age, carrying little to no risk of breast cancer development. We report on a case of a woman with history of neuroendocrine tumor who on follow-up imaging tests underwent whole-body PET/CT study using Ga DOTATATE. The scan showed increased focal activity in the right breast, which was biopsied revealing a fibroadenoma. The presented data suggests cell surface overexpression of somatostatin receptors by this benign breast tumor. Moreover, this finding emphasizes the need for cautious interpretation of Ga DOTATATE-avid breast lesions that could mimic malignancy in neuroendocrine tumor patients.

  14. Breast cancer imaging: A perspective for the next decade

    International Nuclear Information System (INIS)

    Karellas, Andrew; Vedantham, Srinivasan

    2008-01-01

    Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancer detection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an

  15. Breast cancer imaging: A perspective for the next decade

    Energy Technology Data Exchange (ETDEWEB)

    Karellas, Andrew; Vedantham, Srinivasan [Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2008-11-15

    Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancer detection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an

  16. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  17. Malignant phyllodes tumor of the breast presenting with hypoglycemia: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Pacioles T

    2014-12-01

    Full Text Available Toni Pacioles,1 Rahul Seth,2,3 Cesar Orellana,3 Ivy John,4 Veera Panuganty,3 Ruban Dhaliwal3,5 1Department of Hematology and Oncology, Edwards Comprehensive Cancer Center, Marshall University, Huntington, WV, USA; 2Division of Hematology and Oncology, 3Department of Medicine, 4Department of Pathology, 5Division of Endocrinology, SUNY Upstate Medical University, Syracuse, NY, USA Abstract: Phyllodes tumors are rare fibroepithelial neoplasms that account for less than 1% of all breast tumors and are typically found in middle-aged women. Phyllodes tumors that present with hypoglycemia are even rarer. No one morphologic finding is reliable in predicting the clinical behavior of this tumor. Surgery has been the primary mode of treatment to date. However, the extent of resection and the role of adjuvant radiotherapy or chemotherapy are still controversial. Here, we present a challenging case of malignant phyllodes tumor of the breast associated with hypoglycemia, and review the literature regarding clinical findings, pathologic risk factors for recurrence, and treatment recommendations. Keywords: breast cancer, fibroepithelial neoplasm, neuroendocrine tumor, adjuvant treatment, non-islet cell tumor-induced hypoglycemia

  18. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  19. Tumor-derived Matrix Metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer

    International Nuclear Information System (INIS)

    Zhang, Bin; Niu, Yun; Niu, Ruifang; Sun, Baocun; Hao, Xishan; Cao, Xuchen; Liu, Yanxue; Cao, Wenfeng; Zhang, Fei; Zhang, Shiwu; Li, Hongtao; Ning, Liansheng; Fu, Li

    2008-01-01

    Experimental evidence suggests that matrix metalloproteinase-13 (MMP-13) protein may promote breast tumor progression. However, its relevance to the progression of human breast cancer is yet to be established. Furthermore, it is not clear whether MMP-13 can be used as an independent breast cancer biomarker. This study was conducted to assess the expression profile of MMP-13 protein in invasive breast carcinomas to determine its diagnostic and prognostic significance, as well as its correlation with other biomarkers including estrogen receptor (ER), progesterone receptor (PR), Her-2/neu, MMP-2, MMP-9, tissue inhibitor of MMP-1 and -2 (TIMP-1 and TIMP-2). Immunohistochemistry (IHC) was performed on paraffin-embedded tissue microarray containing specimens from 263 breast carcinomas. The intensity and the extent of IHC were scored by pathologists in blind fashion. The correlation of the gene expression profiles with patients' clinicopathological features and clinical outcomes were analyzed for statistical significance. MMP-13 protein was detected in the cytoplasm of the malignant cells and the peritumoral stromal cells. MMP-13 expression by tumor cells (p < 0.001) and stromal fibroblasts (p <0.001) both correlated with carcinoma infiltration of lymph nodes. MMP-13 also correlated with the expression of Her-2/neu (p = 0.015) and TIMP-1 (p < 0.010), respectively in tumor cells. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes. Moreover, high levels of MMP-13 expression were associated with decreased overall survival. In parallel, the prognostic value of MMP-13 expressed by peritumoral fibroblasts seems less significant. Our data suggest that lymph node status, tumor size, Her-2/neu expression, TIMP-1 and MMP-13 expression in cancer cells are independent prognostic factors. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes, and inversely correlated with the

  20. Predictive value of the time-intensity curves on dynamic contrast-enhanced magnetic resonance imaging for lymphatic spreading in breast cancer

    International Nuclear Information System (INIS)

    Komatsu, Shuhei; Lee, Chol Joo; Ichikawa, Daisuke

    2005-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) has emerged as a promising diagnostic modality in various breast cancer treatments. However, little is known about the correlation between the pattern of time to signal intensity curves (TIC) on the CE-MRI and clinicopathologic features. This study was designed to investigate these correlations and evaluate the predictive value of TIC on CE-MRI in order to identify high-risk patients. Between 2001 and 2003, 101 lesions were evaluated to detect malignancy on CE-MRI in 101 women who were suspected of having breast tumors based on either clinical findings or conventional imaging studies. Moreover, the clinicopathologic findings were compared with the pattern of TIC for the 69 surgically treated malignant lesions. In detecting malignancy, the sensitivity, specificity, and accuracy were 78.7%, 88.5%, and 81.2%, respectively, in the 101 breast lesions. Especially for the 69 surgically treated malignant lesions, in comparison with breast cancer tumors with the benign pattern of TIC, the breast cancer tumors with a malignant pattern were found more frequently in lymphatic invasion (P<0.01) and lymph node metastasis (P<0.005), although no statistical correlation regarding the histological type, tumor size, vascular invasion, extensive intraductal component, hormone receptor status, or pathological stage was noted between the two groups. According to a logistic regression model, lymph node metastasis was found to be a significant independent variable. The pattern of TIC could be used to predict lymphatic spreading associated with lymph node metastasis prior to surgery as well as to detect malignancy. Therefore, a more detailed evaluation should be made to identify the presence of lymphatic spreading in patients with a malignant pattern of TIC. (author)

  1. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer.

    Science.gov (United States)

    Aponte-López, Angélica; Fuentes-Pananá, Ezequiel M; Cortes-Muñoz, Daniel; Muñoz-Cruz, Samira

    2018-01-01

    Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.

  2. [Breast tomosynthesis: a new tool for diagnosing breast cancer].

