WorldWideScience

Sample records for breast pet imaging

  1. Dedicated PET scanners for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, Richard; Karp, Joel S. [University of Pennsylvania, Department of Radiology, 110 Donner, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla. (author)

  2. Dedicated PET scanners for breast imaging.

    Science.gov (United States)

    Freifelder, R; Karp, J S

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  3. Dedicated PET scanners for breast imaging

    Science.gov (United States)

    Freifelder, Richard; Karp, Joel S.

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  4. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  5. 89Zr-bevacizumab PET imaging in primary breast cancer

    NARCIS (Netherlands)

    Gaykema, Sietske B M; Brouwers, Adrienne H; Lub-de Hooge, Marjolijn N; Pleijhuis, Rick G; Timmer-Bosscha, Hetty; Pot, Linda; van Dam, Gooitzen M; van der Meulen, Sibylle B; de Jong, Johan R; Bart, Joost; de Vries, Jakob; Jansen, Liesbeth; de Vries, Elisabeth G. E.; Schröder, Carolien P; de Vries, J

    2013-01-01

    UNLABELLED: Vascular endothelial growth factor (VEGF)-A is overexpressed in most malignant and premalignant breast lesions. VEGF-A can be visualized noninvasively with PET imaging and using the tracer (89)Zr-labeled bevacizumab. In this clinical feasibility study, we assessed whether VEGF-A in prima

  6. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  7. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  8. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dregely, Isabel [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Department of Radiological Sciences, Los Angeles, CA (United States); Lanz, Titus; Mueller, Matthias F. [Rapid Biomedical GmbH, Rimpar (Germany); Metz, Stephan [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer diagnostische und interventionelle Radiologie, Munich (Germany); Kuschan, Marika [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); IMETUM, Technische Universitaet Muenchen, Munich (Germany); Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Bundschuh, Ralph A. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Universitaetsklinikum Bonn, Nuklearmedizinische Klinik, Bonn (Germany); Haase, Axel [IMETUM, Technische Universitaet Muenchen, Munich (Germany)

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative {sup 18} F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  9. Trends in PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  10. FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, K.; Seemann, M.D. [Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Strasse 22, 81675, Munich (Germany); Walter, C. [Department of Diagnostic Radiology, Krankenhaus der Barmherzigen Brueder, Trier (Germany)

    2004-06-01

    Mammography is the primary imaging modality for screening of breast cancer and evaluation of breast lesions (T staging). Ultrasonography is an adjunctive tool for mammographically suspicious lesions, in patients with mastopathy and as guidance for reliable histological diagnosis with percutaneous biopsy. Dynamic enhanced magnetic resonance mammography (MRM) has a high sensitivity for the detection of breast cancer, but also a high false positive diagnosis rate. In the literature, MRM is reported to have a sensitivity of 86-96%, a specificity of 64-91%, an accuracy of 79-93%, a positive predictive value (PPV) of 77-92% and a negative predictive value (NPV) of 75-94%. In unclarified cases, metabolic imaging using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) can be performed. In the literature, FDG PET is reported to have a sensitivity of 64-96%, a specificity of 73-100%, an accuracy of 70-97%, a PPV of 81-100% and an NPV of 52-89%. Furthermore, PET or PET/CT using FDG has an important role in the assessment of N and M staging of breast cancer, the prediction of tumour response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy, and the differentiation of scar and cancer recurrence. Other functional radionuclide-based diagnostic tools, such as scintimammography with sestamibi, peptide scintigraphy or immunoscintigraphy, have a lower accuracy than FDG PET and, therefore, are appropriate only for exceptional indications. (orig.)

  11. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    CERN Document Server

    Dang, J; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Soni...

  12. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yicheng; Peng, Hao, E-mail: penghao@mcmaster.ca

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm{sup 3}, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of ∼1.6 mm (2.2×2.2×20 mm{sup 3} crystal) and ∼0.77 mm (1×1×20 mm{sup 3} crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2–3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  13. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of 1.6 mm (2.2×2.2×20 mm3 crystal) and 0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  14. Profiling EGFR in Triple Negative Breast Tumor Using Affibody PET Imaging

    Institute of Scientific and Technical Information of China (English)

    Yingding Xu; Gang Ren; Shibo Qi; Zhen Cheng

    2016-01-01

    Objective Triple negative breast cancer(TNBC) represents a group of refractory breast cancers with aggressive clinical manifestations as well as poor prognoses.Human epidermal growth factor receptor(EGFR) expression is strongly associated with TNBC progression and it may serve as a therapeutic target for TNBC.We aimed to evaluate EGFR affibody-based PET imaging to profile EGFR expression in small animal models.Methods 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA) conjugated Ac-Cys-ZEGFR:1907 was chemically synthesized using solid phase peptide synthesizer and then radiolabeled with 64Cu.The in vitro cell uptake study was performed using SUM159 and MCF7 cells.The biodistribution and small animal PET imaging using 64Cu-DOTA-ZEGFR:1907 were further carried out with nude mice bearing subcutaneous MDA-MB-231 and SUM159 tumors.Results DOTA-Ac-Cys-ZEGFR:1907 was successfully synthesized and radiolabeled with 64Cu.Biodistribution study showed that tumor uptake value of 64Cu-DOTA-Ac-Cys-ZEGFR:1907 remained at(4.07±0.93)%ID/g at 24 h in nude mice(n=4) bearing SUM159 xenografts.Furthermore,small animal PET imaging study clearly showed that 64Cu-DOTA-Ac-Cys-ZEGFR:1907 specifically delineated the EGFR positive TNBC tumors at 4 h or later.Conclusion The study demonstrates that 64Cu-DOTA-Ac-Cys-ZEGFR:1907 is a promising molecular probe for PET imaging of EGFR positive TNBC.EGFR based small protein scaffold holds great promise as a novel platform that can be used for EGFR profiling of TNBC.

  15. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, C.; Heusner, T.A. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); University of Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Herrmann, J.; Hahn, S.; Lauenstein, T. [University of Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Nagarajah, J.; Bockisch, A. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Hecktor, J.; Kuemmel, S. [University of Duisburg-Essen, Medical Faculty, Department of Gynecology and Obstetrics, Essen (Germany); Otterbach, F. [University of Duisburg-Essen, Institute of Pathology and Neuropathology, Essen (Germany); Antoch, G. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany)

    2012-05-15

    This retrospective study aimed (1) to compare the diagnostic accuracy of whole-body FDG PET/CT for initial breast cancer staging with the accuracy of a conventional, multimodal imaging algorithm, and (2) to assess potential alteration in patient management based on the FDG PET/CT findings. Patients with primary breast cancer (106 women, mean age 57 {+-} 13 years) underwent whole-body FDG PET/CT and conventional imaging (X-ray mammography, MR mammography, chest plain radiography, bone scintigraphy and breast, axillary and liver ultrasonography). The diagnostic accuracies of FDG PET/CT and a conventional algorithm were compared. Diagnostic accuracy was assessed in terms of primary tumour detection rate, correct assessment of primary lesion focality, T stage and the detection rates for lymph node and distant metastases. Histopathology, imaging or clinical follow-up served as the standards of reference. FDG PET/CT was significantly more accurate for detecting axillary lymph node and distant metastases (p = 0.0125 and p < 0.005, respectively). No significant differences were detected for other parameters. Synchronous tumours or locoregional extraaxillary lymph node or distant metastases were detected in 14 patients (13%) solely by FDG PET/CT. Management of 15 patients (14%) was altered based on the FDG PET/CT findings, including 3 patients with axillary lymph node metastases, 5 patients with extraaxillary lymph node metastases, 4 patients with distant metastases and 3 patients with synchronous malignancies. Full-dose, intravenous contrast-enhanced FDG PET/CT was more accurate than conventional imaging for initial breast cancer staging due to the higher detection rate of metastases and synchronous tumours, although the study had several limitations including a retrospective design, a possible selection bias and a relevant false-positive rate for the detection of axillary lymph node metastases. FDG PET/CT resulted in a change of treatment in a substantial proportion of

  16. PET/SPECT/CT multimodal imaging in a transgenic mouse model of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boisgard, R.; Alberini, J.L.; Jego, B.; Siquier, K.; Theze, B.; Guillermet, S.; Tavitian, B. [Service Hospitalier Frederic Joliot, Institut d' Imagerie BioMedicale, CEA, 91 - Orsay (France); Inserm, U803, 91 - Orsay (France)

    2008-02-15

    Background. - In the therapy monitoring of breast cancer, conventional imaging methods include ultrasound, mammography, CT and MRI, which are essentially based on tumor size modifications. However these modifications represent a late consequence of the biological response and fail to differentiate scar or necrotic tissue from residual viable tumoral tissue. Therefore, a current objective is to develop tools able to predict early response to treatment. Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are imaging modalities able to provide extremely sensitive quantitative molecular data and are widely used in humans and animals. Results. - Mammary epithelial cells of female transgenic mice expressing the polyoma middle T onco-protein (Py M.T.), undergo four distinct stages of tumour progression, from pre malignant to malignant stages. Stages are identifiable in the mammary tissue and can lead to the development of distant metastases Longitudinal studies by dynamic whole body acquisitions by multimodal imaging including PET, SPECT and Computed Tomography (CT) allow following the tumoral evolution in Py M.T. mice in comparison with the histopathological analysis. At four weeks of age, mammary hyperplasia was identified by histopathology, but no abnormalities were found by palpation or detected by PET with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose. Such as in some human mammary cancers, the sodium iodide sym-porter (N.I.S.) in tumoral mammary epithelial cells is expressed in this mouse model. In order to investigate the expression of N.I.S. in the Py M.T. mice mammary tumours, [{sup 99m}Tc]TcO{sub 4} imaging was performed with a dedicated SPECT/CT system camera (B.I.O.S.P.A.C.E. Gamma Imager/CT). Local uptake of [{sup 99m}Tc]TcO{sub 4} was detected as early as four weeks of age. The efficacy of chemotherapy was evaluated in this mouse model using a conventional regimen (Doxorubicine, 100 mg/ kg) administered weekly from nine to

  17. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI; Multiparametrische und molekulare Bildgebung von Brusttumoren mit MRT und PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Memorial Sloan-Kettering Cancer Center, Department of Radiology, Molecular Imaging and Therapy Service, New York (United States); State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Marino, M.A. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Policlinico Universitario G. Martino, University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Messina (Italy); Meyer-Baese, A. [State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Helbich, T.H. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria)

    2016-07-15

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ({sup 1}H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ({sup 23}Na MRI), phosphorus spectroscopy ({sup 31}P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [German] Die Magnetresonanztomographie (MRT) der Brust ist ein etabliertes nichtinvasives bildgebendes Verfahren mit vielfaeltigen Indikationen. In den letzten Jahren wurden zahlreiche funktionelle MRT- und Positronenemissionstomographie(PET)-Parameter in der Brustbildgebung evaluiert, und ihre kombinierte Anwendung ist als multiparametrische Bildgebung definiert. Bisherige Daten legen nahe, dass die multiparametrische Bildgebung mit MRT und PET

  18. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.D. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain)]. E-mail: jormarp1@doctor.upv.es; Toledo, J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Esteve, R. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Sebastia, A. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Mora, F.J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Benlloch, J.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Fernandez, M.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, E.N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Lerche, Ch.W. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Pavon, N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Sanchez, F. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain)

    2005-07-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer.

  19. 64Cu-DOTA-Trastuzumab PET Imaging in Women with HER2-Overexpressing Breast Cancer

    Science.gov (United States)

    2013-10-01

    Breast Cancer. J Clin Oncol. May 20, 2006 2006;24(15):2276-2282. Williams L, Somlo G, Zhan J, et al. A pilot imaging trial of 111In- Herceptin in...metastat breast cancer patients receiving cold Herceptin therapy. Therapy with Antibodies and Immunoconjucates. 2008. Wong JYC, Raubitschek A, Yamauchi...labeled trastuzumab was prepared according to procedures defined in IND #109971. The antibody ( Herceptin , purchased from Genentech) was conjugated with

  20. Attenuation correction without transmission scan for the MAMMI breast PET

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, A., E-mail: soriano@ific.uv.es [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Institutos de Paterna. Catedratico Jose Beltran, 2. E-46980 Paterna (Spain); Gonzalez, A. [ONCOVISION (GEM-Imaging group), Valencia (Spain); Orero, A.; Moliner, L.; Carles, M.; Sanchez, F.; Benlloch, J.M. [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Institutos de Paterna. Catedratico Jose Beltran, 2. E-46980 Paterna (Spain); Correcher, C.; Carrilero, V.; Seimetz, M. [ONCOVISION (GEM-Imaging group), Valencia (Spain)

    2011-08-21

    Whole-body Positron Emission Tomography (PET) scanners are required in order to span large Fields of View (FOV). Therefore, reaching the sensitivity and spatial resolution required for early stage breast tumor detection is not straightforward. MAMMI is a dedicated breast PET scanner with a ring geometry designed to provide PET images with a spatial resolution as high as 1.5 mm, being able to detect small breast tumors (<1cm). The patient lays down in prone position during the scan, thus making possible to image the whole breast, up to regions close to the base of the pectoral without the requirement of breast compression. Attenuation correction (AC) for PET data improves the image quality and the quantitative accuracy of radioactivity distribution determination. In dedicated, high resolution breast cancer scanners, this correction would enhance the proper diagnosis in early disease stages. In whole-body PET scanners, AC is usually taken into account with the use of transmission scans, either by external radioactive rod sources or by Computed Tomography (CT). This considerably increases the radiation dose administered to the patient and time needed for the exploration. In this work we propose a method for breast shape identification by means of PET image segmentation. The breast shape identification will be used for the determination of the AC. For the case of a specific breast PET scanner the procedure we propose should provide AC similar to that obtained by transmission scans as we take advantage of the breast anatomical simplicity. Experimental validation of the proposed approach with a dedicated breast PET prototype is also presented. The main advantage of this method is an important dose reduction since the transmission scan is not required.

  1. Rapidly growing complex fibroadenoma with surrounding ductal hyperplasia mimics breast malignancy on serial F-18 FDG PET/CT imaging.

    Science.gov (United States)

    Makis, William; Ciarallo, Anthony; Hickeson, Marc; Derbekyan, Vilma

    2011-07-01

    A 30-year-old woman was referred for an F-18 fluorodeoxyglucose (FDG) PET/CT to rule out lymphoma, and was found to have an incidental FDG-avid right breast nodule that grew significantly in size and FDG uptake on a subsequent scan, raising suspicion of a growing breast malignancy. Histologic evaluation showed a complex fibroadenoma with adenosis and surrounding ductal hyperplasia. Although variable F-18 FDG uptake in fibroadenomas has been described, a distinction between simple and complex fibroadenomas has not been made in the PET literature, even though complex fibroadenomas have a higher propensity to develop into malignancies. This case shows that a rapidly growing complex fibroadenoma can mimic a breast malignancy on serial F-18 FDG PET/CT scans, showing significant increase in both size and FDG-avidity on follow-up studies.

  2. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hee; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, In Ae [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Han, Wonshik; Noh, Dong-Young [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of)

    2012-01-15

    To compare the use of diffusion-weighted MR imaging (DWI) and {sup 18}F-FDG PET/CT to predict pathological complete response (pCR) in breast cancer patients receiving neoadjuvant chemotherapy. Thirty-four women with 34 invasive breast cancers underwent DWI and PET/CT before and after chemotherapy and before surgery. The percentage changes in the apparent diffusion coefficient (ADC) and the standardised uptake value (SUV) were calculated, and the diagnostic performances for predicting pCR were evaluated using receiver operating characteristic (ROC) curve analysis. After surgery, 7/34 patients (20.6%) were found to have pCR. A{sub z} values for DWI, PET/CT and the combined use of DWI and PET/CT were 0.910, 0.873 and 0.944, respectively. The best cut-offs for differentiating pCR from non-pCR were a 54.9% increase in the ADC and a 63.9% decrease in the SUV. DWI showed 100% (7/7) sensitivity and 70.4% (19/27) specificity and PET/CT showed 100% sensitivity and 77.8% (21/27) specificity. When DWI and PET/CT were combined, there was a trend towards improved specificity compared with DWI. DWI and FDG PET/CT show similar diagnostic accuracy for predicting pCR to neoadjuvant chemotherapy in breast cancer patients. The combined use of DWI and FDG PET/CT has the potential to improve specificity in predicting pCR. (orig.)

  3. PET and PET/CT - relevance in breast cancer patients; PET und PET/CT - Stellenwert beim Mammakarzinom

    Energy Technology Data Exchange (ETDEWEB)

    Palmedo, H. [Klinik und Poliklinik fuer Nuklearmedizin, Universitaetsklinikum Bonn (Germany)

    2004-12-01

    Breast cancer is the most frequent malignant tumor of women in Germany. In spite of an increasing incidence mortality has slightly declined most likely due to improvements in diagnosis and therapy of the disease. FDG-PET has a high diagnostic accuracy for the detection of lymph node and distant metastases. However, PET is no alternative to axillary dissection or sentinel node biopsy because sensitivity for small lymph node metastases is limited. For N-staging, FDG-PET delivers valuable information if mammaria-interna or mediastinal lymph node disease has to be proven (1b-indication). Individually, PET can add important diagnostic information in patients with suspected distant metastases but unsuspicious or equivocal conventional imaging (2-indication). FDG-PET shows unique and favourable properties for early therapy monitoring during preoperative chemotherapy. Larger studies have to confirm these results. (orig.)

  4. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  5. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, M.C. [LIP, Lab. de Instrumentacao e Fisica Exp. Particulas (Portugal); Aguiar, D. [INESC-ID and INOV, Lisbon (Portugal); Albuquerque, E. [INEGI Inst. Eng. Mecanica Gestao Industrial, Porto (Portugal)] (and others)

    2007-02-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  6. Imaging patients with breast and prostate cancers using combined 18F NaF/18F FDG and TOF simultaneous PET/ MRI

    Energy Technology Data Exchange (ETDEWEB)

    Iagaru, Andrei; Minamimoto, Ryogo; Jamali, Mehran; Barkodhodari, Amir; Gambhir, Sanjiv Sam; Vasanawala, Shreyas [Stanford University, Department of Radiology, Division of Nuclear Medicine and Molecular Imaging (United States)

    2015-05-18

    Here we prospectively compared the combined 18F NaF/18F FDG PET/ MRI against 99mTc-MDP in patients with breast and prostate cancers. Twelve patients referred for 99mTc-MDP bone scans were prospectively enrolled from Oct 14 - Jan 15. The cohort included 6 men with prostate cancer and 6 women with breast cancer, 41 – 85 year-old (average 63 ± 15). 18F NaF (0.7-2.2 mCi, mean: 1.33 mCi) and 18F FDG (3.9-5.2 mCi, mean: 4.6 mCi) were subsequently injected from separate syringes. The PET/MRI was done 6-12 days (average 9.3 ± 3.2) after bone scan. The whole body MRI protocol consisted of T2-weighted, DWI, and contrast-enhanced T1-weighted imaging. Lesions detected with each test were tabulated and the results were compared. All patients tolerated the PET/MRI exam, and PET image quality was diagnostic despite the marked reduction in the administered dosage of radiopharmaceuticals (80% less for 18F NaF and 67% less for 18F FDG). Five patients had no bone metastases identified on either scans. Bone scintigraphy and PET/MRI showed osseous metastases in 7 patients, but more numerous bone findings were noted on PET/MRI than on bone scintigraphy in 3 patients. Lesions outside the skeleton were identified by PET/MRI in 2 patients. The combined 18F NaF/18F FDG PET/MRI is superior to 99mTc-MDP scintigraphy for evaluation of skeletal disease extent. Further, it detected extra- skeletal disease that may change the management of these patients, while allowing a significant reduction in radiation exposure from lower dosages of PET radiopharmaceuticals administered. A combination of 18F NaF/18F FDG PET/MRI may provide the most accurate staging of patients with breast and prostate cancers prior to the start of treatment.

  7. PET Imaging of Steroid Receptor Expression in Breast and Prostate Cancer

    NARCIS (Netherlands)

    Hospers, G. A. P.; Helmond, F. A.; Dierckx, R. A.; de Vries, Emma; de Vries, Erik

    2008-01-01

    The vast majority of breast and prostate cancers express specific receptors for steroid hormones, which play a pivotal role in tumor progression. Because of the efficacy of endocrine therapy combined with its relatively mild side-effects, this intervention has nowadays become the treatment of choice

  8. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    2014-01-01

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  9. {sup 18}F-FDG PET/CT imaging versus dynamic contrast-enhanced CT for staging and prognosis of inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Champion, Laurence; Edeline, Veronique; Giraudet, Anne-Laure; Wartski, Myriam [Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Service d' Oncologie Medicale, Saint-Cloud (France); Cherel, Pascal [Institut Curie, Hopital Rene Huguenin, Service de Radiologie, Saint-Cloud (France); Bellet, Dominique [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de medecine, Saint-Quentin-en-Yvelines (France)

    2013-08-15

    Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer with a poor prognosis. Locoregional staging is based on dynamic contrast-enhanced (DCE) CT or MRI. The aim of this study was to compare the performances of FDG PET/CT and DCE CT in locoregional staging of IBC and to assess their respective prognostic values. The study group comprised 50 women (median age: 51 {+-} 11 years) followed in our institution for IBC who underwent FDG PET/CT and DCE CT scans (median interval 5 {+-} 9 days). CT enhancement parameters were net maximal enhancement, net early enhancement and perfusion. The PET/CT scans showed intense FDG uptake in all primary tumours. Concordance rate between PET/CT and DCE CT for breast tumour localization was 92 %. No significant correlation was found between SUVmax and CT enhancement parameters in primary tumours (p > 0.6). PET/CT and DCE CT results were poorly correlated for skin infiltration (kappa = 0.19). Ipsilateral foci of increased axillary FDG uptake were found in 47 patients (median SUV: 7.9 {+-} 5.4), whereas enlarged axillary lymph nodes were observed on DCE CT in 43 patients. Results for axillary node involvement were fairly well correlated (kappa = 0.55). Nineteen patients (38 %) were found to be metastatic on PET/CT scan with a significant shorter progression-free survival than patients without distant lesions (p = 0.01). In the primary tumour, no statistically significant difference was observed between high and moderate tumour FDG uptake on survival, using an SUVmax cut-off of 5 (p = 0.7 and 0.9), or between high and low tumour enhancement on DCE CT (p > 0.8). FDG PET/CT imaging provided additional information concerning locoregional involvement to that provided by DCE CT on and allowed detection of distant metastases in the same whole-body procedure. Tumour FDG uptake or CT enhancement parameters were not correlated and were not found to have any prognostic value. (orig.)

  10. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from {sup 68}Ga-RGD PET/CT and {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai-Jeon [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Ewha Womans University School of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Chun, In Kook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kangwon National University Hospital, Department of Nuclear Medicine, Chuncheon, Kangwon-Do (Korea, Republic of); Cho, Nariya [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Jeong, Sunjoo [Dankook University, Department of Molecular Biology, Yongin (Korea, Republic of); Lee, Song [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Jung, Kyeong Cheon [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Lee, Yun-Sang [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Lee, Dong Soo [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul (Korea, Republic of); Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2014-08-15

    Imaging biomarkers from functional imaging modalities were assessed as potential surrogate markers of disease status. Specifically, in this prospective study, we investigated the relationships between functional imaging parameters and histological prognostic factors and breast cancer subtypes. In total, 43 patients with large or locally advanced invasive ductal carcinoma (IDC) were analyzed (47.6 ± 7.5 years old). {sup 68}Ga-Labeled arginine-glycine-aspartic acid (RGD) and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were performed. The maximum and average standardized uptake values (SUV{sub max} and SUV{sub avg}) from RGD PET/CT and SUV{sub max} and SUV{sub avg} from FDG PET/CT were the imaging parameters used. For histological prognostic factors, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression was identified using immunohistochemistry (IHC) or fluorescent in situ hybridization (FISH). Four breast cancer subtypes, based on ER/PR and HER2 expression (ER/PR+,Her2-, ER/PR+,Her2+, ER/PR-,Her2+, and ER/PR-,Her2-), were considered. Quantitative FDG PET parameters were significantly higher in the ER-negative group (15.88 ± 8.73 vs 10.48 ± 6.01, p = 0.02 for SUV{sub max}; 9.40 ± 5.19 vs 5.92 ± 4.09, p = 0.02 for SUV{sub avg}) and the PR-negative group (8.37 ± 4.94 vs 4.79 ± 3.93, p = 0.03 for SUV{sub avg}). Quantitative RGD PET parameters were significantly higher in the HER2-positive group (2.42 ± 0.59 vs 2.90 ± 0.75, p = 0.04 for SUV{sub max}; 1.60 ± 0.38 vs 1.95 ± 0.53, p = 0.04 for SUV{sub avg}) and showed a significant positive correlation with the HER2/CEP17 ratio (r = 0.38, p = 0.03 for SUV{sub max} and r = 0.46, p < 0.01 for SUV{sub avg}). FDG PET parameters showed significantly higher values in the ER/PR-,Her2- subgroup versus the ER/PR+,Her2- or ER/PR+,Her2+ subgroups, while RGD PET parameters showed significantly lower values in the ER

  11. A case of recurrence-mimicking charcoal granuloma in a breast cancer patient: Ultrasound,CT, PET/CT and breast-specific gamma imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong; Park, Ji Yeon; Park, Noh Hyuck; Kim, Seon Jeong; Shin, Hyuck Jai; Lee, Jeong Ju [Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Yi, Seong Yoon [Div. of Hematology-Oncology, Dept. of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2016-07-15

    Charcoal remains stable without causing a foreign body reaction and it may be used for preoperative localization of a non-palpable breast mass. However, cases of post-charcoal-marking granuloma have only rarely been reported in the breast, and a charcoal granuloma can be misdiagnosed as malignancy. Herein, we report the ultrasound, computed tomography (CT), 18F-fluorodeoxyglucose-positron emission tomography/CT, and breast-specific gamma imaging findings of recurrence-mimicking charcoal granuloma after breast conserving surgery, following localization with charcoal in a breast cancer patient.

  12. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  13. [PET/CT in breast cancer: an update].

    Science.gov (United States)

    Groheux, D; Moretti, J-L; Giacchetti, S; Hindié, E; Teyton, P; Cuvier, C; Bousquet, G; Misset, J-L; Boin, C; Espié, M

    2009-11-01

    The authors discuss the various roles of 18F-FDG PET/CT in the management of breast cancer. Roles of new tracers such as F-18 fluoro-L-thymidine (a marker of cell proliferation), 18-fluoro-17-B-estradiol (marker of estrogen receptor) and sodium fluoride (marker of bone matrix) are also mentioned. There is little justification for the use of FDG-PET/CT in patient with clinically T1 (occult distant metastases, notably, early osteomedullary infiltration. Thus, for these tumors, initial PET/CT can enable better intramodality treatment planning or a change in treatment. PET/CT as a whole-body examination is also very efficient in case of suspicion of recurrence. On the other hand, many studies show that this functional imaging could be used to assess early response to neoadjuvant chemotherapy or to chemotherapy of metastatic disease. 18FDG-PET/CT could thus become an unavoidable modality to answer various clinical situations.

  14. PET radiopharmaceuticals for neuroreceptor imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Routine clinical PET radiopharmaceuticals for the noninvasive imaging of brain receptors, transporters,and enzymes are commonly labeled with positron emitting nuclides such as carbon-11 or fluorine-18. Certain minimal conditions need to be fulfilled for these PET ligands to be used as imaging agents in vivo. Some of these prerequisites are discussed and examples of the most useful clinical PET radiopharmaceuticals that have found application in the central nervous system are reviewed.

  15. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  16. Breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kopans, D.B.; Meyer, J.E.; Sadowsky, N.

    1984-04-12

    The majority of information available today indiates that the most efficient and accurate method of screening women to detect early-stage breast cancer is an aggressive program of patient self-examination, physical examination by well-trained, motivated personnel, and high-quality x-ray mammography. There are two important factors in the implementation of mammographic screening. The first is the availability of facilities to perform high-quality, low-dose mammography, which is directly related to the second factor: the expense to society for support of this large-scale effort. Cost-benefit analysis is beyond the scope of this review. In 1979 Moskowitz and Fox attempted to address this issue, using data from the Breast Cancer Detection Demonstration Project in Cincinnati, but additional analysis is required. The cost for each ''curable'' cancer that is detected must be compared with the psychological, social, and personal losses that accrue, as well as the numerous medical expenses incurred, in a frequently protracted death from breast cancer. All other imaging techniques that have been reviewed should be regarded as adjuncts to rather than replacements for mammographic screening. Ultrasound and computerized tomography are helpful when the physical examination and mammogram are equivocal. Other techniques, such as transillumination, thermography, and magnetic-resonance imaging, should be considered experimental. In patients with clinically evident lesions, x-ray mammography is helpful to evaluate the suspicious area, as well as to ''screen'' the remaining tissue in both breasts and to search for multicentric or bilateral lesions. Mammography is the only imaging technique that has been proved effective for screening.

  17. FDG-PET and PET/CT in the diagnostic work-up of breast cancer; FDG-PET und PET/CT in der Diagnostik des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Haug, A.; Tiling, R. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum Innenstadt, Ludwig-Maximilians-Univ. Muenchen (Germany)

    2006-09-15

    In screening mammography is the best method, followed by biopsy in suspect findings. Ultrasound is used in combination with mammography. In difficult cases like preoperative exclusion of multicentric disease, silicon implants and differentation between scar and local recurrence MRI has gained widespread acceptation. Scintimammography may be useful in nondiagnostic or equivocal findings in mammography due to dense breast parenchyma to monitor neoadjuvant chemotherapy of LABC, but is not recommended for routine use. FDG-PET showed to have a high sensitivity in the diagnosis of primary breast cancer. But there are limitations in the detection of tumors smaller than 10 mm and of lobular carcinomas. For screening its accuracy does not appear sufficient. FDG-PET may help improving the diagnosis of primary breast cancer in particular cases. The diagnostic accuracy of FDG-PET axillary lymph node staging has shown to be not sufficient. Especially small or micrometastases are missed frequently due to the low spatial resolution of PET. Diagnostic accuracy is not high enough to replace histopathological evaluation after surgical (sentinel) lymph node dissection. In the diagnosis of distant lymphatic and hematological metastases a high sensitivity and specificity of PET was reported. FDG-PET may be useful in staging women with high risk of presenting metastases like women with locally advanced breast cancer, but is not implemented in clinical routine, yet. FDG-PET shows a high potential to predict the therapeutic outcome of neoadjuvant chemotherapy very early and with high accuracy. But PET fails to detect microscopic residual tumor in case of complete clinical response. In the diagnosis of local recurrence PET is only useful in equivocal findings in mammography due to breast implant or posttherapeutic scars. A high sensitivity and specificity of FDG-PET in diagnosing metastases was reported. Especially in case of unclearly elevated tumor markers PET is recommended

  18. Temporal Heterogeneity of Estrogen Receptor Expression in Bone-Dominant Breast Cancer: 18F-Fluoroestradiol PET Imaging Shows Return of ER Expression.

    Science.gov (United States)

    Currin, Erin; Peterson, Lanell M; Schubert, Erin K; Link, Jeanne M; Krohn, Kenneth A; Livingston, Robert B; Mankoff, David A; Linden, Hannah M

    2016-02-01

    Changes in estrogen receptor (ER) expression over the course of therapy may affect response to endocrine therapy. However, measuring temporal changes in ER expression requires serial biopsies, which are impractical and poorly tolerated by most patients. Functional ER imaging using (18)F-fluoroestradiol (FES)-PET provides a noninvasive measure of regional ER expression and is ideally suited to serial studies. Additionally, lack of measurable FES uptake in metastatic sites of disease predict tumor progression in patients with ER-positive primary tumors treated with endocrine therapy. This report presents a case of restored sensitivity to endocrine therapy in a patient with bone-dominant breast cancer who underwent serial observational FES-PET imaging over the course of several treatments at our center, demonstrating the temporal heterogeneity of regional ER expression. Although loss and restoration of endocrine sensitivity in patients who have undergone prior hormonal and cytotoxic treatments has been reported, this is, to our knowledge, the first time the accompanying changes in ER expression have been documented by molecular imaging.

  19. FDG PET/CT and diffusion-weighted imaging for breast cancer: prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion

    Energy Technology Data Exchange (ETDEWEB)

    Nakajo, Masatoyo [Nanpuh Hospital, Department of Radiology, Kagoshima (Japan); Kagoshima University, Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kajiya, Yoriko; Tani, Atsushi; Ueno, Masako [Nanpuh Hospital, Department of Radiology, Kagoshima (Japan); Kaneko, Tomoyo; Kaneko, Youichi [Kaneko Clinic, Department of Breast Surgery, Kagoshima (Japan); Takasaki, Takashi [Department of Pathology, Clinical Pathology Laboratory, Kagoshima (Japan); Koriyama, Chihaya [Kagoshima University, Department of Epidemiology and Preventive Medicine, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Nakajo, Masayuki [Kagoshima University, Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2010-11-15

    To correlate both primary lesion {sup 18}F-fluorodeoxyglucose (FDG) maximum standardized uptake value (SUVmax) and diffusion-weighted imaging (DWI) apparent diffusion coefficient (ADC) with clinicopathological prognostic factors and compare the prognostic value of these indexes in breast cancer. The study population consisted of 44 patients with 44 breast cancers visible on both preoperative FDG PET/CT and DWI images. The breast cancers included 9 ductal carcinoma in situ (DCIS) and 35 invasive ductal carcinomas (IDC). The relationships between both SUVmax and ADC and clinicopathological prognostic factors were evaluated by univariate and multivariate regression analysis and the degree of correlation was determined by Spearman's rank test. The patients were divided into a better prognosis group (n = 24) and a worse prognosis group (n = 20) based upon invasiveness (DCIS or IDC) and upon their prognostic group (good, moderate or poor) determined from the modified Nottingham prognostic index. Their prognostic values were examined by receiver operating characteristic analysis. Both SUVmax and ADC were significantly associated (p<0.05) with histological grade (independently), nodal status and vascular invasion. Significant associations were also noted between SUVmax and tumour size (independently), oestrogen receptor status and human epidermal growth factor receptor-2 status, and between ADC and invasiveness. SUVmax and ADC were negatively correlated ({rho}=-0.486, p = 0.001) and positively and negatively associated with increasing of histological grade, respectively. The threshold values for predicting a worse prognosis were {>=}4.2 for SUVmax (with a sensitivity, specificity and accuracy of 80%, 75% and 77%, respectively) and {<=}0.98 for ADC (with a sensitivity, specificity and accuracy of 90%, 67% and 77%, respectively). SUVmax and ADC correlated with several of pathological prognostic factors and both indexes may have the same potential for predicting the

  20. Exercises in PET Image Reconstruction

    Science.gov (United States)

    Nix, Oliver

    These exercises are complementary to the theoretical lectures about positron emission tomography (PET) image reconstruction. They aim at providing some hands on experience in PET image reconstruction and focus on demonstrating the different data preprocessing steps and reconstruction algorithms needed to obtain high quality PET images. Normalisation, geometric-, attenuation- and scatter correction are introduced. To explain the necessity of those some basics about PET scanner hardware, data acquisition and organisation are reviewed. During the course the students use a software application based on the STIR (software for tomographic image reconstruction) library 1,2 which allows them to dynamically select or deselect corrections and reconstruction methods as well as to modify their most important parameters. Following the guided tutorial, the students get an impression on the effect the individual data precorrections have on image quality and what happens if they are forgotten. Several data sets in sinogram format are provided, such as line source data, Jaszczak phantom data sets with high and low statistics and NEMA whole body phantom data. The two most frequently used reconstruction algorithms in PET image reconstruction, filtered back projection (FBP) and the iterative OSEM (ordered subset expectation maximation) approach are used to reconstruct images. The exercise should help the students gaining an understanding what the reasons for inferior image quality and artefacts are and how to improve quality by a clever choice of reconstruction parameters.

  1. The value of delayed {sup 18}F-FDG PET/CT imaging for differentiating axillary lymph nodes in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young Sik; Son, Ju Cheol [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of); Park, Cheol Woo [Dept. of Radiological Technology Dong-Eui Institute of Technology, Busan (Korea, Republic of)

    2013-12-15

    Positron emission tomography/computed tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) have been used as a powerful fusion modality in nuclear medicine not only for detecting cancer but also for staging and therapy monitoring. Nevertheless, there are various causes of FDG uptake in normal and/or benign tissues. The purpose of present study was to investigate whether additional delayed imaging can improve the diagnosis to differentiate the rates of FDG uptake at axillary lymph nodes (ALN) between malignant and benign in breast cancer patients. 180 PET/CT images were obtained for 27 patients with ALN uptake. The patients who had radiotherapy and chemotherapy were excluded from the study. {sup 18}F-FDG PET/CT scan at 50 min (early phase) and 90 min (delayed phase) after {sup 18}F-FDG injection were included in this retrospective study. The staging of cancers was confirmed by final clinical according to radiologic follow-up and pathologic findings. The standardized uptake value (SUV) of ALN was measured at the Syngo Acquisition Workplace by Siemens. The 27 patients included 18 malignant and 9 ALN benign groups and the 18 malignant groups were classified into the 3 groups according to number of metastatic ALN in each patient. ALNs were categorized less than or equal 3 as N1, between 4 to 9 as N2 and more than 10 as N3 group. Results are expressed as the mean ± standard deviation (S.D.) and statistically analyzed by SPSS. As a result, Retention index (RI-SUV max) in metastasis was significantly higher than that in non-metastasis about 5 fold increased. On the other hand, RI-SUV max in N group tended to decrease gradually from N1 to N3. However, we could not prove significance statistically in malignant group with ANOVA. As a consequence, RI-SUV max was good indicator for differentiating ALN positive group from node negative group in breast cancer patients. These results show that dual-time-point scan appears to be useful in distinguishing malignant from benign.

  2. Design and evaluation of the MAMMI dedicated breast PET

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, L.; Gonzalez, A. J.; Soriano, A.; Sanchez, F.; Correcher, C.; Orero, A.; Carles, M.; Vidal, L. F.; Barbera, J.; Caballero, L.; Seimetz, M.; Vazquez, C.; Benlloch, J. M. [Instituto de Instrumentacion para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Camino de Vera s/n, 46022 Valencia (Spain); Instituto de Instrumentacion para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Camino de Vera s/n, 46022 Valencia (Spain) and Oncovision, GEM-Imaging SA. 46012 Valencia (Spain); Instituto de Instrumentacion para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Camino de Vera s/n, 46022 Valencia (Spain); Oncovision, GEM-Imaging SA. 46012 Valencia (Spain); Instituto de Instrumentacion para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Camino de Vera s/n, 46022 Valencia (Spain); Oncovision, GEM-Imaging SA. 46012 Valencia (Spain); Instituto de Instrumentacion para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Camino de Vera s/n, 46022 Valencia (Spain)

    2012-09-15

    Purpose: A breast dedicated positron emission tomography (PET) scanner has been developed based on monolithic LYSO crystals coupled to position sensitive photomultiplier tubes (PSPMTs). In this study, we describe the design of the PET system and report on its performance evaluation. Methods: MAMMI is a breast PET scanner based on monolithic LYSO crystals. It consists of 12 compact modules with a transaxial field of view (FOV) of 170 mm in diameter and 40 mm axial FOV that translates to cover up to 170 mm. The patient lies down in a prone position that facilitates maximum breast elongation. Quantitative performance analysis of the calculated method for the attenuation correction specifically developed for MAMMI, and based on PET image segmentation, has also been conducted in this evaluation. In order to fully determine the MAMMI prototype's performance, we have adapted the measurements suggested for National Electrical Manufacturers Association (NEMA) NU 2-2007 and NU 4-2008 protocol tests, as they are defined for whole-body and small animal PET scanners, respectively. Results: Spatial resolutions of 1.6, 1.8, and 1.9 mm were measured in the axial, radial, and tangential directions, respectively. A scatter fraction of 20.8% was obtained and the maximum NEC was determined to be 25 kcps at 44 MBq. The average sensitivity of the system was observed to be 1% for an energy window of (250 keV-750 keV) and a maximum absolute sensitivity of 1.8% was measured at the FOV center. Conclusions: The overall performance of the MAMMI reported on this evaluation quantifies its ability to produce high quality PET images. Spatial resolution values below 3 mm were measured in most of the FOV. Only the radial component of spatial resolution exceeds the 3 mm at radial positions larger than 60 mm. This study emphasizes the need for standardized testing methodologies for dedicated breast PET systems similar to NEMA standards for whole-body and small animal PET scanners.

  3. Fundamentals of PET and PET/CT imaging.

    Science.gov (United States)

    Basu, Sandip; Kwee, Thomas C; Surti, Suleman; Akin, Esma A; Yoo, Don; Alavi, Abass

    2011-06-01

    In this review, the fundamental principles of fluorodeoxyglucose (FDG) positron emission tomography (PET) and FDG PET/computed tomography (CT) imaging have been described. The basic physics of PET instrumentation, radiotracer chemistry, and the artifacts, as well as normal physiological or benign pathological variants, have been described and presented to the readers in a lucid manner to enable them an easy grasp of the fundamentals of the subject. Finally, we have outlined the current developments in quantitative PET imaging, including dual time point and delayed PET imaging, time-of-flight technology in PET imaging and partial volume correction, and global disease assessment with their potential of being incorporated into the assessment of benign and malignant disorders.

  4. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  5. The role of PET/CT imaging in the evaluation of the efficacy and prognosis of breast cancer%PET/CT显像在乳腺癌疗效评价及预后中的作用

    Institute of Scientific and Technical Information of China (English)

    胡梦裳; 章斌

    2014-01-01

    乳腺癌是危害全球妇女健康的最常见的恶性肿瘤。PET/CT的应用大大提高了乳腺癌的临床诊治率。PET/CT在评价治疗效果及术前早期识别出对反应无效的患者方面有着独到的优势。近年来,有研究发现,癌细胞表面分子标记,如雌激素受体、孕激素受体和人表皮生长因子受体2表达水平等可直接影响疾病的预后和治疗方案的制定。%Breast cancer is one of the most common malignancy which seriously harmful to the women′s health around the world. The application of PET/CT has remarkably improved the management of breast cancer. PET/CT offers advantages in evaluating breast cancer response to therapy and identifying patients who will not respond optimally to preoperative chemotherapy. In recent years , expression of spe-cific molecular markers in breast cancer, such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status, has direct influence on the prognosis and therapeutic regimen.

