WorldWideScience

Sample records for breast tomosynthesis system

  1. Three-dimensional linear system analysis for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhao, Wei

    2008-01-01

    The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly

  2. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  3. Measurements of system sharpness for two digital breast tomosynthesis systems.

    Science.gov (United States)

    Marshall, N W; Bosmans, H

    2012-11-21

    The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF(0.50)) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm(-1) for the Inspiration system and from 2.50 to 1.20 mm(-1) for the Dimensions unit. The maximum deviation of measured MTF(0.50) from the calculated value was 13%. MTF(0.50) measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm(-1) for the Inspiration system and from 2.21 to 1.31 mm(-1) for the Dimensions system. The full-width half-maximum for the in

  4. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    Science.gov (United States)

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  5. Quality control in breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jakubiak, R.R.; Messias, P.C.; Santos, M.F., E-mail: requi@utfpr.edu.br [Universidade Tecnologia Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica; Urban, L.A.B.D., E-mail: lineiurban@hotmail.com [Diagnostico Avancado por Imagem, Curitiba, PR (Brazil)

    2015-07-01

    In Brazil, breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Digital Breasts Tomosynthesis (DBT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared with mammography. This study presents results of Contrast to Noise Ratio (CNR) and image quality evaluation on Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CNR was determined with Polymethylmethacrylate (PMMA) layers of 20 to 70 mm thick and an aluminum foils of 0,2 mm thickness and area of 10 mm². Image quality was assessed with the ACR Breast Simulator. In the evaluation of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Displaying fibers were 4,5 and 4 mass in both modes. In 2D mode were identified 3,5 microcalcifications groups, and 3D showed 3 groups. The Mean Glandular Dose (MGD) for the simulator in 2D mode was 1,17 mGy and 2,35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CNR values, ensuring image quality and compatible dose in 2D and 3D processes. (author)

  6. Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector

    Science.gov (United States)

    Ren, Baorui; Ruth, Chris; Stein, Jay; Smith, Andrew; Shaw, Ian; Jing, Zhenxue

    2005-04-01

    We have developed a breast tomosynthesis system utilizing a selenium-based direct conversion flat panel detector. This prototype system is a modification of Selenia, Hologic"s full field digital mammography system, using an add-on breast holding device to allow 3D tomosynthetic imaging. During a tomosynthesis scan, the breast is held stationary while the x-ray source and detector mounted on a c-arm rotate continuously around the breast over an angular range up to 30 degrees. The x-ray tube is pulsed to acquire 11 projections at desired c-arm angles. Images are reconstructed in planes parallel to the breastplate using a filtered backprojection algorithm. Processing time is typically 1 minute for a 50 mm thick breast at 0.1 mm in-plane pixel size, 1 mm slice-to-slice separation. Clinical studies are in progress. Performance evaluations were carried out at the system and the subsystem levels including spatial resolution, signal-to-noise ratio, spectra optimization, imaging technique, and phantom and patient studies. Experimental results show that we have successfully built a tomosynthesis system with images showing less structure noise and revealing 3D information compared with the conventional mammogram. We introduce, for the first time, the definition of "Depth of Field" for tomosynthesis based on a spatial resolution study. This parameter is used together with Modulation Transfer Function (MTF) to evaluate 3D resolution of a tomosynthesis system as a function of system design, imaging technique, and reconstruction algorithm. Findings from the on-going clinical studies will help the design of the next generation tomosynthesis system offering improved performance.

  7. Design and feasibility studies of a stationary digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G., E-mail: yangg@email.unc.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Qian, X. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Phan, T. [Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Sprenger, F. [XinRay Systems LLC, Research Triangle Park, NC 27709 (United States); Sultana, S.; Calderon-Colon, X. [Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kearse, B.; Spronk, D. [XinRay Systems LLC, Research Triangle Park, NC 27709 (United States); Lu, J. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Zhou, O., E-mail: zhou@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2011-08-21

    Studies have shown that digital breast tomosynthesis (DBT) can improve breast cancer diagnosis by reconstructing 3D images. However, DBT scanners based on rotation gantry prolong the imaging time and reduce spatial resolution due to motion comparing with the regular two-view mammography. To obtain three dimension reconstruction images and maintain the high image quality of conventional mammography, we proposed a prototype stationary digital breast tomosynthesis system (s-DBT). The proposed s-DBT system acquires projection images without mechanical movement. The core component of the s-DBT system is a specially designed spatially distributed multi-beam X-ray tube based on the carbon nanotube field emission X-ray technology. The multi-beam X-ray source array enables collection of all projection images from different viewing angles without mechanical motion. Preliminary results show the s-DBT system can achieve a scan time comparable with the regular two-view mammography, and improve the spatial resolution comparing with rotating gantry DBT.

  8. Investigation of the Z-axis resolution of breast tomosynthesis mammography systems

    Science.gov (United States)

    Zhang, Yiheng; Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Ge, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan

    2007-03-01

    Digital Tomosynthesis Mammography (DTM) is a promising modality that can improve breast cancer detection. DTM acquires low-dose mammograms at a number of projection angles over a limited angular range and reconstructs the 3D breast volume. DTM can provide depth information to separate overlapping breast tissues occurred in conventional mammograms, thereby facilitating detection of subtle lesions. In this work, we investigated the impact of the imaging parameters and reconstruction methods on the Z-axis resolution in DTM systems. The Z-axis resolution represents the ability of the DTM system to distinguish adjacent objects along the depth direction. A DTM system with variable image acquisition parameters was modeled. In this preliminary study, a computer phantom containing a high-density point object embedded in an air volume was used. We simulated a range of DTM conditions by generating an appropriate number of PV images in 3° increments covering a total tomosynthesis angle from +/-15° to +/-30°. The Simultaneous Algebraic Reconstruction Technique (SART) was used for reconstruction of the imaged volume from the noise-free projection data and the results were compared to those of back-projection method. Vertical line profiles along the Z-axis and through the object center were extracted from the reconstructed volume and the full-width-at-half-maximum (FWHM) of the normalized intensity profile was used to evaluate the Z-axis resolution. Preliminary results demonstrated that while the Z-axis resolution remains almost constant as a function of depth within a 5-cm-thick volume, it is strongly affected by the PV angular range such that the depth resolution improves with increasing total tomosynthesis angle. The depth resolution also depends on the reconstruction algorithm employed; the SART method is superior to the simple back-projection method in terms of depth resolution.

  9. Digital breast tomosynthesis; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Haegele, Julian; Barkhausen, Joerg [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Pursche, Telja [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Brustzentrum; Schaefer, Fritz K.W. [Universtiaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Intervention

    2015-09-15

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  10. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    Science.gov (United States)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x

  11. Validation of mean glandular dose values provided by a digital breast tomosynthesis system in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Beraldo O, B.; Paixao, L.; Donato da S, S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations Minerals and Materials, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil); Araujo T, M. H. [Dr Maria Helena Araujo Teixeira Clinic, Guajajaras 40, 30180-100 Belo Horizonte (Brazil); Nogueira, M. S., E-mail: bbo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil)

    2014-08-15

    Digital breast tomosynthesis (DBT) is an emerging imaging modality that provides quasi-three-dimensional structural information of the breast and has strong promise to improve the differentiation of normal tissue and suspicious masses reducing the tissue overlaps. DBT images are reconstructed from a sequence of low-dose X-ray projections of the breast acquired at a small number of angles over a limited angular range. The Ho logic Selen ia Dimensions system is equipped with an amorphous Selenium (a-Se) detector layer of 250 μm thickness and a 70 μm pixel pitch. Studies are needed to determine the radiation dose of patients that are undergoing this emerging procedure to compare with the results obtained in DBT images. The mean glandular dose (D{sub G}) is the dosimetric quantity used in quality control of the mammographic systems. The aim of this work is to validate D{sub G} values for different breast thicknesses provided by a Ho logic Selen ia Dimensions system using a DBT mode in comparison with the same results obtained by a calibrated 90 X 5-6M-model Radcal ionization chamber. D{sub G} values were derived from the incident air kerma (K{sub i}) measurements and tabulated conversion coefficients that are dependent on the half value layer (HVL) of the X-ray spectrum. Voltage and tube loading values were recorded in irradiations using W/Al anode/filter combination, automatic exposure control mode and polymethyl methacrylate (PMMA) slabs which simulate different breast thicknesses. For K{sub i} measurements, the ionization chamber was positioned at 655 mm from the focus and the same radiographic technique values were selected with the manual mode. D{sub G} values for a complete procedure ranged from 0.9 ± 0.1 to 3.7 ± 0.4 mGy. The results for different breast thicknesses are in accordance with values obtained by DBT images and with acceptable levels established by the Commission of the European Communities (Cec) and the International Atomic Energy Agency (IAEA

  12. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Dragana Roganovic

    2015-11-01

    Full Text Available Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI, digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities.  We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p < 0.001, while the difference between breast tomosynthesis and breast MRI was not significant (p = 0.20. 

  13. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Directory of Open Access Journals (Sweden)

    Krithika Rangarajan

    2016-01-01

    Full Text Available Context: Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? Aims: To study the impact of digital breast tomosynthesis (DBT in characterizing lesions in breasts of different mammographic densities. Settings and Design: Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Methods and Material: Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS categories 0, 3, 4, or 5 on two-dimensional (2D mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR. Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging. Each lesion was categorized into 3 groups—superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. Results: There were 260 lesions (ages 28–85. Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. Conclusions: In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  14. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhou, Jun; Hu, Yue-Houng; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao, Wei

    2009-01-01

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2×1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20°. The images were reconstructed using a slice thickness of 1 mm with 0.085×0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion. PMID:19235392

  15. Stereoscopic interpretation of low-dose breast tomosynthesis projection images.

    Science.gov (United States)

    Muralidhar, Gautam S; Markey, Mia K; Bovik, Alan C; Haygood, Tamara Miner; Stephens, Tanya W; Geiser, William R; Garg, Naveen; Adrada, Beatriz E; Dogan, Basak E; Carkaci, Selin; Khisty, Raunak; Whitman, Gary J

    2014-04-01

    The purpose of this study was to evaluate stereoscopic perception of low-dose breast tomosynthesis projection images. In this Institutional Review Board exempt study, craniocaudal breast tomosynthesis cases (N = 47), consisting of 23 biopsy-proven malignant mass cases and 24 normal cases, were retrospectively reviewed. A stereoscopic pair comprised of two projection images that were ±4° apart from the zero angle projection was displayed on a Planar PL2010M stereoscopic display (Planar Systems, Inc., Beaverton, OR, USA). An experienced breast imager verified the truth for each case stereoscopically. A two-phase blinded observer study was conducted. In the first phase, two experienced breast imagers rated their ability to perceive 3D information using a scale of 1-3 and described the most suspicious lesion using the BI-RADS® descriptors. In the second phase, four experienced breast imagers were asked to make a binary decision on whether they saw a mass for which they would initiate a diagnostic workup or not and also report the location of the mass and provide a confidence score in the range of 0-100. The sensitivity and the specificity of the lesion detection task were evaluated. The results from our study suggest that radiologists who can perceive stereo can reliably interpret breast tomosynthesis projection images using stereoscopic viewing.

  16. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk, E-mail: radiosugar@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Ye-Seul, E-mail: radiohesugar@gmail.com [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Choi, Young-Wook, E-mail: ywchoi@keri.re.kr [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Choi, JaeGu, E-mail: jgchoi88@paran.com [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Rhee, Yong-Chun, E-mail: ycrhee@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of)

    2014-11-01

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging.

  17. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    Science.gov (United States)

    Helvie, Mark A.

    2011-01-01

    Synopsis This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are confirmed by clinical trials. PMID:20868894

  18. Quantification of resolution in multiplanar reconstructions for digital breast tomosynthesis

    Science.gov (United States)

    Vent, Trevor L.; Acciavatti, Raymond J.; Kwon, Young Joon; Maidment, Andrew D. A.

    2016-03-01

    Multiplanar reconstruction (MPR) in digital breast tomosynthesis (DBT) allows tomographic images to be portrayed in various orientations. We have conducted research to determine the resolution of tomosynthesis MPR. We built a phantom that houses a star test pattern to measure resolution. This phantom provides three rotational degrees of freedom. The design consists of two hemispheres with longitudinal and latitudinal grooves that reference angular increments. When joined together, the hemispheres form a dome that sits inside a cylindrical encasement. The cylindrical encasement contains reference notches to match the longitudinal and latitudinal grooves that guide the phantom's rotations. With this design, any orientation of the star-pattern can be analyzed. Images of the star-pattern were acquired using a DBT mammography system at the Hospital of the University of Pennsylvania. Images taken were reconstructed and analyzed by two different methods. First, the maximum visible frequency (in line pairs per millimeter) of the star test pattern was measured. Then, the contrast was calculated at a fixed spatial frequency. These analyses confirm that resolution decreases with tilt relative to the breast support. They also confirm that resolution in tomosynthesis MPR is dependent on object orientation. Current results verify that the existence of super-resolution depends on the orientation of the frequency; the direction parallel to x-ray tube motion shows super-resolution. In conclusion, this study demonstrates that the direction of the spatial frequency relative to the motion of the x-ray tube is a determinant of resolution in MPR for DBT.

  19. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  20. Evaluation of the technical performance of three different commercial digital breast tomosynthesis systems in the clinical environment.

    Science.gov (United States)

    Rodríguez-Ruiz, A; Castillo, M; Garayoa, J; Chevalier, M

    2016-06-01

    The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the detector, the automatic exposure control, and the resolution of DBT projections and reconstructed planes. The modulation transfer function (MTF) of the DBT projections was measured with a 1mm thick steel edge, showing a strong anisotropy (30-40% lower MTF0.5 frequencies in the tube travel direction). The in-plane MTF0.5, measured with a 25μm tungsten wire, ranges from 1.3 to 1.8lp/mm in the tube-travel direction and between 2.4 and 3.7lp/mm in the chest wall-nipple. In the latter direction, the MTF peak shift is more emphasized for large angular range systems (2.0 versus 1.0lp/mm). In-depth resolution of the planes, via the full width at half maximum (FWHM) from the point spread function of a 25μm tungsten wire, is not only influenced by angular range and yields 1.3-4.6mm among systems. The artifact spread function from 1mm diameter tungsten beads depends mainly on angular range, yielding two tendencies whether large (FWHM is 4.5mm) or small (FWHM is 10mm) angular range is used. DBT delivers per scan a mean glandular dose between 1.4 and 2.7mGy for a 45mm thick polymethyl methacrylate (PMMA) block. In conclusion, we have identified and analysed specific metrics that can be used for quality assurance of DBT systems.

  1. Clinical benefits of combined diagnostic three-dimensional digital breast tomosynthesis and ultrasound imaging

    Science.gov (United States)

    Varjonen, Mari; Pamilo, Martti; Raulisto, Leena

    2005-04-01

    Our goal is to evaluate diagnostic digital breast tomosynthesis and ultrasound imaging clinical value in detecting and diagnosing early stage breast cancers. Determine if fusion imaging would decrease the number of biopsies and reduce further patient workup otherwise required to establish a definitive diagnosis. This paper presents the clinical results based on the study conducted at Helsinki University Central Hospital. Presentation demonstrates clinical dual modality images and results. Tomosynthesis of amorphous selenium based full field digital mammography system will be also presented. Forty asymptomatic women enrolled in the study based on prior identification of suspicious findings on screening mammograms where the possibility of breast cancer could not be excluded. Abnormal screening mammogram findings included tumor-like densities, parenchymal asymmetries and architectural distortions. Eight women were operated and 32 were not referred for surgery. Those cases, which were operated, three lesions represented ductal carcinoma in situ, two ductal carcinomas, one atypical ductal hyperplasia, one fibroadenoma and one radial scar. The 32 not operated cases revealed to be benign or superimposition of normal parenchymal breast tissue. The cases were returned to biennial screening. Ultrasound did not show clearly any lesions, but using tomosynthesis and ultrasound together we were able to analyze and locate the lesions exactly. Special tomosynthesis improves overall lesion detection and analysis. The value of tomosynthesis and ultrasound fusion imaging will be to provide additional clinical information in order to improve decision making accuracy to either confirm or exclude a suspected abnormality and in particular detect small breast cancers.

  2. Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223.

    Science.gov (United States)

    Sechopoulos, Ioannis; Sabol, John M; Berglund, Johan; Bolch, Wesley E; Brateman, Libby; Christodoulou, Emmanuel; Flynn, Michael; Geiser, William; Goodsitt, Mitchell; Jones, A Kyle; Lo, Joseph Y; Maidment, Andrew D A; Nishino, Kazuyoshi; Nosratieh, Anita; Ren, Baorui; Segars, W Paul; Von Tiedemann, Miriam

    2014-09-01

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  3. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis, E-mail: isechop@emory.edu [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sabol, John M. [GE Healthcare, Global Diagnostic X-Ray, Mailstop W-701, 3000 North Grandview Boulevard, Waukesha, Wisconsin 53188 (United States); Berglund, Johan [Research and Development, Philips Women' s Healthcare, Solna (Sweden); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Brateman, Libby [University of Florida, Gainesville, Florida 32611 (United States); Christodoulou, Emmanuel; Goodsitt, Mitchell [Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Flynn, Michael [Department of Radiology, Henry Ford Health System, Radiology Research 2F, 1 Ford Place, Detroit, Michigan 48202 (United States); Geiser, William [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Kyle Jones, A. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lo, Joseph Y.; Paul Segars, W. [Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206 (United States); Nishino, Kazuyoshi [R and D X-ray Products Group, Shimadzu Corporation, Tokyo (Japan); Nosratieh, Anita [Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817 (United States); and others

    2014-09-15

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  4. Characterization of Breast Lesions: Comparison of Digital Breast Tomosynthesis and Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ah [Department of Radiology, Human Medical Imaging & Intervention Center, Seoul 135-120 (Korea, Republic of); Chang, Jung Min; Cho, Nariya [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Yi, Ann [Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul 135-984 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and conventional breast ultrasound (US) to characterize breast lesions as benign or malignant. A total of 332 women, presenting for screening examinations or for breast biopsy between March and June 2012 were recruited to undergo digital mammography (DM), DBT, and breast US examination. Among them, 113 patients with 119 breast lesions depicted on DM were finally included. Three blinded radiologists performed an enriched reader study and reviewed the DBT and US images. Each reader analyzed the lesions in random order, assigned Breast Imaging Reporting and Data System (BI-RADS) descriptors, rated the images for the likelihood of malignancy (%) and made a BI-RADS final assessment. Diagnostic accuracy, as assessed by the area under the receiver operating characteristic curve, sensitivity, and specificity of DBT and US were compared. Among the 119 breast lesions depicted on DM, 75 were malignant and the remaining 44 were benign. The average diagnostic performance for characterizing breast lesions as benign or malignant in terms of area under the curve was 0.899 for DBT and 0.914 for US (p = 0.394). Mean sensitivity (97.3% vs. 98.7%, p = 0.508) and specificity (44.7% vs. 39.4%, p = 0.360) were also not significantly different. Digital breast tomosynthesis may provide similar reader lesion characterization performance to that of US for breast lesions depicted on DM.

  5. Optimization of Breast Tomosynthesis Imaging Systems for Computer-Aided Detection

    Science.gov (United States)

    2011-05-01

    digital mammography have been used for over 30 years in the early detection of cancer . The combination of screening and adjuvant therapies have led to...a decrease in the mortality rate from breast cancer [1]. Because mammography projects a three-dimensional object onto a two-dimensional surface...Update from 2009 [25]. A.3. Angle-dependent detector response: Two different detectors were modeled: gadolinium oxysulfide (Gd2O2S) and cesium iodide

  6. Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach

    Science.gov (United States)

    Hu, Yue-Houng; Zhao, Bo; Zhao, Wei

    2008-01-01

    Digital breast tomosynthesis (DBT) is a three-dimensional (3D) x-ray imaging modality that reconstructs image slices parallel to the detector plane. Image acquisition is performed using a limited angular range (less than 50 degrees) and a limited number of projection views (less than 50 views). Due to incomplete data sampling, image artifacts are unavoidable in DBT. In this preliminary study, the image artifacts in DBT were investigated systematically using a linear system approximation. A cascaded linear system model of DBT was developed to calculate the 3D presampling modulation transfer function (MTF) with different image acquisition geometries and reconstruction filters using a filtered backprojection (FBP) algorithm. A thin, slanted tungsten (W) wire was used to measure the presampling MTF of the DBT system in the cross-sectional plane defined by the thickness (z-) and tube travel (x-) directions. The measurement was in excellent agreement with the calculation using the model. A small steel bead was used to calculate the artifact spread function (ASF) of the DBT system. The ASF was correlated with the convolution of the two-dimensional (2D) point spread function (PSF) of the system and the object function of the bead. The results showed that the cascaded linear system model can be used to predict the magnitude of image artifacts of small, high-contrast objects with different image acquisition geometry and reconstruction filters. PMID:19175083

  7. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [SUNY Stony Brook (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  8. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    Science.gov (United States)

    2008-06-01

    other peer-reviewed papers in Medical Physics (reportable outcomes #4 and 5) in conjunction with Duke collaborators in 2007. Task 3. Evaluate...Lo, “Automated Breast Mass Detection in 3D Reconstructed Tomosynthesis Volumes: A Featureless Approach,” Accepted in Medical Physics in June 2008...Evaluation of Information- Theoretic Similarity Measures for Content Based Retrieval and Detection of Masses in Mammograms,” Medical Physics , January 2007

  9. Dynamic Contrast-Enhanced Digital Breast Tomosynthesis

    Science.gov (United States)

    2013-03-01

    two papers accepted to Medical Physics ), we spent considerable time and effort to understand the implications of these changes. The details of...Acquisition Geometry and Reconstruction Parameters in Tomosynthesis. Submitted to Medical Physics for peer-review, June 2013 Brian C. Lee BS, Susan...Kao YH, Albert M, et al. Validation of MTF measurement for digital mammography quality control. Medical Physics . 2005;32(6):1684-95. 6. Kao Y-H

  10. Average glandular dose in digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Olgar, T. [Ankara Univ. (Turkey). Dept. of Engineering Physics; Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Kahn, T.; Gosch, D. [Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2012-10-15

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  11. Optimization of digital breast tomosynthesis using the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewon; Min, Jonghwan; Cho, Seungryong [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering

    2011-07-01

    Digital breast tomosynthesis (DBT) has been demonstrated to be a promising technique in early breast cancer detection. The DBT performance is generally affected by many factors including scanning parameters such as limited angle and limited dose value, and reconstruction method. Many investigators have studied the effects of those factors on image quality of DBT, and optimized the factors accordingly. The suggested scanning parameters, however, vary widely among the investigators. Optimization in DBT can be challenging partly due to the large number of parameters that are involved in the optimization, and also due to diverse imaging tasks under consideration. In this work, we propose an optimization method for DBT based on the Taguchi design-of-experiment method. It should be noted that we are not searching for a universal, optimum DBT technique, which we believe is very difficult if not impossible, but instead we would like to demonstrate that the Taguchi method provides an efficient and systematic way of optimizing many parameters for a given DBT system and a given imaging task. As a preliminary, we conducted a numerical simulation study, and showed that the Taguchi method effectively selected the (near-) optimum parameters for a mass detection task. (orig.)

  12. Breast mass detection in tomosynthesis projection images using information-theoretic similarity measures

    Science.gov (United States)

    Singh, Swatee; Tourassi, Georgia D.; Lo, Joseph Y.

    2007-03-01

    The purpose of this project is to study Computer Aided Detection (CADe) of breast masses for digital tomosynthesis. It is believed that tomosynthesis will show improvement over conventional mammography in detection and characterization of breast masses by removing overlapping dense fibroglandular tissue. This study used the 60 human subject cases collected as part of on-going clinical trials at Duke University. Raw projections images were used to identify suspicious regions in the algorithm's high-sensitivity, low-specificity stage using a Difference of Gaussian (DoG) filter. The filtered images were thresholded to yield initial CADe hits that were then shifted and added to yield a 3D distribution of suspicious regions. These were further summed in the depth direction to yield a flattened probability map of suspicious hits for ease of scoring. To reduce false positives, we developed an algorithm based on information theory where similarity metrics were calculated using knowledge databases consisting of tomosynthesis regions of interest (ROIs) obtained from projection images. We evaluated 5 similarity metrics to test the false positive reduction performance of our algorithm, specifically joint entropy, mutual information, Jensen difference divergence, symmetric Kullback-Liebler divergence, and conditional entropy. The best performance was achieved using the joint entropy similarity metric, resulting in ROC A z of 0.87 +/- 0.01. As a whole, the CADe system can detect breast masses in this data set with 79% sensitivity and 6.8 false positives per scan. In comparison, the original radiologists performed with only 65% sensitivity when using mammography alone, and 91% sensitivity when using tomosynthesis alone.

  13. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  14. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  15. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm‑1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  16. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm(-1)) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  17. Voting strategy for artifact reduction in digital breast tomosynthesis.

    Science.gov (United States)

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  18. Potential impact of tomosynthesis on the detection and diagnosis of breast lesi

    Directory of Open Access Journals (Sweden)

    Tamer F. Taha Ali

    2016-03-01

    Conclusion: Breast tomosynthesis is a promising technology that offers improved diagnostic and screening accuracy, fewer recalls as well as 3D lesion localization. Lesion conspicuity is improved using DBT compared with FFDM with a more confidence in making clinical decisions.

  19. The effect of system geometry and dose on the threshold detectable calcification diameter in 2D-mammography and digital breast tomosynthesis

    Science.gov (United States)

    Hadjipanteli, Andria; Elangovan, Premkumar; Mackenzie, Alistair; Looney, Padraig T.; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2017-02-01

    Digital breast tomosynthesis (DBT) is under consideration to replace or to be used in combination with 2D-mammography in breast screening. The aim of this study was the comparison of the detection of microcalcification clusters by human observers in simulated breast images using 2D-mammography, narrow angle (15°/15 projections) and wide angle (50°/25 projections) DBT. The effects of the cluster height in the breast and the dose to the breast on calcification detection were also tested. Simulated images of 6 cm thick compressed breasts were produced with and without microcalcification clusters inserted, using a set of image modelling tools for 2D-mammography and DBT. Image processing and reconstruction were performed using commercial software. A series of 4-alternative forced choice (4AFC) experiments was conducted for signal detection with the microcalcification clusters as targets. Threshold detectable calcification diameter was found for each imaging modality with standard dose: 2D-mammography: 2D-mammography (165  ±  9 µm), narrow angle DBT (211  ±  11 µm) and wide angle DBT (257  ±  14 µm). Statistically significant differences were found when using different doses, but different geometries had a greater effect. No differences were found between the threshold detectable calcification diameters at different heights in the breast. Calcification clusters may have a lower detectability using DBT than 2D imaging.

  20. Breast Cancers Found with Digital Breast Tomosynthesis: A Comparison of Pathology and Histologic Grade.

    Science.gov (United States)

    Wang, Wei-Shin; Hardesty, Lara; Borgstede, James; Takahashi, Jayme; Sams, Sharon

    2016-11-01

    To compare the pathology and histologic grading of breast cancers detected with digital breast tomosynthesis to those found with conventional digital mammography. The institutional review board approved this study. A database search for all breast cancers diagnosed from June 2012 through December 2013 was performed. Imaging records for these cancers were reviewed and patients who had screening mammography with tomosynthesis as their initial examination were selected. Five dedicated breast imaging radiologists reviewed each of these screening mammograms to determine whether the cancer was visible on conventional digital mammography or whether tomosynthesis was needed to identify the cancer. A cancer was considered mammographically occult if all five radiologists agreed that the cancer could not be seen on conventional digital mammography. The size, pathology and histologic grading for all diagnosed breast cancers were then reviewed. The Mann-Whitney U and Fisher exact tests were utilized to determine any association between imaging findings and cancer size, pathologic type and histologic grade. Sixty-five cancers in 63 patients were identified. Ten of these cancers were considered occult on conventional digital mammography and detected with the addition of tomosynthesis. These mammographically occult cancers were significantly associated with Nottingham grade 1 histologic pathology (p = 0.02), were smaller (median size: 6 mm versus 10 mm, p = 0.07) and none demonstrated axillary nodal metastases. Breast cancers identified through the addition of tomosynthesis are associated with Nottingham grade 1 histologic pathology and prognostically more favorable than cancers identified with conventional digital mammography alone.

  1. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Schleede, Simone, E-mail: Schleede@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Bech, Martin, E-mail: martin.bech@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Medical Radiation Physics, Lund University, 22185 Lund (Sweden); Grandl, Susanne, E-mail: Susanne.Grandl@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Sztrókay, Aniko, E-mail: Aniko.Sztrokay@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Herzen, Julia, E-mail: julia.herzen@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Mayr, Doris, E-mail: doris.mayr@med.uni-muenchen.de [Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337 Munich (Germany); Stockmar, Marco, E-mail: marco.stockmar@ph.tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Potdevin, Guillaume, E-mail: potdevinguillaume@gmail.com [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); and others

    2014-03-15

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  2. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle, E-mail: isabelle.thomassin@tnn.aphp.fr [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); INSERM, UMR970, Equipe 2, Imagerie de l’angiogenèse, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Perrot, Nicolas [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Centre Pyramides, Paris (France); Dechoux, Sophie [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Ribeiro, Carine [Centre Pyramides, Paris (France); Chopier, Jocelyne [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Bazelaire, Cedric de [APHP, Department of Radiology, Hôpital Saint Louis, 75010 Paris (France)

    2015-02-15

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  3. Molecular breast tomosynthesis with scanning focus multi-pinhole cameras

    Science.gov (United States)

    van Roosmalen, Jarno; Goorden, Marlies C.; Beekman, Freek J.

    2016-08-01

    Planar molecular breast imaging (MBI) is rapidly gaining in popularity in diagnostic oncology. To add 3D capabilities, we introduce a novel molecular breast tomosynthesis (MBT) scanner concept based on multi-pinhole collimation. In our design, the patient lies prone with the pendant breast lightly compressed between transparent plates. Integrated webcams view the breast through these plates and allow the operator to designate the scan volume (e.g. a whole breast or a suspected region). The breast is then scanned by translating focusing multi-pinhole plates and NaI(Tl) gamma detectors together in a sequence that optimizes count yield from the volume-of-interest. With simulations, we compared MBT with existing planar MBI. In a breast phantom containing different lesions, MBT improved tumour-to-background contrast-to-noise ratio (CNR) over planar MBI by 12% and 111% for 4.0 and 6.0 mm lesions respectively in case of whole breast scanning. For the same lesions, much larger CNR improvements of 92% and 241% over planar MBI were found in a scan that focused on a breast region containing several lesions. MBT resolved 3.0 mm rods in a Derenzo resolution phantom in the transverse plane compared to 2.5 mm rods distinguished by planar MBI. While planar MBI cannot provide depth information, MBT offered 4.0 mm depth resolution. Our simulations indicate that besides offering 3D localization of increased tracer uptake, multi-pinhole MBT can significantly increase tumour-to-background CNR compared to planar MBI. These properties could be promising for better estimating the position, extend and shape of lesions and distinguishing between single and multiple lesions.

  4. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, O. [The University of North Carolina at Chapel Hill (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  5. Image performance of a new amorphous selenium flat panel x-ray detector designed for digital breast tomosynthesis

    Science.gov (United States)

    Cheung, L. K.; Jing, Z.; Bogdanovich, S.; Golden, K.; Robinson, S.; Beliaevskaia, E.; Parikh, S.

    2005-04-01

    The purpose of this work is to report the performance of an amorphous selenium (a-Se) based flat-panel x-ray imager under development for application in digital breast tomosynthesis. This detector is designed to perform both in the conventional Full Field Digital Mammography (FFDM) mode and the tomosynthesis mode. The large area 24 x 29 cm detector achieves rapid image acquisition rates of up to 4 frames per second with minimal trapped charge induced effects such as ghost or lag images of previously acquired objects. In this work, a new a-Se/TFT detector layer structure is evaluated. The design uses a top conductive layer in direct contact with the a-Se x-ray detection layer. The simple structure has few layers and minimal hole and electron trapping effects. Prototype detectors were built to investigate the basic image performance of this new a-Se/TFT detector. Image signal generation, image ghosting, image lag, and detector DQE were studied. For digital mammography applications, the residual image ghosting was less than 1% at 30 seconds elapsed time. DQE, measured at a field of 5.15 V/um, showed significantly higher values over previously reported data, especially at low exposure levels. For digital breast tomosynthesis, the image lag at dynamic readout rate was < 0.6 % at 0.5-second elapsed time. A prototype tomosynthesis system is being developed utilizing this new a-Se/TFT detector.

  6. A parameterization method and application in breast tomosynthesis dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized using a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA

  7. A task-based comparison of two reconstruction algorithms for digital breast tomosynthesis

    Science.gov (United States)

    Mahadevan, Ravi; Ikejimba, Lynda C.; Lin, Yuan; Samei, Ehsan; Lo, Joseph Y.

    2014-03-01

    Digital breast tomosynthesis (DBT) generates 3-D reconstructions of the breast by taking X-Ray projections at various angles around the breast. DBT improves cancer detection as it minimizes tissue overlap that is present in traditional 2-D mammography. In this work, two methods of reconstruction, filtered backprojection (FBP) and the Newton-Raphson iterative reconstruction were used to create 3-D reconstructions from phantom images acquired on a breast tomosynthesis system. The task based image analysis method was used to compare the performance of each reconstruction technique. The task simulated a 10mm lesion within the breast containing iodine concentrations between 0.0mg/ml and 8.6mg/ml. The TTF was calculated using the reconstruction of an edge phantom, and the NPS was measured with a structured breast phantom (CIRS 020) over different exposure levels. The detectability index d' was calculated to assess image quality of the reconstructed phantom images. Image quality was assessed for both conventional, single energy and dual energy subtracted reconstructions. Dose allocation between the high and low energy scans was also examined. Over the full range of dose allocations, the iterative reconstruction yielded a higher detectability index than the FBP for single energy reconstructions. For dual energy subtraction, detectability index was maximized when most of the dose was allocated to the high energy image. With that dose allocation, the performance trend for reconstruction algorithms reversed; FBP performed better than the corresponding iterative reconstruction. However, FBP performance varied very erratically with changing dose allocation. Therefore, iterative reconstruction is preferred for both imaging modalities despite underperforming dual energy FBP, as it provides stable results.

  8. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.

    Science.gov (United States)

    Samei, Ehsan; Saunders, Robert S

    2011-10-07

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 µm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 µm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  9. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

    Science.gov (United States)

    Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P; Karellas, Andrew; Pogue, Brian W; Paulsen, Keith D

    2015-12-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results.

  10. A second pass correction method for calcification artifacts in digital breast tomosynthesis

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Nielsen, T.

    2011-01-01

    Digital breast tomosynthesis (DBT) aims for improving the diagnosis of breast cancer and reducing the false positive rates by going from 2D projection mammography to 3D volume information. With the acquisition of a series of projection images, taken over a limited angular range, DBT allows for tomog

  11. Quality control in breast tomosynthesis; Controle de qualidade em tomossintese mamaria

    Energy Technology Data Exchange (ETDEWEB)

    Jakubiak, Rosangela Requi; Messias, Pricila Cordeiro; Santos, Marilia Fernanda, E-mail: requi@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Urban, Linei Augusta B.D., E-mail: ineiurban@hotmail.com [Diagnostico Avancado por Imagem (DAPI), Curitiba, PR (Brazil)

    2014-07-01

    In Brazil breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Breast Digital Tomosynthesis (BDT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared to the mammography. This study presents results of Contrast Ratio Noise tests (CRN) and quality image on a Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CRN was determined with plates Polymethylmethacrylate (PMMA) of 20 to 70 mm thickness and an aluminum plate of 10 mm{sup 2} and 0.2 mm thickness. Image quality was assessed with the ACR Breast Simulator. In assessment of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Were visualized 4.5 fibers and 4 mass in both modes. In 2D mode groups have been identified 3.5 microcalcifications, and 3D were 3 groups. The Mean Glandular Dose for the simulator in 2D mode was 1.17 mGy and 2.35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CRN values, ensuring image quality and dose compatible in 2D and 3D processes.

  12. Rapid review: Estimates of incremental breast cancer detection from tomosynthesis (3D-mammography) screening in women with dense breasts.

    Science.gov (United States)

    Houssami, Nehmat; Turner, Robin M

    2016-12-01

    High breast tissue density increases breast cancer (BC) risk, and the risk of an interval BC in mammography screening. Density-tailored screening has mostly used adjunct imaging to screen women with dense breasts, however, the emergence of tomosynthesis (3D-mammography) provides an opportunity to steer density-tailored screening in new directions potentially obviating the need for adjunct imaging. A rapid review (a streamlined evidence synthesis) was performed to summarise data on tomosynthesis screening in women with heterogeneously dense or extremely dense breasts, with the aim of estimating incremental (additional) BC detection attributed to tomosynthesis in comparison with standard 2D-mammography. Meta-analysed data from prospective trials comparing these mammography modalities in the same women (N = 10,188) in predominantly biennial screening showed significant incremental BC detection of 3.9/1000 screens attributable to tomosynthesis (P mammography (N = 177,814) yielded a pooled difference in BC detection of 1.4/1000 screens representing significantly higher BC detection in tomosynthesis-screened women (P mammography. These estimates can inform planning of future trials of density-tailored screening and may guide discussion of screening women with dense breasts.

  13. Impact of dose on observer performance in breast tomosynthesis using breast specimens

    Science.gov (United States)

    Timberg, Pontus; Båth, Magnus; Andersson, Ingvar; Svahn, Tony; Ruschin, Mark; Hemdal, Bengt; Mattsson, Sören; Tingberg, Anders

    2008-03-01

    The purpose of this study was to investigate the effect of dose on lesion detection and characterization in breast tomosynthesis (BT), using human breast specimens. Images of 27 lesions in breast specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography (FFDM) system. Two detector modes - binned (2×1 in the scan direction) and full resolution - and four BT exposure levels - approximately 2×, 1.5×, 1×, and 0.5× the total mAs at the same beam quality as used in a single FFDM view with a Mammomat Novation unit under automatic exposure control (AEC) conditions - were examined. The exposure for all BT scans was equally divided among 25 projections. An enhanced filtered back projection reconstruction method was applied with a constant filter setting. A human observer performance study was conducted in which the observers were forced to select the minimum (threshold) exposure level at which each lesion could be both detected and characterized for assessment of recall or not in a screening situation. The median threshold exposure level for all observers and all lesions corresponded to approximately 1×, which is half the exposure of what we currently use for BT. A substantial variation in exposure thresholds was noticed for different lesion types. For low contrast lesions with diffuse borders, an exposure threshold of approximately 2× was required, whereas for spiculated high contrast lesions and lesions with well defined borders, the exposure threshold was lower than 0.5×. The use of binned mode had no statistically significant impact on observer performance compared to full resolution mode. There was no substantial difference between the modes for the detection and characterization of the lesion types.

  14. BREAST BIOMECANICAL MODELING FOR COMPRESSION OPTIMIZATION IN DIGITAL BREAST TOMOSYNTHESIS

    OpenAIRE

    Anna, Mîra; Carton, Ann-Katherine; Muller, Serge; Payan, Yohan

    2016-01-01

    International audience; The aim of this work is to develop a biomechanical Finite Element (FE) breast model in order to analyze different breast compression strategies and their impact on image quality. Large breast deformations will be simulated using this FE model. A particular attention will be granted to the computation of the initial stress in the model due to gravity and to boundary conditions imposed by the thorax anatomy. Finally, the model will be validated by comparing the estimated...

  15. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    Science.gov (United States)

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed.

  16. Multiscale regularized reconstruction for enhancing microcalcification in digital breast tomosynthesis

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir; Zhou, Chuan

    2012-03-01

    Digital breast tomosynthesis (DBT) holds strong promise for improving the sensitivity of detecting subtle mass lesions. Detection of microcalcifications is more difficult because of high noise and subtle signals in the large DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. A major challenge of implementing microcalcification enhancement or noise regularization in DBT reconstruction is to preserve the image quality of masses, especially those with ill-defined margins and subtle spiculations. We are developing a new multiscale regularization (MSR) method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Each DBT slice is stratified into different frequency bands via wavelet decomposition and the regularization method applies different degrees of regularization to different frequency bands to preserve features of interest and suppress noise. Regularization is constrained by a characteristic map to avoid smoothing subtle microcalcifications. The characteristic map is generated via image feature analysis to identify potential microcalcification locations in the DBT volume. The MSR method was compared to the non-convex total pvariation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum of the line profiles intersecting calcifications and mass spiculations in DBT of human subjects. The results demonstrated that SART regularized by the MSR method was superior to the TpV method for subtle microcalcifications in terms of CNR enhancement. The MSR method preserved the quality of subtle spiculations better than the TpV method in comparison to NR.

  17. Breast Cancer Risk Estimation Using Parenchymal Texture Analysis in Digital Breast Tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda C.; Kontos, Despina; Maidment, Andrew D. A.

    2010-10-01

    Mammographic parenchymal texture has been shown to correlate with genetic markers of developing breast cancer. Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique in which tomographic images of the breast are reconstructed from multiple source projections acquired at different angles of the x-ray tube. Compared to digital mammography (DM), DBT eliminates breast tissue overlap, offering superior parenchymal tissue visualization. We hypothesize that texture analysis in DBT could potentially provide a better assessment of parenchymal texture and ultimately result in more accurate assessment of breast cancer risk. As a first step towards validating this hypothesis, we investigated the association between DBT parenchymal texture and breast percent density (PD), a known breast cancer risk factor, and compared it to DM. Bilateral DBT and DM images from 71 women participating in a breast cancer screening trial were analyzed. Filtered-backprojection was used to reconstruct DBT tomographic planes in 1 mm increments with 0.22 mm in-plane resolution. Corresponding DM images were acquired at 0.1 mm pixel resolution. Retroareolar regions of interest (ROIs) equivalent to 2.5 cm3 were segmented from the DBT images and corresponding 2.5 cm2 ROIs were segmented from the DM images. Breast PD was mammographically estimated using the Cumulus scale. Overall, DBT texture features demonstrated a stronger correlation than DM to PD. The Pearson correlation coefficients for DBT were r = 0.40 (pbreast cancer risk assessment in the future.

  18. Optimization of image quality in breast tomosynthesis using lumpectomy and mastectomy specimens

    Science.gov (United States)

    Timberg, Pontus; Ruschin, Mark; Båth, Magnus; Hemdal, Bengt; Andersson, Ingvar; Svahn, Tony; Mattsson, Sören; Tingberg, Anders

    2007-03-01

    The purpose of this study was to determine how image quality in breast tomosynthesis (BT) is affected when acquisition modes are varied, using human breast specimens containing malignant tumors and/or microcalcifications. Images of thirty-one breast lumpectomy and mastectomy specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography system. BT image acquisitions of the same specimens were performed varying the number of projections, angular range, and detector signal collection mode (binned and nonbinned in the scan direction). An enhanced filtered back projection reconstruction method was applied with constant settings of spectral and slice thickness filters. The quality of these images was evaluated via relative visual grading analysis (VGA) human observer performance experiments using image quality criteria. Results from the relative VGA study indicate that image quality increases with number of projections and angular range. A binned detector collecting mode results in less noise, but reduced resolution of structures. Human breast specimens seem to be suitable for comparing image sets in BT with image quality criteria.

  19. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Vult von Steyern, Kristina; Bjoerkman-Burtscher, Isabella M.; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats [Skaane University Hospital, Lund University, Centre for Medical Imaging and Physiology, Lund (Sweden); Hoeglund, Peter [Skaane University Hospital, Competence Centre for Clinical Research, Lund (Sweden)

    2012-12-15

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. (orig.)

  20. Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

    Science.gov (United States)

    Lau, Kristen C.; Lee, Hyo Min; Singh, Tanushriya; Maidment, Andrew D. A.

    2015-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. Temporal subtraction of the post-contrast DE images from the pre-contrast DE image is performed to analyze iodine uptake. Our previous work investigated image registration methods to correct for patient motion, enhancing the evaluation of vascular kinetics. In this project we investigate a segmentation algorithm which identifies blood vessels in the breast from our temporal DE subtraction images. Anisotropic diffusion filtering, Gabor filtering, and morphological filtering are used for the enhancement of vessel features. Vessel labeling methods are then used to distinguish vessel and background features successfully. Statistical and clinical evaluations of segmentation accuracy in DE-CBT images are ongoing.

  1. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    Science.gov (United States)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre–Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  2. Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis

    Science.gov (United States)

    Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.

    2016-03-01

    This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.

  3. Comparison of computerized mass detection in digital breast tomosynthesis (DBT) mammograms and conventional mammograms

    Science.gov (United States)

    Chan, Heang-Ping; Wei, Jun; Sahiner, Berkman; Hadjiiski, Lubomir; Helvie, Mark A.

    2009-02-01

    We are developing a CAD system for mass detection on digital breast tomosynthesis (DBT) mammograms. In this study, we compared the detection accuracy on DBT and conventional screen-film mammograms (SFMs). DBT mammograms were acquired with a GE prototype system at the University of Michigan. 47 cases containing the CC- and MLO-view DBT mammograms of the breast with a biopsy-proven mass and the corresponding two-view SFMs of the same breast were collected. Subjective judgment showed that the masses were much more conspicuous on DBT slices than on SFMs. The CAD system for DBT includes two parallel processes, one performs mass detection in the reconstructed DBT volume, and the other in the projection view (PV) images. The mass likelihood scores estimated for each mass candidate in the two processes are merged to differentiate masses and false positives (FPs). For detection on SFMs, we previously developed a dual system approach by fusing two single CAD systems optimized for detection of average and subtle masses, respectively. A trained neural network is used to merge the mass likelihood scores of the two single systems to reduce FPs. At the case-based sensitivities of 80% and 85%, mass detection in the DBT volume resulted in an average of 0.72 and 1.06 FPs/view, and detection in the SFMs yielded 0.94 and 1.67 FPs/view, respectively. The difference fell short of statistical significance (p=0.07) by JAFROC analysis. Study is underway to collect a larger data set and to further improve the DBT CAD system.

  4. Comparison of computer-aided detection of clustered microcalcifications in digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Digital breast tomosynthesis (DBT) has the potential to replace digital mammography (DM) for breast cancer screening. An effective computer-aided detection (CAD) system for microcalcification clusters (MCs) on DBT will facilitate the transition. In this study, we collected a data set with corresponding DBT and DM for the same breasts. DBT was acquired with IRB approval and informed consent using a GE GEN2 DBT prototype system. The DM acquired with a GE Essential system for the patient's clinical care was collected retrospectively from patient files. DM-based CAD (CADDM) and DBT-based CAD (CADDBT) were previously developed by our group. The major differences between the CAD systems include: (a) CADDBT uses two parallel processes whereas CADDM uses a single process for enhancing MCs and removing the structured background, (b) CADDBT has additional processing steps to reduce the false positives (FPs), including ranking of candidates of cluster seeds and cluster members and the use of adaptive CNR and size thresholds at clustering and FP reduction, (c) CADDM uses convolution neural network (CNN) and linear discriminant analysis (LDA) to differentiate true microcalcifications from FPs based on their morphological and CNN features. The performance difference is assessed by FROC analysis using test set (100 views with MCs and 74 views without MCs) independent of their respective training sets. At sensitivities of 70% and 80%, CADDBT achieved FP rates of 0.78 and 1.57 per view compared to 0.66 and 2.10 per image for the CADDM. JAFROC showed no significant difference between MC detection on DM and DBT by the two CAD systems.

  5. SU-E-P-31: Quantifying the Amount of Missing Tissue in a Digital Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, D [George Washington University, Washington, DC (United States); Olafsdottir, H; Olafsson, I; Fredriksson, J; Kristinsson, S; Oskarsdottir, G; Kristbjornsson, A [Raforninn Ehf., Reykjavik, Gullbringusysla (Iceland); Mallozzi, R; Healy, A; Levy, J [The Phantom Laboratory, Salem, NY (United States)

    2015-06-15

    Purpose: To automatically quantify the amount of missing tissue in a digital breast tomosynthesis system using four stair-stepped chest wall missing tissue gauges in the Tomophan™ from the Phantom Laboratory and image processing from Image Owl. Methods: The Tomophan™ phantom incorporates four stair-stepped missing tissue gauges by the chest wall, allowing measurement of missing chest wall in two different locations along the chest wall at two different heights. Each of the four gauges has 12 steps in 0.5 mm increments rising from the chest wall. An image processing algorithm was developed by Image Owl that first finds the two slices containing the steps then finds the signal through the highest step in all four gauges. Using the signal drop at the beginning of each gauge the distance to the end of the image gives the length of the missing tissue gauge in millimeters. Results: The Tomophan™ was imaged in digital breast tomosynthesis (DBT) systems from various vendors resulting in 46 cases used for testing. The results showed that on average 1.9 mm of 6 mm of the gauges are visible. A small focus group was asked to count the number of visible steps for each case which resulted in a good agreement between observer counts and computed data. Conclusion: First, the results indicate that the amount of missing chest wall can differ between vendors. Secondly it was shown that an automated method to estimate the amount of missing chest wall gauges agreed well with observer assessments. This finding indicates that consistency testing may be simplified using the Tomophan™ phantom and analysis by an automated image processing named Tomo QA. In general the reason for missing chest wall may be due to a function of the beam profile at the chest wall as DBT projects through the angular sampling. Research supported by Image Owl, Inc., The Phantom Laboratory, Inc. and Raforninn ehf; Mallozzi and Healy employed by The Phantom Laboratory, Inc.; Goodenough is a consultant to The

  6. Factors affecting recall rate and false positive fraction in breast cancer screening with breast tomosynthesis - A statistical approach.