    Science.gov (United States)

    Martínez Miravete, P; Etxano, J

    2015-01-01

    Breast cancer continues to be the most common malignant tumor in women in occidental countries. Mammography is currently the technique of choice for screening programs; however, although it has been widely validated, mammography has its limitations, especially in dense breasts. Breast tomosynthesis is a revolutionary advance in the diagnosis of breast cancer. It makes it possible to define lesions that are occult in the glandular tissue and therefore to detect breast tumors that are impossible to see on conventional mammograms. In considering the combined use of mammography and tomosynthesis, many factors must be taken into account apart from cancer detection; these include additional radiation, the recall rate, and the time necessary to carry out and interpret the two tests. In this article, we review the technical principles of tomosynthesis, it main uses, and the future perspective for this imaging technique. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  3. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer

    International Nuclear Information System (INIS)

    Cao, Qizhen; Li, Zi-Bo; Chen, Kai; Wu, Zhanhong; He, Lina; Chen, Xiaoyuan; Neamati, Nouri

    2008-01-01

    Targeting drugs to receptors involved in tumor angiogenesis has been demonstrated as a novel and promising approach to improve cancer treatment. In this study, we evaluated the anti-tumor efficacy of a dimeric RGD peptide-paclitaxel conjugate (RGD2-PTX) in an orthotopic MDA-MB-435 breast cancer model. To assess the effect of conjugation and the presence of drug moiety on the MDA-MB-435 tumor and normal tissue uptake, the biodistribution of 3 H-RGD2-PTX was compared with that of 3 H-PTX. The treatment effect of RGD2-PTX and RGD2+PTX was measured by tumor size, 18 F-FDG/PET, 18 F-FLT/PET, and postmortem histopathology. By comparing the biodistribution of 3 H-RGD2-PTX and 3 H-PTX, we found that 3 H-RGD2-PTX had higher initial tumor exposure dose and prolonged tumor retention than 3 H-PTX. Metronomic low-dose treatment of breast cancer indicated that RGD2-PTX is significantly more effective than PTX+RGD2 combination and solvent control. Although in vivo 18 F-FLT/PET imaging and ex vivo Ki67 staining indicated little effect of the PTX-based drug on cell proliferation, 18 F-FDG/PET imaging showed significantly reduced tumor metabolism in the RGD2-PTX-treated mice versus those treated with RGD2+PTX and solvent control. Terminal uridine deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining also showed that RGD2-PTX treatment also had significantly higher cell apoptosis ratio than the other two groups. Moreover, the microvessel density was significantly reduced after RGD2-PTX treatment as determined by CD31 staining. Our results demonstrate that integrin-targeted delivery of paclitaxel allows preferential cytotoxicity to integrin-expressing tumor cells and tumor vasculature. The targeted delivery strategies developed in this study may also be applied to other chemotherapeutics for selective tumor killing. (orig.)

  4. Breast density does not impact the ability of Videssa® Breast to detect breast cancer in women under age 50.

    Directory of Open Access Journals (Sweden)

    David E Reese

    Full Text Available Breast density is associated with reduced imaging resolution in the detection of breast cancer. A biochemical approach that is not affected by density would provide an important tool to healthcare professionals who are managing women with dense breasts and suspicious imaging findings. Videssa® Breast is a combinatorial proteomic biomarker assay (CPBA, comprised of Serum Protein Biomarkers (SPB and Tumor Associated Autoantibodies (TAAb integrated with patient-specific clinical data to produce a diagnostic score that reliably detects breast cancer (BC as an adjunctive tool to imaging. The performance of Videssa® Breast was evaluated in the dense (a and b and non-dense (c and d groups in a population of n = 545 women under age 50. The sensitivity and specificity in the dense breast group were calculated to be 88.9% and 81.2%, respectively, and 92.3% and 86.6%, respectively, for the non-dense group. No significant differences were observed in the sensitivity (p = 1.0 or specificity (p = 0.18 between these groups. The NPV was 99.3% and 99.1% in non-dense and dense groups, respectively. Unlike imaging, Videssa® Breast does not appear to be impacted by breast density; it can effectively detect breast cancer in women with dense and non-dense breasts alike. Thus, Videssa® Breast provides a powerful tool for healthcare providers when women with dense breasts present with challenging imaging findings. In addition, Videssa® Breast provides assurance to women with dense breasts that they do not have breast cancer, reducing further anxiety in this higher risk patient population.

  5. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  6. Noninvasive In-Vivo Quantification of Mechanical Heterogeneity of Invasive Breast Carcinomas.

    Directory of Open Access Journals (Sweden)

    Tengxiao Liu

    Full Text Available Heterogeneity is a hallmark of cancer whether one considers the genotype of cancerous cells, the composition of their microenvironment, the distribution of blood and lymphatic microvasculature, or the spatial distribution of the desmoplastic reaction. It is logical to expect that this heterogeneity in tumor microenvironment will lead to spatial heterogeneity in its mechanical properties. In this study we seek to quantify the mechanical heterogeneity within malignant and benign tumors using ultrasound based elasticity imaging. By creating in-vivo elastic modulus images for ten human subjects with breast tumors, we show that Young's modulus distribution in cancerous breast tumors is more heterogeneous when compared with tumors that are not malignant, and that this signature may be used to distinguish malignant breast tumors. Our results complement the view of cancer as a heterogeneous disease on multiple length scales by demonstrating that mechanical properties within cancerous tumors are also spatially heterogeneous.

  7. Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging

    International Nuclear Information System (INIS)

    Kvistad, K.A.; Smenes, E.; Haraldseth, O.; Lundgren, S.; Fjoesne, H.E.; Smethurst, H.B.

    1999-01-01

    Purpose: Invasive breast carcinomas and fibroadenomas are often difficult to differentiate in dynamic contrast-enhanced T1-weighted MR imaging of the breast, because both tumors can enhance strongly after contrast injection. The purpose of this study was to evaluate whether the addition of T2*-weighted first pass perfusion imaging can increase the differentiation of malignant from benign lesions. Material and Methods: Nine patients with invasive carcinomas and 10 patients with contrast enhancing fibroadenomas were examined by a dynamic contrast-enhanced T1-weighted 3D sequence immediately followed by a single slice T2*-weighted first pass perfusion sequence positioned in the contrast-enhancing lesion. Results: The carcinomas and the fibroadenomas were impossible to differentiate based on the contrast enhancement characteristics in the T1-weighted sequence. The signal loss in the T2*-weighted perfusion sequence was significantly stronger in the carcinomas than in the fibroadenomas (p=0.0004). Conclusion: Addition of a T2*-weighted first pass perfusion sequence with a high temporal resolution can probably increase the differentiation of fibroadenomas from invasive carcinomas in contrast-enhanced MR imaging of the breast. (orig.)