  6. Neurotransmission imaging by PET

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Akihiro; Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    2001-08-01

    PET studies on neurotransmission in psychological disorders to evaluate abnormal neurotransmission and therapeutic effects are thoroughly reviewed by type of major neurotransmitters. Studies on dopaminergic neurotransmission have focused on the function of dopamine D{sub 2} receptors, receptor subtypes, such as the D{sub 1} receptor, and ligands, such as transporters. PET studies of dopamine D{sub 2} receptor, which began in the early 1980s, have predominantly been performed in schizophrenia, and most have failed to detect any statistically significant differences between schizophrenia patients and controls. The studies in the early 1980s were performed by using [{sup 11}C]N-methyl-spiperone (NMSP) and [{sup 11}C]raclopride, ligands for striatal dopamine D{sub 2} receptors. [{sup 11}C]FLB457, which has much higher affinity for D{sub 2} receptors than raclopride, began to be used in the 1990s. Dopamine D{sub 2} occupancy after drug ingestion has also been investigated to clarify the mechanisms and effects of antipsychotic drugs, and there have also been studies on the effect of aging and personality traits on dopamine D{sub 2} receptor levels in healthy subjects. In studies on dopamine receptor subtypes other than D{sub 2}, dopamine D{sub 1} receptors have been studied in connection with assessments of cognitive functions. Most studies on dopamine transporters have been related to drug dependence. Serotonin 5-HT{sub 2A} receptors have been studied with [{sup 11}C]NMSP in schizophrenia patients, while studies of another serotonin receptor subtype, 5-HT{sub 1A} receptors, have been mainly conducted in patients with depression. [{sup 11}C]NMSP PET showed no difference between schizophrenia patients who had not undergone phamacotherapy and normal subjects. Because serotonin selective reuptake inhibitors (SSRIs) affect serotonin transporters, and abnormalities in serotonin transporters detected in mood disorders, PET ligands for serotonin transporters have increasingly

  7. FDG PET imaging dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong Cheol [Kyungpook National University Medical School and Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2007-04-15

    Dementia is a major burden for many countries including South Korea, where life expectancy is continuously growing and the proportion of aged people is rapidly growing. Neurodegenerative disorders, such as, Alzheimer disease, dementia with Lewy bodies, frontotemporal dementia. Parkinson disease, progressive supranuclear palsy, corticobasal degeneration, Huntington disease, can cause dementia, and cerebrovascular disease also can cause dementia. Depression or hypothyroidism also can cause cognitive deficits, but they are reversible by management of underlying cause unlike the forementioned dementias. Therefore these are called pseudodementia. We are entering an era of dementia care that will be based upon the identification of potentially modifiable risk factors and early disease markers, and the application of new drugs postpone progression of dementias or target specific proteins that cause dementia. Efficient pharmacologic treatment of dementia needs not only to distinguish underlying causes of dementia but also to be installed as soon as possible. Therefore, differential diagnosis and early diagnosis of dementia are utmost importance. F-18 FDG PET is useful for clarifying dementing diseases and is also useful for early detection of the disease. Purpose of this article is to review the current value of FDG PET for dementing diseases including differential diagnosis of dementia and prediction of evolving dementia.

  8. Breast hemangioma mimicking metastasis at PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Sabas Carlos [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Fac. de Medicina; Silva, Jucelia Saraiva e [MedImagem, Teresina, PI (Brazil). Clinica Medica; Madeira, Eveline Brandao; Franca, Julio Cesar Queiroz de; Martins Filho, Sebastiao Nunes [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2011-11-15

    Breast hemangioma is a rare benign tumor that presents either absent or low {sup 18}F-fluoro-2-deoxy-D-glucose (FDG) uptake at positron emission tomography (PET). The authors report the case of a breast nodule pathologically compatible with hemangioma in a woman whose PET-scan has demonstrated increased FDG uptake (simulating a malignant tumor). A brief review of factors leading to false positive and false negative PET results is also undertaken. (author)

  9. Breast Imaging Artifacts.

    Science.gov (United States)

    Odle, Teresa G

    2015-01-01

    Artifacts appear on breast images for a number of reasons. Radiologic technologists play an important role in identifying artifacts that can help or hinder breast cancer diagnosis and in minimizing artifacts that degrade image quality. This article describes various artifacts that occur in breast imaging, along with their causes. The article focuses on artifacts in mammography, with a heavy emphasis on digital mammography, and on magnetic resonance imaging of the breast. Artifacts in ultrasonography of the breast, digital breast tomosynthesis, and positron emission mammography also are discussed.

  10. Breast Fibroadenoma With Increased Activity on 68Ga DOTATATE PET/CT.

    Science.gov (United States)

    Papadakis, Georgios Z; Millo, Corina; Sadowski, Samira M; Karantanas, Apostolos H; Bagci, Ulas; Patronas, Nicholas J

    2017-02-01

    Fibroadenoma is the most common benign breast tumor in women of reproductive age, carrying little to no risk of breast cancer development. We report on a case of a woman with history of neuroendocrine tumor who on follow-up imaging tests underwent whole-body PET/CT study using Ga DOTATATE. The scan showed increased focal activity in the right breast, which was biopsied revealing a fibroadenoma. The presented data suggests cell surface overexpression of somatostatin receptors by this benign breast tumor. Moreover, this finding emphasizes the need for cautious interpretation of Ga DOTATATE-avid breast lesions that could mimic malignancy in neuroendocrine tumor patients.

  11. FDG-PET on the trail of an unsuspected primary malignancy in the breast.

    Science.gov (United States)

    Dockery, Keith F; Puri, Savita; Qazi, Raman; Davis, Delphine

    2008-03-01

    Proper identification of the primary malignancy can radically alter clinical management for the patient's benefit. This is a report of an unsuspected primary breast cancer in a patient being worked up for presumptive lymphoma. Prior investigation of lymphedema in the left lower extremity found widespread lymphadenopathy on computed tomography imaging, leading to initial biopsy revealing adenocarcinoma of unknown primary. F-18 fluorodeoxyglucose PET/computed tomography altered management by localizing an F-18 fluorodeoxyglucose avid breast nodule, directing breast biopsy with specific immunohistochemical analysis for breast cancer lineage in metastatic adenocarcinoma. The patient responded well to breast cancer-targeted chemotherapy.

  12. The relationship between the 18 F-FDG PET-CT imaging standard uptake value and the prognosis of advanced breast cancer%晚期乳腺癌18F-FDG PET-CT显像标准摄取值与预后的相关性

    Institute of Scientific and Technical Information of China (English)

    徐蓉; 马楠

    2012-01-01

    Objective To study the relationship between the 18F-FDG PET-CT imaging standard uptake value and the prognosis of advanced breast cancer. Methods 68 patients with advanced breast cancer patients were involved in the current study. The PET-CT SUV value was recorded before the systemic chemotherapy. All patients were divided into two groups depending on the demarcation point of SUV values of 8. The relationship between the SUV value and the five year survival rate was analysed. Results 68 patients were observed in this study. The negative correlation was found between the SUV value and life cycle. Conclusion 18F-FDG PET-CT imaging standard uptake value (SUV value) is probably related to the prognosis of breast cancer, which is worthy of the further study.%目的 探讨晚期乳腺癌18 F-FDG PET-CT显像标准摄取值与预后的相关性.方法 选择68例晚期乳腺癌患者,记录诊断时PET-CT的SUV值,均给予全身静脉化疗,以SUV值8为分界点,将本组患者分为两组,随访5年,观察SUV值与5年生存率的关系.结果 本组观察的68例患者,SUV值越小,生存期相对越长,反之,生存期则相对较短.结论 18F-FDG PET-CT显像标准摄取值(SUV值)对乳腺癌的预后有一定价值,值得临床进一步研究.

  13. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  14. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-C-11]tyrosine PET

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Pruim, J; Paans, AMJ; Plukker, JTM; Hoekstra, HJ; Vaalburg, W; Schraffordt Koops, H.

    1997-01-01

    The aims of the study were to compare the value of L-[1-C-11]tyrosine (TYR) and [F-18]fluoro-2-deoxy-D-glucose (FDG) as tumor tracers in patients with breast cancer, to investigate the correlation between quantitative values and standardized uptake values (SUVs) and to estimate the value of SUVs for

  15. FDG-PET in monitoring therapy of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Bender, H.; Palmedo, H. [Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn (Germany)

    2004-06-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been used successfully for the staging and re-staging of breast cancer. Another significant indication is the evaluation of therapy response. Only limited data are available on the use of FDG-PET in breast cancer after radiation therapy. The same holds true for chemotherapy. Only the therapy response in locally advanced breast cancer after chemotherapy has been investigated thoroughly. Histopathological response could be predicted with an accuracy of 88-91% after the first and second courses of therapy. A quantitative evaluation is, of course, a prerequisite when FDG-PET is used for therapy monitoring. Only a small number of studies have focussed on hormone therapy. In this context, a flare phenomenon with increasing standardised uptake values after initiation of tamoxifen therapy has been observed. More prospective multicentre trials will be needed to make FDG-PET a powerful tool in monitoring chemotherapy in breast cancer. (orig.)

  16. Preoperative PET/CT in early-stage breast cancer

    DEFF Research Database (Denmark)

    Bernsdorf, M; Berthelsen, A K; Wielenga, V T;

    2012-01-01

    The aim of this study was to assess the diagnostic and therapeutic impact of preoperative positron emission tomography and computed tomography (PET/CT) in the initial staging of patients with early-stage breast cancer.......The aim of this study was to assess the diagnostic and therapeutic impact of preoperative positron emission tomography and computed tomography (PET/CT) in the initial staging of patients with early-stage breast cancer....

  17. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  18. PET/MR Imaging in Musculoskeletal Disorders

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Jensen, Karl Erik; Loft, Annika

    2016-01-01

    There is emerging evidence suggesting that PET/MR imaging will have a role in many aspects of musculoskeletal imaging. The synergistic potential of hybrid PET/MR imaging in terms of acquiring anatomic, molecular, and functional data simultaneously seems advantageous in the diagnostic workup......, treatment planning and monitoring, and follow-up of patients with musculoskeletal malignancies, and may also prove helpful in assessment of musculoskeletal infectious and inflammatory disorders. The application of more sophisticated MR imaging sequences and PET radiotracers other than FDG in the diagnostic...... workup and follow-up of patients with musculoskeletal disorders should be explored....

  19. Radiosynthesis and biological evaluation of a promising {sigma}{sub 2}-receptor ligand radiolabeled with fluorine-18 or iodine-125 as a PET/SPECT probe for imaging breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tu Zhude; Xu Jinbin; Jones, Lynne A.; Li Shihong; Zeng Dexing [Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 South Kingshighway Blvd., St. Louis, MO 63110 (United States); Kung Meiping; Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Mach, Robert H., E-mail: rhmach@mir.wustl.ed [Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 South Kingshighway Blvd., St. Louis, MO 63110 (United States)

    2010-12-15

    Sigma-2 receptors represent an endogenous marker for proliferation in solid tumors. The high affinity, high selectivity {sigma}{sub 2} receptor ligand N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl) -2-(2-fluoroethoxy)-5-iodo-3-methoxybenzamide (3) was separately radiolabeled with F-18 and I-125. The radiolabeling yield was 30% and 70% for [{sup 18}F]3 and [{sup 125}I]3, respectively. Studies of [{sup 125}I]3 using murine 66 breast tumor membrane homogenates and evaluation of [{sup 18}F]3 and [{sup 125}I]3 in 66 tumor-bearing mice indicate that this ligand has potential as a PET or a SPECT probe for imaging {sigma}{sub 2} receptors in breast cancer.

  20. Quantitative PET imaging with the 3T MR-BrainPET

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, C., E-mail: c.weirich@fz-juelich.de [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany); Scheins, J.; Lohmann, P.; Tellmann, L. [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany); Byars, L.; Michel, C. [Siemens Healthcare, Molecular Imaging, Knoxville, TN (United States); Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N.J. [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany)

    2013-02-21

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  1. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  2. Kinetic modeling in PET imaging of hypoxia

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Hansen, Anders E

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can...... analysis for PET imaging of hypoxia....

  3. PET and SPECT imaging in veterinary medicine.

    Science.gov (United States)

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  4. Novel Developments in Instrumentation for PET Imaging

    Science.gov (United States)

    Karp, Joel

    2013-04-01

    Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.

  5. Detection of synchronous parathyroid adenoma and breast cancer with {sup 18}F-fluorocholine PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Vorselaars, Wessel MCM; Kluijfthout, Wiuter P.; Vriens, Menno R; Van der Pol, Carmen C.; Rinkes, Inne HM Borel; Valk, Gerlof D.; De Keizer, Bart [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    A 71-year-old woman was referred to our tertiary care center for evaluation of asymptomatic recurrence of primary hyperparathyroidism. As per our protocol, the patient underwent neck/mediastinum {sup 18}F-fluorocholine (FCH) positron emission tomography-computed tomography (PET-CT) for localization. In our institution, FCH PET-CT is performed in patients with hyperparathyroidism and negative conventional imaging. FCH PET-CT is a promising new imaging modality for detection of hyperfunctioning parathyroid glands. As can be seen in the case presented, high FCH uptake was seen in a small breast cancer. Due to its favorable half-life and wide availability by its use as a localization technique for patients with prostate cancer and complicated hyperparathyroidism, FCH PET-CT may be a new promising modality in the imaging of breast cancer.

  6. Importance of Attenuation Correction (AC for Small Animal PET Imaging

    Directory of Open Access Journals (Sweden)

    Henrik H. El Ali

    2012-10-01

    Full Text Available The purpose of this study was to investigate whether a correction for annihilation photon attenuation in small objects such as mice is necessary. The attenuation recovery for specific organs and subcutaneous tumors was investigated. A comparison between different attenuation correction methods was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7 were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II. CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity concentration in the same organ with and without AC revealed an overall attenuation recovery of 9–21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9–17%, for kidneys 20 ± 1% (19–21%, and for bladder 18 ± 3% (15–21%. The FBP reconstructed images showed almost the same attenuation levels as the MAP reconstructed images for all organs. Conclusions: The annihilation photons are suffering attenuation even in small subjects. Both PET-based and CT-based are adequate as AC methods. The amplitude of the AC recovery could be overestimated using the uniform map. Therefore, application of a global attenuation factor on PET data might not be accurate for attenuation correction.

  7. PET Imaging of Skull Base Neoplasms.

    Science.gov (United States)

    Mittra, Erik S; Iagaru, Andrei; Quon, Andrew; Fischbein, Nancy

    2007-10-01

    The utility of 18-F-fluorodeoxyglucose-positron emission tomography (PET) and PET/CT for the evaluation of skull base tumors is incompletely investigated, as a limited number of studies specifically focus on this region with regard to PET imaging. Several patterns can be ascertained, however, by synthesizing the data from various published reports and cases of primary skull base malignancies, as well as head and neck malignancies that extend secondarily to the skull base, including nasopharyngeal carcinoma, nasal cavity and paranasal sinus tumors, parotid cancers, and orbital tumors.

  8. [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Gerke, Oke; Baun, Christina;

    2016-01-01

    PURPOSE: To prospectively investigate the diagnostic accuracy of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) with dual-time-point imaging, contrast-enhanced CT (ceCT), and bone scintigraphy (BS) in patients with suspected breast cancer recurrence....... PATIENTS AND METHODS: One hundred women with suspected recurrence of breast cancer underwent 1-hour and 3-hour FDG-PET/CT, ceCT, and BS within approximately 10 days. The study was powered to estimate the precision of the individual imaging tests. Images were visually interpreted using a four...... the receiver operating curve and higher sensitivity, specificity, and superior likelihood ratios. CONCLUSION: FDG-PET/CT was accurate in diagnosing recurrence in breast cancer patients. It allowed for distant recurrence to be correctly ruled out and resulted in only a small number of false-positive cases...

  9. The role of ultrasonography and FDG-PET in axillary lymph node staging of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jhii-Hyun; Son, Eun Ju; Kim, Jeong-Ah; Youk, Ji Hyun; Kim, Eun-Kyung; Kwak, Jin Young (Dept. of Radiology, Yonsei Univ. College of Medicine, Research Inst. of Radiological Science, Seoul (Korea)), e-mail: ejsonrd@yuhs.ac; Ryu, Young Hoon (Dept. of Nuclear Medicine, Yonsei Univ. College of Medicine, Research Inst. of Radiological Science, Seoul (Korea)); Jeong, Joon (Dept. of General Surgery, Yonsei Univ. College of Medicine, Research Inst. of Radiological Science, Seoul (Korea))

    2010-10-15

    Background: The presence of axillary lymph node metastasis is the most important prognostic factor and an essential part of staging and prognosis of breast cancer. Purpose: To elucidate the usefulness and accuracy of ultrasonography (United States), fluorodeoxyglucose positron emission tomography (FDG-PET) scan, and combined analysis for axillary lymph node staging in breast cancer. Material and Methods: A total of 250 consecutive breast cancer patients who had undergone US, FDG-PET, and sentinel lymph node biopsy (SLNB) before surgery from January 2005 to December 2006 were included in the study. If an axillary lymph node had a length to width ratio =1.5 or cortical thickening =3 mm or compression of the hilum on US, focal hot uptake (maximal standardized uptake value, SU V{sub max} =2.0) in the ipsilateral axilla on FDG-PET, it was considered to be a metastatic lymph node. In combined analysis of US and FDG-PET, the interpretation was considered positive if at least two of any of the criteria were met. Each imaging finding was compared with a pathologic report regarding the presence of axillary lymph node metastasis, the number of metastatic lymph nodes, and the T stage of the breast mass. Results: Pathologically confirmed axillary lymph node metastasis was noted in 73 cases (29.2%). The mean number of metastatic lymph nodes in pathology was 3.1 +- 3.2, and the size of breast cancer was 2.0 +- 1.04 cm. In the detection of lymph node metastasis, the diagnostic accuracy of US was 78.8% and that of FDG-PET was 76.4%. On combined US and FDG-PET, accuracy was improved (91.6%). The number of metastatic lymph nodes on pathology was correlated with the positivity of US and FDG-PET (P < 0.01). Conclusion: Combined evaluation of US and FDG-PET was a sensitive and accurate method for axillary lymph node staging in breast cancer

  10. PET tracer for imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a radiolabelled peptide-based compound for diagnostic imaging using positron emission tomography (PET). The compound may thus be used for diagnosis of malignant diseases. The compound is particularly useful for imaging of somatostatin overexpression in tumors, wherein the compound...

  11. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Willemink, Martin J; Eldib, Mootaz [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Leiner, Tim [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Fayad, Zahi A; Mani, Venkatesh [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (United States)

    2015-05-18

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  12. Combined PET/MR imaging in neurology

    DEFF Research Database (Denmark)

    Andersen, Flemming Littrup; Ladefoged, Claes Nøhr; Beyer, Thomas

    2014-01-01

    reconstructed following CT-based and MR-based AC, respectively. MR-AC was performed based on: (A) standard Dixon-Water-Fat segmentation (DWFS), (B) DWFS with co-registered and segmented CT bone values superimposed, and (C) with co-registered full CT-based attenuation image. All PET images were reconstructed...... on a transaxial T1w-MR image traversing the central basal ganglia. We report the relative difference (%) of the mean ROI values for (A)-(C) in reference to PET/CT (D). In a separate phantom experiment a 2L plastic bottle was layered with approximately 12mm of Gypsum plaster to mimic skull bone. The phantom...... was imaged on PET/CT only and standard MR-AC was performed by replacing hyperdense CT attenuation values corresponding to bone (plaster) with attenuation values of water. PET image reconstruction was performed with CT-AC (D) and CT-AC using the modified CT images corresponding to MR-AC using DWFS (A...

  13. Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Correlation with Age, Background Parenchymal Enhancement, and Amount of Fibroglandular Tissue on MRI.

    Science.gov (United States)

    Leithner, Doris; Baltzer, Pascal A; Magometschnigg, Heinrich F; Wengert, Georg J; Karanikas, Georgios; Helbich, Thomas H; Weber, Michael; Wadsak, Wolfgang; Pinker, Katja

    2016-10-01

    Background parenchymal enhancement (BPE), and the amount of fibroglandular tissue (FGT) assessed with MRI have been implicated as sensitive imaging biomarkers for breast cancer. The purpose of this study was to quantitatively assess breast parenchymal uptake (BPU) on (18)F-FDG PET/CT as another valuable imaging biomarker and examine its correlation with BPE, FGT, and age.

  14. Imaging Alzheimer's disease pathophysiology with PET

    Directory of Open Access Journals (Sweden)

    Lucas Porcello Schilling

    Full Text Available ABSTRACT Alzheimer's disease (AD has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI, and dementia stages. Positron emission tomography (PET associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.

  15. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; von Schulthess, Gustav K.; Buck, Alfred [Division of Nuclear Medicine, Department of Radiology, University Hospital Zurich (Switzerland)

    2002-03-01

    Germanium-68 based attenuation correction (PET{sub Ge68}) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET{sub CT}) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET{sub Ge68} and PET{sub CT}. Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET{sub CT} in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET{sub Ge68} images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET{sub Ge68} and PET{sub CT} images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional {sup 68}Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the

  16. PET imaging in patients with Modic changes

    Energy Technology Data Exchange (ETDEWEB)

    Albert, H.B.; Manniche, C. [Univ. of Southern Denmark, Funen (Denmark). Back Research Centre; Petersen, H.; Hoeilund-Carlsen, P.F. [Odense University Hospital, Univ. of Southern Denmark (Denmark). Dept. of Nuclear Medicine

    2009-07-01

    The aim of this study was via PET imaging to reveal if any highly metabolic processes were occurring in Modic changes type 1 and/or in the adjacent discs. Modic changes (MC) are signal changes in the vertebral endplate and body visualised by magnetic resonance imaging (MRI). MC are strongly associated with low back pain (LBP). MC type 1 appear to be inflammation on MRI, and histological and biochemical findings make it highly likely that an inflammation is present. Though MC is painful no known treatment is available, and it is unknown which entities affect the progress or regress of MC. The changes observed on MRI are slow and take months to develop, but faster changes in the metabolism might provide a platform for monitoring patients. Patients from The Back Centre Funen, with low back pain in the area of L1 to S1, MC type 1 in L1 to L5, and a previous herniated lumbar disc. All patients had a PET scan using FDG ({sup 18}F-fluorodeoxyglucose) as tracer. Included in the study were 11 patients, 4 women and 7 men, mean age 48.1 year (range 20-65). All MC were situated in the vertebrae both above and below the previously herniated disc/discs. Ten patients had MC at 1 level, and 1 had MC at 2 levels. The affected levels were 1 at L2/L3, 6 at L4 /L5, and 5 at L5/S1. All had a previous disc herniation and MC larger than 4 mm in diameter. Technically satisfactory PET scans were obtained. However, PET imaging showed no increases in metabolism in any vertebra or disc of any patient. Modic type 1 changes do not reveal themselves by showing increased metabolism with ordinary FDG PET imaging. PET tracers illuminating inflammation are being developed and hopefully may become more successful. (orig.)

  17. Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, John C. [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); London Regional Cancer Program, Knoxville, TN (United States); So, Aaron [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Imaging Laboratories - Robarts Research Institute, Knoxville, TN (United States); Butler, John [Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Faul, David [Siemens Healthcare Molecular Imaging, Knoxville, TN (United States); Yartsev, Slav [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Department of Oncology, Western University, Knoxville, TN (United States); London Regional Cancer Program, Knoxville, TN (United States); Thompson, Terry [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Prato, Frank S. [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Diagnostic Imaging St Joseph' s Health Care London, Knoxville, TN (United States); Gaede, Stewart [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Department of Oncology, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); London Regional Cancer Program, Knoxville, TN (United States)

    2014-08-15

    In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process. Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.

  18. Exploratory matrix factorization for PET image analysis.

    Science.gov (United States)

    Kodewitz, A; Keck, I R; Tomé, A M; Lang, E W

    2010-01-01

    Features are extracted from PET images employing exploratory matrix factorization techniques such as nonnegative matrix factorization (NMF). Appropriate features are fed into classifiers such as a support vector machine or a random forest tree classifier. An automatic feature extraction and classification is achieved with high classification rate which is robust and reliable and can help in an early diagnosis of Alzheimer's disease.

  19. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT in combination with ultrasonography for axillary staging in primary breast cancer

    Directory of Open Access Journals (Sweden)

    Tamura Katsumi

    2008-06-01

    Full Text Available Abstract Background Accurate evaluation of axillary lymph node (ALN involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT and axillary ultrasonography (AUS for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB and preoperative systemic chemotherapy (PSC. Methods One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND. Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV for axillary staging. Results In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12 in 18F-FDG PET uptake only, 80% (4 of 5 in AUS positive only, and 100% (28 of 28 in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03. Conclusion The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their

  20. Incidental detection of breast cancer by {sup 68}Ga-DOTATOC-PET/CT in women suffering from neuroendocrine tumours

    Energy Technology Data Exchange (ETDEWEB)

    Elgeti, F.; Denecke, T.; Steffen, I.; Stelter, L.; Ruf, J. [Campus Virchow-Klinikum, Berlin (Germany). Klinik fuer Strahlenheilkunde; Amthauer, H. [Universitaetsklinikum Magdeburg (Germany). Klinik fuer Radilogie und Nuklearmedizin; Heuck, F. [Campus Virchow-Klinikum, Berlin (Germany). Medizinische Klinik m. S. Hepatologie und Gastroenterologie

    2008-07-01

    Aim: Somatostatin receptor (sstr) imaging using 68Ga- DOTATOC-PET/CT in neuroendocrine tumors (NET) is promising, suggesting a more sensitive detection of lesions with a low sstr-expression. This is also important for other sstr positive tumors, especially breast cancer whose incidence and age-range is similar to that of NET. Patients, methods: The PET/CT data of 33 consecutive women with NET (age: 33-78 years, mean 59) who underwent whole-body staging with {sup 6}8Ga-DOTATOC was retrospectively analyzed for breast lesions. The data was read separately, side-byside and as fused images. Focal tracer uptake in the breast was semiquantitatively analyzed by comparing the lesional SUV{sub max} to normal breast tissue using Wilcoxon's rank sum test. Breast cancer lesions were compared visually to concomitant NET- lesions. Results: In six of 33 patients (18%) breast lesions were observed on the CT-scans and classified in four patients (12%) as suspicious. The same lesions also showed a pathological tracer uptake on the corresponding PET-scan, visually and semiquantitatively (p<0.01). Histological reevaluation of the suspicious lesions revealed two patients with NET metastases. Two patients had primary breast cancer with lower tracer uptake than concomitant abdominal NET-lesions. Breast cancer diagnosis resulted in a change of the therapeutic regimen. Conclusion: {sup 68}Ga- DOTATOC-PET/CT not only improves the staging of NET-patients, but also increases the chance to detect sstr-positive breast cancer. Although these lesions may show a lower tracer uptake than NET, they must not be overlooked or misinterpreted as metastases. Further imaging and clarification by histopathology is warranted, as the confirmation of a secondary malignoma has great impact on further therapeutic proceedings. (orig.)

  1. PET imaging in patients with Modic changes

    DEFF Research Database (Denmark)

    Albert, Hanne; Pedersen, Henrik; Manniche, Claus;

    2009-01-01

    The aim of this study was via PET imaging to reveal if any highly metabolic processes were occurring in Modic changes type 1 and/or in the adjacent discs. Modic changes (MC) are signal changes in the vertebral endplate and body visualised by magnetic resonance imaging (MRI). MC are strongly...... disc. All patients had a PET scan using FDG (18F-fluorodeoxyglucose) as tracer. RESULTS: Included in the study were 11 patients, 4 women and 7 men, mean age 48.1 year (range 20-65). All MC were situated in the vertebrae both above and below the previously herniated disc/discs. Ten patients had MC at 1...... level, and 1 had MC at 2 levels. The affected levels were 1 at L2/L3, 6 at L4 /L5, and 5 at L5/S1. All had a previous disc herniation and MC larger than 4 mm in diameter. Technically satisfactory PET scans were obtained. However, PET imaging showed no increases in metabolism in any vertebra or disc...

  2. Deformation field correction for spatial normalization of PET images

    Science.gov (United States)

    Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.

    2015-01-01

    Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272

  3. Molecular imaging of prostate cancer with PET.

    Science.gov (United States)

    Jadvar, Hossein

    2013-10-01

    Molecular imaging is paving the way for precision and personalized medicine. In view of the significant biologic and clinical heterogeneity of prostate cancer, molecular imaging is expected to play an important role in the evaluation of this prevalent disease. The natural history of prostate cancer spans from an indolent localized process to biochemical relapse after radical treatment with curative intent to a lethal castrate-resistant metastatic disease. The ongoing unraveling of the complex tumor biology of prostate cancer uniquely positions molecular imaging with PET to contribute significantly to every clinical phase of prostate cancer evaluation. The purpose of this article was to provide a concise review of the current state of affairs and potential future developments in the diagnostic utility of PET in prostate cancer.

  4. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  5. [¹⁸F]-fluorodeoxyglucose PET imaging of atherosclerosis

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Høilund-Carlsen, Poul Flemming

    2015-01-01

    [(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk of atheros......[(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk...... of atherosclerosis-related disease, such as stroke and myocardial infarction. With excellent reproducibility, (18)FDG PET can be a surrogate end point in clinical drug trials, improving trial efficiency. This article summarizes key findings in the literature, discusses limitations of (18)FDG PET imaging...... of atherosclerosis, and reports recommendations to optimize imaging protocols....

  6. QUANTITATIVE EVALUATION OF THERAPEUTIC RESPONSE BY FDG PET-CT IN METASTATIC BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Dorothée eGOULON

    2016-05-01

    Full Text Available Purpose To assess the therapeutic response for metastatic breast cancer with 18F-FDG PET, this retrospective study aims to compare the performance of 6 different metabolic metrics with PERCIST, PERCIST with optimal thresholds and an image-based parametric approach.MethodsThirty six metastatic breast cancer patients underwent 128 PET scans and 123 lesions were identified. In a per-lesion and per-patient analysis, the performance of 6 metrics: SUVmax (maximum Standardized Uptake Value, SUVpeak, SAM (Standardized Added Metabolic activity, SUVmean, metabolic volume (MV, TLG (total lesion glycolysis and a parametric approach (SULTAN were determined and compared to the gold standard (defined by clinical assessment and biological and conventional imaging according RECIST 1.1. The evaluation was performed using PERCIST thresholds (for per-patient analysis only and optimal thresholds (determined by the Youden criterion from the Receiver Operating Characteristic curves.ResultsIn the per-lesion analysis, 210 pairs of lesion evolutions were studied. Using the optimal thresholds, SUVmax, SUVpeak, SUVmean, SAM and TLG were significantly correlated with the gold standard. SUVmax, SUVpeak and SUVmean reached the best sensitivity (91 %, 88 % and 83% respectively, specificity (93%, 95% and 97% respectively and negative predictive value (NPV, 90%, 88% and 83% respectively. For the per-patient analysis, 79 pairs of PET were studied. The optimal thresholds compared to the PERCIST threshold did not improve performance for SUVmax, SUVpeak and SUVmean. Only SUVmax, SUVpeak, SUVmean and TLG were correlated with the gold standard. SULTAN also performed equally: 83% sensitivity, 88% specificity and NPV 86%.ConclusionsThis study showed that SUVmax and SUVpeak were the best parameters for PET evaluation of metastatic breast cancer lesions. Parametric imaging is helpful in evaluating serial studies.

  7. Detection of metastatic bone lesions in breast cancer patients: Fused {sup 18}F-Fluoride-PET/MDCT has higher accuracy than MDCT. Preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Piccardo, Arnoldo, E-mail: arnoldo.piccardo@galliera.it [Department of Nuclear Medicine, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Altrinetti, Vania, E-mail: vania.altrinetti@galliera.it [Department of Nuclear Medicine, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Bacigalupo, Lorenzo, E-mail: lorenzo.bacigalupo@galliera.it [Department of Radiolog, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Puntoni, Matteo, E-mail: matteo.puntoni@galliera.it [Department of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Biscaldi, Ennio, E-mail: ennio.biscaldi@galliera.it [Department of Radiolog, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Gozza, Alberto, E-mail: alberto.gozza@galliera.it [Department of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Cabria, Manlio, E-mail: manlio.cabria@galliera.it [Department of Nuclear Medicine, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Iacozzi, Massimiliano, E-mail: massimiliano.iacozzi@galliera.it [Department of Nuclear Medicine, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Pasa, Ambra, E-mail: ambra.pasa@galliera.it [Department of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); Morbelli, Silvia, E-mail: silviadaniela.morbelli@hsanmartino.it [Unit of Nuclear Medicine, San Martino Hospital, Largo Rosanna Benzi 10,16132 Genoa (Italy); Villavecchia, Giampiero, E-mail: giampiero.villavecchia@galliera.it [Department of Nuclear Medicine, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy); DeCensi, Andrea, E-mail: andrea.decensi@galliera.it [Department of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa (Italy)

    2012-10-15

    Purpose: So far, no studies comparing {sup 18}F-Fluoride-PET/CT and MDCT for the detection of bone metastases are available. We compared the accuracy of {sup 18}F-Fluoride-PET/CT (MDCT: 3.75 mm thickness-image-reconstruction), whole-body Multi-Detector-CT (MDCT: 1.25 mm thickness-image-reconstruction) and {sup 18}F-Fluoride-PET/MDCT (MDCT: 1.25 mm thickness-image-reconstruction) in identifying bone metastases in breast cancer patients. Methods: We studied 39 breast cancer patients for bone metastases. Imaging was performed on an integrated PET/MDCT-system; CT images were reconstructed at 3.75 mm and 1.25 mm thickness. Two nuclear medicine physicians and one radiologist interpreted blindly {sup 18}F-Fluoride-PET/CT, {sup 18}F-Fluoride-PET/MDCT and MDCT. MDCT at 12 months served as the standard of reference. Results: Overall, 662 bone lesions were detected in our analysis. Of these, 542 were malignant and 120 were benign according to the standard of reference. {sup 18}F-Fluoride-PET/CT detected 491 bone metastases, 114 (23%) of which displayed no clear morphological changes on MDCT, whereas MDCT detected 416 bone metastases, 39 (9.3%) of which showed no {sup 18}F-Fluoride-PET uptake. Overall sensitivity and specificity were: 91% and 91%, respectively, for {sup 18}F-Fluoride-PET/CT, and 77% and 93% for MDCT. The integrated assessment of {sup 18}F-Fluoride-PET/MDCT yielded sensitivity and specificity values of 98% and 93%, respectively. Conclusions: {sup 18}F-Fluoride-PET/MDCT has higher diagnostic accuracy than {sup 18}F-Fluoride-PET/CT and MDCT for the evaluation of bone metastases in breast cancer.

  8. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    DEFF Research Database (Denmark)

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær;

    2012-01-01

    was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity...

  9. A Review on Motion Correction Methods in Pet/Ct Images for Detection of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nayyeri F.

    2015-11-01

    Full Text Available Positron Emission Tomography (PET is an important cancer imaging tool, both for diagnosing and staging, as well as offering predictive information based on response. PET is a nuclear medicine imaging technique which produces a three-dimensional image of functional processes in the body. While PET is commonly used to detect the tumors, especially in breast, colon, lung and for lymphoma, as well in the last decade it is verified as considerably more accurate than Computed Tomography (CT in the distinction between benign and malignant lesions. PET is not only more accurate than conventional imaging for the assessment of therapy response, but also it is useful to detect some viable tumor cells after treatment. However, motion is a source of artifacts in the medical imaging and results in reducing the quantitative and qualitative accuracy of the image. In general during the procedure of PET scanning, a few types of motion can occur that should be corrected and compensated. Different body motions are classified as brain motion, cardiac motion and respiratory motion. In this study, some of the most important motion correction and compensation methods using PET imaging system are compared.

  10. SPECT and PET Imaging of Meningiomas

    Directory of Open Access Journals (Sweden)

    Varvara Valotassiou

    2012-01-01

    Full Text Available Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical and grade III (anaplastic meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT and Magnetic Resonance Imaging (MRI are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT and Positron Emission Tomography (PET could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  11. Dual-time FDG-PET/CT in patients with potential breast cancer recurrence

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; Gerke, Oke;

    Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: head-to-head comparison with CT and bonescintigraphy......Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: head-to-head comparison with CT and bonescintigraphy...

  12. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluoresc

  13. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  14. The application of PET imaging in psychoneuroimmunology research.

    Science.gov (United States)

    Hannestad, Jonas

    2012-01-01

    Positron emission tomography (PET) imaging is a research tool that allows in vivo measurements of brain metabolism and specific target molecules. PET imaging can be used to measure these brain variables in a variety of species, including human and non-human primates, and rodents. PET imaging can therefore be combined with various experimental and clinical model systems that are commonly used in psychoneuroimmunology research.

  15. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  16. Molecular breast imaging. An update; Molekulare Brustbildgebung. Ein Update

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K.; Helbich, T.H.; Magometschnigg, H.; Baltzer, P. [Medizinische Universitaet Wien, Abteilung fuer Molekulare Bildgebung, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Fueger, B. [Medizinische Universitaet Wien, Abteilung fuer Molekulare Bildgebung, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Medizinische Universitaet Wien, Abteilung fuer Nuklearmedizin, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria)

    2014-03-15

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ({sup 1}H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ({sup 23}Na-MRI), phosphorus spectroscopy ({sup 31}P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.) [German] Die molekulare Bildgebung zielt auf die Darstellung, Beschreibung und Quantifizierung biologischer, physiologischer und pathologischer Prozesse auf zellulaerer und molekularer Ebene ab. In den letzten Jahren hat sich die molekulare Bildgebung mit ihren verschiedenen Modalitaeten in der Brustdiagnostik etabliert. Die molekularen Brustbildgebung umfasst derzeit die multiparametrische(MP)-MRT mit funktioneller und morphologischer kontrastmittelverstaerkter MRT (KM-MRT), molekularer diffusionsgewichteter Bildgebung (''diffusion-weighted imaging'', DWI) und metabolischer Protonenspektroskopie ({sup 1}H-MRSI) sowie nuklearmedizinische Verfahren (brustspezifische Gammakamerabildgebung [BSGI], Positronenemissionstomographie [PET], PET

  17. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Steffen; Heusner, Till; Forsting, Michael; Antoch, Gerald (Dept. of Diagnostic and Interventional Radiology and Neuroradiology, Univ. Hospital Essen, Univ. Duisburg-Essen, Essen (Germany)), email: steffen.hahn@uk-essen.de; Kuemmel, Sherko; Koeninger, Angelika (Dept. of Gynecology and Obstetrics, Univ. Hospital Essen, Univ. Duisburg-Essen, Essen (Germany)); Nagarajah, James; Mueller, Stefan; Boy, Christian; Bockisch, Andreas; Stahl, Alexander (Dept. of Nuclear Medicine, Univ. Hospital Essen, Univ. Duisburg-Essen, Essen (Germany))

    2011-11-15

    Background Bone scintigraphy is the standard procedure for the detection of bone metastases in breast cancer patients. FDG-PET/CT has been reported to be a sensitive tool for tumor staging in different malignant diseases. However, its accuracy for the detection of bone metastases has not been compared to bone scintigraphy. Purpose To compare whole-body FDG-PET/CT and bone scintigraphy for the detection of bone metastases on a lesion basis in breast cancer patients. Material and Methods Twenty-nine consecutive women (mean age 58 years, range 35-78 years) with histologically proven breast cancer were assessed with bone scintigraphy and whole-body FDG-PET/CT. Twenty-one patients (72%) were suffering from primary breast cancer and eight patients (28%) were in aftercare with a history of advanced breast cancer. Both imaging procedures were assessed for bone metastases by a radiologist and a nuclear medicine physician. Concordant readings between bone scintigraphy and FDG-PET/CT were taken as true. Discordant readings were verified with additional MRI imaging in all patients and follow-up studies in most patients. Results A total of 132 lesions were detected on bone scintigraphy, FDG-PET/CT or both. According to the reference standard, 70/132 lesions (53%) were bone metastases, 59/132 lesions (45%) were benign, and three lesions (2%) remained unclear. The sensitivity of bone scintigraphy was 76% (53/70) compared to 96% (67/70) for FDG-PET/CT. The specificity of bone scintigraphy and FDG-PET/CT was 95% (56/59) and 92% (54/59), respectively. According to the reference standard bone metastases were present in eight out of the 29 patients (28%), whereas 20 patients (69%) were free of bone metastases. One (3%) patient had inconclusive readings on both modalities as well as on MRI and follow-up studies. Bone scintigraphy and FDG-PET/CT correctly identified seven out of eight patients with bone metastases and 20 out of 20 patients free of metastases. Conclusion On a lesion

  18. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  19. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  20. {sup 18}F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groheux, David, E-mail: dgroheux@yahoo.fr [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Hindié, Elif [Department of Nuclear Medicine, Haut-Lévêque Hospital, CHU Bordeaux, University Bordeaux-Segalen, Bordeaux (France); Marty, Michel [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris (France); Espié, Marc [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Rubello, Domenico [Department of Nuclear Medicine, Santa Maria della Misericordia, Rovigo Hospital, Rovigo (Italy); Vercellino, Laetitia [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Bousquet, Guilhem [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); INSERM U728, University Institute of Hematology, University of Paris VII, Paris (France); Ohnona, Jessica; Toubert, Marie-Elisabeth [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Merlet, Pascal [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Misset, Jean-Louis [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France)

    2014-10-15

    Purpose: Male breast cancer (BC) is a rare disease, with patterns different from those found in women. Most tumors are detected at more advanced stages than in women. The aim of this study was to analyze the performance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) in staging, restaging, and therapy response assessment. Methods: We performed a systematic analysis in the database of Saint-Louis Hospital to identify male patients with BC referred for PET/CT. {sup 18}F-FDG-PET/CT findings considered suspicious for malignancy were compared to biopsy results, further work-up and/or patient follow-up of at least 6 months. Performances of {sup 18}F-FDG-PET/CT were compared to that of conventional imaging (CI) using the McNemar test. The impact of PET/CT on management was evaluated. Results: During 6 consecutive years, among 12,692 {sup 18}F-FDG-PET/CT oncology studies, 30 were performed in 15 men with BC: 7 examinations for initial staging, 11 for restaging, and 12 for response assessment. Tumors profile was ER+ and one had HER2 overexpression. PET/CT sensitivity, specificity, positive predictive value, negative predictive value and accuracy to detect distant metastases were 100%, 67%, 86%, 100% and 89%, respectively. PET/CT was more informative than CI in 40% of studies (p = 0.03; 95% confidence interval: 3.26 – 40%). Findings from {sup 18}F-FDG-PET/CT led to modification in the planned treatment in 13/30 cases (43%). Conclusion: Although all the tumors were ER+, primary lesions and metastases were diagnosed with high sensitivity. {sup 18}F-FDG-PET/CT seems to be a powerful imaging method to perform staging, restaging and treatment response assessment in male patients with BC.

  1. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  2. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  3. Metastases to the breast from extramammary malignancies – PET/CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Benveniste, Ana P., E-mail: apbenveniste@mdanderson.org [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Marom, Edith M., E-mail: emarom@mdanderson.org [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Benveniste, Marcelo F., E-mail: mfbenveniste@mdanderson.org [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mawlawi, Osama R., E-mail: omawlawi@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Miranda, Roberto N., E-mail: Roberto.miranda@mdanderson.org [Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Yang, Wei, E-mail: wyang@mdanderson.org [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2014-07-15

    Detection of incidental malignant lesions in the breast has a significant clinical impact not only on healthy individuals but also on patients with known malignant disease. This review describes a spectrum of metastatic breast lesions incidentally detected by FDG PET-CT at staging that may be misinterpreted as second primary malignancy. The common non-mammary malignancies that metastasize to the breast include melanoma, hematopoietic malignancies and epithelial cancers. We present the FDG PET-CT features of incidental non-mammary metastases to the breast that may help distinguish primary breast cancer from metastatic disease and aid in the management of patients with a known malignancy.

  4. Automated image registration for FDOPA PET studies

    Science.gov (United States)

    Lin, Kang-Ping; Huang, Sung-Cheng; Yu, Dan-Chu; Melega, William; Barrio, Jorge R.; Phelps, Michael E.

    1996-12-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention.