    Science.gov (United States)

    Rosso, Aldana; Lång, Kristina; Petersson, Ingemar F; Zackrisson, Sophia

    2015-10-01

    In this study, we investigate which factors affect the false positive fraction (FPF) for digital breast tomosynthesis (DBT) compared to digital mammography (DM) in a screening population by using classification and regression trees (C&RT) and binary marginal generalized linear models. The data was obtained from the Malmö Breast Tomosynthesis Screening Trial, which aimed to compare the performance of DBT to DM in breast cancer screening. By using data from the first half of the study population (7500 women), a tree with the recall probability for different groups was calculated. The effect of age and breast density on the FPF was estimated using a binary marginal generalized linear model. Our results show that breast density and breast cancer were the main factors influencing recall. The FPF is mainly affected by breast density and increases with breast density for DBT and DM. In conclusion, the results obtained with C&RT are easy to interpret and similar to those obtained using binary marginal generalized linear models. The FPF is approximately 40% higher for DBT compared to DM for all breast density categories.

  7. Quantitative Digital Tomosynthesis Mammography for Improved Breast Cancer Detection and Diagnosis

    Science.gov (United States)

    2008-04-01

    reconstruction", Medical Physics , 34(9), 3603-3613, 2007. Conference Proceedings: 1. Y. Zhang, H.-P. Chan, Y.-T. Wu, B. Sahiner, C. Zhou, J. Wei, J. Ge...Wei, L. M. Hadjiiski, "Application of boundary detection information in breast tomosynthesis reconstruction", Medical Physics , 34(9), 3603-3613, 2007...application of Medical Physics , Vol. 34, No. 9, September 2007the 2D and 3D breast boundary information to DTM recon- struction in an effort to reduce

  8. Numerical solution of a nonlinear least squares problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2015-11-01

    In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation (i.e., a set of 2D slices) of the object. In this paper we describe some mathematical models for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. A polyenergetic model helps to reduce beam hardening artifacts, but the disadvantage is that it requires solving a large-scale nonlinear ill-posed inverse problem. We formulate the image reconstruction process (i.e., the method to solve the ill-posed inverse problem) in a nonlinear least squares framework, and use a Levenberg-Marquardt scheme to solve it. Some implementation details are discussed, and numerical experiments are provided to illustrate the performance of the methods.

  9. Adaptive diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis (DBT) reconstruction

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Fessler, Jeffrey A.; Hadjiiski, Lubomir; Wei, Jun; Goodsitt, Mitchell M.

    2011-03-01

    Digital breast tomosynthesis (DBT) has been shown to increase mass detection. Detection of microcalcifications in DBT is challenging because of the small, subtle signals to be searched in the large breast volume and the noise in the reconstructed volume. We developed an adaptive diffusion (AD) regularization method that can differentially regularize noise and potential signal regions during reconstruction based on local contrast-to-noise ratio (CNR) information. This method adaptively applies different degrees of regularity to signal and noise regions, as guided by a CNR map for each DBT slice within the image volume, such that potential signals will be preserved while noise is suppressed. DBT scans of an American College of Radiology phantom and the breast of a subject with biopsy-proven calcifications were acquired with a GE prototype DBT system at 21 angles in 3° increments over a +/-30° range. Simultaneous algebraic reconstruction technique (SART) was used for DBT reconstruction. The AD regularization method was compared to the non-convex total p-variation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum (FWHM) of the central gray-level line profile in the focal plane of a calcification. The results demonstrated that the SART regularized by the AD method enhanced the CNR and preserved the sharpness of microcalcifications compared to reconstruction without regularization. The AD regularization was superior to the TpV method for subtle microcalcifications in terms of the CNR while the FWHM was comparable. The AD regularized reconstruction has the potential to improve the CNR of microcalcifications in DBT for human or machine detection.

  10. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    Science.gov (United States)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  11. Estimating breast tomosynthesis performance in detection tasks with variable-background phantoms

    Science.gov (United States)

    Young, Stefano; Park, Subok; Anderson, S. Kyle; Badano, Aldo; Myers, Kyle J.; Bakic, Predrag

    2009-02-01

    Digital breast tomosynthesis (DBT) shows potential for improving breast cancer detection. However, this technique has not yet been fully characterized with consideration of the various uncertainties in the imaging chain and optimized with respect to system acquisition parameters. To obtain maximum diagnostic information in DBT, system optimization needs to be performed across a range of patients and acquisition parameters to quantify their impact on tumor detection performance. In addition, a balance must be achieved between x-ray dose and image quality to minimize risk to the patient while maximizing the system's detection performance. To date, researchers have applied a task-based approach to the optimization of DBT with use of mathematical observers for tasks in the signal-known-exactly background-known-exactly (SKE/BKE) and signal-known-exactly background-known statistically (SKE/BKS) paradigms1-3. However, previous observer models provided insufficient treatment of the spatial correlations between multi-angle DBT projections, so we incorporated this correlation information into the modeling methodology. We developed a computational approach that includes three-dimensional variable background phantoms for incorporating background variability, accurate ray-tracing and Poisson distributions for generating noise-free and noisy projections of the phantoms, and a channelized-Hotelling observer4 (CHO) for estimating performance in DBT. We demonstrated our method for a DBT acquisition geometry and calculated the performance of the CHO with Laguerre-Gauss channels as a function of the angular span of the system. Preliminary results indicate that the implementation of a CHO model that incorporates correlations between multi-angle projections gives different performance predictions than a CHO model that ignores multi-angle correlations. With improvement of the observer design, we anticipate more accurate investigations into the impact of multi-angle correlations and

  12. Numerical Methods for Coupled Reconstruction and Registration in Digital Breast Tomosynthesis

    CERN Document Server

    Yang, Guang; Hawkes, David J; Arridge, Simon R

    2013-01-01

    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mammography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is complicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathemati...

  13. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  14. In-line phase-contrast breast tomosynthesis: a phantom feasibility study at a synchrotron radiation facility

    Science.gov (United States)

    Bliznakova, K.; Russo, P.; Kamarianakis, Z.; Mettivier, G.; Requardt, H.; Bravin, A.; Buliev, I.

    2016-08-01

    The major objective is to adopt, apply and test developed in-house algorithms for volumetric breast reconstructions from projection images, obtained in in-line phase-contrast mode. Four angular sets, each consisting of 17 projection images obtained from four physical phantoms, were acquired at beamline ID17, European Synchroton Radiation Facility, Grenoble, France. The tomosynthesis arc was  ±32°. The physical phantoms differed in complexity of texture and introduced features of interest. Three of the used phantoms were in-house developed, and made of epoxy resin, polymethyl-methacrylate and paraffin wax, while the fourth phantom was the CIRS BR3D. The projection images had a pixel size of 47 µm  ×  47 µm. Tomosynthesis images were reconstructed with standard shift-and-add (SAA) and filtered backprojection (FBP) algorithms. It was found that the edge enhancement observed in planar x-ray images is preserved in tomosynthesis images from both phantoms with homogeneous and highly heterogeneous backgrounds. In case of BR3D, it was found that features not visible in the planar case were well outlined in the tomosynthesis slices. In addition, the edge enhancement index calculated for features of interest was found to be much higher in tomosynthesis images reconstructed with FBP than in planar images and tomosynthesis images reconstructed with SAA. The comparison between images reconstructed by the two reconstruction algorithms shows an advantage for the FBP method in terms of better edge enhancement. Phase-contrast breast tomosynthesis realized in in-line mode benefits the detection of suspicious areas in mammography images by adding the edge enhancement effect to the reconstructed slices.

  15. Latent feature representation with depth directional long-term recurrent learning for breast masses in digital breast tomosynthesis

    Science.gov (United States)

    Kim, Dae Hoe; Kim, Seong Tae; Chang, Jung Min; Ro, Yong Man

    2017-02-01

    Characterization of masses in computer-aided detection systems for digital breast tomosynthesis (DBT) is an important step to reduce false positive (FP) rates. To effectively differentiate masses from FPs in DBT, discriminative mass feature representation is required. In this paper, we propose a new latent feature representation boosted by depth directional long-term recurrent learning for characterizing malignant masses. The proposed network is designed to encode mass characteristics in two parts. First, 2D spatial image characteristics of DBT slices are encoded as a slice feature representation by convolutional neural network (CNN). Then, depth directional characteristics of masses among the slice feature representations are encoded by the proposed depth directional long-term recurrent learning. In addition, to further improve the class discriminability of latent feature representation, we have devised three objective functions aiming to (a) minimize classification error, (b) minimize intra-class variation within the same class, and (c) preserve feature representation consistency in a central slice. Experimental results have demonstrated that the proposed latent feature representation achieves a higher level of classification performance in terms of receiver operating characteristic (ROC) curves and the area under the ROC curve values compared to performance with feature representation learned by conventional CNN and hand-crafted features.

  16. Additional findings at preoperative breast MRI: the value of second-look digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, Paola; Pancot, Martina; Girometti, Rossano; Bazzocchi, Massimo; Zuiani, Chiara [University of Udine, Azienda Ospedaliero-Universitaria, ' ' S.Maria della Misericordia' ' , Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Carbonaro, Luca A. [IRCCS Policlinico San Donato, Unit of Radiology, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unit of Radiology, Milan (Italy); Universita degli Studi di Milano, Department of Biomedical Sciences of Health, Milan (Italy)

    2015-10-15

    To evaluate second-look digital breast tomosynthesis (SL-DBT) for additional findings (AFs) at preoperative MRI compared with second-look ultrasound (SL-US). We included 135 patients with breast cancer who underwent digital mammography (DM), DBT, US, and MRI at two centres. MR images were retrospectively evaluated to find AFs, described as focus, mass, or non-mass; ≤10 mm or >10 mm in size; BI-RADS 3, 4, or 5. DM and DBT exams were reviewed looking for MRI AFs; data on SL-US were collected. Reference standard was histopathology or ≥12-month negative follow-up. Fisher exact test and McNemar test were used. Eighty-four AFs were detected in 53/135 patients (39 %, 95 %CI 31-48 %). A correlate was found for 44/84 (52 %, 95 %CI 41-63 %) at SL-US, for 20/84 (24 %, 95 %CI 11-28 %) at SL-DM, for 42/84 (50 %, 95 %CI 39-61 %) at SL-DBT, for 63/84 (75 %, 95 %CI 64-84 %) at SL-DBT, and/or SL-US, the last rate being higher than for SL-US only, overall (p < 0.001), for mass or non-mass, ≤ or >10 mm, BI-RADS 4 or 5, or malignant lesions (p < 0.031). Of 21 AFs occult at both SLs, 17 were malignant (81 %, 95 %CI 58-94 %). When adding SL-DBT to SL-US, AFs detection increased from 52 % to 75 %. MR-guided biopsy is needed for the remaining 25 %. (orig.)

  17. Semi-automated segmentation and classification of digital breast tomosynthesis reconstructed images.

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Paulsen, Keith D

    2011-01-01

    Digital breast tomosynthesis (DBT) is a limited-angle tomographic x-ray imaging technique that reduces the effect of tissue superposition observed in planar mammography. An integrated imaging platform that combines DBT with near infrared spectroscopy (NIRS) to provide co-registered anatomical and functional imaging is under development. Incorporation of anatomic priors can benefit NIRS reconstruction. In this work, we provide a segmentation and classification method to extract potential lesions, as well as adipose, fibroglandular, muscle and skin tissue in reconstructed DBT images that serve as anatomic priors during NIRS reconstruction. The method may also be adaptable for estimating tumor volume, breast glandular content, and for extracting lesion features for potential application to computer aided detection and diagnosis.

  18. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-11-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed.

  19. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    Science.gov (United States)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  20. Full Field Digital Mammography (FFDM) versus CMOS Technology, Specimen Radiography System (SRS) and Tomosynthesis (DBT) - Which System Can Optimise Surgical Therapy?

    Science.gov (United States)

    Schulz-Wendtland, R; Dilbat, G; Bani, M; Fasching, P A; Heusinger, K; Lux, M P; Loehberg, C R; Brehm, B; Hammon, M; Saake, M; Dankerl, P; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Meier-Meitinger, M

    2013-05-01

    Aim: This prospective clinical study aimed to evaluate whether it would be possible to reduce the rate of re-excisions using CMOS technology, a specimen radiography system (SRS) or digital breast tomosynthesis (DBT) compared to a conventional full field digital mammography (FFDM) system. Material and Method: Between 12/2012 and 2/2013 50 patients were diagnosed with invasive breast cancer (BI-RADS™ 5). After histological verification, all patients underwent breast-conserving therapy with intraoperative imaging using 4 different systems and differing magnifications: 1. Inspiration™ (Siemens, Erlangen, Germany), amorphous selenium, tungsten source, focus 0.1 mm, resolution 85 µm pixel pitch, 8 lp/mm; 2. BioVision™ (Bioptics, Tucson, AZ, USA), CMOS technology, photodiode array, flat panel, tungsten source, focus 0.05, resolution 50 µm pixel pitch, 12 lp/mm; 3. the Trident™ specimen radiography system (SRS) (Hologic, Bedford, MA, USA), amorphous selenium, tungsten source, focus 0.05, resolution 70 µm pixel pitch, 7.1 lp/mm; 4. tomosynthesis (Siemens, Erlangen, Germany), amorphous selenium, tungsten source, focus 0.1 mm, resolution 85 µm pixel pitch, 8 lp/mm, angular range 50 degrees, 25 projections, scan time > 20 s, geometry: uniform scanning, reconstruction: filtered back projection. The 600 radiographs were prospectively shown to 3 radiologists. Results: Of the 50 patients with histologically proven breast cancer (BI-RADS™ 6), 39 patients required no further surgical therapy (re-excision) after breast-conserving surgery. A retrospective analysis (n = 11) showed a significant (p < 0.05) increase of sensitivity with the BioVision™, the Trident™ and tomosynthesis compared to the Inspiration™ at a magnification of 1.0 : 2.0 or 1.0 : 1.0 (tomosynthesis) (2.6, 3.3 or 3.6 %), i.e. re-excision would not have been necessary in 2, 3 or 4 patients, respectively, compared to findings obtained with a standard

  1. Cancer risk estimation in Digital Breast Tomosynthesis using GEANT4 Monte Carlo simulations and voxel phantoms.

    Science.gov (United States)

    Ferreira, P; Baptista, M; Di Maria, S; Vaz, P

    2016-05-01

    The aim of this work was to estimate the risk of radiation induced cancer following the Portuguese breast screening recommendations for Digital Mammography (DM) when applied to Digital Breast Tomosynthesis (DBT) and to evaluate how the risk to induce cancer could influence the energy used in breast diagnostic exams. The organ doses were calculated by Monte Carlo simulations using a female voxel phantom and considering the acquisition of 25 projection images. Single organ cancer incidence risks were calculated in order to assess the total effective radiation induced cancer risk. The screening strategy techniques considered were: DBT in Cranio-Caudal (CC) view and two-view DM (CC and Mediolateral Oblique (MLO)). The risk of cancer incidence following the Portuguese screening guidelines (screening every two years in the age range of 50-80years) was calculated by assuming a single CC DBT acquisition view as standalone screening strategy and compared with two-view DM. The difference in the total effective risk between DBT and DM is quite low. Nevertheless in DBT an increase of risk for the lung is observed with respect to DM. The lung is also the organ that is mainly affected when non-optimal beam energy (in terms of image quality and absorbed dose) is used instead of an optimal one. The use of non-optimal energies could increase the risk of lung cancer incidence by a factor of about 2.

  2. A mathematical framework for including various sources of variability in a task-based assessment of digital breast tomosynthesis

    Science.gov (United States)

    Park, Subok; Badal, Andreu; Young, Stefano; Myers, Kyle J.

    2012-03-01

    For a rigorous x-ray imaging system optimization and evaluation, the need for exploring a large space of many different system parameters is immense. However, due to the high dimensionality of the problem, it is often infeasible to evaluate many system parameters in a laboratory setting. Therefore, it is useful to utilize computer simulation tools and analytical methods to narrow down to a much smaller space of system parameters and then validate the chosen optimal parameters by laboratory measurements. One great advantage of using the simulation and analytical methods is that the impact of various sources of variability on the system's diagnostic performance can be studied separately and collectively. Previously, we have demonstrated how to separate and analyze noise sources using covariance decomposition in a task-based approach to the assessment of digital breast tomosynthesis (DBT) systems in the absence of x-ray scatter and detector blur.1, 2 In this work, we analytically extend the previous work to include x-ray scatter and detector blur. With use of computer simulation, we also investigate the use of the convolution method for approximating the scatter images of structured phantoms in comparison to those computed via Monte Carlo. The extended method is comprehensive and can be used both for exploring a large parameter space in simulation and for validating optimal parameters, chosen from a simulation study, with laboratory measurements.

  3. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  4. Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations

    Science.gov (United States)

    Malliori, A.; Bliznakova, K.; Sechopoulos, I.; Kamarianakis, Z.; Fei, B.; Pallikarakis, N.

    2014-08-01

    The aim of this study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28 kVp and a monochromatic one at 19 keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4 cm thick computational breast models, in a compressed state, were used: one simple homogeneous and one heterogeneous based on CT breast images, with compositions of 50% glandular-50% adipose and 40% glandular-60% adipose tissues by weight, respectively. Modeled lesions, representing masses and calcifications, were inserted within these breast phantoms. X-ray transport in the breast models was simulated with previously developed and validated Monte Carlo application. Results showed that, for the same incident photon fluence, the use of the monochromatic beam in BT resulted in higher image quality compared to the one using polychromatic acquisition, especially in terms of contrast. For the homogenous phantom, the improvement ranged between 15% and 22% for calcifications and masses, respectively, while for the heterogeneous one this improvement was in the order of 33% for the masses and 17% for the calcifications. For different exposures, comparable image quality in terms of signal-difference-to-noise ratio and higher contrast for all features was obtained when using a monochromatic 19 keV beam at a lower mean glandular dose, compared to the polychromatic one. Monochromatic images also provide better detail and, in combination with BT, can lead to substantial improvement in visualization of features, and particularly better edge detection of low-contrast masses.

  5. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Hwa; Chang, Jung Min; Moon, Woo Kyung [Seoul National University Hospital, Department of Radiology, 101 Daehangno, Jongno-gu, Seoul (Korea, Republic of); Moon, Hyeong-Gon [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Yi, Ann [Seoul National University Hospital, Department of Radiology, Gangnan Healthcare Center, Seoul (Korea, Republic of); Koo, Hye Ryoung [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Gweon, Hye Mi [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2016-06-15

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  6. Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.

    2016-10-01

    With IRB approval, digital breast tomosynthesis (DBT) images of human subjects were collected using a GE GEN2 DBT prototype system. Corresponding digital mammograms (DMs) of the same subjects were collected retrospectively from patient files. The data set contained a total of 237 views of DBT and equal number of DM views from 120 human subjects, each included 163 views with microcalcification clusters (MCs) and 74 views without MCs. The data set was separated into training and independent test sets. The pre-processing, object prescreening and segmentation, false positive reduction and clustering strategies for MC detection by three computer-aided detection (CADe) systems designed for DM, DBT, and a planar projection image generated from DBT were analyzed. Receiver operating characteristic (ROC) curves based on features extracted from microcalcifications and free-response ROC (FROC) curves based on scores from MCs were used to quantify the performance of the systems. Jackknife FROC (JAFROC) and non-parametric analysis methods were used to determine the statistical difference between the FROC curves. The difference between the CADDM and CADDBT systems when the false positive rate was estimated from cases without MCs did not reach statistical significance. The study indicates that the large search space in DBT may not be a limiting factor for CADe to achieve similar performance as that observed in DM.

  7. Investigation on location-dependent detectability of a small mass for digital breast tomosynthesis evaluation

    Science.gov (United States)

    Lee, Changwoo; Baek, Jongduk; Park, Subok

    2016-03-01

    Digital breast tomosynthesis (DBT) is an emerging imaging modality for improved breast cancer detection and diagnosis [1-5]. Numerous efforts have been made to find quantitative metrics associated with mammographic image quality assessment, such as the exponent β of anatomical noise power spectrum, glandularity, contrast noise ratio, etc. [6-8]. In addition, with the use of Fourier-domain detectability for a task-based assessment of DBT, a stationarity assumption on reconstructed image statistics was often made [9-11], resulting in the use of multiple regions-of-interest (ROIs) from different locations in order to increase sample size. While all these metrics provide some information on mammographic image characteristics and signal detection, the relationship between these metrics and detectability in DBT evaluation has not been fully understood. In this work, we investigated spatial-domain detectability trends and levels as a function of the number of slices Ns at three different ROI locations on the same image slice, where background statistics differ in terms of the aforementioned metrics. Detectabilities for the three ROI locations were calculated using multi-slice channelized Hotelling observers with 2D/3D Laguerre-Gauss channels. Our simulation results show that detectability levels and trends as a function of Ns vary across these three ROI locations. They also show that the exponent β, mean glandularity, and mean attenuation coefficient vary across the three ROI locations but they do not necessarily predict the ranking of detectability levels and trends across these ROI locations.

  8. Towards Visual-Search Model Observers for Mass Detection in Breast Tomosynthesis.

    Science.gov (United States)

    Lau, Beverly A; Das, Mini; Gifford, Howard C

    2013-03-21

    We are investigating human-observer models that perform clinically realistic detection and localization tasks as a means of making reliable assessments of digital breast tomosynthesis images. The channelized non-prewhitening (CNPW) observer uses the background known exactly task for localization and detection. Visual-search observer models attempt to replicate the search patterns of trained radiologists. The visual-search observer described in this paper utilizes a two-phase approach, with an initial holistic search followed by directed analysis and decision making. Gradient template matching is used for the holistic search, and the CNPW observer is used for analysis and decision making. Spherical masses were embedded into anthropomorphic breast phantoms, and simulated projections were made using ray-tracing and a serial cascade model. A localization ROC study was performed on these images using the visual-search model observer and the CNPW observer. Observer performance from the two computer observers was compared to human observer performance. The visual-search observer was able to produce area under the LROC curve values similar to those from human observers; however, more research is needed to increase the robustness of the algorithm.

  9. Breast Tomosynthesis

    Science.gov (United States)

    ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ...

  10. Breast Tomosynthesis

    Science.gov (United States)

    ... passes through the body, recording an image on photographic film or a special detector. Different parts of ... on large film sheets (much like a large photographic negative). Today, most images are digital files that ...

  11. Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Cha, Kenny; Helvie, Mark A.

    2016-03-01

    A deep learning convolution neural network (DLCNN) was designed to differentiate microcalcification candidates detected during the prescreening stage as true calcifications or false positives in a computer-aided detection (CAD) system for clustered microcalcifications. The microcalcification candidates were extracted from the planar projection image generated from the digital breast tomosynthesis volume reconstructed by a multiscale bilateral filtering regularized simultaneous algebraic reconstruction technique. For training and testing of the DLCNN, true microcalcifications are manually labeled for the data sets and false positives were obtained from the candidate objects identified by the CAD system at prescreening after exclusion of the true microcalcifications. The DLCNN architecture was selected by varying the number of filters, filter kernel sizes and gradient computation parameter in the convolution layers, resulting in a parameter space of 216 combinations. The exhaustive grid search method was used to select an optimal architecture within the parameter space studied, guided by the area under the receiver operating characteristic curve (AUC) as a figure-of-merit. The effects of varying different categories of the parameter space were analyzed. The selected DLCNN was compared with our previously designed CNN architecture for the test set. The AUCs of the CNN and DLCNN was 0.89 and 0.93, respectively. The improvement was statistically significant (p < 0.05).

  12. Feasibility of Amorphous Selenium Based Photon Counting Detectors for Digital Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; O' Connor, P.; Lehnert, J., De Geronimo, G., Dolazza, E., Tousignant, O., Laperriere, L., Greenspan, J., Zhao, W.

    2009-02-27

    Amorphous selenium (a-Se) has been incorporated successfully in direct conversion flat panel x-ray detectors, and has demonstrated superior image quality in screening mammography and digital breast tomosynthesis (DBT) under energy integration mode. The present work explores the potential of a-Se for photon counting detectors in DBT. We investigated major factors contributing to the variation in the charge collected by a pixel upon absorption of each x-ray photon. These factors included x-ray photon interaction, detector geometry, charge transport, and the pulse shaping and noise properties of the photon counting readout circuit. Experimental measurements were performed on a linear array test structure constructed by evaporating an a-Se layer onto an array of 100 {mu}m pitch strip electrodes, which are connected to a 32 channel low noise photon counting integrated circuit. The measured pulse height spectrum (PHS) under polychromatic xray exposure was interpreted quantitatively using the factors identified. Based on the understanding of a-Se photon counting performance, design parameters were proposed for a 2D detector with high quantum efficiency and count rate that could meet the requirements of photon counting detector for DBT.

  13. Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches

    Science.gov (United States)

    Fotin, Sergei V.; Yin, Yin; Haldankar, Hrishikesh; Hoffmeister, Jeffrey W.; Periaswamy, Senthil

    2016-03-01

    Computer-aided detection (CAD) has been used in screening mammography for many years and is likely to be utilized for digital breast tomosynthesis (DBT). Higher detection performance is desirable as it may have an impact on radiologist's decisions and clinical outcomes. Recently the algorithms based on deep convolutional architectures have been shown to achieve state of the art performance in object classification and detection. Similarly, we trained a deep convolutional neural network directly on patches sampled from two-dimensional mammography and reconstructed DBT volumes and compared its performance to a conventional CAD algorithm that is based on computation and classification of hand-engineered features. The detection performance was evaluated on the independent test set of 344 DBT reconstructions (GE SenoClaire 3D, iterative reconstruction algorithm) containing 328 suspicious and 115 malignant soft tissue densities including masses and architectural distortions. Detection sensitivity was measured on a region of interest (ROI) basis at the rate of five detection marks per volume. Moving from conventional to deep learning approach resulted in increase of ROI sensitivity from 0:832 +/- 0:040 to 0:893 +/- 0:033 for suspicious ROIs; and from 0:852 +/- 0:065 to 0:930 +/- 0:046 for malignant ROIs. These results indicate the high utility of deep feature learning in the analysis of DBT data and high potential of the method for broader medical image analysis tasks.

  14. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Ji-wook Jeong

    2016-01-01

    Full Text Available We propose computer-aided detection (CADe algorithm for microcalcification (MC clusters in reconstructed digital breast tomosynthesis (DBT images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.

  15. Computer-aided detection of clustered microcalcifications in multiscale bilateral filtering regularized reconstructed digital breast tomosynthesis volume

    Energy Technology Data Exchange (ETDEWEB)

    Samala, Ravi K., E-mail: rsamala@umich.edu; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark A. [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-5842 (United States); Sahiner, Berkman [Center for Devices and Radiological Health, U.S. Food and Drug Administration, Maryland 20993 (United States)

    2014-02-15

    Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a

  16. Design and characterization of a low profile NaI(Tl) gamma camera for dedicated molecular breast tomosynthesis

    Science.gov (United States)

    Polemi, Andrew M.; Niestroy, Justin; Stolin, Alexander; Jaliparthi, Gangadhar; Wojcik, Randy; Majewski, Stan; Williams, Mark B.

    2016-10-01

    A new low profile gamma camera is being developed for use in a dual modality (x-ray transmission and gamma-ray emission) tomosynthesis system. Compared to the system's current gamma camera, the new camera has a larger field of view ( 20x25 cm) to better match the system's x-ray detector ( 23x29 cm), and is thinner (7.3 cm instead of 10.3 cm) permitting easier camera positioning near the top surface of the breast. It contains a pixelated NaI(Tl) array with a crystal pitch of 2.2 mm, which is optically coupled to a 4x5 array of Hamamatsu H8500C position sensitive photomultiplier tubes (PSPMTs). The manufacturer-provided connector board of each PSPMT was replaced with a custom designed board that a) reduces the 64 channel readout of the 8x8 electrode anode of the H8500C to 16 channels (8X and 8Y), b) performs gain non-uniformity correction, and c) reduces the height of the PSPMT-base assembly, 37.7 mm to 27.87 mm. The X and Y outputs of each module are connected in a lattice framework, and at two edges of this lattice, the X and Y outputs (32Y by 40X) are coupled to an amplifier/output board whose signals are fed via shielded ribbon cables to external ADCs. The camera uses parallel hole collimation. We describe the measured camera imaging performance, including intrinsic and extrinsic spatial resolution, detection sensitivity, uniformity of response, energy resolution for 140 keV gamma rays, and geometric linearity.

  17. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139,7, Bobadela LRS 2695-066 (Portugal); Figueira, Catarina [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN (United Kingdom); Sarmento, Marta; Orvalho, Lurdes [Serviço de Imagiologia, Hospital da Luz, Avenida Lusíada, 100, Lisboa 1500-650 (Portugal)

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  18. Two complementary model observers to evaluate reconstructions of simulated micro-calcifications in digital breast tomosynthesis

    Science.gov (United States)

    Michielsen, Koen; Zanca, Federica; Marshall, Nicholas; Bosmans, Hilde; Nuyts, Johan

    2013-03-01

    New imaging modalities need to be properly evaluated before being introduced in clinical practice. The gold standard is to perform clinical trials or dedicated clinical performance related observer experiments with experienced readers. Unfortunately this is not feasible during development or optimization of new reconstruction algorithms due to their many degrees of freedom. Our goal is to design a set of model observers to evaluate the performance of newly developed reconstruction methods on the assessment of micro-calcifications in digital breast tomosynthesis. In order to do so, the model observers need to evaluate both detection and classification of micro-calcifications. A channelized Hotelling observer was created for the detection task and a Hotelling observer working on an extracted feature vector was implemented for the classification task. These observers were evaluated on their ability to predict the results of human observers. Results from a previous observer study were used as reference to compare performance between human and model observers. This study evaluated detection of small micro-calcifications (100 { 200 _m) by a free search task in a power law filtered noise background and classification of two types of larger micro-calcifications (200 {600 _m) in the same background. Scores from the free search study were evaluated using the weighted JAFROC method and the classification scores were analyzed using the DBM MRMC method. The same analysis methods were applied to the model observer scores. Results of the detection model observer were related linearly with the human observer results with a correlation coefficient of 0.962. The correlation coefficient for the classification task was 0.959 with a power law non-linear regression.

  19. Design and application of a structured phantom for detection performance comparison between breast tomosynthesis and digital mammography

    Science.gov (United States)

    Cockmartin, L.; Marshall, N. W.; Zhang, G.; Lemmens, K.; Shaheen, E.; Van Ongeval, C.; Fredenberg, E.; Dance, D. R.; Salvagnini, E.; Michielsen, K.; Bosmans, H.

    2017-02-01

    This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p  =  0.0001 and p  =  0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability

  20. Characterization of prototype full-field breast tomosynthesis by using a CMOS array coupled with a columnar CsI(Tl) scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Gu; Choi, Young-Wook; Ham, Tae-Hee [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Park, Hye-Suk; Kim, Ye-Seul; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2012-02-15

    We have developed a prototype full-field digital breast tomosynthesis (DBT) system by using a complementary-metal-oxide semiconductive (CMOS) array coupled with a columnar CsI(Tl) scintillator. The imaging system consists of a matrix with an active detector area of 3072 x 3888 pixels and a pixel pitch of 74.8 μm. For tomosynthesis imaging, the X-ray tube is automatically rotated in 3 .deg. increments in the shoot mode to acquire projection images at 15 different angles over a ±21 .deg. angular range in less than 10 s. The digital detector is stationary during image acquisition. In this research, we also carried out evaluation studies to characterize the performance of the system in different operational modes designed for the DBT system, e.g., binning mode and the range of view angles, in terms of the modulation transfer function (MTF), the normalized noise power spectra (NNPS), and the detective quantum efficiency (DQE): The MTF value measured at the Nyquist frequency was 18.49%, the NNPS value at zero frequency was about 1.93 x 10{sup -5} (mm{sup 2}), and the maximum value of DQE was about 47.09% for the full resolution. For the pixel binning mode, the MTF decreased more than it did for the full resolution mode due to the increased effective pixel size. However, the full resolution mode was more sensitive to noise than the pixel binning mode. For the scan angle of the DBT system, oblique incidence of X-rays on a detector caused blurring that reduced resolution. These results seem to be promising for the use of the DBT system in potential clinical applications and will provide important information when comparisons with other DBT systems are made.

  1. Digital breast tomosynthesis (DBT) to characterize MRI-detected additional lesions unidentified at targeted ultrasound in newly diagnosed breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Mariscotti, Giovanna; Durando, Manuela; Regini, Elisa; Fornari, Alberto; Fonio, Paolo; Gandini, Giovanni [Breast Imaging Service, Radiology - University of Turin, Department of Diagnostic Imaging and Radiotherapy, A.O.U. Citta della Salute e della Scienza, Torino (Italy); Houssami, Nehmat [University of Sydney, Screening and Test Evaluation Program, School of Public Health, Sydney Medical School, Sydney, NSW (Australia); Campanino, Pier Paolo [Ospedale Koelliker, Breast Imaging Service, Torino (Italy); Bussone, Riccardo [A.O.U. Citta della Salute e della Scienza of Turin, SSCVD Breast Surgery. Department of Surgery, Torino (Italy); Castellano, Isabella; Sapino, Anna [University of Turin, Department of Biomedical Sciences and Human Oncology, A.O.U. Citta della Salute e della Scienza, Torino (Italy)

    2015-09-15

    Preoperative breast magnetic resonance (MR) often generates additional suspicious findings needing further investigations. Targeted breast ultrasound (US) is the standard tool to characterize MR additional lesions. The purpose of this study is to evaluate the potential role of digital breast tomosynthesis (DBT) to characterize MR detected additional findings, unidentified at targeted breast US. This prospective study included women who a) had biopsy-proven, newly diagnosed breast cancers detected at conventional 2D mammography and/or US, referred to breast MR for tumour staging; and b) had DBT if additional MR findings were not detected at targeted ('second look') US. In 520 patients, MR identified 164 (in 114 women, 22 %) additional enhancing lesions. Targeted US identified 114/164 (69.5 %) of these, whereas 50/164 (30.5 %) remained unidentified. DBT identified 32/50 of these cases, increasing the overall characterization of MR detected additional findings to 89.0 % (146/164). Using DBT the identified lesions were significantly more likely to be malignant than benign MR-detected additional lesions (p = 0.04). DBT improves the characterization of additional MR findings not identified at targeted breast US in preoperative breast cancer staging. (orig.)

  2. Changes in frequency of recall recommendations of examinations depicting cancer with the availability of either priors or digital breast tomosynthesis

    Science.gov (United States)

    Hakim, Christiane M.; Bandos, Andriy I.; Ganott, Marie A.; Catullo, Victor J.; Chough, Denise M.; Kelly, Amy E.; Shinde, Dilip D.; Sumkin, Jules H.; Wallace, Luisa P.; Nishikawa, Robert M.; Gur, David

    2016-03-01

    Performance changes in a binary environment when using additional information is affected only when changes in recommendations are made due to the additional information in question. In a recent study, we have shown that, contrary to general expectation, introducing prior examinations improved recall rates, but not sensitivity. In this study, we assessed cancer detection differences when prior examinations and/or digital breast tomosynthesis (DBT) were made available to the radiologist. We identified a subset of 21 cancer cases with differences in the number of radiologists who recalled these cases after reviewing either a prior examination or DBT. For the cases with differences in recommendations after viewing either priors or DBT, separately, we evaluated the total number of readers that changed their recommendations, regardless of the specific radiologist in question. Confidence intervals for the number of readers and a test for the hypothesis of no difference was performed using the non-parameteric bootstrap approach addressing both case and reader-related sources of variability by resampling cases and readers. With the addition of priors, there were 14 cancer cases (out of 15) where the number of "recalling radiologists" decreased. With the addition of DBT, the number of "recalling radiologists" decreased in only five cases (out of 15) while increasing in the remaining 9 cases. Unlike most new approaches to breast imaging DBT seems to improve both recall rates and cancer detection rates. Changes in recommendations were noted by all radiologists for all cancers by type, size, and breast density.

  3. An experimental study of the scatter correction by using a beam-stop-array algorithm with digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye-Seul; Park, Hye-Suk; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of); Choi, Young-Wook; Choi, Jae-Gu [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2014-12-15

    Digital breast tomosynthesis (DBT) is a technique that was developed to overcome the limitations of conventional digital mammography by reconstructing slices through the breast from projections acquired at different angles. In developing and optimizing DBT, The x-ray scatter reduction technique remains a significant challenge due to projection geometry and radiation dose limitations. The most common approach to scatter reduction is a beam-stop-array (BSA) algorithm; however, this method raises concerns regarding the additional exposure involved in acquiring the scatter distribution. The compressed breast is roughly symmetric, and the scatter profiles from projections acquired at axially opposite angles are similar to mirror images. The purpose of this study was to apply the BSA algorithm with only two scans with a beam stop array, which estimates the scatter distribution with minimum additional exposure. The results of the scatter correction with angular interpolation were comparable to those of the scatter correction with all scatter distributions at each angle. The exposure increase was less than 13%. This study demonstrated the influence of the scatter correction obtained by using the BSA algorithm with minimum exposure, which indicates its potential for practical applications.

  4. Identification of error making patterns in lesion detection on digital breast tomosynthesis using computer-extracted image features

    Science.gov (United States)

    Wang, Mengyu; Zhang, Jing; Grimm, Lars J.; Ghate, Sujata V.; Walsh, Ruth; Johnson, Karen S.; Lo, Joseph Y.; Mazurowski, Maciej A.

    2016-03-01

    Digital breast tomosynthesis (DBT) can improve lesion visibility by eliminating the issue of overlapping breast tissue present in mammography. However, this new modality likely requires new approaches to training. The issue of training in DBT is not well explored. We propose a computer-aided educational approach for DBT training. Our hypothesis is that the trainees' educational outcomes will improve if they are presented with cases individually selected to address their weaknesses. In this study, we focus on the question of how to select such cases. Specifically, we propose an algorithm that based on previously acquired reading data predicts which lesions will be missed by the trainee for future cases (i.e., we focus on false negative error). A logistic regression classifier was used to predict the likelihood of trainee error and computer-extracted features were used as the predictors. Reader data from 3 expert breast imagers was used to establish the ground truth and reader data from 5 radiology trainees was used to evaluate the algorithm performance with repeated holdout cross validation. Receiver operating characteristic (ROC) analysis was applied to measure the performance of the proposed individual trainee models. The preliminary experimental results for 5 trainees showed the individual trainee models were able to distinguish the lesions that would be detected from those that would be missed with the average area under the ROC curve of 0.639 (95% CI, 0.580-0.698). The proposed algorithm can be used to identify difficult cases for individual trainees.

  5. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronic Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-09-15

    Purpose: The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67–3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In–Ga–Zn–O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. Methods: The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. Results: The result demonstrates that a large charge gain of 31–122 is achieved for the proposed high-mobility (5–20 cm{sup 2}/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10{sup −13} A) and OPD (<10{sup −8} A/cm{sup 2}) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the

  6. Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling

    Science.gov (United States)

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-03-01

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50 µm Rh; 50 µm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700 µm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37–57% reduction in exposure duration and with 2–20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700 µm) and HVL matched by increasing the kV over (0,4) range, identical SDNR was achieved with 62–65% decrease in exposure duration and with 2–24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over (700, 880) µm range, identical SDNR was achieved with 23–56% reduction in exposure duration and 2–20% reduction in MGD, depending on breast thickness

  7. Improvement of image performance in digital breast tomosynthesis (DBT) by incorporating a compressed-sensing (CS)-based deblurring scheme

    Science.gov (United States)

    Kim, Kyuseok; Park, Yeonok; Cho, Heemoon; Cho, Hyosung; Je, Uikyu; Park, Chulkyu; Lim, Hyunwoo; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2016-10-01

    In this work, we investigated a compressed-sensing (CS)-based deblurring scheme incorporated with the total-variation (TV) regularization penalty for image deblurring of high accuracy and adopted it into the image reconstruction in conventional digital breast tomosynthesis (DBT). We implemented the proposed algorithm and performed a systematic simulation to demonstrate its viability for improving the image performance in DBT as well as two-dimensional (2D) mammography. In the simulation, blurred noisy projection images of a 3D numerical breast phantom were generated by convolving their original (or exact) version by a designed 2D Gaussian filter kernel (standard deviation=2 in pixel unit, kernel size=11×11), followed by adding Gaussian noise (mean=0, variance=0.05), and deblurred by using the algorithm before performing the DBT reconstruction procedure. Here the projection images were taken with a half tomographic angle of θ=20° and an angle step of Δθ=2°. We investigated the image performance of the reconstructed DBT images quantitatively in terms of the modulation and the slice-sensitive profile (SSP).

  8. Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Heang-Ping; Wu Yita; Sahiner, Berkman; Wei, Jun; Helvie, Mark A.; Zhang Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Way, Ted [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-07-15

    Purpose: In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs. Methods: A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 deg. arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19

  9. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  10. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Konstantinidis, Anastasios C. [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Diagnostic Radiology and Radiation Protection, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom); Patel, Tushita [Department of Physics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  11. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis.

    Directory of Open Access Journals (Sweden)

    Siegfried A Schwab

    Full Text Available PURPOSE: To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM and to estimate foci after FFDM and digital breast-tomosynthesis (DBT using a biological phantom model. MATERIALS AND METHODS: The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. RESULTS: Median in-vivo foci level/cell was 0.086 (range 0.067-0.116 before and 0.094 (0.076-0.126 after FFDM (p = 0.0004. In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140 at skin level and 0.035 (range 0.030-0.050 at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081 at skin level and 0.015 (range 0.006-0.020 at glandular level. CONCLUSION: In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.

  12. Application of a computed tomography based cystic fibrosis scoring system to chest tomosynthesis

    Science.gov (United States)

    Söderman, Christina; Johnsson, Åse; Vikgren, Jenny; Rystedt, Hans; Ivarsson, Jonas; Rossi Norrlund, Rauni; Nyberg Andersson, Lena; Bâth, Magnus

    2013-03-01

    In the monitoring of progression of lung disease in patients with cystic fibrosis (CF), recurrent computed tomography (CT) examinations are often used. The relatively new imaging technique chest tomosynthesis (CTS) may be an interesting alternative in the follow-up of these patients due to its visualization of the chest in slices at radiation doses and costs significantly lower than is the case with CT. A first step towards introducing CTS imaging in the diagnostics of CF patients is to establish a scoring system appropriate for evaluating the severity of CF pulmonary disease based on findings in CTS images. Previously, several such CF scoring systems based on CT imaging have been published. The purpose of the present study was to develop a CF scoring system for CTS, by starting from an existing scoring system dedicated for CT images and making modifications regarded necessary to make it appropriate for use with CTS images. In order to determine any necessary changes, three thoracic radiologists independently used a scoring system dedicated for CT on both CT and CTS images from CF patients. The results of the scoring were jointly evaluated by all the observers, which lead to suggestions for changes to the scoring system. Suggested modifications include excluding the scoring of air trapping and doing the scoring of the findings in quadrants of the image instead of in each lung lobe.

  13. Automatic segmentation of mammogram and tomosynthesis images

    Science.gov (United States)

    Sargent, Dusty; Park, Sun Young

    2016-03-01

    Breast cancer is a one of the most common forms of cancer in terms of new cases and deaths both in the United States and worldwide. However, the survival rate with breast cancer is high if it is detected and treated before it spreads to other parts of the body. The most common screening methods for breast cancer are mammography and digital tomosynthesis, which involve acquiring X-ray images of the breasts that are interpreted by radiologists. The work described in this paper is aimed at optimizing the presentation of mammography and tomosynthesis images to the radiologist, thereby improving the early detection rate of breast cancer and the resulting patient outcomes. Breast cancer tissue has greater density than normal breast tissue, and appears as dense white image regions that are asymmetrical between the breasts. These irregularities are easily seen if the breast images are aligned and viewed side-by-side. However, since the breasts are imaged separately during mammography, the images may be poorly centered and aligned relative to each other, and may not properly focus on the tissue area. Similarly, although a full three dimensional reconstruction can be created from digital tomosynthesis images, the same centering and alignment issues can occur for digital tomosynthesis. Thus, a preprocessing algorithm that aligns the breasts for easy side-by-side comparison has the potential to greatly increase the speed and accuracy of mammogram reading. Likewise, the same preprocessing can improve the results of automatic tissue classification algorithms for mammography. In this paper, we present an automated segmentation algorithm for mammogram and tomosynthesis images that aims to improve the speed and accuracy of breast cancer screening by mitigating the above mentioned problems. Our algorithm uses information in the DICOM header to facilitate preprocessing, and incorporates anatomical region segmentation and contour analysis, along with a hidden Markov model (HMM) for

  14. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    Science.gov (United States)

    2007-10-01

    number of low-dose cone-beam projection images", Medical Physics 30 (3), 365 (2003). 9 E.A. Sickles, W.N. Weber, H.B. Galvin, S.H. Ominsky, and R.A...temporal pairs of mammograms for interval change analysis--local affine transformation for improved localization", Medical Physics 28 (6), 1070 (2001...aided classification of malignant and benign breast masses", Medical Physics 28 (11), 2309 (2001). 25 K. Marias, C. Behrenbruch, S. Parbhoo, A

  15. Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors

    Science.gov (United States)

    2012-05-01

    Detector. Proceeding of SPIE, 2010. 7622: p. 11. 16. Qian, X., et al., Design and characterization of a spatially distributed multibeam field emission x...load at the desired focal spot size and to design the electron focusing optics . Field emission current from CNT cathode was measured for an extended...Finite element analysis was performed to determine the 135 maximum x-ray tube current at the targeted focal spot size and power. Electron beam optics

  16. Breast cancers detected in only one of two arms of a tomosynthesis (3D-mammography) population screening trial (STORM-2).

    Science.gov (United States)

    Bernardi, Daniela; Houssami, Nehmat

    2017-04-01

    The prospective 'screening with tomosynthesis or standard mammography-2 (STORM-2)' trial compared mammography screen-reading strategies and showed that each of integrated 2D/3D-mammography or 2Dsynthetic/3D-mammography detected significantly more breast cancers than 2D-mammography alone. This short report describes 13 (from 90) cancers detected in only one of two parallel double-reading arms implemented in STORM-2. Amongst this subset of cases, the majority was invasive cancer ≤16 mm, mostly depicted as irregular masses or distortions. Furthermore, most were detected at 3D-mammography only and predominantly by one reader from double-reading pairs, highlighting that 3D-mammography may enable detection of cancers that are challenging to perceive at routine screening.

  17. Implementation and value of using a split-plot reader design in a study of digital breast tomosynthesis in a breast cancer assessment clinic

    Science.gov (United States)

    Mall, Suneeta; Brennan, Patrick C.; Mello-Thoms, Claudia

    2015-03-01

    The rapid evolution in medical imaging has led to an increased number of recurrent trials, primarily to ensure that the efficacy of new imaging techniques is known. The cost associated with time and resources in conducting such trials is usually high. The recruitment of participants, in a medium to large reader study, is often very challenging as the demanding number of cases discourages involvement with the trial. We aim to evaluate the efficacy of Digital Breast Tomosynthesis (DBT) in a recall assessment clinic in Australia in a prospective multi-reader-multi-case (MRMC) trial. Conducting such a study with the more commonly used fully crossed MRMC study design would require more cases and more cases read per reader, which was not viable in our setting. With an aim to perform a cost effective yet statistically efficient clinical trial, we evaluated alternative study designs, particularly the alternative split-plot MRMC study design and compared and contrasted it with more commonly used fully crossed MRMC study design. Our results suggest that `split-plot', an alternative MRMC study design, could be very beneficial for medium to large clinical trials and the cost associated with conducting such trials can be greatly reduced without adversely effecting the variance of the study. We have also noted an inverse dependency between number of required readers and cases to achieve a target variance. This suggests that split-plot could also be very beneficial for studies that focus on cases that are hard to procure or readers that are hard to recruit. We believe that our results may be relevant to other researchers seeking to design a medium to large clinical trials.