  8. The role of magnetic resonance imaging (MRI) and MRI-guided surgery in the evaluation of patients with early stage breast cancer for breast conserving therapy

    International Nuclear Information System (INIS)

    Tan, Jacqueline E.; Orel, Susan G.; Schnall, Mitchell D.; Solin, Lawrence J.

    1997-01-01

    Purpose: Mammography is the primary imaging modality for the detection of breast cancer and the evaluation of patients with early stage breast cancer for breast conserving therapy (BCT). MRI may be more sensitive than mammography for detecting breast cancer and may have an adjunctive role in assessing patients with early stage disease for BCT. Our experience with 83 patients undergoing breast MRI during consideration for breast conserving therapy is analyzed. Materials and Methods: We reviewed 83 consecutive cases of patients undergoing breast MRI during standard work-up and evaluation for BCT from 1993 to 1996. Analysis of cases was limited to women who were AJCC clinical Stage 0, I, or II and who received definitive therapy at our institution. All patients signed informed consent. MRI of the breast was performed at 1.5 Tesla. Sagittal T1 and T2 and 3-D gradient pre- and post-contrast images were obtained. All MRI studies were reviewed by two radiologists. All patients were evaluated by one radiation oncologist. The records of these 83 patients were reviewed for patient age, tumor size, AJCC stage, histology, physical examination findings, mammographic findings, ultrasound findings, MRI findings, timing of first MRI study with respect to excisional surgery, findings from MRI-guided surgery (when done), and whether the patient underwent BCT. Results: The median age at the time of presentation was 51.5 years (range 26-77 years). Of the 83 patients, 16% were AJCC clinical stage 0, 65% were stage I, and 19% were stage II. No patient presented with synchronous bilateral carcinoma. Two patients had a history of prior contralateral breast carcinoma; both received BCT for their initial disease. Sixteen percent of patients had intraductal carcinoma, 39% had intraductal and infiltrating carcinoma, 28% had infiltrating ductal carcinoma, 7% had infiltrating lobular carcinoma, 4% had tubular carcinoma, 2% had adenoid cystic carcinoma, 2% had medullary carcinoma, 1% had colloid

  9. Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruce J. Tromberg

    2000-01-01

    Full Text Available Frequency-domain photon migration (FDPM is a noninvasive optical technique that utilizes intensity-modulated, near-infrared (NIR light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, μa, and scattering, μs′, parameters derived from FDPM measurements can be used to construct low-resolution (0.5 to 1 cm functional images of tissue hemoglobin (total, oxy-, and deoxyforms, oxygen saturation, blood volume fraction, water content, fat content and cellular structure. Unlike conventional NIR transillumination, FDPM enables quantitative analysis of tissue absorption and scattering parameters in a single non-invasive measurement. The unique functional information provided by FDPM makes it well-suited to characterizing tumors in thick tissues. In order to test the sensitivity of FDPM for cancer diagnosis, we have initiated clinical studies to quantitatively determine normal and malignant breast tissue optical and physiological properties in human subjects. Measurements are performed using a non-invasive, multi-wavelength, diode-laser FDPM device optimized for clinical studies. Results show that ductal carcinomas (invasive and in situ and benign fibroadenomas exhibit 1.25 to 3-fold higher absorption than normal breast tissue. Within this group, absorption is greatest for measurements obtained from sites of invasive cancer. Optical scattering is approximately 20% greater in pre-menopausal versus post-menopausal subjects due to differences in gland/cell proliferation and collagen/fat content. Spatial variations in tissue scattering reveal the loss of differentiation associated with breast disease progression. Overall, the metabolic demands of hormonal stimulation and tumor growth are detectable using photon migration techniques. Measurements provide quantitative optical property values that reflect changes in tissue perfusion, oxygen consumption, and cell/matrix development.

  10. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer

    NARCIS (Netherlands)

    Franken, Bas; De Groot, Marco R.; Mastboom, Walter J.B.; Vermes, I.; van der Palen, Jacobus Adrianus Maria; Tibbe, Arjan G.J.; Terstappen, Leonardus Wendelinus Mathias Marie

    2012-01-01

    Introduction The presence of circulating tumor cells (CTC) is an independent prognostic factor for progression-free survival and breast cancer-related death (BRD) for patients with metastatic breast cancer beginning a new line of systemic therapy. The current study was undertaken to explore whether

  11. LCP nanoparticle for tumor and lymph node metastasis imaging

    Science.gov (United States)

    Tseng, Yu-Cheng

    A lipid/calcium/phosphate (LCP) nanoparticle formulation (particle diameter ˜25 nm) has previously been developed to delivery siRNA with superior efficiency. In this work, 111In was formulated into LCP nanoparticles to form 111In-LCP for SPECT/CT imaging. With necessary modifications and improvements of the LCP core-washing and surface-coating methods, 111In-LCP grafted with polyethylene glycol exhibited reduced uptake by the mononuclear phagocytic system. SPECT/CT imaging supported performed biodistribution studies, showing clear tumor images with accumulation of 8% or higher injected dose per gram tissue (ID/g) in subcutaneous, human-H460, lung-cancer xenograft and mouse-4T1, breast cancer metastasis models. Both the liver and the spleen accumulated ˜20% ID/g. Accumulation in the tumor was limited by the enhanced permeation and retention effect and was independent of the presence of a targeting ligand. A surprisingly high accumulation in the lymph nodes (˜70% ID/g) was observed. In the 4T1 lymph node metastasis model, the capability of intravenously injected 111In-LCP to visualize the size-enlarged and tumor-loaded sentinel lymph node was demonstrated. By analyzing the SPECT/CT images taken at different time points, the PK profiles of 111In-LCP in the blood and major organs were determined. The results indicated that the decrement of 111In-LCP blood concentration was not due to excretion, but to tissue penetration, leading to lymphatic accumulation. Larger LCP (diameter ˜65 nm) nanoparticles were also prepared for the purpose of comparison. Results indicated that larger LCP achieved slightly lower accumulation in the tumor and lymph nodes, but much higher accumulation in the liver and spleen; thus, larger nanoparticles might not be favorable for imaging purposes. We also demonstrated that LCP with a diameter of ˜25 nm were better able to penetrate into tissues, travel in the lymphatic system and preferentially accumulate in the lymph nodes due to 1) small