  5. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  6. Combined use of {sup 18}F-FDG PET/CT and MRI for response monitoring of breast cancer during neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Pengel, Kenneth E.; Loo, Claudette E. [The Netherlands Cancer Institute, Department of Radiology, PO Box 90203, Amsterdam (Netherlands); Koolen, Bas B.; Vogel, Wouter V.; Valdes Olmos, Renato A. [The Netherlands Cancer Institute, Department of Nuclear Medicine, Amsterdam (Netherlands); Wesseling, Jelle; Lips, Esther H. [The Netherlands Cancer Institute, Department of Pathology, Amsterdam (Netherlands); Rutgers, Emiel J.T.; Vrancken Peeters, Marie Jeanne T.F.D. [The Netherlands Cancer Institute, Department of Surgical Oncology, Amsterdam (Netherlands); Rodenhuis, Sjoerd [The Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam (Netherlands); Gilhuijs, Kenneth G.A. [The Netherlands Cancer Institute, Department of Radiology, PO Box 90203, Amsterdam (Netherlands); University Medical Center Utrecht, Department of Radiology/Image Sciences Institute, Utrecht (Netherlands)

    2014-08-15

    To explore the potential complementary value of PET/CT and dynamic contrast-enhanced MRI in predicting pathological response to neoadjuvant chemotherapy (NAC) of breast cancer and the dependency on breast cancer subtype. We performed {sup 18}F-FDG PET/CT and MRI examinations before and during NAC. The imaging features evaluated on both examinations included baseline and changes in {sup 18}F-FDG maximum standardized uptake value (SUVmax) on PET/CT, and tumour morphology and contrast uptake kinetics on MRI. The outcome measure was a (near) pathological complete response ((near-)pCR) after surgery. Receiver operating characteristic curves with area under the curve (AUC) were used to evaluate the relationships between patient, tumour and imaging characteristics and tumour responses. Of 93 patients, 43 achieved a (near-)pCR. The responses varied among the different breast cancer subtypes. On univariate analysis the following variables were significantly associated with (near-)pCR: age (p = 0.033), breast cancer subtype (p < 0.001), relative change in SUVmax on PET/CT (p < 0.001) and relative change in largest tumour diameter on MRI (p < 0.001). The AUC for the relative reduction in SUVmax on PET/CT was 0.78 (95 % CI 0.68-0.88), and for the relative reduction in tumour diameter at late enhancement on MRI was 0.79 (95 % CI 0.70-0.89). The AUC increased to 0.90 (95 % CI 0.83-0.96) in the final multivariate model with PET/CT, MRI and breast cancer subtype combined (p = 0.012). PET/CT and MRI showed comparable value for monitoring response during NAC. Combined use of PET/CT and MRI had complementary potential. Research with more patients is required to further elucidate the dependency on breast cancer subtype. (orig.)

  7. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    Directory of Open Access Journals (Sweden)

    Christopher J Thompson

    2014-08-01

    Full Text Available Recently, positron emission tomography (PET is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs and more recently silicon photo-multipliers (SiPMs are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.

  8. FDG PET evaluation of early axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Caroline [Comprehensive Cancer Center Rene Gauducheau, IRCNA, Nuclear Medicine Department, Saint Herblain (France); Nantes University, INSERM UMR 892, Cancer Research Center CRCNA, Nantes (France); Centre Rene Gauducheau, Service de Medecine Nucleaire, Saint Herblain Cedex (France); Devillers, Anne [Eugene Marquis Cancer Center, Nuclear Medicine Department, Rennes (France); Campone, Mario [Comprehensive Cancer Center Rene Gauducheau, Medical Oncology Department, Saint Herblain (France); Campion, Loic [Comprehensive Cancer Center Rene Gauducheau, Statistic Department, Saint Herblain (France); Ferrer, Ludovic [Comprehensive Cancer Center Rene Gauducheau, Medical Physics Department, Saint Herblain (France); Sagan, Christine [University Hospital, Pathology Department, Nantes (France); Ricaud, Myriam [Comprehensive Cancer Center Rene Gauducheau, Radiology Department, Saint Herblain (France); Bridji, Boumediene [Comprehensive Cancer Center Rene Gauducheau, IRCNA, Nuclear Medicine Department, Saint Herblain (France); Kraeber-Bodere, Francoise [Comprehensive Cancer Center Rene Gauducheau, IRCNA, Nuclear Medicine Department, Saint Herblain (France); Nantes University, INSERM UMR 892, Cancer Research Center CRCNA, Nantes (France)

    2011-06-15

    Regional axillary lymph node status has remained the single most independent variable to predict prognosis both in terms of disease recurrence and survival. This study aimed to prospectively assess sequential [{sup 18}F]fluorodeoxyglucose (FDG) positron emission tomography (PET) findings as early predictors of axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients. Images were acquired with a PET/CT scanner in 52 patients after administration of FDG (5 MBq/kg) at baseline and after the first, second, third and sixth course of chemotherapy before surgery. Clinical examination and ultrasound (US) were used to assess the size of axillary nodes. Decrease in the standardized uptake value (SUV) with PET corrected or not for partial volume effects was compared to the pathological response. The sensitivity, specificity and accuracy of axillary node staging was higher with PET (75, 87 and 80%) than with US (50, 83 and 65%), and even more so when PET images were corrected for partial volume effects (86, 83 and 84%). While FDG uptake did not vary much in non-responders, as confirmed by histopathological analysis, it markedly decreased to baseline levels in responders (p < 10{sup -5}). Fifty per cent of baseline SUV was considered the best cutoff value to distinguish responders from non-responders. The sensitivity, specificity, negative predictive value and accuracy of FDG PET after one course of chemotherapy were, respectively, 96, 75, 95 and 84%. The pathological status of regional axillary lymph nodes in stage II and III breast cancer patients could be accurately predicted after one course of neoadjuvant chemotherapy based on FDG PET images. (orig.)

  9. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  10. PET/MR Imaging in Cancers of the Gastrointestinal Tract.

    Science.gov (United States)

    Paspulati, Raj Mohan; Gupta, Amit

    2016-10-01

    PET/computed tomography (PET/CT) is an established hybrid imaging technique for staging and follow-up of gastrointestinal (GI) tract malignancies, especially for colorectal carcinoma. Dedicated hybrid PET/MR imaging scanners are currently available for clinical use. Although they will not replace regular use of PET/CT, they may have utility in selected cases of GI tract malignancies. The superior soft tissue contrast resolution and depiction of anatomy and the functional information obtained from diffusion-weighted imaging (DWI) provided by MR imaging in PET/MR imaging are advantages over CT of PET/CT for T staging and follow-up of rectal carcinoma and for better characterization of liver lesions. Functional information from DWI and use of liver-specific MR imaging contrast agents are an added advantage in follow-up of liver metastases after systemic and locoregional treatment. New radiotracers will improve the utility of PET/MR imaging in staging and follow-up of tumors, which may not be [18F]-2-fluoro-2-deoxy-d-glucose avid, such as hepatocellular carcinoma and neuroendocrine tumors. PET/MR imaging also has application in selected cases of cholangiocarcinoma, gallbladder cancer, and pancreatic carcinoma for initial staging and follow-up assessment.

  11. Primary Rectal Adenocarcinoma Metastasizing to Bilateral Breast - a Rare Case Demonstrated by {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Soundararajan, Ramya; Arora, Saurabh; Das, Chandan Jyoti; Roy, Maitrayee; Kumar, Rakesh; Bal, Chandrasekhar [All India Institute of Medical Sciences, New Delhi (India)

    2016-06-15

    A 22-year-old female presented with multiple painless bilateral breast masses for the past 2 months. On Further questioning she had hematochezia and constipation for three months. On digital rectal examination, thickening of rectal mucosa at 5 cm from the anal verge was found. On physical examination, multiple firm, non-tender, nodular lesions were found in bilateral breasts. Metastatic breast disease from extra mammary primaries is uncommon and it constitutes 0.5 - 6% of all breast malignancies. melanomas, lymphomas, leukemias, ands sarcomas are the most common malignancies causing breast metastases. Infrequently, carcinomas of the lung, stomach, ovary, liver, tonsil, pleura, pancreas, cervix, perineum, endometrium, bladder, carcinoid tumors and renal cell carcinomas can cause metastatic breast disease. Metastatic breast disease from colorectal cancer is characterised by disseminated metastatic disease and a poor prognosis. In this case, It was essential to distinguish between metastatic breast disease primary breast carcinoma to plan appropriate management. Because of its rare incidence and high index of clinical suspicion, appropriate radiological investigations and histopathology is essential for accurate diagnosis. {sup 18}F-FDG PET/CT, being a whole-body metabolic functional imaging modality, helped us determine the extent of the primary and metastatic disease. In view of disseminated metastases, the bilateral breast disease was also considered as metastatic involvement, Which was proven by histopathology.

  12. Diagnostic and prognostic correlates of preoperative FDG PET for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vinh-Hung, Vincent [University of Geneva, Department of Imaging and Medical Information Sciences, University Hospitals of Geneva, Geneva (Switzerland); University of Geneva, Radiation Oncology, University Hospitals of Geneva, Geneva (Switzerland); Everaert, Hendrik [Vrije Universiteit Brussel, Department of Nuclear Medicine, UZ Brussel, Brussels (Belgium); Lamote, Jan; Vanhoeij, Marian; Verfaillie, Guy [Vrije Universiteit Brussel, Department of Surgery, UZ Brussel, Brussels (Belgium); Voordeckers, Mia; Parijs, Hilde van; Ridder, Mark de [Vrije Universiteit Brussel, Department of Radiotherapy, UZ Brussel, Brussels (Belgium); Fontaine, Christel [Vrije Universiteit Brussel, Department of Medical Oncology UZ Brussel, Brussels (Belgium); Vees, Hansjoerg; Ratib, Osman [University of Geneva, Department of Imaging and Medical Information Sciences, University Hospitals of Geneva, Geneva (Switzerland); Vlastos, Georges [University of Geneva, Department of Surgical Senology, University Hospitals of Geneva, Geneva (Switzerland)

    2012-10-15

    To explore the preoperative utility of FDG PET for the diagnosis and prognosis in a retrospective breast cancer case series. In this retrospective study, 104 patients who had undergone a preoperative FDG PET scan for primary breast cancer at the UZ Brussel during the period 2002-2008 were identified. Selection criteria were: histological confirmation, FDG PET performed prior to therapy, and breast surgery integrated into the primary therapy plan. Patterns of increased metabolism were recorded according to the involved locations: breast, ipsilateral axillary region, internal mammary chain, or distant organs. The end-point for the survival analysis using Cox proportional hazards was disease-free survival. The contribution of prognostic factors was evaluated using the Akaike information criterion and the Nagelkerke index. PET positivity was associated with age, gender, tumour location, tumour size >2 cm, lymphovascular invasion, oestrogen and progesterone receptor status. Among 63 patients with a negative axillary PET status, 56 (88.9 %) had three or fewer involved nodes, whereas among 41 patients with a positive axillary PET status, 25 (61.0 %) had more than three positive nodes (P < 0.0001). In the survival analysis of preoperative characteristics, PET axillary node positivity was the foremost statistically significant factor associated with decreased disease-free survival (hazard ratio 2.81, 95% CI 1.17-6.74). Preoperative PET axillary node positivity identified patients with a higher burden of nodal involvement, which might be important for treatment decisions in breast cancer patients. (orig.)

  13. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  14. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  15. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology

    DEFF Research Database (Denmark)

    Stauss, J.; Franzius, C.; Pfluger, T.;

    2008-01-01

    tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published...... by the EANM Paediatric Committee, do not intend to compete with the existing guidelines, but rather aim at providing additional information on issues particularly relevant to PET imaging of children with cancer. CONCLUSION: The guidelines summarize the views of the Paediatric Committee of the European...

  16. Application of PET/SPECT imaging in vascular disease

    NARCIS (Netherlands)

    van der Vaart, M. G.; Meerwaidt, R.; Slart, R. H. J. A.; van Dam, G. M.; Tio, R. A.; Zeebregts, C. J.

    2008-01-01

    Background. Nuclear medicine imaging differs from other imaging modalities by showing physiological processes instead of anatomical details. Objective. To describe the current applications of positron emission tomography (PET) and single photon emission computed tomography (SPECT) as a diagnostic to

  17. 18F-FDG PET/CT and PET for evaluation of pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xu; Liu, Biao; Xu, Zhaoqiang; Bao, Lihua [Dept. of Nuclear Medcine, The First Affiliated Hospital of Nanjing Medical Univ., Nanjing, Jiangsu (China); Li, Yongjun; Wang, Jie [Dept. of Radiology, The First Affiliated Hospital of Nanjing Medical Univ., Nanjing, Jiangsu (China)], E-mail: cheng7515@163.com

    2012-07-15

    Background. Neoadjuvant chemotherapy is increasingly the treatment for patients with inoperable breast cancer. Considering the side-effects of chemotherapy, there is a need for early evaluating response to neoadjuvant chemotherapy. Purpose. To determinate the diagnostic performance of 18F-fluorodeoxyglucose position emission tomography/computed tomography (FDG PET/CT) and FDG PET for evaluating response to neoadjuvant chemotherapy in patients with breast cancer. Material and Methods. 'PubMed' (MEDLINE included) database, EMBASE, and Cochrane Database of Systematic Reviews were searched for relevant articles. We assessed the methodological quality of included study with Quality Assessment of Diagnosis Accuracy Studies (QUADAS) score tool, and used 'Meta-DiSc' statistic software to obtain pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver-operating characteristic (SROC) curve. Results. Seventeen studies (a total of 781 subjects) met the inclusion criteria. The pooled sensitivity was 0.840 (95% confidence interval [CI] 0.796-0.878). The pooled specificity was 0.713 (95% CI 0.667-0.756). For FDG PET/CT (10 studies included), the pooled sensitivity was 0.847 (95% CI 0.793-0.892), the pooled specificity was 0.661 (95% CI 0.598-0.720). The pooled likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR) were 2.835 (95% CI 1.640-4.900), 0.221 (95% CI 0.160-0.305), and 17.628 (95% CI 7.431-41.818). The area under the SROC curve (AUC) was 0.8934. For FDG PET (7 studies included), the pooled sensitivity and specificity were 0.826 (95% CI 0.741-0.892) and 0.789 (95% CI 0.719-0.849). The pooled LR + , LR-, and DOR were 3.601 (95% CI 2.601-4.986), 0.242 (95% CI 0.157-0.374), and 13.641 (95% CI 7.433-25.030). The AUC was 0.8764. Conclusion. Our results indicate that FDG PET/CT and PET have reasonable sensitivity in evaluating response to neoadjuvant chemotherapy in breast cancer

  18. {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel; Riedl, Christopher C.; Jochelson, Maxine S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Goldman, Debra A.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Pinker-Domenig, Katja [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2016-10-15

    National Comprehensive Cancer Network guidelines recommend {sup 18}F-FDG-PET/CT, in addition to standard staging procedures, for systemic staging of newly diagnosed stage III breast cancer patients. However, factors in addition to stage may influence PET/CT utility. As breast cancers that are negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (triple-negative breast cancer, or TNBC) are more aggressive and metastasize earlier than other breast cancers, we hypothesized that receptor expression may be one such factor. This study assesses {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed TNBC. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with TNBC who underwent {sup 18}F-FDG-PET/CT in 2007-2013 prior to systemic or radiation therapy. Initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery, if performed prior to {sup 18}F-FDG-PET/CT. {sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases, as well as unsuspected synchronous malignancies. Kaplan Meier survival estimates were calculated for initial stage IIB patients stratified by whether or not stage 4 disease was detected by {sup 18}F-FDG-PET/CT. A total of 232 patients with TNBC met inclusion criteria. {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 30 (13 %): 0/23 initial stage I, 4/82 (5 %) stage IIA, 13/87 (15 %) stage IIB, 4/23 (17 %) stage IIIA, 8/14 (57 %) stage IIIB, and 1/3 (33 %) stage IIIC. Twenty-six of 30 patients upstaged to IV by {sup 18}F-FDG-PET/CT were confirmed by pathology, with the remaining four patients confirmed by follow-up imaging. In addition, seven unsuspected synchronous malignancies were identified in six patients. Initial stage 2B patients who were upstaged to 4 by {sup 18}F-FDG-PET/CT had significantly shorter survival compared to

  19. Dual-Modality Prostate Imaging with PET and Transrectal Ultrasound

    Science.gov (United States)

    2011-09-01

    Page | 16 Shelley A. Caras Steven L. Ferreira David Fraser Jaspal Gill John S. Haugrud Luster D. Howard Ronald H. Huesman Robert T. Kelley William W...or not a lesion is observed using CT or TRUS imaging, which may not be cancerous). We will perform novel functional PET imaging using [11C]choline...determine the tumor “aggressiveness,” but few anatomical features are visible in the PET images. Transrectal ultrasound (TRUS) imaging identifies lesions

  20. Molecular cardiac PET besides FDG viability imaging; Molekulare Kardiale PET jenseits der FDG-Vitalitaetsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, O.; Burchert, W. [Universitaetsklinik der Ruhr-Univ. Bochum (Germany). Inst. fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabetszentrum NRW

    2009-06-15

    Molecular cardiac non F-18-FDG PET is currently based on perfusion imaging. It is of excellent diagnostic accuracy to detect coronary artery disease (CAD) and superior to perfusion SPECT. There is also evidence for its incremental prognostic value. The unique feature of PET to measure myocardial perfusion in absolute terms and in short time periods define its impact on cardiac imaging enabling both the evaluation of early changes in CAD and the accurate characterization of multivessel disease. Currently, all available PET perfusion tracers in Europe are cyclotron products. Rb-82, a generator product, is the most frequently employed perfusion tracer in the United States and cyclotron independent. This tracer has the potential to become an alternative in Europe soon. Nowadays, PET systems are manufactured as hybrid PET-CT scanners. In oncology, hybrid imaging revealed, that the combination of functional and morphological imaging is superior to the single components. In cardiology, the integration of perfusion PET imaging with CT calcium scoring and CT anatomy of the coronary arteries represents a similar constellation. Atherosclerotic plaque evaluation by combined PET-CT technique will be one of the most promising future applications with a potential immense impact on prophylaxis, diagnosis and therapy of CAD in the future. (orig.)

  1. High resolution image reconstruction method for a double-plane PET system with changeable spacing

    Science.gov (United States)

    Gu, Xiao-Yue; Zhou, Wei; Li, Lin; Wei, Long; Yin, Peng-Fei; Shang, Lei-Min; Yun, Ming-Kai; Lu, Zhen-Rui; Huang, Xian-Chao

    2016-05-01

    Breast-dedicated positron emission tomography (PET) imaging techniques have been developed in recent years. Their capacities to detect millimeter-sized breast tumors have been the subject of many studies. Some of them have been confirmed with good results in clinical applications. With regard to biopsy application, a double-plane detector arrangement is practicable, as it offers the convenience of breast immobilization. However, the serious blurring effect of the double-plane PET, with changeable spacing for different breast sizes, should be studied. We investigated a high resolution reconstruction method applicable for a double-plane PET. The distance between the detector planes is changeable. Geometric and blurring components were calculated in real-time for different detector distances, and accurate geometric sensitivity was obtained with a new tube area model. Resolution recovery was achieved by estimating blurring effects derived from simulated single gamma response information. The results showed that the new geometric modeling gave a more finite and smooth sensitivity weight in the double-plane PET. The blurring component yielded contrast recovery levels that could not be reached without blurring modeling, and improved visual recovery of the smallest spheres and better delineation of the structures in the reconstructed images were achieved with the blurring component. Statistical noise had lower variance at the voxel level with blurring modeling at matched resolution, compared to without blurring modeling. In distance-changeable double-plane PET, finite resolution modeling during reconstruction achieved resolution recovery, without noise amplification. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-EW-N06)

  2. Body-wide anatomy recognition in PET/CT images

    Science.gov (United States)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  3. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  4. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: Lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Leonardo, E-mail: lpace@unisa.it [Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno (Italy); Nicolai, Emanuele, E-mail: enicolai@sdn-napoli.it [IRCCS–SDN, Napoli (Italy); Luongo, Angelo, E-mail: angelo_luongo@libero.it [Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II (Italy); Aiello, Marco, E-mail: maiello@sdn-napoli.it [IRCCS–SDN, Napoli (Italy); Catalano, Onofrio A., E-mail: onofriocatalano@yahoo.it [IRCCS–SDN, Napoli (Italy); Soricelli, Andrea, E-mail: andrea.soricelli@uniparthenope.it [Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università degli Studi Parthenope di Napoli (Italy); Salvatore, Marco, E-mail: marsalva@unina.it [Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II (Italy)

    2014-02-15

    Purpose: To compare the performance of PET/MRI imaging using MR attenuation correction (MRAC) (DIXON-based 4-segment -map) in breast cancer patients with that of PET/CT using CT-based attenuation correction and to compare the quantification accuracy in lesions and in normal organ tissues. Methods: A total of 36 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 62 min later a second scan using a hybrid PET/MRI system. PET/MRI and PET/CT were compared visually by rating anatomic allocation and image contrast. Regional tracer uptake in lesions was quantified using volumes of interest, and maximal and mean standardized uptake values (SUVmax and SUVmean, respectively) were calculated. Metabolic tumor volume (MTV) of each lesion was computed on PET/MRI and PET/CT. Tracer uptake in normal organ tissue was assessed as SUVmax and SUVmean in liver, spleen, left ventricular myocardium, lung, and muscle. Results: Overall 74 FDG positive lesions were visualized by both PET/CT and PET/MRI. No significant differences in anatomic allocation scores were found between PET/CT and PERT/MRI, while contrast score of lesions on PET/MRI was significantly higher. Both SUVmax and SUVmean of lesions were significantly higher on PET/MRI than on PET/CT, with strong correlations between PET/MRI and PET/CT data (ρ = 0.71–0.88). MTVs of all lesions were 4% lower on PET/MRI than on PET/CT, but no statistically significant difference was observed, and an excellent correlation between measurements of MTV with PET/MRI and PET/CT was found (ρ = 0.95–0.97; p < 0.0001). Both SUVmax and SUVmean were significantly lower by PET/MRI than by PET/CT for lung, liver and muscle, no significant difference was observed for spleen, while either SUVmax and SUVmean of myocardium were significantly higher by PET/MRI. High correlations were found between PET/MRI and PET/CT for both SUVmax and SUVmean of the left ventricular myocardium (ρ = 0.91; p < 0.0001), while moderate

  5. Sparsity-constrained PET image reconstruction with learned dictionaries

    Science.gov (United States)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  6. PET/MRI in Oncological Imaging: State of the Art

    Directory of Open Access Journals (Sweden)

    Usman Bashir

    2015-07-01

    Full Text Available Positron emission tomography (PET combined with magnetic resonance imaging (MRI is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.

  7. MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging.

    Science.gov (United States)

    Munoz, Camila; Kolbitsch, Christoph; Reader, Andrew J; Marsden, Paul; Schaeffter, Tobias; Prieto, Claudia

    2016-04-01

    Cardiac and respiratory motion cause image quality degradation in PET imaging, affecting diagnostic accuracy of the images. Whole-body simultaneous PET-MR scanners allow for using motion information estimated from MR images to correct PET data and produce motion-compensated PET images. This article reviews methods that have been proposed to estimate motion from MR images and different techniques to include this information in PET reconstruction, in order to overcome the problem of cardiac and respiratory motion in PET-MR imaging. MR-based motion correction techniques significantly increase lesion detectability and contrast, and also improve accuracy of uptake values in PET images.

  8. Assessment of response to endocrine therapy using FDG PET/CT in metastatic breast cancer: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi-Jehanno, Nina; Giraudet, Anne-Laure; Champion, Laurence; Edeline, Veronique; Madar, Olivier; Pecking, Alain Paul [Institut Curie, Hopital Rene Huguenin, Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Institut Curie, Hopital Rene Huguenin, Service d' Oncologie Medicale, Saint-Cloud (France); Stanc, Elise Le [Hopital Foch, Service de Medecine Nucleaire, Suresnes (France); Bellet, Dominique [Institut Curie, Hopital Rene Huguenin, Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Institut Curie, Hopital Rene Huguenin, Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de Medecine, Versailles (France)

    2012-03-15

    The purpose of this pilot study was to assess whether outcome in metastatic or recurrent breast cancer patients is related to metabolic response to endocrine therapy determined by {sup 18}F-FDG PET/CT. The study group comprised 22 patients with breast cancer (age 58 {+-} 11 years, mean {+-} SD) who were scheduled to receive endocrine therapy. They were systematically assessed by PET/CT at baseline and after a mean of 10 {+-} 4 weeks for evaluation of response after induction. All patients demonstrated FDG-avid lesions on the baseline PET/CT scan. The metabolic response was assessed according to EORTC criteria and based on the mean difference in SUV{sub max} between the two PET/CT scans, and the patients were classified into four groups: complete or partial metabolic response, or stable or progressive metabolic disease (CMR, PMR, SMD and PMD, respectively). All patients were followed in our institution. Metastatic sites were localized in bone (n = 15), lymph nodes (n = 11), chest wall (n = 3), breast (n = 5), lung (n = 3), soft tissue (n = 1) and liver (n = 1). PMR was observed in 11 patients (50%), SMD in 5 (23%) and PMD in 6 (27%). The median progression-free survival (PFS) times were 20, 27 and 6 months in the PMR, SMD and PMD groups, respectively. PFS in the SMD group differed from that in the PMR and SMD groups (p < 0.0001). Metabolic response assessed by FDG PET/CT imaging in patients with metastatic breast cancer treated with endocrine therapy is predictive of the patients' PFS. (orig.)

  9. Contourlet-based active contour model for PET image segmentation

    NARCIS (Netherlands)

    Abdoli, M.; Dierckx, R. A. J. O.; Zaidi, H.

    2013-01-01

    Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the pres

  10. PET tracers for somatostatin receptor imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Johnbeck, Camilla Bardram; Knigge, Ulrich; Kjær, Andreas

    2014-01-01

    Neuroendocrine tumors have shown rising incidence mainly due to higher clinical awareness and better diagnostic tools over the last 30 years. Functional imaging of neuroendocrine tumors with PET tracers is an evolving field that is continuously refining the affinity of new tracers in the search...... these PET tracers further....

  11. Normal physiologic and Benign foci with F-18 FDG avidity on PET/CT in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Lee, Kwang Man; Choi, Un Jong; Kim, Hun Soo; Kim, Hye Won; Song, Jeong Hoon [College of Medicine, Wonkwnag University, Iksan (Korea, Republic of)

    2010-12-15

    The aim of this study was to evaluate the physiologic and benign F-18 fluorodeoxyglucose (FDG) avid foci in patients with breast cancer. On 309 F-18 FDG PET/CT scans of 241 women with breast cancer, the hypermetabolic lesions compared with the surrounding normal region were evaluated retrospectively. Available reports of other relevant radiological imaging medical records, and follow-up PET/CT were reviewed for explanations of the abnormal uptake. Among the 70 physiologic foci, muscular uptake of the lower neck following the surgical and/or radiation therapy of ipsilateral breast (29%), hypermetabolic ovaries (16%) and uterine (10%) uptake during the ovulatory and menstrual phases during the normal menstrual cycle were identified, and also hypermetabolic brown fat in cold-induced thermogenesis (7%), non-specific bowel uptake (35%) were observed. Among the 147 benign lesions, sequelae of the chest wall and breasts following surgical and/or radiation therapy, were often observed (27%). Hypermetabolic thyroid glands were noted as adenomas and chronic thyroiditis (18%). Reactive hyperplasia of cervical or mediastinal lymph nodes (32%), degenerative osteoarthritis and healed fractures (15%), hypermetabolic benign lung lesions (6%) were observed. Altered physiologic and benign F-18 FDG uptake in the cervical muscle and chest wall following ipsilateral breast surgery or radiotherapy were common, and also normal physiologic uptake in ovary and uterus, brown fat, thyroid were considered as predominant findings in women patients with breast cancer. Knowledge of these findings might aid in the interpretation of FDG PET/CT in patients with breast cancer

  12. Metastatic Breast Lesion to the Falx Detected with PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Chester; Schuster, David M. [Emory Univ., Atlanta (United States)

    2012-06-15

    Intracranial dural metastasis is increasingly encountered in imaging. Autopsies conducted on patients with advanced metastatic disease demonstrate dural involvement in 9% of cases, with breast and prostate cancer the most common primaries. Awareness of this entity and imaging appearances is especially important in evaluating malignancies prone to dural metastasis. A 57-year-old woman with a strong family history of breast cancer initially presented after self-detection of a right breast lump. Subsequent mammogram and biopsies yielded a diagnosis of right infiltrating ductal carcinoma with a positive lymph node as well as left invasive lobular carcinoma. Initial staging PET-CT (not shown) at the time of diagnosis demonstrated no abnormal FDG uptake remote from the breast. Neoadjuvant chemotherapy was instituted, and a PET-CT was obtained to evaluate disease response, demonstrating an approximately 1.8 cm hypermetabolic intra-cranial mass, localized to the region of the anterior corpus callosum on axian PET (Fig. 1a), axial fused PET-CT (Fig. 1b), and sagittal fused PET-CT (Fig. 1c) with a maximum SUV of 15.9. There was associated bifrontal vasogenic edema (Fig. 1d) on the CT demonstrated on brain windows. Marked progression of disease was noted elsewhere, including hypermetabolic adenopathy and skeletal disease. A contrast-enhanced MRI of the brain was obtained demonstrating extensive T1 hypointensity, T2, and FLAIR (Fig. 2a) hyperintensity in the bilateral paramedian frontallobes representing vasogenic edema. Post-contrast imaging demonstrated three solidly enhancing masses in the areas of described vasogenic edema, one large extra-axial and two sub-centimeter parenchymal lesions. The large extra-axial and two sub-centimeter parenchymal lesions. The large extra-axial mass demonstrated homogeneous solid enhancement, in the midline anteriorly centered on the falx, just superior to the anterior corpus callosum. This measured 1.7cm transverse x 3.1cm AP x 2.4cm

  13. Correlation between PET/CT results and histological and immunohistochemical findings in breast carcinomas

    Directory of Open Access Journals (Sweden)

    Almir Galvão Vieira Bitencourt

    2014-04-01

    Full Text Available Objective To correlate the results of 18F-fluoro-2-deoxy-D-glucose (18F-FDG positron emission tomography/computed tomography (PET/CT performed with a specific protocol for assessment of breasts with histological/immunohistochemical findings in breast carcinoma patients. Materials and Methods Cross-sectional study with prospective data collection, where patients with biopsy-confirmed breast carcinomas were studied. The patients underwent PET/CT examination in prone position, with a specific protocol for assessment of breasts. PET/CT findings were compared with histological and immunohistochemical data. Results The authors identified 59 malignant breast lesions in 50 patients. The maximum diameter of the lesions ranged from 6 to 80 mm (mean: 32.2 mm. Invasive ductal carcinoma was the most common histological type (n = 47; 79.7%. At PET/CT, 53 (89.8% of the lesions demonstrated anomalous concentrations of 18F-FDG, with maximum SUV ranging from 0.8 to 23.1 (mean: 5.5. A statistically significant association was observed between higher values of maximum SUV and histological type, histological grade, molecular subtype, tumor diameter, mitotic index and Ki-67 expression. Conclusion PET/CT performed with specific protocol for assessment of breasts has demonstrated good sensitivity and was associated with relevant histological/immunohistochemical factors related to aggressiveness and prognosis of breast carcinomas.

  14. PET IMAGING STUDIES IN DRUG ABUSE RESEARCH.

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Ding, Y.S.; Logan, J.; Wang, G.J.

    2001-01-29

    There is overwhelming evidence that addiction is a disease of the brain (Leshner, 1997). Yet public perception that addiction is a reflection of moral weakness or a lack of willpower persists. The insidious consequence of this perception is that we lose sight of the fact that there are enormous medical consequences of addiction including the fact that a large fraction of the total deaths from cancer and heart disease are caused by smoking addiction. Ironically the medical school that educates physicians in addiction medicine and the cancer hospital that has a smoking cessation clinic are vanishingly rare and efforts at harm reduction are frequently met with a public indignation. Meanwhile the number of people addicted to substances is enormous and increasing particularly the addictions to cigarettes and alcohol. It is particularly tragic that addiction usually begins in adolescence and becomes a chronic relapsing problem and there are basically no completely effective treatments. Clearly we need to understand how drugs of abuse affect the brain and we need to be creative in using this information to develop effective treatments. Imaging technologies have played a major role in the conceptualization of addiction as a disease of the brain (Fowler et al., 1998a; Fowler et al., 1999a). New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology and medicine. This topic cuts across the medical specialties of neurology, psychiatry, cancer and heart disease because of the high medical, social and economic toll that drugs of abuse, including and especially the legal drugs, cigarettes and alcohol, take on society. In this chapter we will begin by highlighting the important role that chemistry has played in making it possible to quantitatively image the movement of drugs as well as their effects on the human brain

  15. Development of a PET/Cerenkov-light hybrid imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871 (Japan); Watabe, Hiroshi [CYRIC, Tohoku University, Miyagi 980-8578 (Japan)

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET

  16. Utility of 18FDG-PET/CT in breast cancer diagnostics--a systematic review

    DEFF Research Database (Denmark)

    Warning, Karina; Hildebrandt, Malene Grubbe; Kristensen, Bent;

    2011-01-01

    as a primary diagnostic procedure in breast cancer; but it has the potential to be useful for the detection of distant metastases and for monitoring response to chemotherapy in breast cancer patients. PET/CT should still be regarded as a supplement to conventional diagnostic procedures such as CT and MRI....

  17. Cardiovascular hybrid imaging using PET/MRI; Kardiovaskulaere Hybridbildgebung mit PET/MRT

    Energy Technology Data Exchange (ETDEWEB)

    Nensa, Felix; Schlosser, Thomas [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie

    2014-12-15

    The following overview provides a summary of the state of the art and research as well as potential clinical applications of cardiovascular PET/MR imaging. PET/MRI systems have been clinically available for a few years, and their use in cardiac imaging has been successfully demonstrated. At this period in time, some of the technical difficulties that arose at the beginning have been solved; in particular with respect to MRI-based attenuation correction, caution should be exercised with PET quantification. In addition, many promising technical options are still in the developmental stage, such as MRI-based motion correction of PET data resulting from simultaneous MR acquisition, and are not yet available for cardiovascular imaging. On the other hand, PET/MRI has been used to demonstrate significant pathologies such as acute and chronic myocardial infarction, myocarditis or cardiac sarcoidosis; future applications in clinical routine or within studies appear to be possible. In coming years additional studies will have to be performed to prove diagnostic gain at a reasonable cost-benefit ratio before valid conclusions are possible regarding the clinical utility and future of cardiovascular PET/MR imaging.

  18. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner.

    Science.gov (United States)

    Slates, R B; Farahani, K; Shao, Y; Marsden, P K; Taylor, J; Summers, P E; Williams, S; Beech, J; Cherry, S R

    1999-08-01

    We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T2-weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner.

  19. Ultrasonography Fused with PET-CT Hybrid Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Ewertsen, Caroline; Gran, Fredrik

    2011-01-01

    We present a method with fusion of images of three modalities 18F-FDG PET, CT, and 3-D ultrasound (US) applied to imaging of the anal canal and the rectum. To obtain comparable geometries in the three imaging modalities, a plexiglas rod, with the same dimensions as the US transducer, is placed...... in the anal canal prior to the PET-CT examination. The method is based on manual co-registration of PET-CT images and 3-D US images. The three-modality imaging of the rectum-anal canal may become useful as a supplement to conventional imaging in the external radiation therapy in the treatment of anal cancer......, where the precise delineation of a tumor is crucial to avoid damage from radiation therapy to the healthy tissue surrounding it. The technique is still in a phase of development, and the demands for integration different company software systems are significant before commercial application. Three...

  20. Comparison of prone versus supine 18F-FDG-PET of locally advanced breast cancer: Phantom and preliminary clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jason M.; Rani, Sudheer D.; Li, Xia; Whisenant, Jennifer G.; Abramson, Richard G. [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 and Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232 (United States); Arlinghaus, Lori R. [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 (United States); Lee, Tzu-Cheng [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); MacDonald, Lawrence R.; Partridge, Savannah C. [Department of Radiology, University of Washington, Seattle, Washington 98195 (United States); Kang, Hakmook [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 and Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37232 (United States); Linden, Hannah M. [Department of Medical Oncology, University of Washington, Seattle, Washington 98195 (United States); Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, Washington 98195 (United States); Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States); Yankeelov, Thomas E., E-mail: thomas.yankeelov@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Physics, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232 (United States)

    2015-07-15

    Purpose: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors’ primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [{sup 18}F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. Methods: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone and supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUV{sub peak} and SUV{sub max}, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland–Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. Results: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4–30.9 min), which was significantly—but not completely—reduced by the linear correction method. SUV{sub peak} and SUV{sub max} from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUV{sub peak} and SUV{sub max} were

  1. Design considerations for a limited angle, dedicated breast, TOF PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Surti, S; Karp, J S [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: surti@mail.med.upenn.edu, E-mail: joelkarp@mail.med.upenn.edu

    2008-06-07

    Development of partial ring, dedicated breast positron emission tomography (PET) scanners is an active area of research. Due to the limited angular coverage, generation of distortion and artifact-free, fully 3D tomographic images is not possible without rotation of the detectors. With time-of-flight (TOF) information, it is possible to achieve the 3D tomographic images with limited angular coverage and without detector rotation. We performed simulations for a breast scanner design with a ring diameter and an axial length of 15 cm and comprising a full (180{sup 0} in-plane angular coverage), 2/3 (120{sup 0} in-plane angular coverage) or 1/2 (90{sup 0} in-plane angular coverage) ring detector. Our results show that as the angular coverage decreases, improved timing resolution is needed to achieve distortion-free and artifact-free images with TOF. The contrast recovery coefficient (CRC) value for small hot lesions in a partial ring scanner is similar to a full ring non-TOF scanner. Our results indicate that a timing resolution of 600 ps is needed for a 2/3 ring scanner, while a timing resolution of 300 ps is needed for a 1/2 ring scanner. We also analyzed the ratio of lesion CRC to the background pixel noise (SNR) and concluded that TOF improves the SNR values of the partial ring scanner, and helps to compensate for the loss in sensitivity due to reduced geometric sensitivity in a limited angle coverage PET scanner. In particular, it is possible to maintain similar SNR characteristic in a 2/3 ring scanner with a timing resolution of 300 ps as in a full ring non-TOF scanner.

  2. Design considerations for a limited angle, dedicated breast, TOF PET scanner

    Science.gov (United States)

    Surti, S.; Karp, J. S.

    2008-06-01

    Development of partial ring, dedicated breast positron emission tomography (PET) scanners is an active area of research. Due to the limited angular coverage, generation of distortion and artifact-free, fully 3D tomographic images is not possible without rotation of the detectors. With time-of-flight (TOF) information, it is possible to achieve the 3D tomographic images with limited angular coverage and without detector rotation. We performed simulations for a breast scanner design with a ring diameter and an axial length of 15 cm and comprising a full (180° in-plane angular coverage), 2/3 (120° in-plane angular coverage) or 1/2 (90° in-plane angular coverage) ring detector. Our results show that as the angular coverage decreases, improved timing resolution is needed to achieve distortion-free and artifact-free images with TOF. The contrast recovery coefficient (CRC) value for small hot lesions in a partial ring scanner is similar to a full ring non-TOF scanner. Our results indicate that a timing resolution of 600 ps is needed for a 2/3 ring scanner, while a timing resolution of 300 ps is needed for a 1/2 ring scanner. We also analyzed the ratio of lesion CRC to the background pixel noise (SNR) and concluded that TOF improves the SNR values of the partial ring scanner, and helps to compensate for the loss in sensitivity due to reduced geometric sensitivity in a limited angle coverage PET scanner. In particular, it is possible to maintain similar SNR characteristic in a 2/3 ring scanner with a timing resolution of 300 ps as in a full ring non-TOF scanner.

  3. Breast prosthesis infection and pets: A case report and review of the literature

    OpenAIRE

    A. Lenne; Defourny, L; Lafosse, A.; Martin, M.; B Vandercam; Berlière, M.; Lengelé, B.; Rodriguez-Villalobos, H.

    2016-01-01

    Introduction: Pets are not always the human’s best friends, particularly in the presence of comorbidities such as wounds. The following case report describes a Pasteurella multocida infection of a reconstructive breast implant due to a close contact between a cat and its owner. Presentation of case: A 33-year-old woman developed a breast implant infection 13 days after an immediate breast reconstruction following a mastectomy for a multifocal ductal carcinoma. The wound was explored surgic...

  4. {sup 18}F-FLT PET/CT as an imaging tool for early prediction of pathological response in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Crippa, Flavio; Padovano, Barbara; Alessi, Alessandra; Bombardieri, Emilio; Pascali, Claudio; Bogni, Anna [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Nuclear Medicine Unit; Agresti, Roberto; Maugeri, Ilaria; Rampa, Mario; Martelli, Gabriele [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Breast Surgery Unit; Sandri, Marco [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Molecular Targeting Unit; Mariani, Gabriella; Bianchi, Giulia; De Braud, Filippo [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Medical Oncology Unit; Carcangiu, Maria Luisa [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Pathology Unit; Trecate, Giovanna [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Radiology-RMI Unit

    2015-05-01

    We evaluated whether {sup 18}F-3'-deoxy-3'-fluorothymidine positron emission tomography (FLT PET) can predict the final postoperative histopathological response in primary breast cancer after the first cycle of neoadjuvant chemotherapy (NCT). In this prospective cohort study of 15 patients with locally advanced operable breast cancer, FLT PET evaluations were performed before NCT, after the first cycle of NCT, and at the end of NCT. All patients subsequently underwent surgery. Variables from FLT PET examinations were correlated with postoperative histopathological results. At baseline, median of maximum standardized uptake values (SUV{sub max}) in the groups showing a complete pathological response (pCR) + residual cancer burden (RCB) I, RCB II or RCB III did not differ significantly for the primary tumour (5.0 vs. 2.9 vs. 8.9, p = 0.293) or for axillary nodes (7.9 vs. 1.6 vs. 7.0, p = 0.363), whereas the Spearman correlation between SUV{sub max} and Ki67 proliferation rate index was significant (r = 0.69, p < 0.001). Analysis of the relative percentage change of SUV{sub max}in the primary tumour (∇SUVT{sub max}(t{sub 1})) and axillary nodes (∇SUVN{sub max}(t{sub 1})) after the first NCT cycle showed that the power of ∇SUVT{sub max}(t{sub 1}) to predict pCR + RCB I responses (AUC = 0.91, p < 0.001) was statistically significant, whereas ∇SUVN{sub max}(t{sub 1}) had a moderate ability (AUC = 0.77, p = 0.119) to separate subjects with ΔSUVT{sub max}(t{sub 1}) > -52.9 % into two groups: RCB III patients and a heterogeneous group that included RCB I and RCB II patients. A predictive score μ based on ΔSUVT{sub max}(t{sub 1}) and ΔSUVN{sub max}(t{sub 1}) parameters is proposed. The preliminary findings of the present study suggest the potential utility of FLT PET scans for early monitoring of response to NCT and to formulate a therapeutic strategy consistent with the estimated efficacy of NCT. However, these results in a small patient population

  5. Quantifying hypoxia in human cancers using static PET imaging

    Science.gov (United States)

    Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G.; Milosevic, Michael; Hedley, David W.; Jaffray, David A.

    2016-11-01

    Compared to FDG, the signal of 18F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties—well-perfused without substantial necrosis or partitioning—for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in ‘inter-corporal’ transport properties—blood volume and clearance rate—as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.