  18. Comparative study of patient doses calculated with two methods for breast digital tomosynthesis; Estudio de los valores de dosis a pacientes en examenes de tomosintesis de mama estimados con dos metodos distintos

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, M.; Chevalier, M.; Calzado, A.; Garayo, J.; Valverde, J.

    2015-07-01

    In this study, the average glandular doses (DG) delivered in breast tomosynthesis examinations were estimated over a sample of 150 patients using two different methods. In method 1, the conversion factors air-kerma to DG used were those tabulated by Dance et al. and in method 2 were the ones from Feng et al. The protocol for the examination followed in the unit of this study consists in two views per breast, each view composed by a 2D acquisition and a tomosynthesis scan (3D). The resulting DG values from both methods present statistically significant differences (p=0.02) for the 2D modality and were similar for the 3D scan (p=0.22). The estimated median value of DG for the most frequent breasts (thicknesses between 50 and 60 mm) delivered in a single 3D acquisition is 1.7 mGy (36% and 17% higher than the value for the 2D mode estimated with each method) which lies far below the tolerances established by the Spanish Protocol Quality Control in Radiodiagnostic (2011). The total DG for a tomosynthesis examination (6.0 mGy) is a factor 2.4 higher than the dose delivered in a 2D examination with two views (method 1). (Author)

  19. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Science.gov (United States)

    Choi, Sunghoon; Lee, Seungwan; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung

    2017-03-01

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections ( 80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin® (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  20. Computer-aided detection of microcalcifications in digital breast tomosynthesis (DBT): a multichannel signal detection approach on projection views

    Science.gov (United States)

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Zhou, Chuan; Lu, Yao

    2012-03-01

    DBT is one of the promising imaging modalities that may improve the sensitivity and specificity for breast cancer detection. We are developing a computer-aided detection (CADe) system for clustered microcalcifications (MC) in DBT. A data set of two-view DBTs from 42 breasts was collected with a GE prototype system. We investigated a 2D approach to MC detection using projection view (PV) images rather than reconstructed 3D DBT volume. Our 2D approach consisted of two major stages: 1) detecting individual MC candidates on each PV, and 2) correlating the MC candidates from the different PVs and detecting clusters in the breast volume. With the MC candidates detected by prescreening on PVs, a trained multi-channel (MCH) filter bank was used to extract signal response from each MC candidate. A ray-tracing process was performed to fuse the MCH responses and localize the MC candidates in 3D using the geometrical information of the DBT system. Potential MC clusters were then identified by dynamic clustering of the MCs in 3D. A two-fold cross-validation method was used to train and test the CADe system. The detection performance of clustered MCs was assessed by free receiver operating characteristic (FROC) analysis. It was found that the CADe system achieved a case-based sensitivity of 90% at an average false positive rate of 2.1 clusters per DBT volume. Our study demonstrated that the CADe system using 2D MCH filter bank is promising for detection of clustered MCs in DBT.

  1. Parallelizable 3D statistical reconstruction for C-arm tomosynthesis system

    Science.gov (United States)

    Wang, Beilei; Barner, Kenneth; Lee, Denny

    2005-04-01

    Clinical diagnosis and security detection tasks increasingly require 3D information which is difficult or impossible to obtain from 2D (two dimensional) radiographs. As a 3D (three dimensional) radiographic and non-destructive imaging technique, digital tomosynthesis is especially fit for cases where 3D information is required while a complete projection data is not available. Nowadays, FBP (filtered back projection) is extensively used in industry for its fast speed and simplicity. However, it is hard to deal with situations where only a limited number of projections from constrained directions are available, or the SNR (signal to noises ratio) of the projections is low. In order to deal with noise and take into account a priori information of the object, a statistical image reconstruction method is described based on the acquisition model of X-ray projections. We formulate a ML (maximum likelihood) function for this model and develop an ordered-subsets iterative algorithm to estimate the unknown attenuation of the object. Simulations show that satisfied results can be obtained after 1 to 2 iterations, and after that there is no significant improvement of the image quality. An adaptive wiener filter is also applied to the reconstructed image to remove its noise. Some approximations to speed up the reconstruction computation are also considered. Applying this method to computer generated projections of a revised Shepp phantom and true projections from diagnostic radiographs of a patient"s hand and mammography images yields reconstructions with impressive quality. Parallel programming is also implemented and tested. The quality of the reconstructed object is conserved, while the computation time is considerably reduced by almost the number of threads used.

  2. TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL

    Directory of Open Access Journals (Sweden)

    S. A. Zolotarev

    2016-01-01

    Full Text Available Computed tomography is still being intensively studied and widely used to solve a number of industrial and medical applications. The simultaneous algebraic reconstruction technique (SART and Bayesian inference reconstruction (BIR are considered as advantageous iteration methods that are most suitable for improving the quality of the reconstructed 3D-images. The paper deals with the parallel iterative algorithms to ensure the reconstruction of threedimensional images of the breast, recovered from a limited set of noisy X-ray projections. Algebraic method of reconstruction with simultaneous iterations – SART and iterative method for statistical reconstruction of BIR are deemed to be the most preferred iterative methods. We believe that these methods are particularly useful for improving the quality of breast reconstructed image. We use the graphics processor (GPU to accelerate the process of reconstruction. Preliminary results show that all investigated methods are useful in breast reconstruction layered images. However, it was found that the method of classical tomosynthesis SAA is less efficient than iterative methods SART and BIR as the worst suppress the anatomical noise. Despite the fact that the estimated ratio of the contrast / noise ratio in the presence of internal structures with low contrast is higher for classical tomosynthesis method the SAA, its effectiveness in the presence of highly structured background is low. In our opinion the best results can be achieved using statistical iterative reconstruction BIR.

  3. Breast Biopsy System

    Science.gov (United States)

    1994-01-01

    Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.

  4. Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods

    Science.gov (United States)

    2008-04-01

    isocentric motion in breast tomosynthesis. We have published our results in Medical Physics , the premiere peer-reviewed journal in the field of... Medical Physics ; please see Appendix #1 for the reprinted publication. 1.2. Characterize the effect of three acquisition parameters including total...working on a Medical Physics journal manuscript preparation for GFB algorithm. We have used impulse response and MTF analysis method to compare BP and

  5. Optical geometry calibration method for free-form digital tomosynthesis

    Science.gov (United States)

    Chtcheprov, Pavel; Hartman, Allison; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    Digital tomosynthesis is a type of limited angle tomography that allows 3D information to be reconstructed from a set of x-ray projection images taken at various angles using an x-ray tube, a mechanical arm to rotate the tube about the object, and a digital detector. Tomosynthesis reconstruction requires the precise location of the detector with respect to each x-ray source, forcing all current clinical tomosynthesis systems to use a physically coupled source and detector so the geometry is always known and is always the same. This limits the imaging geometries and its large size is impractical for mobile or field operations. To counter this, we have developed a free form tomosynthesis with a decoupled, free-moving source and detector that uses a novel optical method for accurate and real-time geometry calibration to allow for manual, hand-held tomosynthesis and even CT imaging. We accomplish this by using a camera, attached to the source, to track the motion of the source relative to the detector. Attached to the detector is an optical pattern and the image captured by the camera is then used to determine the relative camera/pattern position and orientation by analyzing the pattern distortion and calculating the source positions for each projection, necessary for 3D reconstruction. This allows for portable imaging in the field and also as an inexpensive upgrade to existing 2D systems, such as in developing countries, to provide 3D image data. Here we report the first feasibility demonstrations of free form digital tomosynthesis systems using the method.

  6. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  7. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    Energy Technology Data Exchange (ETDEWEB)

    Agasthya, G; Sechopoulos, I [Emory University, Atlanta, GA (United States)

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural, unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.

  8. TU-EF-207-00: Advances in Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  9. In-line phase shift tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.; Donnelly, Edwin F. [Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232 (United States)

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS with a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.

  10. Stationary digital chest tomosynthesis for coronary artery calcium scoring

    Science.gov (United States)

    Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.

  11. Initial application of digital tomosynthesis to improve brachytherapy treatment planning

    Science.gov (United States)

    Baydush, Alan H.; Mirzaei McKee, Mahta; King, June; Godfrey, Devon J.

    2007-03-01

    We present preliminary investigations that examine the feasibility of incorporating volumetric images generated using digital tomosynthesis into brachytherapy treatment planning. The Integrated Brachytherapy Unit (IBU) at our facility consists of an L-arm, C-arm isocentric motion system with an x-ray tube and fluoroscopic imager attached. Clinically, this unit is used to generate oblique, anterior-posterior, and lateral images for simple treatment planning and dose prescriptions. Oncologists would strongly prefer to have volumetric data to better determine three dimensional dose distributions (dose-volume histograms) to the target area and organs at risk. Moving the patient back and forth to CT causes undo stress on the patient, allows extensive motion of organs and treatment applicators, and adds additional time to patient treatment. We propose to use the IBU imaging system with digital tomosynthesis to generate volumetric patient data, which can be used for improving treatment planning and overall reducing treatment time. Initial image data sets will be acquired over a limited arc of a human-like phantom composed of real bones and tissue equivalent material. A brachytherapy applicator will be incorporated into one of the phantoms for visualization purposes. Digital tomosynthesis will be used to generate a volumetric image of this phantom setup. This volumetric image set will be visually inspected to determine the feasibility of future incorporation of these types of images into brachytherapy treatment planning. We conclude that initial images using the tomosynthesis reconstruction technique show much promise and bode well for future work.

  12. Stochastic noise characteristics in matrix inversion tomosynthesis (MITS).

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H P; Dobbins, James T Third

    2009-05-01

    Matrix inversion tomosynthesis (MITS) uses known imaging geometry and linear systems theory to deterministically separate in-plane detail from residual tomographic blur in a set of conventional tomosynthesis ("shift-and-add") planes. A previous investigation explored the effect of scan angle (ANG), number of projections (N), and number of reconstructed planes (NP) on the MITS impulse response and modulation transfer function characteristics, and concluded that ANG = 20 degrees, N = 71, and NP = 69 is the optimal MITS imaging technique for chest imaging on our prototype tomosynthesis system. This article examines the effect of ANG, N, and NP on the MITS exposure-normalized noise power spectra (ENNPS) and seeks to confirm that the imaging parameters selected previously by an analysis of the MITS impulse response also yield reasonable stochastic properties in MITS reconstructed planes. ENNPS curves were generated for experimentally acquired mean-subtracted projection images, conventional tomosynthesis planes, and MITS planes with varying combinations of the parameters ANG, N, and NP. Image data were collected using a prototype tomosynthesis system, with 11.4 cm acrylic placed near the image receptor to produce lung-equivalent beam hardening and scattered radiation. Ten identically acquired tomosynthesis data sets (realizations) were collected for each selected technique and used to generate ensemble mean images that were subtracted from individual image realizations prior to noise power spectra (NPS) estimation. NPS curves were normalized to account for differences in entrance exposure (as measured with an ion chamber), yielding estimates of the ENNPS for each technique. Results suggest that mid- and high-frequency noise in MITS planes is fairly equivalent in magnitude to noise in conventional tomosynthesis planes, but low-frequency noise is amplified in the most anterior and posterior reconstruction planes. Selecting the largest available number of projections (N

  13. Research in digital mammography and tomosynthesis at the University of Toronto.

    Science.gov (United States)

    Yaffe, Martin J

    2014-07-01

    There have been major advances in the field of breast cancer imaging since the early 1970s, both in technological improvements and in the use of the methods of medical physics and image analysis to optimize image quality. The introduction of digital mammography in 2000 provided a marked improvement in imaging of dense breasts. In addition, it became possible to produce tomographic and functional images on modified digital mammography systems. Digital imaging also greatly facilitated the extraction of quantitative information from images. My laboratory has been fortunate in being able to participate in some of these exciting developments. I will highlight some of the areas of our research interest which include modeling of the image formation process, development of high-resolution X-ray detectors for digital mammography and investigating new methods for analyzing image quality. I will also describe our more recent work on developing new applications of digital mammography including tomosynthesis, contrast-enhanced mammography, and measurement of breast density. Finally, I will point to a new area for our research--the application of the techniques of medical imaging to making pathology more quantitative to contribute to use of biomarkers for better characterizing breast cancer and directing therapeutic decisions.

  14. Whole-Body Clinical Applications of Digital Tomosynthesis.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016.

  15. TU-EF-207-01: Introductory Remarks on Recent Advances in Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karellas, A. [University of Massachusetts Medical School (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  16. TU-EF-207-05: Dedicated Cone-beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S. [Univ. of Massachusetts Medical School (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  17. Theoretical framework for filtered back projection in tomosynthesis

    Science.gov (United States)

    Lauritsch, Guenter; Haerer, Wolfgang H.

    1998-06-01

    Tomosynthesis provides only incomplete 3D-data of the imaged object. Therefore it is important for reconstruction tasks to take all available information carefully into account. We are focusing on geometrical aspects of the scan process which can be incorporated into reconstruction algorithms by filtered backprojection methods. Our goal is a systematic approach to filter design. A unified theory of tomosynthesis is derived in the context of linear system theory, and a general four-step filter design concept is presented. Since the effects of filtering are understandable in this context, a methodical formulation of filter functions is possible in order to optimize image quality regarding the specific requirements of any application. By variation of filter parameters the slice thickness and the spatial resolution can easily be adjusted. The proposed general concept of filter design is exemplarily discussed for circular scanning but is valid for any specific scan geometry. The inherent limitations of tomosynthesis are pointed out and strategies for reducing the effects of incomplete sampling are developed. Results of a dental application show a striking improvement in image quality.

  18. Glandular dose in breast tomosynthesis examinations: Preliminary study with a sample of patients; Dosis glandular en examenes de tomosintesis de mama: estudio preliminar con una muestra de pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, M.; Chevalier, M.; Calzado, A.; Valverde, J.

    2013-07-01

    The aim of this study is to analyze the mean glandular dose administered to a group of patients with a tomography system (Selenia Dimensions) service installed on a large hospital in which routine tests are done and screening. (Author)

  19. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  20. The application of a novel detector for X-ray diffraction study of breast cancer

    OpenAIRE

    Zheng, Y.

    2016-01-01

    Current imaging methods - mammography, digital breast tomosynthesis, ultrasound and magnetic resonance images (MRI), fail to provide an accurate breast tumour size measurement. X-ray diffraction (XRD) can provide better contrast than mammography and digital breast tomosynthesis, better spatial resolution than ultrasound and is more cost effective than MRI. However, its use is limited by high radiation dose. Previous breast XRD research often fails to investigate samples with a realistic thick...

  1. Stereotactic breast biopsy: pitfalls and pearls.

    Science.gov (United States)

    Huang, Monica L; Adrada, Beatriz E; Candelaria, Rosalind; Thames, Deborah; Dawson, Debora; Yang, Wei T

    2014-03-01

    Stereotactic breast biopsies have become indispensable and the standard of care for patients in whom screening mammography or tomosynthesis reveals breast lesions suggestive of malignancy. A variety of stereotactic biopsy systems and needle types are now available, which allow more accurate sampling of lesions as well as successful biopsy of lesions in difficult locations in patients of all body habitus. We discuss how to plan, perform, and follow up stereotactic biopsies. Most importantly, we offer suggestions on how to avoid problems and complications and detail how to achieve technical success even in the most challenging cases. Stereotactic biopsy has proven over time to be an accurate and acceptable alternative to surgical biopsy for histopathologic diagnosis of breast abnormalities. Successful performance of this minimally invasive procedure spares women from undergoing potentially deforming and expensive procedures to diagnose breast disease.

  2. Breast Cancer in Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Tessier Cloutier, B; Clarke, A E; Ramsey-Goldman, R

    2013-01-01

    Evidence points to a decreased breast cancer risk in systemic lupus erythematosus (SLE). We analyzed data from a large multisite SLE cohort, linked to cancer registries.......Evidence points to a decreased breast cancer risk in systemic lupus erythematosus (SLE). We analyzed data from a large multisite SLE cohort, linked to cancer registries....

  3. Anatomic Breast Coordinate System for Mammogram Analysis

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Brandt, S; Karssemeijer, N;

    2011-01-01

    inside the breast. Most of the risk assessment and CAD modules use a breast region in a image centered Cartesian x,y coordinate system. Nevertheless, anatomical structure follows curve-linear trajectories. We examined an anatomical breast coordinate system that preserves the anatomical correspondence...... between the mammograms and allows extracting not only the aligned position but also the orientation aligned with the anatomy of the breast tissue structure. Materials and Methods The coordinate system used the nipple location as the point A and the border of the pectoral muscle as a line BC. The skin air...... was represented by geodesic distance (s) from nipple and parametric angle (¿) as shown in figure 1. The scoring technique called MTR (mammographic texture resemblance marker) used this breast coordinate system to extract Gaussian derivative features. The features extracted using the (x,y) and the curve...

  4. Acoustic performance of mesh compression paddles for a multimodality breast imaging system.

    Science.gov (United States)

    LeCarpentier, Gerald L; Goodsitt, Mitchell M; Verweij, Sacha; Li, Jie; Padilla, Frederic R; Carson, Paul L

    2014-07-01

    A system incorporating automated 3-D ultrasound and digital X-ray tomosynthesis is being developed for improved breast lesion detection and characterization. The goal of this work is to develop and test candidates for a dual-modality mesh compression paddle. A Computerized Imaging Reference Systems (Norfork, VA, USA) ultrasound phantom with tilted low-contrast cylindrical objects was used. Polyester mesh fabrics (1- and 2-mm spacing), a high-density polyethylene filament grid (Dyneema, DSM Dyneema, Stanley, NC, USA) and a solid polymethylpentene (TPX; Mitsui Plastics, Inc., White Plains, NY) paddle were compared with no overlying structures using a GE Logic 9 with M12L transducer. A viscous gel provided coupling. The phantom was scanned 10 times over 9 cm for each configuration. Image volumes were analyzed for signal strength, contrast and contrast-to-noise ratio. X-ray tests confirmed X-ray transparency for all materials. By all measures, both mesh fabrics outperformed TPX and Dyneema, and there were essentially no differences between 2-mm mesh and unobstructed configurations.

  5. Ectopic Axillary Breast during Systemic Lupus

    Directory of Open Access Journals (Sweden)

    Besma Ben Dhaou

    2012-01-01

    Full Text Available Many breast changes may occur in systemic lupus erythematosus. We report a 41-year-old woman with lupus who presented three years after the onset of lupus an ectopic mammary gland confirmed by histological study.

  6. Breast Imaging Artifacts.

    Science.gov (United States)

    Odle, Teresa G

    2015-01-01

    Artifacts appear on breast images for a number of reasons. Radiologic technologists play an important role in identifying artifacts that can help or hinder breast cancer diagnosis and in minimizing artifacts that degrade image quality. This article describes various artifacts that occur in breast imaging, along with their causes. The article focuses on artifacts in mammography, with a heavy emphasis on digital mammography, and on magnetic resonance imaging of the breast. Artifacts in ultrasonography of the breast, digital breast tomosynthesis, and positron emission mammography also are discussed.

  7. Prospective gated chest tomosynthesis using CNT X-ray source array

    Science.gov (United States)

    Shan, Jing; Burk, Laurel; Wu, Gongting; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2015-03-01

    Chest tomosynthesis is a low-dose 3-D imaging modality that has been shown to have comparable sensitivity as CT in detecting lung nodules and other lung pathologies. We have recently demonstrated the feasibility of stationary chest tomosynthesis (s-DCT) using a distributed CNT X-ray source array. The technology allows acquisition of tomographic projections without moving the X-ray source. The electronically controlled CNT x-ray source also enables physiologically gated imaging, which will minimize image blur due to the patient's respiration motion. In this paper, we investigate the feasibility of prospective gated chest tomosynthesis using a bench-top s-DCT system with a CNT source array, a high- speed at panel detector and realistic patient respiratory signals captured using a pressure sensor. Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phantom were acquired at different respiration rate, with and without gating for image quality comparison. Metal beads of 2 mm diameter were placed on the pig lung for quantitative measure of the image quality. Without gating, the beads were blurred to 3:75 mm during a 3 s tomosynthesis acquisition. When gated to the end of the inhalation and exhalation phase the detected bead size reduced to 2:25 mm, much closer to the actual bead size. With gating the observed airway edges are sharper and there are more visible structural details in the lung. Our results demonstrated the feasibility of prospective gating in the s-DCT, which substantially reduces image blur associated with lung motion.

  8. A dual-axis tilt acquisition geometry for digital musculoskeletal tomosynthesis

    Science.gov (United States)

    Levakhina, Yulia M.; Duschka, Robert L.; Vogt, Florian M.; Barkhausen, Joerg; Buzug, Thorsten M.

    2013-07-01

    Digital tomosynthesis (DT) is a limited angle tomographic x-ray technique. It is an attractive low-dose alternative to computed tomography (CT) in many imaging applications. However, the DT dataset is incomplete, which leads to out-of-focus artifacts and limited axial resolution. In this paper, a novel dual-axis tilt acquisition geometry is proposed and evaluated. This geometry solves some issues in tomosynthesis with the traditional scanning geometry by scanning the object with a set of perpendicular arcs. In this geometry the acquisition in the additional perpendicular direction is done using a tiltable object supporting platform. The proposed geometry allows for capturing more singularities of the Radon transform, filling the Fourier space with more data and better approximating the Tuy-Smith conditions. In order to evaluate the proposed system, several studies have been carried out. To validate the simulation setup the performance of the traditional scanning geometry has been simulated and compared to known results from the literature. It has also been shown that the possible improvement of the image quality in the traditional geometry is limited. These limitations can be partially overcome by using the proposed dual-axis tilt geometry. The novel geometry is superior and with the same number of projections better reconstructed images can be obtained. All studies have been made using a software tomosynthesis simulator. A micro-CT reconstruction of a bone has been used as a software phantom. Simultaneous algebraic reconstruction has been used to reconstruct simulated projections. As a conclusion, acquiring data outside the standard arc allows for improving performance of musculoskeletal tomosynthesis. With the proposed dual-axis acquisition geometry a performance gain is achieved without an increase in dose and major modifications to the instrumentation of existing tomosynthesis devices.

  9. Initial clinical evaluation of stationary digital chest tomosynthesis

    Science.gov (United States)

    Hartman, Allison E.; Shan, Jing; Wu, Gongting; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping; Heath, Michael; Wang, Xiaohui; Foos, David

    2016-03-01

    Computed Tomography (CT) is the gold standard for image evaluation of lung disease, including lung cancer and cystic fibrosis. It provides detailed information of the lung anatomy and lesions, but at a relatively high cost and high dose of radiation. Chest radiography is a low dose imaging modality but it has low sensitivity. Digital chest tomosynthesis (DCT) is an imaging modality that produces 3D images by collecting x-ray projection images over a limited angle. DCT is less expensive than CT and requires about 1/10th the dose of radiation. Commercial DCT systems acquire the projection images by mechanically scanning an x-ray tube. The movement of the tube head limits acquisition speed. We recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a carbon nanotube (CNT) x-ray source array in benchtop phantom studies. The stationary x-ray source allows for fast image acquisition. The objective of this study is to demonstrate the feasibility of s-DCT for patient imaging. We have successfully imaged 31 patients. Preliminary evaluation by board certified radiologists suggests good depiction of thoracic anatomy and pathology.

  10. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    Science.gov (United States)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  11. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  12. Dosimetry in x-ray-based breast imaging

    Science.gov (United States)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  13. The immune system and inflammation in breast cancer.

    Science.gov (United States)

    Jiang, Xinguo; Shapiro, David J

    2014-01-25

    During different stages of tumor development the immune system can either identify and destroy tumors, or promote their growth. Therapies targeting the immune system have emerged as a promising treatment modality for breast cancer, and immunotherapeutic strategies are being examined in preclinical and clinical models. However, our understanding of the complex interplay between cells of the immune system and breast cancer cells is incomplete. In this article, we review recent findings showing how the immune system plays dual host-protective and tumor-promoting roles in breast cancer initiation and progression. We then discuss estrogen receptor α (ERα)-dependent and ERα-independent mechanisms that shield breast cancers from immunosurveillance and enable breast cancer cells to evade immune cell induced apoptosis and produce an immunosuppressive tumor microenvironment. Finally, we discuss protumorigenic inflammation that is induced during tumor progression and therapy, and how inflammation promotes more aggressive phenotypes in ERα positive breast cancers.

  14. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    OpenAIRE

    Fowler, E. E.; Sellers, T.A.; Lu, B.; Heine, J.J.

    2013-01-01

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.

  15. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    Science.gov (United States)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  16. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    Science.gov (United States)

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-09-03

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  17. Limited angle C-arm tomosynthesis reconstruction algorithms

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying

    2015-03-01

    In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.

  18. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  19. Comparative evaluation of six cytological grading systems in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Kaushik Saha

    2013-01-01

    Conclusions: Robinson′s grading system is simple, more objective and reproducible, and demonstrated the best concordance with histological grading. So, Robinson′s system should be used routinely for breast carcinoma aspirates.

  20. Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging.

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H P; Dobbins, James T

    2006-03-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory, along with a priori knowledge of the imaging geometry, to deterministically distinguish between true structure and overlying tomographic blur in a set of conventional tomosynthesis planes. In this paper we examine the effect of total scan angle (ANG), number of input projections (N), and plane separation/number of reconstructed planes (NP) on the MITS impulse response (IR) and modulation transfer function (MTF), with the purpose of optimizing MITS imaging of the chest. MITS IR and MTF data were generated by simulating the imaging of a very thin wire, using various combinations of ANG, N, and NP. Actual tomosynthesis data of an anthropomorphic chest phantom were acquired with a prototype experimental system, using the same imaging parameter combinations as those in the simulations. Thoracic projection data from two human subjects were collected for corroboration of the system response analysis in vivo. Results suggest that ANG=20 degrees, N=71, NP=69 is the optimal combination for MITS chest imaging given the inherent constraints of our prototype system. MITS chest data from human subjects demonstrates that the selected imaging strategy can effectively produce high-quality MITS thoracic images in vivo.

  1. Breast cancer screening controversies: who, when, why, and how?

    Science.gov (United States)

    Chetlen, Alison; Mack, Julie; Chan, Tiffany

    2016-01-01

    Mammographic screening is effective in reducing mortality from breast cancer. The issue is not whether mammography is effective, but whether the false positive rate and false negative rates can be reduced. This review will discuss controversies including the reduction in breast cancer mortality, overdiagnosis, the ideal screening candidate, and the optimal imaging modality for breast cancer screening. The article will compare and contrast screening mammography, tomosynthesis, whole-breast screening ultrasound, magnetic resonance imaging, and molecular breast imaging. Though supplemental imaging modalities are being utilized to improve breast cancer diagnosis, mammography still remains the gold standard for breast cancer screening.

  2. Digital optical tomography system for dynamic breast imaging.

    Science.gov (United States)

    Flexman, Molly L; Khalil, Michael A; Al Abdi, Rabah; Kim, Hyun K; Fong, Christopher J; Desperito, Elise; Hershman, Dawn L; Barbour, Randall L; Hielscher, Andreas H

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  3. Adjuvant systemic therapy in older women with breast cancer

    Science.gov (United States)

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  4. An anatomically oriented breast coordinate system for mammogram analysis

    DEFF Research Database (Denmark)

    Brandt, Sami; Karemore, Gopal; Karssemeijer, Nico

    2011-01-01

    and orientations are registered and extracted without non-linearly deforming the images. We use the proposed breast coordinate transform in a cross-sectional breast cancer risk assessment study of 490 women, in which we attempt to learn breast cancer risk factors from mammograms that were taken prior to when...... between the mammograms of each woman and among the mammograms of all of the women in the study. The results of the cross-sectional study show that the classification into cancer and control groups can be improved by using the new coordinate system, compared to other systems evaluated. Comparisons were...

  5. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  6. Digital tomosynthesis of hands using simultaneous algebraic reconstruction technique with distance driven projector

    Energy Technology Data Exchange (ETDEWEB)

    Levakhina, Y.M. [Luebeck Univ. (Germany). Graduate School for Computing in Medicine and Life Sciences; Luebeck Univ. (Germany). Inst. of Medical Engineering; Duschka, R.L.; Barkhausen, J. [Universitaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Buzug, T.M. [Luebeck Univ. (Germany). Inst. of Medical Engineering

    2011-07-01

    Digital tomosynthesis (DT) is an X-ray tomographic technique for producing a three-dimensional stack of crosssectional images, based on a limited number of low-dose two-dimensional projections, acquired over a limited angular range. Currently, DT has mainly been investigated for the breast and chest imaging. Another application of DT may be an orthopaedic imaging of hands. A three-dimensional reconstruction with a high in-plane resolution, a low dose and potentially low costs make DT attractive for hand imaging comparing with the planar radiography or computed tomography. However, it should be noted that an accurate image reconstruction in DT is a challenging task due to the high degree of data incompleteness. Images are affected by the residual blur of structures that are located above and below the plane of interest. A human hand consists of 27 bones and therefore the artifact problem becomes even more acute in this case, since the magnitude of artifacts is related not only to the chosen reconstruction type but also to the size and contrast of the artifact-generating object. The study presented in the current work has been performed to show a capability of Simultaneous Algebraic Reconstruction Technique (SART) for hand visualization in tomosynthesis. A distance-driven type for the projector and backprojector operator has been used to make the calculation fast and accurate. Studies have been carried out on a phantom with an uniform background and millimeter-sized balls, a dried finger bone and an in toto hand phantom. A Siemens Mammomat Inspiration device has been used to acquire the projection data. Experimental results show that SART is able to reduce out-of-plane artifacts caused by bone tissue. It provides reconstruction with acceptable quality in only one iteration with the recovered visibility of the obscured trabecular structures as well as the joint spaces and the margins. (orig.)

  7. Geometric calibration for a SPECT system dedicated to breast imaging

    Institute of Scientific and Technical Information of China (English)

    WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci

    2012-01-01

    Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.

  8. Breast imaging and reporting data system (BIRADS): Magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tardivon, Anne A. [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France)]. E-mail: anne.tardivon@curie.net; Athanasiou, Alexandra [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France); Thibault, Fabienne [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France); El Khoury, Carl [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France)

    2007-02-15

    This article reviews the technical aspects and interpretation criteria in breast MR imaging based on the first edition of breast imaging and reporting data system (BIRADS) published by the American College of Radiology (ACR) in 2003. In a second article, practical cases will be proposed for training the readers. The major aims of using this lexicon are: first to use a logical and standardized description of MR lesions, secondly to obtain a structured MR report with a clear final impression (BIRADS assessment categories), and thirdly to help comparison between different clinical studies based on similar breast MRI terminology.

  9. Evaluation of respiration-correlated digital tomosynthesis in lung1

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D. Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I.; Mageras, Gig S.

    2010-01-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30° gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2–3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method’s applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients. PMID:20384261

  10. Computerized database management system for breast cancer patients.

    Science.gov (United States)

    Sim, Kok Swee; Chong, Sze Siang; Tso, Chih Ping; Nia, Mohsen Esmaeili; Chong, Aun Kee; Abbas, Siti Fathimah

    2014-01-01

    Data analysis based on breast cancer risk factors such as age, race, breastfeeding, hormone replacement therapy, family history, and obesity was conducted on breast cancer patients using a new enhanced computerized database management system. My Structural Query Language (MySQL) is selected as the application for database management system to store the patient data collected from hospitals in Malaysia. An automatic calculation tool is embedded in this system to assist the data analysis. The results are plotted automatically and a user-friendly graphical user interface is developed that can control the MySQL database. Case studies show breast cancer incidence rate is highest among Malay women, followed by Chinese and Indian. The peak age for breast cancer incidence is from 50 to 59 years old. Results suggest that the chance of developing breast cancer is increased in older women, and reduced with breastfeeding practice. The weight status might affect the breast cancer risk differently. Additional studies are needed to confirm these findings.

  11. Introducing DeBRa: a detailed breast model for radiological studies

    Science.gov (United States)

    Ma, Andy K. W.; Gunn, Spencer; Darambara, Dimitra G.

    2009-07-01

    Currently, x-ray mammography is the method of choice in breast cancer screening programmes. As the mammography technology moves from 2D imaging modalities to 3D, conventional computational phantoms do not have sufficient detail to support the studies of these advanced imaging systems. Studies of these 3D imaging systems call for a realistic and sophisticated computational model of the breast. DeBRa (Detailed Breast model for Radiological studies) is the most advanced, detailed, 3D computational model of the breast developed recently for breast imaging studies. A DeBRa phantom can be constructed to model a compressed breast, as in film/screen, digital mammography and digital breast tomosynthesis studies, or a non-compressed breast as in positron emission mammography and breast CT studies. Both the cranial-caudal and mediolateral oblique views can be modelled. The anatomical details inside the phantom include the lactiferous duct system, the Cooper ligaments and the pectoral muscle. The fibroglandular tissues are also modelled realistically. In addition, abnormalities such as microcalcifications, irregular tumours and spiculated tumours are inserted into the phantom. Existing sophisticated breast models require specialized simulation codes. Unlike its predecessors, DeBRa has elemental compositions and densities incorporated into its voxels including those of the explicitly modelled anatomical structures and the noise-like fibroglandular tissues. The voxel dimensions are specified as needed by any study and the microcalcifications are embedded into the voxels so that the microcalcification sizes are not limited by the voxel dimensions. Therefore, DeBRa works with general-purpose Monte Carlo codes. Furthermore, general-purpose Monte Carlo codes allow different types of imaging modalities and detector characteristics to be simulated with ease. DeBRa is a versatile and multipurpose model specifically designed for both x-ray and γ-ray imaging studies.

  12. Systemic Treatment Approaches in Breast Cancer

    NARCIS (Netherlands)

    M. Bontenbal (Marijke)

    1997-01-01

    textabstractBreast cancer is the most conmlon malignant tumor among women, with an estimated 135,000 new cases and 58,000 recorded deaths per year in the Europeau Community in 1990. With respect to the Netherlands, the most recent data of The Netherlands Cancer Registry show an incidence of nearly 1

  13. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system......, the microwave hardware, and the imaging algorithm....

  14. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  15. Optimized acquisition scheme for multi-projection correlation imaging of breast cancer

    Science.gov (United States)

    Chawla, Amarpreet S.; Samei, Ehsan; Saunders, Robert S.; Lo, Joseph Y.; Singh, Swatee

    2008-03-01

    We are reporting the optimized acquisition scheme of multi-projection breast Correlation Imaging (CI) technique, which was pioneered in our lab at Duke University. CI is similar to tomosynthesis in its image acquisition scheme. However, instead of analyzing the reconstructed images, the projection images are directly analyzed for pathology. Earlier, we presented an optimized data acquisition scheme for CI using mathematical observer model. In this article, we are presenting a Computer Aided Detection (CADe)-based optimization methodology. Towards that end, images from 106 subjects recruited for an ongoing clinical trial for tomosynthesis were employed. For each patient, 25 angular projections of each breast were acquired. Projection images were supplemented with a simulated 3 mm 3D lesion. Each projection was first processed by a traditional CADe algorithm at high sensitivity, followed by a reduction of false positives by combining geometrical correlation information available from the multiple images. Performance of the CI system was determined in terms of free-response receiver operating characteristics (FROC) curves and the area under ROC curves. For optimization, the components of acquisition such as the number of projections, and their angular span were systematically changed to investigate which one of the many possible combinations maximized the sensitivity and specificity. Results indicated that the performance of the CI system may be maximized with 7-11 projections spanning an angular arc of 44.8°, confirming our earlier findings using observer models. These results indicate that an optimized CI system may potentially be an important diagnostic tool for improved breast cancer detection.

  16. Diagnostic accuracy of digital mammography versus tomosynthesis: effect of radiologists' experience

    Science.gov (United States)

    Zanca, F.; Wallis, M.; Moa, E.; Leifland, K.; Danielsson, M.; Oyen, R.; Bosmans, H.

    2012-02-01

    Purpose: To investigate whether readers' experience affects performance in a study comparing 2D digital mammography (2D) with 2-view (CC and MLO) or 1-view (MLO) tomosynthesis. Materials and Methods: One-hundred-thirty 2D cases were collected from screening assessment and referral clinics; 64 of the cases had verified abnormalities and the remaining were confirmed normal. Two-view tomosynthesis images were obtained from the same patients. Ten accredited readers (5 with >= 10 years experience in mammography and 5 with time. Results: No significant difference was reached between 2D and 2-view tomosynthesis for experienced readers (pvalue= 0.25); for less experienced readers the p-value was significant (0.03). No significant difference was found between 2D and 1-view tomosynthesis, independent of readers' experience. RR for benign cases decreased for tomosynthesis (for booth 1- and 2-view), independent of experience. Average reading time per case was 79 s (range 65- 91 s) and 134 s (range 119-158 s) for experienced readers; 56 s (range 46-67 s) and 115s (range 97-142 s) for nonexperienced, for 2D and 2-view tomosynthesis respectively. Reading time was 74 s (range 43-98 s) and 99 s (range 73- 117 s) for experienced readers; 74 s (range 62-85 s) and 94 s (range 82-137 s) for non-experienced, for 2D and 1-view tomosynthesis respectively. Conclusions: For experienced readers, there is no evidence of improved diagnostic accuracy when using 2-view or 1- view tomosynthesis, while less experienced readers perform better with 2-view tomosynthesis than 2D images. Tomosynthesis reduces the number of recall of benign cases, without hindering cancer detection.

  17. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  18. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  19. Systemic chemotherapy for metastatic breast cancer

    Institute of Scientific and Technical Information of China (English)

    Yannan Zhao; Biyun Wang

    2015-01-01

    Breast cancer is the leading cause of cancer among women worldwide and the most common cancer in China. Many factors influence the treatment strategy for metastatic breast cancer (MBC). Chemotherapy should be administered to patients with hormone receptor-negative tumors, symptomatic visceral metastasis, and a short disease-free interval. Sequential single-agent chemotherapy has similar efficacy as combination agents in terms of overall survival and quality of life. Anthracyclines are the cornerstone of first-line treatment for MBC, and taxanes represent the second treatment option after resistance. When progression or intolerable toxicity occurs after optimal treatment, the alternative treatments include capecitabine, vinorel-bine, and gemcitabine. Ixabepilone and eribulin are relatively new effective single agents. A combination of cytotoxic agents for patients with rapid clinical progression can further improve the overall response rate and time to progression compared to single-agent treatment. For patients with MBC who were pretreated with anthracyclines in the neoadjuvant/adjuvant setting, a taxane-containing regimen such as docetaxel plus capecitabine or gemcitabine plus paclitaxel should be administered. Platinum-based therapies such as cisplatin or carboplatin have a role in the treatment of triple-negative breast cancer. Meanwhile, the efficacy of the addition of targeted drugs such as iniparib, bevacizumab, and cetuximab to chemotherapy remains unproven. Maintenance chemotherapy is routinely recommended in clinical practice at present. Patients who were previously treated with paclitaxel and gemcitabine have better progression-free and overall survival with maintenance chemotherapy according to a Korean phase Ⅲ clinical trial. Sequential maintenance treatment with capecitabine monotherapy after capecitabine-based combination chemotherapy (X-based X) appears favorable based on a series of domestic studies.

  20. Feasibility study of the diagnosis and monitoring of cystic fibrosis in pediatric patients using stationary digital chest tomosynthesis

    Science.gov (United States)

    Potuzko, Marci; Shan, Jing; Pearce, Caleb; Lee, Yueh Z.; Lu, Jianping; Zhou, Otto

    2015-03-01

    Digital chest tomosynthesis (DCT) is a 3D imaging modality which has been shown to approach the diagnostic capability of CT, but uses only one-tenth the radiation dose of CT. One limitation of current commercial DCT is the mechanical motion of the x-ray source which prolongs image acquisition time and introduces motion blurring in images. By using a carbon nanotube (CNT) x-ray source array, we have developed a stationary digital chest tomosynthesis (s- DCT) system which can acquire tomosynthesis images without mechanical motion, thus enhancing the image quality. The low dose and high quality 3D image makes the s-DCT system a viable imaging tool for monitoring cystic fibrosis (CF) patients. The low dose is especially important in pediatric patients who are both more radiosensitive and have a longer lifespan for radiation symptoms to develop. The purpose of this research is to evaluate the feasibility of using s-DCT as a faster, lower dose means for diagnosis and monitoring of CF in pediatric patients. We have created an imaging phantom by injecting a gelatinous mucus substitute into porcine lungs and imaging the lungs from within an anthropomorphic hollow chest phantom in order to mimic the human conditions of a CF patient in the laboratory setting. We have found that our s-DCT images show evidence of mucus plugging in the lungs and provide a clear picture of the airways in the lung, allowing for the possibility of using s- DCT to supplement or replace CT as the imaging modality for CF patients.

  1. Effects of angular range on image quality of chest digital tomosynthesis

    Science.gov (United States)

    Lee, Haenghwa; Kim, Ye-seul; Choi, Sunghoon; Lee, Dong-Hoon; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve clinical diagnosis over conventional chest radiography. We investigated the effect of the angular range of data acquisition on the image quality using newly developed CDT system. The four different acquisition sets were studied using +/-15°, +/-20°, +/-30°, and +/-35° angular ranges with 21 projection views (PVs). The point spread function (PSF), modulation transfer function (MTF), artifact spread function (ASF), and normalized contrast-to-noise ratio (CNR) were used to evaluate the image quality. We found that increasing angular ranges improved vertical resolution. The results indicated that there was the opposite relationship of the CNR with angular range for the two tissue types. While CNR for heart tissue increased with increasing angular range, CNR for spine bone decreased. The results showed that the angular range is an important parameter for the CDT exam.

  2. A New CAD System for Breast Microcalcifications Diagnosis

    Directory of Open Access Journals (Sweden)

    H. Boulehmi

    2016-04-01

    Full Text Available Breast cancer is one of the most deadly cancers in the world, especially among women. With no identified causes and absence of effective treatment, early detection remains necessary to limit the damages and provide possible cure. Submitting women with family antecedent to mammography periodically can provide an early diagnosis of breast tumors. Computer Aided Diagnosis (CAD is a powerful tool that can help radiologists improving their diagnostic accuracy at earlier stages. Several works have been developed in order to analyze digital mammographies, detect possible lesions (especially masses and microcalcifications and evaluate their malignancy. In this paper a new approach of breast microcalcifications diagnosis on digital mammograms is introduced. The proposed approach begins with a preprocessing procedure aiming artifacts and pectoral muscle removal based on morphologic operators and contrast enhancement based on galactophorous tree interpolation. The second step of the proposed CAD system consists on segmenting microcalcifications clusters, using Generalized Gaussian Density (GGD estimation and a Bayesian back-propagation neural network. The last step is microcalcifications characterization using morphologic features which are used to feed a neuro-fuzzy system to classify the detected breast microcalcifications into benign and malignant classes.

  3. Progress in diagnosis of breast cancer: Advances in radiology technology

    Directory of Open Access Journals (Sweden)

    J Mari Beth Linder

    2015-01-01

    Full Text Available Breast cancer is the leading cause of cancer in females between the ages of 15 and 54, and the second leading cause of cancer death in women in the United States. Diagnosis begins with detection by breast examination (clinical breast exam or breast self-exam or by radiologic studies, like mammography. Many advances in the diagnosis of breast cancer have taken place in recent years. This article will review the history of radiologic advances in the diagnosis of breast cancer. Use of technological advancements in digital breast tomosynthesis, magnetic resonance imaging, and ultrasound in breast cancer diagnosis will be presented. Advantages and disadvantages of these diagnostic interventions when compared to older, traditional X-ray films will be discussed. It is important for all nurses, including radiology and oncology nurses, to be well informed about these varied diagnostic modalities, and appreciate the fact that advances in radiologic imaging technologies can yield improved outcomes for breast cancer patients.

  4. A Simple System for the Early Detection of Breast Cancer

    Science.gov (United States)

    2015-07-01

    informatics, immunology , benign cancer , prognostic studies, baseline diagnostics, heatmaps, ROCurves 2 Major Activities 1. Production of IMS arrays...AD______________ AWARD NUMBER: W81XWH-14-1-0231 TITLE: A Simple System for the Early Detection of Breast Cancer PRINCIPAL INVESTIGATOR...0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

  5. A second generation of physical anthropomorphic 3D breast phantoms based on human subject data

    Science.gov (United States)

    Nolte, Adam; Kiarashi, Nooshin; Samei, Ehsan; Segars, W. P.; Lo, Joseph Y.

    2014-03-01

    Previous fabrication of anthropomorphic breast phantoms has demonstrated their viability as a model for 2D (mammography) and 3D (tomosynthesis) breast imaging systems. Further development of these models will be essential for the evaluation of breast x-ray systems. There is also the potential to use them as the ground truth in virtual clinical trials. The first generation of phantoms was segmented from human subject dedicated breast computed tomography data and fabricated into physical models using highresolution 3D printing. Two variations were made. The first was a multi-material model (doublet) printed with two photopolymers to represent glandular and adipose tissues with the greatest physical contrast available, mimicking 75% and 35% glandular tissue. The second model was printed with a single 75% glandular equivalent photopolymer (singlet) to represent glandular tissue, which can be filled independently with an adipose-equivalent material such as oil. For this study, we have focused on improving the latter, the singlet phantom. First, the temporary oil filler has been replaced with a permanent adipose-equivalent urethane-based polymer. This offers more realistic contrast as compared to the multi-material approach at the expense of air bubbles and pockets that form during the filling process. Second, microcalcification clusters have been included in the singlet model via crushed eggshells, which have very similar chemical composition to calcifications in vivo. The results from these new prototypes demonstrate significant improvement over the first generation of anthropomorphic physical phantoms.

  6. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer

    Science.gov (United States)

    Douglas, David B.; Boone, John M.; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Objective To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. Methods A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. Results The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. Conclusion The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice. PMID:27774517

  7. Human breast milk and the gastrointestinal innate immune system.

    Science.gov (United States)

    Jakaitis, Brett M; Denning, Patricia W

    2014-06-01

    The gastrointestinal (GI) tract is a large potential portal for multiple infectious agents to enter the human body. The GI system performs multiple functions as part of the neonate's innate immune system, providing critical defense during a vulnerable period. Multiple mechanisms and actions are enhanced by the presence of human breast milk. Bioactive factors found in human milk work together to create and maintain an optimal and healthy environment, allowing the intestines to deliver ideal nutrition to the host and afford protection by a variety of mechanisms.

  8. Comparative evaluation of various cytomorphological grading systems in breast carcinoma

    Directory of Open Access Journals (Sweden)

    P Arul

    2016-01-01

    Full Text Available Background: The diagnosis of breast carcinoma can be reliably made by fine needle aspiration cytology (FNAC. Grading usually done in histological samples for the selection of therapy but not in cytology. Various cytological grading systems have been proposed; however, none of them is presently considered the gold standard to predict the prognosis. Aim: This study was undertaken to evaluate various 3-tier cytological grading systems and to determine the best possible system corresponds to the histological grading proposed by Elston and Ellis based on the method by Nottingham modification of Scarff-Bloom-Richardson (SBR method. Materials and Methods: In this retrospective study, 94 cases of breast carcinoma FNACs were graded using six cytological grading systems and compared with SBR method. Concordance, association, and correlation studies were done to select best possible cytological grading system. The interobserver reproducibility among the six grading systems was also assessed. Results: Robinson method showed best correlation (r = 0.801; P = 0.0001 and t = 0.783; P = 0.0001, maximum percent agreement (83/94 cases; 88.3%, and a substantial kappa value of agreement (k = 0.737 with the Nottingham modification of SBR grading system followed by Mouriguand method. Taniguchi system showed better interobserver agreement (87.2%; k= 0.738. Conclusions: This study showed that all six cytological grading systems correlated positively with SBR method. However, Robinson's grading system demonstrated the best concordance, correlation, and substantial Kappa value of the agreement with the histological grading by SBR method in comparison to other 3-tier cytological grading systems. Hence, in conclusion, this grading should be routinely incorporated in the cytology reports as it correlates well with histological grade. Despite various cytological grading systems, Robinson's method is simple, more objective, and reproducible, hence being preferable for routine

  9. Targeted multidrug delivery system to overcome chemoresistance in breast cancer

    Directory of Open Access Journals (Sweden)

    Tang Y

    2017-01-01

    Full Text Available Yuan Tang,1 Fariborz Soroush,1 Zhaohui Tong,2 Mohammad F Kiani,1 Bin Wang1,3 1Department of Mechanical Engineering, Temple University, Philadelphia, PA, 2Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 3Department of Biomedical Engineering, Widener University, Chester, PA, USA Abstract: Chemotherapy has been widely used in breast cancer patients to reduce tumor size. However, most anticancer agents cannot differentiate between cancerous and normal cells, resulting in severe systemic toxicity. In addition, acquired drug resistance during the chemotherapy treatment further decreases treatment efficacy. With the proper treatment strategy, nanodrug carriers, such as liposomes/immunoliposomes, may be able to reduce undesired side effects of chemotherapy, to overcome the acquired multidrug resistance, and to further improve the treatment efficacy. In this study, a novel combinational targeted drug delivery system was developed by encapsulating antiangiogenesis drug bevacizumab into liposomes and encapsulating chemotherapy drug doxorubicin (DOX into immunoliposomes where the human epidermal growth factor receptor 2 (HER2 antibody was used as a targeting ligand. This novel combinational system was tested in vitro using a HER2 positive and multidrug resistant breast cancer cell line (BT-474/MDR, and in vivo using a xenograft mouse tumor model. In vitro cell culture experiments show that immunoliposome delivery led to a high cell nucleus accumulation of DOX, whereas free DOX was observed mostly near the cell membrane and in cytoplasm due to the action of P-gp. Combining liposomal bevacizumab with immunoliposomal DOX achieved the best tumor growth inhibition and the lowest toxicity. Tumor size decreased steadily within a 60-day observation period indicating a potential synergistic effect between DOX and bevacizumab through the targeted delivery. Our findings clearly indicate that tumor growth was significantly

  10. Design of optimal collimation for dedicated molecular breast imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, Amanda L.; Hruska, Carrie B.; O' Connor, Michael K. [Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-03-15

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.