  12. Image Denoising And Segmentation Approchto Detect Tumor From BRAINMRI Images

    Directory of Open Access Journals (Sweden)

    Shanta Rangaswamy

    2018-04-01

    Full Text Available The detection of the Brain Tumor is a challenging problem, due to the structure of the Tumor cells in the brain. This project presents a systematic method that enhances the detection of brain tumor cells and to analyze functional structures by training and classification of the samples in SVM and tumor cell segmentation of the sample using DWT algorithm. From the input MRI Images collected, first noise is removed from MRI images by applying wiener filtering technique. In image enhancement phase, all the color components of MRI Images will be converted into gray scale image and make the edges clear in the image to get better identification and improvised quality of the image. In the segmentation phase, DWT on MRI Image to segment the grey-scale image is performed. During the post-processing, classification of tumor is performed by using SVM classifier. Wiener Filter, DWT, SVM Segmentation strategies were used to find and group the tumor position in the MRI filtered picture respectively. An essential perception in this work is that multi arrange approach utilizes various leveled classification strategy which supports execution altogether. This technique diminishes the computational complexity quality in time and memory. This classification strategy works accurately on all images and have achieved the accuracy of 93%.

  13. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin

    2016-07-08

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.

  14. Pattern of Ipsilateral Breast Tumor Recurrence After Breast-Conserving Therapy

    International Nuclear Information System (INIS)

    Jobsen, Jan; Palen, Job van der; Riemersma, Sietske; Heijmans, Harald; Ong, Francisca; Struikmans, Henk

    2014-01-01

    Purpose: To analyze the incidence and prognostic factors of ipsilateral breast tumor recurrence (IBTR) after breast-conserving therapy (BCT) in a large, population-based, single-center study with long-term follow-up. Methods and Materials: We analyzed 3595 cases in which BCT was performed in 3824 women with stage I or II breast cancer. The incidence of IBTR was analyzed over time and was based on IBTR as first event. Results: The 15-year local relapse-free survival was 90.9%. The hazard estimates for IBTR showed a time course with 2 peaks, the first at approximately 5 years and the second, twice as high, at 12 years. Stratifying subjects by age and margin status showed that, for women ≤40 years old with negative margins, adjuvant systemic therapy led to a 5-fold reduced risk of recurrence compared to none, and the presence of lymph vascular space invasion (LVSI) had a 3-fold increased risk compared to its absence. For women >40 years old, the presence of LVSI (hazard ratio [HR] 2.5) and the presence of lobular carcinoma in situ in the lumpectomy specimen (HR 2.3) were the only 2 risk factors. Conclusions: We demonstrated a pattern in risk of IBTR over time, with 2 peaks, first at approximately 5 years and a second, much higher peak at approximately 12 years, especially for women ≤40 years old. For women ≤40 years old with tumor-free resection margins, we noted that the absence of adjuvant systemic therapy and the presence of LVSI were independent prognostic factors of IBTR. For women >40 years old, the presence of LVSI and the presence of lobular carcinoma in situ were independent risk factors

  15. Pattern of Ipsilateral Breast Tumor Recurrence After Breast-Conserving Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jobsen, Jan, E-mail: j.jobsen@mst.nl [Department of Radiation Oncology, Medisch Spectrum Twente, Enschede (Netherlands); Palen, Job van der [Department of Epidemiology, Medisch Spectrum Twente, Enschede (Netherlands); Department of Research Methodology, Measurement, and Data Analysis, Faculty of Behavioral Science, University of Twente, Enschede (Netherlands); Riemersma, Sietske [Laboratory for Pathology Oost Nederland, Hengelo (Netherlands); Heijmans, Harald [Department of Surgery, Ziekenhuis Groep Twente, Hengelo (Netherlands); Ong, Francisca [Department of Radiation Oncology, Medisch Spectrum Twente, Enschede (Netherlands); Struikmans, Henk [Department of Radiation Oncology, Leiden University Medical Centre, Leiden (Netherlands); Radiotherapy Centre West, Medical Centre Haaglanden, The Hague (Netherlands)

    2014-08-01

    Purpose: To analyze the incidence and prognostic factors of ipsilateral breast tumor recurrence (IBTR) after breast-conserving therapy (BCT) in a large, population-based, single-center study with long-term follow-up. Methods and Materials: We analyzed 3595 cases in which BCT was performed in 3824 women with stage I or II breast cancer. The incidence of IBTR was analyzed over time and was based on IBTR as first event. Results: The 15-year local relapse-free survival was 90.9%. The hazard estimates for IBTR showed a time course with 2 peaks, the first at approximately 5 years and the second, twice as high, at 12 years. Stratifying subjects by age and margin status showed that, for women ≤40 years old with negative margins, adjuvant systemic therapy led to a 5-fold reduced risk of recurrence compared to none, and the presence of lymph vascular space invasion (LVSI) had a 3-fold increased risk compared to its absence. For women >40 years old, the presence of LVSI (hazard ratio [HR] 2.5) and the presence of lobular carcinoma in situ in the lumpectomy specimen (HR 2.3) were the only 2 risk factors. Conclusions: We demonstrated a pattern in risk of IBTR over time, with 2 peaks, first at approximately 5 years and a second, much higher peak at approximately 12 years, especially for women ≤40 years old. For women ≤40 years old with tumor-free resection margins, we noted that the absence of adjuvant systemic therapy and the presence of LVSI were independent prognostic factors of IBTR. For women >40 years old, the presence of LVSI and the presence of lobular carcinoma in situ were independent risk factors.

  16. Computer-aided diagnosis with textural features for breast lesions in sonograms.

    Science.gov (United States)

    Chen, Dar-Ren; Huang, Yu-Len; Lin, Sheng-Hsiung

    2011-04-01

    Computer-aided diagnosis (CAD) systems provided second beneficial support reference and enhance the diagnostic accuracy. This paper was aimed to develop and evaluate a CAD with texture analysis in the classification of breast tumors for ultrasound images. The ultrasound (US) dataset evaluated in this study composed of 1020 sonograms of region of interest (ROI) subimages from 255 patients. Two-view sonogram (longitudinal and transverse views) and four different rectangular regions were utilized to analyze each tumor. Six practical textural features from the US images were performed to classify breast tumors as benign or malignant. However, the textural features always perform as a high dimensional vector; high dimensional vector is unfavorable to differentiate breast tumors in practice. The principal component analysis (PCA) was used to reduce the dimension of textural feature vector and then the image retrieval technique was performed to differentiate between benign and malignant tumors. In the experiments, all the cases were sampled with k-fold cross-validation (k=10) to evaluate the performance with receiver operating characteristic (ROC) curve. The area (A(Z)) under the ROC curve for the proposed CAD system with the specific textural features was 0.925±0.019. The classification ability for breast tumor with textural information is satisfactory. This system differentiates benign from malignant breast tumors with a good result and is therefore clinically useful to provide a second opinion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    International Nuclear Information System (INIS)

    Charpentier, Monica; Martin, Stuart

    2013-01-01

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis

  18. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Charpentier, Monica [Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Martin, Stuart, E-mail: ssmartin@som.umaryland.edu [Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States)

    2013-11-14

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis.