  6. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    Science.gov (United States)

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-11-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  7. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging.

    Science.gov (United States)

    Shi, Sixiang; Fliss, Brianne C; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E; Nickles, Robert J; Xu, Zhi Ping; Cai, Weibo

    2015-11-20

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation (64)Cu(2+) and trivalent cation (44)Sc(3+) were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation (89)Zr(4+) could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with (64)Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  8. FDG PET/CT imaging as a biomarker in lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Meignan, Michel; Itti, Emmanuel [Hopitaux Universitaires Henri Mondor, Paris-Est Creteil University, LYSA Imaging, Department of Nuclear Medicine, Creteil (France); Gallamini, Andrea [Nice University, Research, Innovation and Statistic Department, Antoine Lacassagne Cancer Center, Nice (France); Scientific Research Committee, S. Croce Hospital, Cuneo (Italy); Younes, Anas [Memorial Sloan Kettering Cancer Center, Lymphoma Service, New York, NY (United States)

    2015-04-01

    FDG PET/CT has changed the management of FDG-avid lymphoma and is now recommended as the imaging technique of choice for staging and restaging. The need for tailoring therapy to reduce toxicity in patients with a favourable outcome and for improving treatment in those with high-risk factors requires accurate diagnostic methods and a new prognostic algorithm to identify different risk categories. New drugs are used in relapsed/refractory patients. The role of FDG PET/CT as a biomarker in this context is summarized in this review. New trends in FDG metabolic imaging in lymphoma are addressed including metabolic tumour volume measurement at staging and integrative PET which combines PET data with clinical and molecular markers or other imaging techniques. The quantitative approach for response assessment which is under investigation and is used in large ongoing trials is compared with visual criteria. The place of FDG in the era of targeted therapy is discussed. (orig.)

  9. Towards optimal imaging with PET: an in silico feasibility study

    Science.gov (United States)

    McNamara, A. L.; Toghyani, M.; Gillam, J. E.; Wu, K.; Kuncic, Z.

    2014-12-01

    The efficacy of Positron Emission Tomography (PET) imaging relies fundamentally on the ability of the system to accurately identify true coincidence events. With existing systems, this is currently accomplished with an energy acceptance criterion followed by correction techniques to remove suspected false coincidence events. These corrections generally result in signal and contrast loss and thus limit the PET system’s ability to achieve optimum image quality. A key property of annihilation radiation is that the photons are polarised with respect to each other. This polarisation correlation offers a potentially powerful discriminator, independent of energy, to accurately identify true events. In this proof of concept study, we investigate how photon polarisation information can be exploited in PET imaging by developing a method to discriminate true coincidences using the polarisation correlation of annihilation pairs. We implement this method using a Geant4 PET simulation of a GE Advance/Discovery LS system and demonstrate the potential advantages of the polarisation coincidence selection method over a standard energy criterion method. Current PET ring detectors are not capable of exploiting the polarisation correlation of the photon pairs. Compton PET systems, however are promising candidates for this application. We demonstrate the feasibility of a two-component Compton camera system in identifying true coincidences with Monte Carlo simulations. Our study demonstrates the potential of improving signal gain using polarisation, particularly for high photon emission rates. We also demonstrate the ability of the Compton camera at exploiting this polarisation correlation in PET.

  10. Mammography and ultrasonography evaluation of unexpected focal 18F-FDG uptakes in breast on PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Young; Cho, Nariya; Chang, Jung Min; Yun, Bo La; Bae, Min Sun; Moon, Woo Kyung (Dept. of Radiology, Seoul National Univ. College of Medicine, Seoul National Univ. Hospital, Seoul (Korea, Republic of)), Email: river7774@gmail.com; Kang, Keon Wook (Dept. of Nuclear Medicine, Seoul National Univ. College of Medicine, Seoul National Univ. Hospital, Seoul (Korea, Republic of))

    2012-04-15

    Background: Unexpected focal 18F-FDG breast uptakes are occasionally identified on PET/CT due to its increased use for cancer staging and follow-up. The need for their characterization has been suggested. Purpose: To retrospectively evaluate the diagnostic value of ultrasonography (United States) in distinguishing benign from malignant lesions for unexpected focal 18F-FDG uptakes in breast on PET/CT scans. Material and Methods: Between April 2004 and January 2010, 27 focal 18F-FDG breast uptakes in 27 patients (age range 33-62 years; mean age 46 years) among 5214 patients who had undergone PET/CT scans were retrospectively analyzed. The American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) final assessment categories of the US and the maximum standardized uptake values (SUVs) of the lesions were compared between the benign and malignant lesions. Results: Of the 27 lesions, 15 (56%) lesions were malignant. The rate of malignancy, according to the final assessment category on the US, was 0% (0 of 6) for category 3, 60% for category 4 (9 of 15), and 100% (6 of 6) for category 5 (P = 0.001). The US evaluation revealed a sensitivity of 100% (15 of 15) and a specificity of 50% (6 of 12). The average maximum SUV of the malignant lesions was greater than that of the benign lesions (4.12 +- 1.94 vs. 1.94 +- 0.82; P = 0.001). Conclusion: US evaluation of unexpected focal 18F-FDG uptakes on PET/CT scans can accurately distinguish benign lesions from malignant lesions

  11. Semiautomated Multimodal Breast Image Registration

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved.

  12. Simultaneous MRI and PET imaging of a rat brain

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  13. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  14. Simultaneous whole-body {sup 18}F-FDG PET-MRI in primary staging of breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, Sangeeta, E-mail: s_taneja1974@yahoo.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Jena, Amarnath, E-mail: drjena2002@yahoo.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Goel, Reema, E-mail: reemagoell@gmail.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Sarin, Ramesh, E-mail: sarinramesh@hotmail.com [Department of Surgical Oncology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi––Mathura Road, New Delhi 110076 (India); Kaul, Sumaid, E-mail: sumaidkaul53@hotmail.com [Department of Pathology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India)

    2014-12-15

    Highlights: • Initial staging of breast cancer important in treatment planning and prognostication. • We assessed role of simultaneous {sup 18}F-FDG PET-MRI in initial staging of breast cancer. • Primary, nodes and metastases on PET, MRI and PET-MRI for count and diagnostic confidence. • High diagnostic accuracy and confidence in detecting index and satellite lesions. • Comprehensive nodal and distant metastases staging with altered management (12 cases). - Abstract: Purpose: Accurate initial staging in breast carcinoma is important for treatment planning and for establishing the likely prognosis. The purpose of this study was to assess the utility of whole body simultaneous {sup 18}F-FDG PET-MRI in initial staging of breast carcinoma. Methods: 36 patients with histologically confirmed invasive ductal carcinoma underwent simultaneous whole body {sup 18}F-FDG PET-MRI on integrated 3 T PET-MR scanner (Siemens Biograph mMR) for primary staging. Primary lesion, nodes and metastases were evaluated on PET, MRI and PET-MRI for lesion count and diagnostic confidence (DC). Kappa co relation analysis was done to assess agreement between the satellite, nodal and metastatic lesions detected by PET and MRI. Histopathology, clinical/imaging follow-up served as the reference standard. Results: 36 patients with 37 histopathologically proven index breast cancer were retrospectively studied. Of 36 patients, 25 patients underwent surgery and 11 patients received systemic therapy. All index cancers were seen on PET and MR. Fused PET-MRI showed highest diagnostic confidence score of 5 as compared to PET (median 4; range 3–5) and MRI (median 4; range 4–5) alone. 2/36 (5.5%) patients were detected to have unsuspected contralateral synchronous cancer. 47 satellite lesions were detected on DCE MRI of which 23 were FDG avid with multifocality and multicentricity in 21 (58%) patients. Kappa co relation analysis revealed fair agreement for satellite lesion detection by the two

  15. Quantitative Comparison of Y-90 and Ge-68 PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Kwak, Shin Hye; Lee, Jeong A; Song, Han Kyeol; Kang, Joo Hyun; Lim, Sang Moo; KIm, Kyeong Min [Korea Institute of Raiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Su Young [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2014-05-15

    The purpose of this study was to assess statistical characteristics and to improve count rate of image for enhancing Y-90 image quality by using non-parametric bootstrap method. The results showed that Y-90 PET image can be improved using non-parametric bootstrap method. PET data was able to be improved using non-parametric bootstrap method and it was verified with showing improved prompts rate. Y-90 PET image quality was improved and bias indicated that the bootstrapped image was more similar to the gold standard than other images. The non-parametric bootstrap method will be useful tool for enhancing Y-90 PET image and it will be expected to reduce time for acquisition and to elevate performance for diagnosis and treatment. Yttrium-90 (Y-90) radioembolization is one of the treatment methods unrespectable stage of hepatocellular carcinoma (HCC) and metastatic colon cancer to the liver. However, Y-90 radioembolization is a catheter-based therapy that delivers internal radiation to tumors, it results in greater radiation exposure to the tumors than using external radiation. Also, unlike other current therapies for the treatment of unresectable liver tumors, Y-90 radioembolization is much less often associated with toxicities such as abdominal pain, fever, nausea, and vomiting. Therefore Y-90 has been received much interest and studied by many researchers. Imaging of Y-90 has been conducted using most commonly gamma camera but quantitative PET imaging is required due to low sensitivity and resolution. Y-90 imaging is generally performed with SPECT by Bremsstrahlung photons. Unfortunately, the low image quality due to the nature of the Bremsstrahlung photon limits the quantitative accuracy of Y-90 SPECT. To overcome this limitation in SPECT imaging, Y-90 PET has been suggested as an alternative.

  16. Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, L. [Instituto de Instrumentación para Imagen Molecular (I3M). Centro Mixto UPV-CSIC-CIEMAT. Camino de Vera s/n, 46022 Valencia (Spain); Correcher, C. [ONCOVISION (GEM-Imaging S.A.), 46012 Valencia (Spain); González, A.J., E-mail: agonzalez@i3m.upv.es [Instituto de Instrumentación para Imagen Molecular (I3M). Centro Mixto UPV-CSIC-CIEMAT. Camino de Vera s/n, 46022 Valencia (Spain); Conde, P.; Hernández, L.; Orero, A.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Soriano, A.; Vidal, L.F.; Benlloch, J.M. [Instituto de Instrumentación para Imagen Molecular (I3M). Centro Mixto UPV-CSIC-CIEMAT. Camino de Vera s/n, 46022 Valencia (Spain)

    2013-02-21

    In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality.

  17. Detection of metastases in breast cancer patients. Comparison of FDG PET with chest X-ray, bone scintigraphy and ultrasound of the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Dose-Schwarz, J.; Mahner, S.; Schirrmacher, S.; Mueller, V. [Klinik und Poliklinik fuer Gynaekologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Jenicke, L.; Brenner, W. [Klinik fuer Nuklearmedizin, Universitaetsklinikum Hamburg-Eppendorf (Germany); Habermann, C.R. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany)

    2008-07-01

    Distant metastases at primary diagnosis are a prognostic key factor in breast cancer patients and play a central role in therapeutic decisions. To detect them, chest X-ray, abdominal ultrasound, and bone scintigraphy are performed as standard of care in Germany and many centers worldwide. Although FDG PET detects metastatic disease with high accuracy, its diagnostic value in breast cancer still needs to be defined. The aim of this study was to compare the diagnostic performance of FDG PET with conventional imaging. Patients, methods: a retrospective analysis of 119 breast cancer patients who presented for staging was performed. Whole-body FDG-PET (n = 119) was compared with chest X-ray (n = 106) and bone scintigraphy (n = 95). Each imaging modality was independently assessed and classified for metastasis (negative, equivocal and positive). The results of abdominal ultrasound (n = 100) were classified as negative and positive according to written reports. Imaging results were compared with clinical follow-up including follow-up imaging procedures and histopathology. Results: FDG-PET detected distant metastases with a sensitivity of 87.3% and a specificity of 83.3%. In contrast, the sensitivity and specificity of combined conventional imaging procedures was 43.1% and 98.5%, respectively. Regarding so-called equivocal and positive results as positive, the sensitivity and specificity of FDG-PET was 93.1% and 76.6%, respectively, compared to 61.2% and 86.6% for conventional imaging. Regarding different locations of metastases the sensitivity of FDG PET was superior in the detection of pulmonary metastases and lymph node metastases of the mediastinum in comparison to chest X-ray, whereas the sensitivity of FDG PET in the detection of bone and liver metastases was comparable with bone scintigraphy and ultrasound of the abdomen. Conclusions: FDG-PET is more sensitive than conventional imaging procedures for detection of distant breast cancer metastases and should be

  18. Breast MRI: guidelines from the European Society of Breast Imaging

    OpenAIRE

    Mann, R. M.; Kuhl, C. K.; Kinkel, K.; BOETES, C.

    2008-01-01

    The aim of breast MRI is to obtain a reliable evaluation of any lesion within the breast. It is currently always used as an adjunct to the standard diagnostic procedures of the breast, i.e., clinical examination, mammography and ultrasound. Whereas the sensitivity of breast MRI is usually very high, specificity—as in all breast imaging modalities—depends on many factors such as reader expertise, use of adequate techniques and composition of the patient cohorts. Since breast MRI will always yi...

  19. Towards real-time topical detection and characterization of FDG dose infiltration prior to PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jason M.; Arlinghaus, Lori R. [Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN (United States); Rani, Sudheer D. [Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Shone, Martha D. [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Abramson, Vandana G. [Vanderbilt University Medical Center, Department of Medicine, Nashville, TN (United States); Vanderbilt-Ingram Cancer Center, Nashville, TN (United States); Pendyala, Praveen [Vanderbilt University Medical Center, Department of Radiation Oncology, Nashville, TN (United States); Chakravarthy, A.B. [Vanderbilt-Ingram Cancer Center, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiation Oncology, Nashville, TN (United States); Gorge, William J.; Knowland, Joshua G.; Lattanze, Ronald K.; Perrin, Steven R. [Lucerno Dynamics, LLC, Morrisville, NC (United States); Scarantino, Charles W. [Lucerno Dynamics, LLC, Morrisville, NC (United States); University of North Carolina, Department of Radiation Oncology, Chapel Hill, NC (United States); Townsend, David W. [Lucerno Dynamics, LLC, Morrisville, NC (United States); Technology and Research-National University of Singapore, Clinical Imaging Research Centre, Agency for Science, Singapore (Singapore); Abramson, Richard G. [Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Vanderbilt-Ingram Cancer Center, Nashville, TN (United States); Yankeelov, Thomas E. [The University of Texas at Austin, Institute for Computational and Engineering Sciences, and Departments of Biomedical Engineering and Internal Medicine, Austin, TX (United States)

    2016-12-15

    To dynamically detect and characterize {sup 18}F-fluorodeoxyglucose (FDG) dose infiltrations and evaluate their effects on positron emission tomography (PET) standardized uptake values (SUV) at the injection site and in control tissue. Investigational gamma scintillation sensors were topically applied to patients with locally advanced breast cancer scheduled to undergo limited whole-body FDG-PET as part of an ongoing clinical study. Relative to the affected breast, sensors were placed on the contralateral injection arm and ipsilateral control arm during the resting uptake phase prior to each patient's PET scan. Time-activity curves (TACs) from the sensors were integrated at varying intervals (0-10, 0-20, 0-30, 0-40, and 30-40 min) post-FDG and the resulting areas under the curve (AUCs) were compared to SUVs obtained from PET. In cases of infiltration, observed in three sensor recordings (30 %), the injection arm TAC shape varied depending on the extent and severity of infiltration. In two of these cases, TAC characteristics suggested the infiltration was partially resolving prior to image acquisition, although it was still apparent on subsequent PET. Areas under the TAC 0-10 and 0-20 min post-FDG were significantly different in infiltrated versus non-infiltrated cases (Mann-Whitney, p < 0.05). When normalized to control, all TAC integration intervals from the injection arm were significantly correlated with SUV{sub peak} and SUV{sub max} measured over the infiltration site (Spearman ρ ≥ 0.77, p < 0.05). Receiver operating characteristic (ROC) analyses, testing the ability of the first 10 min of post-FDG sensor data to predict infiltration visibility on the ensuing PET, yielded an area under the ROC curve of 0.92. Topical sensors applied near the injection site provide dynamic information from the time of FDG administration through the uptake period and may be useful in detecting infiltrations regardless of PET image field of view. This dynamic information

  20. Imaging with {sup 124}I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Umutlu, L. [University of Duisburg-Essen, Medical Faculty, Department of Radiology, Essen (Germany)

    2016-06-15

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using {sup 124}I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT{sub 2}) followed by PET/MRI of the neck 24 h after {sup 124}I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT{sub 2} acquisition time (2 min, PET/MRI{sub 2}) and the other covering the whole MRI scan time (30 min, PET/MRI{sub 30}). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI{sub 2} detected significantly more iodine-positive metastases and thyroid remnants than PET/CT{sub 2} (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI{sub 30} tended to detect more PET-positive metastases than PET/MRI{sub 2} (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine

  1. FDG PET/CT imaging in canine cancer patients

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; McEvoy, Fintan; Engelholm, Svend Aage;

    2011-01-01

    and organs in canine cancer patients. FDG PET/CT was performed in 14 dogs including, nine mesenchymal tumors, four carcinomas, and one incompletely excised mast cell tumor. A generally higher FDG uptake was observed in carcinomas relative to sarcomas. Maximum SUV of carcinomas ranged from 7.6 to 27.......0, and for sarcomas from 2.0 to 10.6. The FDG SUV of several organs and tissues, including regional brain uptake is reported, to serve as a reference for future FDG PET studies in canine cancer patients. Several potential pitfalls have been recognized in interpretation of FDG PET images of human patients, a number...

  2. Atlas of PET/MR imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ratib, Osman [University Hospital of Geneva (Switzerland). Nuclear Medicine Division; Schwaiger, Markus [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Beyer, Thomas (eds.) [General Hospital Vienna (Austria). Center for Medical Physics and Biomedical Engineering

    2013-08-01

    Numerous illustrated clinical cases in different oncology domains. Includes digital interactive software matching the cases in the book. Interactive version based on the latest web standard, HTML5, ensuring the widest compatibility. Edited by three international opinion leaders/imaging experts in the field. This new project on PET/MR imaging in oncology includes digital interactive software matching the cases in the book. The interactive version of the atlas is based on the latest web standard, HTML5, ensuring compatibility with any computer operating system as well as a dedicated version for Apple iPad and iPhone. The book opens with an introduction to the principles of hybrid imaging that pays particular attention to PET/MR imaging and standard PET/MR acquisition protocols. A wide range of illustrated clinical case reports are then presented. Each case study includes a short clinical history, findings, and teaching points, followed by illustrations, legends, and comments. The multimedia version of the book includes dynamic movies that allow the reader to browse through series of rotating 3D images (MIP or volume rendered), display blending between PET and MR, and dynamic visualization of 3D image volumes. The movies can be played either continuously or sequentially for better exploration of sets of images. The editors of this state-of-the-art publication are key opinion leaders in the field of multimodality imaging. Professor Osman Ratib (Geneva) and Professor Markus Schwaiger (Munich) were the first in Europe to initiate the clinical adoption of PET/MR imaging. Professor Thomas Beyer (Zurich) is an internationally renowned pioneering physicist in the field of hybrid imaging. Individual clinical cases presented in this book are co-authored by leading international radiologists and nuclear physicians experts in the use of PET and MRI.

  3. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  4. Experimental and Other Breast Imaging Methods

    Science.gov (United States)

    ... optical imaging with other tests like MRI or 3D mammography to help diagnose breast cancer. Molecular breast ... radioactive particle to detect cancer cells. The PEM scanner is approved by the Food and Drug Administration ( ...

  5. Fusion of PET and MRI for Hybrid Imaging

    Science.gov (United States)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  6. PET/CT imaging in lung cancer: indications and findings

    Directory of Open Access Journals (Sweden)

    Bruno Hochhegger

    2015-06-01

    Full Text Available The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer.

  7. Monitoring proton radiation therapy with in-room PET imaging.

    Science.gov (United States)

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R; El Fakhri, Georges

    2011-07-07

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  8. The Diagnostic Value of 18F-FDG PET/CT in Association with Serum Tumor Marker Assays in Breast Cancer Recurrence and Metastasis

    Directory of Open Access Journals (Sweden)

    Ying Dong

    2015-01-01

    Full Text Available Background. After initial treatment of breast cancer (BC, monitoring locoregional recurrence and distant metastases is a great clinical challenge. Objective. To evaluate the efficacy of PET/CT in association with serum tumor makers in BC follow-up. Methods. Twenty-six women with a history of modified radical mastectomy were evaluated by 18F-FDG PET/CT. The results of PET/CT were compared with those of conventional imaging techniques (CITs (including mammography, chest radiography, CT, MRI, ultrasound, and bone scintigraphy. Serum tumor markers of CEA, CA 125, and CA 15-3 in the BC patients were also analyzed in association with the results of PET/CT. Results. Compared with CITs, PET/CT was more sensitive to detect the malignant foci and had better patient-based sensitivity and specificity. The mean CA 15-3 serum level was significantly higher in the confirmed positive patients of PET/CT results than in the confirmed negative ones, while there were no significant differences in the serum levels of CEA and CA 125 of both groups. Conclusion. PET/CT is a highly efficient tool for BC follow-up compared with CITs. The high serum levels of CA 15-3 in confirmed positive PET/CT patients indicated the clinical value of CA 15-3 in BC follow-up.

  9. Application of MR/PET in oncologic imaging; Einsatz von MR/PET in der onkologischen Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F.; Pfannenberg, C.; Werner, M.K. [Radiologische Universitaetsklinik Tuebingen (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Reischl, G. [Radiologische Universitaetsklinik Tuebingen (Germany). Abt. fuer Praeklinische Bildgebung und Radiopharmazie; Schmidt, H. [Radiologische Universitaetsklinik Tuebingen (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Radiologische Universitaetsklinik Tuebingen (Germany). Abt. fuer Praeklinische Bildgebung und Radiopharmazie

    2012-09-15

    The present review aims to depict the possibilities offered by hybrid imaging with magnetic resonance positron emission tomography (MR/PET). Recently, new whole-body MR/PET scanners were introduced allowing for the combination of both modalities outside the brain. This is a challenge for both modalities: For MRI, it is essential to provide anatomical images with high resolution. Additionally, diffusion-weighted imaging (DWI), proton spectroscopy, but also dynamic contrast-enhanced imaging plays an important role. With regard to PET, the technical challenge mainly consists of obtaining an appropriate MR-based attenuation correction for the PET data. Using MR/PET, it is possible to acquire morphological and functional data in one examination. In particular, children and young adults will benefit from this new hybrid technique, especially in oncologic imaging with multiple follow-up examinations. However, it is expected that PET/CT will not be replaced completely by MR/PET because PET/CT is less cost-intensive and more widely available. Moreover, in lung imaging, MRI limitations still have to be accepted. Concerning research, simultaneous MR/PET offers a variety of new possibilities, for example cardiac imaging, functional brain studies or the evaluation of new tracers in correlation with specific MR techniques. (orig.)

  10. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  11. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Sara Gargiulo

    2012-01-01

    Full Text Available Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT, high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.

  12. Diagnostic accuracy of {sup 18}F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Magometschnigg, Heinrich F.; Baltzer, Pascal A.; Fueger, Barbara; Helbich, Thomas H.; Weber, Michael [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Dubsky, Peter [Medical University of Vienna, Department of Surgery, Vienna (Austria); Rudas, Margaretha [Medical University of Vienna, Department of Pathology, Vienna (Austria); Pinker, Katja [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York (United States)

    2015-10-15

    To compare the diagnostic accuracy of prone {sup 18}F-FDG PET/CT with that of contrast-enhanced MRI (CE-MRI) at 3 T in suspicious breast lesions. To evaluate the influence of tumour size on diagnostic accuracy and the use of maximum standardized uptake value (SUV{sub MAX}) thresholds to differentiate malignant from benign breast lesions. A total of 172 consecutive patients with an imaging abnormality were included in this IRB-approved prospective study. All patients underwent {sup 18}F-FDG PET/CT and CE-MRI of the breast at 3 T in the prone position. Two reader teams independently evaluated the likelihood of malignancy as determined by {sup 18}F-FDG PET/CT and CE-MRI independently. {sup 18}F-FDG PET/CT data were qualitatively evaluated by visual interpretation. Quantitative assessment was performed by calculation of SUV{sub MAX}. Sensitivity, specificity, diagnostic accuracy, area under the curve and interreader agreement were calculated for all lesions and for lesions <10 mm. Histopathology was used as the standard of reference. There were 132 malignant and 40 benign lesions; 23 lesions (13.4 %) were <10 mm. Both {sup 18}F-FDG PET/CT and CE-MRI achieved an overall diagnostic accuracy of 93 %. There were no significant differences in sensitivity (p = 0.125), specificity (p = 0.344) or diagnostic accuracy (p = 1). For lesions <10 mm, diagnostic accuracy deteriorated to 91 % with both {sup 18}F-FDG PET/CT and CE-MRI. Although no significant difference was found for lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than {sup 18}F-FDG PET/CT. Interreader agreement was excellent (κ = 0.85 and κ = 0.92). SUV{sub MAX} threshold was not helpful in differentiating benign from malignant lesions. {sup 18}F-FDG PET/CT and CE-MRI at 3 T showed equal diagnostic accuracies in breast cancer diagnosis. For lesions <10 mm, diagnostic accuracy deteriorated, but was equal for {sup 18}F-FDG PET/CT and CE-MRI at 3 T. For lesions <10 mm, CE-MRI at 3 T seemed

  13. Infection imaging using whole-body FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, K.D.M.; Schulthess, G.K. von [Department of Medical Radiology: Nuclear Medicine, University Hospital Zurich, Zurich (Switzerland); Dazzi, H.; Schaffner, A. [Department of Internal Medicine, University Hospital Zurich, Zurich (Switzerland)

    2000-07-01

    The purpose of this study was to evaluate fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for the detection of soft tissue and bone infections. Forty-five PET examinations in 39 patients (26 male, 13 female, age range 27-86 years) with suspected infectious foci were examined with whole- or partial-body PET scans using FDG. Twenty-seven scans were done in patients with soft tissue and 18 in patients with bone infections. Corrected and uncorrected transaxial PET images were acquired. Seven hundred and twelve body regions in these 45 PET scans were evaluated. Pathological findings were graded using a confidence scale from A to E (A, definitive infection; E, no infection). Disease status was defined in all patients by culture, biopsy or surgery and clinical follow-up. In 45 PET scans there were 40 true-positive, four false-positive and one false-negative findings. Twelve foci suspected to be infectious in nature on the basis of other imaging examinations were identified as negative by PET, thus representing true-negative findings. Sensitivities for the patients with soft tissue (STI) and bone infections (BI) and for the pooled data were 96%, 100% and 98%, respectively. As the calculation of specificity is not straightforward, it was calculated on a per lesion as well as on a per body region basis to permit estimation of an upper and a lower limit. On a per lesion basis, specificities were 70% (STI), 83% (BI) and 75% for the pooled data and on a per body region basis (dividing the body into 22 regions) they were 99% (STI), 99% (BI) and 99% for the pooled data. One false-negative result was found in a patient with cholangitis. It is concluded that PET appears to be a highly sensitive method to detect infectious foci. Specificity is more difficult to estimate, but is probably in the range from 70% to above 90%. (orig.)

  14. Breast Imaging after Breast Augmentation with Autologous Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Seo, Bo Kyung; Shim, Eddeum; Song, Sung Eun; Cho, Kyu Ran [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Yoon, Eul Sik [Korea University Ansan Hospital, Ansan (Korea, Republic of); Woo, Ok Hee [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  15. MRI and PET images fusion based on human retina model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution.For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion.transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in any aspect ratio between the pixels of MRI and PET images.

  16. What are the Best Ways to Reduce the False positive Rate of 18F FDG PET/CT in Patients with Breast Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista, Laura; Baretta, Zora; Vinante, Lorenzo; Sotti, Guido [Istituto Oncologico Veneto, Padova (Italy)

    2011-03-15

    Dear Editor, We were interested to read the recent article by Park et al that described the interpretation of physiologic and benign sites of {sup 18F} fluorodeoxyglucose (18F FDG) uptake on positron emission tomography/computed tomography (PET/CT) imaging og patients with breast cancer. The central messages were: (1) to know and (2) to discriminate the main sites of FDG avidity, avoiding a misinterpretation and thus reducing the false positive rate. Some considerations referring to the report can be made. The authors declared that several normal and altered physiologic foci and various benign lesions demonstrated significant FDG uptake in patients with breast cancer and the accurate interpretation of these findings can be challenging for clinicians; they concluded that {sup t}o avoid misinterpretations, we suggest that careful attention to these normal or altered physiological FDG uptake patterns and hypermetabolic benign disease is required for more accurate image interpretation for the correct staging and detection of disease recurrence in patients with breast cancer.{sup I}n our Department, in cases of indeterminate or inconclusive PET/CT exams, we try to conclude for pathological or physiological uptake on the basis of abnormal/normal correspondence of CT findings, considering the natural history of disease (i.e. loco regional lymph node or others) and using specific protocols (i.e. dual time PET/CT). As reported in the literature, metabolic abnormalities detected on PET images can be precisely localised anatomically by hardware fusion with the CT images obtained in the same sitting; the CT portion of PET/CT, in fact, provides anatomical details and offers an anatomical mapping for FDG distribution. Moreover, an accurate lesion localisation leads to accurate staging, a clear advantage of PET/CT over PET alone in the clinical situation. Some steps could be taken to reduce the false positive rate of PET/CT in breast cancer: 1. Prolonging the time between the

  17. Gallium-68 EDTA PET/CT for Renal Imaging.

    Science.gov (United States)

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  18. MRI and PET image fusion using fuzzy logic and image local features.

    Science.gov (United States)

    Javed, Umer; Riaz, Muhammad Mohsin; Ghafoor, Abdul; Ali, Syed Sohaib; Cheema, Tanveer Ahmed

    2014-01-01

    An image fusion technique for magnetic resonance imaging (MRI) and positron emission tomography (PET) using local features and fuzzy logic is presented. The aim of proposed technique is to maximally combine useful information present in MRI and PET images. Image local features are extracted and combined with fuzzy logic to compute weights for each pixel. Simulation results show that the proposed scheme produces significantly better results compared to state-of-art schemes.

  19. Spatio-temporal diffusion of dynamic PET images

    Energy Technology Data Exchange (ETDEWEB)

    Tauber, C; Chalon, S; Guilloteau, D [Inserm U930, CNRS ERL3106, Universite Francois Rabelais, Tours (France); Stute, S; Buvat, I [IMNC, IN2P3, UMR 8165 CNRS-Paris 7 and Paris 11 Universities, Orsay (France); Chau, M [ASA-Advanced Solutions Accelerator, Montpellier (France); Spiteri, P, E-mail: clovis.tauber@univ-tours.fr [IRIT-ENSEEIHT, UMR CNRS 5505, Toulouse (France)

    2011-10-21

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  20. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    Full Text Available A critical challenge in the management of Glioblastoma Multiforme (GBM tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models.An anti-human MT1-MMP monoclonal antibody (mAb, LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251 expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7 as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543 and U251 cells, with different degrees of blood-brain barrier (BBB disruption were also used for PET imaging experiments.89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90% and specific activity (78.5 MBq/mg. Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models.A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high

  1. Intracranial Leptomeningeal Carcinomatosis from Breast Cancer Detected on 18F-FDG PET.

    Science.gov (United States)

    Carra, Bradley J; Clemenshaw, Michael N

    2015-09-01

    Leptomeningeal carcinomatosis is an uncommon manifestation of non-central nervous system (CNS) metastatic disease. Diagnosis, however, has important prognostic and treatment implications. We present a case in which intracranial leptomeningeal carcinomatosis from a primary breast cancer was detected with (18)F-FDG PET/CT, despite its low sensitivity for detection of CNS metastases from non-CNS primary tumors.

  2. [18F]fluorodeoxyglucose PET/computed tomography in breast cancer and gynecologic cancers

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Kodahl, Annette Raskov; Teilmann-Jørgensen, Dorte;

    2015-01-01

    In this literature review, an update is provided on the role of [(18)F]fluorodeoxyglucose PET/computed tomography in different clinical settings of the 4 most frequent female-specific cancer types: breast, endometrial, ovarian, and cervical cancer. The most recent knowledge regarding primary diag...

  3. Breast prosthesis infection and pets: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    A. Lenne

    2016-01-01

    Conclusion: In the case of breast infection, surgical revision – with or without removal of the implant – is required in order to carry out a meticulous intraoperative cleaning. Antibiotherapy is always necessary in such cases. Particularly when patients presenting comorbidities are concerned, the focus must be put on avoiding close contact of the wound with pets.

  4. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI

    DEFF Research Database (Denmark)

    Keller, Sune H; Holm, Søren; Hansen, Adam E;

    2013-01-01

    Integrated whole-body PET/MRI tomographs have become available. PET/MR imaging has the potential to supplement, or even replace combined PET/CT imaging in selected clinical indications. However, this is true only if methodological pitfalls and image artifacts arising from novel MR-based attenuation...

  5. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M. [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); Plishker, William; Zaki, George F. [IGI Technologies, Inc., College Park, MD (United States); Shekhar, Raj [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); IGI Technologies, Inc., College Park, MD (United States)

    2016-10-15

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV{sub max}) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV{sub max} difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  6. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging.

    Science.gov (United States)

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with (99m)Tc-SPECT, (82)Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m(2) (85 versus 67% with SPECT) and in women with large breasts. A great advantage of (82)Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of (82)Rb PET with regard to (99m)Tc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of (82)Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure.

  7. Story of rubidium-82 and advantages for myocardial perfusion PET imaging

    Directory of Open Access Journals (Sweden)

    Jean-Francois eChatal

    2015-09-01

    Full Text Available Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow, clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time thousands of patients have been tested and their results have been reported in 3 meta-analyses. Pooled patient-based sensitivity and specificity were respectively 0.91 and 0.90. By comparison with 99mTc-SPECT, 82Rb-PET had a much better diagnostic accuracy, especially in obese patients with BMI (Body Mass Index ≥30 kg/m2 (85% versus 67% with SPECT and in women with large breasts. A great advantage of 82Rb-PET is its capacity to accurately quantify myocardial blood flow. Quite importantly it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners.There is still some debate on the relative advantages of 82Rb-PET with regard to 99mTc-SPECT. For the last ten years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of 82Rb/PET. Currently the main advantages of PET are its capacity to accurately quantify myocardial blood flow and to deliver a low radiation exposure.

  8. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J;

    2011-01-01

    Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Antiprostate-specific membrane antigen RIT demonstrates...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  9. Initial tests of a prototype MRI-compatible PET imager

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  10. Initial tests of a prototype MRI-compatible PET imager

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R. [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States)]. E-mail: rraylman@wvu.edu; Majewski, Stan [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lemieux, Susan [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Velan, S. Sendhil [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Kross, Brain [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew G. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wojcik, Randy [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2006-12-20

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm{sup 3}. Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm{sup 3}) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of {approx}60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to {approx}85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy.

  11. PET/SPECT imaging : From carotid vulnerability to brain viability

    NARCIS (Netherlands)

    Meerwaldt, Robbert; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Luijckx, Gert-Jan; Tio, Rene A.; Zeebregts, Clark J.

    2010-01-01

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)

  12. Breast lump removal - series (image)

    Science.gov (United States)

    ... a breast lump is very important to a patient's prognosis (probable outcome). Most breast lumps are not diagnosed at the ... is required. If the lump is malignant, the outcome depends on the ... lumpectomy does not require a breast replacement (prosthesis).

  13. Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, Carolin; Heusner, Till A. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)], E-mail: Heusner@med.uni-duesseldorf.de; Koeninger, Angela; Kimmig, Rainer [Univ Duisburg-Essen, Medical Faculty, Department of Gynecology and Obstetrics, Essen (Germany); Hartung, Verena; Bockisch, Andreas [Univ Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Otterbach, Friedrich [Univ Duisburg-Essen, Institute of Pathology and Neuropathology, Essen (Germany); Forsting, Michael [Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Antoch, Gerald [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany)

    2012-12-15

    Background. FDG-PET/CT is increasingly being used for breast cancer staging. Its diagnostic accuracy in comparison to ultrasound as the standard non-invasive imaging modality for the evaluation of axillary lymph nodes has yet not been evaluated. Purpose. To retrospectively compare the diagnostic value of full-dose, intravenously contrast-enhanced FDG-PET/CT and ultrasound for the detection of lymph node metastases in breast cancer patients. Material and Methods. Ninety patients (one patient with a bilateral carcinoma) (89 women, one man; mean age, 55.5 {+-} 16.6 years) suffering from primary breast cancer underwent whole-body FDG-PET/CT and axillary ultrasound. The ipsilateral axillary fossa (n = 91) was evaluated for metastatic spread. The sensitivity, specificity, the positive predictive value (PPV), negative predictive value (NPV), and accuracy of both methods were calculated. The sensitivity and accuracy were statistically compared using the McNemar Test (P <0.05). Analyses were made on a patient basis. The number of patients with extra-axillary locoregional lymph node metastases exclusively detected by FDG-PET/CT was evaluated. For axillary lymph node metastases histopathology served as the reference standard. Results. The sensitivity, specificity, PPV, NPV, and accuracy of FDG-PET/CT for the detection of axillary lymph node metastases were 54%, 89%, 77%, 74%, and 75%, respectively. For ultrasound it was 38%, 78%, 54%, 65%, and 62%, respectively. FDG-PET/CT was significantly more accurate than ultrasound for the detection of axillary lymph node metastases (P = 0.019). There was no statistically significant difference between the sensitivity of both modalities (P = 0.0578). FDG-PET/CT detected extra-axillary locoregional lymph node metastases in seven patients (8%) that had not been detected by another imaging modality. Conclusion. Though more accurate compared to ultrasound for evaluating the axillary lymph node status FDG-PET/CT is only as sensitive as

  14. Innovative LuYAP:Ce array for PET imaging

    Science.gov (United States)

    Cinti, M. N.; Scafe, R.; Bennati, P.; Lo Meo, S.; Frantellizzi, V.; Pellegrini, R.; De Vincentis, G.; Sacco, D.; Fabbri, A.; Pani, R.

    2017-03-01

    We present an imaging characterization of a 10 × 10 LuYAP array (2 × 2 × 10 mm3 pixels) with an innovative dielectric coating insulation (0.015 mm thick), in view of its possible use in a gamma camera for imaging positron emission tomography (PET) or in similar applications, e.g. as γ -prompt detector in hadron therapy. The particular assembly of this array was realized in order to obtain a packing fraction of 98%, improving detection efficiency and light collection. For imaging purpose, the array has been coupled with a selected Hamamatsu H10966-100 Multi Anode Photomultiplier read out by a customized 64 independent channels electronics. This tube presents a superbialkali photocathode with 38% of quantum efficiency, permitting to enhance energy resolution and consequently image quality. A pixel identification of about 0.5 mm at 662 keV was obtained, highlighting the potentiality of this detector in PET applications.

  15. High Resolution Image Reconstruction Method for a Double-plane PET System with Changeable Spacing

    CERN Document Server

    Gu, Xiao-Yue; Li, Lin; Yin, Peng-Fei; Shang, Lei-Min; Yun, Ming-Kai; Lu, Zhen-Rui; Huang, Xian-Chao; Wei, Long

    2015-01-01

    Positron Emission Mammography (PEM) imaging systems with the ability in detection of millimeter-sized tumors were developed in recent years. And some of them have been well used in clinical applications. In consideration of biopsy application, a double-plane detector configuration is practical for the convenience of breast immobilization. However, the serious blurring effect in the double-plane system with changeable spacing for different breast size should be studied. Methods: We study a high resolution reconstruction method applicable for a double-plane PET system with a changeable detector spacing. Geometric and blurring components should be calculated at real time for different detector distance. Accurate geometric sensitivity is obtained with a tube area model. Resolution recovery is achieved by estimating blurring effects derived from simulated single gamma response information. Results: The results show that the new geometric modeling gives a more finite and smooth sensitivity weight in double-plane sy...

  16. A dedicated high resolution PET imager for plant sciences

    CERN Document Server

    Wang, Qiang; Li, Ke; Wen, Jie; Komarov, Sergey; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2014-01-01

    PET provides in vivo molecular and functional imaging capability that is crucial to studying the interaction of plant with changing environment at the whole-plant level. We have developed a dedicated plant PET imager that features high spatial resolution, housed in a fully controlled environment provided by a plant growth chamber (PGC). The system currently contains two types of detector modules: 84 microPET R4 block detectors with 2.2 mm crystals to provide a large detecting area; and 32 Inveon block detectors with 1.5 mm crystals to provide higher spatial resolution. Outputs of the four microPET block detectors in a modular housing are concatenated by a custom printed circuit board to match the output characteristics of an Inveon detector. All the detectors are read out by QuickSilver electronics. The detector modules are configured to full rings with a 15 cm diameter trans-axial field of view (FOV) for dynamic tomographic imaging of small plants. Potentially, the Inveon detectors can be reconfigured to qua...

  17. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    Science.gov (United States)

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures.

  18. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  19. Lung tumor segmentation in PET images using graph cuts.

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill.

  20. Metastatic Brachial Plexopathy in a Case of Recurrent Breast Carcinoma Demonstrated on {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Madhavi; Das, Chandan J.; Srivastava, Anurag; Bal, ChandraSekhar; Malhotra, Arun [All India Institute of Medical Sciences, New Delhi (India)

    2014-03-15

    This case highlights the importance of recognition of the pattern of metastatic brachialplexopathy in breast cancer patients undergoing {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography/computed tomography (PET/CT) for evaluation of recurrent disease.This pattern can be appreciated on maximum intensity projection (MIP) and coronal {sup 18}F-FDG PET/CT images as a linear extension of tracer activity from superomedial aspect(supra/infraclavicular) to lateral aspect of the axilla closely related to the subclavian/axillary vessels). A 35-year-old woman diagnosed with infiltrating ductal carcinoma of the right breast had undergone six cycles of neoadjuvant chemotherapy, followed by wide local incision and radiotherapy. She had local recurrence, for which she was operated upon and given chemotherapy. She presented to her oncologist with pain and swelling in the right breast, nodules in the right axilla and restriction of movement of the right upper limb. The patient was referred for {sup 18}F-FDG PET/CT to evaluate the extent of recurrent/metastatic disease. Whole-body PET/CT was acquired 1 h following the intravenous injection of 296 MBq of {sup 18}F-FDG on a Biograph mCT scanner (Siemens). Evaluation of the MIP image revealed abnormal FDG accumulation at multiple sites in the thorax, along with a linear pattern of FDG uptake in the right lateral aspect of the upper chest (Fig. 1a, arrow). The coronal fused PET/CT image revealed a linear pattern of FDG uptake corresponding to an ill-defined mass extending from just behind the right clavicle into the right axilla (arrow). In addition, abnormal FDG accumulation was seen in a soft tissue density mass in the upper outer quadrant of the right breast, skin of the right breast laterally, both pectoral muscles (discrete foci) and in a few subpectoral nodes. Soft tissue nodular opacities in both lungs showed FDG accumulation suggestive of pulmonary metastasis (Fig. 1b, thick arrow). The patient was

  1. Unexpected foci of {sup 18}F-FDG uptake in the breast detected by PET/CT: incidence and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Litmanovich, Diana [Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Gourevich, Konstantin [Rambam Health Care Campus, Department of Nuclear Medicine, P.O. Box 9602, Haifa (Israel); Israel, Ora [Rambam Health Care Campus, Department of Nuclear Medicine, P.O. Box 9602, Haifa (Israel); Technion - Israel Institute of Technology, B. and R. Rapaport Faculty of Medicine, Haifa (Israel); Gallimidi, Zahava [Rambam Health Care Campus, Department of Diagnostic Imaging, Haifa (Israel); Technion - Israel Institute of Technology, B. and R. Rapaport Faculty of Medicine, Haifa (Israel)

    2009-10-15

    The aim of this study was to evaluate the frequency and clinical significance of unexpected focal {sup 18}F-fluorodeoxyglucose (FDG) uptake localized by PET/CT within the breast. The files of 4,038 consecutive female cancer patients referred for FDG PET/CT over a period of 74 months were retrospectively reviewed. Patients with breast cancer were excluded from the study. The incidence of focal sites of increased FDG uptake localized by PET/CT to the breast was determined. The intensity of uptake was measured using the lean body mass maximum standard uptake value (LBM SUV{sub max}), and the presence and patterns of morphologic changes on CT were assessed. The etiology and clinical significance of findings were confirmed histologically or with imaging and clinical follow-up. Unexpected FDG foci in the breast were identified in 33 of 4,038 patients (0.82%). Follow-up data were available for 30 patients. Malignancy was diagnosed in 17 patients (histology 12, clinical 5) and excluded in 13 patients (histology 9, clinical 4). There was a borderline statistically significant difference in FDG uptake (LBM SUV{sub max}) between malignant (3.13 {+-} 2.25) and benign (1.85 {+-} 1.18) lesions (p = 0.05). Focal lesions were seen on CT in 23 patients (malignant 11, benign 12), and CT was negative in 7 patients (malignant 6, benign 1). Although rare, incidental focal abnormal FDG uptake in the breast may represent malignant lesions in up to 57% of patients. Breast incidentalomas on PET/CT warrant further assessment including tissue sampling to define the etiology of these unexpected FDG-avid foci. (orig.)