  11. Breast cancer acute radiotherapy morbidity evaluated by different scoring systems.

    Science.gov (United States)

    López, Escarlata; Núñez, M Isabel; Guerrero, M Rosario; del Moral, Rosario; de Dios Luna, Juan; del Mar Rodríguez, M; Valenzuela, M Teresa; Villalobos, Mercedes; Ruiz de Almodóvar, José Mariano

    2002-05-01

    Reporting of the outcome of radiotherapy is not satisfactory without a description of the treatment-related side effects. The purposes of this paper were: (1) to evaluate the frequency and the severity of collateral skin reactions in a group of breast cancer patients; (2) to report the acute reactions using some current scoring systems and to compare the application of them, and (3) to investigate the variation between intra- and interobservers using these different scales. We studied 108 breast cancer patients who, after surgical treatment, received adjuvant radiotherapy. Clinical skin evaluation was always performed by the same radiotherapist the last day of treatment, and the collateral radiation effects were photographed at that moment to facilitate later evaluations by another two expert doctors. Normal tissue damage was scored according to the Radiation Therapy Oncology Group/The European Organisation for Research, and Treatment of Cancer/ (RTOG/EORTC), the Danish, the European, and the Biomed2 side-effect scales. The most frequent acute complications found were erythema (91.7%), dry desquamation (29.6%) and moist desquamation (35.2%). The reactions were classified as severe in 13.9, 23, 18.5 and 13% of the patients with each of the different systems used, respectively. The concordance between the scoring of radiation-induced side effects on the skin assessed by direct observation of the patients or by examination of the photographic document was sufficient. This is a warrant of accuracy in the evaluation of acute normal tissue lesions. Our results allow us to state the advantage of the RTOG system over the others in terms of evaluating the acute effects produced by radiotherapy of women with breast cancer.

  12. Coded aperture coherent scatter imaging for breast cancer detection: a Monte Carlo evaluation

    Science.gov (United States)

    Lakshmanan, Manu N.; Morris, Robert E.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2016-03-01

    It is known that conventional x-ray imaging provides a maximum contrast between cancerous and healthy fibroglandular breast tissues of 3% based on their linear x-ray attenuation coefficients at 17.5 keV, whereas coherent scatter signal provides a maximum contrast of 19% based on their differential coherent scatter cross sections. Therefore in order to exploit this potential contrast, we seek to evaluate the performance of a coded- aperture coherent scatter imaging system for breast cancer detection and investigate its accuracy using Monte Carlo simulations. In the simulations we modeled our experimental system, which consists of a raster-scanned pencil beam of x-rays, a bismuth-tin coded aperture mask comprised of a repeating slit pattern with 2-mm periodicity, and a linear-array of 128 detector pixels with 6.5-keV energy resolution. The breast tissue that was scanned comprised a 3-cm sample taken from a patient-based XCAT breast phantom containing a tomosynthesis- based realistic simulated lesion. The differential coherent scatter cross section was reconstructed at each pixel in the image using an iterative reconstruction algorithm. Each pixel in the reconstructed image was then classified as being either air or the type of breast tissue with which its normalized reconstructed differential coherent scatter cross section had the highest correlation coefficient. Comparison of the final tissue classification results with the ground truth image showed that the coded aperture imaging technique has a cancerous pixel detection sensitivity (correct identification of cancerous pixels), specificity (correctly ruling out healthy pixels as not being cancer) and accuracy of 92.4%, 91.9% and 92.0%, respectively. Our Monte Carlo evaluation of our experimental coded aperture coherent scatter imaging system shows that it is able to exploit the greater contrast available from coherently scattered x-rays to increase the accuracy of detecting cancerous regions within the breast.

  13. Breast imaging with the SoftVue imaging system: first results

    Science.gov (United States)

    Duric, Neb; Littrup, Peter; Schmidt, Steven; Li, Cuiping; Roy, Olivier; Bey-Knight, Lisa; Janer, Roman; Kunz, Dave; Chen, Xiaoyang; Goll, Jeffrey; Wallen, Andrea; Zafar, Fouzaan; Allada, Veerendra; West, Erik; Jovanovic, Ivana; Li, Kuo; Greenway, William

    2013-03-01

    For women with dense breast tissue, who are at much higher risk for developing breast cancer, the performance of mammography is at its worst. Consequently, many early cancers go undetected when they are the most treatable. Improved cancer detection for women with dense breasts would decrease the proportion of breast cancers diagnosed at later stages, which would significantly lower the mortality rate. The emergence of whole breast ultrasound provides good performance for women with dense breast tissue, and may eliminate the current trade-off between the cost effectiveness of mammography and the imaging performance of more expensive systems such as magnetic resonance imaging. We report on the performance of SoftVue, a whole breast ultrasound imaging system, based on the principles of ultrasound tomography. SoftVue was developed by Delphinus Medical Technologies and builds on an early prototype developed at the Karmanos Cancer Institute. We present results from preliminary testing of the SoftVue system, performed both in the lab and in the clinic. These tests aimed to validate the expected improvements in image performance. Initial qualitative analyses showed major improvements in image quality, thereby validating the new imaging system design. Specifically, SoftVue's imaging performance was consistent across all breast density categories and had much better resolution and contrast. The implications of these results for clinical breast imaging are discussed and future work is described.

  14. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    Science.gov (United States)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  15. A systems approach to clinical oncology: Focus on breast cancer

    Directory of Open Access Journals (Sweden)

    Leyland-Jones Brian

    2006-04-01

    Full Text Available Abstract During the past decade, genomic microarrays have been applied with some success to the molecular profiling of breast tumours, which has resulted in a much more detailed classification scheme as well as in the identification of potential gene signature sets. These gene sets have been applied to both the prognosis and prediction of outcome to treatment and have performed better than the current clinical criteria. One of the main limitations of microarray analysis, however, is that frozen tumour samples are required for the assay. This imposes severe limitations on access to samples and precludes large scale validation studies from being conducted. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR, on the other hand, can be used with degraded RNAs derived from formalin-fixed paraffin-embedded (FFPE tumour samples, the most important and abundant source of clinical material available. More recently, the novel DASL (cDNA-mediated Annealing, Selection, extension and Ligation assay has been developed as a high throughput gene expression profiling system specifically designed for use with FFPE tumour tissue samples. However, we do not believe that genomics is adequate as a sole prognostic and predictive platform in breast cancer. The key proteins driving oncogenesis, for example, can undergo post-translational modifications; moreover, if we are ever to move individualization of therapy into the practical world of blood-based assays, serum proteomics becomes critical. Proteomic platforms, including tissue micro-arrays (TMA and protein chip arrays, in conjunction with surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF/MS, have been the technologies most widely applied to the characterization of tumours and serum from breast cancer patients, with still limited but encouraging results. This review will focus on these genomic and proteomic platforms, with an emphasis placed on the utilization

  16. Defining the Survival Benchmark for Breast Cancer Patients with Systemic Relapse

    OpenAIRE

    Zeichner, Simon B.; Tadeu Ambros; John Zaravinos; Montero, Alberto J.; Mahtani, Reshma L; Ahn, Eugene R; Aruna Mani; Markward, Nathan J; Vogel, Charles L.

    2015-01-01

    BACKGROUND Our original paper, published in 1992, reported a median overall survival after first relapse in breast cancer of 26 months. The current retrospective review concentrates more specifically on patients with first systemic relapse, recognizing that subsets of patients with local recurrence are potentially curable. METHODS Records of 5,168 patients from a largely breast-cancer-specific oncology practice were reviewed to identify breast cancer patients with their first relapse between ...

  17. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  18. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E. E.; Sellers, T. A.; Lu, B. [Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center, Tampa, Florida 33612 (United States); Heine, J. J. [Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these

  19. Impact of Breast Density Legislation on Breast Cancer Risk Assessment and Supplemental Screening: A Survey of 110 Radiology Facilities.

    Science.gov (United States)

    Nayak, Lina; Miyake, Kanae K; Leung, Jessica W T; Price, Elissa R; Liu, Yueyi I; Joe, Bonnie N; Sickles, Edward A; Thomas, William R; Lipson, Jafi A; Daniel, Bruce L; Hargreaves, Jonathan; Brenner, R James; Bassett, Lawrence W; Ojeda-Fournier, Haydee; Lindfors, Karen K; Feig, Stephen A; Ikeda, Debra M

    2016-09-01

    Breast density notification laws, passed in 19 states as of October 2014, mandate that patients be informed of their breast density. The purpose of this study is to assess the impact of this legislation on radiology practices, including performance of breast cancer risk assessment and supplemental screening studies. A 20-question anonymous web-based survey was emailed to radiologists in the Society of Breast Imaging between August 2013 and March 2014. Statistical analysis was performed using Fisher's exact test. Around 121 radiologists from 110 facilities in 34 USA states and 1 Canadian site responded. About 50% (55/110) of facilities had breast density legislation, 36% of facilities (39/109) performed breast cancer risk assessment (one facility did not respond). Risk assessment was performed as a new task in response to density legislation in 40% (6/15) of facilities in states with notification laws. However, there was no significant difference in performing risk assessment between facilities in states with a law and those without (p facilities in states with laws implemented handheld whole breast ultrasound (WBUS), automated WBUS, and tomosynthesis, respectively. The ratio of facilities offering handheld WBUS was significantly higher in states with a law than in states without (p facilities are offering supplemental screening with WBUS and tomosynthesis, and many are performing formal risk assessment for determining patient management.

  20. Digital tomosynthesis of the thorax - The influence of respiratory motion artifacts on lung nodule detection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Mok; Chung, Myung Jin; Lee, Kyung Soo; Kang, Hee; Song, In-Young; Lee, Eun Joo; Hwang, Hye Sun [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)], e-mail: mj1.chung@samsung.com

    2013-07-15

    Background: Digital tomosynthesis considerably reduces problems created by overlapping anatomy compared with chest X-ray (CXR). However, digital tomosynthesis requires a longer scan time compared with CXR, and thus may be vulnerable to motion artifacts. Purpose: To compare the diagnostic performance of digital tomosynthesis in subjects with and without respiratory motion artifacts. Material and Methods: The institutional review board approved this retrospective study, and the requirement for written informed consent was waived. A total of 46 subjects with imaging containing respiratory motion artifacts were enrolled in this study, 18 of whom were positive and 28 of whom were negative for lung nodules on computed tomography (CT). The control group was comprised of 92 age-matched subjects with imaging devoid of motion artifacts. Of these, 36 were positive and 56 were negative for lung nodules on subsequent CT scan. The size criteria of nodules were 4-0 mm. Three chest radiologists independently evaluated the radiographs and digital tomosynthesis images for the presence of pulmonary nodules. Multireader multicase receiver-operating characteristic (ROC) analyses was used for statistical comparisons. Results: Within the control group, the areas under curve (AUC) for observer performances in detecting lung nodules on digital tomosynthesis was higher than that on CXR (P = 0.017). Within the study group, there were no significant differences in AUCs for observer performances (P = 0.576). Conclusion: When no motion artifacts are present, the detection performance of nodules (4-10 mm) on digital tomosynthesis is significantly better than that on CXR, whereas there is not a significant difference in cases with motion artifacts.

  1. A Fuzzy Decision Support System for Management of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ahmed Abou Elfetouh Saleh

    2011-03-01

    Full Text Available In the molecular era the management of cancer is no more a plan based on simple guidelines. Clinical findings, tumor characteristics, and molecular markers are integrated to identify different risk categories, based on which treatment is planned for each individual case. This paper aims at developing a fuzzy decision support system (DSS to guide the doctors for the risk stratification of breast cancer, which is expected to have a great impact on treatment decision and to minimize individual variations in selecting the optimal treatment for a particular case. The developed system was based on clinical practice of Oncology Center Mansoura University (OCMU. This system has six input variables (Her2, hormone receptors, age, tumor grade, tumor size, and lymph node and one output variable (risk status. The output variable is a value from 1 to 4; representing low risk status, intermediate risk status and high risk status. This system uses Mamdani inference method and simulation applied in MATLAB R2009b fuzzy logic toolbox.

  2. Cosmetic outcome 1-5 years after breast conservative surgery, irradiation and systemic therapy.

    Science.gov (United States)

    Kelemen, Gyöngyi; Varga, Zoltán; Lázár, György; Thurzó, László; Kahán, Zsuzsanna

    2012-04-01

    The late side-effects of the local therapy of early breast cancer depend on many patient- and therapy-related parameters. We aimed at investigating the factors that influence the cosmetic and functional outcomes among our breast cancer patients after breast-conserving surgery and conformal radiotherapy, with or without adjuvant systemic therapy. A study was made of the association of the cosmetic outcome after a median follow-up time of 2.4 years and the clinical data on 198 patients extracted from a prospectively compiled database. Breast tenderness occurred more frequently among patients ≤50 years old (p cosmetic outcome after breast-conserving surgery and postoperative radiotherapy.

  3. Breast cancer in limited-resource countries: health care systems and public policy.

    Science.gov (United States)

    Anderson, Benjamin O; Yip, Cheng-Har; Ramsey, Scott D; Bengoa, Rafael; Braun, Susan; Fitch, Margaret; Groot, Martijn; Sancho-Garnier, Helene; Tsu, Vivien D

    2006-01-01

    As the largest cancer killer of women around the globe, breast cancer adversely impacts countries at all levels of economic development. Despite major advances in the early detection, diagnosis, and treatment of breast cancer, health care ministries face multitiered challenges to create and support health care programs that can improve breast cancer outcomes. In addition to the financial and organizational problems inherent in any health care system, breast health programs are hindered by a lack of recognition of cancer as a public health priority, trained health care personnel shortages and migration, public and health care provider educational deficits, and social barriers that impede patient entry into early detection and cancer treatment programs. No perfect health care system exists, even in the wealthiest countries. Based on inevitable economic and practical constraints, all health care systems are compelled to make trade-offs among four factors: access to care, scope of service, quality of care, and cost containment. Given these trade-offs, guidelines can define stratified approaches by which economically realistic incremental improvements can be sequentially implemented within the context of resource constraints to improve breast health care. Disease-specific "vertical" programs warrant "horizontal" integration with existing health care systems in limited-resource countries. The Breast Health Global Initiative (BHGI) Health Care Systems and Public Policy Panel defined a stratified framework outlining recommended breast health care interventions for each of four incremental levels of resources (basic, limited, enhanced, and maximal). Reallocation of existing resources and integration of a breast health care program with existing programs and infrastructure can potentially improve outcomes in a cost-sensitive manner. This adaptable framework can be used as a tool by policymakers for program planning and research design to make best use of available resources

  4. Survival of breast cancer patients with synchronous or metachronous central nervous system metastases

    NARCIS (Netherlands)

    Ho, V.K.; Gijtenbeek, J.M.M.; Brandsma, D.; Beerepoot, L.V.; Sonke, G.S.; Loo, M. te

    2015-01-01

    BACKGROUND: Central nervous system (CNS) metastases represent a devastating complication for advanced breast cancer patients. This observational study examines the influence of patient, tumour and treatment characteristics on overall survival after synchronous or metachronous CNS metastases. METHODS

  5. WE-FG-207A-02: Why We Need Breast CT? - Clinical Perspective.

    Science.gov (United States)

    O'Connell, A

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  6. WE-FG-207A-01: Introduction to Dedicated Breast CT - Early Studies.

    Science.gov (United States)

    Vedantham, S

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  7. WE-FG-207A-00: Advances in Dedicated Breast CT.

    Science.gov (United States)

    Vedantham, Srinivasan; Molloi, Sabee

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  8. WE-FG-207A-04: Performance Characteristics of Photon-Counting Breast CT.

    Science.gov (United States)

    Kalender, W

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  9. The role of intratumoral and systemic IL-6 in breast cancer

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Højfeldt, Grith Westergaard; Hojman, Pernille

    2013-01-01

    circulating IL-6 and risk of breast cancer, prognosis for patients with prevalent disease, adverse effects and interventions to control systemic IL-6 levels in patients are discussed. In summary, direct application of IL-6 on breast cancer cells inhibits proliferation in estrogen receptor positive cells......, while high circulating IL-6 levels are correlated with a poor prognosis in breast cancer patients. This discrepancy reflects distinct roles of IL-6, with elevated systemic levels being a biomarker for tumor burden, physical inactivity, and impaired metabolism, while local intratumoral IL-6 signaling......Chronic low-grade inflammation plays an important role in the pathogenesis of several cancer forms including breast cancer. The pleiotropic cytokine IL-6 is a key player in systemic inflammation, regulating both the inflammatory response and tissue metabolism during acute stimulations. Here, we...

  10. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    Science.gov (United States)

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.

  11. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...... community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages...

  12. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    Science.gov (United States)

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  13. Immediate systemic allergic reaction in an infant to fish allergen ingested through breast milk

    Science.gov (United States)

    Arima, Takayasu; Campos-Alberto, Eduardo; Funakoshi, Hiraku; Inoue, Yuzaburo; Tomiita, Minako; Kohno, Yoichi

    2016-01-01

    This is a rare case report of systemic allergic reaction to fish allergen ingested through breast milk. Mother ate raw fish more than 3 times a week. Her consumption of fish was associated with urticaria and wheeze in an infant via breast-feeding. Fish-specific IgE antibodies were detected by skin prick test but not by in vitro IgE test. This case demonstrates that fish protein ingested by mother can cause an immediate systemic allergic reaction in offspring through breast-feeding. Although fish intake is generally recommended for prevention of allergy, one should be aware that frequent intake of fish by a lactating mother may sensitize the baby and induce an allergic reaction through breast-feeding. PMID:27803887

  14. Initial Experience with a Cone-beam Breast Computed Tomography-guided Biopsy System

    Science.gov (United States)

    Seifert, Posy J; Morgan, Renee C; Conover, David L; Arieno, Andrea L

    2017-01-01

    Objective: To evaluate our initial experience with a cone-beam breast computed tomography (BCT)-guided breast biopsy system for lesion retrieval in phantom studies for use with a cone-beam BCT imaging system. Materials and Methods: Under the Institutional Review Board approval, a phantom biopsy study was performed using a dedicated BCT-guided biopsy system. Fifteen biopsies were performed on each of the small, medium, and large anthropomorphic breast phantoms with both BCT and stereotactic guidance for comparison. Each set of the 45 phantoms contained masses and calcification clusters of varying sizes. Data included mass/calcium retrieval rate and dose and length of procedure time for phantom studies. Results: Phantom mass and calcium retrieval rate were 100% for BCT and stereotactic biopsy. BCT dose for small and medium breast phantoms was found to be equivalent to or less than the corresponding stereotactic approach. Stereotactic-guided biopsy dose was 34.2 and 62.5 mGy for small and medium breast phantoms, respectively. BCT-guided biopsy dose was 15.4 and 30.0 mGy for small and medium breast phantoms, respectively. Both computed tomography biopsy and stereotactic biopsy study time ranged from 10 to 20 min. Conclusion: Initial experience with a BCT-guided biopsy system has shown to be comparable to stereotactic biopsy in phantom studies with equivalent or decreased dose. PMID:28217404

  15. Study of low radiation characteristics of digital tomosynthesis in diagnostic imaging of skeletal system%数字合成体层成像低剂量特性在骨骼系统影像学中的研究

    Institute of Scientific and Technical Information of China (English)

    夏巍; 吴晶涛; 尹肖睿; 吴海涛

    2012-01-01

    Objective To investigate the radiation dose differences of DTS,DR and CT in diagnostic imaging of the skeletal system and analyze the sensitivity and specificity of each modality in skeletal disease diagnosis.Methods 100 relevant patients with skeletal diseases were randomly selected,who were performed with DR,DTS and CT from Feb 2010 to Mar 2012.They were divided into three groups,respectively as the DR group,the DTS group and the CT group.The complete information including DR,DTS,CT data and the final clinical diagnosis were collected and the statistical analysis after comparing radiation dose of DR,DTS and CT examination.Two experienced experts evaluated the image of three examinations and made judgments.ROC curves of reader A and B were made by using the final clinical diagnosis as gold standard.Results The average absorbed dose and effective dose of DR,DTS,CT group were [(1.9±1.8)mGy,(0.03±0.03) mSv)],[(3.5±1.5)mGy,(0.05±0.02) mSv)],[(397.7 ± 106.0) mGy· cm、(5.60 ± 1.50) mSy] respectively.The difference among the three groups was analyzed by one-way ANOVA test(F =1377,P < 0.05) and had statistically significant(P < 0.05).ROC curve was drawn through analyzing lesion detection credibility of three groups.The Az values of reader A and B was (0.870 ± 0.035,0.966 ± 0.018,0.974 ± 0.015) and (0.852 ± 0.038,0.951 ± 0.021,0.959 ±0.019)respectively.Do the Z-test to these examinations' area under ROC curve of lesion detection credibility.Between DR and DTS or DR and CT,there was statistically significant(P < 0.05).While for CT and DTS,there was not statistically significant.The two readers' sensitivity and specificity in diagnosing skeletal lesion with DR,DTS and CT were investigated using the x2 test:CT and DTS were no statistical significance,CT and DR were statistically significant (x2 =4.833,P < 0.05).Conclusions Radiation dose of DTS only accounts for about 1% of CT examination.While its sensitivity and specificity can meet the requirements

  16. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    Science.gov (United States)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  17. WE-FG-207A-05: Dedicated Breast CT as a Diagnostic Imaging Tool: Physics and Clinical Feasibility.

    Science.gov (United States)

    Karellas, A

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  18. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development.

    Science.gov (United States)

    Boone, J

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  19. Immunology, Systems Biology, and Immunotherapy of Breast Cancer

    Science.gov (United States)

    2009-03-01

    RT-PCR analysis was performed for five ISGs: STAT1,IFI44, IFIT1, IFIT2, and MX1 . All gene expression data presented were normalized to GAPDH levels...expression levels of ISGs: STAT1, IFI44, IFIT1, IFIT2 and MX1 were measured in unstimulated lymphocytes from breast cancer patients (BC) and age-matched

  20. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.

    Science.gov (United States)

    Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J; Gallego-Ortega, David

    2017-04-01

    A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.

  1. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  2. Phantom experiments with a microwave imaging system for breast-cancer screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging is emerging as a promising technique for breast-cancer detection. In this paper, the microwave imaging system currently being developed at the Technical University of Denmark is introduced. This system consists of 32 antennas positioned in a cylindrical setup, each equipped...

  3. Contrast-enhanced ultrasound improved performance of breast imaging reporting and data system evaluation of critical breast lesions

    Institute of Scientific and Technical Information of China (English)

    Jun Luo; Ji-Dong Chen; Qing Chen; Lin-Xian Yue; Guo Zhou; Cheng Lan; Yi Li; Chi-Hua Wu; Jing-Qiao Lu

    2016-01-01

    AIM: To determine whether contrast-enhanced ultrasound(CEUS) can improve the precision of breast imaging reporting and data system(BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235(49.36%) lesions into category 3, 20(8.51%), 13(5.53%) and 12(5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74(31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosisof malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed.CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields.

  4. Evolutionary strategy for systemic therapy of metastatic breast cancer: balancing response with suppression of resistance.

    Science.gov (United States)

    Kam, Yoonseok; Das, Tuhin; Minton, Susan; Gatenby, Robert A

    2014-07-01

    Conventional systemic therapy for disseminated breast cancer is based on the general assumption that the greatest patient benefit is achieved by killing the maximum number of tumor cells. While this strategy often achieves a significant reduction in tumor burden, most patients with metastatic breast cancer ultimately die from their disease as therapy fails because tumor cells evolve resistance. We propose that the conventional maximum dose/maximum cell kill cancer therapy, when viewed from an evolutionary vantage, is suboptimal and likely even harmful as it accelerates evolution and growth of the resistant phenotypes that ultimately cause patient death. As an alternative, we are investigating evolutionary therapeutic strategies that shift the treatment goal from killing the maximum number of cancer cells to maximizing patient survival. Here we introduce two novel approaches for systemic therapy for metastatic breast cancer, considering the evolutionary nature of tumor progression; adaptive therapy and double-bind therapy.

  5. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    ZHURBENKO, V.

    2011-02-01

    Full Text Available Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined.

  6. Characterization of materials for optimal near-infrared and x-ray imaging of the breast.

    Science.gov (United States)

    Michaelsen, Kelly; Krishnaswamy, Venkataramanan; Pogue, Brian W; Brooks, Ken; Defreitas, Ken; Shaw, Ian; Poplack, Steven P; Paulsen, Keith D

    2012-09-01

    Development of a detector case for complete co-registration of images in a non-fiber-based combined near-infrared spectral tomography and digital breast tomosynthesis, required analysis to find materials that could support a breast under full mammographic compression without affecting the x-ray images or the quality of the near infrared measurements. Several possible solutions were considered, and many types of plastics were tested in the development of the detector case. Light channeling within the detector case changed the data obtained in resin and agarose phantoms, lowering recovered absorption values. Additional developments focusing on blocking stray light were successful and permitted a normal subject imaging exam.

  7. Progress in systemic chemotherapy of primary breast cancer: an overview.

    Science.gov (United States)

    Hortobagyi, G N

    2001-01-01

    Substantial progress has been made in the multidisciplinary management of primary breast cancer during the last 30 years. Adjuvant chemotherapy has been shown to significantly reduce the annual risk of cancer recurrence and mortality, and these effects persist even 15 years after diagnosis. Combination chemotherapy is superior to single-agent therapy and anthracycline-containing regimens. Those that combine an anthracycline with 5-fluorouracil and cyclophosphamide are more effective than regimens without an anthracycline. Six cycles of a single regimen appear to provide optimal benefit. Dose reductions below the standard range are associated with inferior results. Dose increases that require growth factor or hematopoietic stem cell support are under investigation; at this time, the existing results provide no compelling reason to use this strategy outside a clinical trial. Regimens using fixed crossover designs with two non-cross-resistant regimens are being evaluated. The addition of a taxane to anthracycline-containing regimens is currently under intense scrutiny, and preliminary analysis of the first three clinical trials has shown encouraging, albeit not compelling, results. For patients with estrogen receptor-positive breast cancer, the sequential administration of chemotherapy and 5 years of tamoxifen therapy provides additive benefits. No compelling evidence exists to combine ovarian ablation with chemotherapy. Most side effects and toxic effects are self-limited, although premature menopause requires monitoring and preventive interventions to preserve bone mineral density. The small risk of acute leukemia is of concern, and additional research to develop safer regimens is clearly indicated. The overall effect of optimal local/regional treatment combined with an anthracycline-containing adjuvant chemotherapy and a taxane (and, for patients with estrogen receptor-positive tumors, 5 years of tamoxifen therapy) is a greater than 50% reduction in annual risks of

  8. Monte Carlo simulation of glandular dose in a dedicated breast CT system

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao; WEI Long; ZHAO Wei; WANG Yan-Fang; SHU Hang; SUN Cui-Li; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; SHI Rong-Jian

    2012-01-01

    A dedicated breast CT system (DBCT) is a new method for breast cancer detection proposed in recent years.In this paper,the glandular dose in the DBCT is simulated using the Monte Carlo method.The phantom shape is half ellipsoid,and a series of phantoms with different sizes,shapes and compositions were constructed. In order to optimize the spectra,monoenergy X-ray beams of 5-80 keV were used in simulation.The dose distribution of a breast phantom was studied:a higher energy beam generated more uniform distribution,and the outer parts got more dose than the inner parts.For polyenergtic spectra,four spectra of Al filters with different thicknesses were simulated,and the polyenergtic glandular dose was calculated as a spectral weighted combination of the monoenergetic dose.

  9. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Science.gov (United States)

    2010-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Tumor... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer...

  10. Improving breast cancer outcome by preoperative systemic therapy and image-guided surgery

    NARCIS (Netherlands)

    Mieog, Jan Sven David

    2011-01-01

    This thesis consists of two parts. In part I, we have demonstrated that preoperatively administrated systemic (neoadjuvant) therapy is a feasible treatment strategy in early stage breast cancer to achieve improved surgical options and to assess tumor response. We also demonstrated that overexpressio

  11. Effects of packaging systems on the natural microflora and acceptability of chicken breast meat.

    Science.gov (United States)

    Charles, N; Williams, S K; Rodrick, G E

    2006-10-01

    The effect of 3 packaging systems on the spoilage microflora, objective color, and sensory characteristics of fresh commercial broiler chicken breast meat was investigated. Fresh skinless and boneless chicken broiler breasts were purchased from a local poultry processing plant and packaged in either (1) a conventional Styrofoam tray with polyvinyl chloride overwrap and absorbent pad, (2) a Styrofoam tray with polyvinyl chloride overwrap minus absorbent pad, or (3) a Fresh-R-Pax (FRP) container equipped with an absorbent liner-gel system. All packages were heat sealed and stored at 1.2 +/- 1 degrees C for 8 d. At each sampling period (0, 2, 4, 6, and 8 d), packages from each treatment were analyzed for Pseudomonas spp., psychrotrophic organisms, objective color, and sensory characteristics. In general, Pseudomonas spp. and psychrotrophic counts increased as storage time increased for all packaging systems. Color and overall appearance were similar (P >0.05) for all packaging systems. Although not significant, the off-odor scores for breast meat packaged in FRP were higher (P >0.05) after 6 and 8 d when compared with the breast meat packaged in a Styrofoam tray with polyvinyl chloride overwrap with or without an absorbent pad. Although the absorbent pad did not control microbial growth, it maintained aesthetic appeal by absorbing all visible moisture released from the meat during storage.

  12. Stereo-vision system for finger tracking in breast self-examination

    Science.gov (United States)

    Zeng, Jianchao; Wang, Yue J.; Freedman, Matthew T.; Mun, Seong K.

    1997-05-01

    Early detection of breast cancer, one of the leading causes of death by cancer for women in the US is key to any strategy designed to reduce breast cancer mortality. Breast self-examination (BSE) is considered as the most cost- effective approach available for early breast cancer detection because it is simple and non-invasive, and a large fraction of breast cancers are actually found by patients using this technique today. In BSE, the patient should use a proper search strategy to cover the whole breast region in order to detect al possible tumors. At present there is no objective approach or clinical data to evaluate the effectiveness of a particular BSE strategy. Even if a particular strategy is determined to be the most effective, training women to use it is still difficult because there is no objective way for them to know whether they are doing it correctly. We have developed a system using vision-based motion tracking technology to gather quantitative data about the breast palpation process for analysis of the BSE technique. By tracking position of the fingers, the system can provide the first objective quantitative data about the BSE process, and thus can improve our knowledge of the technique and help analyze its effectiveness. By visually displaying all the touched position information to the patient as the BSE is being conducted, the system can provide interactive feedback to the patient and create a prototype for a computer-based BSE training system. We propose to use color features, put them on the finger nails and track these features, because in breast palpation the background is the breast itself which is similar to the hand in color. This situation can hinder the ability/efficiency of other features if real time performance is required. To simplify feature extraction process, color transform is utilized instead of RGB values. Although the clinical environment will be well illuminated, normalization of color attributes is applied to compensate for

  13. PS1-56: Beyond Barriers: Systemic Constraints Limiting Sexual Health Care for Breast Cancer Survivors

    Science.gov (United States)

    Halley, Meghan; May, Suepattra; Rendle, Katharine; Frosch, Dominick; Kurian, Allison

    2013-01-01

    Background/Aims Sexual health problems represent one of the most frequently experienced and longest-lasting effects of breast cancer treatment, but research suggests that providers rarely discuss sexual health with their patients. Existing research examining barriers to addressing the sexual health concerns of cancer patients has focused on discrete characteristics of the provider-patient interaction without considering the broader context in which these interactions occur. Drawing on focus group discussions with breast cancer survivors, we explore how foundational cultural and structural characteristics of the healthcare system may be preventing breast cancer survivors from addressing their sexual health concerns. Methods Five focus groups were conducted with breast cancer survivors receiving support services at a breast cancer advocacy and resource organization in Northern California. Each group focused on a different aspect of treatment including: 1) diagnosis; 2) surgery and reconstruction; 3) chemotherapy; 4) radiation; and 5) survivorship. An interview guide for each topic area was used to elicit participants’ thoughts, opinions and experiences of breast cancer treatment. Analysis utilized inductive techniques incorporating elements of Grounded Theory to identify salient themes that emerged in the discussions. Results An average of eight women participated in each focus group, and women were allowed to participate in more than one group, for a total of 21 participants. Participants’ discussions illustrated three core ways in which cultural and structural characteristics of the healthcare system prevented them from addressing their sexual health concerns, including: 1) the structure of cancer care led to participants being disconnected from the healthcare system at the time when sexual side effects most commonly emerged; 2) when their sexual side effects did emerge, the highly specialized structure of the biomedical system made it difficult for patients to

  14. Cloud-Based Service Information System for Evaluating Quality of Life after Breast Cancer Surgery.

    Directory of Open Access Journals (Sweden)

    Hao-Yun Kao

    Full Text Available Although recent studies have improved understanding of quality of life (QOL outcomes of breast conserving surgery, few have used longitudinal data for more than two time points, and few have examined predictors of QOL over two years. Additionally, the longitudinal data analyses in such studies rarely apply the appropriate statistical methodology to control for censoring and inter-correlations arising from repeated measures obtained from the same patient pool. This study evaluated an internet-based system for measuring longitudinal changes in QOL and developed a cloud-based system for managing patients after breast conserving surgery.This prospective study analyzed 657 breast cancer patients treated at three tertiary academic hospitals. Related hospital personnel such as surgeons and other healthcare professionals were also interviewed to determine the requirements for an effective cloud-based system for surveying QOL in breast cancer patients. All patients completed the SF-36, Quality of Life Questionnaire (QLQ-C30 and its supplementary breast cancer measure (QLQ-BR23 at baseline, 6 months, 1 year, and 2 years postoperatively. The 95% confidence intervals for differences in responsiveness estimates were derived by bootstrap estimation. Scores derived by these instruments were interpreted by generalized estimating equation before and after surgery.All breast cancer surgery patients had significantly improved QLQ-C30 and QLQ-BR23 subscale scores throughout the 2-year follow-up period (p<0.05. During the study period, QOL generally had a negative association with advanced age, high Charlson comorbidity index score, tumor stage III or IV, previous chemotherapy, and long post-operative LOS. Conversely, QOL was positively associated with previous radiotherapy and hormone therapy. Additionally, patients with high scores for preoperative QOL tended to have high scores for QLQ-C30, QLQ-BR23 and SF-36 subscales. Based on the results of usability testing

  15. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: Interobserver variability in the description and assignment of BI-RADS category

    Energy Technology Data Exchange (ETDEWEB)

    El Khoury, Mona, E-mail: monelkhoury@gmail.com [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada); Lalonde, Lucie; David, Julie; Labelle, Maude [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada); Mesurolle, Benoit [Centre Hospitalier Universitaire de McGill, Cedar Breast Centre, Radiology Department, 687 Pine Avenue West, Montreal, QC H3A1A1 (Canada); Trop, Isabelle [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada)

    2015-01-15

    Highlights: • The use of BI-RADS lexicon in interpreting breast MRI examinations is beneficial. • Our study shows: (a) moderate to substantial agreement between observers and (b) better agreement in interpreting mass than non-mass enhancement (NME). • Careful analysis of the NME should be done to help detect cancer as early as possible. - Abstract: Purpose: To retrospectively evaluate interobserver variability between breast radiologists when describing abnormal enhancement on breast MR examinations and assigning a BI-RADS category using the Breast Imaging Reporting and Data System (BI-RADS) terminology. Materials and methods: Five breast radiologists blinded to patients’ medical history and pathologic results retrospectively and independently reviewed 257 abnormal areas of enhancement on breast MRI performed in 173 women. Each radiologist described the focal enhancement using BI-RADS terminology and assigned a final BI-RADS category. Krippendorff's α coefficient of agreement was used to asses interobserver variability. Results: All radiologists agreed on the morphology of enhancement in 183/257 (71%) lesions, yielding a substantial agreement (Krippendorff's α = 0.71). Moderate agreement was obtained for mass descriptors – shape, margins and internal enhancement – (α = 0.55, 0.51 and 0.45 respectively) and NME (non-mass enhancement) descriptors – distribution and internal enhancement – (α = 0.54 and 0.43). Overall substantial agreement was obtained for BI-RADS category assignment (α = 0.71). It was however only moderate (α = 0.38) for NME compared to mass (α = 0.80). Conclusion: Our study shows good agreement in describing mass and NME on a breast MR examination but a better agreement in predicting malignancy for mass than NME.

  16. Modeling the Anisotropic Resolution and Noise Properties of Digital Breast Tomosynthesis Image Reconstructions

    Science.gov (United States)

    2012-01-01

    oral presentation at the Annual Meeting of the American Association of Physicists in Medicine ( AAPM ) in Vancouver, British Columbia on August 2...Annual AAPM Meeting, my graduate supervisor, Dr. Maidment, presented this topic at Vancouver in my absence. In order to demonstrate the existence...Download PDF | View Cart Jump to Content Increase text size Decrease text size Medical Physics / Volume 38 / Issue 6 / 2011 JOINT AAPM /COMP

  17. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography

    Science.gov (United States)

    2011-03-01

    framework was developed in MATLAB, with a graphical user interface (GUI) front - end to allow easy access of imaging parameters (see Figure 1). The GUI...using an Amptek XR-100T cadmium-zinc-telluride ( CZT ) x-ray spectrometer at a distance of 350 mm from the focal spot. The x-ray generator was from a

  18. Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry.

    Science.gov (United States)

    Lacson, Ronilda; Harris, Kimberly; Brawarsky, Phyllis; Tosteson, Tor D; Onega, Tracy; Tosteson, Anna N A; Kaye, Abby; Gonzalez, Irina; Birdwell, Robyn; Haas, Jennifer S

    2015-10-01

    Breast cancer screening is central to early breast cancer detection. Identifying and monitoring process measures for screening is a focus of the National Cancer Institute's Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) initiative, which requires participating centers to report structured data across the cancer screening continuum. We evaluate the accuracy of automated information extraction of imaging findings from radiology reports, which are available as unstructured text. We present prevalence estimates of imaging findings for breast imaging received by women who obtained care in a primary care network participating in PROSPR (n = 139,953 radiology reports) and compared automatically extracted data elements to a "gold standard" based on manual review for a validation sample of 941 randomly selected radiology reports, including mammograms, digital breast tomosynthesis, ultrasound, and magnetic resonance imaging (MRI). The prevalence of imaging findings vary by data element and modality (e.g., suspicious calcification noted in 2.6% of screening mammograms, 12.1% of diagnostic mammograms, and 9.4% of tomosynthesis exams). In the validation sample, the accuracy of identifying imaging findings, including suspicious calcifications, masses, and architectural distortion (on mammogram and tomosynthesis); masses, cysts, non-mass enhancement, and enhancing foci (on MRI); and masses and cysts (on ultrasound), range from 0.8 to1.0 for recall, precision, and F-measure. Information extraction tools can be used for accurate documentation of imaging findings as structured data elements from text reports for a variety of breast imaging modalities. These data can be used to populate screening registries to help elucidate more effective breast cancer screening processes.

  19. Timing of radiotherapy in breast-conserving therapy: a large prospective cohort study of node-negative breast cancer patients without adjuvant systemic therapy

    NARCIS (Netherlands)

    Jobsen, J.J.; Palen, van der J.; Baum, M.; Brinkhuis, M.; Struikmans, H.

    2013-01-01

    Background: To investigate the issue of timing of radiation therapy (RT) after lumpectomy in relation to recurrences and outcome. Methods: Analysis was done on 1107 breast-conserving therapies (BCT) with 1070 women, all without lymph node metastasis and without any adjuvant systemic therapy. Timing

  20. Mammary renin-angiotensin system-regulating aminopeptidase activities are modified in rats with breast cancer.

    Science.gov (United States)

    del Pilar Carrera, Maria; Ramírez-Expósito, Maria Jesus; Mayas, Maria Dolores; García, Maria Jesus; Martínez-Martos, Jose Manuel

    2010-12-01

    Angiotensin II in particular and/or the local renin-angiotensin system in general could have an important role in epithelial tissue growth and modelling; therefore, it is possible that it may be involved in breast cancer. In this sense, previous works of our group showed a predominating role of angiotensin II in tumoral tissue obtained from women with breast cancer. However, although classically angiotensin II has been considered the main effector peptide of the renin-angiotensin system cascade, several of its catabolism products such as angiotensin III and angiotensin IV also possess biological functions. These peptides are formed through the activity of several proteolytic regulatory enzymes of the aminopeptidase type, also called angiotensinases. The aim of this work was to analyse several specific angiotensinase activities involved in the renin-angiotensin system cascade in mammary tissue from control rats and from rats with mammary tumours induced by N-methyl-nitrosourea (NMU), which may reflect the functional status of their target peptides under the specific conditions brought about by the tumoural process. The results show that soluble and membrane-bound specific aspartyl aminopeptidase activities and membrane-bound glutamyl aminopeptidase activity increased in mammary tissue from NMU-treated animals and soluble aminopeptidase N and aminopeptidase B activities significantly decreased in mammary tissue from NMU-treated rats. These changes support the existence of a local mammary renin-angiotensin system and that this system and its putative functions in breast tissue could be altered by the tumour process, in which we suggest a predominant role of angiotensin III. All described data about the renin-angiotensin system in mammary tissue support the idea that it must be involved in normal breast tissue functions, and its disruption could be involved in one or more steps of the carcinogenesis process.

  1. Generation of 3D synthetic breast tissue

    Science.gov (United States)

    Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are an emergent approach for the rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. A fundamental requirement of this approach for mammography is the use of realistic looking breast anatomy in the studies to produce clinically relevant results. In this work, a biologically inspired approach has been used to simulate realistic synthetic breast phantom blocks for use in virtual clinical trials. A variety of high and low frequency features (including Cooper's ligaments, blood vessels and glandular tissue) have been extracted from clinical digital breast tomosynthesis images and used to simulate synthetic breast blocks. The appearance of the phantom blocks was validated by presenting a selection of simulated 2D and DBT images interleaved with real images to a team of experienced readers for rating using an ROC paradigm. The average areas under the curve for 2D and DBT images were 0.53+/-.04 and 0.55+/-.07 respectively; errors are the standard errors of the mean. The values indicate that the observers had difficulty in differentiating the real images from simulated images. The statistical properties of simulated images of the phantom blocks were evaluated by means of power spectrum analysis. The power spectrum curves for real and simulated images closely match and overlap indicating good agreement.

  2. Development of a dedicated positron emission tomography system for the detection and biopsy of breast cancer

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Kross, Brian; Popov, Vladimir; Proffitt, James; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Dedicated positron emission mammography breast imaging systems have shown great promise for the detection of small, radiotracer-avid lesions. Our group (a collaboration consisting of West Virginia University, Jefferson Lab and the University of Washington) is extending this work by developing a positron emission mammography-tomography (PEM-PET) system for imaging and biopsy of breast lesions. The system will have four planar detector heads that will rotate about the breast to acquire multi-view data suitable for tomographic reconstruction. Each detector head will consist of a 96×72 array of 2×2×15 mm 3 LYSO detector elements (pitch=2.1 mm) mounted on a 3×4 array of 5×5 cm 2 flat panel position-sensitive photomultiplier tubes. PEM-PET is expected to have approximately two-millimeter resolution and possess the ability to guide the needle biopsy of suspicious lesions seen on the PET images. Initial tests of the scintillator arrays yielded excellent results. Pixel maps for all four scintillator arrays demonstrated that separation of the LYSO elements was very good; all of the LYSO array elements were observed, even in areas between individual PSPMTs. System energy resolution was measured to be 25% FWHM at 511 keV. Future work includes the use of field programmable gate arrays (FPGAs) to replace the current VME-based data acquisition system, a PSPMT gain normalization procedure to help improve response uniformity and energy resolution, and the addition of an x-ray source and detector to produce multi-modality PEM-PET-CT images of the breast.

  3. Fuzzy-probabilistic multi agent system for breast cancer risk assessment and insurance premium assignment.

    Science.gov (United States)

    Tatari, Farzaneh; Akbarzadeh-T, Mohammad-R; Sabahi, Ahmad

    2012-12-01

    In this paper, we present an agent-based system for distributed risk assessment of breast cancer development employing fuzzy and probabilistic computing. The proposed fuzzy multi agent system consists of multiple fuzzy agents that benefit from fuzzy set theory to demonstrate their soft information (linguistic information). Fuzzy risk assessment is quantified by two linguistic variables of high and low. Through fuzzy computations, the multi agent system computes the fuzzy probabilities of breast cancer development based on various risk factors. By such ranking of high risk and low risk fuzzy probabilities, the multi agent system (MAS) decides whether the risk of breast cancer development is high or low. This information is then fed into an insurance premium adjuster in order to provide preventive decision making as well as to make appropriate adjustment of insurance premium and risk. This final step of insurance analysis also provides a numeric measure to demonstrate the utility of the approach. Furthermore, actual data are gathered from two hospitals in Mashhad during 1 year. The results are then compared with a fuzzy distributed approach.

  4. Systemic Delivery of an Oncolytic Adenovirus Expressing Decorin for the Treatment of Breast Cancer Bone Metastases.

    Science.gov (United States)

    Yang, Yuefeng; Xu, Weidong; Neill, Thomas; Hu, Zebin; Wang, Chi-Hsiung; Xiao, Xianghui; Stock, Stuart R; Guise, Theresa; Yun, Chae-Ok; Brendler, Charles B; Iozzo, Renato V; Seth, Prem

    2015-12-01

    The development of novel therapies for breast cancer bone metastasis is a major unmet medical need. Toward that end, we have constructed an oncolytic adenovirus, Ad.dcn, and a nonreplicating adenovirus, Ad(E1-).dcn, both containing the human decorin gene. Our in vitro studies showed that Ad.dcn produced high levels of viral replication and the decorin protein in the breast tumor cells. Ad(E1-).dcn-mediated decorin expression in MDA-MB-231 cells downregulated the expression of Met, β-catenin, and vascular endothelial growth factor A, all of which are recognized decorin targets and play pivotal roles in the progression of breast tumor growth and metastasis. Adenoviral-mediated decorin expression inhibited cell migration and induced mitochondrial autophagy in MDA-MB-231 cells. Mice bearing MDA-MB-231-luc skeletal metastases were systemically administered with the viral vectors, and skeletal tumor growth was monitored over time. The results of bioluminescence imaging and X-ray radiography indicated that Ad.dcn and Ad(E1-).dcn significantly inhibited the progression of bone metastases. At the terminal time point, histomorphometric analysis, micro-computed tomography, and bone destruction biomarkers showed that Ad.dcn and Ad(E1-).dcn reduced tumor burden and inhibited bone destruction. A nonreplicating adenovirus Ad(E1-).luc expressing the luciferase 2 gene had no significant effect on inhibiting bone metastases, and in several assays, Ad.dcn and Ad(E1-).dcn were better than Ad.luc, a replicating virus expressing the luciferase 2 gene. Our data suggest that adenoviral replication coupled with decorin expression could produce effective antitumor responses in a MDA-MB-231 bone metastasis model of breast cancer. Thus, Ad.dcn could potentially be developed as a candidate gene therapy vector for treating breast cancer bone metastases.