  19. Women’s experiences and preferences regarding breast imaging after completing breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Brandzel S

    2017-02-01

    Full Text Available Susan Brandzel,1 Dori E Rosenberg,1 Dianne Johnson,1 Mary Bush,1 Karla Kerlikowske,2–5 Tracy Onega,6,7 Louise Henderson,8 Larissa Nekhlyudov,9,10 Wendy DeMartini,11 Karen J Wernli1 1Group Health Research Institute, Group Health Cooperative, Seattle, WA, 2Department of Medicine, 3Department of Epidemiology, 4Department of Biostatistics, 5Department of Veterans Affairs, University of California, San Francisco, San Francisco, CA, 6Department of Biomedical Data Science, 7Department of Epidemiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 8Department of Radiology, University of North Carolina, Chapel Hill, NC, 9Department of Population Medicine, Harvard Medical School, 10Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 11Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA Background: After treatment for breast cancer, most women receive an annual surveillance mammography to look for subsequent breast cancers. Supplemental breast MRI is sometimes used in addition to mammography despite the lack of clinical evidence for it. Breast imaging after cancer treatment is an emotionally charged experience, an important part of survivorship care, and a topic about which limited patient information exists. We assessed women’s experiences and preferences about breast cancer surveillance imaging with the goal of determining where gaps in care and knowledge could be filled. Participants and methods: We conducted six focus groups with a convenience sample of 41 women in California, North Carolina, and New Hampshire (USA. Participants were aged 38–75 years, had experienced stage 0–III breast cancer within the previous 5 years, and had completed initial treatment. We used inductive thematic analysis to identify key themes from verbatim transcripts. Results: Women reported various types and frequencies of surveillance imaging and a range of surveillance imaging

  20. The usefulness of mammography and scintimammography in differential diagnosis of breast tumor

    International Nuclear Information System (INIS)

    Kang, Bong Joo; Chung, Young An; Jung, Hyun Seok; Jung, Jung Im; Yoo, Ie Ryung; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo; Hahn, Seong Tai; Lee, Jae Mun

    2004-01-01

    lt is very important to differentiate breast cancer from benign mass. There are many reports to evaluate the differential diagnosis under the several diagnostic tools. We evaluated the usefulness of mammography and Tc-99m MIBI scintimammography in the differential diagnosis of breast mass and correlated with pathologic findings. This study included 80 patients (age: 24-72, mean: 48.4) who underwent mammography and Tc-99m MlBI scintimammography for breast masses. Scintimammographies (anterior-posterior and lateral projections) were acquired in 10 minutes and 2 hours after intravenous injection of Tc-99m MlBl. Four specialists in diagnostic radiology and nuclear medicine evaluated the findings of breast masses under the mammography and Tc-99m MIBI scintimammography, and calculated the tumor to background (T/B) ratio. The pathologic results were obtained and we statistically analyzed the correlations between pathologic results and imaging findings under the mammography and Tc-99m MIBI scintimammography by chi-square and correlation test. The sensitivity, specificity, positive predictive value, and negative predictive value of mammography for detection of breast cancer were 87.5%, 56.3%, 75.0%, and 75.0% respectively. 45 cases of 80 patients were suspicious for breast cancer under the Tc-99m MIBI scintimammography. 41 cases of 45 patients were confirmed as breast cancer and the remaining 4 cases were confirmed as benign masses. The sensitivity, specificity, positive predictive value and negative predictive value of Tc-99m MIBI scintimammography for detection of breast cancer were 85.4%, 87.5%, 91.1%, and 80.8% respectively. The sensitivity of scintimammography was lower than that of mammography for detection of breast cancer, however the specificity, positive predictive value, and negative predictive value were higher. In the benign mass, the mean T/B ratio in 10 minutes was 1.409±0.30, and that in 2 hours was 1.267±0.42. The maximal T/B ratio of benign mass in 10

  1. A Rare Case of Breast Malignant Phyllodes Tumor With Metastases to the Kidney

    OpenAIRE

    Karczmarek-Borowska, Bożenna; Bukala, Agnieszka; Syrek-Kaplita, Karolina; Ksiazek, Mariusz; Filipowska, Justyna; Gradalska-Lampart, Monika

    2015-01-01

    Abstract Phyllodes tumors are rare breast neoplasms. Surgery is the treatment of choice. The role of postoperative radiotherapy and chemotherapy is still under dispute, as there are no equivocal prognostic factors. Treatment failure results in the occurrence of distant metastasis—mainly to the lungs, bones, liver, and brain. We have described the case of a woman with a malignant phyllodes tumor of the breast that was surgically treated. She did not receive adjuvant therapy because there is no...

  2. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  3. Differentiating fibroadenoma and ductal carcinoma in situ from normal breast tissue by multiphoton microscopy

    Science.gov (United States)

    Nie, Yuting; Wu, Yan; Lian, Yuane; Fu, Fangmeng; Wang, Chuan; Chen, Jianxin

    2014-09-01

    Fibroadenoma (FA) is the most common benign tumor of the female breast and several studies have reported that women with it have increased risk of breast cancer. While the ductal carcinoma in situ (DCIS) is a very early form of breast cancer. Thus, early detections of FA and DCIS are critical for improving breast tumor outcome and survival. In this paper, we use multiphoton microscopy (MPM) to obtain the high-contrast images of fresh, unfixed, unstained human breast specimens (normal breast tissue, FA and DCIS). Our results show that MPM has the ability to identify the characteristics of FA and DCIS including changes of duct architecture and collagen morphology. These results are consistent with the histological results. With the advancement of MPM, the technique has potential ability to serve as a real-time noninvasive imaging tool for early detection of breast tumor.