  2. Designing Image Operators for MRI-PET Image Fusion of the Brain

    Science.gov (United States)

    Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.

    2006-09-01

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  3. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peng Hao; Levin, Craig S, E-mail: haopeng@stanford.ed, E-mail: cslevin@stanford.ed [Department of Radiology, Molecular Imaging Program, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2010-05-07

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm{sup 2} area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve {approx}32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be {approx}94.2 kcts s{sup -1} (breast volume: 720 cm{sup 3} and activity concentration: 3.7 kBq cm{sup -3}) for a {approx}10% energy window around 511 keV and {approx}8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity ({sigma}{sub rms}/mean) {<=} 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres

  4. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Science.gov (United States)

    Peng, Hao; Levin, Craig S.

    2010-05-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s-1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm-3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) <= 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7 min

  5. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  6. Pitfalls and Limitations of PET/CT in Brain Imaging.

    Science.gov (United States)

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  7. Value of C-11-methionine PET in imaging brain tumours and metastases

    NARCIS (Netherlands)

    Glaudemans, Andor W J M; Enting, Roeline; Heesters, Martinus; Dierckx, Rudi A J O; van Rheenen, Ronald W J; Walenkamp, Annemiek M E; Slart, Riemer H J A

    2013-01-01

    C-11-methionine (MET) is the most popular amino acid tracer used in PET imaging of brain tumours. Because of its characteristics, MET PET provides a high detection rate of brain tumours and good lesion delineation. This review focuses on the role of MET PET in imaging cerebral gliomas. The Introduct

  8. Gallium-68 Prostate-Specific Membrane Antigen PET Imaging.

    Science.gov (United States)

    Hofman, Michael S; Iravani, Amir

    2017-04-01

    The role of gallium-68 ((68)Ga) prostate-specific membrane antigen (PSMA) PET imaging is evolving and finding its place in the imaging armamentarium for prostate cancer (PCa). Despite the progress of conventional imaging strategies, significant limitations remain, including identification of small-volume disease and assessment of bone. Clinical studies have demonstrated that (68)Ga-PSMA is a promising tracer for detection of PCa metastases, even in patients with low prostate-specific antigen. To provide an accurate interpretation of (68)Ga-PSMA PET/computed tomography, nuclear medicine specialists and radiologists should be familiar with physiologic (68)Ga-PSMA uptake, common variants, patterns of locoregional and distant spread of PCa, and inherent pitfalls.

  9. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  10. Occult breast primary malignancy presenting as isolated axillary lymph node metastasis - early detection of primary site by 18F-FDG PET/CT.

    Science.gov (United States)

    Soundararajan, Ramya; Naswa, Niraj; Karunanithi, Sellam; Walia, Ritika; Kumar, Rakesh; Bal, Chandrasekhar

    2016-01-01

    Breast cancer patients rarely present with isolated axillary lymph node metastasis without any clinical or radiological evidence of primary tumor. Identification of the primary site of tumor helps in planning appropriate patient management which has definite impact on patient's survival. We present here a case of 30-year-old female who presented with isolated right axillary lymph node metastasis with no evidence of primary tumor clinically. Conventional imaging modalities were negative for primary site. She underwent whole body 18F-Flurodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) and it contributed significantly in early detection of occult primary tumor in right breast.

  11. Advanced Imaging and Receipt of Guideline Concordant Care in Women with Early Stage Breast Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth Trice Loggers

    2016-01-01

    Full Text Available Objective. It is unknown whether advanced imaging (AI is associated with higher quality breast cancer (BC care. Materials and Methods. Claims and Surveillance Epidemiology and End Results data were linked for women diagnosed with incident stage I-III BC between 2002 and 2008 in western Washington State. We examined receipt of preoperative breast magnetic resonance imaging (MRI or AI (defined as computed tomography [CT]/positron emission tomography [PET]/PET/CT versus mammogram and/or ultrasound (M-US alone and receipt of guideline concordant care (GCC using multivariable logistic regression. Results. Of 5247 women, 67% received M-US, 23% MRI, 8% CT, and 3% PET/PET-CT. In 2002, 5% received MRI and 5% AI compared to 45% and 12%, respectively, in 2008. 79% received GCC, but GCC declined over time and was associated with younger age, urban residence, less comorbidity, shorter time from diagnosis to surgery, and earlier year of diagnosis. Breast MRI was associated with GCC for lumpectomy plus radiation therapy (RT (OR 1.55, 95% CI 1.08–2.26, and p=0.02 and AI was associated with GCC for adjuvant chemotherapy for estrogen-receptor positive (ER+ BC (OR 1.74, 95% CI 1.17–2.59, and p=0.01. Conclusion. GCC was associated with prior receipt of breast MRI and AI for lumpectomy plus RT and adjuvant chemotherapy for ER+ BC, respectively.

  12. A meta-analysis of {sup 18}FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Yang, Hui-Lin [The First Affiliated Hospital of Soochow University, Department of Orthopaedic Surgery, Suzhou (China); Cheng, Tao [Shanghai Jiaotong University School of Medicine, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital, Shanghai (China); Xu, Wen [Public Health School of Soochow University, Department of Epidemiology and Biostatistics, Suzhou (China); Yan, Wei-Li [Shanghai Jiaotong University School of Medicine, Departments of Nuclear Medicine, Shanghai Renji Hospital, Shanghai (China); Liu, Jia [Shanghai Jiaotong University School of Medicine, Departments of Radiology, Shanghai Renji Hospital, Shanghai (China)

    2011-05-15

    To perform a meta-analysis comparing the diagnostic value of {sup 18}FDG-PET, MRI, and bone scintigraphy (BS) in detecting bone metastases in patients with breast cancer. MEDLINE, EMBASE, Scopus, ScienceDirect, SpringerLink, Web of Knowledge, EBSCO, and the Cochrane Database of Systematic Review databases were searched for relevant original articles published from January 1995 to January 2010. Inclusion criteria was as follows: {sup 18}FDG-PET, MRI or {sup 99m}Tc-MDP BS was performed to detect bone metastases (the number of published CT studies was inadequate for meta-analysis and therefore could not be included in this study); sufficient data were presented to construct a 2 x 2 contingency table; histopathological analysis and/or close clinical and imaging follow-up for at least 6 months were used as the reference standard. Two reviewers independently assessed potentially eligible studies and extracted relevant data. A software program called ''META-DiSc'' was used to obtain the pooled estimates for sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curves, and the *Q index for each modality. Thirteen articles consisting of 23 studies fulfilled all inclusion criteria. On a per-patient basis, the pooled sensitivity estimates for MRI (97.1%) were significantly higher than those for PET (83.3%) and BS (87.0%; P <0.05). There was no significant difference between PET and BS (P <0.05). The pooled specificity estimates for PET (94.5%) and MRI (97.0%) were both significantly higher than those for BS (88.1%; P <0.05). There was no significant difference between PET and MRI (P >0.05). The pooled DOR estimates for MRI (298.5) were significantly higher than those for PET (82.1%) and BS (49.3%; P <0.05). There was no significant difference between PET and BS (P >0.05). The SROC curve for MRI showed better diagnostic accuracy than those for PET and BS. The SROC curve for PET was better than that for BS

  13. Imaging Breast Density: Established and Emerging Modalities

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2015-12-01

    Full Text Available Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature.

  14. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu...

  15. {sup 11}C-Choline PET/pathology image coregistration in primary localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Grosu, Anca-Ligia; Prokic, Vesna [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Weirich, Gregor [Technical University of Munich, Institute of Pathology, Munich (Germany); Wendl, Christina; Geinitz, Hans; Molls, Michael [Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Kirste, Simon [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Souvatzoglou, Michael; Schwaiger, Markus [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); Gschwend, Juergen E.; Treiber, Uwe [Technical University of Munich, Department of Urology, Munich (Germany); Weber, Wolfgang A. [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, New York (United States); Krause, Bernd Joachim [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); University of Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2014-12-15

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of {sup 11}C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, {sup 11}C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. {sup 11}C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  16. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  17. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R; Majewski, Stan; Velan, S Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F; Weisenberger, Andrew G

    2007-06-01

    Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ∼14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.

  18. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.

    2007-06-01

    Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.

  19. {sup 18}F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, Alexandre [Centre Georges-Francois Leclerc, Department of Nuclear Medicine, Dijon Cedex (France); Le2i UMR CNRS 6306, Dijon (France); Dygai-Cochet, Inna; Riedinger, Jean-Marc; Berriolo-Riedinger, Alina; Toubeau, Michel [Centre Georges-Francois Leclerc, Department of Nuclear Medicine, Dijon Cedex (France); Humbert, Olivier; Brunotte, Francois [Centre Georges-Francois Leclerc, Department of Nuclear Medicine, Dijon Cedex (France); Le2i UMR CNRS 6306, Dijon (France); CHU Dijon, MRI and Spectroscopy Unit, Dijon (France); Guiu, Severine; Coudert, Bruno [Centre Georges-Francois Leclerc, Department of Oncology, Dijon (France); Coutant, Charles; Fumoleau, Pierre [Centre Georges-Francois Leclerc, Department of Surgery, Dijon (France)

    2014-03-15

    The objective of this study was to assess the impact on management and the prognostic value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT for initial staging of newly diagnosed large breast cancer (BC) when compared with conventional staging. We prospectively included 142 patients with newly diagnosed BC and at least grade T2 tumour. All patients were evaluated with complete conventional imaging (CI) procedures (mammogram and/or breast ultrasound, bone scan, abdominal ultrasound and/or CT, X-rays and/or CT of the chest), followed by FDG PET/CT exploration, prior to treatment. The treatment plan based on CI staging was compared with that based on PET/CT findings. CI and PET/CT findings were confirmed by imaging and clinical follow-up and/or pathology when assessable. Progression-free survival (PFS) was analysed using the Cox proportional hazards regression model. According to CI staging, 79 patients (56 %) were stage II, 46 (32 %) stage III and 17 (12 %) stage IV (distant metastases). Of the patients, 30 (21 %) were upstaged by PET/CT, including 12 (8 %) from stage II or III to stage IV. On the other hand, 23 patients (16 %) were downstaged by PET/CT, including 4 (3 %) from stage IV to stage II or III. PET/CT had a high or medium impact on management planning for 18 patients (13 %). Median follow-up was 30 months (range 9-59 months); 37 patients (26 %) experienced recurrence or progression of disease during follow-up and 17 patients (12 %) died. The Cox model indicated that CI staging was significantly associated with PFS (p = 0.01), but PET/CT staging provided stronger prognostic stratification (p < 0.0001). Moreover, Cox regression multivariate analysis showed that only PET/CT staging remained associated with PFS (p < 0.0001). FDG PET/CT provides staging information that more accurately stratifies prognostic risk in newly diagnosed large BC when compared with conventional explorations alone. (orig.)

  20. Optical imaging for breast cancer prescreening

    Directory of Open Access Journals (Sweden)

    Godavarty A

    2015-07-01

    Full Text Available Anuradha Godavarty,1 Suset Rodriguez,1 Young-Jin Jung,2 Stephanie Gonzalez1 1Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA; 2Department of Radiological Science, Dongseo University, Busan, South Korea Abstract: Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE or self-breast examinations (SBEs. Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. Keywords: diffuse optical imaging, near-infrared, hand-held devices, breast cancer, prescreening, early detection 

  1. Fibrous dysplasia mimicking bone metastasis on both bone scintigraphy and {sup 18}F FDG PET CT: Diagnostic dilemma in a patient with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    KC, Sud Hir Suman; Sharma, Punit; Singh, Har Man Deep; Bal, Chand Rasekhar; Kumar, Rake Sh [India Institute of Medical Sciences, New Delhi (India)

    2012-12-15

    Bone is the most common distant site to which breast cancer metastasizes. Commonly used imaging modalities for imaging bone metastasis are bone scintigraphy, plain radiography, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Although bone scintigraphy gas high sensitivity for detecting bone metastasis, its specificity is low. This is because of the fact that bone scintigraphy images secondary changes in bone rather than just tumor cells {sup 18}F fluorodeoxyglucose ({sup 18}F FDG) PET CT, on the other hand, directly images the tumor cells' glucose metabolism. Unfortunately, similar to bone scintigraphy, benign bone conditions can also show increased {sup 18}F FDG uptake on PET CT, and PET positive asymptomatic fibrous dysplasia can be misinterpreted as a metastasis. Fibrous dysplasia of bone has wide skeletal distribution, with variability of {sup 18}F FDG uptake and CT appearance. It is therefore important to recognize the characteristics of this skeletal dysplasia, to allow differentiation from skeletal metastasis. Bone lesions with {sup 18}F FDG uptake need to be carefully interpreted when evaluating patients with known malignancy. In doubtful cases, fibrous dysplasia should be given as a differential diagnosis and histopathological diagnosis may be warranted, as highlighted in the present case.

  2. Chronic thyroiditis in patients with advanced breast carcinoma: metabolic and morphologic changes on PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Ukihide [University of Texas, MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan); University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); Gamez, Cristina; Yeung, Henry W.D.; Macapinlac, Homer A. [University of Texas, MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Dawood, Shaheenah; Cristofanilli, Massimo [University of Texas, MD Anderson Cancer Center, Division of Breast Medical Oncology, Houston, TX (United States); Inoue, Tomio [Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan)

    2009-06-15

    To investigate clinical implications of FDG uptake in the thyroid glands in patients with advanced breast carcinoma by comparing metabolic and morphologic patterns on positron emission tomography (PET)/computed tomography (CT). The institutional review board waived the requirement for informed consent. A retrospective analysis was performed in 146 women (mean age 54 years) with advanced breast carcinoma who received systemic treatment. All patients underwent PET-CT before and after treatment. All PET-CT studies were reviewed in consensus by two reviewers. Morphologic changes including volume and mean parenchymal density of the thyroid glands were evaluated. Maximum standardized uptake value (SUVmax) and total lesion glycolysis (TLG) were determined to evaluate metabolic changes. These parameters were compared between patients with chronic thyroiditis who received thyroid hormone replacement therapy and those who did not. Of the 146 patients, 29 (20%) showed bilaterally diffuse uptake in the thyroid glands on the baseline PET-CT scan. The SUVmax showed a linear relationship with volume (r = 0.428, p = 0.021) and the mean parenchymal density (r = -0.385, p = 0.039) of the thyroid glands. In 21 of the 29 patients (72%) with hypothyroidism who received thyroid hormone replacement therapy, the volume, mean parenchymal density, SUVmax, and TLG of the thyroid glands showed no significant changes. In contrast, 8 of the 29 patients (28%) who did not receive thyroid hormone replacement therapy showed marked decreases in SUVmax and TLG. Diffuse thyroid uptake on PET-CT represents active inflammation caused by chronic thyroiditis in patients with advanced breast carcinoma. Diffuse thyroid uptake may also address the concern about subclinical hypothyroidism which develops into overt disease during follow-up. (orig.)

  3. Causes of breast lumps (image)

    Science.gov (United States)

    ... breast lumps are benign (non-cancerous), as in fibroadenoma, a condition that mostly affects women under age ... with the menstrual cycle, whereas a lump from fibroadenoma does not. While most breast lumps are benign, ...

  4. {sup 18}F-FDG PET and biomarkers for tumour angiogenesis in early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groves, Ashley M.; Shastry, Manu; Endozo, Raymondo; Ell, Peter J. [University College London, Institute of Nuclear Medicine, London (United Kingdom); Rodriguez-Justo, Manuel [University College London, Department of Histopathology, London (United Kingdom); Malhotra, Anmol; Davidson, Timothy; Kelleher, Tina; Keshtgar, Mohammed R. [Breast Unit, Royal Free Hospital, UCL, London (United Kingdom); Miles, Kenneth A. [Brighton and Sussex University Hospitals, Brighton (United Kingdom)

    2011-01-15

    Tumour angiogenesis is an independent and strong prognostic factor in early breast carcinoma. We performed this study to investigate the ability of {sup 18}F-FDG to detect angiogenesis in early breast carcinoma using PET/CT. Twenty consecutive patients with early (T1-T2) breast carcinoma were recruited prospectively for 18F-FDG PET/CT. The PET/CT data were used to calculate whole tumour maximum standardized uptake value (SUV{sub max}) and mean standardized uptake value (SUV{sub mean}). All patients underwent subsequent surgery without prior chemotherapy or radiotherapy. The excised tumour underwent immunohistochemistry for vascular endothelial growth factor (VEGF), CD105 and glucose transporter protein 1 (GLUT1). The SUV{sub max} showed the following correlation with tumour histology: CD105: r = 0.60, p = 0.005; GLUT1: r = 0.21, p = 0.373; VEGF: r = -0.16, p = 0.496. The SUV{sub mean} showed the following correlation with tumour histology: CD105: r = 0.65, p = 0.002; GLUT1: r = 0.34, p = 0.144; VEGF: r = -0.18, p = 0.443 {sup 18}F-FDG uptake is highly significantly associated with angiogenesis as measured by the immunohistochemistry with CD105 for new vessel formation. Given that tumour angiogenesis is an important prognostic indicator and a predictor of treatment response, {sup 18}F-FDG PET may have a role in the management of primary breast cancer patients even in early-stage disease. (orig.)

  5. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Cristina [University of Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela (Spain); Imaging Science Institute, Tuebingen (Germany); Bezrukov, Ilja [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Max Plank Institute for Intelligent Systems, Department of Empirical Inference, Tuebingen (Germany); Schmidt, Holger [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Schwenzer, Nina; Werner, Matthias K. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [Imaging Science Institute, Tuebingen (Germany); cmi-experts GmbH, Zuerich (Switzerland)

    2012-11-15

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem {sup registered} (oral) and Gadovist {sup registered} (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and {sup 18}F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist {sup registered} (IV) and a volunteer study employing two different oral MRCA (Lumirem {sup registered} and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT and PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT and PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation

  6. Dose reduction in molecular breast imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  7. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Y.C.; Chatziioannou, A.; Cherry, S.R. [Crump Institute for Molecular Imaging, UCLA School of Medicine, Los Angeles, CA (United States); Siegel, S.; Goble, R.N.; Nutt, R.E. [Concorde Microsystems, Inc, Knoxville, TN (United States); Young, J. [CTI, Inc, Knoxville, TN (United States); Newport, D. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN (United States)

    2001-07-01

    The microPET Primate 4-ring system (P4) is an animal PET tomograph with a 7.8 cm axial extent, a 19 cm diameter transaxial field of view (FOV) and a 22 cm animal port. The system is composed of 168 detector modules, each with an 8x8 array of 2.2x2.2x10 mm{sup 3} lutetium oxyorthosilicate crystals, arranged as 32 crystal rings 26 cm in diameter. The detector crystals are coupled to a Hamamatsu R5900-C8 PS-PMT via a 10 cm long optical fibre bundle. The detectors have a timing resolution of 3.2 ns, an average energy resolution of 26%, and an average intrinsic spatial resolution of 1.75 mm. The system operates in 3D mode without inter-plane septa, acquiring data in list mode. The reconstructed image spatial resolution ranges from 1.8 mm at the centre to 3 mm at 4 cm radial offset. The tomograph has a peak system sensitivity of 2.25% at the centre of the FOV with a 250-750 keV energy window. The noise equivalent count rate peaks at 100-290 kcps for representative object sizes. Images from two phantoms and three different types of laboratory animal demonstrate the advantage of the P4 system over the original prototype microPET, including its threefold improvement in sensitivity and a large axial FOV sufficient to image an entire mouse in a single bed position. (author)

  8. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging

    Science.gov (United States)

    Tai, Y. C.; Chatziioannou, A.; Siegel, S.; Young, J.; Newport, D.; Goble, R. N.; Nutt, R. E.; Cherry, S. R.

    2001-07-01

    The microPET Primate 4-ring system (P4) is an animal PET tomograph with a 7.8 cm axial extent, a 19 cm diameter transaxial field of view (FOV) and a 22 cm animal port. The system is composed of 168 detector modules, each with an 8×8 array of 2.2×2.2×10 mm3 lutetium oxyorthosilicate crystals, arranged as 32 crystal rings 26 cm in diameter. The detector crystals are coupled to a Hamamatsu R5900-C8 PS-PMT via a 10 cm long optical fibre bundle. The detectors have a timing resolution of 3.2 ns, an average energy resolution of 26%, and an average intrinsic spatial resolution of 1.75 mm. The system operates in 3D mode without inter-plane septa, acquiring data in list mode. The reconstructed image spatial resolution ranges from 1.8 mm at the centre to 3 mm at 4 cm radial offset. The tomograph has a peak system sensitivity of 2.25% at the centre of the FOV with a 250-750 keV energy window. The noise equivalent count rate peaks at 100-290 kcps for representative object sizes. Images from two phantoms and three different types of laboratory animal demonstrate the advantage of the P4 system over the original prototype microPET, including its threefold improvement in sensitivity and a large axial FOV sufficient to image an entire mouse in a single bed position.

  9. Usefulness of {sup 18}F fluoride PET/CT in breast cancer patients with osteosclerotic bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok Ho; Kim, Ku Sang; Kang, Seok Yun; Song, Hee Sung; Jo, Kyung Sook; Lee, Su Jin; Yoon, Joon Kee; An, Young Sil [Ajou Univ., Suwon (Korea, Republic of); Choi, Bong Hoi [Gyeongsang National Univ. Hospital, Jinju (Korea, Republic of)

    2012-03-15

    Bone metastasis is an important factor for the treatment and prognosis of breast cancer patients. Whole body bone scintigraphy (WBBS) can evaluate skeletal metastases, and {sup 18}F FDG PET/CT seems to exhibit high specificity and accuracy in detecting bone metastases. However, there is a limitation of {sup 18}F FDG PET in assessing sclerotic bone metastases because some lesions may be undetectable. Recent studies showed that {sup 18}F fluoride PET/CT is more sensitive than WBBS in detecting bone metastases. This study aims to evaluate the usefulness of {sup 18}F fluoride PET/CT by comparing it with WBBS and {sup 18}F FDG PET/CT in breast cancer patients with osteosclerotic skeletal metastases. Nine breast cancer patients with suspected bone metastases (9 females; mean age {+-} SD, 55.6{+-}10.0 years) underwent {sup 99m}Tc MDP WBBS, {sup 18}F FDG PET/CT and {sup 18}F fluoride PET/CT. Lesion based analysis of five regions of the skeletons(skull, vertebral column, thoracic cage, pelvic bones and long bones of extremities) and patient based analysis were performed. {sup 18}F fluoride PET/CT, {sup 18}F FDG PET/CT and WBBS detected 49, 20 and 25 true metastases, respectively. Sensitivity, specificity, positive predictive value and negative predictive value of {sup 18}F fluoride PET/CT were 94.2%, 46.3%, 57.7% and 91.2%, respectively. Most true metastatic lesions of {sup 18}F fluoride PET/CT had osteosclerotic change (45/49, 91.8%), and only four lesions showed osteolytic change. Most lesions on {sup 18}F FDG PET/CT also demonstrated osteosclerotic change (17/20, 85.0%) with three osteolytic lesions. All true metastatic lesions detected on WBBS and {sup 18}F FDG PET/CT were identified on {sup 18}F fluoride PET/CT. {sup 18}F FDG PET/CT in detecting osteosclerotic metastatic lesions. {sup 18}F fluoride PET/CT might be useful in evaluating osteosclerotic metastases in breast cancer patients.

  10. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET

    Science.gov (United States)

    Goorden, Marlies C.; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J.

    2016-05-01

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning 99mTc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes (‘multiple-pinhole paths’ (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging 18F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.

  11. OPTIMIZATION OF DIAGNOSTIC IMAGING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Velichko

    2015-01-01

    Full Text Available The paper presents the results of breast imaging for 47200 women. Breast cancer was detected in 862 (1.9% patients, fibroadenoma in 1267 (2.7% patients and isolated breast cysts in 1162 (2.4% patients. Different types of fibrocystic breast disease (adenosis, diffuse fibrocystic changes, local fibrosis and others were observed in 60.1% of women. Problems of breast cancer visualization during mammography, characterized by the appearance of fibrocystic mastopathy (sclerosing adenosis, fibrous bands along the ducts have been analyzed. Data on the development of diagnostic algorithms including the modern techniques for ultrasound and interventional radiology aimed at detecting early breast cancer have been presented.  

  12. Requirements for effective functional breast imaging

    Science.gov (United States)

    Weinberg, I. N.; Zawarzin, V.; Adler, L. P.; Pani, R.; DeVincentis, G.; Khalkhali, I.; Vargas, H.; Venegas, R.; Kim, S. C.; Bakale, G.; Levine, E.; Perrier, N.; Freimanis, R. I.; Lesko, N. M.; Newman, D. P.; Geisinger, K. R.; Berg, W. A.; Masood, S.

    2003-01-01

    Most nuclear medicine physicists were trained on devices aimed at functional neuroimaging. The clinical goals of brain-centered devices differ dramatically from the parameters needed to be useful in the breast clinic. We will discuss similarities and differences that impact on design considerations, and describe our latest generation of positron emission mammography and intraoperative products. Source of physiologic contrast: Clinical neuroimaging depends on flow agents to detect the presence of breaks in the blood-brain barrier. Breast flow agents are nonspecific, and may miss preinvasive lesions. Resolution: Brain cancers are generally diagnosed at late stages, so resolution is not so critical. Detecting early breast cancers, and specifying margins for surgery requires 3 mm spatial resolution or better. Prevalence: Primary brain cancer is uncommon, and lesions mimicking brain cancer are rare. Primary breast cancer is common, and benign lesions are even more common, so specificity and biopsy capability are very important. Anatomic references: Brain structure is standard, while breast structure is highly variable, requiring immobilization/compression for physiologic imaging and biopsy. Surgery: Complete cancer resections for brain are very rare, but are possible for breast with appropriate imaging guidance, implying the need for rapid and reliable imaging. To summarize, the breast clinic needs a rapid and highly sensitive method of assessing breast physiology, compatible with biopsy and surgery. Positron emission mammography devices, in handheld and X-ray platform based configurations, are ideal for this mission.

  13. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NARCIS (Netherlands)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M-J; van der Graaf, E. R.; Brandenburg, Sijtze

    2015-01-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, provid

  14. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm......Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  15. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, P; Peng, Y; Sun, M; Yang, X [Suzhou Institute of Biomedical Engineering and Technology Chinese Academy o, Suzhou, Jiangsu (China)

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI will be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.

  16. Diffuse Intense {sup 18}F-FDG Uptake at PET in Unilateral Breast Related to Breastfeeding Practice

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Hee; Jung, Hye Kyoung [Department of Radiololgy, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Jeon, Tae Joo [Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of)

    2013-07-01

    We present an interesting case of incidental diffuse fluorodeoxyglucose (FDG) uptake at PET in her left breast, related to atypical breastfeeding practice. Clinically, differential diagnoses of diffuse intense FDG uptake in unilateral breast include advanced breast cancer, breast lymphoma and inflammatory condition. However, normal physiologic lactation may also show increased FDG uptake in the breasts. Therefore, if we encounter that finding in daily practice, we should question the patient regarding unilateral breastfeeding. In addition, mammography and ultrasound would be helpful to confirm the diagnosis.

  17. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    Science.gov (United States)

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  18. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    Science.gov (United States)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  19. NEMA NU 4-2008 Comparison of Preclinical PET Imaging Systems

    Science.gov (United States)

    Goertzen, Andrew L.; Bao, Qinan; Bergeron, Mélanie; Blankemeyer, Eric; Blinder, Stephan; Cañadas, Mario; Chatziioannou, Arion F.; Dinelle, Katherine; Elhami, Esmat; Jans, Hans-Sonke; Lage, Eduardo; Lecomte, Roger; Sossi, Vesna; Surti, Suleman; Tai, Yuan-Chuan; Vaquero, Juan José; Vicente, Esther; Williams, Darin A.; Laforest, Richard

    2014-01-01

    The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. Methods We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: micro- PET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. Results The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Conclusion Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand. PMID:22699999

  20. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong, E-mail: ouyang.jinsong@mgh.harvard.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Ackerman, Jerome L. [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  1. A PET imaging system dedicated to mammography

    CERN Document Server

    Varela, J

    2007-01-01

    The imaging system Clear-PEM for positron emission mammography, under development within the framework of the Crystal Clear Collaboration at CERN, is presented. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes (APD) and readout by a fast low-noise electronic system. A dedicated digital trigger and data acquisition system is used for on-line selection of coincidence events with high efficiency, large bandwidth and negligible dead-time. The detector module performance was characterized in detail.

  2. Comparison between two super-resolution implementations in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Qiao, Feng; Clark, John W; Mawlawi, Osama R

    2009-04-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POV). In this article, the authors propose a novel implementation of the SR technique whereby the required multiple low-resolution images are generated by shifting the reconstruction pixel grid during the image reconstruction process rather than being acquired from different POVs. The objective of this article is to compare the performances of the two SR implementations using theoretical and experimental studies. A mathematical framework is first provided to support the hypothesis that the two SR implementations have similar performance in current PET/CT scanners that use block detectors. Based on this framework, a simulation study, a point source study, and a NEMA/IEC phantom study were conducted to compare the performance of these two SR implementations with respect to contrast, resolution, noise, and SNR. For reference purposes, a comparison with a native reconstruction (NR) image using a high-resolution pixel grid was also performed. The mathematical framework showed that the two SR implementations are expected to achieve similar contrast and resolution but different noise contents. These results were confirmed by the simulation and experimental studies. The simulation study showed that the two SR implementations have an average contrast difference of 2.3%, while the point source study showed that their average differences in contrast and resolution were 0.5% and 1.2%, respectively. Comparisons between the SR and NR images for the point source study showed that the NR image exhibited averages of 30% and 8% lower contrast and resolution, respectively. The NEMA/IEC phantom study showed that the three images (two SR and NR) exhibited different noise structures. The SNR of the new SR implementation was, on average, 21.5% lower than the original implementation largely due to an

  3. Calibration test of PET scanners in a multi-centre clinical trial on breast cancer therapy monitoring using 18F-FLT.

    Directory of Open Access Journals (Sweden)

    Francis Bouchet

    Full Text Available UNLABELLED: A multi-centre trial using PET requires the analysis of images acquired on different systems We designed a multi-centre trial to estimate the value of 18F-FLT-PET to predict response to neoadjuvant chemotherapy in patients with newly diagnosed breast cancer. A calibration check of each PET-CT and of its peripheral devices was performed to evaluate the reliability of the results. MATERIAL AND METHODS: 11 centres were investigated. Dose calibrators were assessed by repeated measurements of a 68Ge certified source. The differences between the clocks associated with the dose calibrators and inherent to the PET systems were registered. The calibration of PET-CT was assessed with an homogeneous cylindrical phantom by comparing the activities per unit of volume calculated from the dose calibrator measurements with that measured on 15 Regions of Interest (ROIs drawn on 15 consecutive slices of reconstructed filtered back-projection (FBP images. Both repeatability of activity concentration based upon the 15 ROIs (ANOVA-test and its accuracy were evaluated. RESULTS: There was no significant difference for dose calibrator measurements (median of difference -0.04%; min = -4.65%; max = +5.63%. Mismatches between the clocks were less than 2 min in all sites and thus did not require any correction, regarding the half life of 18F. For all the PET systems, ANOVA revealed no significant difference between the activity concentrations estimated from the 15 ROIs (median of difference -0.69%; min = -9.97%; max = +9.60%. CONCLUSION: No major difference between the 11 centres with respect to calibration and cross-calibration was observed. The reliability of our 18F-FLT multi-centre clinical trial was therefore confirmed from the physical point of view. This type of procedure may be useful for any clinical trial involving different PET systems.

  4. RGD-based PET tracers for imaging receptor integrin αv β3 expression.

    Science.gov (United States)

    Cai, Hancheng; Conti, Peter S

    2013-05-15

    Positron emission tomography (PET) imaging of receptor integrin αv β3 expression may play a key role in the early detection of cancer and cardiovascular diseases, monitoring disease progression, evaluating therapeutic response, and aiding anti-angiogenic drugs discovery and development. The last decade has seen the development of new PET tracers for in vivo imaging of integrin αv β3 expression along with advances in PET chemistry. In this review, we will focus on the radiochemistry development of PET tracers based on arginine-glycine-aspartic acid (RGD) peptide, present an overview of general strategies for preparing RGD-based PET tracers, and review the recent advances in preparations of (18) F-labeled, (64) Cu-labeled, and (68) Ga-labeled RGD tracers, RGD-based PET multivalent probes, and RGD-based PET multimodality probes for imaging receptor integrin αv β3 expression.

  5. MRI and PET Image Fusion Using Fuzzy Logic and Image Local Features

    Directory of Open Access Journals (Sweden)

    Umer Javed

    2014-01-01

    to maximally combine useful information present in MRI and PET images. Image local features are extracted and combined with fuzzy logic to compute weights for each pixel. Simulation results show that the proposed scheme produces significantly better results compared to state-of-art schemes.

  6. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  7. Imaging results and TOF studies with axial PET detectors

    CERN Document Server

    Joram, Christian

    2013-01-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the held of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The Fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations ( <2 mm FWHM in all three coordinates over the complete held of view) and also demonstrated the ability to include Compton interactions (inter-cr...

  8. Physiological imaging with PET and SPECT in Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jagust, W.J. (California Univ., San Francisco, CA (United States). Dept. of Neurology Lawrence Berkeley Lab., CA (United States))

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  9. Multispectral image segmentation of breast pathology

    Science.gov (United States)

    Hornak, Joseph P.; Blaakman, Andre; Rubens, Deborah; Totterman, Saara

    1991-06-01

    The signal intensity in a magnetic resonance image is not only a function of imaging parameters but also of several intrinsic tissue properties. Therefore, unlike other medical imaging modalities, magnetic resonance imaging (MRI) allows the imaging scientist to locate pathology using multispectral image segmentation. Multispectral image segmentation works best when orthogonal spectral regions are employed. In MRI, possible spectral regions are spin density (rho) , spin-lattice relaxation time T1, spin-spin relaxation time T2, and texture for each nucleus type and chemical shift. This study examines the ability of multispectral image segmentation to locate breast pathology using the total hydrogen T1, T2, and (rho) . The preliminary results indicate that our technique can locate cysts and fibroadenoma breast lesions with a minimum number of false-positives and false-negatives. Results, T1, T2, and (rho) algorithms, and segmentation techniques are presented.

  10. Breast conserving therapy and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Tsuneaki; Masuda, Yu; Hachiya, Junichi; Nitatori, Toshiaki; Fukushima, Hisayoshi; Uchigasaki, Shinya [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1996-12-01

    Recently, breast conserving therapy has been widely accepted in our country. The extensive intraductal component (EIC) is a serious problem in breast conserving therapy, because it is well-known that EIC frequently causes locoregional recurrence in preserved breast parenchyma. Magnetic resonance imaging (MRI) is a useful method for detecting breast masses due to its excellent contrast resolution. We studied the application of MRI to detection of intraductal spread in twenty-two patients. All cases were revealed invasive cancer with intraductal spread by histopathological examination. MRI findings of intraductal spread can be divided into two major groups. One is daugter nodules or strand-like enhancement and the other is bridging enhancement. We also reffered to the preliminary study of MR-guiding transcutaneous aspiration biopsy of mammographically and clinically occult breast masses. (author)

  11. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  12. Comparison of Imaging Characteristics of 124I PET for Determination of Optimal Energy Window on the Siemens Inveon PET

    Directory of Open Access Journals (Sweden)

    A Ram Yu

    2016-01-01

    Full Text Available Purpose.124I has a half-life of 4.2 days, which makes it suitable for imaging over several days over its uptake and washout phases. However, it has a low positron branching ratio (23%, because of prompt gamma coincidence due to high-energy γ-photons (602 to 1,691 keV, which are emitted in cascade with positrons. Methods. In this study, we investigated the optimal PET energy window for 124I PET based on image characteristics of reconstructed PET. Image characteristics such as nonuniformities, recovery coefficients (RCs, and the spillover ratios (SORs of 124I were measured as described in NEMA NU 4-2008 standards. Results. The maximum and minimum prompt gamma coincidence fraction (PGF were 33% and 2% in 350~800 and 400~590 keV, respectively. The difference between best and worst uniformity in the various energy windows was less than 1%. The lowest SORs of 124I were obtained at 350~750 keV in nonradioactive water compartment. Conclusion. Optimal energy window should be determined based on image characteristics. Our developed correction method would be useful for the correction of high-energy prompt gamma photon in 124I PET. In terms of the image quality of 124I PET, our findings indicate that an energy window of 350~750 keV would be optimal.

  13. Segmentation of dynamic PET images with kinetic spectral clustering

    Science.gov (United States)

    Mouysset, S.; Zbib, H.; Stute, S.; Girault, J. M.; Charara, J.; Noailles, J.; Chalon, S.; Buvat, I.; Tauber, C.

    2013-10-01

    Segmentation is often required for the analysis of dynamic positron emission tomography (PET) images. However, noise and low spatial resolution make it a difficult task and several supervised and unsupervised methods have been proposed in the literature to perform the segmentation based on semi-automatic clustering of the time activity curves of voxels. In this paper we propose a new method based on spectral clustering that does not require any prior information on the shape of clusters in the space in which they are identified. In our approach, the p-dimensional data, where p is the number of time frames, is first mapped into a high dimensional space and then clustering is performed in a low-dimensional space of the Laplacian matrix. An estimation of the bounds for the scale parameter involved in the spectral clustering is derived. The method is assessed using dynamic brain PET images simulated with GATE and results on real images are presented. We demonstrate the usefulness of the method and its superior performance over three other clustering methods from the literature. The proposed approach appears as a promising pre-processing tool before parametric map calculation or ROI-based quantification tasks.

  14. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  15. Pediatric oncologic imaging. A key application of combined PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gatidis, Sergios; La Fougere, C.; Schaefer, J.F. [Universitaetsklinikum Tuebingen (Germany). Abteilung fuer Diagnostische und Interventionelle Radiologie

    2016-04-15

    Pediatric imaging has been identified as a key application of combined whole-body PET/MRI. First studies have revealed the clinical feasibility and possible advantages of PET/MRI over PET/CT and MRI. Besides a significant reduction in radiation exposure of about 50 - 75 %, combined whole-body PET/MRI offers the diagnostic advantage of the multiparametric characterization of pathophysiologic processes and helps reduce the number of necessary imaging studies. However, very few studies focusing on pediatric PET/MRI have been published to date. Additional studies are necessary in order to fully appreciate the clinical impact of this novel method. This review article shall summarize the existing literature concerning pediatric PET/MRI and give insight into the practical experience derived from over 160 pediatric PET/MRI examinations that were performed in Tuebingen.

  16. Breast cancer imaging; Bildgebende Diagnostik des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Funke, M. [Stadtklinik Baden-Baden, Brustzentrum Klinikum Mittelbaden, Radiologische Klinik, Baden-Baden (Germany); Villena, C. [Stadtklinik Baden-Baden, Brustzentrum Klinikum Mittelbaden, Frauenklinik, Baden-Baden (Germany)

    2008-06-15

    Advances in female breast imaging have substantially influenced the diagnosis, therapy, and prognosis of breast cancer in the past few years. Mammography using conventional or digital technique is considered the gold standard for the early detection of breast cancer. Other modalities such as breast ultrasound and contrast-enhanced magnetic resonance imaging of the breast play an important role in diagnostic imaging, staging, and follow-up of breast cancer. Percutaneous needle biopsy is a faster, less invasive, and more cost-effective method than surgical biopsy for verifying the histological diagnosis. New methods such as breast tomosynthesis, contrast-enhanced mammography, and positron emission tomography promise to further improve breast imaging. Further studies are mandatory to adapt these new methods to clinical needs and to evaluate their performance in clinical practice. (orig.) [German] Die Fortschritte bei den bildgebenden Verfahren der weiblichen Brust haben in den letzten Jahren die Diagnostik, die Therapie und die Prognose des Mammakarzinoms erheblich beeinflusst. Die Frueherkennungsmammographie in traditioneller oder digitaler Technik gilt heute als der ''Goldstandard'' fuer die fruehzeitige Detektion von Brustkrebs. Weitere Modalitaeten wie die Mammasonographie und die kontrastmittelgestuetzte MR-Mammographie spielen bei der bildgebenden Diagnostik, im Staging sowie in der Nachsorge des Mammakarzinoms eine wichtige Rolle. Die perkutane Nadelbiopsie stellt eine schnellere, weniger invasive und kostenguenstigere Methode dar als die diagnostische Exzision fuer die histologische Sicherung der Diagnose. Neue Modalitaeten wie Tomosynthese der Brust, kontrastverstaerkte Mammographie und Positronenemissionstomographie erheben den Anspruch, zu einer weiteren Verbesserung der Bildgebung beizutragen. Weitere Studien sind notwendig, um diese neuen Methoden an die klinischen Beduerfnisse zu adaptieren und ihren Stellenwert im klinischen Alltag

  17. Imaging of urokinase-type plasminogen activator receptor expression using a 64Cu-labeled linear peptide antagonist by microPET

    DEFF Research Database (Denmark)

    Li, Z.B.; Niu, G.; Wang, H.;

    2008-01-01

    for positron emission tomography (PET) imaging. A linear, high-affinity uPAR-binding peptide antagonist AE105 was conjugated with 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA) and labeled with (64)Cu for microPET imaging of mice bearing U87MG human glioblastoma (uPAR positive) and MDA-MB-435...... human breast cancer (uPAR negative). RESULTS: Surface plasmon resonance measurements show that AE105 with DOTA conjugated at the alpha-amino group (DOTA-AE105) has high affinity toward uPAR. microPET imaging reveals a rapid and high accumulation of (64)Cu-DOTA-AE105 in uPAR-positive U87MG tumors (10...... translation of this class of radiopharmaceuticals for uPAR-positive cancer detection and patient stratification for uPA/uPAR system-based cancer therapy Udgivelsesdato: 2008/8/1...