  5. Assessment of three different software systems in the evaluation of dynamic MRI of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, K.D. [Department of Radiology, Stavanger University Hospital, Postbox 8100, Stavanger (Norway)], E-mail: kurk@sus.no; Steinhaus, D. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: Daniele.Steinhaus@med.uni-duesseldorf.de; Klar, V. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: verena.klar@uni-duesseldorf.de; Cohnen, M. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: cohnen@med.uni-duesseldorf.de; Wittsack, H.J. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: wittsack@uni-duesseldorf.de; Saleh, A. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: saleh@uni-duesseldorf.de; Moedder, U. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: moedder@med.uni-duesseldorf.de; Blondin, D. [Institute of Daignostic Radiology, Duesseldorf University Hospital, Moorenstr. 5, 40225 Duesseldorf (Germany)], E-mail: blondin@med.uni-duesseldorf.de

    2009-02-15

    Objective: The aim was to compare the diagnostic performance and handling of dynamic contrast-enhanced MRI of the breast with two commercial software solutions ('CADstream' and '3TP') and one self-developed software system ('Mammatool'). Materials and methods: Identical data sets of dynamic breast MRI from 21 patients were evaluated retrospectively with all three software systems. The exams were classified according to the BI-RADS classification. The number of lesions in the parametric mapping was compared to histology or follow-up of more than 2 years. In addition, 25 quality criteria were judged by 3 independent investigators with a score from 0 to 5. Statistical analysis was performed to document the quality ranking of the different software systems. Results: There were 9 invasive carcinomas, one pure DCIS, one papilloma, one radial scar, three histologically proven changes due to mastopathy, one adenosis and two fibroadenomas. Additionally two patients with enhancing parenchyma followed with MRI for more than 3 years and one scar after breast conserving therapy were included. All malignant lesions were classified as BI-RADS 4 or 5 using all software systems and showed significant enhancement in the parametric mapping. 'CADstream' showed the best score on subjective quality criteria. '3TP' showed the lowest number of false-positive results. 'Mammatool' produced the lowest number of benign tissues indicated with parametric overlay. Conclusion: All three software programs tested were adequate for sensitive and efficient assessment of dynamic MRI of the breast. Improvements in specificity may be achievable.

  6. Involvement of the Endocannabinoid System in the Development and Treatment of Breast Cancer

    Science.gov (United States)

    2013-02-01

    associated with marijuana use (Compton et al. 1992). WIN2 is an agonist at both cannabinoid receptor 1 ( CB1 ) and cannabinoid receptor 2 ( CB2 ) (Howlett et... CB1 and CB2 have been implicated in the antiproliferative effects of various cannabinoids in different model systems. In glioma cancer cells, THC...findings to MCF-7 breast cancer cells. RT- PCR was used to confirm the expression of message for the CB1 and CB2 receptors. Figure 1A shows clear

  7. Issues Affecting the Loco-regional and Systemic Management of Patients with Invasive Lobular Carcinoma of the Breast.

    Science.gov (United States)

    Jacobs, Carmel; Clemons, Mark; Addison, Christina; Robertson, Susan; Arnaout, Angel

    2016-01-01

    Invasive lobular carcinoma (ILC) of the breast is the second most common type of invasive breast carcinoma accounting for 8-14% of all breast cancers. Traditional management of ILC has followed similar paradigms as that for invasive ductal carcinoma (IDC). However, ILC represents a pathologically, clinically and biologically unique variant of breast cancer with particular management challenges. These challenges are seen in both the loco-regional management of ILC; where ILC tumors tend to avoid detection and hence present as more clinically advanced and surgically challenging carcinomas, and the systemic management with a unique response pattern to standard systemic therapies. Because of these challenges, the outcome for patients with ILC has likely lagged behind the continued improvements seen in outcome for patients with IDC. Here, we discuss some of the unique challenges ILC presents and discuss possible management strategies to best overcome the difficulties in the loco-regional and systemic management of patients with ILC.

  8. A Comparison of Behavioral Inhibition/ Activation System, Type D and Optimism in the Breast Cancer Patients and Healthy Controls

    Directory of Open Access Journals (Sweden)

    A Alipoor

    2015-04-01

    Full Text Available Background & aim: Nowadays, the role and importance of psychosocial factors on physical health, as well as the influence of personality characteristics in having psychosomatic diseases such as cancer are of interest to many researchers. In spite of increase in breast cancer in Iran, very few studies have been carried out on risk factors of breast cancer. The aim of this study was to evaluate the comparative Behavioral inhibition / Activation System, type D and optimism in the breast cancer patients and healthy individuals. Methods: In the present casual-comparative study, 190 people (95 Patients and 95 Normal Subjects were selected in Rasht, Iran. Moreover, the groups were matched for demographic characteristics (age, gender and education. All individuals diagnosed with Breast Cancer and Normal Subjects received a Gary-Wilson Personality Questionnaire, Life Orientation Test and Type D Personality Scale. Collected data were analyzed using multivariate analysis of variance and regression. Results: The findings revealed that there were significant differences between cancer and normal groups in behavioral inhibition/activation system, type D Personality and optimism. In this regard, the Breast Cancer group had higher scores subscales of negative affect, social inhibition, passive avoidance, extinction and fight-flight than normal group. In addition, subscales of approach, active avoidance and optimism in the normal group were more than the Breast Cancer group. Conclusion: The present study supported the role of psychological variables in breast cancer patients which is essential for improving patients’ health and quality of life.

  9. Preservation of biomolecules in breast cancer tissue by a formalin-free histology system

    Directory of Open Access Journals (Sweden)

    Morales Azorides R

    2008-01-01

    Full Text Available Abstract Background The potential problems associated with the use of formalin in histology, such as health hazards, degradation of RNA and cross-linking of proteins are well recognized. We describe the utilization of a formalin-free fixation and processing system for tissue detection of two important biopredictors in breast cancer – estrogen receptor and HER2 – at the RNA and protein levels. Methods Parallel sections of 62 cases of breast cancer were fixed in an alcohol-based molecular fixative and in formalin. Molecular fixative samples were processed by a novel formalin-free microwave-assisted processing system that preserves DNA, RNA and proteins. Formalin-fixed samples were processed using the conventional method. Estrogen receptor was assessed by immunohistochemistry and real-time PCR. HER2 was assessed by immunohistochemistry, FISH, CISH and real-time PCR. Results The immunohistochemical reaction for estrogen receptor was similar in molecular- and formalin-fixed samples (Spearman Rank R = 0.83, p Conclusion The formalin-free tissue fixation and processing system is a practical platform for evaluation of biomolecular markers in breast cancer and it allows reliable DNA and RNA and protein studies.

  10. Effects of physical activity on systemic oxidative/DNA status in breast cancer survivors

    Science.gov (United States)

    Tomasello, Barbara; Malfa, Giuseppe Antonio; Strazzanti, Angela; Gangi, Santi; Di Giacomo, Claudia; Basile, Francesco; Renis, Marcella

    2017-01-01

    Physical activity offers a paradoxical hormetic effect and a health benefit to cancer survivors; however, the biochemical mechanisms have not been entirely elucidated. Despite the well-documented evidence implicating oxidative stress in breast cancer, the association between health benefits and redox status has not been investigated in survivors who participate in dragon boating. The present study investigated the plasmatic systemic oxidative status (SOS) in breast cancer survivors involved in two distinct physical training exercises. A total of 75 breast cancer survivors were allocated to one of three groups: Control (resting), dragon boat racing and walking group; the latter is a type of aerobic conditioning exercise often advised to cancer patients. Various biochemical oxidative stress markers were examined, including oxidant status (hydroperoxide levels, lipid oxidation) and antioxidant status (enzymatic activities of superoxide dismutase and glutathione peroxidase, reduced glutathione levels and antioxidant capability). In addition, the individual DNA fragmentation and DNA repair capability of nucleotide excision repair (NER) systems were examined by comet assays. According to the results, all patients exhibited high levels of oxidative stress. Physical activity maintained this oxidative stress condition but simultaneously had a positive influence on the antioxidant component of the SOS, particularly in the dragon boat racing group. DNA fragmentation, according to the levels of single- and double-strand breaks, were within the normal range in the two survivor groups that were involved in training activities. Radiation-induced damage was not completely recognised or repaired by NER systems in any of the patients, probably leading to radiosensitivity and/or susceptibility of patients to cancer. These findings suggest that physical activity, particularly dragon boat racing, that modulates SOS and DNA repair capability could represent a strategy for enhancing the

  11. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  12. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, M.C. [LIP, Lab. de Instrumentacao e Fisica Exp. Particulas (Portugal); Aguiar, D. [INESC-ID and INOV, Lisbon (Portugal); Albuquerque, E. [INEGI Inst. Eng. Mecanica Gestao Industrial, Porto (Portugal)] (and others)

    2007-02-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  13. Simulated scatter performance of an inverse-geometry dedicated breast CT system.

    Science.gov (United States)

    Bhagtani, Reema; Schmidt, Taly Gilat

    2009-03-01

    The purpose of this work was to quantify the effects of scatter for inverse-geometry dedicated breast CT compared to cone-beam breast CT through simulations. The inverse geometry was previously proposed as an alternative to cone-beam acquisition for volumetric CT. The inverse geometry consists of a large-area scanned-source opposite a detector array that is smaller in the transverse direction. While the gantry rotates, the x-ray beam is rapidly sequenced through an array of positions, acquiring a truncated projection image at each position. Inverse-geometry CT (IGCT) is expected to detect less scatter than cone-beam methods because only a fraction of the object is irradiated at any time and the fast detector isolates the measurements from sequential x-ray beams. An additional scatter benefit is the increased air gap due to the inverted geometry. In this study, we modeled inverse-geometry and cone-beam dedicated breast CT systems of equivalent resolution, field of view, and photon fluence. Monte Carlo simulations generated scatter and primary projections of three cylindrical phantoms of diameters 10, 14, and 18 cm composed of 50% adipose/50% glandular tissue. The scatter-to-primary ratio (SPR) was calculated for each breast diameter. Monte Carlo simulations were combined with analytical simulations to generate inverse-geometry and cone-beam images of breast phantoms embedded with tumors. Noise reprehenting the photon fluence of a realistic breast CT scan was added to the simulated projections. Cone-beam data were reconstructed with and without an ideal scatter correction. The CNR between breast tumor and background was compared for the inverse and cone-beam geometries for the three phantom diameters. Results demonstrated an order of magnitude reduction in SPR for the IGCT system compared to the cone-beam system. For example, the peak IGCT SPRs were 0.05 and 0.09 for the 14 and 18 cm phantoms, respectively, compared to 0.42 and 1 for the cone-beam system. For both

  14. The design and characterization of a digital optical breast cancer imaging system.

    Science.gov (United States)

    Flexman, Molly L; Li, Yang; Bur, Andres M; Fong, Christopher J; Masciotti, James M; Al Abdi, Rabah; Barbour, Randall L; Hielscher, Andreas H

    2008-01-01

    Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.

  15. Imaging study of a phase-sensitive breast-CT system in continuous acquisition mode

    Science.gov (United States)

    Delogu, P.; Golosio, B.; Fedon, C.; Arfelli, F.; Bellazzini, R.; Brez, A.; Brun, F.; Di Lillo, F.; Dreossi, D.; Mettivier, G.; Minuti, M.; Oliva, P.; Pichera, M.; Rigon, L.; Russo, P.; Sarno, A.; Spandre, G.; Tromba, G.; Longo, R.

    2017-01-01

    The SYRMA-CT project aims to set-up the first clinical trial of phase-contrast breast Computed Tomography with synchrotron radiation at the SYRMEP beamline of Elettra, the Italian synchrotron light source. The challenge in a dedicated breast CT is to match a high spatial resolution with a low dose level. In order to fulfil these requirements, the SYRMA-CT project uses a large area CdTe single photon counting detector (Pixirad-8), simultaneous algebraic reconstruction technique (SART) and phase retrieval pre-processing. This work investigates the imaging performances of the system in a continuous acquisition mode and with a low dose level towards the clinical application. A custom test object and a large surgical sample have been studied.

  16. Comparative assessment of 3D surface scanning systems in breast plastic and reconstructive surgery.

    Science.gov (United States)

    Patete, Paolo; Eder, Maximilian; Raith, Stefan; Volf, Alexander; Kovacs, Laszlo; Baroni, Guido

    2013-10-01

    In this work, we compared accuracy, repeatability, and usability in breast surface imaging of 2 commercial surface scanning systems and a hand-held laser surface scanner prototype coupled with a patient's motion acquisition and compensation methodology. The accuracy of the scanners was assessed on an anthropomorphic phantom, and to evaluate the usability of the scanners on humans, thorax surface images of 3 volunteers were acquired. Both the intrascanner repeatability and the interscanner comparative accuracy were assessed. The results showed surface-to-surface distance errors inferior to 1 mm and to 2 mm, respectively, for the 2 commercial scanners and for the prototypical one. Moreover, comparable performances of the 3 scanners were found when used for acquiring the breast surface. On the whole, this study demonstrated that handheld laser surface scanners coupled with subject motion compensation methods lend themselves as competitive technologies for human body surface modeling.

  17. Defining the Survival Benchmark for Breast Cancer Patients with Systemic Relapse

    Science.gov (United States)

    Zeichner, Simon B; Ambros, Tadeu; Zaravinos, John; Montero, Alberto J; Mahtani, Reshma L; Ahn, Eugene R; Mani, Aruna; Markward, Nathan J; Vogel, Charles L

    2015-01-01

    BACKGROUND Our original paper, published in 1992, reported a median overall survival after first relapse in breast cancer of 26 months. The current retrospective review concentrates more specifically on patients with first systemic relapse, recognizing that subsets of patients with local recurrence are potentially curable. METHODS Records of 5,168 patients from a largely breast-cancer-specific oncology practice were reviewed to identify breast cancer patients with their first relapse between 1996 and 2006 after primary treatment. There were 189 patients diagnosed with metastatic disease within 2 months of being seen by our therapeutic team and 101 patients diagnosed with metastatic disease greater than 2 months. The patients were divided in order to account for lead-time bias than could potentially confound the analysis of the latter 101 patients. RESULTS Median survival for our primary study population of 189 patients was 33 months. As expected, the median survival from first systemic relapse (MSFSR) for the 101 patients excluded because of the potential for lead-time bias was better at 46 months. Factors influencing prognosis included estrogen receptor (ER) status, disease-free interval (DFI), and dominant site of metastasis. Compared with our original series, even with elimination of local-regional recurrences in our present series, the median survival from first relapse has improved by 7 months over the past two decades. CONCLUSION The new benchmark for MSFSR approaches 3 years. PMID:25922577

  18. Breast cancer imaging; Bildgebende Diagnostik des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Funke, M. [Stadtklinik Baden-Baden, Brustzentrum Klinikum Mittelbaden, Radiologische Klinik, Baden-Baden (Germany); Villena, C. [Stadtklinik Baden-Baden, Brustzentrum Klinikum Mittelbaden, Frauenklinik, Baden-Baden (Germany)

    2008-06-15

    Advances in female breast imaging have substantially influenced the diagnosis, therapy, and prognosis of breast cancer in the past few years. Mammography using conventional or digital technique is considered the gold standard for the early detection of breast cancer. Other modalities such as breast ultrasound and contrast-enhanced magnetic resonance imaging of the breast play an important role in diagnostic imaging, staging, and follow-up of breast cancer. Percutaneous needle biopsy is a faster, less invasive, and more cost-effective method than surgical biopsy for verifying the histological diagnosis. New methods such as breast tomosynthesis, contrast-enhanced mammography, and positron emission tomography promise to further improve breast imaging. Further studies are mandatory to adapt these new methods to clinical needs and to evaluate their performance in clinical practice. (orig.) [German] Die Fortschritte bei den bildgebenden Verfahren der weiblichen Brust haben in den letzten Jahren die Diagnostik, die Therapie und die Prognose des Mammakarzinoms erheblich beeinflusst. Die Frueherkennungsmammographie in traditioneller oder digitaler Technik gilt heute als der ''Goldstandard'' fuer die fruehzeitige Detektion von Brustkrebs. Weitere Modalitaeten wie die Mammasonographie und die kontrastmittelgestuetzte MR-Mammographie spielen bei der bildgebenden Diagnostik, im Staging sowie in der Nachsorge des Mammakarzinoms eine wichtige Rolle. Die perkutane Nadelbiopsie stellt eine schnellere, weniger invasive und kostenguenstigere Methode dar als die diagnostische Exzision fuer die histologische Sicherung der Diagnose. Neue Modalitaeten wie Tomosynthese der Brust, kontrastverstaerkte Mammographie und Positronenemissionstomographie erheben den Anspruch, zu einer weiteren Verbesserung der Bildgebung beizutragen. Weitere Studien sind notwendig, um diese neuen Methoden an die klinischen Beduerfnisse zu adaptieren und ihren Stellenwert im klinischen Alltag

  19. Optimal systemic therapy for early breast cancer in women: a clinical practice guideline.

    Science.gov (United States)

    Eisen, A; Fletcher, G G; Gandhi, S; Mates, M; Freedman, O C; Dent, S F; Trudeau, M E

    2015-03-01

    The Breast Cancer Disease Site Group of Cancer Care Ontario identified the need for new guidelines for the adjuvant systemic therapy of early-stage breast cancer. The specific question to be addressed was "What is the optimal adjuvant systemic therapy for female patients with early-stage operable breast cancer, when patient and disease factors are considered?" A systematic review was prepared based on literature searches conducted using the medline and embase databases for the period January 2008 to March 5, 2012, and updated to May 12, 2014. Guidelines were located from that search, from the Standards and Guidelines Evidence directory of cancer guidelines, and from the Web sites of major guideline organizations. The literature located was subdivided into the broad categories of chemotherapy, hormonal therapy, and therapy targeted to her2 (human epidermal growth factor receptor 2). Although several of the systemic therapies discussed in this guideline can be considered in the neoadjuvant setting, the review focused on trials with rates of disease-free and overall survival as endpoints and thus excluded several trials that used pathologic complete response as a primary endpoint. Based on the systematic review, the working group drafted recommendations on the use of chemotherapy, hormonal therapy, and targeted therapy; based on their professional experience, they also drafted recommendations on patient and disease characteristics and recurrence risk. The literature review and draft recommendations were circulated to a consensus panel of medical oncologists who had expertise in breast cancer and who represented the regions of Ontario. Items without initial consensus were discussed at an in-person consensus meeting held in Toronto, November 23, 2012. The final recommendations are those for which consensus was reached before or at the meeting. Some of the key evidence was revised after the updated literature search. Evidence reviews for systemic chemotherapy, endocrine

  20. Systemic Sclerosis and Silicone Breast Implant: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Antonios Psarras

    2014-01-01

    Full Text Available Environmentally induced systemic sclerosis is a well-recognized condition, which is correlated with exposure to various chemical compounds or drugs. However, development of scleroderma-like disease after exposure to silicone has always been a controversial issue and, over time, it has triggered spirited debate whether there is a certain association or not. Herein, we report the case of a 35-year-old female who developed Raynaud’s phenomenon and, finally, systemic sclerosis shortly after silicone breast implantation surgery.

  1. Prognostic Factors for Local, Loco-regional and Systemic Recurrence in Early-stage Breast Cancer.

    Science.gov (United States)

    Kümmel, A; Kümmel, S; Barinoff, J; Heitz, F; Holtschmidt, J; Weikel, W; Lorenz-Salehi, F; du Bois, A; Harter, P; Traut, A; Blohmer, J U; Ataseven, B

    2015-07-01

    Aim: The risk of recurrence in breast cancer depends on factors such as treatment but also on the intrinsic subtype. We analyzed the risk factors for local, loco-regional and systemic recurrence, evaluated the differences and analyzed the risk of recurrence for different molecular subtypes. Material and Methods: A total of 3054 breast cancer patients who underwent surgery followed by adjuvant treatment at HSK hospital or Essen Mitte Hospital between 1998 and 2011 were analyzed. Based on immunohistochemical parameters, cancers were divided into the following subgroups: luminal A, luminal B (HER2-), luminal B (HER2+), HER2+ and TNBC (triple negative breast cancer). Results: 67 % of tumors were classified as luminal A, 13 % as luminal B (HER2-), 6 % as luminal B (HER2+), 3 % as HER2+ and 11 % as TNBC. After a median follow-up time of 6.6 years there were 100 local (3.3 %), 32 loco-regional (1 %) and 248 distant recurrences (8 %). Five-year recurrence-free survival for the overall patient collective was 92 %. On multivariate analysis, positive nodal status, TNBC subtype and absence of radiation therapy were found to be independent risk factors for all forms of recurrence. Age loco-regional recurrence was low. In addition to nodal status, subgroup classification was found to be an important factor affecting the risk of recurrence.

  2. Predicting the continuous values of breast cancer relapse time by type-2 fuzzy logic system.

    Science.gov (United States)

    Mahmoodian, Hamid

    2012-06-01

    Microarray analysis and gene expression profile have been widely used in tumor classification, survival analysis and ER statues of breast cancer. Sample discrimination as well as identification of significant genes have been the focus of most previous studies. The aim of this research is to propose a fuzzy model to predict the relapse time of breast cancer by using breast cancer dataset published by van't Veer. Fuzzy rule mining based on support vector machine has been used in a hybrid method with rule pruning and shown its ability to divide the samples in many subgroups. To handle the existence of uncertainties in linguistic variables and fuzzy sets, the TSK model of Interval type-2 fuzzy logic system has been used and a new simple method is also developed to consider the uncertainties of the rules which have been optimized by genetic algorithm. B632 validation method is applied to estimate the error of the model. The results with 95 % confidence interval show a reasonable accuracy in prediction.

  3. Cytological grading of breast cancers and comparative evaluation of two grading systems

    Directory of Open Access Journals (Sweden)

    Wani Farooq

    2010-01-01

    Full Text Available Aim: To evaluate and compare the cytograding of breast cancers using Robinson′s and Mouriquand′s grading methods. Materials and Methods: A 5-year retrospective (from Oct 2000 to Sept 2005 and 1-year prospective study (from Oct 2005 to Oct 2006. A total of 110 fine-needle aspiration cytology (FNAC cases of breast cancers were studied. These were graded according to Robinson′s and Mouriquand′s grading methods (grade I-III followed by comparison of the two methods. Results: Of the 110 cases graded according to Robinson′s method, 28 (25.45% cases were grade I, 46 (41.81% grade II, and 36 (32.72% were grade III, whereas using Mouriquand′s grading methods, 28 (25.45%, 42 (38.18%, and 40 (36.36% cases were graded as grade I, II, and III, respectively. A high degree of concordance was observed between the two grading methods (90.9%. A highly significant relationship between the scores obtained by two methods was also observed (P=0.004. Conclusions: A comprehensive cytological grading of breast cancers is possible by using two different methods proposed by Robinson and Mouriquand. In spite of a high degree of concordance between the two methods, the Robinson′s grading system has been found to be easier and better because of more objective set of criteria and easy reproducibility.

  4. Breast cancer brain metastases responding to lapatinib plus capecitabine as second-line primary systemic therapy.

    Science.gov (United States)

    Bergen, Elisabeth S; Berghoff, Anna S; Rudas, Margaretha; Preusser, Matthias; Bartsch, Rupert

    2015-06-01

    Brain metastases (BM) are diagnosed in up to 40% of HER2-positive breast cancer patients. Standard treatment includes local approaches such as whole-brain radiotherapy (WBRT), radiosurgery, and neurosurgery. The landscape trial established primary systemic therapy as an effective and safe alternative to WBRT in selected patients with Her2-positive BM. We aim to further focus on the role of systemic therapy in oligosymptomatic patients by presenting this case report. We report on a 50-year-old patient diagnosed with multiple BM 5 years after early breast cancer diagnosis. As the patient was asymptomatic and had a favorable diagnosis-specific GPA score, she received primary systemic treatment with T-DM1. She achieved partial remission within the brain for eight treatment cycles and then progressed despite stable extracranial disease. As the patient remained asymptomatic and refused WBRT, we decided upon trastuzumab, lapatinib plus capecitabine as second-line therapy. Another partial remission of BM was observed; to date, she has received 11 treatment cycles without any sign of disease progression. In this case, WBRT was delayed by at least 14 months, again indicating the activity of systemic treatment in BM. Apparently, in selected patients, BM can be controlled with multiple lines of systemic therapy similar to extracranial disease. Further investigation of systemic treatment approaches is therefore warranted.

  5. A systems analysis of the chemosensitivity of breast cancer cells to the polyamine analogue PG-11047

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wen-Lin; Das, Debopriya; Ziyad, Safiyyah; Bhattacharya, Sanchita; Gibb, William J.; Heiser, Laura M.; Sadanandam, Anguraj; Fontenay, Gerald V.; Hu, Zhi; Wang, Nicholas J.; Bayani, Nora; Feiler, Heidi S.; Neve, Richard M.; Wyrobek, Andrew J.; Spellman, Paul T.; Marton, Laurence J.; Gray, Joe W.

    2009-11-14

    Polyamines regulate important cellular functions and polyamine dysregulation frequently occurs in cancer. The objective of this study was to use a systems approach to study the relative effects of PG-11047, a polyamine analogue, across breast cancer cells derived from different patients and to identify genetic markers associated with differential cytotoxicity. A panel of 48 breast cell lines that mirror many transcriptional and genomic features present in primary human breast tumours were used to study the antiproliferative activity of PG-11047. Sensitive cell lines were further examined for cell cycle distribution and apoptotic response. Cell line responses, quantified by the GI50 (dose required for 50% relative growth inhibition) were correlated with the omic profiles of the cell lines to identify markers that predict response and cellular functions associated with drug sensitivity. The concentrations of PG-11047 needed to inhibit growth of members of the panel of breast cell lines varied over a wide range, with basal-like cell lines being inhibited at lower concentrations than the luminal cell lines. Sensitive cell lines showed a significant decrease in S phase fraction at doses that produced little apoptosis. Correlation of the GI50 values with the omic profiles of the cell lines identified genomic, transcriptional and proteomic variables associated with response. A 13-gene transcriptional marker set was developed as a predictor of response to PG-11047 that warrants clinical evaluation. Analyses of the pathways, networks and genes associated with response to PG-11047 suggest that response may be influenced by interferon signaling and differential inhibition of aspects of motility and epithelial to mesenchymal transition.

  6. Effect of adjuvant systemic treatment on cosmetic outcome and late normal-tissue reactions after breast conservation

    DEFF Research Database (Denmark)

    Johansen, Jørgen; Overgaard, Jens; Overgaard, Marie

    2007-01-01

    To investigate whether adjuvant treatment with CMF or tamoxifen predisposes to an unfavorable cosmetic outcome or increased breast morbidity after radiotherapy in breast conservation. Data from 266 patients who entered a randomized breast conservation trial (DBCG-82TM protocol) was analyzed......-risk patients: premenopausal patients (n = 67) received eight cycles of CMF intravenously (600/40/600 mg per m(2)) every fourth week; postmenopausal patients (n = 27) received 30 mg of tamoxifen daily for one year. Clinical assessments included cosmetic outcome, breast fibrosis, skin telangiectasia....... In premenopausal patients, systemic treatment with CMF independently predicted a fair/poor cosmetic outcome, RR = 2.2 (95% CI 1.2-4.2), as well as increased skin telangiectasia, RR = 3.3 (1.4-8.2). There was no impact of tamoxifen treatment on cosmetic outcome in postmenopausal patients (p = 0.32). However...

  7. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O' Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

    2013-01-15

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images

  8. Validating a Prognostic Scoring System for Postmastectomy Locoregional Recurrence in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Skye Hung-Chun, E-mail: skye@kfsyscc.org [Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Clinical Research Office, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Tsai, Stella Y. [Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yu, Ben-Long [Department of Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Horng, Cheng-Fang [Clinical Research Office, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Chen, Chii-Ming [Department of Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Jian, James J. [Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Chu, Nan-Min [Department of Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Tsou, Mei-Hua [Department of Pathology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Liu, Mei-Ching [Department of Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Huang, Andrew T. [Department of Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China); Department of Medicine, Duke University Medical Center, Durham, North Carolina (United States); Prosnitz, Leonard R. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-03-15

    Purpose: This study is designed to validate a previously developed locoregional recurrence risk (LRR) scoring system and further define which groups of patients with breast cancer would benefit from postmastectomy radiation therapy (PMRT). Methods and Materials: An LRR risk scoring system was developed previously at our institution using breast cancer patients initially treated with modified radical mastectomy between 1990 and 2001. The LRR score comprised 4 factors: patient age, lymphovascular invasion, estrogen receptor negativity, and number of involved lymph nodes. We sought to validate the original study by examining a new dataset of 1545 patients treated between 2002 and 2007. Results: The 1545 patients were scored according to the previously developed criteria: 920 (59.6%) were low risk (score 0-1), 493 (31.9%) intermediate risk (score 2-3), and 132 (8.5%) were high risk (score ≥4). The 5-year locoregional control rates with and without PMRT in low-risk, intermediate-risk, and high-risk groups were 98% versus 97% (P=.41), 97% versus 91% (P=.0005), and 89% versus 50% (P=.0002) respectively. Conclusions: This analysis of an additional 1545 patients treated between 2002 and 2007 validates our previously reported LRR scoring system and suggests appropriate patients for whom PMRT will be beneficial. Independent validation of this scoring system by other institutions is recommended.

  9. Computer aided diagnosis for breast masses detection on a telemammography system.

    Science.gov (United States)

    Méndez, Arturo J; Souto, Miguel; Tahoces, Pablo G; Vidal, Juan J

    2003-01-01

    A Computer-Aided Diagnosis (CAD) scheme for breast masses detection has been developed and integrated as a part of a telemammography system. This work derives from the close cooperation between the Laboratory for Radiologic Image Research of the University of Santiago de Compostela (Spain) and the company Intelsis Sistemas Inteligentes (Santiago de Compostela, Spain). This cooperation has been supported by funds from different projects, mainly from the European Union, the Spanish Health Administration, and the Galician Public Health's Service. As a result, a first prototype is ready to begin a demonstration project.

  10. Role of digital tomosynthesis and dual energy subtraction digital radiography in detecting pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvana G. [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Garg, Mandeep Kumar, E-mail: gargmandeep01@gmail.com [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Khandelwal, Niranjan; Gupta, Pankaj [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Gupta, Dheeraj; Aggarwal, Ashutosh Nath [Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Bansal, Subash Chand [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India)

    2015-07-15

    Highlights: • Accuracy of digital tomosynthesis for nodule detection is substantially higher. • Improvement in diagnostic accuracy is most pronounced for nodules <10 mm. • There is five times increase in radiation dose compared to DR. - Abstract: Objective: Digital tomosynthesis (DT) and dual-energy subtraction digital radiography (DES-DR) are known to perform better than conventional radiography in the detection of pulmonary nodules. Yet the comparative diagnostic performances of DT, DES-DR and digital radiography (DR) is not known. The present study compares the diagnostic performances of DT, DES-DR and DR in detecting pulmonary nodules. Subjects and methods: The institutional Review Board approved the study and informed written consent was obtained. Fifty-five patients (30 with pulmonary nodules, 25 with non-nodular focal chest pathology) were included in the study. DT and DES-DR were performed within14 days of MDCT. Composite images acquired at high kVp as part of DES-DR were used as DR images. Images were analyzed for presence of nodules and calcification in nodules. Interpretations were assigned confidence levels from 1 to 5 according to Five-Point rating scale. Areas under the receiver operating characteristic curves were compared using Z test. Results: A total of 110 (88 non-calcified, 22 calcified) nodules were identified on MDCT. For detection of nodules, DR showed cumulative sensitivity and specificity of 25.45% and 67.97%, respectively. DT showed a cumulative sensitivity and specificity of 60.9% and 85.07%, respectively. The performance was significantly better than DR (p < 0.003). DES-DR showed sensitivity and specificity of 27.75% and 82.64%, not statistically different from those of DR (p—0.92). In detection of calcification, there was no statistically significant difference between DT, DES-DR and DR. Conclusions: DT performs significantly better than DES-DR and DR at the cost of moderate increase in radiation dose.

  11. Brain metastases as site of first and isolated recurrence of breast cancer: the role of systemic therapy after local treatment.

    Science.gov (United States)

    Niwińska, Anna

    2016-10-01

    The role of systemic treatment was assessed after local therapy for breast cancer patients who developed central nervous system (CNS) metastases as a first and isolated recurrence. Subjects were 128 breast cancer patients with brain metastases as the first and isolated site of recurrence that were selected from 673 consecutive breast cancer patients with brain metastases treated at the same institution. Median survival from brain metastases in patients with and without systemic treatment after local therapy was respectively 15 and 4 months (p systemic treatment after local therapy, was respectively 22 and 7 months (p = 0.003). Cox multivariate analysis demonstrated that good performance status, solitary brain metastasis and systemic therapy undertaken after local treatment were factors which prolonged survival. However patient survival was adversely affected by those having leptomeningeal metastasis associated with brain parenchymal lesions. Systemic therapy, undertaken after local treatment improved survival in those patients with breast cancer and brain metastases as the site of first and isolated recurrence. Further study is required in order to fully establish the role of systemic treatment for this patient group.

  12. Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Kim, Oleksiy S.; Meincke, Peter

    2009-01-01

    -of-moments solution of the associated forward scattering problem. A cylindrical multistatic antenna setup with 32 horizontally oriented antennas is used for collecting the data. It has been found that formulating the imaging algorithm in terms of the logarithm of the amplitude and the unwrapped phase of the measured......The microwave imaging system currently being developed at the Technical University of Denmark is described and its performance tested on simulated data. The system uses an iterative Newton-based imaging algorithm for reconstructing the images in conjunction with an efficient method...... in the measurement system is shown by imaging the same breast model using a measurement setup in which the antennas are vertically oriented....

  13. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G.; Knuttel, Floor M.; Peters, Nicky H.G.M.; Mali, Willem P.T.M.; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E 01.132, Utrecht (Netherlands); Deckers, Roel; Moonen, Chrit T.W.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Dalen, Thijs van [Diakonessenhuis Utrecht, Department of Surgery, Utrecht (Netherlands); Schubert, Gerald [Philips Healthcare, Best (Netherlands); Weits, Teun [Diakonessenhuis Utrecht, Department of Radiology, Utrecht (Netherlands); Diest, Paul J. van [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Vaessen, Paul H.H.B. [University Medical Center Utrecht, Department of Anesthesiology, Utrecht (Netherlands); Gorp, Joost M.H.H. van [Diakonessenhuis Utrecht, Department of Pathology, Utrecht (Netherlands)

    2016-11-15

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. (orig.)

  14. Breast cancer survival rate according to data of cancer registry and death registry systems in Bushehr province, 2001-2013

    Directory of Open Access Journals (Sweden)

    Zahra Rampisheh

    2015-09-01

    Full Text Available Background: Breast cancer is the most common female cancer worldwide. Survival rate of breast cancer, especially as an indicator of the successful implementation of screening, diagnosis and treatment programs, has been at the center of attention of public health experts Material and Methods: In a survival study, the records of breast cancer cases in cancer registry system of Bushehr Province were extracted during 2001, March to 2013, September. These records were linked and matched with records of death registry system. After determining patients, status regarding being alive or dead, survival analysis was done. Life table, Kaplan-Mayer analysis, log rank and Breslow tests were used for computing and comparing survival rates. Results: In 300 recorded breast cancer cases, mean and standard deviation of age was 51.26±13.87. Survival rates were 95, 88, 78, 73 and 68 percent since the first year through the fifth year, respectively. Mean survival was 87.20 months (95% CI= 81.28- 93.12. There was no significant difference in mean survival regarding age and different geographical areas. Conclusion: Although survival rates of registered breast cancer patients in Bushehr Province are similar to other provinces, they are far from those of developed countries. This situation demands more extensive efforts regarding public education and improving the process of diagnosis, treatment and care of patients especially during first two years after diagnosis.

  15. Imaging-Assisted Large-Format Breast Pathology: Program Rationale and Development in a Nonprofit Health System in the United States

    Directory of Open Access Journals (Sweden)

    F. Lee Tucker

    2012-01-01

    Full Text Available Modern breast imaging, including magnetic resonance imaging, provides an increasingly clear depiction of breast cancer extent, often with suboptimal pathologic confirmation. Pathologic findings guide management decisions, and small increments in reported tumor characteristics may rationalize significant changes in therapy and staging. Pathologic techniques to grossly examine resected breast tissue have changed little during this era of improved breast imaging and still rely primarily on the techniques of gross inspection and specimen palpation. Only limited imaging information is typically conveyed to pathologists, typically in the form of wire-localization images from breast-conserving procedures. Conventional techniques of specimen dissection and section submission destroy the three-dimensional integrity of the breast anatomy and tumor distribution. These traditional methods of breast specimen examination impose unnecessary limitations on correlation with imaging studies, measurement of cancer extent, multifocality, and margin distance. Improvements in pathologic diagnosis, reporting, and correlation of breast cancer characteristics can be achieved by integrating breast imagers into the specimen examination process and the use of large-format sections which preserve local anatomy. This paper describes the successful creation of a large-format pathology program to routinely serve all patients in a busy interdisciplinary breast center associated with a community-based nonprofit health system in the United States.

  16. Ultrasound - Breast

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Breast Ultrasound imaging of the breast uses sound waves ... the Breast? What is Ultrasound Imaging of the Breast? Ultrasound is safe and painless, and produces pictures ...

  17. Breast pain

    Science.gov (United States)

    Pain - breast; Mastalgia; Mastodynia; Breast tenderness ... There are many possible causes for breast pain. For example, hormone level changes from menstruation or pregnancy often cause breast tenderness. Some swelling and tenderness just before your period ...

  18. Role of digital tomosynthesis and dual energy subtraction digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Madhurima, E-mail: madhurimashrm88@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Sandhu, Manavjit Singh, E-mail: manavjitsandhu@yahoo.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gorsi, Ujjwal, E-mail: ujjwalgorsi@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gupta, Dheeraj, E-mail: dheeraj1910@gmail.com [Department of Pulmonary Medicine, PGIMER, Chandigarh 160012 (India); Khandelwal, Niranjan, E-mail: khandelwaln@hotmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India)

    2015-09-15

    Highlights: • Digital tomosynthesis and dual energy subtraction digital radiography are modifications of digital radiography. • These modalities perform better than digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis. • Digital tomosynthesis has a sensitivity of 100% in detection of cavities. • Centrilobular nodules seen on CT in active pulmonary tuberculosis, were also demonstrated on digital tomosynthesis in our study. • Digital tomosynthesis can be used for diagnosis and follow up of patients in pulmonary tuberculosis, thereby reducing the number of CT examinations. - Abstract: Objective: To assess the role of digital tomosynthesis (DTS) and dual energy subtraction digital radiography (DES-DR) in detection of parenchymal lesions in active pulmonary tuberculosis (TB) and to compare them with digital radiography (DR). Materials and methods: This prospective study was approved by our institutional review committee. DTS and DES-DR were performed in 62 patients with active pulmonary TB within one week of multidetector computed tomography (MDCT) study. Findings of active pulmonary TB, that is consolidation, cavitation and nodules were noted on digital radiography (DR), DTS and DES-DR in all patients. Sensitivity, specificity, positive and negative predictive values of all 3 modalities was calculated with MDCT as reference standard. In addition presence of centrilobular nodules was also noted on DTS. Results: Our study comprised of 62 patients (33 males, 29 females with age range 18–82 years). Sensitivity and specificity of DTS for detection of nodules and cavitation was better than DR and DES-DR. Sensitivity and specificity of DTS for detection of consolidation was comparable to DR and DES-DR. DES-DR performed better than DR in detection of nodules and cavitation. DTS was also able to detect centrilobular nodules with sensitivity and specificity of 57.4% and 86.5% respectively. Conclusion: DTS and DES-DR perform better

  19. Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system

    Science.gov (United States)

    Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit

    2015-03-01

    To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with

  20. Investigation of optimal parameters for penalized maximum-likelihood reconstruction applied to iodinated contrast-enhanced breast CT

    Science.gov (United States)

    Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.

    2016-03-01

    Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.

  1. Activity-based costing via an information system: an application created for a breast imaging center.

    Science.gov (United States)

    Hawkins, H; Langer, J; Padua, E; Reaves, J

    2001-06-01

    Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis.

  2. Central nervous system metastases from breast carcinoma: a clinical and laboratorial study in 47 patients

    Directory of Open Access Journals (Sweden)

    MACHADO ALUÍZIO B.B.

    1998-01-01

    Full Text Available In this retrospective study, 47 patients with clinical diagnosis of central nervous system metastases of breast cancer were evaluated by computerized tomography (CT, magnetic resonance imaging (MRI and cerebrospinal fluid (CSF examination. The patients were divided in 2 groups: 1, without leptomeningeal neoplasm and 2, with leptomeningeal neoplasm. In the group 2, the time interval between the primary disease and the central nervous system metastasis as well as the survival time were shorter than in group 1 (40 and 4.3 months in group 2 versus 57 and 10 months respectively, in group 1. In both groups the most common neurological symptoms and signs were intracranial hypertension and motor deficits. The most sensitive diagnostic methods were CT and MRI in group 1, and the CSF examination in group 2. The use of the tumor markers CEA and CA-15.3 in the routine examination of CSF showed promising results, mainly in leptomeningeal forms.

  3. Chloroquine Engages the Immune System to Eradicate Irradiated Breast Tumors in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ratikan, Josephine Anna [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Sayre, James William [Public Health Biostatistics/Radiology at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Schaue, Dörthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States)

    2013-11-15

    Purpose: This study used chloroquine to direct radiation-induced tumor cell death pathways to harness the antitumor activity of the immune system. Methods and Materials: Chloroquine given immediately after tumor irradiation increased the cure rate of MCaK breast cancer in C3H mice. Chloroquine blocked radiation-induced autophagy and drove MCaK cells into a more rapid apoptotic and more immunogenic form of cell death. Results: Chloroquine treatment made irradiated tumor vaccines superior at inducing strong interferon gamma-associated immune responses in vivo and protecting mice from further tumor challenge. In vitro, chloroquine slowed antigen uptake and degradation by dendritic cells, although T-cell stimulation was unaffected. Conclusions: This study illustrates a novel approach to improve the efficacy of breast cancer radiation therapy by blocking endosomal pathways, which enhances radiation-induced cell death within the field and drives antitumor immunity to assist therapeutic cure. The study illuminates and merges seemingly disparate concepts regarding the importance of autophagy in cancer therapy.

  4. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    Science.gov (United States)

    2010-05-01

    M. P. Tornai, "Pilot Patient Studies Using a Dedicated Dual-Modality SPECT-CT System for Breast Imaging " 2008 AAPM (2008). 3M. J. Butson, P. K. N...for Breast Imaging " in 2008 AAPM , (Houston TX, 2008). 16. M. P. Tornai, R. L. McKinley, C. N. Brzymialkiewicz, P. Madhav, S. J. Cutler, D. J...S. Meigooni, R. Nath, J. E. Rodgers and C. G. Soares, "Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group

  5. Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, T.; Krozer, V.

    2010-01-01

    An active microwave-imaging system for non-invasive detection of breast cancer based on dedicated hardware is described. Thirty-two transceiving channels are used to measure the amplitude and phase of the scattered fields in the three-dimensional (3D) imaging domain using electronic scanning. The 3...

  6. TU-CD-207-04: Radiation Exposure Comparisons of CESM with 2D FFDM and 3D Tomosynthesis Mammography

    Energy Technology Data Exchange (ETDEWEB)

    James, J; Boltz, T; Pavlicek, W [Mayo Clinic Arizona, Scottsdale, AZ (United States)

    2015-06-15

    Purpose: While mammography is considered the standard for front-line breast cancer screening, image sensitivity and specificity can be affected by factors like dense breast tissue. Contrast-enhanced spectral mammography (CESM) shows promising initial results for dense breasts but comes at the cost of increased dose compared with full-field-digital-mammography (FFDM). The goal of this study is to quantitatively assess the dose increase of CESM in comparison with 2D-FFDM and 3D-Tomo at varying breast thickness. Methods: The experiments were conducted on a Hologic-Selenia-Dimensions system that performed 2D-FFDM, 3D-Tomo and CESM (high and low energies) on regular (50/50) and dense (70/30) breast tissue-mimicking phantoms. Both the phantoms had 6, 1-cm thick slabs (total thickness 6cm), compressed at 20-lbs using an 18×24 paddle. A single exposure was performed for each of the 3 mammo techniques with the following settings: AEC-Auto; Focal Spot-Large; kVp-Auto; mAs- Auto, Target/Filter combination-Auto; AEC Sensor/Exposure compensation Step-2/0. Average glandular dose (AGD) in mGy was obtained and compared as a function of breast thickness (1 – 6 cm) for both the phantom types. Results: The study shows that dose from the total CESM from 50/50 phantom at a breast thickness of a) 4.5 cm was 37.5% higher than 2D-FFDM and 30% higher than 3D-Tomo, b) 6 cm was 36.2% higher than 2D-FFDM and 41% higher than 3D-Tomo. For a dense breast tissue of 70/30 phantom, it was found that CESM dose at a breast thickness of: a) 4.5 cm was 33.3% higher than 2D-FFDM and 28.8% higher than 3D-Tomo, b) 6 cm was 35.4% higher than 2D-FFDM and 48.0% higher than 3D-Tomo. The overall CESM dose for the dense breast phantom was 12.5% higher at 4.5cm and 35% higher at 6 cm compared to the 50/50 phantom. Conclusion: This quantitative comparison study showed that CESM technique has an increased radiation dose compared to conventional 2D-FFDM and 3D-Tomo.

  7. Evaluation of scoring system in cytological diagnosis and management of breast lesion with review of literature

    Directory of Open Access Journals (Sweden)

    N M Nandini

    2011-01-01

    Full Text Available Background: Fine needle aspiration cytology (FNAC breast is generally considered as a rapid, reliable, and safe diagnostic tool to distinguish non-neoplastic from neoplastic breast lesions. Masood′s Scoring Index has been proposed to help in sub-grouping of breast lesions so as to help in surgical management. Aims: To assess the accuracy of Modified Masood′s Scoring Index (MMSI in the diagnosis of benign and malignant breast lesions in patients with palpable breast lump, and review of literature. Settings and Design: A prospective study from a tertiary care center. Material and Methods: This prospective study included a total of 100 cases, both females and males, with palpable breast lump, in the age range of 10-80 years, over a period of 2 years from January 2007 to 2009, who underwent FNAC. They were cytologically grouped into five categories as suggested by Masood et al, and confirmed by histopathology. Results: Evaluation of Masood Scoring Index led to modification (Modified Masood Scoring Index; MMSI by shifting score 9 from Group I to Group II, thus increasing the diagnostic accuracy of the breast lesions. Conclusions: MMSI was found to be a useful, easily reproducible scoring method of breast lesions to improve diagnostic accuracy of nonproliferative breast disease and proliferative breast disease without atypia cases, as the prognosis and treatment of these cases varies.

  8. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells.

    Science.gov (United States)

    Yi, Tingfang; Zhai, Bo; Yu, Yonghao; Kiyotsugu, Yoshikawa; Raschle, Thomas; Etzkorn, Manuel; Seo, Hee-Chan; Nagiec, Michal; Luna, Rafael E; Reinherz, Ellis L; Blenis, John; Gygi, Steven P; Wagner, Gerhard

    2014-05-27

    Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4-mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4-mediated phosphoproteome, including construction of kinase-substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy.

  9. An issue tracking system to facilitate the enhancement of clinical data quality in the clinical breast care project.

    Science.gov (United States)

    Zhang, Yonghong; Sun, Weihong; Gutchell, Emily M; Hu, Hai; Liebman, Michael N; Shriver, Craig D; Mural, Richard J

    2007-10-11

    An online issue tracking (QAIT) system was developed to support the QA of questionnaire-based clinical data and tissue banking in the Clinical Breast Care Project (CBCP). The web-based system provides a centralized storage and management of QA issues and role-based access to related information and functions via internet. The QAIT system greatly improved the QA process for the CBCP clinical data and tissue banking and can be easily adapted to other applications.

  10. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  11. Estimation of the average glandular dose on a team of tomosynthesis; Estimacion de la dosis glandular media en un equipo de tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-07-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  12. System-wide Clinical Proteomics of Breast Cancer Reveals Global Remodeling of Tissue Homeostasis.