  4. Additional Value of Diffusion-Weighted Imaging to Evaluate Prognostic Factors of Breast Cancer: Correlation with the Apparent Diffusion Coefficient

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Cho, Kyu Ran; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    Breast cancer is a heterogeneous disease with diverse prognoses. The main prognostic determinants are lymph node status, tumor size, histological grade, and biological factors, such as hormone receptors, human epidermal growth factor receptor 2 (HER2), Ki-67 protein levels, and p53 expression. Diffusion-weighted imaging (DWI) can be used to measure the apparent diffusion coefficient (ADC) that provides information related to tumor cellularity and the integrity of the cell membranes. The goal of this study was to evaluate whether ADC measurements could provide information on the prognostic factors of breast cancer. A total of 71 women with invasive breast cancer, treated consecutively, who underwent preoperative breast MRIs with DWI at 3.0 Tesla and subsequent surgery, were prospectively included in this study. Each DWI was acquired with b values of 0 and 1000 s/mm 2 . The mean ADC values of the lesions were measured, including the entire lesion on the three largest sections. We performed histopathological analyses for the tumor size, lymph node status, histological grade, hormone receptors, human epidermal growth factor receptor 2 (HER2), Ki-67, p53, and molecular subtypes. The associations with the ADC values and prognostic factors of breast cancer were evaluated using the independent-samples t test and the one-way analysis of variance (ANOVA). A low ADC value was associated with lymph node metastasis (P < 0.01) and with high Ki-67 protein levels (P = 0.03). There were no significant differences in the ADC values among the histological grade (P = 0.48), molecular subtype (P = 0.51), tumor size (P = 0.46), and p53 protein level (P = 0.62). The pre-operative use of the 3.0 Tesla DWI could provide information about the lymph node status and tumor proliferation for breast cancer patients, and could help determine the optimal treatment plan

  5. Tumor phenotype and breast density in distinct categories of interval cancer: results of population-based mammography screening in Spain.

    Science.gov (United States)

    Domingo, Laia; Salas, Dolores; Zubizarreta, Raquel; Baré, Marisa; Sarriugarte, Garbiñe; Barata, Teresa; Ibáñez, Josefa; Blanch, Jordi; Puig-Vives, Montserrat; Fernández, Ana; Castells, Xavier; Sala, Maria

    2014-01-10

    Interval cancers are tumors arising after a negative screening episode and before the next screening invitation. They can be classified into true interval cancers, false-negatives, minimal-sign cancers, and occult tumors based on mammographic findings in screening and diagnostic mammograms. This study aimed to describe tumor-related characteristics and the association of breast density and tumor phenotype within four interval cancer categories. We included 2,245 invasive tumors (1,297 screening-detected and 948 interval cancers) diagnosed from 2000 to 2009 among 645,764 women aged 45 to 69 who underwent biennial screening in Spain. Interval cancers were classified by a semi-informed retrospective review into true interval cancers (n = 455), false-negatives (n = 224), minimal-sign (n = 166), and occult tumors (n = 103). Breast density was evaluated using Boyd's scale and was conflated into: 75%. Tumor-related information was obtained from cancer registries and clinical records. Tumor phenotype was defined as follows: luminal A: ER+/HER2- or PR+/HER2-; luminal B: ER+/HER2+ or PR+/HER2+; HER2: ER-/PR-/HER2+; triple-negative: ER-/PR-/HER2-. The association of tumor phenotype and breast density was assessed using a multinomial logistic regression model. Adjusted odds ratios (OR) and 95% confidence intervals (95% CI) were calculated. All statistical tests were two-sided. Forty-eight percent of interval cancers were true interval cancers and 23.6% false-negatives. True interval cancers were associated with HER2 and triple-negative phenotypes (OR = 1.91 (95% CI:1.22-2.96), OR = 2.07 (95% CI:1.42-3.01), respectively) and extremely dense breasts (>75%) (OR = 1.67 (95% CI:1.08-2.56)). However, among true interval cancers a higher proportion of triple-negative tumors was observed in predominantly fatty breasts (breasts (28.7%, 21.4%, 11.3% and 14.3%, respectively; cancers, extreme breast density being strongly associated with occult tumors (OR

  6. Preparation and Identification of HER2 Radioactive Ligands and Imaging Study of Breast Cancer-Bearing Nude Mice

    Directory of Open Access Journals (Sweden)

    Meng-zhi Zhang

    2017-08-01

    Full Text Available OBJECTIVE: A micro-molecule peptide TP1623 of 99mTc-human epithelial growth factor receptor 2 (HER2 was prepared and the feasibility of using it as a HER2-positive molecular imaging agent for breast cancer was evaluated. METHODS: TP1623 was chemically synthesized and labeled with 99mTc. The labeling ratio and stability were detected. HER2 expression levels of breast cancer cells (SKBR3 and MDA-MB-231 and cell binding activity were measured. Biodistribution of 99mTC-TP1623 in normal mice was detected. SKBR3/MDA-MB-231-bearing nude mice models with high/low expressions of HER2 were established. Tumor tissues were stained with hematoxylin–eosin (HE and measured by immunohistochemistry to confirm the formation of tumors and HER2 expression. SPECT imaging was conducted for HER2-overexpressing SKBR3-bearing nude mice. The T/NT ratio was calculated and compared with that of MDA-MB-231-bearing nude mice with low HER2 expression. The competitive inhibition image was used to discuss the specific binding of 99mTc- TP1623 and the tumor. RESULTS: The labeling ratio of 99mTc-TP1623, specific activity, and radiochemical purity (RCP after 6 h at room temperature were (97.39 ± 0.23%, (24.61 ± 0.06 TBq/mmol, and (93.25 ± 0.06%, respectively. HER2 of SKBR3 and MDA-MB-231 cells showed high and low expression levels by immunohistochemistry, respectively. The in vitro receptor assays indicated that specific binding of TP1623 and HER2 was retained. Radioactivity in the brain was always at the lowest level, while the clearance rate of blood and the excretion rate of the kidneys were fast. HE staining showed that tumor cells were observed in SKBR3- and MDA-MB-231-bearing nude mice, with significant heteromorphism and increased mitotic count. The imaging of mice showed that targeted images could be made of 99mTc-TP1623 in high HER2-expressing tumors, while no obvious development was shown in tumors in low HER2-expressing nude mice. No development was visible in

  7. Breast Cancer Detection: Mammography and other methods in breast imaging, second edition

    International Nuclear Information System (INIS)

    Bassett, L.W.; Gold, R.H.