  18. Review of optical breast imaging and spectroscopy

    Science.gov (United States)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  19. Breast imaging and reporting data system (BIRADS): Magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tardivon, Anne A. [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France)]. E-mail: anne.tardivon@curie.net; Athanasiou, Alexandra [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France); Thibault, Fabienne [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France); El Khoury, Carl [Department of Radiology, Institut Curie, 26 rue d' Ulm, 75248 Paris Cedex 05 (France)

    2007-02-15

    This article reviews the technical aspects and interpretation criteria in breast MR imaging based on the first edition of breast imaging and reporting data system (BIRADS) published by the American College of Radiology (ACR) in 2003. In a second article, practical cases will be proposed for training the readers. The major aims of using this lexicon are: first to use a logical and standardized description of MR lesions, secondly to obtain a structured MR report with a clear final impression (BIRADS assessment categories), and thirdly to help comparison between different clinical studies based on similar breast MRI terminology.

  20. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    DEFF Research Database (Denmark)

    Boellaard, Ronald; O'Doherty, Mike J; Weber, Wolfgang A;

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography......-computed tomography (PET/CT) and is provided to help the physician and physicist to assist to carrying out,interpret, and document quantitative FDG PET/CT examinations,but will concentrate on the optimisation of diagnostic quality and quantitative information....

  1. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    Science.gov (United States)

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  2. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    Science.gov (United States)

    Matthews, Robert; Choi, Minsig

    2016-09-09

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  3. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  4. A comparison of PET imaging characteristics of various copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Heather Ann [North Western Medical Physics, Christie Hospital NHS Trust, Manchester (United Kingdom); University of Manchester Institute of Science and Technology, Department of Instrumentation and Analytical Science, Manchester (United Kingdom); Robinson, Simon; Julyan, Peter; Hastings, David [North Western Medical Physics, Christie Hospital NHS Trust, Manchester (United Kingdom); Zweit, Jamal [University of Manchester Institute of Science and Technology, Department of Instrumentation and Analytical Science, Manchester (United Kingdom); Paterson Institute for Cancer Research, Radiochemical Targeting and Imaging, Manchester (United Kingdom)

    2005-12-01

    PET radiotracers which incorporate longer-lived radionuclides enable biological processes to be studied over many hours, at centres remote from a cyclotron. This paper examines the radioisotope characteristics, imaging performance, radiation dosimetry and production modes of the four copper radioisotopes, {sup 60}Cu,{sup 61}Cu,{sup 62}Cu and{sup 64}Cu, to assess their merits for different PET imaging applications. Spatial resolution, sensitivity, scatter fraction and noise-equivalent count rate (NEC) are predicted for{sup 60}Cu,{sup 61}Cu,{sup 62}Cu and{sup 64}Cu using a model incorporating radionuclide decay properties and scanner parameters for the GE Advance scanner. Dosimetry for{sup 60}Cu,{sup 61}Cu and{sup 64}Cu is performed using the MIRD model and published biodistribution data for copper(II) pyruvaldehyde bis(N{sup 4}-methyl)thiosemicarbazone (Cu-PTSM). {sup 60}Cu and{sup 62}Cu are characterised by shorter half-lives and higher sensitivity and NEC, making them more suitable for studying the faster kinetics of small molecules, such as Cu-PTSM.{sup 61}Cu and{sup 64}Cu have longer half-lives, enabling studies of the slower kinetics of cells and peptides and prolonged imaging to compensate for lower sensitivity, together with better spatial resolution, which partially compensates for loss of image contrast.{sup 61}Cu-PTSM and{sup 64}Cu-PTSM are associated with radiation doses similar to [{sup 18}F]-fluorodeoxyglucose, whilst the doses for{sup 60}Cu-PTSM and{sup 62}Cu-PTSM are lower and more comparable with H{sub 2}{sup 15}O. The physical and radiochemical characteristics of the four copper isotopes make each more suited to some imaging tasks than others. The results presented here assist in selecting the preferred radioisotope for a given imaging application, and illustrate a strategy which can be extended to the majority of novel PET tracers. (orig.)

  5. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR

    Science.gov (United States)

    Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong

    2017-01-01

    PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P  dynamic PET, mean MBF across all segments were comparable for MoCo (0.72  ±  0.21 ml/min/ml) and Gating (0.69  ±  0.18 ml/min/ml). Ungated data yielded

  6. PET/CT May Improve Prognosis For Patients With Inflammatory Breast Cancer%PET/CT有助于改善炎性乳腺癌预后

    Institute of Scientific and Technical Information of China (English)

    管汉雄; 洪班信

    2009-01-01

    @@ "PET/CT is useful in staging inflammatory breast cancer(IBC) because it provides information on both the primary disease site as well as disease involvement throughout the rest of the body," said Homer A. Macapinlac, MD, chair1 and professor of nuclear medicine at the University of Texas, M. D. Anderson2 Cancer Center, Houston, Texas. "In addition to detecting the presence of cancer, PET/CT is able to demonstrate the biology of cancer-revealing how aggressive the disease is-which can help physicians develop appropriate therapy approaches3."

  7. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  8. PET imaging predicts future body weight and cocaine preference

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides M.; Wang G.; Michaelides M.; Thanos P.K. Kim R.; Cho J.; Ananth M.; Wang G.-J.; Volkow N.D.

    2011-08-28

    Deficits in dopamine D2/D3 receptor (D2R/D3R) binding availability using PET imaging have been reported in obese humans and rodents. Similar deficits have been reported in cocaine-addicts and cocaine-exposed primates. We found that D2R/D3R binding availability negatively correlated with measures of body weight at the time of scan (ventral striatum), at 1 (ventral striatum) and 2 months (dorsal and ventral striatum) post scan in rats. Cocaine preference was negatively correlated with D2R/D3R binding availability 2 months (ventral striatum) post scan. Our findings suggest that inherent deficits in striatal D2R/D3R signaling are related to obesity and drug addiction susceptibility and that ventral and dorsal striatum serve dissociable roles in maintaining weight gain and cocaine preference. Measuring D2R/D3R binding availability provides a way for assessing susceptibility to weight gain and cocaine abuse in rodents and given the translational nature of PET imaging, potentially primates and humans.

  9. PET imaging with the non-pure positron emitters: 55Co, 86Y and 124I

    DEFF Research Database (Denmark)

    Braad, Poul-Erik; Hansen, S B; Thisgaard, H;

    2015-01-01

    PET/CT with non-pure positron emitters is a highly valuable tool in immuno-PET and for pretherapeutic dosimetry. However, imaging is complicated by prompt gamma coincidences (PGCs) that add an undesired background activity to the images. Time-of-flight (TOF) reconstruction improves lesion detecta...

  10. FDG PET/CT : EANM procedure guidelines for tumour imaging: version 2.0

    NARCIS (Netherlands)

    Boellaard, Ronald; Delgado-Bolton, Roberto; Oyen, Wim J. G.; Giammarile, Francesco; Tatsch, Klaus; Eschner, Wolfgang; Verzijlbergen, Fred J.; Barrington, Sally F.; Pike, Lucy C.; Weber, Wolfgang A.; Stroobants, Sigrid; Delbeke, Dominique; Donohoe, Kevin J.; Holbrook, Scott; Graham, Michael M.; Testanera, Giorgio; Hoekstra, Otto S.; Zijlstra, Josee; Visser, Eric; Hoekstra, Corneline J.; Pruim, Jan; Willemsen, Antoon; Arends, Bertjan; Kotzerke, Joerg; Bockisch, Andreas; Beyer, Thomas; Chiti, Arturo; Krause, Bernd J.

    2015-01-01

    The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) pro

  11. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    DEFF Research Database (Denmark)

    Jødal, Lars; Le Loirec, Cindy; Champion, Christophe

    2012-01-01

    Background: Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Further, the percentage of annihilation events within a given distance from the point ...

  12. PET and PET/CT imaging for the earliest detection and treatment of colorectal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Kevin [Michigan State Univ., Pontiac, MI (United States). POH Medical Center; Kotlyarov, Eduard [Michigan State Univ., Pontiac, MI (United States). POH Medical Center; Georgetown Univ. (United States)

    2005-10-15

    Approximately 150,000 new cases of colorectal cancer are diagnosed each year with the life time risk of developing colon caner in developed nations being 4.6% in men and 3.2% in women. Screening patients is essential early detection of colon carcinoma to aid in complete resection. Unfortunately current screening methods carry with them poor patient compliance. PET and PET/CT may be a significant part of this screening solution. The authors reviewed and analyzed the English language articles and case reports identified on Medline during the last 10 years. PET and PET/CT results for colorectal carcinoma were tabulated and presented for the fifth Scientific Meeting of the Brazilian Society of Nuclear Biosciences. Though most studies have been retrospective analysis in using PET for staging for other malignant processes the cases that have identified additional uptake in the colon are important. The accuracy when utilizing PET and PET/CT in this screening method has a sensitivity between 65 and 90% with a specificity of 84 to 90% and a positive predictive value 71 to 78%. Early stages of malignancies and pre-cancerous polyps avidly accumulates F-18 Deoxyfluoro glucose allowing us to conclude that whole body PET and PET/CT is an essential component in the work up, staging or treatment monitoring in colon carcinoma. We have to continue to accumulate data for possible introduction for whole body PET and PET/CT scanning for colon carcinoma and precancerous polyps.(author)

  13. Lymphadenopathy by scrub typhus mimicking metastasis on FDG PET/CT in a patient with a history of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won [Dept. of Nuclear Medicine, Catholic Kwandong University International St. Mary' s Hospital, Incheon (Korea, Republic of); Lee, Sang Mi; Lee, Kyu Taek; Kim, Sung Young; Han, Sun Wook; Kim, Shin Young [Sooncheonhyang University Cheonan Hospital, Cheonan (Korea, Republic of)

    2015-06-15

    We report the case of a 60-year-old woman with left-sided breast cancer who showed lymphadenopathy mimicking metastatic lesions. She underwent surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) after treatment. PET/CT demonstrated multiple lymphadenopathies with increased FDG uptake, most notably in the right axilla. She had an eschar on the right axillary area, and her serologic test was positive for anti-Orientia tsutsugamushi IgM antibody. Ten months after the treatment, follow-up FDG PET/CT and ultrasonography showed improvement in generalized lymphadenopathy.

  14. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  15. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

    Science.gov (United States)

    Keliher, Edmund J.; Ye, Yu-Xiang; Wojtkiewicz, Gregory R.; Aguirre, Aaron D.; Tricot, Benoit; Senders, Max L.; Groenen, Hannah; Fay, Francois; Perez-Medina, Carlos; Calcagno, Claudia; Carlucci, Giuseppe; Reiner, Thomas; Sun, Yuan; Courties, Gabriel; Iwamoto, Yoshiko; Kim, Hye-Yeong; Wang, Cuihua; Chen, John W.; Swirski, Filip K.; Wey, Hsiao-Ying; Hooker, Jacob; Fayad, Zahi A.; Mulder, Willem J. M.; Weissleder, Ralph; Nahrendorf, Matthias

    2017-01-01

    Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle's short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology. PMID:28091604

  16. Non rigid respiratory motion correction in whole body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi [INSERM UMR1101, LaTIM, Brest (France); Schmidt, Holger [Université de Bretagne Occidentale, Brest (France); Wuerslin, Christian [University Hospital of Tübingen (Germany); Visvikis, Dimitris [INSERM UMR1101, LaTIM, Brest (France)

    2014-07-29

    Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted elastic transformations were applied to list-mode data either inside the image reconstruction or to the reconstructed respiratory synchronized images to obtain respiration corrected PET images.

  17. 小动物PET及PET-CT及其在分子影像学中的应用%Small animal PET and PET-CT its application in molecular imaging

    Institute of Scientific and Technical Information of China (English)

    李天然; 田嘉禾

    2008-01-01

    The review article introduce molecular imaging equipment small animal PET and PET-CT's philosophy and technique feature.small animal PET and PET-CT apply many new techniques and images resolution has obviously raising.as same time,small animal PET and small animal CT may come true image fusion.small animal PET and PET-CT permit us to engage molecular level imaging in vivo without invading.so small animal PET and PET-CT are good tool in medical molecular imaging.%阐述小动物PET及PET-CT技术特点及在分子影像学中的应用.小动物PET及PET-CT采用多项新技术,分辨率明显提高,结合小动物CT实现了图像融合.小动物PET及PET-CT实现了在活体上非侵人性分子水平显像,是研究分子影像的尖端设备.

  18. An update on novel quantitative techniques in the context of evolving whole-body PET imaging

    DEFF Research Database (Denmark)

    Houshmand, Sina; Salavati, Ali; Hess, Søren;

    2015-01-01

    Since its foundation PET has established itself as one of the standard imaging modalities enabling the quantitative assessment of molecular targets in vivo. In the past two decades, quantitative PET has become a necessity in clinical oncology. Despite introduction of various measures...... for quantification and correction of PET parameters, there is debate on the selection of the appropriate methodology in specific diseases and conditions. In this review, we have focused on these techniques with special attention to topics such as static and dynamic whole body PET imaging, tracer kinetic modeling...

  19. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R; Badawi, Ramsey D; Qi, Jinyi

    2017-03-21

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq (18)F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  20. Molecular imaging of head and neck cancers. Perspectives of PET/MRI; Molekulare Bildgebung bei Kopf-ï]¿Hals-Tumoren. Perspektive der PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Stumpp, P.; Kahn, T. [Universitaetsklinikum Leipzig AoeR, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany); Purz, S.; Sabri, O. [Universitaetsklinikum Leipzig, Klinik und Poliklinik fuer Nuklearmedizin, Leipzig (Germany)

    2016-07-15

    The {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers ?The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. Currently, {sup 18}F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research. (orig.) [German] Die {sup 18}F-Fluordesoxyglukose-Positronenemissionstomographie-Computertomographie ({sup 18}F-FDG-PET-CT) hat ihren festen Stellenwert in der Diagnostik von Kopf-Hals-Tumoren. Seit einigen Jahren ist die PET-MRT als weitere hybride Bildgebungsmodalitaet verfuegbar. Bringt die PET-MRT Fortschritte bei der Diagnostik von Kopf-Hals-Tumoren ?Darstellung der diagnostischen Genauigkeit der bisherigen Bildgebungsmethoden CT, MRT und PET-CT anhand von Metaanalysen und Zusammenfassung der bisherigen Publikationen zur PET-MRT auf diesem Gebiet. Die PET-MRT zeigt in allen bisherigen Studien keine Ueberlegenheit bzgl. der diagnostischen Genauigkeit von Kopf-Hals-Tumoren. Sie kann jedoch durch die multiparametrische Diagnostik perspektivisch Beitraege zur Tumorcharakterisierung und damit moeglicherweise Voraussagen zum

  1. Appearance of untreated bone metastases from breast cancer on FDG PET/CT: importance of histologic subtype

    Energy Technology Data Exchange (ETDEWEB)

    Dashevsky, Brittany Z.; Parsons, Molly [Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Goldman, Debra A.; Goenen, Mithat [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Corben, Adriana D. [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Jochelson, Maxine S.; Ulaner, Gary A. [Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Hudis, Clifford A. [Memorial Sloan-Kettering Cancer Center, Department of Medicine, New York, NY (United States); Morrow, Monica [Memorial Sloan-Kettering Cancer Center, Department of Surgery, New York, NY (United States)

    2015-10-15

    To determine if the histology of a breast malignancy influences the appearance of untreated osseous metastases on FDG PET/CT. This retrospective study was performed under IRB waiver. Our Hospital Information System was screened for breast cancer patients who presented with osseous metastases, who underwent FDG PET/CT prior to systemic therapy or radiotherapy from 2009 to 2012. Patients with invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), or mixed ductal/lobular (MDL) histology were included. Patients with a history of other malignancies were excluded. PET/CT was evaluated, blinded to histology, to classify osseous metastases on a per-patient basis as sclerotic, lytic, mixed lytic/sclerotic, or occult on CT, and to record SUVmax for osseous metastases on PET. Following screening, 95 patients who met the inclusion criteria (74 IDC, 13 ILC, and 8 MDL) were included. ILC osseous metastases were more commonly sclerotic and demonstrated lower SUVmax than IDC metastases. In all IDC and MDL patients with osseous metastases, at least one was FDG-avid. For ILC, all patients with lytic or mixed osseous metastases demonstrated at least one FDG-avid metastasis; however, in only three of seven patients were sclerotic osseous metastases apparent on FDG PET. The histologic subtype of breast cancer affects the appearance of untreated osseous metastases on FDG PET/CT. In particular, non-FDG-avid sclerotic osseous metastases were more common in patients with ILC than in patients with IDC. Breast cancer histology should be considered when interpreting non-FDG-avid sclerotic osseous lesions on PET/CT, which may be more suspicious for metastases (rather than benign lesions) in patients with ILC. (orig.)

  2. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [CHU Morvan, U650 INSERM, Laboratoire de Traitement de l' Information Medicale (LaTIM), Brest (France); Griffiths, D. [Lister Healthcare, London PET Centre, London (United Kingdom); Costa, D.C. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom); HPP Medicina Molecular, SA Porto (Portugal); Bomanji, J.; Ell, P.J. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom)

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions. (orig.)

  3. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  4. Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: Head-to-head comparison with CT and bone scintigraphy

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; Gerke, Oke

    ) of the thorax and the upper abdomen is used when looking for organ and lymph node metastases and if osseous metastases is suspected, bone scintigraphy is the preferred modality. Other modalities such as magnetic resonance imaging (MRI) are often used as a supplement to confirm or refute equivocal findings......Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: Head-to-head comparison with CT and bone scintigraphy  Kirsten Falch, Christina Baun, Oke Gerke, , Ziba A. Farahani, Poul F. Høilund-Carlsen, Lisbet B. Larsen*, Marianne Ewertz**, Katrine Søe*** and Malene G. Hildebrandt...... to evaluate the diagnostic accuracy of FDG PET/CT performed one and three hours after injection compared with CT and bone scintigraphy in patients suspected of BC recurrence Methods and materials: 39 patients suspected either clinically or diagnostically of BC recurrence were included. All patients underwent...

  5. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, O; Xhaferllari, I; Gaede, S [Western Univeristy, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Sykes, J; Butler, J [Lawson Health Research Institute, London, ON (United Kingdom); Wisenberg, G; Prato, F [Western Univeristy, London, ON (United Kingdom); Lawson Health Research Institute, London, ON (United Kingdom)

    2015-06-15

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  6. Automatic extraction of myocardial mass and volumes using parametric images from dynamic non-gated PET

    DEFF Research Database (Denmark)

    Harms, Hans; Hansson, Nils Henrik Stubkjær; Tolbod, Lars Poulsen;

    2016-01-01

    -gated dynamic cardiac PET. METHODS: Thirty-five patients with aortic-valve stenosis and 10 healthy controls (HC) underwent a 27-min 11C-acetate PET/CT scan and cardiac magnetic resonance imaging (CMR). HC were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were......LV and WT only and an overestimation for LVEF at lower values. Intra- and inter-observer correlations were >0.95 for all PET measurements. PET repeatability accuracy in HC was comparable to CMR. CONCLUSION: LV mass and volumes are accurately and automatically generated from dynamic 11C-acetate PET without...... ECG-gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers....

  7. Optimising rigid motion compensation for small animal brain PET imaging

    Science.gov (United States)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  8. Brain tissue segmentation in PET-CT images using probabilistic atlas and variational Bayes inference.

    Science.gov (United States)

    Xia, Yong; Wang, Jiabin; Eberl, Stefan; Fulham, Michael; Feng, David Dagan

    2011-01-01

    PET-CT provides aligned anatomical (CT) and functional (PET) images in a single scan, and has the potential to improve brain PET image segmentation, which can in turn improve quantitative clinical analyses. We propose a statistical segmentation algorithm that incorporates the prior anatomical knowledge represented by probabilistic brain atlas into the variational Bayes inference to delineate gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in brain PET-CT images. Our approach adds an additional novel aspect by allowing voxels to have variable and adaptive prior probabilities of belonging to each class. We compared our algorithm to the segmentation approaches implemented in the expectation maximization segmentation (EMS) and statistical parametric mapping (SPM8) packages in 26 clinical cases. The results show that our algorithm improves the accuracy of brain PET-CT image segmentation.

  9. A CT-, PET- and MR-imaging-compatible hyperbaric pressure chamber for baromedical research

    DEFF Research Database (Denmark)

    Hansen, Kasper; Søvsø Szocska Hansen, Esben; Tolbod, Lars P;

    2015-01-01

    OBJECTIVES: We describe the development of a novel preclinical rodent-sized pressure chamber system compatible with computed tomography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI) that allows continuous uncompromised and minimally invasive data acquisition...... different tissues in the MRI phantoms. CONCLUSION: This study demonstrates a pressure chamber system compatible with CT, PET and MRI. We found that no correction in image intensity was required with pressurisation up to 1.013 mPa for any imaging modality. CT, PET or MRI can be used to obtain anatomical...... throughout hyperbaric exposures. The effect of various pressures on the acquired image intensity obtained with different CT, PET and MRI phantoms are characterised. MATERIAL AND METHODS: Tissue-representative phantom models were examined with CT, PET or MRI at normobaric pressure and hyperbaric pressures up...

  10. Effects of injected dose, BMI and scanner type on NECR and image noise in PET imaging.

    Science.gov (United States)

    Chang, Tingting; Chang, Guoping; Kohlmyer, Steve; Clark, John W; Rohren, Eric; Mawlawi, Osama R

    2011-08-21

    Noise equivalent count rate (NECR) and image noise are two different but related metrics that have been used to predict and assess image quality, respectively. The aim of this study is to investigate, using patient studies, the relationships between injected dose (ID), body mass index (BMI) and scanner type on NECR and image noise measurements in PET imaging. Two groups of 90 patients each were imaged on a GE DSTE and a DRX PET/CT scanner, respectively. The patients in each group were divided into nine subgroups according to three BMI (20-24.9, 25-29.9, 30-45 kg m(-2)) and three ID (296-444, 444-555, 555-740 MBq) ranges, resulting in ten patients/subgroup. All PET data were acquired in 3D mode and reconstructed using the VuePoint HD® fully 3D OSEM algorithm (2 iterations, 21(DRX) or 20 (DSTE) subsets). NECR and image noise measurements for bed positions covering the liver were calculated for each patient. NECR was calculated from the trues, randoms and scatter events recorded in the DICOM header of each patient study, while image noise was determined as the standard deviation of 50 non-neighboring voxels in the liver of each patient. A t-test compared the NECR and image noise for different scanners but with the same BMI and ID. An ANOVA test on the other hand was used to compare the results of patients with different BMI but the same ID and scanner type as well as different ID but the same BMI and scanner type. As expected the t-test showed a significant difference in NECR between the two scanners for all BMI and ID subgroups. However, contrary to what is expected no such findings were observed for image noise measurement. The ANOVA results showed a statistically significant difference in both NECR and image noise among the different BMI for each ID and scanner subgroup. However, there was no statistically significant difference in NECR and image noise across different ID for each BMI and scanner subgroup. Although the GE DRX PET/CT scanner has better count rate

  11. Heterogeneity in stabilization phenomena in FLT PET images of canines

    Science.gov (United States)

    Simoncic, Urban; Jeraj, Robert

    2014-12-01

    3ʹ-(18F)fluoro-3ʹ-deoxy-L-thymidine (FLT) is a PET marker of cellular proliferation. Its tissue uptake rate is often quantified with a Standardized Uptake Value (SUV), although kinetic analysis provides a more accurate quantification. The purpose of this study is to investigate the heterogeneity in FLT stabilization phenomena. The study was done on 15 canines with spontaneously occurring sinonasal tumours. They were imaged dynamically for 90 min with FLT PET/CT twice; before and during the radiotherapy. Images were analyzed for kinetics on a voxel basis through compartmental analysis. Stabilization curves were calculated as a time-dependant correlation between the time-dependant SUV and the kinetic parameters (voxel values within the tumour were correlated). Stabilization curves were analyzed for stabilization speed, maximal correlation and correlation decrease following the maximal correlation. These stabilization parameters were correlated with the region-averaged kinetic parameters. The FLT SUV was highly correlated with vasculature fraction immediately post-injection, followed by maximum in correlation with the perfusion/permeability. At later times post-injection the FLT SUV was highly correlated (Pearson correlation coefficient above 0.95) with the FLT influx parameter for cases with tumour-averaged SUV30-50 min above 2, while others were indeterminate (correlation coefficients from 0.1 to 0.97). All cases with highly correlated SUV and FLT influx parameter had correlation coefficient within 0.5% of its maximum in the period of 30-50 min post-injection. Stabilization time was inversely proportional to the FLT influx rate. Correlation between the FLT SUV and FLT influx parameter dropped at later times post-injection with drop being proportional to the dephosphorylation rate. The FLT was found to be metabolically stable in canines. FLT PET imaging protocol should define minimal and maximal FLT uptake period, which would be 30-50 min for our patients

  12. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  13. The value of 18-FDG-PET for diagnosing and evaluating lymph node metastasis in primary breast cancer

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-jun; WANG Ling; LING Rui; WANG Jing; LI Guo-quan

    2007-01-01

    Objective: To analyze the result of 18F-2-deoxy-2-fluoro-D-glucose-positron emission tomography (FDG-PET) in suspicious primary breast cancer patients and to evaluate its value for the surgery therapy. Methods: Total 36 patients suspected of breast neoplasm were enrolled into the research. The result was compared with the pathology result. The rate of missed diagnosis, the rate of misdiagnosis, the sensitivity and specificity were calculated and analyzed. Results: Compared with the pathology results, the misdiagnosis rate, the rate of missed diagnosis, the sensitivity and specificity of FDG-PET for breast cancer were 0%, 36.36%, 63.63% and 100%, respectively. To those who had a neoplasm no more than 2 cm in diameter, the rate of missed diagnosis was as high as 41.67 %. To 33 breast cancer patients, the misdiagnosis rate, the rare of missed diagnosis, the sensitivity and specificity for lymph node metastasis were 18.75%, 41.18%, 58.82% and 81.25%, respectively. Conclusion: FDG-PET has a perfect specificity and a considerable sensitivity to the primary breast neoplasm and similar to the lymph node metastasis diagnosis. It is an ideal choice for those patients with suspected breast cancer but reluctantly to receive a vulnerarious examination.

  14. Multimodal optical imaging for detecting breast cancer

    Science.gov (United States)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  15. Image reconstruction of mMR PET data using the open source software STIR

    Energy Technology Data Exchange (ETDEWEB)

    Markiewicz, Pawel [Centre for Medical Image Computing, University College London, London (United Kingdom); Thielemans, Kris [Institute of Nuclear Medicine, University College London, London (United Kingdom); Burgos, Ninon [Centre for Medical Image Computing, University College London, London (United Kingdom); Manber, Richard [Institute of Nuclear Medicine, University College London, London (United Kingdom); Jiao, Jieqing [Centre for Medical Image Computing, University College London, London (United Kingdom); Barnes, Anna [Institute of Nuclear Medicine, University College London, London (United Kingdom); Atkinson, David [Centre for Medical Imaging, University College London, London (United Kingdom); Arridge, Simon R [Centre for Medical Image Computing, University College London, London (United Kingdom); Hutton, Brian F [Institute of Nuclear Medicine, University College London, London (United Kingdom); Ourselin, Sébastien [Centre for Medical Image Computing, University College London, London (United Kingdom); Dementia Research Centre, University College London, London (United Kingdom)

    2014-07-29

    Simultaneous PET and MR acquisitions have now become possible with the new hybrid Biograph Molecular MR (mMR) scanner from Siemens. The purpose of this work is to create a platform for mMR 3D and 4D PET image reconstruction which would be freely accessible to the community as well as fully adjustable in order to obtain optimal images for a given research task in PET imaging. The proposed platform is envisaged to prove useful in developing novel and robust image bio-markers which could then be adapted for use on the mMR scanner.

  16. EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation)

    Science.gov (United States)

    Cherry, Simon R.; Badawi, Ramsey D.; Jones, Terry

    2016-04-01

    Positron emission tomography (PET) is the highest sensitivity technique for human whole-body imaging studies. However, current clinical PET scanners do not make full use of the available signal, as they only permit imaging of a 15-25 cm segment of the body at one time. Given the limited sensitive region, whole-body imaging with clinical PET scanners requires relatively long scan times and subjects the patient to higher than necessary radiation doses. The EXPLORER initiative aims to build a 2-meter axial length PET scanner to allow imaging the entire subject at once, capturing nearly the entire available PET signal. EXPLORER will acquire data with ~40-fold greater sensitivity leading to a six-fold increase in reconstructed signal-to-noise ratio for imaging the total body. Alternatively, total-body images with the EXPLORER scanner will be able to be acquired in ~30 seconds or with ~0.15 mSv injected dose, while maintaining current PET image quality. The superior sensitivity will open many new avenues for biomedical research. Specifically for cancer applications, high sensitivity PET will enable detection of smaller lesions. Additionally, greater sensitivity will allow imaging out to 10 half-lives of positron emitting radiotracers. This will enable 1) metabolic ultra-staging with FDG by extending the uptake and clearance time to 3-5 hours to significantly improve contrast and 2) improved kinetic imaging with short-lived radioisotopes such as C-11, crucial for drug development studies. Frequent imaging studies of the same subject to study disease progression or to track response to therapy will be possible with the low dose capabilities of the EXPLORER scanner. The low dose capabilities will also open up new imaging possibilities in pediatrics and adolescents to better study developmental disorders. This talk will review the basis for developing total-body PET, potential applications, and review progress to date in developing EXPLORER, the first total-body PET scanner.

  17. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Aznar, M C; Andersen, Flemming; Berthelsen, A K;

    2011-01-01

    Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... uptake in PET/CT images. These results suggest that advanced therapies (such as SUV-based dose painting) will likely require breathing-adapted PET images and that the relevant SUV thresholds are yet to be investigated.......Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... We investigate the feasibility of introducing a deep inspiration breath hold (DIBH) strategy in PET/CT imaging of Hodgkin lymphoma patients and its impact on image quantification parameters.  Methods: Three patients with suspicion of large mediastinal tumour burden were selected for this study...

  18. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Aznar, M C; Andersen, Flemming; Berthelsen, A K;

    2011-01-01

    Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... in PET/CT images. These results suggest that advanced therapies (such as SUV-based dose painting) will likely require breathing-adapted PET images and that the relevant SUV thresholds are yet to be investigated.......Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... We investigate the feasibility of introducing a deep inspiration breath hold (DIBH) strategy in PET/CT imaging of Hodgkin lymphoma patients and its impact on image quantification parameters. Methods: Three patients with suspicion of large mediastinal tumour burden were selected for this study...

  19. Ultrasound Imaging Methods for Breast Cancer Detection

    NARCIS (Netherlands)

    Ozmen, N.

    2014-01-01

    The main focus of this thesis is on modeling acoustic wavefield propagation and implementing imaging algorithms for breast cancer detection using ultrasound. As a starting point, we use an integral equation formulation, which can be used to solve both the forward and inverse problems. This thesis c

  20. Breast magnetic resonance imaging guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Bo La; Kim, Sun Mi; Jang, Mi Jung [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Cho, Nariya; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hak Hee [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Despite the high sensitivity of breast magnetic resonance imaging (MRI), pathologic confirmation by biopsy is essential because of limited specificity. MRI-guided biopsy is required in patients with lesions only seen on MRI. We review preprocedural considerations and the technique of MRI-guided biopsy, challenging situations and trouble-shooting, and correlation of radiologic and pathologic findings.

  1. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    Science.gov (United States)

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-02-23

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATACpatientBone (air and tissue from the atlas with patient bone), and PET with ATACboneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P atlas bone, the overall difference of PET with ATACpatientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. (©) RSNA, 2017 Online supplemental material is available for this article.

  2. Clinical evaluation of PET image reconstruction using a spatial resolution model

    DEFF Research Database (Denmark)

    Andersen, Flemming Littrup; Klausen, Thomas Levin; Loft, Annika;

    2013-01-01

    PURPOSE: PET image resolution is variable across the measured field-of-view and described by the point spread function (PSF). When accounting for the PSF during PET image reconstruction image resolution is improved and partial volume effects are reduced. Here, we evaluate the effect of PSF......-based reconstruction on lesion quantification in routine clinical whole-body (WB) PET/CT imaging. MATERIALS AND METHODS: 41 oncology patients were referred for a WB-PET/CT examination (Biograph 40 TruePoint). Emission data were acquired at 2.5min/bed at 1hpi of 400 MBq [18F]-FDG. Attenuation-corrected PET images were...... of view (FOV). There was no significant difference in SUV(mean) in homogenous liver tissue between R1 and R2. CONCLUSION: In whole-body FDG-PET/CT using routine clinical protocols, PSF-based PET reconstruction increases lesion detection and affects SUV(max) measurements compared to standard AW-OSEM PET...

  3. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  4. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  5. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    Science.gov (United States)

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of

  6. Assessment of oxidative metabolism in Brown Fat using PET imaging

    Directory of Open Access Journals (Sweden)

    Otto eMuzik

    2012-02-01

    Full Text Available Objective: Although it has been believed that brown adipose tissue (BAT depots disappear shortly after the perinatal period in humans, PET imaging using the glucose analog FDG has shown unequivocally the existence of functional BAT in humans. The objective of this study was to determine, using dynamic oxygen-15 (15O PET imaging, to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and FDG tracer uptake.Methods: Fourteen adult normal subjects (9F/5M, 30+7 years underwent triple oxygen scans (H215O, C15O, 15O2 as well as indirect calorimetric measurements at rest and following exposure to mild cold (60F. Subjects were divided into two groups (BAT+ and BAT- based on the presence or absence of FDG tracer uptake (SUV > 2 in supraclavicular BAT. Blood flow (BF and oxygen extraction fraction (OEF was calculated from dynamic PET scans at the location of BAT, muscle and white adipose tissue (WAT. The metabolic rate of oxygen (MRO2 in BAT was determined and used to calculate the contribution of activated BAT to daily energy expenditure (DEE.Results: The median mass of activated BAT in the BAT+ group (5F, 31+8yrs was 52.4 g (14-68g and was 1.7 g (0-6.3g in the BAT- group (5M/4F, 29+6yrs. SUV values were significantly higher in the BAT+ as compared to the BAT- group (7.4+3.7 vs 1.9+0.9; p=0.03. BF values in BAT were significantly higher in the BAT+ as compared to the BAT- group (13.1+4.4 vs 5.7+1.1 ml/100g/min, p=0.03, but were similar in WAT (4.1+1.6 vs 4.2+1.8 ml/100g/min and muscle (3.7+0.8 vs 3.3+1.2 ml/100g/min. Calculated MRO2 values in BAT increased from 0.95+0.74 to 1.62+0.82 ml/100g/min in the BAT+ group and were significantly higher than those determined in the BAT- group (0.43+0.27 vs 0.56+0.24; p=0.67. The DEE associated with BAT oxidative metabolism was highly variable in the BAT+ group, with an average of 5.5+6.4 kcal/day (range 0.57–15.3 kcal/day.

  7. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    Science.gov (United States)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  8. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    OpenAIRE

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; FREIFELDER, RICHARD; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluor...

  9. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET

    OpenAIRE

    Mikhaylova, E.; Kolstein, M.; De Lorenzo, G.; Chmeissani, M.

    2014-01-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm3) image reconstruction is a challenge. Therefore...

  10. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma

    NARCIS (Netherlands)

    Zaidi, Habib; Abdoli, Mehrsima; Fuentes, Carolina Llina; El Naqa, Issam M.

    2012-01-01

    Several methods have been proposed for the segmentation of F-18-FDG uptake in PET. In this study, we assessed the performance of four categories of F-18-FDG PET image segmentation techniques in pharyngolaryngeal squamous cell carcinoma using clinical studies where the surgical specimen served as the

  11. Influence of Arm Movement on Lesion Detection in PET/CT Imaging: Case Report

    Directory of Open Access Journals (Sweden)

    Yasemin Parlak

    2015-06-01

    Full Text Available Arm movement after the CT scan is a common artifact in PET/CT scanning. Motion artifacts may lead to difficulties in interpreting PET/CT images accurately. We report a 66 year old male patient with gastric cancer who underwent PET/CT for primary staging. He had a previous history of papillary thyroid cancer. In PET scan, there were striking cold artifacts at the level of arms. This is a classical sign of an accidental arm motion. A second scan was performed with the arms down due to the history of papillary thyroid cancer. The results were discussed.

  12. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    Science.gov (United States)

    Lemmens, Catherine; Montandon, Marie-Louise; Nuyts, Johan; Ratib, Osman; Dupont, Patrick; Zaidi, Habib

    2008-08-01

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.

  13. Rare Thyroid Cartilage and Diaphragm Metastases from Lung Cancer Visualized on F-18 FDG-PET/CT Imaging

    Directory of Open Access Journals (Sweden)

    Pelin Özcan Kara

    2011-08-01

    Full Text Available Positron emission tomography (PET with F-18 fluorodeoxyglucose (FDG has evolved as a useful imaging modality in the assessment of a variety of cancers, especially for tumor staging and post treatment monitoring. It provides metabolic information. Although, when used alone, relative lack of anatomic landmarks, is a major limitation of PET imaging, this limitation of PET imaging is overcome by the availability of integrated PET/CT imaging. PET and CT images are acquired in one procedure, yielding fused anatomical and functional data sets. Studies with integrated PET/CT imaging have shown promising results. In this case, we present an interesting integrated PET/CT imaging in a lung cancer patient with rare, diaphragm and thyroid cartilage metastases. (MIRT 2011;20:70-72

  14. Transmission imaging for integrated PET-MR systems.

    Science.gov (United States)

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-07

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly

  15. Transmission imaging for integrated PET-MR systems

    Science.gov (United States)

    Bowen, Spencer L.; Fuin, Niccolò; Levine, Michael A.; Catana, Ciprian

    2016-08-01

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method’s performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with 18F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm-1 was recorded for an experimental uniform cylinder phantom scan, while a bias of  translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with

  16. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood-brain barrier

    NARCIS (Netherlands)

    Vlaming, M.L.H.; Läppchen, T.; Jansen, H.T.; Kivits, S.; Driel, A. van; Steeg, E. van der; Hoorn, J.W. van der; Sio, C.F.; Steinbach, O.C.; Groot, J. de

    2015-01-01

    Introduction: The efflux transporters P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) are expressed at the blood-brain barrier (BBB), and can limit the access of a wide range of drugs to the brain. In this study we developed a PET-CT imaging method for non-invasive, q

  17. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  18. Correlation between PET/CT results and histological and immunohistochemical findings in breast carcinomas; Correlacao entre resultado do PET/CT e achados histologicos e imuno-histoquimicos em carcinomas mamarios

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, Almir Galvao Vieira; Lima, Eduardo Nobrega Pereira; Chojniak, Rubens; Marques, Elvira Ferreira; Souza, Juliana Alves de; Graziano, Luciana; Andrade, Wesley Pereira; Osorio, Cynthia Aparecida Bueno de Toledo, E-mail: almirgvb@yahoo.com.br [A.C.Camargo Cancer Center, Sao Paulo, SP (Brazil)

    2014-03-15

    Objective: to correlate the results of {sup 18}F-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography/computed tomography (PET/CT) performed with a specific protocol for assessment of breasts with histological/immunohistochemical findings in breast carcinoma patients. Materials and methods: cross-sectional study with prospective data collection, where patients with biopsy-confirmed breast carcinomas were studied. The patients underwent PET/CT examination in prone position, with a specific protocol for assessment of breasts. PET/CT findings were compared with histological and immunohistochemical data. Results: the authors identified 59 malignant breast lesions in 50 patients. The maximum diameter of the lesions ranged from 6 to 80 mm (mean: 32.2 mm). Invasive ductal carcinoma was the most common histological type (n = 47; 79.7%). At PET/CT, 53 (89.8%) of the lesions demonstrated anomalous concentrations of {sup 18}F-FDG, with maximum SUV ranging from 0.8 to 23.1 (mean: 5.5). A statistically significant association was observed between higher values of maximum SUV and histological type, histological grade, molecular subtype, tumor diameter, mitotic index and Ki-67 expression. Conclusion: PET/CT performed with specific protocol for assessment of breasts has demonstrated good sensitivity and was associated with relevant histological/immunohistochemical factors related to aggressiveness and prognosis of breast carcinomas. (author)

  19. [(18)F](2S,4R)4-Fluoroglutamine PET Detects Glutamine Pool Size Changes in Triple-Negative Breast Cancer in Response to Glutaminase Inhibition.

    Science.gov (United States)

    Zhou, Rong; Pantel, Austin R; Li, Shihong; Lieberman, Brian P; Ploessl, Karl; Choi, Hoon; Blankemeyer, Eric; Lee, Hsiaoju; Kung, Hank F; Mach, Robert H; Mankoff, David A

    2017-03-15

    Glutaminolysis is a metabolic pathway adapted by many aggressive cancers, including triple-negative breast cancers (TNBC), to utilize glutamine for survival and growth. In this study, we examined the utility of [(18)F](2S,4R)4-fluoroglutamine ([(18)F]4F-Gln) PET to measure tumor cellular glutamine pool size, whose change might reveal the pharmacodynamic (PD) effect of drugs targeting this cancer-specific metabolic pathway. High glutaminase (GLS) activity in TNBC tumors resulted in low cellular glutamine pool size assayed via high-resolution (1)H magnetic resonance spectroscopy (MRS). GLS inhibition significantly increased glutamine pool size in TNBC tumors. MCF-7 tumors, with inherently low GLS activity compared with TNBC, displayed a larger baseline glutamine pool size that did not change as much in response to GLS inhibition. The tumor-to-blood-activity ratios (T/B) obtained from [(18)F]4F-Gln PET images matched the distinct glutamine pool sizes of both tumor models at baseline. After a short course of GLS inhibitor treatment, the T/B values increased significantly in TNBC, but did not change in MCF-7 tumors. Across both tumor types and after GLS inhibitor or vehicle treatment, we observed a strong positive correlation between T/B values and tumor glutamine pool size measured using MRS (r(2) = 0.71). In conclusion, [(18)F]4F-Gln PET tracked cellular glutamine pool size in breast cancers with differential GLS activity and detected increases in cellular glutamine pool size induced by GLS inhibitors. This study accomplished the first necessary step toward validating [(18)F]4F-Gln PET as a PD marker for GLS-targeting drugs. Cancer Res; 77(6); 1476-84. ©2017 AACR.