    Science.gov (United States)

    Pozniak, Yair; Balint-Lahat, Nora; Rudolph, Jan Daniel; Lindskog, Cecilia; Katzir, Rotem; Avivi, Camilla; Pontén, Fredrik; Ruppin, Eytan; Barshack, Iris; Geiger, Tamar

    2016-03-23

    The genomic and transcriptomic landscapes of breast cancer have been extensively studied, but the proteomes of breast tumors are far less characterized. Here, we use high-resolution, high-accuracy mass spectrometry to perform a deep analysis of luminal-type breast cancer progression using clinical breast samples from primary tumors, matched lymph node metastases, and healthy breast epithelia. We used a super-SILAC mix to quantify over 10,000 proteins with high accuracy, enabling us to identify key proteins and pathways associated with tumorigenesis and metastatic spread. We found high expression levels of proteins associated with protein synthesis and degradation in cancer tissues, accompanied by metabolic alterations that may facilitate energy production in cancer cells within their natural environment. In addition, we found proteomic differences between breast cancer stages and minor differences between primary tumors and their matched lymph node metastases. These results highlight the potential of proteomic technology in the elucidation of clinically relevant cancer signatures.

  13. Comprehensive Reproductive System Care Program - Clinical Breast Care Project (CRSCP-CBCP)

    Science.gov (United States)

    2013-04-01

    tests to determine whether an individual in such a high-risk family has a genetic mutation in the BRCAl or BRCA2 genes. · When someone with a...profiles, evaluation of genetic risk and tumor biology. These themes inform researc h across the five BCM TRCOE pillars: (1) Breast Cancer Risk...high clinical relevance, deepening our understanding of the genetic risk of breast disease and the enhancement of our understanding of breast tumor

  14. Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Littrup, P J; Duric, N; Azevedo, S; Chambers, D; Candy, J V; Johnson, S; Auner, G; Rather, J; Holsapple, E T

    2001-09-07

    Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough. Improved tissue characterization could result in reduction of the estimated one million benign biopsies each year in the United States, costing up to several billion dollars. Most breast calcifications are benign and comprise-80% of stereotactic biopsies guided by mammography. Ultrasound has the capability of finding some groups of calcifications, but further improvements in resolution should also address tissue characterization to define the soft tissue filling of ducts by DCIS. In this manner, CURE may be able to more accurately identify the malignant calcifications associated with progression of DCIS or early cancers. Currently, high-resolution US images of the breast are performed in the reflection mode at higher frequencies, which also limits depth of penetration. Reconstruction of reflection ultrasound images relies upon acoustic impedance differences in the tissue and includes only direct backscatter of the ultrasound signal. Resolution and tissue contrast of current US continues to improve with denser transducer arrays and image

  15. Breast-feeding and Vitamin D Supplementation Rates in the Ochsner Health System

    OpenAIRE

    Ponnapakkam, Tulasi; Ravichandran, Anisha; Bradford, Elease; Tobin, Gregory; Gensure, Robert

    2008-01-01

    Breast-feeding imparts many benefits to both mothers and infants. Because of these numerous recognized benefits, there has been an effort to increase breast-feeding rates nationwide; increasing breast-feeding rates was one of the goals of the U.S. Department of Health and Human Services' Healthy People 2010 initiative. This study examined the breast-feeding rate at the Ochsner Clinic Foundation by conducting a retrospective chart review of patients aged 0–12 months who visited any branch of t...

  16. [Breast ductoscopy].

    Science.gov (United States)

    Sharon, Eran; Avin, Ilan D; Leong, Wey

    2011-02-01

    The majority of benign and malignant breast diseases originate in the ductal system. Breast ductoscopy (BD) allows direct access to this ductal system and thus holds great promise in the diagnosis and surgical management of a number of breast diseases. BD was first developed over 20 years ago to investigate nipple discharge. Indeed, till now, this remains the most common indication. However, BD technology has been further developed for a variety of new clinical applications. For example, BD-guided ductal ravage combined with molecular and genetic analysis can be a powerful screening tool for women at high-risk of breast cancer. BD can also be used during lumpectomy to identify additional radiographically occult disease. This refined intraoperative margin assessment can help surgeons to achieve clear margins at the first excision while optimizing the extent of resection. In the future, this same precise intraoperative margin assessment may facilitate a variety of local ablative techniques including laser Over time, BD is likely to evolve beyond its current technological limitations to realize its full diagnostic and therapeutic potential. The article describes the technique of BD, reviews its evolution and discusses current and future applications.

  17. Update on new technologies in digital mammography

    Directory of Open Access Journals (Sweden)

    Patterson SK

    2014-08-01

    Full Text Available Stephanie K Patterson, Marilyn A Roubidoux Division of Breast Imaging, Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA Abstract: Despite controversy regarding mammography's efficacy, it continues to be the most commonly used breast cancer-screening modality. With the development of digital mammography, some improved benefit has been shown in women with dense breast tissue. However, the density of breast tissue continues to limit the sensitivity of conventional mammography. We discuss the development of some derivative digital technologies, primarily digital breast tomosynthesis, and their strengths, weaknesses, and potential patient impact. Keywords: screening mammography, breast cancer, contrast media, digital breast tomosynthesis

  18. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    Science.gov (United States)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  19. Comparison of image quality and effective dose by additional filtration on digital chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kye Sun [Dept. of Dignostic Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Sung Chul [Dept. of Radiological Science, Gachon University, Sungnam (Korea, Republic of)

    2015-12-15

    The purpose of this study is to suggest proper additional filtration by comparisons patient dose and image quality among additional filters in digital chest tomosynthesis (DTS). We measured the effective dose, dose area product (DAP) by changing thickness of Cu, Al and Ni filter to compare image quality by CD curve and SNR, CNR. Cu, Al and Ni exposure dose were similar thickness 0.3 mm, 3 mm and 0.3 mm respectively. The exposure dose using filter was decreased average about 33.1% than non filter. The DAP value of 0.3 mm Ni were decreased 72.9% compared to non filter and the lowest dose among 3 filter. The effective dose of 0.3 mm Ni were decreased 48% compared to 0.102 mSv effective dose of non filter. At the result of comparison of image quality through CD curve there were similar aspect graph among Cu, Al and Ni. SNR was decreased average 19.07%, CNR was average decreased 18.17% using 3 filters. In conclusion, Ni filtration was considered to be most suitable when considered comprehensive thickness, character, sort of filter, dose reduction and image quality evaluation in DTS.

  20. A versatile knowledge-based clinical imaging annotation system for breast cancer screening

    Science.gov (United States)

    Gemo, Monica; Gouze, Annabelle; Debande, Benoît; Grivegnée, André; Mazy, Gilbert; Macq, Benoît

    2007-03-01

    Medical information is evolving towards more complex multimedia data representation, as new imaging modalities are made available by sophisticated devices. Features such as segmented lesions can now be extracted through analysis techniques and need to be integrated into clinical patient data. The management of structured information extracted from multimedia has been addressed in knowledge based annotation systems providing methods to attach interpretative semantics to multimedia content. Building on these methods, we develop a new clinical imaging annotation system for computer aided breast cancer screening. The proposed system aims at more consistent, efficient and standardised data mark-up of digital and digitalised radiology images. The objective is to provide detailed characterisation of abnormalities as an aid in the diagnostic task through integrated annotation management. The system combines imaging analysis results and radiologist diagnostic information about suspicious findings by mapping well-established visual and low-level descriptors into pathology specific profiles. The versatile characterisation allows differentiating annotation descriptors for different types of findings. Our approach of semi-automatic integrated annotations supports increased quality assurance in screening practice. This is achieved through detailed and objective patient imaging information while providing user-friendly means for their manipulation that is oriented to relieving the radiologist's workload.

  1. Design and characterization of a digital image acquisition system for whole-specimen breast histopathology

    Science.gov (United States)

    Clarke, Gina M.; Peressotti, Chris; Mawdsley, Gordon E.; Yaffe, Martin J.

    2006-10-01

    We have developed a digital histopathology imaging system capable of producing a three-dimensional (3D) representation of histopathology from an entire lumpectomy specimen. The system has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. A scanning light microscope was modified to allow digital photomicrography of a stack of large (up to 120 × 170 mm2) histology slides cut serially through the entire specimen. The images are registered and displayed in 2D and 3D. The design of the system, which reduces or eliminates the appearance of 'tiling' and 'seam' artefacts inherent in the scanning method, is described and its resolution, contrast/noise and coverage properties are characterized through measurements of the modulation transfer function (MTF), depth of field (DOF) and signal difference to noise ratio (SDNR). The imaging task requires a lateral resolution of 5 µm, an SDNR of 5 between relevant features, 'tiling artefact' at a level below the detectability threshold of the eye, and 'seam artefact' of less than 5-10 µm. The tests demonstrate that the system is largely adequate for the imaging task, although further optimizations are required to reduce the degradation of coverage incurred by seam artefact.

  2. Design and characterization of a digital image acquisition system for whole-specimen breast histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Gina M [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Peressotti, Chris [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Mawdsley, Gordon E [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Yaffe, Martin J [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2006-10-21

    We have developed a digital histopathology imaging system capable of producing a three-dimensional (3D) representation of histopathology from an entire lumpectomy specimen. The system has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. A scanning light microscope was modified to allow digital photomicrography of a stack of large (up to 120 x 170 mm{sup 2}) histology slides cut serially through the entire specimen. The images are registered and displayed in 2D and 3D. The design of the system, which reduces or eliminates the appearance of 'tiling' and 'seam' artefacts inherent in the scanning method, is described and its resolution, contrast/noise and coverage properties are characterized through measurements of the modulation transfer function (MTF), depth of field (DOF) and signal difference to noise ratio (SDNR). The imaging task requires a lateral resolution of 5 {mu}m, an SDNR of 5 between relevant features, 'tiling artefact' at a level below the detectability threshold of the eye, and 'seam artefact' of less than 5-10 {mu}m. The tests demonstrate that the system is largely adequate for the imaging task, although further optimizations are required to reduce the degradation of coverage incurred by seam artefact.

  3. The "Win-Win" initiative: a global, scientifically based approach to resource sparing treatment for systemic breast cancer therapy

    Directory of Open Access Journals (Sweden)

    Elzawawy Ahmed

    2009-05-01

    Full Text Available Abstract Background Worldwide, breast cancer is the most frequent malignancy among females. Its incidence shows a trend towards an increase in the next decade, particularly in developing countries where less than of 5% of resources for cancer management are available. In most breast cancer cases systemic cancer treatment remains a primary management strategy. With the increasing costs of novel drugs, amidst the growing breast cancer rate, it can be safely assumed that in the next decade, newly developed cancer drugs will become less affordable and therefore will be available to fewer patients in low and middle income countries. In light of this potentially tragic situation, a pressing need emerges for science-based innovative solutions. Methods In this article, we cite examples of recently published researches and case management approaches that have been shown to lower overall treatment costs without compromising patient outcomes. The cited approaches are not presented as wholly inclusive or definitive solutions but are offered as effective examples that we hope will inspire the development of additional evidence-based management approaches that provide both efficient and effective breast cancer treatment Results We propose a "win-win" initiative, borne in the year of 2008 of strategic information sharing through preparatory communications, publications and our conference presentations. In the year 2009, ideas developed through these mechanisms can be refined through focused small pilot meetings with interested stakeholders, including the clinical, patient advocate, and pharmaceutical communities, and as appropriate (as proposed plans emerge, governmental representatives. The objective is to draw a realistic road map for feasible and innovative scientific strategies and collaborative actions that could lead to resource sparing; i.e. cost effective and tailored breast cancer systemic treatment for low and middle income countries. Conclusion The

  4. Effect of adjuvant systemic treatment on cosmetic outcome and late normal-tissue reactions after breast conservation

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Joergen [Dept. of Oncology, Odense Univ. Hospital, Odense (Denmark); Overgaard, Jens [Dept. of Experimental Clinical Oncology, Danish Cancer Society, Aarhus (Denmark); Overgaard, Marie [Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)

    2007-05-15

    To investigate whether adjuvant treatment with CMF or tamoxifen predisposes to an unfavorable cosmetic outcome or increased breast morbidity after radiotherapy in breast conservation. Data from 266 patients who entered a randomized breast conservation trial (DBCG-82TM protocol) was analyzed. The patients were treated with lumpectomy and axillary dissection followed by external beam radiotherapy to the residual breast. High-risk patients (n 94), as well as 31 low-risk patients, received additional radiation to the regional lymph nodes. Adjuvant systemic treatment was given to all high-risk patients: premenopausal patients (n = 67) received eight cycles of CMF intravenously (600/40/600 mg/m{sup 2}) every fourth week; postmenopausal patients (n = 27) received 30 mg of tamoxifen daily for one year. Clinical assessments included cosmetic outcome, breast fibrosis, skin telangiectasia, and dyspigmentation which were scored on a 4-point categorical scale after median 6.6 years. The observations were analyzed in multivariate logistic regression analysis which included potential risk factors on outcome related to systemic treatment, surgery, radiation technique, tumor, and patient characteristics. In premenopausal patients, systemic treatment with CMF independently predicted a fair/poor cosmetic outcome, RR = 2.2 (95% CI 1.2-4.2), as well as increased skin telangiectasia, RR = 3.3 (1.4-8.2). There was no impact of tamoxifen treatment on cosmetic outcome in postmenopausal patients (p 0.32). However, univariate analysis showed that tamoxifen was significantly associated with breast fibrosis (p <0.004), as was radiation to the regional lymph nodes (p <0.0001). A strong interaction between axillary irradiation and tamoxifen treatment occurred since 26 of 27 high-risk postmenopausal patients had received both tamoxifen and axillary irradiation. In multivariate regression analysis, axillary irradiation independently predicted moderate/severe breast fibrosis with a relative risk of

  5. Dynamic modeling of breast tissue with application of model reference adaptive system identification technique based on clinical robot-assisted palpation.

    Science.gov (United States)

    Keshavarz, M; Mojra, A

    2015-11-01

    Accurate identification of breast tissue's dynamic behavior in physical examination is critical to successful diagnosis and treatment. In this study a model reference adaptive system identification (MRAS) algorithm is utilized to estimate the dynamic behavior of breast tissue from mechanical stress-strain datasets. A robot-assisted device (Robo-Tac-BMI) is going to mimic physical palpation on a 45 year old woman having a benign mass in the left breast. Stress-strain datasets will be collected over 14 regions of both breasts in a specific period of time. Then, a 2nd order linear model is adapted to the experimental datasets. It was confirmed that a unique dynamic model with maximum error about 0.89% is descriptive of the breast tissue behavior meanwhile mass detection may be achieved by 56.1% difference from the normal tissue.

  6. Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer.

    Science.gov (United States)

    Martínez-Martos, José Manuel; del Pilar Carrera-González, María; Dueñas, Basilio; Mayas, María Dolores; García, María Jesús; Ramírez-Expósito, María Jesús

    2011-10-01

    Angiotensin peptides regulate vascular tone and natriohydric balance through the renin angiotensin system (RAS) and are related with the angiogenesis which plays an important role in the metastatic pathway. Estrogen influences the aminopeptidases (APs) involved in the metabolism of bioactive peptides of RAS through several pathways. We analyze RAS-regulating AP activities in serum of pre- and postmenopausal women with breast cancer to evaluate the putative value of these activities as biological markers of the development of breast cancer. We observed an increase in aminopeptidase N (APN) and aminopeptidase B (APB) activities in women with breast cancer; however, a decrease in aspartyl-aminopeptidase (AspAP) activity in premenopausal women. These results suggest a slow metabolism of angiotensin II (Ang II) to angiotensin III (Ang III) in premenopausal women and a rapid metabolism of Ang III to angiotensin IV (Ang IV) in pre- and postmenopausal women with breast cancer. An imbalance in the signals activated by Ang II may produce abnormal vascular growth with different response between pre- and postmenopausal women depending on the hormonal profile and the development of the disease.

  7. Evaluation of the efficiency of biofield diagnostic system in breast cancer detection using clinical study results and classifiers.

    Science.gov (United States)

    Subbhuraam, Vinitha Sree; Ng, E Y K; Kaw, G; Acharya U, Rajendra; Chong, B K

    2012-02-01

    The division of breast cancer cells results in regions of electrical depolarisation within the breast. These regions extend to the skin surface from where diagnostic information can be obtained through measurements of the skin surface electropotentials using sensors. This technique is used by the Biofield Diagnostic System (BDS) to detect the presence of malignancy. This paper evaluates the efficiency of BDS in breast cancer detection and also evaluates the use of classifiers for improving the accuracy of BDS. 182 women scheduled for either mammography or ultrasound or both tests participated in the BDS clinical study conducted at Tan Tock Seng hospital, Singapore. Using the BDS index obtained from the BDS examination and the level of suspicion score obtained from mammography/ultrasound results, the final BDS result was deciphered. BDS demonstrated high values for sensitivity (96.23%), specificity (93.80%), and accuracy (94.51%). Also, we have studied the performance of five supervised learning based classifiers (back propagation network, probabilistic neural network, linear discriminant analysis, support vector machines, and a fuzzy classifier), by feeding selected features from the collected dataset. The clinical study results show that BDS can help physicians to differentiate benign and malignant breast lesions, and thereby, aid in making better biopsy recommendations.

  8. The utilization of an ultrasound-guided 8-gauge vacuum-assisted breast biopsy system as an innovative approach to accomplishing complete eradication of multiple bilateral breast fibroadenomas

    Directory of Open Access Journals (Sweden)

    Povoski Stephen P

    2007-10-01

    Full Text Available Abstract Background Ultrasound-guided vacuum-assisted breast biopsy technology is extremely useful for diagnostic biopsy of suspicious breast lesions and for attempted complete excision of appropriately selected presumed benign breast lesions. Case presentation A female patient presented with 16 breast lesions (eight within each breast, documented on ultrasound and all presumed to be fibroadenomas. Over a ten and one-half month period of time, 14 of these 16 breast lesions were removed under ultrasound guidance during a total of 11 separate 8-gauge Mammotome® excision procedures performed during seven separate sessions. Additionally, two of these 16 breast lesions were removed by open surgical excision. A histopathologic diagnosis of fibroadenoma and/or fibroadenomatous changes was confirmed at all lesion excision sites. Interval follow-up ultrasound imaging revealed no evidence of a residual lesion at the site of any of the 16 original breast lesions. Conclusion This report describes an innovative approach of utilizing ultrasound-guided 8-gauge vacuum-assisted breast biopsy technology for assisting in achieving complete eradication of multiple bilateral fibroadenomas in a patient who presented with 16 documented breast lesions. As such, this innovative approach is highly recommended in similar appropriately selected patients.

  9. Fibroadenoma - breast

    Science.gov (United States)

    Breast lump - fibroadenoma; Breast lump - noncancerous; Breast lump - benign ... The cause of fibroadenomas is not known. There may be a connection to a problem with genes. Fibroadenoma is the most common benign ...

  10. Breast Implants

    Science.gov (United States)

    ... Medical Procedures Implants and Prosthetics Breast Implants Breast Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Breast implants are medical devices that are implanted under the ...

  11. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function.

    Science.gov (United States)

    Wang, Xiuli; Sun, Lin; Maffini, Maricel V; Soto, Ana; Sonnenschein, Carlos; Kaplan, David L

    2010-05-01

    Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.

  12. SU-E-T-442: Geometric Calibration and Verification of a GammaPod Breast SBRT System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C [Univ Maryland School of Medicine, Baltimore, MD (United States); Xcision Medical Systems, Columbia, MD (United States); Niu, Y; Maton, P; Hoban, P [Xcision Medical Systems, Columbia, MD (United States); Mutaf, Y [Univ Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: The first GammaPod™ unit for prone stereotactic treatment of early stage breast cancer has recently been installed and calibrated. Thirty-six rotating circular Co-60 beams focus dose at an isocenter that traverses throughout a breast target via continuous motion of the treatment table. The breast is immobilized and localized using a vacuum-assisted stereotactic cup system that is fixed to the table during treatment. Here we report on system calibration and on verification of geometric and dosimetric accuracy. Methods: Spatial calibration involves setting the origin of each table translational axis within the treatment control system such that the relationship between beam isocenter and table geometry is consistent with that assumed by the treatment planning system. A polyethylene QA breast phantom inserted into an aperture in the patient couch is used for calibration and verification. The comparison is performed via fiducial-based registration of measured single-isocenter dose profiles (radiochromic film) with kernel dose profiles. With the table calibrations applied, measured relative dose distributions were compared with TPS calculations for single-isocenter and dynamic (many-isocenter) treatment plans. Further, table motion accuracy and linearity was tested via comparison of planned control points with independent encoder readouts. Results: After table calibration, comparison of measured and calculated single-isocenter dose profiles show agreement to within 0.5 mm for each axis. Gamma analysis of measured vs calculated profiles with 3%/2mm criteria yields a passing rate of >99% and >98% for single-isocenter and dynamic plans respectively. This also validates the relative dose distributions produced by the TPS. Measured table motion accuracy was within 0.05 mm for all translational axes. Conclusion: GammaPod table coordinate calibration is a straightforward process that yields very good agreement between planned and measured relative dose distributions

  13. What Is Breast Cancer?

    Science.gov (United States)

    ... Research? Breast Cancer About Breast Cancer What Is Breast Cancer? Breast cancer starts when cells in the breast ... spread, see our section on Cancer Basics . Where breast cancer starts Breast cancers can start from different parts ...

  14. MRI-compatible ultrasound heating system with ring-shaped phased arrays for breast tumor thermal therapy.

    Science.gov (United States)

    Chen, Hung-Nien; Chen, Guan-Ming; Lin, Bo-Sian; Lien, Pi-Hsien; Chen, Yung-Yaw; Chen, Gin-Shin; Lin, Win-Li

    2013-01-01

    Therapeutic ultrasound transducers can carry out precise and efficient power deposition for tumor thermal therapy under the guidance of magnetic resonance imaging. For a better heating, organ-specific ultrasound transducers with precision location control system should be developed for tumors located at various organs. It is feasible to perform a better heating for breast tumor thermal therapy with a ring-shaped ultrasound phased-array transducer. In this study, we developed ring-shaped phased-array ultrasound transducers with 1.0 and 2.5 MHz and a precision location control system to drive the transducers to the desired location to sonicate the designated region. Both thermo-sensitive hydrogel phantom and ex vivo fresh pork were used to evaluate the heating performance of the transducers. The results showed that the ring-shaped phased array ultrasound transducers were very promising for breast tumor heating with the variation of heating patterns and without overheating the ribs.

  15. Clinical Report on the First Prototype of a Photoacoustic Tomography System with Dual Illumination for Breast Cancer Imaging.

    Directory of Open Access Journals (Sweden)

    Elham Fakhrejahani

    Full Text Available Photoacoustic tomography is a recently developed imaging modality that can provide high spatial-resolution images of hemoglobin distribution in tissues such as the breast. Because breast cancer is an angiogenesis-dependent type of malignancy, we evaluated the clinical acceptability of breast tissue images produced using our first prototype photoacoustic mammography (PAM system in patients with known cancer. Post-excisionally, histological sections of the tumors were stained immunohistochemically (IHC for CD31 (an endothelial marker and carbonic anhydrase IX (CAIX (a marker of hypoxia. Whole-slide scanning and image analyses were used to evaluate the tumor microvessel distribution pattern and to calculate the total vascular perimeter (TVP/area for each lesion. In this clinical study, 42 lesions were primarily scanned using PAM preoperatively, three of which were reported to be benign and were excluded from statistical analysis. Images were produced for 29 out of 39 cancers (visibility rate = 74.4% at the median depth of 26.5 (3.25-51.2 mm. Age, menopausal status, body mass index, history of neoadjuvant treatment, clinical stage and histological tumor angiogenesis markers did not seem to affect the visibility. The oxygen saturation level in all of the measured lesions was lower than in the subcutaneous counterpart vessels (Wilcoxon test, p value<0.001, as well as in the counterpart contralateral normal breast region of interest (ROI (Wilcoxon test, p value = 0.001. Although the oxygen saturation level was not statistically significant between CAIX-positive vs. -negative cases, lesional TVP/area showed a positive correlation with the oxygen saturation level only in the group that had received therapy before PAM. In conclusion, the vascular and oxygenation data obtained by PAM have great potential for identifying functional features of breast tumors.

  16. Breast cancer in Mexico: a growing challenge to health and the health system.

    Science.gov (United States)

    Chávarri-Guerra, Yanin; Villarreal-Garza, Cynthia; Liedke, Pedro E R; Knaul, Felicia; Mohar, Alejandro; Finkelstein, Dianne M; Goss, Paul E

    2012-08-01

    Breast cancer is a major public health issue in low-income and middle-income countries. In Mexico, incidence and mortality of breast cancer have risen in the past few decades. Changes in health-care policies in Mexico have incorporated programmes for access to early diagnosis and treatment of this disease. This Review outlines the status of breast cancer in Mexico, regarding demographics, access to care, and strategies to improve clinical outcomes. We identify factors that contribute to the existing disease burden, such as low mammography coverage, poor quality control, limited access to diagnosis and treatment, and insufficient physical and human resources for clinical care.

  17. Comparison and Evaluation of the Effects of Rib and Lung Inhomogeneities on Lung Dose in Breast Brachytherapy using a Treatment Planning System and the MCNPX Code

    Directory of Open Access Journals (Sweden)

    Hossein Salehi Yazdi

    2010-09-01

    Full Text Available Introduction: This study investigates to what extent the computed dose received by lung tissue in a commercially available treatment planning system (TPS for 192Ir high-dose-rate breast brachytherapy is accurate in view of tissue inhomogeneities and presence of ribs. Materials and Methods: A CT scan of the breast was used to construct a patient-equivalent phantom in the clinical treatment planning system. An implant involving 13 plastic catheters and 383 programmed source dwell positions were simulated using the MCNPX code. Results: The results were compared with the corresponding commercial TPS in the form of isodoses and cumulative dose–volume histogram in breast, lung and ribs. The comparison of Monte Carlo results and TPS calculation showed that the isodoses greater than 62% in the breast that were located rather close to the implant or away from the breast curvature surface and lung boundary were in good agreement. TPS calculations, however, overestimated dose in the lung for lower isodose contours and points that were lying near the breast-air boundary and relatively away from the implant. Discussion and Conclusions: Taking into account the ribs and entering the actual data for breast, rib and lung, revealed an average overestimation of dose in lung in the TPS calculation.

  18. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peng Hao; Levin, Craig S, E-mail: haopeng@stanford.ed, E-mail: cslevin@stanford.ed [Department of Radiology, Molecular Imaging Program, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2010-05-07

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm{sup 2} area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve {approx}32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be {approx}94.2 kcts s{sup -1} (breast volume: 720 cm{sup 3} and activity concentration: 3.7 kBq cm{sup -3}) for a {approx}10% energy window around 511 keV and {approx}8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity ({sigma}{sub rms}/mean) {<=} 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres

  19. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Science.gov (United States)

    Peng, Hao; Levin, Craig S.

    2010-05-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s-1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm-3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) <= 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7 min

  20. Hand-held probe based optical imaging system towards breast cancer diagnosis

    Science.gov (United States)

    Ge, Jiajia; Jayachandran, Bhavani; Regalado, Steven; Zhu, Banghe; Godavarty, Anuradha

    2007-02-01

    Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. However, the currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Herein, a hand-held based optical imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of the hand-held optical probe are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving the overall signal strength; (ii) to adapt to the contour of tissue surface, thus decreasing the leakage of excitation and emission signal at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. The increased detected signal strength as well as total interrogated tissue volume is demonstrated by simulation studies (i.e. forward model) over a 5×10×10 cc slab phantom. The appropriate number and layout of the source and detection points on the probe head is determined and the hand-held optical probe is developed. A frequency-domain ICCD (intensified charge coupled device) detection system, which allows simultaneous multiple points detection, is developed and coupled to the hand-held probe in order to perform fluorescence-enhanced optical imaging of tissue phantoms. In the future, imaging of homogenous liquid phantoms will be used for the assessment of this hand-held system, followed by extensive imaging studies on different phantoms types under various experimental conditions.

  1. Experimental measurement of radiation dose in a dedicated breast CT system

    CERN Document Server

    Shan-Wei, Shen; Hang, Shu; Xiao, Tang; Cun-Feng, Wei; Yu-Shou, Song; Rong-Jian, Shi; Long, Wei

    2013-01-01

    Radiation dose is an important performance indicator of a dedicated breast CT (DBCT). In this paper, the method of putting thermoluminescent dosimeters (TLD) into a breast shaped PMMA phantom to study the dose distribution in breasts was improved by using smaller TLDs and a new half-ellipsoid PMMA phantom. Then the weighted CT dose index (CTDIw) was introduced to average glandular assessment in DBCT for the first time and two measurement modes were proposed for different sizes of breasts. The dose deviations caused by using cylindrical phantoms were simulated using the Monte Carlo method and a set of correction factors were calculated. The results of the confirmatory measurement with a cylindrical phantom (11cm/8cm) show that CTDIw gives a relatively conservative overestimate of the average glandular dose comparing to the results of Monte Carlo simulation and TLDs measurement. But with better practicability and stability, the CTDIw is suitable for dose evaluations in daily clinical practice. Both of the TLDs ...

  2. Tumor slice culture system to assess drug response of primary breast cancer

    NARCIS (Netherlands)

    A.T. Naipal (Kishan); N.S. Verkaik (Nicole); S.H. Sanchez (Humberto); C.H.M. van Deurzen (Carolien); M.A. den Bakker (Michael); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland); M.P. Vreeswijk (Maaike); A. Jager (Agnes); D.C. van Gent (Dik)

    2016-01-01

    textabstractBackground The high incidence of breast cancer has sparked the development of novel targeted and personalized therapies. Personalization of cancer treatment requires reliable prediction of chemotherapy responses in individual patients. Effective selection can prevent unnecessary treatme

  3. Digital tomosynthesis for evaluating metastatic lung nodules: Nodule visibility, learning curves, and reading times

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyung Jin; Song, Yong Sub; Hwang, Eui Jin [Dept. of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-04-15

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, < or = 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  4. Increased concentrations of growth factors and activation of the EGFR system in breast cancer

    DEFF Research Database (Denmark)

    Aalund Olsen, Dorte; Bechmann, Troels; Østergaard, Birthe;

    2012-01-01

    In this study the total and phosphorylated amount of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) were measured together with EGFR ligands in tissue samples of breast cancer patients in order to investigate interrelations and possible prognostic values.......In this study the total and phosphorylated amount of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) were measured together with EGFR ligands in tissue samples of breast cancer patients in order to investigate interrelations and possible prognostic values....

  5. G protein coupled receptors of the renin-angiotensin system: new targets against breast cancer?

    Directory of Open Access Journals (Sweden)

    Clara eNAHMIAS

    2015-02-01

    Full Text Available G-protein coupled receptors (GPCRs constitute the largest family of membrane receptors, with high potential for drug discovery. These receptors can be activated by a panel of different ligands including ions, hormones, small molecules and vasoactive peptides. Among those, angiotensins (angiotensin II and angiotensin 1-7 are the major biologically active products of the classical and alternative Renin-Angiotensin System (RAS. These peptides bind and activate three different subtypes of GPCRs, namely AT1, AT2 and Mas receptors, to regulate cardiovascular functions. Over the past decade, the contribution of several RAS components in tumorigenesis has emerged as a novel important concept, Angiotensin II being considered as harmful and Angiotensin 1-7 as protective against cancer. Development of selective ligands targeting each RAS receptor may provide novel and efficient targeted therapeutic strategies against cancer. In this review, we focus on breast cancer to summarize current knowledge on angiotensin receptors (AT1, AT2, and Mas, and discuss the potential use of angiotensin receptor agonists and antagonists in clinics.

  6. An interactive system for computer-aided diagnosis of breast masses.

    Science.gov (United States)

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-10-01

    Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p interactive CAD system with a large reference database and achieving improved performance.

  7. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.

    Science.gov (United States)

    Park, Justin C; Park, Sung Ho; Kim, Jin Sung; Han, Youngyih; Cho, Min Kook; Kim, Ho Kyung; Liu, Zhaowei; Jiang, Steve B; Song, Bongyong; Song, William Y

    2011-08-01

    The purpose of this work is to demonstrate an ultra-fast reconstruction technique for digital tomosynthesis (DTS) imaging based on the algorithm proposed by Feldkamp, Davis, and Kress (FDK) using standard general-purpose graphics processing unit (GPGPU) programming interface. To this end, the FDK-based DTS algorithm was programmed "in-house" with C language with utilization of 1) GPU and 2) central processing unit (CPU) cards. The GPU card consisted of 480 processing cores (2 x 240 dual chip) with 1,242 MHz processing clock speed and 1,792 MB memory space. In terms of CPU hardware, we used 2.68 GHz clock speed, 12.0 GB DDR3 RAM, on a 64-bit OS. The performance of proposed algorithm was tested on twenty-five patient cases (5 lung, 5 liver, 10 prostate, and 5 head-and-neck) scanned either with a full-fan or half-fan mode on our cone-beam computed tomography (CBCT) system. For the full-fan scans, the projections from 157.5°-202.5° (45°-scan) were used to reconstruct coronal DTS slices, whereas for the half-fan scans, the projections from both 157.5°-202.5° and 337.5°-22.5° (2 x 45°-scan) were used to reconstruct larger FOV coronal DTS slices. For this study, we chose 45°-scan angle that contained ~80 projections for the full-fan and ~160 projections with 2 x 45°-scan angle for the half-fan mode, each with 1024 x 768 pixels with 32-bit precision. Absolute pixel value differences, profiles, and contrast-to-noise ratio (CNR) calculations were performed to compare and evaluate the images reconstructed using GPU- and CPU-based implementations. The time dependence on the reconstruction volume was also tested with (512 x 512) x 16, 32, 64, 128, and 256 slices. In the end, the GPU-based implementation achieved, at most, 1.3 and 2.5 seconds to complete full reconstruction of 512 x 512 x 256 volume, for the full-fan and half-fan modes, respectively. In turn, this meant that our implementation can process > 13 projections-per-second (pps) and > 18 pps for the full

  8. Sensory profile of breast meat from broilers reared in an organic niche production system and conventional standard broilers

    DEFF Research Database (Denmark)

    Horsted, Klaus; Allesen-Holm, Bodil Helene; Hermansen, John Erik;

    2012-01-01

    standard products (A and B) and three organic niche genotypes (I657, L40 and K8) reared in an apple orchard. RESULTS: Thirteen out of 22 sensory attributes differed significantly between the products. The aroma attributes ‘chicken’, ‘bouillon’ and ‘fat’ scored highest and the ‘iron/liver’ aroma lowest....../liver’ and ‘fat’ aroma. CONCLUSION: The sensory profiles differed particularly between conventional standard broilers and organic niche broilers, although differences were also found between breeds. The present study indicates that aroma and taste attributes were more important for the assessors than meat......BACKGROUND: Breast meat from broilers produced in very different production systems may vary considerable in sensory profile, which may affect consumer interests. In this study the aim was to evaluate differences in the sensory profiles of breast meat from five broiler products: two conventional...

  9. Late treatment-related morbidity in breast cancer patients randomized to postmastectomy radiotherapy and systemic treatment versus systemic treatment alone

    Energy Technology Data Exchange (ETDEWEB)

    Hoejris, I.; Andersen, J.; Overgaard, M.; Overgaard, J. [Aarhus Univ. Hospital (Denmark). Dept. of Oncology

    2000-07-01

    Late treatment-related morbidity after mastectomy and adjuvant systemic treatment with and without postoperative irradiation was assessed in 84 patients randomized in the Danish Breast Cancer Cooperative Group Trials 82b and c. A structured interview and physical examination, using a standardized assessment sheet, constructed on the basis of the late effects normal tissues (LENT) scoring system, was used. The median length of follow-up from mastectomy was 9 years (range 6-13 years). Lymphedema was measured in 14%, of the irradiated patients versus 3% of the non-irradiated patients (NS). Slightly decreased shoulder morbidity was measured in 45% of the irradiated women versus 15% of the non-irradiated patients, but moderate or more severe impairment was seen in only 5% of the irradiated patients and in none of the non-irradiated patients (p = 0.004). Seventeen percent of the irradiated patients and 2% of the non-irradiated patients found that impairment of shoulder movement caused symptoms (p = 0.001)

  10. Breast Diseases

    Science.gov (United States)

    ... bumps, and discharges (fluids that are not breast milk). If you have a breast lump, pain, discharge or skin irritation, see your health care provider. Minor and serious breast problems have similar symptoms. Although many women fear cancer, most breast problems are not cancer. Some common ...

  11. Inherited polymorphisms in hyaluronan synthase 1 predict risk of systemic B-cell malignancies but not of breast cancer.

    Directory of Open Access Journals (Sweden)

    Hemalatha Kuppusamy

    Full Text Available Genetic variations in the hyaluronan synthase 1 gene (HAS1 influence HAS1 aberrant splicing. HAS1 is aberrantly spliced in malignant cells from multiple myeloma (MM and Waldenstrom macroglobulinemia (WM, but not in their counterparts from healthy donors. The presence of aberrant HAS1 splice variants predicts for poor survival in multiple myeloma (MM. We evaluated the influence of inherited HAS1 single nucleotide polymorphisms (SNP on the risk of having a systemic B cell malignancy in 1414 individuals compromising 832 patients and 582 healthy controls, including familial analysis of an Icelandic kindred. We sequenced HAS1 gene segments from 181 patients with MM, 98 with monoclonal gammopathy of undetermined significance (MGUS, 72 with Waldenstrom macroglobulinemia (WM, 169 with chronic lymphocytic leukemia (CLL, as well as 34 members of a monoclonal gammopathy-prone Icelandic family, 212 age-matched healthy donors and a case-control cohort of 295 breast cancer patients with 353 healthy controls. Three linked single nucleotide polymorphisms (SNP in HAS1 intron3 are significantly associated with B-cell malignancies (range p = 0.007 to p = 10(-5, but not MGUS or breast cancer, and predict risk in a 34 member Icelandic family (p = 0.005, Odds Ratio = 5.8 (OR, a relatively homogeneous cohort. In contrast, exon3 SNPs were not significantly different among the study groups. Pooled analyses showed a strong association between the linked HAS1 intron3 SNPs and B-cell malignancies (OR = 1.78, but not for sporadic MGUS or for breast cancer (OR<1.0. The minor allele genotypes of HAS1 SNPs are significantly more frequent in MM, WM, CLL and in affected members of a monoclonal gammopathy-prone family than they are in breast cancer, sporadic MGUS or healthy donors. These inherited changes may increase the risk for systemic B-cell malignancies but not for solid tumors.

  12. A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI

    Science.gov (United States)

    Ufuk Dalmiş, Mehmet; Gubern-Mérida, Albert; Borelli, Cristina; Vreemann, Suzan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Background parenchymal enhancement (BPE) observed in breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been identified as an important biomarker associated with risk for developing breast cancer. In this study, we present a fully automated framework for quantification of BPE. We initially segmented fibroglandular tissue (FGT) of the breasts using an improved version of an existing method. Subsequently, we computed BPEabs (volume of the enhancing tissue), BPErf (BPEabs divided by FGT volume) and BPErb (BPEabs divided by breast volume), using different relative enhancement threshold values between 1% and 100%. To evaluate and compare the previous and improved FGT segmentation methods, we used 20 breast DCE-MRI scans and we computed Dice similarity coefficient (DSC) values with respect to manual segmentations. For evaluation of the BPE quantification, we used a dataset of 95 breast DCE-MRI scans. Two radiologists, in individual reading sessions, visually analyzed the dataset and categorized each breast into minimal, mild, moderate and marked BPE. To measure the correlation between automated BPE values to the radiologists' assessments, we converted these values into ordinal categories and we used Spearman's rho as a measure of correlation. According to our results, the new segmentation method obtained an average DSC of 0.81 0.09, which was significantly higher (p<0.001) compared to the previous method (0.76 0.10). The highest correlation values between automated BPE categories and radiologists' assessments were obtained with the BPErf measurement (r=0.55, r=0.49, p<0.001 for both), while the correlation between the scores given by the two radiologists was 0.82 (p<0.001). The presented framework can be used to systematically investigate the correlation between BPE and risk in large screening cohorts.

  13. Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells.

    Science.gov (United States)

    Linher-Melville, Katja; Haftchenary, Sina; Gunning, Patrick; Singh, Gurmit

    2015-07-01

    System Xc- is a cystine/glutamate antiporter that contributes to the maintenance of cellular redox balance. The human xCT (SLC7A11) gene encodes the functional subunit of system Xc-. Transcription factors regulating antioxidant defense mechanisms including system Xc- are of therapeutic interest, especially given that aggressive breast cancer cells exhibit increased system Xc- function. This investigation provides evidence that xCT expression is regulated by STAT3 and/or STAT5A, functionally affecting the antiporter in human breast cancer cells. Computationally analyzing two kilobase pairs of the xCT promoter/5' flanking region identified a distal gamma-activated site (GAS) motif, with truncations significantly increasing luciferase reporter activity. Similar transcriptional increases were obtained after treating cells transiently transfected with the full-length xCT promoter construct with STAT3/5 pharmacological inhibitors. Knock-down of STAT3 or STAT5A with siRNAs produced similar results. However, GAS site mutation significantly reduced xCT transcriptional activity, suggesting that STATs may interact with other transcription factors at more proximal promoter sites. STAT3 and STAT5A were bound to the xCT promoter in MDA-MB-231 cells, and binding was disrupted by pre-treatment with STAT inhibitors. Pharmacologically suppressing STAT3/5 activation significantly increased xCT mRNA and protein levels, as well as cystine uptake, glutamate release, and total levels of intracellular glutathione. Our data suggest that STAT proteins negatively regulate basal xCT expression. Blocking STAT3/5-mediated signaling induces an adaptive, compensatory mechanism to protect breast cancer cells from stress, including reactive oxygen species, by up-regulating xCT expression and the function of system Xc-. We propose that targeting system Xc- together with STAT3/5 inhibitors may heighten therapeutic anti-cancer effects.

  14. Knowledge towards breast cancer among Libyan women in Tripoli

    Directory of Open Access Journals (Sweden)

    Yousef A Taher

    2016-11-01

    Conclusion: Our findings demonstrate that Libyan women have acceptable level of knowledge regarding breast cancer. However, improvement of the health systems and awareness regarding breast cancer is needed.

  15. Correlation of centroid-based breast size, surface-based breast volume, and asymmetry-score-based breast symmetry in three-dimensional breast shape analysis

    Directory of Open Access Journals (Sweden)

    Henseler, Helga

    2016-06-01

    Full Text Available Objective: The aim of this study was to investigate correlations among the size, volume, and symmetry of the female breast after reconstruction based on previously published data. Methods: The centroid, namely the geometric center of a three-dimensional (3D breast-landmark-based configuration, was used to calculate the size of the breast. The surface data of the 3D breast images were used to measure the volume. Breast symmetry was assessed by the Procrustes analysis method, which is based on the 3D coordinates of the breast landmarks to produce an asymmetry score. The relationship among the three measurements was investigated. For this purpose, the data of 44 patients who underwent unilateral breast reconstruction with an extended latissimus dorsi flap were analyzed. The breast was captured by a validated 3D imaging system using multiple cameras. Four landmarks on each breast and two landmarks marking the midline were used.Results: There was a significant positive correlation between the centroid-based breast size of the unreconstructed breast and the measured asymmetry (p=0.024; correlation coefficient, 0.34. There was also a significant relationship between the surface-based breast volume of the unaffected side and the overall asymmetry score (p<0.001; correlation coefficient, 0.556. An increase in size and especially in volume of the unreconstructed breast correlated positively with an increase in breast asymmetry in a linear relationship.Conclusions: In breast shape analysis, the use of more detailed surface-based data should be preferred to centroid-based size data. As the breast size increases, the latissimus dorsi flap for unilateral breast reconstruction increasingly falls short in terms of matching the healthy breast in a linear relationship. Other reconstructive options should be considered for larger breasts. Generally plastic surgeons should view the two breasts as a single unit when assessing breast aesthetics and not view each

  16. A novel computer-aided diagnosis system for breast MRI based on feature selection and ensemble learning.

    Science.gov (United States)

    Lu, Wei; Li, Zhe; Chu, Jinghui

    2017-03-06

    Breast cancer is a common cancer among women. With the development of modern medical science and information technology, medical imaging techniques have an increasingly important role in the early detection and diagnosis of breast cancer. In this paper, we propose an automated computer-aided diagnosis (CADx) framework for magnetic resonance imaging (MRI). The scheme consists of an ensemble of several machine learning-based techniques, including ensemble under-sampling (EUS) for imbalanced data processing, the Relief algorithm for feature selection, the subspace method for providing data diversity, and Adaboost for improving the performance of base classifiers. We extracted morphological, various texture, and Gabor features. To clarify the feature subsets' physical meaning, subspaces are built by combining morphological features with each kind of texture or Gabor feature. We tested our proposal using a manually segmented Region of Interest (ROI) data set, which contains 438 images of malignant tumors and 1898 images of normal tissues or benign tumors. Our proposal achieves an area under the ROC curve (AUC) value of 0.9617, which outperforms most other state-of-the-art breast MRI CADx systems. Compared with other methods, our proposal significantly reduces the false-positive classification rate.

  17. The role of health system factors in delaying final diagnosis and treatment of breast cancer in Mexico City, Mexico.

    Science.gov (United States)

    Bright, Kristin; Barghash, Maya; Donach, Martin; de la Barrera, Marcos Gutiérrez; Schneider, Robert J; Formenti, Silvia C

    2011-04-01

    In Mexico, breast cancer is the leading cancer-related death among women and most cases are diagnosed at advanced stages (50-60%). We hypothesized health system factors could be partly responsible for this delay and performed a prospective review of 166 new breast cases at a major public hospital in Mexico City. Our analysis confirmed the prevalence of locally advanced and metastatic disease (47% of patients). A subset analysis of 32 women with confirmed stage I-IIIC breast cancer found an average time interval of 1.8 months from symptom onset to first primary care consultation (PCC), with an additional 6.6 months from first PCC to confirmed diagnosis, and 0.6 months from diagnosis to treatment initiation. Patients underwent an average of 7.9 clinic visits before confirmed diagnosis. Findings suggest that protracted referral time from primary to specialty care accounts for the bulk of delay, with earlier stage patients experiencing longer delays. These findings reveal a critical need for further study and exploration of interventions.

  18. Genetic Fuzzy System (GFS based wavelet co-occurrence feature selection in mammogram classification for breast cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Meenakshi M. Pawar

    2016-09-01

    Full Text Available Breast cancer is significant health problem diagnosed mostly in women worldwide. Therefore, early detection of breast cancer is performed with the help of digital mammography, which can reduce mortality rate. This paper presents wrapper based feature selection approach for wavelet co-occurrence feature (WCF using Genetic Fuzzy System (GFS in mammogram classification problem. The performance of GFS algorithm is explained using mini-MIAS database. WCF features are obtained from detail wavelet coefficients at each level of decomposition of mammogram image. At first level of decomposition, 18 features are applied to GFS algorithm, which selects 5 features with an average classification success rate of 39.64%. Subsequently, at second level it selects 9 features from 36 features and the classification success rate is improved to 56.75%. For third level, 16 features are selected from 54 features and average success rate is improved to 64.98%. Lastly, at fourth level 72 features are applied to GFS, which selects 16 features and thereby increasing average success rate to 89.47%. Hence, GFS algorithm is the effective way of obtaining optimal set of feature in breast cancer diagnosis.

  19. Clinical pathological characteristics of breast cancer patients with secondary diabetes after systemic therapy: a retrospective multicenter study.

    Science.gov (United States)

    Juanjuan, Li; Wen, Wei; Zhongfen, Liu; Chuang, Chen; Jing, Cheng; Yiping, Gong; Changhua, Wang; Dehua, Yu; Shengrong, Sun

    2015-09-01

    The objective of this study was to investigate the clinical pathological characteristics of breast cancer (BC) patients with secondary diabetes after systemic therapy without preexisting diabetes. A total of 1434 BC patients received systemic therapy and were analyzed retrospectively. Fasting plasma glucose (FPG) levels were monitored prior to the treatments, during the course of systemic therapy, and at the follow-up visits. Cox regression models were used to estimate the associations between the clinical pathological characteristics of BC and the cause-specific hazard of developing secondary diabetes. Among the 1434 BC patients, 151 had preexisting type 2 diabetes. Of the remaining 1283 patients with normal FPG levels prior to the systemic therapy, 59 developed secondary diabetes and 72 displayed secondary impaired fasting glucose (IFG) over a mean follow-up of 41 months. The prevalence of secondary type 2 diabetes in BC patients was 4.6 % (59/1283), which was obviously higher than that of the normal control group (1.4 %, P systemic therapy, especially the patients with later pathological stages, more lymph node metastasis, negative hormone receptor expression, and positive HER2 expression. Our study suggests that greater diabetes screening and prevention strategies among breast cancer patients after systemic treatment are needed in China.