    1987-01-01

    The text addresses mammography and the advantages and limitations of other breast imaging methods presently available. The establishment of X-ray mammography as the safest and most accurate noninvasive method of early, nonpalpable breast cancer detection is addressed in the first section of the book. The second section emphasizes the signs of early cancer, the complete mammographic examination, and the team approach to diagnosis. The advantages and limitations of film-screen mammography, zero mammography, breast ultrasound, thermography, light scanning, magnetic resonance imaging, and ductography are highlighted as alternate methods of detection. The benefits of mammography, and its unmatched value in screeening for breast cancer, are presented in the final section

  8. Primary tumor resection in metastatic breast cancer: A propensity-matched analysis, 1988-2011 SEER data base.

    Science.gov (United States)

    Vohra, Nasreen A; Brinkley, Jason; Kachare, Swapnil; Muzaffar, Mahvish

    2018-03-02

    Primary tumor resection (PTR) in metastatic breast cancer is not a standard treatment modality, and its impact on survival is conflicting. The primary objective of this study was to analyze impact of PTR on survival in metastatic patients with breast cancer. A retrospective study of metastatic patients with breast cancer was conducted using the 1988-2011 Surveillance, Epidemiology, and End Results (SEER) data base. Cox proportional hazards regression models were used to evaluate the relationship between PTR and survival and to adjust for the heterogeneity between the groups, and a propensity score-matched analysis was also performed. A total of 29 916 patients with metastatic breast cancer were included in the study, and 15 129 (51%) of patients underwent primary tumor resection, and 14 787 (49%) patients did not undergo surgery. Overall, decreasing trend in PTR for metastatic breast cancer in last decades was noted. Primary tumor resection was associated with a longer median OS (34 vs 18 months). In a propensity score-matched analysis, prognosis was also more favorable in the resected group (P = .0017). Primary tumor resection in metastatic breast cancer was associated with survival improvement, and the improvement persisted in propensity-matched analysis. © 2018 Wiley Periodicals, Inc.

  9. Computed radiography for breast cancer

    International Nuclear Information System (INIS)

    Yamada, Tatsuya; Muramatsu, Yukio

    1990-01-01

    In order to evaluate the possibility of using computed radiographic mammography in mass surveys of the breast, we have retrospectively examined 71 breast cancer lesions in 71 patients using computed radiographic and conventional non-screen mammographies and have carried out comparative studies on tumor detection rate and calcification. A 95.8% detection rate was obtained for the tumor image (n 71) using computed radiography (CR) and one of 93.0% using non-screen techniques. Three lesions remained undetected by either study. A 100% detection rate was obtained for calcification associated with cancer (n 33) from each method. No significant differences in either detection rate or calcification were seen between the two images. On the other hand, the ability to recognize tumor images (n 66) was as follows; CR superior to non-screen radiography in 53 lesions (80.3%), equal in eight lesions (12.1%) and inferior in five lesions (7.6%). For the calcification images (n 18), CR was superior to non-screen radiography in all 18 lesions. Obviously, CR gives better results than non-screen radiography. Furthermore, an adequate image can be obtained using CR even although the X-ray dosage is only a twentieth of that required for non-screen radiography. It can therefore be applied not only to mass surveys for breast cancer but also to routine clinical diagnoses. (author)

  10. Circulating tumor DNA for triple-negative breast cancer diagnosis and treatment decisions.

    Science.gov (United States)

    Saliou, Adrien; Bidard, François-Clément; Lantz, Olivier; Stern, Marc-Henri; Vincent-Salomon, Anne; Proudhon, Charlotte; Pierga, Jean-Yves

    2016-01-01

    Triple-negative breast cancer (TNBC) is a highly aggressive disease characterized by a high number of relapses and poor overall survival. The heterogeneity of the disease and the limited treatment options compared to other breast cancer subtypes mainly explain these clinical outcomes. New biomarkers are urgently needed to improve the management of TNBC. Circulating tumor DNA, identified by tumor-related molecular alterations, could be used in the context of non-invasive "liquid biopsy" and help in TNBC diagnosis and treatment decisions. In this review, we discuss the key issues related to the potential of circulating tumor DNA to improve the management of this disease and the future steps to overcome before its implementation into clinical routine within the next 5 years.

  11. Comparison of Tc-99m maraciclatide and Tc-99m sestamibi molecular breast imaging in patients with suspected breast cancer.

    Science.gov (United States)

    O'Connor, Michael K; Morrow, Melissa M B; Hunt, Katie N; Boughey, Judy C; Wahner-Roedler, Dietlind L; Conners, Amy Lynn; Rhodes, Deborah J; Hruska, Carrie B

    2017-12-01

    Molecular breast imaging (MBI) performed with 99m Tc sestamibi has been shown to be a valuable technique for the detection of breast cancer. Alternative radiotracers such as 99m Tc maraciclatide may offer improved uptake in breast lesions. The purpose of this study was to compare relative performance of 99m Tc sestamibi and 99m Tc maraciclatide in patients with suspected breast cancer, using a high-resolution dedicated gamma camera for MBI. Women with breast lesions suspicious for malignancy were recruited to undergo two MBI examinations-one with 99m Tc sestamibi and one with 99m Tc maraciclatide. A radiologist interpreted MBI studies in a randomized, blinded fashion to assign an assessment score (1-5) and measured lesion size. Lesion-to-background (L/B) ratio was measured with region-of-interest analysis. Among 39 analyzable patients, 21 malignant tumors were identified in 21 patients. Eighteen of 21 tumors (86%) were seen on 99m Tc sestamibi MBI and 19 of 21 (90%) were seen on 99m Tc maraciclatide MBI (p = 1). Tumor extent measured with both radiopharmaceuticals correlated strongly with pathologic size ( 99m Tc sestamibi, r = 0.84; 99m Tc maraciclatide, r = 0.81). The L/B ratio in detected breast cancers was similar for the two radiopharmaceuticals: 1.55 ± 0.36 (mean ± S.D.) for 99m Tc sestamibi and 1.62 ± 0.37 (mean ± S.D.) for 99m Tc maraciclatide (p = 0.53). No correlation was found between the L/B ratio and molecular subtype for 99m Tc sestamibi (r s  = 0.12, p = 0.63) or 99m Tc maraciclatide (r s  = -0.12, p = 0.64). Of 20 benign lesions, 10 (50%) were seen on 99m Tc sestamibi and 9 of 20 (45%) were seen on 99m Tc maraciclatide images (p = 0.1). The average L/B ratio for benign lesions was 1.34 ±0.40 (mean ±S.D.) for 99m Tc sestamibi and 1.41 ±0.52 (mean ±S.D.) for 99m Tc maraciclatide (p = 0.75). Overall diagnostic performance was similar for both radiopharmaceuticals. AUC from ROC

  12. A Rare Case of Primary Infiltrating Neuroendocrine Carcinoma of the Breast

    International Nuclear Information System (INIS)