  20. In vivo amyloid imaging with PET in frontotemporal dementia

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Henry [Uruguay University Hospital of Clinics and Faculty of Science, Department of Nuclear Medicine, Montevideo (Uruguay); Uppsala University Hospital, Department of Nuclear Medicine, Uppsala (Sweden); Uppsala University, Department of Medical Sciences, Uppsala (Sweden); GE Healthcare, Uppsala Imanet, Uppsala (Sweden); Santillo, Alexander F.; Lindau, Maria; Lannfelt, Lars; Kilander, Lena [Uppsala University, Department of Public Health and Caring Sciences/Geriatrics, Uppsala (Sweden); Wang, Shu Xia [Guangdong Provincial People' s Hospital, Weilun PET Centre, Guangzhou (China); Savitcheva, Irina [Uppsala University Hospital, Department of Nuclear Medicine, Uppsala (Sweden); Nordberg, Agneta [Karolinska Institute, Division of Molecular Neuropharmacology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Laangstroem, Bengt [GE Healthcare, Uppsala Imanet, Uppsala (Sweden); Uppsala University, Departments of Biochemistry and Organic Chemistry, Uppsala (Sweden)

    2008-01-15

    N-methyl[11C]2-(4'methylaminophenyl)-6-hydroxy-benzothiazole (PIB) is a positron emission tomography (PET) tracer with amyloid binding properties which allows in vivo measurement of cerebral amyloid load in Alzheimer's disease (AD). Frontotemporal dementia (FTD) is a syndrome that can be clinically difficult to distinguish from AD, but in FTD amyloid deposition is not a characteristic pathological finding. The aim of this study is to investigate PIB retention in FTD. Ten patients with the diagnosis of FTD participated. The diagnosis was based on clinical and neuropsychological examination, computed tomography or magnetic resonance imaging scan, and PET with 18Fluoro-2-deoxy-d-glucose (FDG). The PIB retention, measured in regions of interest, was normalised to a reference region (cerebellum). The results were compared with PIB retention data previously obtained from 17 AD patients with positive PIB retention and eight healthy controls (HC) with negative PIB retention. Statistical analysis was performed with a students t-test with significance level set to 0.00625 after Bonferroni correction. Eight FTD patients showed significantly lower PIB retention compared to AD in frontal (p < 0.0001), parietal (p < 0.0001), temporal (p = 0.0001), and occipital (p = 0.0003) cortices as well as in putamina (p < 0.0001). The PIB uptake in these FTD patients did not differ significantly from the HC in any region. However, two of the 10 FTD patients showed PIB retention similar to AD patients. The majority of FTD patients displayed no PIB retention. Thus, PIB could potentially aid in differentiating between FTD and AD. (orig.)

  1. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  2. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    Science.gov (United States)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  4. Resolution improvement of brain PET images using prior information from MRI: clinical application on refractory epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Rodríguez, Jesus [Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela (Spain); Tsoumpas, Charalampos [University of Leeds, Leeds (United Kingdom); Aguiar, Pablo; Cortes, Julia [Nuclear Medicine Department, University Hospital (CHUS), Santiago de Compostela (Spain); Urdaneta, Jesus Lopez [Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela (Spain)

    2015-05-18

    An important counterpart of clinical Positron Emission Tomography (PET) for early diagnosis of neurological diseases is its low resolution. This is particularly important when evaluating diseases related to small hypometabolisms such as epilepsy. The last years, new hybrid systems combining PET with Magnetic Resonance (MR) has been increasingly used for several different clinical applications. One of the advantages of MR is the production of high spatial resolution images and a potential application of PET-MR imaging is the improvement of PET resolution using MR information. A potential advantage of resolution recovery of PET images is the enhancement of contrast delivering at the same time better detectability of small lesions or hypometabolic areas and more accurate quantification over these areas. Recently, Shidahara et al (2009) proposed a new method using wavelet transforms in order to produce PET images with higher resolution. We optimised Shidahara’s method (SFS-RR) to take into account possible shortcomings on the particular clinical datasets, and applied it to a group of patients diagnosed with refractory epilepsy. FDG-PET and MRI images were acquired sequentially and then co-registered using software tools. A complete evaluation of the PET/MR images was performed before and after the correction, including different parameters related with PET quantification, such as atlas-based metabolism asymmetry coefficients and Statistical Parametric Mapping results comparing to a database of 87 healthy subjects. Furthermore, an experienced physician analyzed the results of non-corrected and corrected images in order to evaluate improvements of detectability on a visual inspection. Clinical outcome was used as a gold standard. SFS-RR demonstrated to have a positive impact on clinical diagnosis of small hypometabolisms. New lesions were detected providing additional clinically relevant information on the visual inspection. SPM sensitivity for the detection of small

  5. A Survey of FDG- and Amyloid-PET Imaging in Dementia and GRADE Analysis

    Directory of Open Access Journals (Sweden)

    Perani Daniela

    2014-01-01

    Full Text Available PET based tools can improve the early diagnosis of Alzheimer’s disease (AD and differential diagnosis of dementia. The importance of identifying individuals at risk of developing dementia among people with subjective cognitive complaints or mild cognitive impairment has clinical, social, and therapeutic implications. Within the two major classes of AD biomarkers currently identified, that is, markers of pathology and neurodegeneration, amyloid- and FDG-PET imaging represent decisive tools for their measurement. As a consequence, the PET tools have been recognized to be of crucial value in the recent guidelines for the early diagnosis of AD and other dementia conditions. The references based recommendations, however, include large PET imaging literature based on visual methods that greatly reduces sensitivity and specificity and lacks a clear cut-off between normal and pathological findings. PET imaging can be assessed using parametric or voxel-wise analyses by comparing the subject’s scan with a normative data set, significantly increasing the diagnostic accuracy. This paper is a survey of the relevant literature on FDG and amyloid-PET imaging aimed at providing the value of quantification for the early and differential diagnosis of AD. This allowed a meta-analysis and GRADE analysis revealing high values for PET imaging that might be useful in considering recommendations.

  6. The Prognostic Value of {sup 18}F-FDG PET/CT for Early Recurrence in Operable Breast Cancer: Comparison with TNM Stage

    Energy Technology Data Exchange (ETDEWEB)

    O, Joo Hyun; Choi, Woo Hee; Han, Eun Ji; Choi, Eunkyoung; Chae, Byung Joo; Park, Yonggyu; Kim, Sung Hoon [The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2013-12-15

    We evaluated whether the maximum standardized uptake values (SUV{sub max}) of primary tumor from the initial staging by {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) of patients with breast cancer could identify patients at risk for early recurrence within 2 years, particularly in comparison to the American Joint Committee on Cancer (AJCC) stage. We reviewed the staging {sup 18}F-FDG PET/CT images of patients with primary breast cancer and their medical records. The SUV{sub max} of the primary tumor was measured. The presence or absence of FDG uptake in the axillary lymph node (ALN) was also assessed. The patient's pathologic primary tumor stage (pT), pathologic regional lymph node stage (pN), stage grouping, age, estrogen receptor (ER) and progesterone receptor (PR) status, and neoadjuvant chemotherapy history were evaluated with the FDG uptake parameters for recurrence within 2 years following the end of first-line therapy. Recurrence within 2 years was present in 9.1%(n =40) out of the 441 patients assessed. The FDG uptake in ALN, pT, pN, stage grouping and neoadjuvant chemotherapy history were prognostic for early recurrence, while primary tumor SUV{sub max}, age, and ER or PR status were not significant on logistic regression. On multivariate analysis, only the stage grouping (odds ratio 2.79; 95 % CI 1.73, 4.48; p <0.0001) and neoadjuvant chemotherapy history (odds ratio 2.70; 95 % CI 1.22, 5.98; p =0.0141) could identify patients at increased risk for recurrence within 2 years. Primary tumor FDG uptake measured by SUV{sub max}, and visual assessment of FDG uptake in the ALN in the initial staging PET/CT of patients with breast cancer may not have additional prognostic value compared with the AJCC stage grouping for early recurrence.

  7. Anatomical standardization of small animal brain FDG-PET images using synthetic functional template: experimental comparison with anatomical template.

    Science.gov (United States)

    Coello, Christopher; Hjornevik, Trine; Courivaud, Frédéric; Willoch, Frode

    2011-07-15

    Anatomical standardization (also called spatial normalization) of positron emission tomography (PET) small animal brain images is required to make statistical comparisons across individuals. Frequently, PET images are co-registered to an individual MR or CT image of the same subject in order to transform the functional images to an anatomical space. In the present work, we evaluate the normalization of synthetic PET (synPET) images to a synthetic PET template. To provide absolute error in terms of pixel misregistration, we created a synthetic PET image from the individual MR image through segmentation of the brain into gray and white matter which produced functional and anatomical images in the same space. When comparing spatial normalization of synPET images to a synPET template with the gold standard (MR images to an MR template), a mean translation error of 0.24mm (±0.20) and a maximal mean rotational error of 0.85° (±0.91) were found. Significant decrease in misregistration error was measured when achieving spatial normalization of functional images to a functional template instead of an anatomical template. This accuracy strengthens the use of standardization methods where individual PET images are registered to a customized PET template in order to statistically assess physiological changes in rat brains.

  8. Evolving role of FDG PET imaging in assessing joint disorders: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Kathleen; Saboury, Babak; Basu, Sandip; Brothers, Alex; Ogdie, Alexis; Werner, Tom; Torigian, Drew A. [University of Pennsylvania, Department of Radiology, School of Medicine, Philadelphia, PA (United States); Alavi, Abass [University of Pennsylvania, Department of Radiology, School of Medicine, Philadelphia, PA (United States); Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2011-10-15

    Assessing joint disorders has been a relatively recent and evolving application of {sup 18}F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) imaging. FDG is taken up by inflammatory cells, particularly when they are active as part of an ongoing inflammatory process. Hence FDG PET has been employed to assess a wide array of arthritic disorders. FDG PET imaging has been investigated in various joint diseases for diagnostic purposes, treatment monitoring, and as a prognostic indicator as in other disorders. In some of the diseases the ancillary findings in FDG PET have provided important clues about the underlying pathophysiology and pathogenesis processes. While substantial promise has been demonstrated in a number of studies, it is clear that the potential utility of PET in this clinical realm far outweighs that which has been established to date. (orig.)

  9. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography.

    Science.gov (United States)

    Konecky, Soren D; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M; Saffer, Janet R; Freifelder, Richard; Karp, Joel S; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G

    2008-02-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.

  10. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  11. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer.

    Science.gov (United States)

    Lee, Carol H; Dershaw, D David; Kopans, Daniel; Evans, Phil; Monsees, Barbara; Monticciolo, Debra; Brenner, R James; Bassett, Lawrence; Berg, Wendie; Feig, Stephen; Hendrick, Edward; Mendelson, Ellen; D'Orsi, Carl; Sickles, Edward; Burhenne, Linda Warren

    2010-01-01

    Screening for breast cancer with mammography has been shown to decrease mortality from breast cancer, and mammography is the mainstay of screening for clinically occult disease. Mammography, however, has well-recognized limitations, and recently, other imaging including ultrasound and magnetic resonance imaging have been used as adjunctive screening tools, mainly for women who may be at increased risk for the development of breast cancer. The Society of Breast Imaging and the Breast Imaging Commission of the ACR are issuing these recommendations to provide guidance to patients and clinicians on the use of imaging to screen for breast cancer. Wherever possible, the recommendations are based on available evidence. Where evidence is lacking, the recommendations are based on consensus opinions of the fellows and executive committee of the Society of Breast Imaging and the members of the Breast Imaging Commission of the ACR.

  12. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  13. Robust framework for PET image reconstruction incorporating system and measurement uncertainties.

    Directory of Open Access Journals (Sweden)

    Huafeng Liu

    Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.

  14. Development of new peripheral benzodiazepine receptor ligands for SPECT and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Fookes, C.; Pham, T.; Holmes, T.; Mattner, F.; Berghoffer, P.; Gregoire, M.C.; Loc' h, C.; Greguric, I. [Radiopharmaceuticas Research Institute, ANSTO, Menai, N.S.W. Sydney (Australia); Thominiaux, C.; Boutin, H.; Chauveau, F.; Gregoire, M.C.; Hantraye, Ph.; Tavitain, B.; Dolle, F. [Service Hospitalier Frederic Joliot, CEA/DSV, 91 - Orsay (France); Arlicot, N.; Chalon, S.; Guilloteau, D. [Universite Francois Rabelais, Inserm U619, 37 - Tours (France)

    2008-02-15

    This study aims to demonstrate that a number of radiolabelled ({sup 123}I,{sup 11}C, {sup 18}F) imidazo pyridines, imidazo pyridazines and indolglyoxylamides can be developed as potential tracers for SPECT and PET imaging. (N.C.)

  15. Modern CT and PET/CT imaging of the liver; Moderne CT- und PET/CT-Bildgebung der Leber

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, J.; Heusner, T.A.; Riegger, C.; Reichelt, D.; Kuhlemann, J.; Antoch, G.; Blondin, D. [Medizinische Fakultaet, Heinrich-Heine-Universitaet Duesseldorf, Institut fuer Diagnostische und Interventionelle Radiologie, Duesseldorf (Germany)

    2011-08-15

    Computed tomography (CT) is now widely available and represents an important and rapid method for the diagnostics of acute liver disease, characterization of focal liver lesions, planning of interventional therapy measures and postintervention control. In recent years CT has not become less important despite the increasing value of magnetic resonance imaging (MRI). By the use of different contrast medium phases good characterization of space-occupying lesions can be achieved. For the diagnostics of hepatocellular carcinoma (HCC) a triphasic examination protocol should always be implemented. The introduction of dual energy CT increased the sensitivity of imaging of hypervascularized and hypovascularized liver lesions and by the use of virtual native imaging it has become possible to avoid additional native imaging which reduces the x-ray exposition of patients. Positron emission tomography (PET) has an advantage for imaging in oncology because nearly the complete body of the patient can be screened and this is the main indication for PET/CT (whole-body staging). For purely hepatic problems 18F-fluorodeoxyglucose (FDG)-PET/CT using diagnostic CT data has a higher precision than CT alone but is inferior to MRI. (orig.) [German] Die Computertomographie (CT) ist heute breit verfuegbar und stellt eine wichtige und schnelle Methode zur Diagnostik akuter Lebererkrankungen, der Artdiagnostik fokaler Leberlaesionen und der Planung interventioneller Therapiemassnahmen sowie der postinterventionellen Kontrolle dar. In den letzten Jahren hat die CT trotz des zunehmenden Stellenwerts der Magnetresonanztomographie (MRT) nicht an Bedeutung verloren. Durch den Einsatz unterschiedlicher Kontrastmittelphasen kann meist eine gute Charakterisierung von Raumforderungen erfolgen. Bei der Diagnostik des hepatozellulaeren Karzinoms (HCC) sollte beispielsweise immer ein triphasisches Untersuchungsprotokoll angewendet werden. Mit Einfuehrung der Dual-energy-CT hat die Sensitivitaet in der

  16. Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy

    Directory of Open Access Journals (Sweden)

    Han Wonshik

    2011-10-01

    Full Text Available Abstract Background This study was aimed 1 to investigate the predictive value of FDG PET/CT (fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for histopathologic response and 2 to explore the results of FDG PET/CT by molecular phenotypes of breast cancer patients who received neoadjuvant chemotherapy. Methods Seventy-eight stage II or III breast cancer patients who received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. FDG PET/CTs were acquired before chemotherapy and after the first cycle of chemotherapy for evaluating early metabolic response. Results The mean pre- and post-chemotherapy standard uptake value (SUV were 7.5 and 3.9, respectively. The early metabolic response provided by FDG PET/CT after one cycle of neoadjuvant chemotherapy was correlated with the histopathologic response after completion of neoadjuvant chemotherapy (P = 0.002. Sensitivity and negative predictive value were 85.7% and 95.1%, respectively. The estrogen receptor negative phenotype had a higher pre-chemotherapy SUV (8.6 vs. 6.4, P = 0.047 and percent change in SUV (48% vs. 30%, P = 0.038. In triple negative breast cancer (TNBC, the pre-chemotherapy SUV was higher than in non-TNBC (9.8 vs. 6.4, P = 0.008. Conclusions The early metabolic response using FDG PET/CT could have a predictive value for the assessment of histopathologic non-response of stage II/III breast cancer treated with neoadjuvant chemotherapy. Our findings suggest that the initial SUV and the decline in SUV differed based on the molecular phenotype. Trial Registration ClinicalTrials.gov: NCT01396655

  17. 乳腺专用PET临床初步应用%The preliminary clinical application of MAMMI dedicated breast PET

    Institute of Scientific and Technical Information of China (English)

    鲍晓; 姚之丰; 张勇平; 章英剑; 胡四龙; 程竞仪; 杨忠毅; 刘帅; 刘芮; 孙艺斐; 王思阳; 刘畅

    2015-01-01

    Objective:To evaluate the preliminary clinical application value of MAMMI dedicated breast PET.Methods:A total of 76 patients with positive breast lesions on whole-body18F-lfuorodeoxyglucose (18F-FDG) PET/CT or suspicious occult breast cancer voluntarily underwent MAMMI PET in prone position after whole-body18F-FDG PET/CT. The maximal standardized uptake values (SUVmax) were compared according to lesion size, ultrasound grading and molecular subtype of breast cancer. Results:MAMMI PET visualized 63 lesions in 48 patients with speciifc pathologic diagnosis. The smallest lesion was 0.3 cm indiameter. Malignant lesions were classiifed into 3 groups based on diameter as follows: grade 1, 1 cm or smaller; grade 2, 1 to 2 cm; and grad 3, larger than 2 cm. The mean values of SUVmax of them were 4.58 ±2.01, 7.51 ±3.10 and 11.27±5.29, respectively, and there were signiifcant differences in SUVmax through pairwise comparison (P2 cm时,SUVmax平均值分别为4.58±2.01、7.51±3.10和11.27±5.29,两两比较差异均有统计学意义(P<0.01或P<0.05);乳腺影像报告和数据系统(BI-RADS)4级与5级之间SUVmax差异也有统计学意义(P<0.05);各分子亚型之间SUVmax差异无统计学意义。结论:乳腺专用PET对探测乳腺小病灶、多中心、多原发病灶具有很好的临床应用价值。

  18. VrPET/CT: development of a rotating multimodality scanner for small-animal imaging

    OpenAIRE

    Lage, Eduardo; Vaquero, Juan José; Sisniega, Alejandro; España, Manuel; Tapias, Gustavo; Udías, Ángel; García,Verónica; Rodríguez-Ruano, Alexia; Desco, Manuel

    2008-01-01

    Proceeding of: 2008 IEEE Nuclear Science Symposium Conference Record (NSS '08), Dresden, Germany, 19-25 Oct. 2008 This work reports on the development and evaluation of the PET component of a PETtCT system for small-animal in-vivo imaging. The PET and CT subsystems are assembled in a rotary gantry in such a way that the center of rotation for both imaging modalities is mechanically aligned. The PET scanner configuration is based on 2 detector modules, each of which consis...

  19. {sup 18}F-FDG PET/CT for initial staging in breast cancer patients. Is there a relevant impact on treatment planning compared to conventional staging modalities?

    Energy Technology Data Exchange (ETDEWEB)

    Krammer, J.; Schnitzer, A.; Kaiser, C.G.; Buesing, K.A.; Schoenberg, S.O.; Wasser, K. [University of Heidelberg, Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Sperk, E. [University of Heidelberg, Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Brade, J. [University of Heidelberg, Institute of Medical Statistics, Biomathematics and Data Processing, Medical Faculty Mannheim, Mannheim (Germany); Wasgindt, S.; Suetterlin, M. [University of Heidelberg, Department of Gynaecology and Obstetrics, University Medical Centre Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Sutton, E.J. [Memorial Sloan-Kettering Cancer Center, Evelyn H. Lauder Breast Center, Department of Radiology, New York, NY (United States)

    2015-08-15

    To evaluate the impact of whole-body {sup 18}F-FDG PET/CT on initial staging of breast cancer in comparison to conventional staging modalities. This study included 102 breast cancer patients, 101 patients were eligible for evaluation. Preoperative whole-body staging with PET/CT was performed in patients with clinical stage ≥ T2 tumours or positive local lymph nodes (n = 91). Postoperative PET/CT was performed in patients without these criteria but positive sentinel lymph node biopsy (n = 10). All patients underwent PET/CT and a conventional staging algorithm, which included bone scan, chest X-ray and abdominal ultrasound. PET/CT findings were compared to conventional staging and the impact on therapeutic management was evaluated. PET/CT led to an upgrade of the N or M stage in overall 19 patients (19 %) and newly identified manifestation of breast cancer in two patients (2 %). PET/CT findings caused a change in treatment of 11 patients (11 %). This is within the range of recent studies, all applying conventional inclusion criteria based on the initial T and N status. PET/CT has a relevant impact on initial staging and treatment of breast cancer when compared to conventional modalities. Further studies should assess inclusion criteria beyond the conventional T and N status, e.g. tumour grading and receptor status. (orig.)

  20. Simultaneous PET/MR head–neck cancer imaging: Preliminary clinical experience and multiparametric evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Covello, M., E-mail: echoplanare@gmail.com [IRCCS SDN, Via E. Gianturco, 111-113 – 80143, Naples (Italy); Cavaliere, C.; Aiello, M.; Cianelli, M.S. [IRCCS SDN, Via E. Gianturco, 111-113 – 80143, Naples (Italy); Mesolella, M.; Iorio, B. [Department of Otorhinolaryngoiatry, Federico II University, Naples (Italy); Rossi, A.; Nicolai, E. [IRCCS SDN, Via E. Gianturco, 111-113 – 80143, Naples (Italy)

    2015-07-15

    Highlights: • Simultaneous PET/MRI is a suitable tool for head/neck T-staging. • No significant differences have been found for PET measures get by both PET/CT and PET/MRI. • SUV 2D and 3D measures in HN lesion offer comparable estimations. • Multiparametric evaluation allows a complete characterization of HN lesions. - Abstract: Purpose: To evaluate the role of simultaneous hybrid PET/MR imaging and to correlate metabolic PET data with morpho-functional parameters derived by MRI in patients with head–neck cancer. Methods: Forty-four patients, with histologically confirmed head and neck malignancy (22 primary tumors and 22 follow-up) were studied. Patients initially received a clinical exam and endoscopy with direct biopsy. Next patients underwent whole body PET/CT followed by PET/MR of the head/neck region. PET and MRI studies were separately evaluated by two blinded groups (both included one radiologist and one nuclear physician) in order to define the presence or absence of lesions/recurrences. Regions of interest (ROIs) analysis was conducted on the primary lesion at the level of maximum size on metabolic (SUV and MTV), diffusion (ADC) and perfusion (K{sup trans}, V{sub e}, k{sub ep} and iAUC) parameters. Results: PET/MR examinations were successfully performed on all 44 patients. Agreement between the two blinded groups was found in anatomic allocation of lesions by PET/MR (Primary tumors: Cohen's kappa 0.93; Follow-up: Cohen's kappa 0.89). There was a significant correlation between CT-SUV measures and MR (e.g., CT-SUV VOI vs. MR-SUV VOI: ρ = 0.97, p < 0.001 for the entire sample). There was also significant positive correlations between the ROI area, SUV measures, and the metabolic parameters (SUV and MTV) obtained during both PET/CT and PET/MR. A significant negative correlation was observed between ADC and K{sup trans} values in the primary tumors. In addition, a significant negative correlation existed between MR SUV and ADC in

  1. A PRELIMINARY STUDY ON COMPARISON AND FUSION OF METABOLIC IMAGES OF PET WITH ANATOMIC IMAGES OF CT AND MRI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective. To compare and match metabolic images of PET with anatomic images of CT and MRI. Methods. The CT or MRI images of the patients were obtained through a photo scanner, and then transferred to the remote workstation of PET scanner with a floppy disk. A fusion method was developed to match the 2-dimensional CT or MRI slices with the correlative slices of 3-dimensional volume PET images. Results. Twenty- nine metabolically changed foci were accurately localized in 21 epilepsy patients' MRI images, while MRI alone had only 6 true positive findings. In 53 cancer or suspicious cancer patients, 53 positive lesions detected by PET were compared and matched with the corresponding lesions in CT or MRI images, in which 10 lesions were missed. On the other hand, 23 lesions detected from the patients' CT or MRI images were negative or with low uptake in the PET images, and they were finally proved as benign. Conclusions. Comparing and matching metabolic images with anatomic images helped obtain a full understanding about the lesion and its peripheral structures. The fusion method was simple, practical and useful for localizing metabolically changed lesions.

  2. The engagement of FDG PET/CT image quality and harmonized quantification: from competitive to complementary

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, Ronald [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands)

    2016-01-15

    The use of {sup 18}F-FDG PET/CT as a quantitative imaging biomarker requires standardization and harmonization of imaging procedures and PET/CT system performance to obtain repeatable and reproducible quantitative data. However, a PET/CT system optimized to meet international quantitative standards is not necessarily optimized for use as a diagnostic tool (i.e. for lesion detectability). Several solutions have been proposed and validated, but until recently none of them had been implemented commercially. Vendor-provided solutions allowing the use of PET/CT both as a diagnostic tool and as a quantitative imaging biomarker are therefore greatly needed and would be highly appreciated. In this invited perspective one such solution is highlighted. (orig.)

  3. Motion correction in simultaneous PET/MR brain imaging using sparsely sampled MR navigators

    DEFF Research Database (Denmark)

    Keller, Sune H; Hansen, Casper; Hansen, Christian

    2015-01-01

    BACKGROUND: We present a study performing motion correction (MC) of PET using MR navigators sampled between other protocolled MR sequences during simultaneous PET/MR brain scanning with the purpose of evaluating its clinical feasibility and the potential improvement of image quality. FINDINGS......: Twenty-nine human subjects had a 30-min [(11)C]-PiB PET scan with simultaneous MR including 3D navigators sampled at six time points, which were used to correct the PET image for rigid head motion. Five subjects with motion greater than 4 mm were reconstructed into six frames (one for each navigator....... CONCLUSIONS: Sparsely sampled navigators can be used for characterization and correction of head motion. A slight, overall decrease in blurring and an increase in image quality with MC was found, but without impact on clinical interpretation. In future studies with noteworthy motion artifacts, our method...

  4. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  5. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine, Geneva 4 (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); El Naqa, Issam [Washington University School of Medicine, Department of Radiation Oncology, St. Louis, MO (United States)

    2010-11-15

    Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed. (orig.)

  6. PET-CT在乳腺癌术前诊断与分期中的临床应用%The clinical application of PET-CT in preoperative diagnosing and staging for breast cancer

    Institute of Scientific and Technical Information of China (English)

    汪世存; 方雷; 潘博; 展凤麟; 谢强; 谢吉奎

    2011-01-01

    Aim To evaluate the clinical application of PET-CT in preoperative diagnosing and staging for breast cancer. Methods The 56 patients who were presumed by clinical manifestation and physical examination as breast cancer in our hospital underwent PET-CT examination which included primary breast lesion , area lymphaden and other organs of the whole body. After complete routine scanning , we should rescan breast by particular scanning mode and carry out PET projection collection and CT thin slice scanning. Then, both the results of PET-CT examination should be analyzed and contrasted with pathology results of after operation or paracentesis. Results There were 4 cases of Phase Ⅰ ,31 cases of phase Ⅱ .6 cases of phase Ⅲ were and 15 cases of phase Ⅳ in 56 patients. In the 35 cases of.there were 34 cases of Axillary lymph nodes metastasis .4 cases of homonymy internal mammary lymph nodes metastasis and 1 case of supraclavicular lymph nodes metastasis. Meanwhile.in the 21 cases of phase JII ancl lV .there were 8 cases of pulmonary metastasis.8 cases of hepatic metastasis , bony 11 cases of metastasis( including 5 cases of osteogenesis and 6 cases of mixed type) and 1 case of brain metastases.The pathology results of afteroperation or paracentesis can prompt that there were 2 cases of carcinoma in situ.21 cases of ductal carcinoma in situ with local micro invasion.33 cases of invasive ductal carcinoma and 31 cases of axillary lymph nodes metastasis( 31/34) . The diagnostic accuracy was 91. 2% . Conclusion PET-CT imaging has higher sensitivity and specificity in diagnosing breast cancer, especially in diagnosing area lymphaden and metastasis ,which can guide us to choose therapy way%目的 探讨PET-CT在乳腺癌术前诊断与分期中的临床价值.方法 对该院临床表现和体格检查提示为乳腺癌的56例患者行PET-CT检查,检查范围包括乳腺癌原发病灶、区域淋巴结及全身脏器;完成常规扫描后,再应用特殊的乳腺扫

  7. PET/MR imaging of head/neck in the presence of dental implants

    DEFF Research Database (Denmark)

    Ladefoged, Claes; Beyer, Thomas; Keller, Sune

    2013-01-01

    Aim: In combined PET/MR, attenuation correction (AC) is performed indirectly based on the available MR image information. Implant-induced susceptibility artifacts and subsequent signal voids challenge MR-based AC (MR-AC). We evaluate the accuracy of MR-AC in PET/MR in patients with metallic dental...... void. Conclusion: Metallic dental work causes severe MR signal voids and PET/MR artifacts that exceed the actual implant volume. The resulting bias in AC-PET is severe in regions in and near the signal voids. Notably, the bias is present also in areas further away from the implants. In selected cases...... implants or braces, and propose a clinically feasible correction method. Materials and Methods: This study includes subjects selected retrospectively from our routine PET/MR referral base of patients with neurological disorders. Seven patients with metallic implants and implant-induced signal voids > 100 m...

  8. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    Science.gov (United States)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  9. State of the art imaging of multiple myeloma: Comparative review of FDG PET/CT imaging in various clinical settings

    Energy Technology Data Exchange (ETDEWEB)

    Mesguich, Charles, E-mail: charles.mesguich@chu-bordeaux.fr [Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Fardanesh, Reza; Tanenbaum, Lawrence [Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chari, Ajai; Jagannath, Sundar [Department of Medicine Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Kostakoglu, Lale, E-mail: lale.kostakoglu@mssm.edu [Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States)

    2014-12-15

    Highlights: • Metabolic changes on FDG PET/CT offer an earlier response evaluation than MRI. • PET/CT is less sensitive than MRI for diffuse bone marrow involvement. • PET/CT is a highly sensitive modality to determine extra-medullary disease. • Red marrow expansion: false positive findings on both FDG PET/CT and MRI. • Compression fractures are best characterized with MRI. - Abstract: 18-Flurodeoxyglucose Positron Emission Tomography with computed tomography (FDG PET/CT) and Magnetic Resonance Imaging (MRI) have higher sensitivity and specificity than whole-body X-ray (WBXR) survey in evaluating disease extent in patients with multiple myeloma (MM). Both modalities are now recommended by the Durie–Salmon Plus classification although the emphasis is more on MRI than PET/CT. The presence of extra-medullary disease (EMD) as evaluated by PET/CT imaging, initial SUV{sub max} and number of focal lesions (FL) are deemed to be strong prognostic parameters at staging. MRI remains the most sensitive technique for the detection of diffuse bone marrow involvement in both the pre and post-therapy setting. Compression fractures are best characterized with MRI signal changes, for determining vertebroplasty candidates. While PET/CT allows for earlier and more specific evaluation of therapeutic efficacy compared to MRI, when signal abnormalities persist years after treatment. PET/CT interpretation, however, can be challenging in the vertebral column and pelvis as well as in cases with post-therapy changes. Hence, a reading approach combining the high sensitivity of MRI and superior specificity of FDG PET/CT would be preferred to increase the diagnostic accuracy. In summary, the established management methods in MM, mainly relying on biological tumor parameters should be complemented with functional imaging data, both at staging and restaging for optimal management of MM.

  10. FDG-PET imaging in lung cancer: how sensitive is it for bronchioloalveolar carcinoma?

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Cecelia S.; Schiepers, Christiaan; Phelps, Michael E.; Czernin, Johannes [Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Center/Nuclear Medicine, UCLA School of Medicine, AR-259 CHS, Los Angeles, CA 90095-6948 (United States); Fishbein, Michael C. [Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California (United States)

    2002-09-01

    While characterization of lung lesions and staging of lung cancer with fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) is an established clinical procedure, a lower diagnostic accuracy of FDG-PET for diagnosis and staging of so-called bronchioloalveolar carcinoma (BAC) has been reported. Therefore, the accuracy of PET for diagnosing and staging of BAC was investigated. We studied 41 patients eventually found to have adenocarcinoma with a bronchioloalveolar growth pattern who were referred for characterization or staging of lung lesions with whole-body FDG-PET between January 1998 and March 2001: there were 11 males (27%) and 30 females (73%), with a mean age of 66.0{+-}10.9 (range =44-84 years). Patients were imaged using ECAT EXACT or HR+ systems. All patients had non-attenuation-corrected scans, while transmission data for attenuation correction were also available for 12 patients (29%). PET correctly identified BAC in 41 of the 46 (89%) lesions and 39 of the 41 patients (95%). By pathology, 25 patients (61%) were found to have unifocal or nodular lesions; this pattern was correctly identified by PET in 20 patients (80%) and by CT in 18 (72%). PET correctly identified 7 (44%) of 16 patients (39%) who had multicentric or diffuse BAC, and CT identified 11 (69%). Of the 35 patients whose lymph node status was verified pathologically, PET was correct in 27 (77%) and CT in 24 (69%). PET missed 67% of the rare tumors that had a pure BAC pattern with no invasive component. It is concluded that the diagnostic performance of whole-body FDG-PET is similar in most patients with lesions with a BAC pattern and in other non-small cell lung cancer types. PET is less accurate in patients with rare BAC tumors that have no invasive component. (orig.)

  11. Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series

    Energy Technology Data Exchange (ETDEWEB)

    Brendle, C.; Schwenzer, N.F.; Rempp, H.; Schmidt, H.; Pfannenberg, C.; Nikolaou, K.; Schraml, C. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); La Fougere, C. [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany)

    2016-01-15

    The purpose was to investigate the diagnostic performance of different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT for the evaluation of metastatic colorectal cancer lesions. Image data of 15 colorectal cancer patients (FDG-PET/CT and subsequent FDG-PET/MRI) were retrospectively evaluated by two readers in five reading sessions: MRI (morphology) alone, MRI/diffusion-weighted MRI (DWI), MRI/PET, MRI/DWI/PET; and PET/CT. Diagnostic performance of lesion detection with each combination was assessed in general and organ-based. The reference standard was given by histology and/or follow-up imaging. Separate analysis of mucinous tumours was performed. One hundred and eighty lesions (110 malignant) were evaluated (intestine n = 6, liver n = 37, lymph nodes n = 55, lung n = 4, and peritoneal n = 74). The overall lesion-based diagnostic accuracy was 0.46 for MRI, 0.47 for MRI/DWI, 0.57 for MRI/PET, 0.69 for MRI/DWI/PET and 0.66 for PET/CT. In the organ-based assessment, MRI/DWI/PET showed the highest accuracy for liver metastases (0.74), a comparable accuracy to PET/CT in peritoneal lesions (0.55), and in lymph node metastases (0.84). The accuracy in mucinous tumour lesions was limited in all modalities (MRI/DWI/PET = 0.52). PET/MRI including DWI is comparable to PET/CT in the evaluation of colorectal cancer metastases, with a markedly higher accuracy when using combined imaging data than the modalities separately. Further improvement is needed in the imaging of peritoneal carcinomatosis and mucinous tumours. (orig.)

  12. Positron Emission Tomography (PET) Imaging of Opioid Receptors

    NARCIS (Netherlands)

    van Waarde, Aren; Absalom, Anthony; Visser, Anniek; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; De Vries, Erik FJ; Van Waarde, Aren; Luiten, Paul GM

    2014-01-01

    The opioid system consists of opioid receptors (which mediate the actions of opium), their endogenous ligands (the enkephalins, endorphins, endomorphins, dynorphin, and nociceptin), and the proteins involved in opioid production, transport, and degradation. PET tracers for the various opioid recepto

  13. Regional quantitative analysis of cortical surface maps of FDG PET images

    CERN Document Server

    Protas, H D; Hayashi, K M; Chin Lung, Yu; Bergsneider, M; Sung Cheng, Huang

    2006-01-01

    Cortical surface maps are advantageous for visualizing the 3D profile of cortical gray matter development and atrophy, and for integrating structural and functional images. In addition, cortical surface maps for PET data, when analyzed in conjunction with structural MRI data allow us to investigate, and correct for, partial volume effects. Here we compared quantitative regional PET values based on a 3D cortical surface modeling approach with values obtained directly from the 3D FDG PET images in various atlas-defined regions of interest (ROIs; temporal, parietal, frontal, and occipital lobes). FDG PET and 3D MR (SPGR) images were obtained and aligned to ICBM space for 15 normal subjects. Each image was further elastically warped in 2D parameter space of the cortical surface, to align major cortical sulci. For each point within a 15 mm distance of the cortex, the value of the PET intensity was averaged to give a cortical surface map of FDG uptake. The average PET values on the cortical surface map were calcula...

  14. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  15. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  16. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging

    CERN Document Server

    Vandenberghe, Stefaan

    2015-01-01

    The integration of positron emission tomography (PET) and magnetic resonance imaging (MRI) has been an ongoing research topic for the last 20 years. This paper gives an overview of the different developments and the technical problems associated with combining PET and MRI in one system. After explaining the different detector concepts for integrating PET-MRI and minimising interference the limitations and advantages of different solutions for the detector and system are described for preclinical and clinical imaging systems. The different integrated PET-MRI systems are described in detail. Besides detector concepts and system integration the challenges and proposed solutions for attenuation correction and the potential for motion correction and resolution recovery are also discussed in this topical review.

  17. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-05-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or {sup 18}F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  18. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, Irene [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany); Kaffanke, Joachim B. [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); MR-Transfer e.K., Wuppertal (Germany); Langen, Karl-Josef; Kops, Elena Rota; Tellmann, Lutz; Stoffels, Gabriele; Weirich, Christoph; Filss, Christian; Scheins, Juergen; Herzog, Hans [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Neurology, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany)

    2012-12-15

    The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach. The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as {sup 18}F-fluoroethyl-l-tyrosine (FET) or {sup 11}C-l-methionine (MET) will indicate tumour extent and response to treatment. The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions. We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI. (orig.)

  19. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, Ronald, E-mail: r.boellaard@vumc.nl [Department of Radiology and Nuclear Medicine, VU Medical Center, Amsterdam 1081 HV (Netherlands); European Association of Nuclear Medicine Research Ltd., Vienna 1060 (Austria); European Association of Nuclear Medicine Physics Committee, Vienna 1060 (Austria); Rausch, Ivo; Beyer, Thomas [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090 (Austria); Delso, Gaspar [GE Healthcare and University Hospital of Zurich, Zurich 8091 (Switzerland); Yaqub, Maqsood [Department of Radiology and Nuclear Medicine, VU Medical Center, Amsterdam 1081 HV (Netherlands); Quick, Harald H. [Institute of Medical Physics, University of Erlangen-Nuremberg, Erlangen 91052 (Germany); Erwin L. Hahn Institute for MRI, University of Duisburg–Essen, Essen 45141 (Germany); High Field and Hybrid MR-Imaging, University Hospital Essen, Essen 45147 (Germany); Sattler, Bernhard [Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103 (Germany); European Association of Nuclear Medicine Physics Committee, Vienna 1060 (Austria)

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5 min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for

  20. Education and Outreach for Breast Imaging and Breast Cancer Patients

    Science.gov (United States)

    2003-07-01

    the project was the development of an educational intervention ( flip chart ) for physicians to use in the clinic setting when discussing breast...Procedure Scheduling on Breast Biopsy Patient Outcomes The first phase of this project is the development of an educational flip chart for...breast biopsy and breast cancer survivors to guide the content of the flip chart b) Develop outline and overall format c) Identify/develop

  1. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    Science.gov (United States)

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  2. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  3. Surface driven biomechanical breast image registration

    Science.gov (United States)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  4. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...... significantly. The results were similar to motion correction using an integrated commercial marker-based system. Furthermore, phantom studies were performed supporting the system’s abilities for PET motion correction....

  5. An Internet-Based “Kinetic Imaging System” (KIS) for MicroPET

    OpenAIRE

    Huang, Sung-Cheng; Truong, David; Wu, Hsiao-Ming; Chatziioannou, Arion F.; Shao, Weber; Anna M. Wu; Phelps, Michael E.

    2005-01-01

    Many considerations, involving understanding and selection of multiple experimental parameters, are required to perform MicroPET studies properly. The large number of these parameters/variables and their complicated interdependence make their optimal choice nontrivial. We have a developed kinetic imaging system (KIS), an integrated software system, to assist the planning, design, and data analysis of MicroPET studies. The system serves multiple functions–education, virtual experimentation, ex...

  6. Use and recommendations of image fusion methods for the integration of PET-image data into radiotherapy planning; Ueberblick ueber verschiedene Bildfusionstechniken und Empfehlungen fuer deren Verwendung bei der Integration von PET-Bilddaten in die Bestrahlungsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, H.; Visvikis, D. [INSERM U650, LaTIM, CHU Morvan, Brest (France); Soehn, M. [LMU Klinikum der Univ. Muenchen, Grosshadern (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie

    2011-07-15

    The introduction of PET data into the treatment planning process has been the focus of intense development over the past few years. The availability of multi-modality devices such as PET/CT has clearly played a major role in intensifying the interest in this application. However, many issues remain and this article deals in particular with those concerning the accurate spatial fusion of PET and planning CT images. Associated issues include the effects of respiratory motion and the acquisition protocol used, particularly if the PET/CT acquisition does not correspond to a truly treatment planning acquisition, which is most frequently the case in clinical practice today. Respiratory synchronized PET/CT acquisitions can on the one hand minimize respiratory motion effects in PET datasets while on the other hand improve the spatial fusion of PET and CT images acquired in a multi-modality device. Deformable ('elastic') registration algorithms have been shown to allow accurate respiratory motion modeling from '4D' PET or CT images. In addition, spatial matching between PET and planning CT images can be achieved through the use of 3D displacement fields obtained using such image registration algorithms to align the CT image obtained from a multi-modality PET/CT acquisition to the planning CT image. Deformable models are clearly necessary for thoracic, abdominal as well as head and neck regions, while rigid body registration may be used in brain imaging applications. Unfortunately, although well established in clinical research studies deformable image registration algorithms are not widely implemented in multi-modality image analysis or treatment planning software platforms, therefore minimizing their use in routine clinical practice. More clinical validation as well as high throughput software solutions are necessary in order to envisage the use of deformable image registration algorithms in clinical PET/CT imaging and associated applications in

  7. Contour classification in thermographic images for detection of breast cancer

    Science.gov (United States)

    Okuniewski, Rafał; Nowak, Robert M.; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Oleszkiewicz, Witold

    2016-09-01

    Thermographic images of breast taken by the Braster device are uploaded into web application which uses different classification algorithms to automatically decide whether a patient should be more thoroughly examined. This article presents the approach to the task of classifying contours visible on thermographic images of breast taken by the Braster device in order to make the decision about the existence of cancerous tumors in breast. It presents the results of the researches conducted on the different classification algorithms.