  20. Sentinel lymph node detection in breast cancer patients using surgical navigation system based on fluorescence molecular imaging technology

    Science.gov (United States)

    Chi, Chongwei; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Tian, Jie

    2015-03-01

    Introduction: Precision and personalization treatments are expected to be effective methods for early stage cancer studies. Breast cancer is a major threat to women's health and sentinel lymph node biopsy (SLNB) is an effective method to realize precision and personalized treatment for axillary lymph node (ALN) negative patients. In this study, we developed a surgical navigation system (SNS) based on optical molecular imaging technology for the precise detection of the sentinel lymph node (SLN) in breast cancer patients. This approach helps surgeons in precise positioning during surgery. Methods: The SNS was mainly based on the technology of optical molecular imaging. A novel optical path has been designed in our hardware system and a feature-matching algorithm has been devised to achieve rapid fluorescence and color image registration fusion. Ten in vivo studies of SLN detection in rabbits using indocyanine green (ICG) and blue dye were executed for system evaluation and 8 breast cancer patients accepted the combination method for therapy. Results: The detection rate of the combination method was 100% and an average of 2.6 SLNs was found in all patients. Our results showed that the method of using SNS to detect SLN has the potential to promote its application. Conclusion: The advantage of this system is the real-time tracing of lymph flow in a one-step procedure. The results demonstrated the feasibility of the system for providing accurate location and reliable treatment for surgeons. Our approach delivers valuable information and facilitates more detailed exploration for image-guided surgery research.

  1. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  2. Geographic information system for Long Island: An epidemiologic systems approach to identify environmental breast cancer risks on Long Island. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Barancik, J.I.; Kramer, C.F.; Thode, H.C. Jr.

    1995-12-01

    BNL is developing and implementing the project ``Geographic Information System (GIS) for Long Island`` to address the potential relationship of environmental and occupational exposures to breast cancer etiology on Long Island. The project is divided into two major phases: The four month-feasibility project (Phase 1), and the major development and implementation project (Phase 2). This report summarizes the work completed in the four month Phase 1 Project, ``Feasibility of a Geographic Information System for Long Island.`` It provides the baseline information needed to further define and prioritize the scope of work for subsequent tasks. Phase 2 will build upon this foundation to develop an operational GIS for the Long Island Breast Cancer Study Project (LIBCSP).

  3. Mean Glandular dose coefficients (DgN) for x-ray spectra used in contemporary breast imaging systems

    Science.gov (United States)

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z.; Yaffe, Martin J.; Seibert, J. Anthony; Boone, John M.

    2015-01-01

    Purpose To develop tables of normalized glandular dose coefficients DgN for a range of anode–filter combinations and tube voltages used in contemporary breast imaging systems. Methods Previously published mono-energetic DgN values were used with various spectra to mathematically compute DgN coefficients. The tungsten anode spectra from TASMICS were used; Molybdenum and Rhodium anode-spectra were generated using MCNPx Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial HVL calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, DgN coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Results Eleven tables of normalized glandular dose (DgN) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published DgN values and were found to be on average less than 2% different than previously reported values. Conclusion Over 200-pages of DgN coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values. PMID:26348995

  4. Mean glandular dose coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems.

    Science.gov (United States)

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z; Yaffe, Martin J; Seibert, J Anthony; Boone, John M

    2015-09-21

    To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values.

  5. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.

    Science.gov (United States)

    Yan, Hui; Dai, Jian-Rong

    2016-03-08

    Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm

  6. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  7. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu.; Wei, Wei; Yang, Hua-Wei; Liu, Jian-Lun [Affiliated Cancer Hospital of Guangxi Medical University, Department of Breast Surgery of Guangxi Cancer Hospital, Nanning, Guangxi (China)

    2013-03-15

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high. (orig.)

  8. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, D; Malhotra, H; French, S [Roswell Park Cancer Institute, Buffalo, NY (United States); Hoffmann, K [Neurosurgery at SUNY at Buffalo, Buffalo, NY (United States); Merrow, C [Bassett Healthcare, Oneonta, NY (United States)

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could

  9. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  10. Breast Gangrene

    Directory of Open Access Journals (Sweden)

    Husasin Irfan

    2011-08-01

    Full Text Available Abstract Background Breast gangrene is rare in surgical practice. Gangrene of breast can be idiopathic or secondary to some causative factor. Antibiotics and debridement are used for management. Acute inflammatory infiltrate, severe necrosis of breast tissue, necrotizing arteritis, and venous thrombosis is observed on histopathology. The aim of was to study patients who had breast gangrene. Methods A prospective study of 10 patients who had breast gangrene over a period of 6 years were analyzed Results All the patients in the study group were female. Total of 10 patients were encountered who had breast gangrene. Six patients presented with breast gangrene on the right breast whereas four had on left breast. Out of 10 patients, three had breast abscess after teeth bite followed by gangrene, one had iatrogenic trauma by needle aspiration of erythematous area of breast under septic conditions. Four had history of application of belladonna on cutaneous breast abscess and had then gangrene. All were lactating female. Amongst the rest two were elderly, one of which was a diabetic who had gangrene of breast and had no application of belladonna. All except one had debridement under cover of broad spectrum antibiotics. Three patients had grafting to cover the raw area. Conclusion Breast gangrene occurs rarely. Etiology is variable and mutifactorial. Teeth bite while lactation and the iatrogenic trauma by needle aspiration of breast abscess under unsterlised conditions could be causative. Uncontrolled diabetes can be one more causative factor for the breast gangrene. Belladonna application as a topical agent could be inciting factor. Sometimes gangrene of breast can be idiopathic. Treatment is antibiotics and debridement.

  11. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    Science.gov (United States)

    2009-05-01

    the imaging system’s required clinica l performance. This evidence ranged from the ability of the CmT system to image close to the chest wall (see...year old woman undergoing dual-view screening mammograph y of her remaining int act breast seven years after a mastectomy) to completing a medica ...Telluride (CZT) gamma camera (model LumaGEM 3200S, Gamma Medica , Inc., Northridge, CA) with discretized crystals, each 2.3x2.3x5mm3 on a 2.5mm

  12. Mechanized radiation testing of austenitic pipe welds. Testing of media filled pipes and determination of the flaw depth by tomosynthesis; Mechanisierte Durchstrahlungspruefung von Rundschweissnaehten. Pruefung mediengefuellter Rohrleitungen und Tiefenlagenbestimmung durch Tomosynthese

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, U.; Redmer, B. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Mueller, J. [COMPRA GmbH, Frechen (Germany); Trobitz, M. [Kernkraftwerke Gundremmingen Betriebsgesellschaft mbH, Gundremmingen (Germany); Baranov, V.A. [Institute for Introscopy, Tomsk (Russian Federation)

    1999-08-01

    A compact detection system was built for multi-angle inspection of pipes, consisting of a high-sensitivity radiometric line scanner and an ultrasonic manipulator. Improved flaw imaging quality is achieved with this system as compared to film radiography. Measurements have been carried out on site in a nuclear power plant and in a laboratory. Better flaw imaging quality was also achieved in the testing of water-filled pipes. Non-linear tomosynthesis was applied for processing and interpretation of measured data. The system delivers considerably better images of planary materials inhomogeneitites, (such as cracks and lack-of-bond defects). (orig./CB) [Deutsch] Eine hoch empfindliche radiometrische Zeilenkamera wurde mit einem Ultraschall-Manipulator zu einem Gesamtsystem aufgebaut und fuer Mehrwinkel-Inspektionen von Rohrleitungen angewandt. Bei der Inspektion von Rundschweissnaehten an Rohren mit ca. 8... 20 mm Wanddicke wurde eine Verbesserung der Bildqualitaet im Vergleich zur Filmradiographie erreicht. Diese Messungen wurden in einem Kernkraftwerk unter Vor-Ort-Bedingungen sowie im Labor ausgefuehrt. Ein signifikantes Ansteigen der Bildqualitaet wurde auch bei der Pruefung von wassergefuellten Rohren erzielt. Methoden der nicht-linearen Tomosynthese wurden fuer die Verarbeitung und Interpretation der gemessenen Projektionsdaten genutzt. Das entwickelte System gestattet eine erhebliche Verbesserung der Anzeige von planaren Materialinhomogenitaeten (z.B. Risse und Bindefehler). (orig./DGE)

  13. Breast lift

    Science.gov (United States)

    ... Planning to have more children Talk with a plastic surgeon if you are considering cosmetic breast surgery. Discuss ... before surgery: You may need a mammogram . Your plastic surgeon will do a routine breast exam. You may ...

  14. Breast; Sein

    Energy Technology Data Exchange (ETDEWEB)

    Bourgier, C.; Garbay, J.R.; Pichenot, C.; Uzan, C.; Delaloge, S.; Andre, F.; Spielmann, M.; Arriagada, R.; Lefkopoulos, D.; Marsigli, H.; Bondiau, P.Y.; Courdi, A.; Lallemand, M.; Peyrotte, I.; Chapellier, C.; Ferrero, J.M.; Chiovati, P.; Baldissera, A.; Frezza, G.; Vicenzi, L.; Palombarini, M.; Martelli, O.; Degli Esposti, C.; Donini, E.; Romagna CDR, E.; Romagna CDF, E.; Benmensour, M.; Bouchbika, Z.; Benchakroun, N.; Jouhadi, H.; Tawfiq, N.; Sahraoui, S.; Benider, A.; Gilliot, O.; Achard, J.L.; Auvray, H.; Toledano, I.; Bourry, N.; Kwiatkowski, F.; Verrelle, P.; Lapeyre, M.; Tebra Mrad, S.; Braham, I.; Chaouache, K.; Bouaouin, N.; Ghorbel, L.; Siala, W.; Sallemi, T.; Guermazi, M.; Frikha, M.; Daou, J.; El Omrani, A.; Chekrine, T.; Mangoni, M.; Castaing, M.; Folino, E.; Livi, L.; Dunant, A.; Mathieu, M.C.; Bitib, G.P.; Arriagada, R.; Marsigli, H

    2007-11-15

    Nine articles treat the question of breast cancer. Three-dimensional conformal accelerated partial breast irradiation: dosimetric feasibility study; test of dose escalation neo-adjuvant radiotherapy focused by Cyberknife in breast cancer; Three dimensional conformal partial irradiation with the technique by the Irma protocol ( dummy run multi centers of the Emilie Romagne area Italy); Contribution of the neo-adjuvant chemotherapy in the treatment of locally evolved cancers of the uterine cervix; Post operative radiotherapy of breast cancers (N0, pN) after neo-adjuvant chemotherapy. Radiotherapy of one or two mammary glands and ganglions areas,The breast cancer at man; breast conservative treatment; breast cancers without histological ganglions invasion; the breast cancer at 70 years old and more women; borderline mammary phyllod tumors and malignant. (N.C.)

  15. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Science.gov (United States)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  16. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    Science.gov (United States)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  17. Design, Development, and Evaluation of a Master-Slave Surgical System for Breast Biopsy under Continuous MRI.

    Science.gov (United States)

    Yang, Bo; Roys, Steven; Tan, U-Xuan; Philip, Mathew; Richard, Howard; Gullapalli, Rao; Desai, Jaydev P

    2014-04-01

    Magnetic Resonance Imaging (MRI) provides superior soft-tissue contrast in cancer diagnosis compared to other imaging modalities. However, the strong magnetic field inside the MRI bore along with limited scanner bore size poses significant challenges. Since current approaches in breast biopsy using MR images is primarily a blind targeting approach, it is necessary to develop a MRI-compatible robot that can avoid multiple needle insertions into the breast tissue. This MRI-compatible robotic system could potentially lead to improvement in the targeting accuracy and reduce sampling errors. A master-slave surgical system has been developed comprising of a MRI-compatible slave robot which consists of one piezo motor and five pneumatic cylinders connected by long pneumatic transmission lines. The slave robot follows the configuration of the master robot, which provides an intuitive manipulation interface for the physician and operates inside the MRI bore to adjust the needle position and orientation and perform needle insertion task. Based on the MRI experiments using the slave robot, there was no significant distortion in the images and hence the slave robot can be safely operated inside the MRI with minimal loss in signal-to-noise ratio (SNR). Ex vivo and in vivo experiments have been conducted to evaluate the performance of the master-slave surgical system.

  18. Developing a Philippine Cancer Grid. Part 1: Building a Prototype for a Data Retrieval System for Breast Cancer Research Using Medical Ontologies

    Science.gov (United States)

    Coronel, Andrei D.; Saldana, Rafael P.

    Cancer is a leading cause of morbidity and mortality in the Philippines. Developed within the context of a Philippine Cancer Grid, the present study used web development technologies such as PHP, MySQL, and Apache server to build a prototype data retrieval system for breast cancer research that incorporates medical ontologies from the Unified Medical Language System (UMLS).

  19. Breast Cancer

    Science.gov (United States)

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks that ... who have family members with breast or ovarian cancer may wish to be tested for the genes. ...

  20. SU-E-T-433: Field-In-Field Irradiation for Breast Cancer with VERO-4DRT System: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, N [Fujita Health University, Tayoake (Japan); Mizuno, T; Takada, Y [Ogaki Tokushu-kai Hospital, Ogaki, Gifu (Japan); Murai, T [Nagoya City University, Nagoya, Aichi (Japan)

    2015-06-15

    Purpose: The Vero-4DRT system is a dedicated system for high precision radiation therapy. However, the field size is limited at 15 cm x 15 cm and shapes by using multi-leaf collimator (MLC) without X-Jaw and Y-Jaw. Therefore VERO-4DRT system is not available to simple wedged irradiation for breast cancer. In this study, we suppose FIF with ring and/or tilt/pan angles whole breast irradiation (FIFWBI). The purpose of this study is to verify the feasibility of FIFWBI with VERO-4DRT system. Methods: As fundamental evaluation, we performed commissioning test with phantom. The absorbed dose evaluation at several reference points and dose distribution including split area were performed. We planned 10 demonstrative shapes in phantom for measuring these contents with i-plan workstation (BrainLAB). As clinical evaluation, the dose distribution and dose indexes were evaluated with actual patient data. Five patients with breast cancer were designed FIFWBI radiotherapy plan with split fields. Then, the dose distribution and dose indexes (including Dmax, Dmin, D95, D5 and Homogeneity index) were evaluated in these plans. Results: As the results of fundamental evaluation, all absorbed dose errors between calculated and measured doses were within 2%. The gamma passing rates with 2 mm/3% criteria in all cases were 96±2%. As the results of clinical evaluation, the values of Dmax, D95, D50, D5, and Homogeneity Index were 41.7±0.90 Gy, 49.4±0.34 Gy, 52.26±0.24 Gy, and 1.39±0.03, respectively. For Japanese breast cancer patients, this technique was feasible. However, the large split region was happened in FIFWBI in case of patient with large breast. Conclusion: We evaluated the FIFWBI technique with VERO-4DRT system. This technique is feasible for Japanese patients, but the patient with large breast should be disagreed with this technique.

  1. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Marcu, A., E-mail: marcu@ifin.nipne.ro [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 36, Bucharest-Magurele (Romania); Pop, S. [“Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest (Romania); Dumitrache, F. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 36, Bucharest-Magurele (Romania); Mocanu, M.; Niculite, C.M.; Gherghiceanu, M. [“Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest (Romania); Lungu, C.P.; Fleaca, C. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 36, Bucharest-Magurele (Romania); Ianchis, R. [National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest (Romania); Barbut, A.; Grigoriu, C.; Morjan, I. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 36, Bucharest-Magurele (Romania)

    2013-09-15

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  2. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    Science.gov (United States)

    Marcu, A.; Pop, S.; Dumitrache, F.; Mocanu, M.; Niculite, C. M.; Gherghiceanu, M.; Lungu, C. P.; Fleaca, C.; Ianchis, R.; Barbut, A.; Grigoriu, C.; Morjan, I.

    2013-09-01

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  3. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    Directory of Open Access Journals (Sweden)

    Takayuki Ueno

    2015-01-01

    Full Text Available The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment.

  4. A neutron activation system for Ho, HoZr and Sm brachytherapy seeds for breast radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L., E-mail: wagner.leite@ifmg.edu.br [Instituto Federal de Minas Gerais (IFMG), Congonhas, MG (Brazil). Departamento de Fisica; Campos, Tarcisio P.R., E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    This paper addresses a device designed for transmuting nuclides by means of neutron capture reactions. The device is composed by a neutron generator based on d-d reactions, a neutron moderator and a reflection system, enclosed by a radiation shield. The project was modeled on the CST electromagnetic code. Afterwards, a nuclear investigation was carried out by MCNP5 code, where the final activities of a large set of 0.5 x 1.8 mm cylindrical, biodegradable and biocompatible, Ho-165 (Ho and HoZr) and Sm-152 breast brachytherapy seeds were evaluated, considering the neutron capture reactions. The accelerator-head equipotential profiles and the optical beam of deuterons with its energy map were presented. The neutronic evaluation allowed estimating a neutron yield of 10{sup 13} n s{sup -1}. From the seed's group, an individual Ho-166 seed reached activity of 100 MBq in 58 h operation time. Moreover, Sm-153 seed reached 120 MBq during a period of 64 h of operation. The system shows to be able to provide the neutron activation of brachytherapy seeds with suitable individual specific activity able for controlling breast tumors. (author)

  5. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array

    Science.gov (United States)

    Toi, M.; Asao, Y.; Matsumoto, Y.; Sekiguchi, H.; Yoshikawa, A.; Takada, M.; Kataoka, M.; Endo, T.; Kawaguchi-Sakita, N.; Kawashima, M.; Fakhrejahani, E.; Kanao, S.; Yamaga, I.; Nakayama, Y.; Tokiwa, M.; Torii, M.; Yagi, T.; Sakurai, T.; Togashi, K.; Shiina, T.

    2017-01-01

    Noninvasive measurement of the distribution and oxygenation state of hemoglobin (Hb) inside the tissue is strongly required to analyze the tumor-associated vasculatures. We developed a photoacoustic imaging (PAI) system with a hemispherical-shaped detector array (HDA). Here, we show that PAI system with HDA revealed finer vasculature, more detailed blood-vessel branching structures, and more detailed morphological vessel characteristics compared with MRI by the use of breast shape deformation of MRI to PAI and their fused image. Morphologically abnormal peritumoral blood vessel features, including centripetal photoacoustic signals and disruption or narrowing of vessel signals, were observed and intratumoral signals were detected by PAI in breast cancer tissues as a result of the clinical study of 22 malignant cases. Interestingly, it was also possible to analyze anticancer treatment-driven changes in vascular morphological features and function, such as improvement of intratumoral blood perfusion and relevant changes in intravascular hemoglobin saturation of oxygen. This clinical study indicated that PAI appears to be a promising tool for noninvasive analysis of human blood vessels and may contribute to improve cancer diagnosis. PMID:28169313

  6. Analysis of 62 cases with stereotaxic breast biopsy with a prone table system: emphasis on lesions with microcalcificatios

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Il Gyu; Choe, Yeon Hyeon; Han, Boo Kyung; Byun, Hong Sik; Choo, In Wook [Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    1999-02-01

    To evaluate the efficacy of stereotaxic breast core biopsy using a prone table system, and the effects of operator experience, lesion characteristics and number of samples on biopsy results in cases involving nonpalpable breast lesions. We performed stereotaxic core biopsies of 62 nonpalpable mammographic lesions in 61 patients. Subsequent surgical excision was performed in 11 cases with microcalcifications and one case with a mass. We equally divided patients with microcalcifications into two groups (early and late periods) and analyzed the mammographic findings. Correlation of the pathologic results of core biopsy with those of surgical excision were investigated. In two patients, stereotaxic biopsy was impossible due to poor visibility of microcalcifications and thinness of the compressed breast. In 59 patients, core biopsy was successfully performed and specimens were adequate for pathologic examination. The average number of microcalcifications seen on specimen mammography in the two groups was 1.8(range : 0x8) and 2.5(range : 0x4) respectively. In patients from whom less than five and five or more samples were taken, the average number of microcalcifications seen on specimen mammography was 1.5(range : 0x6) and 2.6(range : 0x8), respectively, throughout the whole period. The pathologic findings were fibrocystic change in 50 cases, fibroadenoma in four, ductal carcinoma in situ in four, invasive ductal carcinoma in one, and atypical ductal hyperplasia in one. The agreement rate of pathologic results between core biopsy and surgical excision was 83%(10/12) for malignancy and 75% for histology. In three cases with disagreement between core and surgical pathologic results, the sampling number was small (3x 4 times) and in two of the three cases, microcalcifications were not visible on mammography operator experience and sampling numbers larger than five results in an increased number of microcalcifications in specimens and more reliable core biopsy.

  7. {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel; Riedl, Christopher C.; Jochelson, Maxine S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Goldman, Debra A.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Pinker-Domenig, Katja [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2016-10-15

    National Comprehensive Cancer Network guidelines recommend {sup 18}F-FDG-PET/CT, in addition to standard staging procedures, for systemic staging of newly diagnosed stage III breast cancer patients. However, factors in addition to stage may influence PET/CT utility. As breast cancers that are negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (triple-negative breast cancer, or TNBC) are more aggressive and metastasize earlier than other breast cancers, we hypothesized that receptor expression may be one such factor. This study assesses {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed TNBC. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with TNBC who underwent {sup 18}F-FDG-PET/CT in 2007-2013 prior to systemic or radiation therapy. Initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery, if performed prior to {sup 18}F-FDG-PET/CT. {sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases, as well as unsuspected synchronous malignancies. Kaplan Meier survival estimates were calculated for initial stage IIB patients stratified by whether or not stage 4 disease was detected by {sup 18}F-FDG-PET/CT. A total of 232 patients with TNBC met inclusion criteria. {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 30 (13 %): 0/23 initial stage I, 4/82 (5 %) stage IIA, 13/87 (15 %) stage IIB, 4/23 (17 %) stage IIIA, 8/14 (57 %) stage IIIB, and 1/3 (33 %) stage IIIC. Twenty-six of 30 patients upstaged to IV by {sup 18}F-FDG-PET/CT were confirmed by pathology, with the remaining four patients confirmed by follow-up imaging. In addition, seven unsuspected synchronous malignancies were identified in six patients. Initial stage 2B patients who were upstaged to 4 by {sup 18}F-FDG-PET/CT had significantly shorter survival compared to

  8. Surgery for Breast Cancer

    Science.gov (United States)

    ... Cancer During Pregnancy Breast Cancer Breast Cancer Treatment Surgery for Breast Cancer Surgery is a common treatment ... removed (breast reconstruction) Relieve symptoms of advanced cancer Surgery to remove breast cancer There are two main ...

  9. Breast Reconstruction Alternatives

    Science.gov (United States)

    ... Breast Reconstruction Surgery Breast Cancer Breast Reconstruction Surgery Breast Reconstruction Alternatives Some women who have had a ... chest. What if I choose not to get breast reconstruction? Some women decide not to have any ...

  10. Breast augmentation surgery

    Science.gov (United States)

    ... on the underside of your breast, in the natural skin fold. The surgeon places the implant through this ... lift Breast pain Breast reconstruction - implants Breast reconstruction - natural tissue Breast ... wound care - open Review Date 2/10/2015 Updated by: ...

  11. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  12. Breast Cancer Overview

    Science.gov (United States)

    ... Cancer > Breast Cancer > Breast Cancer: Overview Request Permissions Breast Cancer: Overview Approved by the Cancer.Net Editorial Board , ... bean-shaped organs that help fight infection. About breast cancer Cancer begins when healthy cells in the breast ...

  13. Effects of lycopene on the insulin-like growth factor (IGF) system in premenopausal breast cancer survivors and women at high familial breast cancer risk

    NARCIS (Netherlands)

    Voskuil, Dorien W.; Vrieling, Alina; Korse, Catharina M.; Beijnen, Jos H.; Bonfrer, Johannes M. G.; van Doorn, Jaap; Kaas, Reinie; Oldenburg, Hester S. A.; Russell, Nicola S.; Rutgers, Emiel J. T.; Verhoef, Senno; van Leeuwen, Flora E.; van't Veer, Laura J.; Rookus, Matti A.

    2008-01-01

    Insulin-like growth factor-I (IGF-I) is an important growth factor associated with increased risk of premenopausal breast cancer. We conducted a randomized, placebo-controlled, double-blind, crossover trial to evaluate whether tomato-derived lycopene supplementation (30 mg/day for 2 mo) decreases se

  14. Comprehensive Reproductive System Care Program - Clinical Breast Care Project (CRSCP-CBCP)

    Science.gov (United States)

    2013-01-01

    an extraction buffer (50mM Tris HCL, pH 7.5 and 0.1% Nonidet P - 40 ) as described below. Approximately two volumes of buffer per volume of the...between Windber Medical Center (Windber, PA – 12th Congressional District of the late Honorable John P . Murtha) and Walter Reed Army Medical Center, (now...on DNA from 40 or more cases of breast cancer. • Using state-or-the-art 3D cell culture techniques and modern approaches to the study of cancer

  15. Is risk of central nervous system (CNS) relapse related to adjuvant taxane treatment in node-positive breast cancer? Results of the CNS substudy in the intergroup Phase III BIG 02-98 Trial

    DEFF Research Database (Denmark)

    Pestalozzi, B.C.; Francis, P.; Quinaux, E.

    2008-01-01

    BACKGROUND: Breast cancer central nervous system (CNS) metastases are an increasingly important problem because of high CNS relapse rates in patients treated with trastuzumab and/or taxanes. PATIENTS AND METHODS: We evaluated data from 2887 node-positive breast cancer patients randomised in the B...

  16. Technology as a force for improved diagnosis and treatment of breast disease

    Science.gov (United States)

    Holloway, Claire M.B.; Easson, Alexandra; Escallon, Jaime; Leong, Wey Liang; Quan, May Lynn; Reedjik, Michael; Wright, Frances C.; McCready, David R.

    2010-01-01

    Increasing numbers of women are seeking evaluation of screen-detected breast abnormalities, and more women with breast cancer are living with the consequences of treatment. Improved technologies have helped to individualize diagnostic evaluation and treatment, improve efficacy and minimize morbidity. This article highlights some of these technologies. Superior imaging techniques have improved breast cancer screening and show promise for intraoperative surgical guidance and postoperative specimen evaluation. Digital mammography improves the sensitivity of mammography for women younger than 50 years with dense breasts, and tomosynthesis may improve specificity. Magnetic resonance imaging provides sensitive delineation of the extent of the disease and superior screening for women with a greater than 25% lifetime risk of breast cancer Minimally invasive techniques have been developed for the assessment of intraductal lesions, biopsy of imaging abnormalities, staging of the axilla and breast radiotherapy. Ductoscopy facilitates intraductal biopsy and localization of lesions for excision, sentinel lymph node biopsy is becoming standard for axillary staging, and intraoperative radiotherapy has the potential to reduce treatment time and morbidity. Three-dimensional imaging allows correlation of final histology with preoperative imaging for superior margin assessment. Related techniques show promise for translation to the intraoperative setting for surgical guidance. New classifications of breast cancers based on gene expression, rather than morphology, describe subtypes with different prognoses and treatment implications, and new targeted therapies are emerging. Genetic fingerprints that predict treatment response and outcomes are being developed to assign targeted treatments to individual patients likely to benefit. Surgeons play a vital role in the successful integration of new technologies into practice. PMID:20646402

  17. Method and device for intraoperative imaging of lumpectomy specimens to provide feedback to breast surgeon for prompt re-excision during the same procedure

    Science.gov (United States)

    Krol, Andrzej; Hemingway, Susan; Kort, Kara; de la Rosa, Gustavo; Adhikary, Ravi; Masrani, Deepa; Feiglin, David; O'Connell, Avice; Nagarajan, Mahesh; Yang, Chien-Chun; Wismüller, Axel

    2014-03-01

    Breast conserving therapy (BCT) of breast cancer is now widely accepted due to improved cosmetic outcome and improved patients' quality of life. One of the critical issues in performing breast-conserving surgery is trying to achieve microscopically clear surgical margins while maintaining excellent cosmesis. Unfortunately, unacceptably close or positive surgical margins occur in at least 20-25% of all patients undergoing BCT requiring repeat surgical excision days or weeks later, as permanent histopathology routinely takes days to complete. Our aim is to develop a better method for intraoperative imaging of non-palpable breast malignancies excised by wire or needle localization. Providing non-deformed three dimensional imaging of the excised breast tissue should allow more accurate assessment of tumor margins and consequently allow further excision at the time of initial surgery thus limiting the enormous financial and emotional burden of additional surgery. We have designed and constructed a device that allows preservation of the excised breast tissue in its natural anatomic position relative to the breast as it is imaged to assess adequate excision. We performed initial tests with needle-guided lumpectomy specimens using micro-CT and digital breast tomosynthesis (DBT). Our device consists of a plastic sphere inside a cylindrical holder. The surgeon inserts a freshly excised piece of breast tissue into the sphere and matches its anatomic orientation with the fiducial markers on the sphere. A custom-shaped foam is placed inside the sphere to prevent specimen deformation due to gravity. DBT followed by micro-CT images of the specimen were obtained. We confirmed that our device preserved spatial orientation of the excised breast tissue and that the location error was lower than 10mm and 10 degrees. The initial obtained results indicate that breast lesions containing microcalcifications allow a good 3D imaging of margins providing immediate intraoperative feedback for

  18. Comparative evaluation of the modified Scarff-Bloom-Richardson grading system on breast carcinoma aspirates and histopathology

    Directory of Open Access Journals (Sweden)

    Cherry Bansal

    2012-01-01

    Full Text Available Background: Fine needle aspiration (FNA is a quick, minimally invasive procedure for evaluation of breast tumors. The Scarff-Bloom-Richardson (SBR grade on histological sections is a well-established tool to guide selection of adjuvant systemic therapy. Grade evaluation is possible on cytology smears to avoid and minimize the morbidity associated with overtreatment of lower grade tumors. Aim : The aim was to test the hypothesis whether breast FNA from the peripheral portion of the lesion is representative of Scarff-Bloom-Richardson grade on histopathology as compared to FNA from the central portion. Materials and Methods : Fine-needle aspirates and subsequent tissue specimens from 45 women with ductal carcinoma (not otherwise specified were studied. FNAs were performed under ultrasound guidance from the central as well as the peripheral third of the lesion for each case avoiding areas of necrosis/calcification. The SBR grading was compared on alcohol fixed aspirates and tissue sections for each case. Results : Comparative analysis of SBR grade on aspirates from the peripheral portion and histopathology by the Pearson chi-square test (χ2 =78.00 showed that it was statistically significant (P<0.001 with 93% concordance. Lower mitotic score on aspirates from the peripheral portion was observed in only 4 out of 45 (9% cases. The results of the Pearson chi-square test (χ2 = 75.824 with statistically significant (P=0.000. Conclusion : This prospective study shows that FNA smears from the peripheral portion of the lesion are representative of the grading performed on the corresponding histopathological sections. It is possible to score and grade by SBR system on FNA smears.

  19. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  20. Hypothalamus-pituitary-thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system.

    Science.gov (United States)

    Carrera-González, María Pilar; Ramírez-Expósito, María Jesús; de Saavedra, Jose Manuel Arias; Sánchez-Agesta, Rafael; Mayas, María Dolores; Martínez-Martos, Jose Manuel

    2011-06-01

    Associations of breast cancer with diseases of the thyroid have been repeatedly reported, but the mechanism underlying this association remains to be elucidated. It has been reported that oxytocin (OXT) attenuates the thyroid-stimulating hormone (TSH) release in response to thyrotrophin-releasing hormone (TRH) and decreased plasma levels of TSH as well as the thyroid hormones by an effect mediated by the central nervous system. Oxytocinase (IRAP) is the regulatory proteolytic enzyme reported to hydrolyze OXT. Changes in IRAP activity have been reported in both human breast cancer and N-methyl-nitrosourea (NMU)-induced rat mammary tumours. Here, we measure IRAP activity fluorometrically using cystyl-β-naphthylamide as the substrate, in the hypothalamus-pituitary-thyroid axis together with the circulating levels of OXT, and its relationship with circulating levels of TSH and free thyroxine (fT4), as markers of thyroid function in control rats and rats with breast cancer induced by NMU. We found decreased thyroid function in rats with breast cancer induced by NMU, supported by the existence of lower serum circulating levels of both TSH and fT4 than their corresponding controls. Concomitantly, we found a decrease of hypothalamic IRAP activity and an increase in circulating levels of OXT. We propose that breast cancer increases OXT pituitary release by decreasing its hypothalamic catabolism through IRAP activity, probably due to the alteration of the estrogenic endocrine status. Thus, high circulating levels of OXT decreased TSH release from the pituitary, and therefore, of thyroid hormones from the thyroid, supporting the association between breast cancer and thyroid function disruption.

  1. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

    Science.gov (United States)

    Harris, Lyndsay N.; McShane, Lisa M.; Andre, Fabrice; Collyar, Deborah E.; Gonzalez-Angulo, Ana M.; Hammond, Elizabeth H.; Kuderer, Nicole M.; Liu, Minetta C.; Mennel, Robert G.; Van Poznak, Catherine; Bast, Robert C.; Hayes, Daniel F.

    2016-01-01

    Purpose To provide recommendations on appropriate use of breast tumor biomarker assay results to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer. Methods A literature search and prospectively defined study selection sought systematic reviews, meta-analyses, randomized controlled trials, prospective-retrospective studies, and prospective comparative observational studies published from 2006 through 2014. Outcomes of interest included overall survival and disease-free or recurrence-free survival. Expert panel members used informal consensus to develop evidence-based guideline recommendations. Results The literature search identified 50 relevant studies. One randomized clinical trial and 18 prospective-retrospective studies were found to have evaluated the clinical utility, as defined by the guideline, of specific biomarkers for guiding decisions on the need for adjuvant systemic therapy. No studies that met guideline criteria for clinical utility were found to guide choice of specific treatments or regimens. Recommendations In addition to estrogen and progesterone receptors and human epidermal growth factor receptor 2, the panel found sufficient evidence of clinical utility for the biomarker assays Oncotype DX, EndoPredict, PAM50, Breast Cancer Index, and urokinase plasminogen activator and plasminogen activator inhibitor type 1 in specific subgroups of breast cancer. No biomarker except for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 was found to guide choices of specific treatment regimens. Treatment decisions should also consider disease stage, comorbidities, and patient preferences. PMID:26858339

  2. An Integrated Genome-Wide Systems Genetics Screen for Breast Cancer Metastasis Susceptibility Genes.

    Directory of Open Access Journals (Sweden)

    Ling Bai

    2016-04-01

    Full Text Available Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease.

  3. Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Quaia, Emilio; Baratella, Elisa; Cernic, Stefano; Lorusso, Arianna; Casagrande, Federica; Cioffi, Vincenzo; Cova, Maria Assunta [University of Trieste (Italy), Department of Radiology, Cattinara Hospital, Trieste (Italy)

    2012-09-15

    To assess the impact of digital tomosynthesis (DTS) on the radiological investigation of patients with suspected pulmonary lesions on chest radiography (CXR). Three hundred thirty-nine patients (200 male; age, 71.19 {+-} 11.9 years) with suspected pulmonary lesion(s) on CXR underwent DTS. Two readers prospectively analysed CXR and DTS images, and recorded their diagnostic confidence: 1 or 2 = definite or probable benign lesion or pseudolesion deserving no further diagnostic workup; 3 = indeterminate; 4 or 5 = probable or definite pulmonary lesion deserving further diagnostic workup by computed tomography (CT). Imaging follow-up by CT (n = 76 patients), CXR (n = 256) or histology (n = 7) was the reference standard. DTS resolved doubtful CXR findings in 256/339 (76 %) patients, while 83/339 (24 %) patients proceeded to CT. The mean interpretation time for DTS (mean {+-} SD, 220 {+-} 40 s) was higher (P < 0.05; Wilcoxon test) than for CXR (110 {+-} 30 s), but lower than CT (600 {+-} 150 s). Mean effective dose was 0.06 mSv (range 0.03-0.1 mSv) for CXR, 0.107 mSv (range 0.094-0.12 mSv) for DTS, and 3 mSv (range 2-4 mSv) for CT. DTS avoided the need for CT in about three-quarters of patients with a slight increase in the interpretation time and effective dose compared to CXR. (orig.)

  4. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty: a diagnostic cohort study of 48 patients

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao; Yang, Dejin; Guo, Shengjie; Tang, Jing; Liu, Jian; Wang, Dacheng; Zhou, Yixin [Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Department of Orthopaedic Surgery, Beijing (China)

    2016-11-15

    For postoperative imaging assessment of cementless hip arthroplasty, radiography and computed tomography (CT) were restricted by overlapping structures and metal artifacts, respectively. A new tomosynthesis with metal artifact reduction (TMAR) is introduced by using metal extraction and ordered subset-expectation maximization (OS-EM) reconstruction. This study investigated the effectiveness of TMAR in assessing fixation stability of cementless hip arthroplasty components. We prospectively included 48 consecutive patients scheduled for revision hip arthroplasty in our hospital, with 41 femoral and 35 acetabular cementless components available for evaluation. All patients took the three examinations of radiography, CT, and TMAR preoperatively, with intraoperative mechanical tests, and absence or presence of osteointegration on retrieved prosthesis as reference standards. Three senior surgeons and four junior surgeons evaluated these images independently with uniform criteria. For TMAR, 82 % diagnoses on the femoral side and 84 % diagnoses on the acetabular side were accurate. The corresponding values were 44 and 67 % for radiography, and 39 % and 74 % for CT. Senior surgeons had significantly higher accuracy than junior surgeons by radiography (p < 0.05), but not by TMAR or CT. By minimizing metal artifacts in the bone-implant interface and clearly depicting peri-implant trabecular structures, the TMAR technique improved the diagnostic accuracy of assessing fixation stability of cementless hip arthroplasty, and shortened the learning curve of less experienced surgeons. Level II, diagnostic cohort study. (orig.)

  5. Noninvasive nodal restaging in clinically node positive breast cancer patients after neoadjuvant systemic therapy: A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, R.J., E-mail: info@rjschipper.nl [Department of Radiology, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Moossdorff, M. [Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Beets-Tan, R.G.H. [Department of Radiology, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Smidt, M.L. [Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Lobbes, M.B.I. [Department of Radiology, Maastricht University Medical Center+, Maastricht (Netherlands)

    2015-01-15

    Objective: To provide a systematic review of studies comparing the diagnostic performance of noninvasive techniques and axillary lymph node dissection in the identification of initially node positive patients with pathological complete response of axillary lymph nodes to neoadjuvant systemic therapy. Methods: PubMed and Embase databases were searched until May 21st, 2014. First, duplicate studies were eliminated. Next, study abstracts were read by two readers to assess eligibility. Studies were selected based on predefined inclusion criteria. Of these, data extraction was performed by two readers independently. Results: Of the 987 abstracts that were considered for inclusion, four were eligible for final analysis, which included a total of 572 patients. The diagnostic performance of clinical examination, axillary ultrasound, breast MRI, whole body {sup 18}F-FDG PET-CT, and a prediction model to identify patients with pathological complete response were investigated. Studies were often limited by small sample size. Furthermore, systemic therapy regimens and definitions of clinical and pathological complete response were variable, refraining further pooling of data. The reported positive predictive value of different techniques to identify patients with axillary pathological complete response after neoadjuvant systemic therapy varied between 40% and 100%. Conclusion: At present, there is no accurate noninvasive restaging technique able to identify patients with complete axillary response after neoadjuvant systemic therapy.

  6. Effect of dietary supplementation with Agaricus sylvaticus fungus on the hematology and immunology systems of breast cancer patients undergoing chemotherapy

    Directory of Open Access Journals (Sweden)

    Fabiana VALADARES

    2011-06-01

    Full Text Available Objective: Patients with cancer tend to develop hematological and immunological alterations during the disease process. Medicinal fungi can stimulate the immune and hematopoietic systems, promoting improvements in the prognosis and physiological response. In this trial it is aimed to evaluate changes in hematological and immunological parameters in patients with breast cancer undergoing chemotherapy after dietary supplementation with Agaricus sylvaticus. Method: A randomized, double-blind, placebo-controlled study was carried out. 46 patients (stadiums II and III, were randomly assigned to receive either: nutritional supplement with A. sylvaticus (2.1 g/day or placebo. Patients received three cycles (n=26 and six cycles (n=20 of chemotherapy. Clinical and laboratory evaluations were performed. The results were analyzed using Microsoft Excel 2003 and R-version 2.11.1, significant results at p≤ 0.05. Results: The A. sylvaticus group showed an increase of hematocrits (p=0.04, red blood count (p=0.03, mean corpuscular hemoglobin concentration (p=0.001, leukocytes (p=0.03, monocytes (p=0.001, and total lymphocyte count (p=0.009 after three months. Those changes were not observed in the placebo group. After six months, patients receiving A. sylvaticus showed increased levels of red blood count (p=0.02, hemoglobin (p=0.02, hematocrits (p=0.02, corpuscular hemoglobin concentration (p=0.02, leukocytes (p=0.02; lymphocytes (p=0.02, neutrophils (p=0.02 and TLC (p=0.02. The placebo group showed a reduction in leukocytes (p=0.004, basophiles (p=0.005 and TLC (p=0.01. Conclusion: The results suggest the usefulness of dietary supplementation with A. sylvaticus in patients with breast cancer undergoing chemotherapy.

  7. Development of a training phantom for compression breast elastography-comparison of various elastography systems and numerical simulations.

    Science.gov (United States)

    Manickam, Kavitha; Reddy, Machireddy Ramasubba; Seshadri, Suresh; Raghavan, Bagyam

    2015-10-01

    The elastic properties of tissue are related to tissue composition and pathological changes. It has been observed that many pathological processes increase the elastic modulus of soft tissue compared to normal. Ultrasound compression elastography is a method of characterization of elastic properties that has been the focus of many research efforts in the last two decades. In medical radiology, compression elastography is provided as an additional tool with ultrasound B-mode in the existing scanners, and the combined features of elastography and echography act as a promising diagnostic method in breast cancer detection. However, the full capability of the ultrasound elastography technique together with B-mode has not been utilized by novice radiologists due to the nonavailability of suitable, appropriately designed tissue-mimicking phantoms. Since different commercially available ultrasound elastographic scanners follow their own unique protocols, training novice radiologists is becoming cumbersome. The main focus of this work is to develop a tissue-like agar-based phantom, which mimics breast tissue with common abnormal lesions like fibroadenoma and invasive ductal carcinoma in a clinically perceived way and compares the sonographic and elastographic appearances using different commercially available systems. In addition, the developed phantoms are simulated using the finite-element method, and ideal strain images are generated. Strain images from experiment and simulation are compared based on image contrast parameters, namely contrast transfer efficiency (CTE) and observed strain, and they are in good agreement. The strain image contrast of malignant inclusions is significantly improved compared to benign inclusions, and the trend of CTE is similar for all elastographic scanners under investigation.

  8. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    NARCIS (Netherlands)

    Zhang, Lina; Waard, de Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A.; Hooijdonk, van Toon; Vervoort, Jacques; Goudoever, van Johannes B.; Hettinga, Kasper

    2016-01-01

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after

  9. Changes in Female Support Network Systems and Adaptation after Breast Cancer Diagnosis: Differences between Older and Younger Patients

    Science.gov (United States)

    Ashida, Sato; Palmquist, Aunchalee E. L.; Basen-Engquist, Karen; Singletary, S. Eva; Koehly, Laura M.

    2009-01-01

    Purpose: This study evaluates the changes in social networks of older and younger breast cancer patients over a 6-month period following their first diagnosis and how such modifications are associated with changes in the patients' mood state. Design and Methods: Newly diagnosed breast cancer patients were interviewed shortly after their diagnosis…

  10. The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases.

    Science.gov (United States)

    Dillekås, Hanna; Demicheli, Romano; Ardoino, Ilaria; Jensen, Svein A H; Biganzoli, Elia; Straume, Oddbjørn

    2016-07-01

    The purpose of this study was to characterize the recurrence dynamics in breast cancer patients after delayed reconstruction. We hypothesized that surgical reconstruction might stimulate dormant micrometastases and reduce time to recurrence. All mastectomy breast cancer patients with delayed surgical reconstruction at Haukeland University Hospital, between 1977 and 2007, n = 312, were studied. Our control group consisted of 1341 breast cancer patients without reconstruction. For each case, all patients in the control group with identical T and N stages and age ±2 years were considered. A paired control was randomly selected from this group. 10 years after primary surgery, 39 of the cases had relapsed, compared to 52 of the matched controls. The reconstructed group was analyzed for relapse dynamics after mastectomy; the first peak in relapses was similarly timed, but smaller than for the controls, while the second peak was similar in time and size. Second, the relapse pattern was analyzed with reconstruction as the starting point. A peak in recurrences was found after 18 months, and a lower peak at the 5th-6th year. The height of the peak correlated with the extent of surgery and initial T and N stages. Timing of the peak was not affected, neither was the cumulative effect. The relapse pattern, when time origin is placed both at mastectomy and at reconstruction, is bimodal with a peak position at the same time points, at 2 years and at 5-6 years. The timing of the transition from dormant micrometastases into clinically detectable macrometastases might be explained by an enhancing effect of surgery.

  11. 高频超声、乳腺X线检查及乳腺血氧功能成像在乳腺肿块诊断中的价值%The clinical value of high frequency ultrasound, mammography and breast blood-oxygen function imaging system in diagnosis of breast masses

    Institute of Scientific and Technical Information of China (English)

    郑一君; 张渊; 单君; 施秀荣; 贾瑱熙; 江泉

    2013-01-01

    Objective To compare the diagnostic value of high frequency ultrasound,mammography and breast blood-oxygen function imaging system in diagnosis of breast masses.Methods The images of 89 breast masses by high frequency ultrasound,mammography and breast blood-oxygen function imaging system were reviewed.The study compared the sensibilities and specificities of the three methods in the masses and analyzed their cause of missed diagnosis.Results The sensitivity of the diagnosis of breast cancer by high frequency ultrasound,mammography and breast blood-oxygen function imaging system were 80.00%,70.00% and 50.00%,respectively.The specificity of the diagnosis of breast cancer by them were 94.94%,98.73% and 97.47%,respectively.There were sigmfiacant differences in diagnosis of breast benign lesion among the high frequency ultrasound,mammography and breast blood-oxygen function imaging system.The sensitivity of high frequency ultrasound in detecting fibroadenoma of breast was 98.11% higher than the other methods.Mammography was insensitive to the benign breast lesions,but its specificity was high.Conclusions High frequency ultrasound,mammography and breast blood-oxygen function imaging system are the highly effective diagnostic tool for breast cancer,but the diagnostic value of mammography and breast blood-oxygen in breast fibroadenoma and in cystic disease of breast aren' t high.Breast blood-oxygen function imaging system can enhance the accuracy of the diagnosis of mammary inflammation.%目的 比较高频超声、乳腺X线检查以及乳腺血氧功能成像在乳腺肿块诊断中的价值.方法 回顾性分析高频超声、乳腺X线检查及乳腺血氧功能成像在89例乳腺肿块中的诊断结果,比较它们诊断各类乳腺病变的敏感性和特异性,并分析漏诊原因.结果 高频超声、乳腺X线检查以及乳腺血氧功能成像对乳腺癌的敏感性分别为80.00%、70.00%、50.00%;特异性分别为94.94%、98.73

  12. Premenstrual breast changes

    Science.gov (United States)

    Premenstrual tenderness and swelling of the breasts; Breast tenderness - premenstrual; Breast swelling - premenstrual ... Symptoms of premenstrual breast tenderness may range from mild to ... most severe just before each menstrual period Improve during ...

  13. Breast MRI scan

    Science.gov (United States)

    MRI - breast; Magnetic resonance imaging - breast; Breast cancer - MRI; Breast cancer screening - MRI ... radiologist) see some areas more clearly. During the MRI, the person who operates the machine will watch ...

  14. Fibrocystic breast disease

    Science.gov (United States)

    Fibrocystic breast disease; Mammary dysplasia; Diffuse cystic mastopathy; Benign breast disease; Glandular breast changes ... made in the ovaries may make a woman's breasts feel swollen, lumpy, or painful before or during ...

  15. Breast Cancer Research Update

    Science.gov (United States)

    ... JavaScript on. Feature: Breast Cancer Breast Cancer Research Update Winter 2017 Table of Contents National Cancer Institute ... Addressing Breast Cancer's Unequal Burden / Breast Cancer Research Update Winter 2017 Issue: Volume 11 Number 4 Page ...

  16. Types of Breast Pumps

    Science.gov (United States)

    ... Devices Consumer Products Breast Pumps Types of Breast Pumps Share Tweet Linkedin Pin it More sharing options ... used for feeding a baby. Types of Breast Pumps There are three basic types of breast pumps: ...

  17. Learning about Breast Cancer

    Science.gov (United States)

    ... genetic terms used on this page Learning About Breast Cancer What do we know about heredity and breast ... Cancer What do we know about heredity and breast cancer? Breast cancer is a common disease. Each year, ...