    Nawawi, Ouzreiah; Ying Goh, Keat; Rahmat, Kartini

    2012-01-01

    Primary neuroendocrine carcinoma of the breast is a very rare malignant tumor. There are not many cases reported in the English literature since it was first documented in 1983. Reports on the imaging features, in particular the ultrasonographic features of this rare tumor are scarce. Herein, we report a case of aggressive primary infiltrating neuroendocrine carcinoma of the breast, masquerading as an inflammatory breast condition in a 22-year-old young lady, perhaps the youngest case ever reported in the English literature. We discuss the imaging features and highlight the Doppler ultrasonographic findings of this rare breast carcinoma. This is the first documentation on Doppler ultrasonographic findings of primary neuroendocrine carcinoma of the breast in the literature

  13. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  14. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, P; Peng, Y; Sun, M; Yang, X [Suzhou Institute of Biomedical Engineering and Technology Chinese Academy o, Suzhou, Jiangsu (China)

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI will be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.

  15. Correlation of primary tumor FDG uptake with clinicopathologic prognostic factors in invasive ductal carcinoma of the breast

    International Nuclear Information System (INIS)

    Jo, I; Kim, Sung Hoon; Kim, Hae Won; Kang, Sung Hee; Zeon, Seok Kil; Kim, Su Jin

    2015-01-01

    The purpose of this study was to investigate the correlation of primary tumor FDG uptake to clinicopathological prognostic factors in invasive ductal carcinoma of the breast. We retrospectively reviewed 136 of 215 female patients with pathologically proven invasive ductal breast cancer from January 2008 to December 2011 who underwent F-18 FDG PET/CT for initial staging and follow-up after curative treatment with analysis of estrogen receptor (ER), progesterone receptor (PR) and human epithelial growth factor receptor 2 (HER2). The maximum standardized uptake value (SUV max ) of the primary breast tumor was measured and compared with hormonal receptor and HER2 overexpression status. The high SUV max of primary breast tumors is significantly correlated with the clinicopathological factors: tumor size, histologic grade, TNM stage, negativity of ER, negativity of PR, HER2 overexpression and triple negativity. The recurrent group with non-triple negative cancer had a higher SUV max compared with the non-recurrent group, though no significant difference in FDG uptake was noted between the recurrence and non-recurrent groups in subjects with triple-negative cancer. Lymph node involvement was the independent risk factor for cancer recurrence in the multivariate analysis. In conclusion, high FDG uptake in primary breast tumors is significantly correlated with clinicopathological factors, such as tumor size, histologic grade, TNM stage, negativity of the hormonal receptor, HER2 overexpression and triple negativity. Therefore, FDG PET/CT is a helpful prognostic tool to direct the further management of patients with breast cancer

  16. Radiologic Imaging Findings of Bilateral Infiltrating Pseudoangiomatous Stromal Hyperplasia of the Breasts:A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Go, Hee Sun; Jeh, Su Kyung [Dept. of Radiology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul (Korea, Republic of)

    2013-04-15

    Pseudoangiomatous stromal hyperplasia (PASH), a rare benign lesion, shows the proliferation of the breast stromal tissue mimicking the low grade angiosarcoma (1-7). The most common mammographic and ultrasound finding of PASH is a circumscribed mass without calcification and it is difficult to distinguish from the phyllodes tumor and fibroadenoma (1-4, 8). Up to our knowledge, PASH presenting as rapid bilateral breast enlargement, as seen in our case, is very rare. In addition, several English medical literature were reported in this kind of manifestation of PASH (3, 4, 8). We described imaging findings of diffuse, infiltrating, and bilateral manifectation of PASH.

  17. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    Science.gov (United States)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  18. Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2015-06-01

    Full Text Available OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB, which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2+ breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2 were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105 across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05; interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001. Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05 in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2+ breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.

  19. Reduction mammaplasty and radiation therapy can allow breast conservation in patients with breast cancers not initially treatable by tumor-ectomy

    International Nuclear Information System (INIS)

    Otmezguine, Y.; Calitchi, E.; Cothier, I.; Feuilhade, F.; Le Bourgeois, J.P.; Baruch, J.

    1997-01-01

    A protocol combining reduction mammaplasty (RM) and radiation therapy was developed as an alternative of mastectomy in patients with breast cancers larger than 3 cm in diameter. This protocol was used in 51 patients between 1983 and 1990. Indications were extensive microcalcifications (n = 17; 33 %) ; residual tumor after neo-adjuvant therapy larger than 4 cm in diameter (n 18 ; 35 %); extensive DCIS (n = 4; 8 %) or tumor located within an area of fibrocystic disease (n = 6; 12 %); presence of a bifocal lesion (n = 12 %. area of fibrocystic disease (n = 6; 12 %); and presence of bifocal lesion (n 6; 12 %). Surgery consisted of tumor-ectomy removing a wide margin of skin and mammary gland, followed by immediate remodeling of the breast, same-side axillary node clearance, and symmetrization of the other breast. A radiation dose of 45 Gy was delivered to the entire mammary gland. Adjuvant therapy was given before and/or after therapy according to the institution's routine breast cancer protocol. During the mean follow-up of 8.1 years, four patients (8 %) developed a local recurrence, which has treated surgically. The five-year disease-free survival rate was 76 %. The cosmetic result was good or very good in 78% of cases. RM plus RT is a reasonable alternative to mastectomy in patients with large breast cancers, although further work is needed to refine its indications. (authors)

  20. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography

    International Nuclear Information System (INIS)

    Lee, Byung Il; Oh, Suk Hoon; Kim, Tae-Seong; Woo, Eung Je; Lee, Soo Yeol; Kwon, Ohin; Seo, Jin Keun

    2006-01-01

    We present a new medical imaging technique for breast imaging, breast MREIT, in which magnetic resonance electrical impedance tomography (MREIT) is utilized to get high-resolution conductivity and current density images of the breast. In this work, we introduce the basic imaging setup of the breast MREIT technique with an investigation of four different imaging configurations of current-injection electrode positions and pathways through computer simulation studies. Utilizing the preliminary findings of a best breast MREIT configuration, additional numerical simulation studies have been carried out to validate breast MREIT at different levels of SNR. Finally, we have performed an experimental validation with a breast phantom on a 3.0 T MREIT system. The presented results strongly suggest that breast MREIT with careful imaging setups could be a potential imaging technique for human breast which may lead to early detection of breast cancer via improved differentiation of cancerous tissues in high-resolution conductivity images