  8. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Sabire Yilmaz; Asa, Sertac; Ozhan, Meftune; Sager, M.S.; Halac, Metin; Kabasakal, Levent; Soenmezoglu, Kerim; Kanmaz, Bedii [University of Istanbul, Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Aksaray, Istanbul (Turkey); Ocak, Meltem [University of Istanbul, Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul (Turkey); Erkan, Melih Engin [Duzce University School of Medicine, Department of Nuclear Medicine, Duzce (Turkey)

    2014-03-15

    The demand for arthroplasty is rapidly growing as a result of the ageing of the population. Although complications such as heterotrophic ossification, fracture and dislocation are relatively rare, differentiating aseptic loosening, the most common complication of arthroplasty from infection, is a major challenge for clinicians. Radionuclide imaging is currently the imaging modality of choice since it is not affected by orthopaedic hardware. Whereas FDG PET/CT imaging has been widely used in periprosthetic infection, it cannot discriminate aseptic from septic inflammation. In this study we aimed to evaluate the role of FDG PET/CT and FDG-labelled leucocyte PET/CT in the diagnosis of periprosthetic infection. Of 54 patients with painful joint arthroplasty who were imaged by FDG PET/CT for diagnosis of periprosthetic infection examined, 46 (36 women, 10 men; mean age 61.04 ± 12.2 years, range 32 - 89 years) with 54 painful joint prostheses (19 hip, 35 knee) with grade 2 (above liver uptake) FDG accumulation on FDG PET/CT were included in the study and these 46 patients also underwent FDG-labelled leucocyte PET/CT. Final diagnoses were made by histopathological-microbiological culture or clinical follow-up. The final diagnosis showed infection in 15 (28 %) and aseptic loosening in 39 (72 %) of the 54 prostheses. FDG PET/CT was found to have a positive predictive value of 28 % (15/54). Since patients with no FDG uptake on FDG PET/CT were excluded from the study, the sensitivity, specificity, negative predictive value and accuracy could not be calculated. The sensitivity, specificity, and positive and negative predictive values of FDG-labelled leucocyte PET/CT were 93.3 % (14/15), 97.4 % (38/39), 93.3 % and 97.4 %, respectively. Since FDG is not specific to infection, the specificity of FDG PET/CT was very low. FDG-labelled leucocyte PET/CT with its high specificity may be a useful method and better than labelled leucocyte scintigraphy in periprosthetic infection

  9. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging.

    Science.gov (United States)

    Zhang, Xiaomeng; Chen, Yen-Lin E; Lim, Ruth; Huang, Chuan; Chebib, Ivan A; El Fakhri, Georges

    2016-04-01

    The primary objective of this study was to develop and validate simultaneous PET/MRI-MRS as a novel biological image-guided approach to neoadjuvant radiotherapy (RT) and/or chemoradiation (chemoRT) in soft tissue sarcomas (STS). A patient with sarcoma of the right thigh underwent PET/MRI scan before and after neoadjuvant (preoperative) radiotherapy. The magnetic resonance imaging (MRI) and 2-deoxy-2-[fluorine-18]-fluoro-D-glucose-Positron Emission Tomography ((18)F-FDG-PET) scans were performed simultaneously. In the post-radiation scan, magnetic resonance spectroscopy (MRS) was subsequently acquired with volume of interest positioned in a residual hyper-metabolic region detected by PET. Post-radiation PET/MRI showed a residual T2-hyperintense mass with significantly reduced (18)F-FDG-uptake, compatible with near complete response to radiotherapy. However, a small region of residual high (18)F-FDG uptake was detected at the tumor margin. MRS of this region had similar metabolite profile as normal tissue, and was thus considered false positive on PET scan. Pathology results were obtained after surgery for confirmation of imaging findings.

  10. PET guidance in prostate cancer radiotherapy: Quantitative imaging to predict response and guide treatment.

    Science.gov (United States)

    Cattaneo, G M; Bettinardi, V; Mapelli, P; Picchio, M

    2016-03-01

    Positron emission tomography (PET) allows a monitoring and recording of the spatial and temporal distribution of molecular/cellular processes for diagnostic and therapeutic applications. The aim of this review is to describe the current applications and to explore the role of PET in prostate cancer management, mainly in the radiation therapy (RT) scenario. The state-of-the art of PET for prostate cancer will be presented together with the impact of new specific PET tracers and technological developments aiming at obtaining better imaging quality, increased tumor detectability and more accurate volume delineation. An increased number of studies have been focusing on PET quantification methods as predictive biomarkers capable of guiding individualized treatment and improving patient outcome; the sophisticated advanced intensity modulated and imaged guided radiation therapy techniques (IMRT/IGRT) are capable of boosting more radioresistant tumor (sub)volumes. The use of advanced feature analyses of PET images is an approach that holds great promise with regard to several oncological diseases, but needs further validation in managing prostate diseases.

  11. Optimization of super-resolution processing using incomplete image sets in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2008-12-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of

  12. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction.

    Science.gov (United States)

    Rahmim, Arman; Tang, Jing; Zaidi, Habib

    2009-08-01

    In this article, the authors review novel techniques in the emerging field of spatiotemporal four-dimensional (4D) positron emission tomography (PET) image reconstruction. The conventional approach to dynamic PET imaging, involving independent reconstruction of individual PET frames, can suffer from limited temporal resolution, high noise (especially when higher frame sampling is introduced to better capture fast dynamics), as well as complex reconstructed image noise distributions that can be very difficult and time consuming to model in kinetic parameter estimation tasks. Various approaches that seek to address some or all of these limitations are described, including techniques that utilize (a) iterative temporal smoothing, (b) advanced temporal basis functions, (c) principal components transformation of the dynamic data, (d) wavelet-based techniques, as well as (e) direct kinetic parameter estimation methods. Future opportunities and challenges with regards to the adoption of 4D and higher dimensional image reconstruction techniques are also outlined.

  13. PET/CT imaging of abdominal aorta with intramural hematomas, penetrating ulcer, and saccular pseudoaneurysm.

    Science.gov (United States)

    Nguyen, Vien X; Nguyen, Ba D

    2014-05-01

    Acute aortic syndromes, encompassing intramural hematoma, penetrating ulcer, and pseudoaneurysm, are best demonstrated by angiographic CT and magnetic resonance imaging. These imaging modalities provide an accurate evaluation and allow timely therapies of these frequently symptomatic lesions, thus reducing their morbidity and mortality. The inflammatory pathogenesis of these acute aortic syndromes may exhibit positive PET findings predictive of prognosis and outcomes of these vascular events. The authors present a case of PET/CT imaging showing asymptomatic intramural hematomas with penetrating ulcer and saccular pseudoaneurysm of the proximal abdominal aorta.

  14. Imaging Spectrums of the Male Breast Diseases: A Pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye Jeong; Choi, Seon Hyeong; Ahn, Hye Kyung; Chung, Soo Young [Dept. of Radiology, Kangnam Scred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Yang Ik [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of); Jung, Ah young [Dept. of Pathology, Kangnam Scred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    Most described male breast lesions, such as gynecomastia, are benign. The overall incidence of male breast cancer is less than 3%. Like women, common presentations of male breast diseases are palpable lumps or tenderness. Physical examination, mammography and ultrasound are generally used for work-up of breast diseases in both women and men. However, men do not undergo screening mammograms; all male patients are examined in symptomatic cases only. Therefore, all male breast examinations are diagnostic, whereas the majority of the examinations for women are for screening purpose. The differentiation between benign and malignant breast lesions is important, especially for men, because the reported prognosis of male breast cancer is poor due to delayed diagnosis. In this article, we review the spectrum of male breast diseases, from benign to malignant, and illustrate their ultrasonographic and mammographic imaging features.

  15. Prognostic significance of metabolic tumor volume measured by {sup 18}F FDG PET/CT in operable primary breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jahae; Yoo, Su Woong; Kang, Sae Ryung; Cho, Sang Geon; Oh, Jong Ryool; Chong, Ari; Min, Jung Joon; Bom, Hee Seung; Yoon, Jung Han; Song, Ho Chun [Chonnam National Univ. Medical School and Hospital, Gwangju (Korea, Republic of)

    2012-12-15

    We investigated whether PET indices measured by {sup 18}F fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) can predict prognosis in patients with operable primary breast cancer. We reviewed 53 patients with operable primary breast cancer who underwent pretreatment FDG PET/CT. PET indices, maximum standardized uptake value (SUV) and metabolic tumor volume (MTV), were measured in the primary breast tumor (P), metastatic lymph nodes (N) and total tumor (T). The cox proportional hazards model was used with age, tumor size, clinical lymph node status, method od of surgery, presence or absence of neoadjuvant chemo therapy, histological type, histological grade, hormone grade, hormone receptors and HER2 status to predict disease free survival (DFS) and overall survival (OS). Median follow up period was 50 months (range, 17 73 months), during which 17 patients had recurrent disease and nine of whom died. The univariate analysis showed that high SUV of N (N{sup SUV,} =0.011), MTV of N (N{sup MTV,} =0.011) and MTV of T (T{sup MTV,} =0.045) as well as high histological grade (=0.008), negative estrogen ( =0.045) and negative progesterone ( =0.029) receptor status were associated with shorter DFS. High N{sup SUV(}=0.035) and N{sup MTV(} =0.035) and T{sup MTV(}=0.035)as well as high histological grade (=0.012) and negative estrogen receptor status ( =0.009)were associated with shorted OS. N{sup SUV,} N{sup MTVa}nd T{sup MTw}ere found to be significantly associated with high histological grade ( =0.005). However, those failed to be statistically significant prognostic factors on multivariate analysis PET indices seem to be useful in the preoperative evaluation of prognosis in patients with operable primary breast cancer, N{sup SUV,} N{sup MTVa}nd T{sup MTVm}ight be considerable factors associated with patient outcome in operable breast cancer.

  16. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  17. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    Science.gov (United States)

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  18. Neuronal pathology in deep grey matter structures: a multimodal imaging analysis combining PET and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bosque-Freeman, L.; Leroy, C.; Galanaud, D.; Sureau, F.; Assouad, R.; Tourbah, A.; Papeix, C.; Comtat, C.; Trebossen, R.; Lubetzki, C.; Delforge, J.; Bottlaender, M.; Stankoff, B. [Serv. Hosp. Frederic Joliot, Orsay (France)

    2009-07-01

    Objective: To assess neuronal damage in deep gray matter structures by positron emission tomography (PET) using [{sup 11}C]-flumazenil (FMZ), a specific central benzodiazepine receptor antagonist, and [{sup 18}F]-fluorodeoxyglucose (FDG), which reflects neuronal metabolism. To compare results obtained by PET and those with multimodal magnetic resonance imaging (MRI). Background: It is now accepted that neuronal injury plays a crucial role in the occurrence and progression of neurological disability in multiple sclerosis (MS). To date, available MRI techniques do not specifically assess neuronal damage, but early abnormalities, such as iron deposition or atrophy, have been described in deep gray matter structures. Whether those MRI modifications correspond to neuronal damage remains to be further investigated. Materials and methods: Nine healthy volunteers were compared to 10 progressive and 9 relapsing remitting (RR) MS patients. Each subject performed two PET examinations with [{sup 11}C]-FMZ and [{sup 18}F]-FDG, on a high resolution research tomograph dedicated to brain imaging (Siemens Medical Solution, spatial resolution of 2.5 mm). Deep gray matter regions were manually segmented on T1-weighted MR images with the mutual information algorithm (www.brainvisa.info), and co-registered with PET images. A multimodal MRI including T1 pre and post gadolinium, T2-proton density sequences, magnetization transfer, diffusion tensor, and protonic spectroscopy was also performed for each subject. Results: On PET with [{sup 11}C]-FMZ, there was a pronounced decrease in receptor density for RR patients in all deep gray matter structures investigated, whereas the density was unchanged or even increased in the same regions for progressive patients. Whether the different patterns between RR and progressive patients reflect distinct pathogenic mechanisms is currently investigated by comparing PET and multimodal MRI results. Conclusion: Combination of PET and multimodal MR imaging

  19. {sup 11}C-Acetate PET imaging for renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Nobuyuki; Kusukawa, Naoya; Kaneda, Taisei; Miwa, Yoshiji; Akino, Hironobu; Yokoyama, Osamu [University of Fukui, Department of Urology, Fukui (Japan); Okazawa, Hidehiko; Fujibayashi, Yasuhisa [University of Fukui, Biomedical Imaging Research Center, Fukui (Japan); Yonekura, Yoshiharu [National Institute of Radiological Sciences, Chiba (Japan); Welch, Michael J. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, Saint Louis, MO (United States)

    2009-03-15

    In this study, we investigated the effectiveness of positron emission tomography (PET) with {sup 11}C-acetate (AC) for evaluation of renal cell carcinoma. Enrolled in the study were 20 patients with suspected renal tumour, one of whom had three renal lesions. In all, 22 renal lesions were evaluated. Following administration of 350 MBq (10 mCi) of AC, whole-body PET images were obtained. Based on these PET findings, kidney lesions were scored as positive or negative. The PET results were correlated with the CT findings and histological diagnosis after surgery. In 18 patients, 20 tumours were diagnosed as renal cell carcinoma. Lesions in the remaining two patients were diagnosed as complicated cyst without malignant tissue. Of the 20 renal cell carcinomas. 14 (70%) showed positive AC PET findings; 6 were negative. The two patients with complicated cyst had negative AC PET findings. Of the 20 renal cell carcinomas, 19 were clear-cell carcinoma and 1 was a papillary cell carcinoma. This papillary cell carcinoma showed high AC uptake. AC demonstrates marked uptake in renal cell carcinoma. These preliminary data show that AC is a possible PET tracer for detection of renal cancer. (orig.)

  20. PET Imaging of Tau Deposition in the Aging Human Brain.

    Science.gov (United States)

    Schöll, Michael; Lockhart, Samuel N; Schonhaut, Daniel R; O'Neil, James P; Janabi, Mustafa; Ossenkoppele, Rik; Baker, Suzanne L; Vogel, Jacob W; Faria, Jamie; Schwimmer, Henry D; Rabinovici, Gil D; Jagust, William J

    2016-03-02

    Tau pathology is a hallmark of Alzheimer's disease (AD) but also occurs in normal cognitive aging. Using the tau PET agent (18)F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline in global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. The present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.

  1. Isolated Granulocytic Sarcoma of the Breast after Allogeneic Stem Cell Transplantation: A Rare Involvement Also Detected by 18FDG-PET/CT

    Directory of Open Access Journals (Sweden)

    Eren Gündüz

    2014-03-01

    Full Text Available Granulocytic sarcoma is a tumor consisting of myeloid blasts with or without maturation that occurs at an anatomical site other than bone marrow. Most frequently affected sites are skin, lymph nodes, gastrointestinal tract, bone, soft tissue and testes. AML may manifest as granulocytic sarcoma at diagnosis or relapse. Although it has been considered to be rare relapse as granulocytic sarcoma after stem cell transplantation is being increasingly reported. However it is rare without bone marrow involvement and in AML M6 subtype. Breast is also a rare involvement. We report a 30-year-old woman with AML M6 relapsed 16 months after allogeneic stem cell transplantation as a granulocytic sarcoma in right breast without bone marrow involvement. She was treated with systemic chemotherapy but died of sepsis. 18FDG-PET/CT images were also obtained and detected lesions other than detected by breast ultrasound. The incidence of granulocytic sarcoma may increase if suspected or new diagnostic modalities are performed.

  2. Diagnostic evaluation of solitary pulmonary nodules (SPNs) using PET-FDG imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N.; Chandramouli, B.; Reeb, S. [Creighton Univ., Omaha, NE (United States)] [and others

    1994-05-01

    We have reported high sensitivity of PET-FDG imaging in detecting malignancy in SPNs. We now report clinical utility of PET-FDG imaging in pre-intervention workup of 66 pts (age 24-89 yrs) with radiographically indeterminate SPNs (0.5-3 cm) in size. All pts had PET imaging performed 1 hr after injection of 10 mCi of F-18 FDG. Images were analyzed qualitatively and semi-quantitatively to compute DUR indices using ROI analysis. Final diagnosis was established by histology in 65/66 pts (thoracotomy 47, needle biopsy 13, bronchoscopy 5, stable nodule 1). PET-FDG imaging demonstrates sensitivity, specificity and predictive accuracy of 94%, 87% and 92% respectively. All 3 false negative cases were SPNs <1.5 cm in size and histologically adenoca. True positive malignant SPNs were adenoca 18, small cell 5, squamous cell 12, nonsmall cell 7, and others 6. Among 15 benign lesions (granuloma 6, histoplasmosis 4, nonspecific inflammation 2, hamartoma 1, stable nodule 1, organizing pneumonia 1), 2 false positive cases were seen in histoplasmosis. In 10 patients hilar/mediastinal lymph node lesions were accurately classified as benign (5) or malignant (5). Mean DUR in malignant lesions (5.41{plus_minus}2.63) was significantly greater (p value <0.001) than benign lesions (1.12{plus_minus}0.78). In conclusion, PET-FDG imaging is highly accurate in differentiating benign from malignant lung modules and lymph node lesions. PET-FDG imaging may thus optimize surgical management of pts with radiographically SPNs.

  3. FDG-PET imaging in mild traumatic brain injury: A critical review

    Directory of Open Access Journals (Sweden)

    Kimberly R Byrnes

    2014-01-01

    Full Text Available Traumatic brain injury (TBI affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs and patients not seeking medical attention is unknown. Currently, classification of mild TBI (mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR or computed tomography (CT imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET, have the ability to detect changes after mild TBI. Recent technological improvements in the resolution of PET systems, the integration of PET with MRI, and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mild TBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mild TBI research and clinical practice.

  4. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    Science.gov (United States)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  5. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization.

    Directory of Open Access Journals (Sweden)

    Mattijs Elschot

    Full Text Available BACKGROUND: After yttrium-90 ((90Y microsphere radioembolization (RE, evaluation of extrahepatic activity and liver dosimetry is typically performed on (90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, (90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of (90Y and on the accuracy of liver dosimetry. METHODOLOGY/PRINCIPAL FINDINGS: SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere to 11% (37-mm sphere for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. CONCLUSIONS/SIGNIFICANCE: In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the

  6. Human Dosimetry and Preliminary Tumor Distribution of 18F-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast Cancer Patients Using PET/CT

    Science.gov (United States)

    Kurdziel, Karen A.; Kalen, Joseph D.; Hirsch, Jerry I.; Wilson, John D.; Bear, Harry D.; Logan, Jean; McCumisky, James; Moorman-Sykes, Kathy; Adler, Stephen; Choyke, Peter L.

    2011-01-01

    18F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that 18F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, 18F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. Methods After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of 18F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ 18F residence times were determined from the time–activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Results Dosimetry calculations showed that the gallbladder received the highest dose (229.50 μGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 μGy/MBq [0.597 rad/mCi] and 184.59 μGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 μGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of 18F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. Conclusion This study demonstrates the

  7. Human Dosimetry and Preliminary Tumor Distribution of (superscript)18F-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast Cancer Patients Using PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kurdziel, K.A.; Logan, J.; Kurdziel, K.A.; Kalen, J.D.; Hirsch, J.I.; Wilson, J.D.; Bear, H.D.; Logan, J.; McCumisky, J.; Moorman-Sykes, K.; Adler, S.; Choyke, P.L.

    2011-08-17

    {sup 18}F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that {sup 18}F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, {sup 18}F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of {sup 18}F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ {sup 18}F residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Dosimetry calculations showed that the gallbladder received the highest dose (229.50 {mu}Gy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 {mu}Gy/MBq [0.597 rad/mCi] and 184.59 {mu}Gy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 {mu}Gy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of {sup 18}F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. This study

  8. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier.

    Science.gov (United States)

    Syvänen, Stina; Eriksson, Jonas

    2013-02-20

    Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders.

  9. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  10. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging

    Science.gov (United States)

    Tashima, Hideaki; Yamaya, Taiga

    2016-10-01

    For dedicated brain PET, we can significantly improve sensitivity for the cerebrum region by arranging detectors in a compact hemisphere. The geometrical sensitivity for the top region of the hemisphere is increased compared with conventional cylindrical PET consisting of the same number of detectors. However, the geometrical sensitivity at the center region of the hemisphere is still low because the bottom edge of the field-of-view is open, the same as for the cylindrical PET. In this paper, we proposed a helmet PET with add-on detectors for high sensitivity brain PET imaging for both center and top regions. The key point is the add-on detectors covering some portion of the spherical surface in addition to the hemisphere. As the location of the add-on detectors, we proposed three choices: a chin detector, ear detectors, and a neck detector. For example, the geometrical sensitivity for the region-of-interest at the center was increased by 200% by adding the chin detector which increased the size by 12% of the size of the hemisphere detector. The other add-on detectors gave almost the same increased sensitivity effect as the chin detector did. Compared with standard whole-body-cylindrical PET, the proposed geometries can achieve 2.6 times higher sensitivity for brain region even with less than 1/4 detectors. In addition, we conducted imaging simulations for geometries with a diameter of 250 mm and with high resolution depth-of-interaction detectors. The simulation results showed that the proposed geometries increased image quality, and all of the add-on detectors were equivalently effective. In conclusion, the proposed geometries have high potential for widespread applications in high-sensitivity, high-resolution, and low-cost brain PET imaging.

  11. 3D PET image reconstruction based on Maximum Likelihood Estimation Method (MLEM) algorithm

    CERN Document Server

    Słomski, Artur; Bednarski, Tomasz; Białas, Piotr; Czerwiński, Eryk; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Molenda, Marcin; Moskal, Paweł; Niedźwiecki, Szymon; Pałka, Marek; Pawlik, Monika; Raczyński, Lech; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Michał; Smyrski, Jerzy; Strzelecki, Adam; Wiślicki, Wojciech; Zieliński, Marcin; Zoń, Natalia

    2015-01-01

    Positron emission tomographs (PET) do not measure an image directly. Instead, they measure at the boundary of the field-of-view (FOV) of PET tomograph a sinogram that consists of measurements of the sums of all the counts along the lines connecting two detectors. As there is a multitude of detectors build-in typical PET tomograph structure, there are many possible detector pairs that pertain to the measurement. The problem is how to turn this measurement into an image (this is called imaging). Decisive improvement in PET image quality was reached with the introduction of iterative reconstruction techniques. This stage was reached already twenty years ago (with the advent of new powerful computing processors). However, three dimensional (3D) imaging remains still a challenge. The purpose of the image reconstruction algorithm is to process this imperfect count data for a large number (many millions) of lines-of-responce (LOR) and millions of detected photons to produce an image showing the distribution of the l...

  12. Statistical image reconstruction methods in PET with compensation for missing data

    Energy Technology Data Exchange (ETDEWEB)

    Kinahan, P.E. [Univ. of Pittsburgh, PA (United States); Fessler, J.A.; Karp, J.S.

    1996-12-31

    We present the results of combining volume imaging with the PENN-PET scanner with statistical image reconstruction methods such as the penalized weighted least squares (PWLS) method. The goal of this particular combination is to improve both classification and estimation tasks in PET imaging protocols where image quality is dominated by spatially-variant system responses and/or measurement statistics. The PENN-PET scanner has strongly spatially-varying system behavior due to its volume imaging design and the presence of detector gaps. Statistical methods are easily adapted to this scanner geometry, including the detector gaps, and have also been shown to have improved bias/variance trade-offs compared to the standard filtered-backprojection (FBP) reconstruction method. The PWLS method requires fewer iterations and may be more tolerant of errors in the system model than other statistical methods. We present results demonstrating the improvement in image quality for PWLS image reconstructions of data from the PENN-PET scanner.

  13. Cyclotron production of {sup 43}Sc for PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walczak, Rafał [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Krajewski, Seweryn [Synektik S.A., Research and Development Center, Warsaw (Poland); Szkliniarz, Katarzyna [Department of Nuclear Physics, University of Silesia, Katowice (Poland); Sitarz, Mateusz [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland); Abbas, Kamel [Nuclear Security Unit, Joint Research Centre, Institute for Transuranium Elements, European Commission, Ispra (Italy); Choiński, Jarosław; Jakubowski, Andrzej; Jastrzębski, Jerzy [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland); Majkowska, Agnieszka [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Simonelli, Federica [Nuclear Decommissioning Unit, Joint Research Centre, Ispra Site Management Directorate, European Commission, Ispra (Italy); Stolarz, Anna; Trzcińska, Agnieszka [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland); Zipper, Wiktor [Department of Nuclear Physics, University of Silesia, Katowice (Poland); Bilewicz, Aleksander [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)

    2015-12-04

    Recently, significant interest in {sup 44}Sc as a tracer for positron emission tomography (PET) imaging has been observed. Unfortunately, the co-emission by {sup 44}Sc of high-energy γ rays (E{sub γ} = 1157, 1499 keV) causes a dangerous increase of the radiation dose to the patients and clinical staff. However, it is possible to produce another radionuclide of scandium—{sup 43}Sc—having properties similar to {sup 44}Sc but is characterized by much lower energy of the concurrent gamma emissions. This work presents the production route of {sup 43}Sc by α irradiation of natural calcium, its separation and purification processes, and the labeling of [DOTA,Tyr3] octreotate (DOTATATE) bioconjugate. Natural CaCO{sub 3} and enriched [{sup 40}Ca]CaCO{sub 3} were irradiated with alpha particles for 1 h in an energy range of 14.8–30 MeV at a beam current of 0.5 or 0.25 μA. In order to find the optimum method for the separation of {sup 43}Sc from irradiated calcium targets, three processes previously developed for {sup 44}Sc were tested. Radiolabeling experiments were performed with DOTATATE radiobioconjugate, and the stability of the obtained {sup 43}Sc-DOTATATE was tested in human serum. Studies of {sup nat}CaCO{sub 3} target irradiation by alpha particles show that the optimum alpha particle energies are in the range of 24–27 MeV, giving 102 MBq/μA/h of {sup 43}Sc radioactivity which creates the opportunity to produce several GBq of {sup 43}Sc. The separation experiments performed indicate that, as with {sup 44}Sc, due to the simplicity of the operations and because of the chemical purity of the {sup 43}Sc obtained, the best separation process is when UTEVA resin is used. The DOTATATE conjugate was labeled by the obtained {sup 43}Sc with a yield >98 % at elevated temperature. Tens of GBq activities of {sup 43}Sc of high radionuclidic purity can be obtainable for clinical applications by irradiation of natural calcium with an alpha beam.

  14. Solitary Plasmacytoma of the Sternum Mimicking Bone Metastasis in a Patient with a History of Breast Cancer Evaluated by F-18-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Treglia, Giorgio; Luca, Giovanella [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Barbara, Muoio; Carmelo, Caldarella [Catholic Univ., Rome (Italy)

    2014-06-15

    A 65-year-old woman with a history of breast cancer (stage T2N0M0 treated with left breast conservative therapy 7 years previously followed by hormone therapy) underwent fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (F-18-FDG PET/CT) for restaging due to increased serum tumour markers levels (CA15-3, 37 U/ml and CEA, 8 ng/ml). The patient presented thoracic pain before performing F-18-FDG PET/CT. PET/CT demonstrated an area of increased F-18-FDG uptake corresponding to an osteolytic lesion occupying the upper sternum suspicious for bone metastasis. No other areas of abnormal F-18-FDG uptake were detected in the rest of the body. Based on this PET/CT finding, the patient performed biopsy of the sternal lesion. Histology demonstrated the presence of a sternal plasmacytoma and the patient was addressed to radiation therapy. The role of F-18-FDG PET/CT in patients with multiple myeloma is well known, whereas only some articles evaluated the usefulness of this method in patients with solitary plasmacytomas. In particular, F-18-FDG PET/CT may be useful in demonstrating the evolution of solitary plasmacytomas in multiple myeloma. In our case F-18-FDG PET/CT was useful in detecting a solitary plasmacytoma of the sternum mimicking bone metastasis in a patient with history of breast cancer, correctly addressing to further histological evaluation.

  15. Role of F-18 FDG PET/CT imaging in the diagnosis of paraneoplastic neurological syndromes

    Institute of Scientific and Technical Information of China (English)

    Lei Kang; Xiaojie Xu; Hongwei Sun; Rongfu Wang

    2014-01-01

    Paraneoplastic neurological syndromes (PNS) is a series of rare neurologic disorders which happen with an underlying malignancy. It has various clinical symptoms proceding to the diagnosis of tumors. Although the abnormality of anti-neuronal antibodies is suggestive of PNS and tumors, there exist many false positive and false negative cases. The diagnosis of PNS is usualy a chalenge in clinic. Positron emission tomography/computed tomography (PET/CT) imaging is an anatomical and functional fusion imaging method, which provides the whole-body information by single scan. Fluorodeoxy-glucose (FDG) PET/CT imaging can not only detect potential malignant lesions in the whole body, but also assess functional abnormality in the brain. In this review, the mechanism, clinical manifestation, diagnostic procedure and the recent progress of the utility of FDG PET/CT in PNS are introduced respectively.

  16. A Potential Dubin-Johnson Syndrome Imaging Agent: Synthesis, Biodistribution, and MicroPET Imaging

    Directory of Open Access Journals (Sweden)

    Jeongsoo Yoo

    2005-01-01

    Full Text Available Dubin-Johnson syndrome (DJS is caused by a deficiency of the human canalicular multispecific organic anion transporter (cMOAT. A new lipophilic copper-64 complex of 1,4,7-tris(carboxymethyl-10-(tetradecyl-1,4,7,10-tetraazadodecane (5 was prepared and evaluated for potential as a diagnostic tool for DJS. The prepared ligand was labeled with 64Cu citrate in high radiochemical purity. In vivo uptake and clearance of the complex was determined through biodistribution studies using normal Sprague-Dawley rats and mutant cMOAT-deficient (TR− rats. In normal rats, the radioactive copper complex was cleared quickly from the body exclusively through the hepatic pathway. The 64Cu complex was taken up rapidly by the liver and quickly excreted into the small intestine and then the upper large intestine, whereas < 1% ID/organ was found in the kidney at all time points post injection. Whereas activity was accumulated continuously in the liver of TR− rats, it was not excreted into the small intestine. MicroPET studies of normal and TR rats were consistent with biodistribution data and showed dramatically different images. This study strongly suggests that cMOAT is involved in excretion of 64Cu-5. The significant difference between the biodistribution data and microPET images of the normal and TR− rats demonstrates that this new 64Cu complex may allow noninvasive diagnosis of DJS in humans.

  17. Dual-time-point Imaging and Delayed-time-point Fluorodeoxyglucose-PET/Computed Tomography Imaging in Various Clinical Settings

    DEFF Research Database (Denmark)

    Houshmand, Sina; Salavati, Ali; Antonsen Segtnan, Eivind;

    2016-01-01

    The techniques of dual-time-point imaging (DTPI) and delayed-time-point imaging, which are mostly being used for distinction between inflammatory and malignant diseases, has increased the specificity of fluorodeoxyglucose (FDG)-PET for diagnosis and prognosis of certain diseases. A gradually...

  18. PET Imaging of Estrogen Metabolism in Breast Cancer

    Science.gov (United States)

    2001-06-01

    Implications for Abuse Liability of Oral Methylphenidate . Nature, (submitted, 1998). Volkow ND, Wang GJ., Fowler JS, Ding YS, Gur RC, Gatley SJ, Logan...Gatley SJ, Ding Y-S: Dopamine Transporter Occupancies After Therapeutic Doses of Oral Methylphenidate : Implications for its Abuse Liability. New Engl J...Metabolism By Methylphenidate In Cocaine Abusers Is Associated With Drug Craving: Implications In Drug Addiction. Science (Submitted). Volkow ND, Wang G

  19. PET Radiotracers for Imaging the Proliferation Status of Breast Tumors

    Science.gov (United States)

    2004-12-01

    The mice were implanted in the scapular region 7 days prior to the study. Animals were injected with 100-150 gCi of the "iC-labeled radiotracer and...preparative HPLC using 17.5 % THF/82.5 % of 0.1M ammonium formate (with 0.1% formic acid) buffer at pH = 4.0 as the mobile phase (flow rate = 4.0 mL/min

  20. Application of fusion of coincidence PET/CT image and dual source CT image in diagnosis of tumors%经济型PET/CT与双源CT异机融合在肿瘤诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    苏雪娟; 鲍红梅; 刘帆; 李运奇; 高琼

    2012-01-01

    Objective To explore the value of fusion of coincidence PET/CT image and dual source CT image in comparison of fused imaging quality. Methods Integration of coincidence PET/CT PET images with dual source CT images was performed in 29 cases with suspected tumor or tumor recurrence or metastasis, and the image quality was compared with that of PET/CT in fused images. Results Forty-six primary or metastic tumors were detected by both methods. The image quality in fused imaging of stand-alone coincidence PET/CT with dual source CT was better than that of coincidence PET/CT in fused images (X2 = 14. 743, P<0. 001). Conclusion The integration of stand-alone coincidence PET/CT and dual source CT is convenient and practical,having complementary advantages, which may improve image quality and help clinical diagnosis and treatment of tumors.%目的 通过对比分析经济型PET/CT与双源CT异机融合的图像质量,探讨异机融合的临床应用价值.方法 对29例可疑肿瘤或肿瘤复发转移患者行经济型PET/CT的PET与双源CT图像融合,并与同机融合图像质量进行对比分析.结果 两种方法均检出原发灶和转移灶共46个,异机融合图像质量优于同机融合(x2=14.743,P<0.001).结论 双源CT与经济型PET/CT异机融合,方便实用,优势互补,可提高图像质量,对临床诊断和治疗肿瘤有重要价值.

  1. uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer

    DEFF Research Database (Denmark)

    Christensen, Anders; Juhl, Karina; Persson, Morten

    2017-01-01

    xenograft tongue cancer model. EXPERIMENTAL DESIGN AND RESULTS: Tumor growth of tongue cancer was monitored by bioluminescence imaging (BLI) and MRI. Either ICG-Glu-Glu-AE105 (fluorescent agent) or 64Cu-DOTA-AE105 (PET agent) was injected systemically, and fluorescence imaging or PET/CT imaging...

  2. Automated quality assessment in three-dimensional breast ultrasound images.

    Science.gov (United States)

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects.

  3. A study of the changes of breast uptake in menstrual cycle on {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Tak, Yeo Jin [Dept. of Radiological Technology, Shingu College, Sungnam (Korea, Republic of); Park, Min Soo [Dept. of Nuclear Medicine, Severance Hospital, Yonsei University Health System, Seoul (Korea, Republic of); Lee, Ju Young [Graduate School of Public Health, Yonsei University, Seoul (Korea, Republic of)

    2015-04-15

    {sup 18}F-FDG PET/CT has been known a useful modality to diagnose high-glucose-using cells such as cancer cells by glucose metabolism of FDG. Mainly, FDG takes on cancer and inflammatory cells; however, there have been FDG uptakes on normal tissues by individual physiological characteristics, occasionally. Especially, in fertile females, unusual FDG uptake of breast changes as the menstrual cycle, and disturb diagnosis. Therefore, the study aimed to evaluate the change of breast FDG uptake in menstrual cycle on {sup 18}F-FDG PET/CT. 160 females (34±3.5 years old) who do not undergo a gynecologic anamnesis and have regular menstrual cycle over the previous 6 months were examined. They were divided 4 groups (each 40 patients) as flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator 0.14. and history taking. Discovery Ste (GE Healthcare, Milwaukee, Mi, USA) was used a s PET/CT. We analyzed SUVs on a ccumulated r egion on b reast, and 3 nuclear medicine specialists did the Blind test. SUVs on the Breast were flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). It showed high uptake value in secretory, flow phase and ovulatory phase (p<0.05). In gross analysis, the accumulation of breast was divided into 3 grades as comparing with lung and liver. The breast’s uptake was equal to lung (Grade Ⅰ); between lung and liver (Grade II); equal to or greater than liver (Grade III). The results showed high uptake value in secretory, flow phase and ovulatory phase (p<0.05). In fertile females, FDG uptake of breast changed as menstrual cycle, and it available to diagnose breast disease. Therefore, we consider reducing false-negative finding of breast disease, by doing examination on appropriate period through history taking about individual menstrual cycle.

  4. Patch-based image reconstruction for PET using prior-image derived dictionaries

    Science.gov (United States)

    Tahaei, Marzieh S.; Reader, Andrew J.

    2016-09-01

    In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.

  5. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light...... with a DLP projector and a CCD camera is set up on a model of the High Resolution Research Tomograph (HRRT). Methods to reconstruct 3D point clouds of simple surfaces based on phase-shifting interferometry (PSI) are demonstrated. The projector and camera are calibrated using a simple stereo vision procedure...

  6. Combining MRI with PET for partial volume correction improves image-derived input functions in mice

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Eleanor; Buonincontri, Guido [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Izquierdo, David [Athinoula A Martinos Centre, Harvard University, Cambridge, MA (United States); Methner, Carmen [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Hawkes, Rob C [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Ansorge, Richard E [Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kreig, Thomas [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Carpenter, T Adrian [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Sawiak, Stephen J [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge (United Kingdom)

    2014-07-29

    Kinetic modelling in PET requires the arterial input function (AIF), defined as the time-activity curve (TAC) in plasma. This measure is challenging to obtain in mice due to low blood volumes, resulting in a reliance on image-based methods for AIF derivation. We present a comparison of PET- and MR-based region-of-interest (ROI) analysis to obtain image-derived AIFs from the left ventricle (LV) of a mouse model. ROI-based partial volume correction (PVC) was performed to improve quantification.

  7. MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland)

    2014-07-29

    The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-of-flight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA-Salomon in brain TOF-PET/MR imaging.

  8. Spectral imaging of breast fibroadenoma using second-harmonic generation

    Science.gov (United States)

    Zheng, Liqin; Wang, Yuhua

    2014-09-01

    Fibroadenoma (FA), typically composed of stroma and epithelial cells, is a very common benign breast disease. Women with FA are associated with an increased risk of future breast cancer. The objective of this study was to demonstrate the potential of multiphoton laser scanning microscopy (MPLSM) for characterizing the morphology of collagen in the human breast fibroadenomas. In the study, high-contrast SHG images of human normal breast tissues and fibroadenoma tissues were obtained for comparison. The morphology of collagen was different between normal breast tissue and fibroadenoma. This study shows that MPLSM has the ability to distinguish fibroadenoma tissues from the normal breast tissues based on the noninvasive SHG imaging. With the advent of the clinical portability of miniature MPLSM, we believe that the technique has great potential to be used in vivo studies and for monitoring the treatment responses of fibroadenomas in clinical.

  9. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  10. Neuroradiological advances detect abnormal neuroanatomy underlying neuropsychological impairments: the power of PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hayempour, Benjamin Jacob; Alavi, Abass [Hospital of the University of Pennsylvania, Institute of Neurological Sciences, Department of Radiology, Division of Nuclear Medicine, Philadelphia, PA (United States)

    2013-09-15

    Medical imaging has made a major contribution to cerebral dysfunction due to inherited diseases, as well as injuries sustained with modern living, such as car accidents, falling down, and work-related injuries. These injuries, up until the introduction of sensitive techniques such as positron emission tomography (PET), were overlooked because of heavy reliance on structural imaging techniques such as MRI and CT. These techniques are extremely insensitive for dysfunction caused by such underlying disorders. We believe that the use of these highly powerful functional neuroimaging technologies, such as PET, has substantially improved our ability to assess these patients properly in the clinical setting, to determine their natural course, and to assess the efficacy of various interventional detections. As such the contribution from the evolution of PET technology has substantially improved our knowledge and ability over the past 3 decades to help patients who are the victims of serious deficiencies due to these injuries. In particular, in recent years the use of PET/CT and soon PET/MRI will provide the best option for a structure-function relationship in these patients. We are of the belief that the clinical effectiveness of PET in managing these patients can be translated to the use of this important approach in bringing justice to the victims of many patients who are otherwise uncompensated for disorders that they have suffered without any justification. Therefore, legally opposing views about the relevance of PET in the court system by some research groups may not be justifiable. This has proven to be the case in many court cases, where such imaging techniques have been employed either for criminal or financial compensation purposes in the past 2 decades. (orig.)

  11. Development of a simultaneous optical/PET imaging system for awake mice

    Science.gov (United States)

    Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga

    2016-09-01

    Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.

  12. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study

    Science.gov (United States)

    Petibon, Y.; El Fakhri, G.; Nezafat, R.; Johnson, N.; Brady, T.; Ouyang, J.

    2014-03-01

    Coronary atherosclerotic plaque rupture is the main cause of myocardial infarction and the leading killer in the US. Inflammation is a known bio-marker of plaque vulnerability and can be assessed non-invasively using fluorodeoxyglucose-positron emission tomography imaging (FDG-PET). However, cardiac and respiratory motion of the heart makes PET detection of coronary plaque very challenging. Fat surrounding coronary arteries allows the use of MRI to track plaque motion during simultaneous PET-MR examination. In this study, we proposed and assessed the performance of a fat-MR based coronary motion correction technique for improved FDG-PET coronary plaque imaging in simultaneous PET-MR. The proposed methods were evaluated in a realistic four-dimensional PET-MR simulation study obtained by combining patient water-fat separated MRI and XCAT anthropomorphic phantom. Five small lesions were digitally inserted inside the patients coronary vessels to mimic coronary atherosclerotic plaques. The heart of the XCAT phantom was digitally replaced with the patient's heart. Motion-dependent activity distributions, attenuation maps, and fat-MR volumes of the heart, were generated using the XCAT cardiac and respiratory motion fields. A full Monte Carlo simulation using Siemens mMR's geometry was performed for each motion phase. Cardiac/respiratory motion fields were estimated using non-rigid registration of the transformed fat-MR volumes and incorporated directly into the system matrix of PET reconstruction along with motion-dependent attenuation maps. The proposed motion correction method was compared to conventional PET reconstruction techniques such as no motion correction, cardiac gating, and dual cardiac-respiratory gating. Compared to uncorrected reconstructions, fat-MR based motion compensation yielded an average improvement of plaque-to-background contrast of 29.6%, 43.7%, 57.2%, and 70.6% for true plaque-to-blood ratios of 10, 15, 20 and 25:1, respectively. Channelized

  13. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, Ronald; Hoekstra, Otto S. [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Delgado-Bolton, Roberto [University of La Rioja, Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro Hospital and Centre for Biomedical Research of La Rioja (CIBIR), Logrono, La Rioja (Spain); Oyen, Wim J.G.; Visser, Eric [Radboud University Nijmegen Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Giammarile, Francesco [Centre Hospitalier Universitaire de Lyon, Department of Nuclear Medicine, Lyon (France); Tatsch, Klaus [Municipal Hospital Karlsruhe Inc., Department of Nuclear Medicine, Karlsruhe (Germany); Eschner, Wolfgang [University of Cologne, Department of Nuclear Medicine, Cologne (Germany); Verzijlbergen, Fred J. [Erasmus Medical Center, Department of Nuclear Medicine, Rotterdam (Netherlands); Barrington, Sally F.; Pike, Lucy C. [King' s College London, King' s Health Partners, PET Imaging Centre, St Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Weber, Wolfgang A. [Memorial Sloan Kettering Center, Department of Radiology, New York, NY (United States); Stroobants, Sigrid [Antwerp University Hospital, Department of Nuclear Medicine, Antwerp (Belgium); Delbeke, Dominique [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Donohoe, Kevin J. [Beth Israel Deaconess Medical Center, Boston, MA (United States); Holbrook, Scott [Invivo Molecular Imaging LLC, Gray, TN (United States); Graham, Michael M. [University of Iowa, Department of Radiology, Iowa City, IA (United States); Testanera, Giorgio; Chiti, Arturo [Humanitas Clinical and Research Center, Department of Nuclear Medicine, Rozzano, MI (Italy); Zijlstra, Josee [VU University Medical Centre, Department of Hematology, Amsterdam (Netherlands); Hoekstra, Corneline J. [Jeroen Bosch Hospital, Department of Nuclear Medicine, Den Bosch (Netherlands); Pruim, Jan; Willemsen, Antoon [University Medical Centre Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Arends, Bertjan [Catharina Hospital, Department of Clinical Physics, Eindhoven (Netherlands); Kotzerke, Joerg [University Hospital Dresden, Clinic and Outpatient Clinic for Nuclear Medicine, Dresden (Germany); Bockisch, Andreas [University Hospital Essen, Clinic for Nuclear Medicine, Essen (Germany); Beyer, Thomas [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Vienna (Austria); Krause, Bernd J. [University Hospital Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2014-12-02

    The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for d