  18. [Breast carcinoma: state of the art].

    Science.gov (United States)

    Pestalozzi, B C

    1996-11-30

    Diagnosis and therapy of breast cancer are briefly reviewed for the general internist. He should know what triple diagnosis, breast-conserving surgery, radiotherapy and adjuvant systemic therapy involve. He should know when to perform a screening mammography, what follow-up examinations after breast cancer are indicated and what dangers loom in metastatic breast cancer. He should know of new therapeutic avenues such as bisphosphonates, new aromatase inhibitors, taxanes, and high-dose chemotherapy with stem cell support. Since advances in the treatment of breast cancer have been achieved mostly through randomized studies, a positive attitude toward such studies and a willingness to take part in them are desirable.

  19. Positive predictive values of Breast Imaging Reporting and Data System (BI-RADS® categories 3, 4 and 5 in breast lesions submitted to percutaneous biopsy

    Directory of Open Access Journals (Sweden)

    Gustavo Machado Badan

    2013-07-01

    Full Text Available Objective To evaluate the BI-RADS as a predictive factor of suspicion for malignancy in breast lesions by correlating radiological with histological results and calculating the positive predictive value for categories 3, 4 and 5 in a breast cancer reference center in the city of São Paulo. Materials and Methods Retrospective, analytical and cross-sectional study including 725 patients with mammographic and/or sonographic findings classified as BI-RADS categories 3, 4 and 5 who were referred to the authors' institution to undergo percutaneous biopsy. The tests results were reviewed and the positive predictive value was calculated by means of a specific mathematical equation. Results Positive predictive values found for categories 3, 4 and 5 were respectively the following: 0.74%, 33.08% and 92.95%, for cases submitted to ultrasound-guided biopsy, and 0.00%, 14.90% and 100% for cases submitted to stereotactic biopsy. Conclusion The present study demonstrated high suspicion for malignancy in lesions classified as category 5 and low risk for category 3. As regards category 4, the need for systematic biopsies was observed.

  20. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk.

    Science.gov (United States)

    van Herwaarden, Antonius E; Wagenaar, Els; Karnekamp, Barbara; Merino, Gracia; Jonker, Johan W; Schinkel, Alfred H

    2006-01-01

    The breast cancer resistance protein (BCRP/ABCG2) usually protects the body from a wide variety of environmental and dietary xenotoxins by reducing their net uptake from intestine and by increasing their hepatobiliary, intestinal and renal elimination. BCRP is also highly expressed in lactating mammary glands in mice, and this expression is conserved in cows and humans. As a result, BCRP substrates can be secreted into milk. We investigated whether different classes of dietary carcinogens are substrates of Bcrp1/BCRP and the implications for systemic exposure and breast milk contamination. Using polarized cell lines, we found that Bcrp1 transports the heterocyclic amines 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and the potent human hepatocarcinogen aflatoxin B1, and decreases their cellular accumulation up to 10-fold. In vivo pharmacokinetic studies showed that [14C]IQ, [14C]Trp-P-1 and [3H]aflatoxin B1 plasma levels were substantially lower in wild-type compared with Bcrp1-/- mice, after both oral and intravenous administration, demonstrating that Bcrp1 restricts systemic exposure to these carcinogens. Moreover, Bcrp1 mediates transfer of [14C]IQ, [14C]Trp-P-1 and [3H]aflatoxin into milk, with 3.4+/-0.6, 2.6+/-0.3 and 3.8+/-0.5-fold higher milk to plasma ratios, respectively, in lactating wild-type versus Bcrp1-/- mice. We have thus identified Bcrp1/BCRP as one of the molecular mechanisms by which heterocyclic amines and aflatoxin are transferred into milk, thereby posing a health risk to breast-fed infants and dairy consumers. Paradoxically, Bcrp1/BCRP appears to have both protective and adverse roles with respect to exposure to dietary carcinogens.

  1. Predicting non-sentinel lymph node status in breast cancer patients with sentinel lymph node involvement: evaluation of two scoring systems.

    Science.gov (United States)

    Sanjuán, Alex; Escaramís, Georgia; Vidal-Sicart, Sergi; Illa, Miriam; Zanón, Gabriel; Pahisa, Jaume; Rubí, Sebastià; Velasco, Martín; Santamaría, Gorane; Farrús, Blanca; Muñoz, Montse; García, Yolanda; Fernández, Pedro Luís; Pons, Francesca

    2010-01-01

    The aim of this study was to validate a nomogram and a scoring system to predict non-sentinel lymph node status in breast cancer patients with sentinel lymph node (SLN) involvement. A total of 516 breast cancer patients underwent sentinel lymph node biopsy at our institution from January 2001 to August 2006. A prospective database was used to identify breast cancer patients with a positive SLN biopsy examination who underwent a completion axillary lymph node dissection. A total of 114 patients were identified. The Memorial Sloan-Kettering Cancer Center (MSKCC) nomogram and an axilla scoring system from Paris (Hôpital Tenon) were used to predict the probability of having non-SLN involvement. One hundred fourteen patients were included in the study. The areas under the receiver operating characteristics (ROC) curves were 0.671 (95% CI: 0.552-0.790) for the MSKCC nomogram and 0.703 (95% CI: 0.596-0.811) for the Tenon score. The univariate analysis shows that size of SLN metastases, the number of positive and negative SLN and the proportion of positive SLN were statistically significant. On multivariate logistic regression analysis, the size of SLN metastases and the proportion of positive SLN were statistically significant. The two scoring systems are similar according to their area under ROC curves, but should be improved to be valid and determinant to the general population. Meanwhile, the use of scoring systems could be applied in an individual manner in some patients.

  2. Understanding a Breast Cancer Diagnosis

    Science.gov (United States)

    ... Cancer A-Z Breast Cancer Understanding a Breast Cancer Diagnosis If you’ve been diagnosed with breast cancer, ... Prevention Early Detection and Diagnosis Understanding a Breast Cancer Diagnosis Treatment Breast Reconstruction Surgery Living as a Breast ...

  3. A CAD System for Identification and Classification of Breast Cancer Tumors in DCE-MR Images Based on Hierarchical Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Rastiboroujeni

    2015-06-01

    Full Text Available In this paper, we propose a computer aided diagnosis (CAD system based on hierarchical convolutional neural networks (HCNNs to discriminate between malignant and benign tumors in breast DCE-MRIs. A HCNN is a hierarchical neural network that operates on two-dimensional images. A HCNN integrates feature extraction and classification processes into one single and fully adaptive structure. It can extract two-dimensional key features automatically, and it is relatively tolerant to geometric and local distortions in input images. We evaluate CNN implementation learning and testing processes based on gradient descent (GD and resilient back-propagation (RPROP approaches. We show that, proposed HCNN with RPROP learning approach provide an effective and robust neural structure to design a CAD base system for breast MRI, and has potential as a mechanism for the evaluation of different types of abnormalities in medical images.

  4. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    cytokines tumor necrosis factor-α and nitric oxide were significantly ameliorated in DMBA-administered rats treated with ulvan polysaccharides as compared to DMBA-administered control. Conclusion: In conclusion, ulvan polysaccharides at the level of initiation and promotion might have potential chemopreventive effects against breast carcinogenesis. These preventive effects may be mediated through the augmentation of apoptosis, suppression of oxidative stress and inflammation, and enhancement of antioxidant defense system. Keywords: breast carcinogenesis, cancer initiation, cancer promotion, Ulva lactuca polysaccharides, DMBA, oxidative stress, apoptosis

  5. Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: an overview of the literature.

    Science.gov (United States)

    Lombardi, Giuseppe; Di Stefano, Anna Luisa; Farina, Patrizia; Zagonel, Vittorina; Tabouret, Emeline

    2014-09-01

    The frequency of metastatic brain tumors has increased over recent years; the primary tumors most involved are breast cancer, lung cancer, melanoma and renal cell carcinoma. While radiation therapy and surgery remain the mainstay treatment in selected patients, new molecular drugs have been developed for brain metastases. Studies so far report interesting results. This review focuses on systemic cytotoxic drugs and, in particular, on new targeted therapies and their clinically relevant activities in brain metastases from solid tumors in adults.

  6. Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer.

    Science.gov (United States)

    Augustine, Tanya N; Dix-Peek, Thérèse; Duarte, Raquel; Candy, Geoffrey P

    2015-11-01

    Three-dimensional (3D) culture approaches to investigate breast tumour progression are yielding information more reminiscent of the in vivo microenvironment. We have established a 3D Matrigel system to determine the interactions of luminal phenotype MCF-7 cells and basal phenotype MDA-MB-231 cells with regulatory T lymphocytes and Natural Killer cells. Immune cells were isolated from peripheral blood using magnetic cell sorting and their phenotype validated using flow cytometry both before and after activation with IL-2 and phytohaemagglutinin. Following the establishment of the heterotypic culture system, tumour cells displayed morphologies and cell-cell associations distinct to that observed in 2D monolayer cultures, and associated with tissue remodelling and invasion processes. We found that the level of CCL4 secretion was influenced by breast cancer phenotype and immune stimulation. We further established that for RNA extraction, the use of proteinase K in conjunction with the Qiagen RNeasy Mini Kit and only off-column DNA digestion gave the best RNA yield, purity and integrity. We also investigated the efficacy of the culture system for immunolocalisation of the biomarkers oestrogen receptor-α and the glycoprotein mucin 1 in luminal phenotype breast cancer cells; and epidermal growth factor receptor in basal phenotype breast cancer cells, in formalin-fixed, paraffin-wax embedded cultures. The expression of these markers was shown to vary under immune mediation. We thus demonstrate the feasibility of using this co-culture system for downstream applications including cytokine analysis, immunolocalisation of tumour biomarkers on serial sections and RNA extraction in accordance with MIQE guidelines.

  7. The insulin-like growth factor system is modulated by exercise in breast cancer survivors: a systematic review and meta-analysis

    OpenAIRE

    Meneses-Echávez, José Francisco; Jiménez, Emilio González; Río-Valle, Jacqueline Schmidt; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Ramírez-Vélez, Robinson

    2016-01-01

    Background Insulin-like growth factors (IGF´s) play a crucial role in controlling cancer cell proliferation, differentiation and apoptosis. Exercise has been postulated as an effective intervention in improving cancer-related outcomes and survival, although its effects on IGF´s are not well understood. This meta-analysis aimed to determine the effects of exercise in modulating IGF´s system in breast cancer survivors. Methods Databases of PuMed, EMBASE, Cochrane Central Register of Controlled ...

  8. Development of a dosimetric system for the quality control of breast cancer treatments; Desenvolvimento de um sistema dosimetrico para o controle de qualidade nos tratamentos de cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Roberio C.; Crispim, Verginia R., E-mail: rchaves@nuclear.ufrj.br, E-mail: verginia@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/lUFRJ), RJ (Brazil). Programa de Pos-Graduacao em Engenharia Nuclear; Rosa, Luiz A.R. da, E-mail: Irosa@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Rio de Janeiro, RJ (Brazil); Santos, Delano B.V., E-mail: delano@inca.gov.br [Instituto Nacional do Cancer (INCA/MS), Rio de Janeiro, RJ (Brazil)

    2013-11-01

    A system for evaluating the values of absorbed dose in breast teletherapy was developed, using thermoluminescent dosimeters (TLD-100), to compare them to those provided by Therapy planning system. A breast phantom was made to distribute the dosimeters TL shaped chip in breast volume and irradiate it under the same conditions of planning. Three different techniques of teletherapy were considered: one with irradiation from a therapy unit of {sup 60}Co and two with an X-ray beam coming from a 6 MV linear accelerator. Doses measures allowed checking that the performance of the quality control system used in breast cancer treatment is appropriate, since the planned doses differed about 1.5% of the responses provided by TL dosimeters.

  9. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  10. Breast lump

    Science.gov (United States)

    ... a woman are often caused by fibrocystic changes, fibroadenomas, and cysts. Fibrocystic changes are painful, lumpy breasts. ... period, and then improve after your period starts. Fibroadenomas are noncancerous lumps that feel rubbery. They move ...

  11. Breast Reconstruction

    Science.gov (United States)

    ... senos Preguntas Para el Médico Datos Para la Vida Komen El cuidado de sus senos:Consejos útiles ... that can help . Federal law requires most insurance plans cover the cost of breast reconstruction. Learn more ...

  12. The adaptive computer-aided diagnosis system based on tumor sizes for the classification of breast tumors detected at screening ultrasound.

    Science.gov (United States)

    Moon, Woo Kyung; Chen, I-Ling; Chang, Jung Min; Shin, Sung Ui; Lo, Chung-Ming; Chang, Ruey-Feng

    2017-04-01

    Screening ultrasound (US) is increasingly used as a supplement to mammography in women with dense breasts, and more than 80% of cancers detected by US alone are 1cm or smaller. An adaptive computer-aided diagnosis (CAD) system based on tumor size was proposed to classify breast tumors detected at screening US images using quantitative morphological and textural features. In the present study, a database containing 156 tumors (78 benign and 78 malignant) was separated into two subsets of different tumor sizes (<1cm and ⩾1cm) to explore the improvement in the performance of the CAD system. After adaptation, the accuracies, sensitivities, specificities and Az values of the CAD for the entire database increased from 73.1% (114/156), 73.1% (57/78), 73.1% (57/78), and 0.790 to 81.4% (127/156), 83.3% (65/78), 79.5% (62/78), and 0.852, respectively. In the data subset of tumors larger than 1cm, the performance improved from 66.2% (51/77), 68.3% (28/41), 63.9% (23/36), and 0.703 to 81.8% (63/77), 85.4% (35/41), 77.8% (28/36), and 0.855, respectively. The proposed CAD system can be helpful to classify breast tumors detected at screening US.

  13. Signal enhancement ratio (SER) quantified from breast DCE-MRI and breast cancer risk

    Science.gov (United States)

    Wu, Shandong; Kurland, Brenda F.; Berg, Wendie A.; Zuley, Margarita L.; Jankowitz, Rachel C.; Sumkin, Jules; Gur, David

    2015-03-01

    Breast magnetic resonance imaging (MRI) is recommended as an adjunct to mammography for women who are considered at elevated risk of developing breast cancer. As a key component of breast MRI, dynamic contrast-enhanced MRI (DCE-MRI) uses a contrast agent to provide high intensity contrast between breast tissues, making it sensitive to tissue composition and vascularity. Breast DCE-MRI characterizes certain physiologic properties of breast tissue that are potentially related to breast cancer risk. Studies have shown that increased background parenchymal enhancement (BPE), which is the contrast enhancement occurring in normal cancer-unaffected breast tissues in post-contrast sequences, predicts increased breast cancer risk. Signal enhancement ratio (SER) computed from pre-contrast and post-contrast sequences in DCE-MRI measures change in signal intensity due to contrast uptake over time and is a measure of contrast enhancement kinetics. SER quantified in breast tumor has been shown potential as a biomarker for characterizing tumor response to treatments. In this work we investigated the relationship between quantitative measures of SER and breast cancer risk. A pilot retrospective case-control study was performed using a cohort of 102 women, consisting of 51 women who had diagnosed with unilateral breast cancer and 51 matched controls (by age and MRI date) with a unilateral biopsy-proven benign lesion. SER was quantified using fully-automated computerized algorithms and three SER-derived quantitative volume measures were compared between the cancer cases and controls using logistic regression analysis. Our preliminary results showed that SER is associated with breast cancer risk, after adjustment for the Breast Imaging Reporting and Data System (BI-RADS)-based mammographic breast density measures. This pilot study indicated that SER has potential for use as a risk factor for breast cancer risk assessment in women at elevated risk of developing breast cancer.

  14. Intrahepatic and systemic therapy with oxaliplatin combined with capecitabine in patients with hepatic metastases from breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D L; Nørgaard, H; Weber Vestermark, Lene;

    2012-01-01

    The aim was to evaluate activity and toxicity of hepatic arterial infusion of oxaliplatin in combination with capecitabine in patients with metastatic breast cancer with liver metastases and limited extrahepatic disease....

  15. Minimal elastographic modeling of breast cancer for model based tumor detection in a digital image elasto tomography (DIET) system

    Science.gov (United States)

    Lotz, Thomas F.; Muller, Natalie; Hann, Christopher E.; Chase, J. Geoffrey

    2011-03-01

    Digital Image Elasto Tomography (DIET) is a non-invasive breast cancer screening technology that images the surface motion of a breast under harmonic mechanical actuation. A new approach capturing the dynamics and characteristics of tumor behavior is presented. A simple mechanical model of the breast is used to identify a transfer function relating the input harmonic actuation to the output surface displacements using imaging data of a silicone phantom. Areas of higher stiffness cause significant changes of damping and resonant frequencies as seen in the resulting Bode plots. A case study on a healthy and tumor silicone breast phantom shows the potential for this model-based method to clearly distinguish cancerous and healthy tissue as well as correctly predicting the tumor position.

  16. Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials

    Science.gov (United States)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Cooke, Victoria; Wilkinson, Louise; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Wells, Kevin

    2017-04-01

    A novel method has been developed for generating quasi-realistic voxel phantoms which simulate the compressed breast in mammography and digital breast tomosynthesis (DBT). The models are suitable for use in virtual clinical trials requiring realistic anatomy which use the multiple alternative forced choice (AFC) paradigm and patches from the complete breast image. The breast models are produced by extracting features of breast tissue components from DBT clinical images including skin, adipose and fibro-glandular tissue, blood vessels and Cooper’s ligaments. A range of different breast models can then be generated by combining these components. Visual realism was validated using a receiver operating characteristic (ROC) study of patches from simulated images calculated using the breast models and from real patient images. Quantitative analysis was undertaken using fractal dimension and power spectrum analysis. The average areas under the ROC curves for 2D and DBT images were 0.51  ±  0.06 and 0.54  ±  0.09 demonstrating that simulated and real images were statistically indistinguishable by expert breast readers (7 observers); errors represented as one standard error of the mean. The average fractal dimensions (2D, DBT) for real and simulated images were (2.72  ±  0.01, 2.75  ±  0.01) and (2.77  ±  0.03, 2.82  ±  0.04) respectively; errors represented as one standard error of the mean. Excellent agreement was found between power spectrum curves of real and simulated images, with average β values (2D, DBT) of (3.10  ±  0.17, 3.21  ±  0.11) and (3.01  ±  0.32, 3.19  ±  0.07) respectively; errors represented as one standard error of the mean. These results demonstrate that radiological images of these breast models realistically represent the complexity of real breast structures and can be used to simulate patches from mammograms and DBT images that are indistinguishable from

  17. Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization.

    Science.gov (United States)

    Gorunescu, Florin; Belciug, Smaranda

    2014-06-01

    The purpose of this paper is twofold: first, to propose an evolutionary-based method for building a decision model and, second, to assess and validate the model's performance using five different real-world medical datasets (breast cancer and liver fibrosis) by comparing it with state-of-the-art machine learning techniques. The evolutionary-inspired approach has been used to develop the learning-based decision model in the following manner: the hybridization of algorithms has been considered as "crossover", while the development of new variants which can be thought of as "mutation". An appropriate hierarchy of the component algorithms was established based on a statistically built fitness measure. A synergetic decision-making process, based on a weighted voting system, involved the collaboration between the selected algorithms in making the final decision. Well-established statistical performance measures and comparison tests have been extensively used to design and implement the model. Finally, the proposed method has been tested on five medical datasets, out of which four publicly available, and contrasted with state-of-the-art techniques, showing its efficiency in supporting the medical decision-making process.

  18. Incorporation of expert variability into breast cancer treatment recommendation in designing clinical protocol guided fuzzy rule system models.

    Science.gov (United States)

    Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O

    2012-06-01

    It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), p<0.001. We conclude that non-stationary fuzzy models provide a valuable new approach that may be applied to clinical decision support systems in any application domain.

  19. Breast cancer management: Past, present and evolving

    Directory of Open Access Journals (Sweden)

    M Akram

    2012-01-01

    Full Text Available Breast cancer is known from ancient time,and the treatment strategy evolved as our understanding of the disease changed with time. In 460 BC Hippocrates described breast cancer as a humoral disease and presently after a lot of studies breast cancer is considered as a local disease with systemic roots. For most of the twentieth century Halsted radical mastectomy was the "established and standardized operation for cancer of the breast in all stages, early or late". New information about tumor biology and its behavior suggested that less radical surgery might be just as effective as the more extensive one. Eventually, with the use of adjuvant therapy likeradiation and systemic therapy, the extent of surgical resection in the breast and axilla got reduced further and led to an era of breast conservation. The radiation treatment of breast cancer has evolved from 2D to 3D Conformal and to accelarated partial breast irradiation, aiming to reduce normal tissue toxicity and overall treatment time. Systemic therapy in the form of hormone therapy, chemotherapy and biological agents is now a well-established modality in treatment of breast cancer. The current perspective of breast cancer management is based on the rapidly evolving and increasingly integrated study on the genetic, molecular , biochemical and cellular basis of disease. The challenge for the future is to take advantage of this knowledge for the prediction of therapeutic outcome and develop therapies and rapidly apply more novel biologic therapeutics.

  20. MR-guided laser-induced thermotherapy with a cooled power laser system: a case report of a patient with a recurrent carcinoid metastasis in the breast

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, Thomas J.; Mack, Martin G.; Straub, Ralf; Eichler, Katrin; Zangos, Stephan; Engelmann, Kerstin; Hochmuth, Kathrin; Ballenberger, Sabine; Jacobi, Volkmar; Diebold, Thomas [Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main (Germany)

    2002-07-01

    We report a case of a 52-year-old woman with a palpable recurrent metastasis of a neuroendocrine carcinoma to the upper outer quadrant of the right breast. For the treatment of this lesion, MR-guided laser-induced thermotherapy was performed with a cooled power laser system (Nd:YAG-Laser). An open 0.2-T MR unit was used for the monitoring of the laser energy delivery to the breast; thus, a thermosensitive fast low-angle shot 2D sequence for MR thermometry was used, so the ablation of the tumor and the increase of laser-induced necrosis could be interactively visualized with the repetitive use of this sequence. The postinterventional MR control exams 1 day and 4 months after laser-induced thermotherapy at the 1.5-T MR unit (Magnetom Symphony Quantum, Siemens, Erlangen, Germany) verified the complete ablation of the tumor without any signs of residual or relapsing tumor. (orig.)

  1. Breast Cancer Computer Aided Identification System Development on Matlab%基于Matlab的乳腺癌计算机辅助识别系统的开发

    Institute of Scientific and Technical Information of China (English)

    顾成扬; 张瑞娟

    2011-01-01

    Breast cancer computer auxiliary identification technology, is based on medical image in the region of interest ( ROI ) detection,location and feature extraction,access to lesions of the relevant information,the use of. artificial intelligence method to make classification.This system is in the Windows XP operating system development using Matlab7.1,objective is to facilitate clinicians on breast tumor image information (B ultrasound image ) for lesion localization and image analysis,to achieve the accurate diagnosis of breast cancer.%乳腺癌计算机辅助识别技术,是通过对医学影像中感兴的区域(ROI)的检测,定位和特征提取,获得病灶的相关信息,运用人工智能的方法作出分类识别。本系统是在Windowsxp操作系统下采用Matlab7.1开发的,目的是方便临床医生对乳腺肿瘤的影像资料(B超图)进行病灶定位和图像分析,实现对乳腺癌的准确诊断。

  2. A New Septum in the Female Breast

    Science.gov (United States)

    Awad, Mostafa Abdel Rahman; Sherif, Mahmoud Magdi; Sadek, Eaman Yahya; Hamid, Wafaa Raafat Abdel

    2017-01-01

    Background Understanding the female breast fascial system is of paramount importance in breast surgery. Little was written about breast ligaments. Most articles refer to Cooper's work without further anatomical studies. Lately, a horizontal septum has been described conveying nerves and vessels to the nipple areola complex. Methods During the surgical dissection of the lower part of the breast, in supero-medial technique for breast reduction operations, a fascial septum between the lower two quadrants was detected. This fibrous septum was studied through anatomic dissection of breast tissues during routine breast reshaping procedures that was done on 30 female patients. Magnetic resonance imaging (MRI) was performed preoperatively in all cases and correlated with the intraoperative findings. In the other five cases, outside the clinical study, the imaging was done during routine investigation for breast swellings. Results A vertical septum was identified in the lower part of the breast, lying at the breast meridian between the two lower quadrants. It is a tough bi-laminated structure that extends from the middle of the infra-mammary crease caudally to nipple-areola complex cranially and from the pectoral fascia posteriorly to the overlying skin anteriorly. This was proved by MRI findings. Conclusions This study describes a new inferior vertical septum which separates the lower half of the breast into two definite anatomical compartments: medial and lateral. PMID:28352598

  3. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    Science.gov (United States)

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  4. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: a systemic toxicity assay.

    Science.gov (United States)

    Peixoto, Raphael Cândido Apolinário; Miranda-Vilela, Ana Luisa; de Souza Filho, José; Carneiro, Marcella Lemos' Brettas; Oliveira, Ricardo G S; da Silva, Matheus Oliveira; de Souza, Aparecido R; Báo, Sônia Nair

    2015-05-01

    Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.

  5. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice.

    Directory of Open Access Journals (Sweden)

    Maria Laura Polo

    Full Text Available BACKGROUND: A significant proportion of breast cancer patients face failure of endocrine therapy due to the acquisition of endocrine resistance. We have explored mechanisms involved in such disease progression by using a mouse breast cancer model that is induced by medroxyprogesterone acetate (MPA. These tumors transit through different stages of hormone sensitivity. However, when cells from tumor variants were seeded on plastic, all were stimulated by progestins and inhibited by antiprogestins such as RU486. Furthermore, cells from a RU486-resistant tumor variant recovered antiprogestin sensitivity. HYPOTHESIS: A three-dimensional (3D culture system, by maintaining differential cellular organization that is typical of each tumor variant, may allow for the maintenance of particular hormone responses and thus be appropriate for the study of the effects of specific inhibitors of signaling pathways associated with disease progression. METHOD: We compared the behavior of tumors growing in vivo and cancer cells ex vivo (in 3D Matrigel. In this system, we evaluated the effects of kinase inhibitors and hormone antagonists on tumor growth. PRINCIPAL FINDINGS: LY294002, a PI3K/AKT pathway inhibitor, decreased both tumor growth in vivo and cell survival in Matrigel in MPA-independent tumors with higher AKT activity. Induction of cell death by anti-hormones such as ICI182780 and ZK230211 was more effective in MPA-dependent tumors with lower AKT activity. Inhibition of MEK with PD98059 did not affect tumor growth in any tested variant. Finally, while Matrigel reproduced differential responsiveness of MPA-dependent and -independent breast cancer cells, it was not sufficient to preserve antiprogestin resistance of RU486-resistant tumors. CONCLUSION: We demonstrated that the PI3K/AKT pathway is relevant for MPA-independent tumor growth. Three-dimensional cultures were useful to test the effects of kinase inhibitors on breast cancer growth and highlight the

  6. Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system.

    Directory of Open Access Journals (Sweden)

    Nicholas C D'Amato

    Full Text Available Breast cancers with a basal-like gene signature are primarily triple-negative, frequently metastatic, and carry a poor prognosis. Basal-like breast cancers are enriched for markers of breast cancer stem cells as well as markers of epithelial-mesenchymal transition (EMT. While EMT is generally thought to be important in the process of metastasis, in vivo evidence of EMT in human disease remains rare. Here we report a novel model of human triple-negative breast cancer, the DKAT cell line, which was isolated from an aggressive, treatment-resistant triple-negative breast cancer that demonstrated morphological and biochemical evidence suggestive of phenotypic plasticity in the patient. The DKAT cell line displays a basal-like phenotype in vitro when cultured in serum-free media, and undergoes phenotypic changes consistent with EMT/MET in response to serum-containing media, a unique property among the breast cancer cell lines we tested. This EMT is marked by increased expression of the transcription factor Zeb1, and Zeb1 is required for the enhanced migratory ability of DKAT cells in the mesenchymal state. DKAT cells also express progenitor-cell markers, and single DKAT cells are able to generate tumorspheres containing both epithelial and mesenchymal cell types. In vivo, as few as ten DKAT cells are capable of forming xenograft tumors which display a range of epithelial and mesenchymal phenotypes. The DKAT model provides a novel model to study the molecular mechanisms regulating phenotypic plasticity and the aggressive biology of triple-negative breast cancers.

  7. Could a Computer Someday Guide Breast Cancer Care?

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162465.html Could a Computer Someday Guide Breast Cancer Care? 'Watson Oncology' agreed ... Dec. 9, 2016 (HealthDay News) -- An artificially intelligent computer system is making breast cancer treatment recommendations on ...

  8. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Directory of Open Access Journals (Sweden)

    Irma Edith Carranza-Torres

    2015-01-01

    Full Text Available Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of ​​intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control decreased significantly (P<0.05; however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.

  9. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Science.gov (United States)

    Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Coronado-Martínez, Consuelo; Bañuelos-García, José Inocente; Viveros-Valdez, Ezequiel; Morán-Martínez, Javier; Carranza-Rosales, Pilar

    2015-01-01

    Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor. PMID:26075250

  10. Estimation of mean-glandular dose from monitoring breast entrance skin air kerma using a high sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeter system in mammography.

    Science.gov (United States)

    Dong, S L; Chu, T C; Lee, J S; Lan, G Y; Wu, T H; Yeh, Y H; Hwang, J J

    2002-12-01

    Estimation of mean-glandular dose (MGD) has been investigated in recent years due to the potential risks of radiation-induced carcinogenesis associated with the mammographic examination for diagnostic radiology. In this study, a new technique for immediate readout of breast entrance skin air kerma (BESAK) using high sensitivity MOSFET dosimeter after mammographic projection was introduced and a formula for the prediction of tube output with exposure records was developed. A series of appropriate conversion factors was applied to the MGD determination from the BESAK. The study results showed that signal response of the high sensitivity MOSFET exhibited excellent linearity within mammographic dose ranges, and that the energy dependence was less than 3% for each anode/filter combination at the tube potentials 25-30 kV. Good agreement was observed between the BESAK and the tube exposure output measurement for breasts thicker than 30 mm. In addition, the air kerma estimated from our prediction formula provided sufficient accuracy for thinner breasts. The average MGD from 120 Asian females was 1.5 mGy, comparable to other studies. Our results suggest that the high sensitivity MOSFET dosimeter system is a good candidate for immediately readout of BESAK after mammographic procedures.

  11. Locoregional Failure in Early-Stage Breast Cancer Patients Treated With Radical Mastectomy and Adjuvant Systemic Therapy: Which Patients Benefit From Postmastectomy Irradiation?

    Energy Technology Data Exchange (ETDEWEB)

    Trovo, Marco, E-mail: marcotrovo33@hotmail.com [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Durofil, Elena [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Polesel, Jerry [Department of Epidemiology and Biostatistics, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Roncadin, Mario [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Perin, Tiziana [Department of Pathology, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Mileto, Mario; Piccoli, Erica [Department of Surgery, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Quitadamo, Daniela [Scientific Direction, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Massarut, Samuele [Department of Surgery, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Carbone, Antonino [Department of Pathology, Centro di Riferimento Oncologico of Aviano, Aviano (Italy); Trovo, Mauro G. [Department of Radiation Oncology, Centro di Riferimento Oncologico of Aviano, Aviano (Italy)

    2012-06-01

    Purpose: To assess the locoregional failure in patients with Stage I-II breast cancer treated with radical mastectomy and to evaluate whether a subset of these patients might be at sufficiently high risk of locoregional recurrence (LRR) to benefit from postmastectomy irradiation (PMRT). Methods and Materials: Stage I-II breast cancer patients (n = 150) treated with radical mastectomy without adjuvant irradiation between 1999 and 2005 were analyzed. The pattern of LRR was reported. Kaplan-Meier analysis was used to calculate rates of LRR, and Cox proportional hazards methods were used to evaluate potential risk factors. Results: Median follow-up was 75 months. Mean patient age was 56 years. One-hundred forty-three (95%) patients received adjuvant systemic therapy: 85 (57%) hormonal therapy alone, 14 (9%) chemotherapy alone, and 44 (29%) both chemotherapy and hormonal therapy. Statistically significant factors associated with increased risk of LRR were premenopausal status (p = 0.004), estrogen receptor negative cancer (p = 0.02), pathologic grade 3 (p = 0.02), and lymphovascular invasion (p = 0.001). T and N stage were not associated with increased risk of regional recurrence. The 5-year LRR rate for patients with zero or one, two, three, and four risk factors was 1%, 10.3%, 24.2%, and 75%, respectively. Conclusions: A subset of patients with early-stage breast cancer is at high risk of LRR, and therefore PMRT might be beneficial.

  12. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    Science.gov (United States)

    Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.

    2014-03-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.

  13. A randomized controlled trial comparing primary tumour resection plus systemic therapy with systemic therapy alone in metastatic breast cancer (PRIM-BC): Japan Clinical Oncology Group Study JCOG1017.

    Science.gov (United States)

    Shien, Tadahiko; Nakamura, Kenichi; Shibata, Taro; Kinoshita, Takayuki; Aogi, Kenjiro; Fujisawa, Tomomi; Masuda, Norikazu; Inoue, Kenichi; Fukuda, Haruhiko; Iwata, Hiroji

    2012-10-01

    This trial is being conducted to confirm the superiority, in terms of overall survival, of primary tumour resection plus systemic therapy to systemic therapy alone in patients with Stage IV breast cancer who are not refractory to primary systemic therapy. The inclusion criteria for the study are as follows: untreated patients with histologically confirmed invasive breast cancer with one or more measurable metastatic lesions diagnosed by radiological examination. All patients receive primary systemic therapy according to the estrogen receptor and human epidermal growth factor receptor type-2 status of the primary breast cancer after the first registration. After 3 months, the patients without disease progression are randomized to the primary tumour resection plus systemic therapy arm or the systemic therapy alone arm. The primary endpoint is the overall survival, and the secondary endpoints are proportion of patients without tumour progression at the metastatic sites, yearly local recurrence-free survival, proportion of local ulcer/local bleeding, yearly primary tumour resection-free survival, adverse events of chemotherapy, operative morbidity and serious adverse events. The patient recruitment was commenced in May 2011. Enrolment of 410 patients for randomization is planned over a 5 year recruitment period. We hereby report the details of the study.

  14. Risk of treatment-related esophageal cancer among breast cancer survivors

    DEFF Research Database (Denmark)

    Morton, L M; Gilbert, E S; Hall, P

    2012-01-01

    Radiotherapy for breast cancer may expose the esophagus to ionizing radiation, but no study has evaluated esophageal cancer risk after breast cancer associated with radiation dose or systemic therapy use.......Radiotherapy for breast cancer may expose the esophagus to ionizing radiation, but no study has evaluated esophageal cancer risk after breast cancer associated with radiation dose or systemic therapy use....

  15. Breast awareness and screening.

    Science.gov (United States)

    Harmer, Victoria

    Breast cancer is the most commonly diagnosed cancer in the UK. Breast awareness and screening, along with better treatment, can significantly improve outcomes, and more women than ever are now surviving the disease. This article discusses breast awareness and screening, symptoms and risk factors for breast cancer, and how nurses can raise breast awareness and screening uptake.

  16. Breast thermography. A prognostic indicator for breast cancer survival.

    Science.gov (United States)

    Isard, H J; Sweitzer, C J; Edelstein, G R

    1988-08-01

    A prognostic classification for thermographic staging of breast cancer has been applied to a cohort of 70 patients from 5040 screenees enrolled in the Albert Einstein Medical Center (AEMC) Breast Cancer Detection Demonstration Project (BCDDP). A diagnosis of breast cancer was established in each case before December 31, 1980. None of the patients have been lost to follow-up which extended from a minimum of 6 to a maximum of 13 years. Survival rates for those with favorable, equivocal, and poor thermographic factors are compared with each other and with results in accordance with tumor-node-metastasis (TNM) classification. As of December 31, 1986, there have been 22 (31.4%) deaths, all attributed to breast cancer. The thermographic scoring system clearly shows shorter survival for patients with poor thermographic prognostic factors, 30% surviving at 5 years and only 20% at 10 years compared with overall survival of 80% at 5 years and 70% at 10 years.

  17. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.

    Science.gov (United States)

    Shu, Dan; Li, Hui; Shu, Yi; Xiong, Gaofeng; Carson, William E; Haque, Farzin; Xu, Ren; Guo, Peixuan

    2015-10-27

    MicroRNAs play important roles in regulating the gene expression and life cycle of cancer cells. In particular, miR-21, an oncogenic miRNA is a major player involved in tumor initiation, progression, invasion and metastasis in several cancers, including triple negative breast cancer (TNBC). However, delivery of therapeutic miRNA or anti-miRNA specifically into cancer cells in vivo without collateral damage to healthy cells remains challenging. We report here the application of RNA nanotechnology for specific and efficient delivery of anti-miR-21 to block the growth of TNBC in orthotopic mouse models. The 15 nm therapeutic RNA nanoparticles contains the 58-nucleotide (nt) phi29 pRNA-3WJ as a core, a 8-nt sequence complementary to the seed region of miR-21, and a 39-nt epidermal growth factor receptor (EGFR) targeting aptamer for internalizing RNA nanoparticles into cancer cells via receptor mediated endocytosis. The RNase resistant and thermodynamically stable RNA nanoparticles remained intact after systemic injection into mice and strongly bound to tumors with little or no accumulation in healthy organs 8 h postinjection, and subsequently repressed tumor growth at low doses. The observed specific cancer targeting and tumor regression is a result of several key attributes of RNA nanoparticles: anionic charge which disallows nonspecific passage across negatively charged cell membrane; "active" targeting using RNA aptamers which increases the homing of RNA nanoparticles to cancer cells; nanoscale size and shape which avoids rapid renal clearance and engulfment by lung macrophages and liver Kupffer cells; favorable biodistribution profiles with little accumulation in healthy organs, which minimizes nonspecific side effects; and favorable pharmacokinetic profiles with extended in vivo half-life. The results demonstrate the clinical potentials of RNA nanotechnology based platform to deliver miRNA based therapeutics for cancer treatment.

  18. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used to ...

  19. SU-E-T-317: The Development of a DIBH Technique for Left Sided Breast Patients Undergoing Radiation Therapy Utilizing Varians RPM System in a Community Hospital

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, B; Young, M; Workie, D; Geraghty, C [Anne Arundel Medical Center, Annapolis, MD (United States)

    2014-06-01

    Purpose: To develop and implement a Deep Inhalation Breath Hold program (DIBH) for treatment of patients with Left-sided breast cancer in a community hospital. Methods: All patients with left sided breast cancer underwent a screening free breathing CT. Evaluation of the conventional tangent treatment fields and the heart was conducted. If the heart would not be excluded using tangents, the patient then received DIBH breathe coaching. The patients returned for a 4D CT simulation. The patients breathing cycle was monitored using the Varian Real-Time position ManagementTM (RPM) system to assess duration of DIBH, amplitude, phase and recovery time to normal breathing. Then a DIBH CT was obtained at the desired amplitude. Duplicate plans were developed for both free breathing and DIBH on the Eclipse planning system and comparison DVH's were created. The plan that provided the prescribed treatment coverage and the least doses to the OAR (heart, Lt. Lung) was determined. Those patients selected to receive treatment with DIBH were set up for treatment, and breathing was monitored using the RPM system. Practice trials were used to confirm that the amplitude, phase and recovery were consistent with findings from simulation. Results: 10 patients have been treated using the DIBH procedure in our clinic. The DIBH patients had an average increase of 80% lung volume on DIBH, decreased lung volume receiving 50% of the dose, and decreases in the V20 dose. Significant reduction in the maximum and mean dose to the heart, as well as the dose to 1CC of the volume for the DIBH plans. Conclusion: Using the RPM system already available in the clinic, staff training, and patient coaching a simple DIBH program was setup. The use of DIBH has shown promise in reducing doses to the critical organs while maintaining PTV coverage for left sided breast treatments.

  20. Affluence and Breast Cancer.

    Science.gov (United States)

    Lehrer, Steven; Green, Sheryl; Rosenzweig, Kenneth E

    2016-09-01

    High income, high socioeconomic status, and affluence increase breast cancer incidence. Socioeconomic status in USA breast cancer studies has been assessed by block-group socioeconomic measures. A block group is a portion of a census tract with boundaries that segregate, as far as possible, socioeconomic groups. In this study, we used US Census income data instead of block groups to gauge socioeconomic status of breast cancer patients in relationship with incidence, prognostic markers, and survival. US state breast cancer incidence and mortality data are from the U.S. Cancer Statistics Working Group, United States Cancer Statistics: 1999-2011. Three-Year-Average Median Household Income by State, 2010 to 2012, is from the U.S. Census Bureau, Current Population Survey, 2011 to 2013 Annual Social and Economic Supplements. County incomes are from the 2005-2009 American Community Survey of the U.S. Census Bureau. The American Community Survey is an ongoing statistical survey that samples a small percentage of the population yearly. Its purpose is to provide communities the information they need to plan investments and services. Breast cancer county incidence and survival data are from the National Cancer Institute's Surveillance, Epidemiology and End Results Program (SEER) data base. We analyzed SEER data from 198 counties in California, Connecticut, Georgia, Hawaii, Iowa, New Mexico, Utah, and Washington. SEER uses the Collaborative Stage (CS) Data Collection System. We have retained the SEER CS variables. There was a significant relationship of income with breast cancer incidence in 50 USA states and the District of Columbia in White women (r = 0.623, p breast cancer. Income was not correlated with 5-year survival of Black race (p = 0.364) or other races (p = 0.624). The multivariate general linear model with income as covariate, 5-year survival by race as a dependent variable, showed a significant effect of income and White race on 5-year survival (p breast cancer

  1. Observer-model optimization of X-ray system in photon-counting breast imaging

    Science.gov (United States)

    Cederström, Björn; Fredenberg, Erik; Lundqvist, Mats; Ericson, Tove; Åslund, Magnus

    2011-08-01

    An ideal-observer model is applied to optimize the design of an X-ray tube intended for use in a multi-slit scanning photon-counting mammography system. The design is such that the anode and the heel effect are reversed and the projected focal spot is smallest at the chest wall. Using linear systems theory, detectability and dose efficiency for a 0.1-mm disk are calculated for different focal spot sizes and anode angles. It is shown that the image acquisition time can be reduced by about 25% with spatial resolution and dose efficiency improved near the chest wall and worsened further away. The image quality is significantly more homogeneous than for the conventional anode orientation, both with respect to noise and detectability of a small object. With the tube rotated 90∘, dose efficiency can be improved by 20% for a fixed image acquisition time.

  2. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    Science.gov (United States)

    2011-08-01

    possibility that this type of strategy many hold promise to treat this disease. CB1 and CB2 Cannabinoid receptors ; fatty acid amide hydrolase...not applicable 4 INTRODUCTION: The endogenous cannabinoid (eCB) system consists of two G-protein coupled receptors (CB1 and CB2...treat emesis and nausea associated with cancer chemotherapeutic agents . Cannabinoid receptor agonists have been shown to alter tumor growth and

  3. Engineering Improvements in a Bacterial Therapeutic Delivery System for Breast Cancer

    Science.gov (United States)

    2010-09-01

    34, Cell Microbiol. 9:1529-37, 2007) or salicylic acid (Royo et al. "In vivo gene regulation in Salmonella spp . by a salicylate- 30 dependent control...14. ABSTRACT Serendipitously, the bacterium Salmonella ac cumulates 100 0-fold m ore in tum ors than in normal tissue and we have shown that... Salmonella som etimes cures cancer in anim al m odels. W e wished to im prove Salmonella as a therapeutic system for cancer. In this firs t funding

  4. G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer?

    OpenAIRE

    Rodrigues-Ferreira, Sylvie; Nahmias, Clara

    2015-01-01

    G-protein coupled receptors (GPCRs) constitute the largest family of membrane receptors, with high potential for drug discovery. These receptors can be activated by a panel of different ligands including ions, hormones, small molecules, and vasoactive peptides. Among those, angiotensins [angiotensin II (AngII) and angiotensin 1–7] are the major biologically active products of the classical and alternative renin-angiotensin system (RAS). These peptides bind and activate three different subtype...

  5. Breast reduction

    Science.gov (United States)

    ... may need a mammogram before the surgery. Your plastic surgeon will do a routine breast exam. You may ... the first year, but will then fade. The surgeon will make every ... the scars should not be noticeable, even in low-cut clothing.

  6. Breast cancer

    CERN Multimedia

    2002-01-01

    "Cancer specialists will soon be able to compare mammograms with computerized images of breast cancer from across Europe, in a bid to improve diagnosis and treatment....The new project, known as MammoGrid, brings together computer and medical imaging experts, cancer specialists, radiologists and epidemiologists from Bristol, Oxford, Cambridge, France and Italy" (1 page).

  7. Breast Lift (Mastopexy)

    Science.gov (United States)

    ... fuller and heavier. This stretching might contribute to sagging breasts after pregnancy — whether or not you breast- ... stretch and sag. A breast lift can reduce sagging and raise the position of the nipples and ...

  8. Breast Cancer Treatment

    Science.gov (United States)

    ... Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  9. Breast reconstruction - implants

    Science.gov (United States)

    ... After a mastectomy , some women choose to have cosmetic surgery to remake their breast. This type of surgery ... to the breast or the new nipple. Having cosmetic surgery after breast cancer can improve your sense of ...

  10. Male Breast Cancer

    Science.gov (United States)

    ... breast cancer include exposure to radiation, a family history of breast cancer, and having high estrogen levels, which can happen with diseases like cirrhosis or Klinefelter's syndrome. Treatment for male breast cancer is usually ...

  11. Breast Cancer Disparities

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  12. Multi-agent System for Obtaining Relevant Genes in Expression Analysis between Young and Older Women with Triple Negative Breast Cancer.

    Science.gov (United States)

    González-Briones, Alfonso; Ramos, Juan; De Paz, Juan Francisco; Corchado, Juan Manuel

    2015-10-21

    Triple negative breast cancer is an aggressive form of breast cancer. Despite treatment with chemotherapy, relapses are frequent and response to these treatments is not the same in younger women as in older women. Therefore, the identification of genes that cause this difference is required. The identification of therapeutic targets is one of the sought after goals to develop new drugs. Within the range of different hybridization techniques, the developed system uses expression array analysis to measure the expression of the signal levels of thousands of genes in a given sample. Probesets of Gene 1.0 ST GeneChip arrays provide categorical genome transcript coverage, providing a measurement of the expression level of the sample. This paper proposes a multi-agent system to manage information of expression arrays, with the goal of providing an intuitive system that is also extensible to analyze and interpret the results. The roles of agent integrate different types of techniques, statistical and data mining methods that select a set of genes, searching techniques that find pathways in which such genes participate, and an information extraction procedure that applies a CBR system to check if these genes are involved in the disease.

  13. Design, analysis and control of a novel tendon-driven magnetic resonance-guided robotic system for minimally invasive breast surgery.

    Science.gov (United States)

    Jiang, Shan; Lou, Jinlong; Yang, Zhiyong; Dai, Jiansheng; Yu, Yan

    2015-09-01

    Biopsy and brachytherapy for small core breast cancer are always difficult medical problems in the field of cancer treatment. This research mainly develops a magnetic resonance imaging-guided high-precision robotic system for breast puncture treatment. First, a 5-degree-of-freedom tendon-based surgical robotic system is introduced in detail. What follows are the kinematic analysis and dynamical modeling of the robotic system, where a mathematic dynamic model is established using the Lagrange method and a lumped parameter tendon model is used to identify the nonlinear gain of the tendon-sheath transmission system. Based on the dynamical models, an adaptive proportional-integral-derivative controller with friction compensation is proposed for accurate position control. Through simulations using different sinusoidal input signals, we observe that the sinusoidal tracking error at 1/2π Hz is 0.41 mm. Finally, the experiments on tendon-sheath transmission and needle insertion performance are conducted, which show that the insertion precision is 0.68 mm in laboratory environment.

  14. Development and Optimization of a Dedicated, Hybrid Dual-Modality SPECT-CmT System for Improved Breast Lesion Diagnosis

    Science.gov (United States)

    2009-01-01

    ERA OF HOPE ABSTRACT .................................................................. 15  APPENDIX D: AAPM ABSTRACT...presented at the 2008 Duke Cancer Comprehensive Cancer Center annual meeting, 2008 DOD BCRP Era of Hope Meeting, and 2008 AAPM (American Association of...Meeting and 2008 AAPM annual meeting (abstracts attached in Appendix C-D). The 2008 IEEE Medical Imaging Conference, 2008 Molecular Breast Cancer

  15. Novel Drug Delivery System Based on Docetaxel-Loaded Nanocapsules as a Therapeutic Strategy Against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Antonia Aránega

    2012-04-01

    Full Text Available In the field of cancer therapy, lipid n