WorldWideScience

Sample records for breast pet imaging

  1. Breast PET/MR Imaging.

    Science.gov (United States)

    Melsaether, Amy; Moy, Linda

    2017-05-01

    Breast and whole-body PET/MR imaging is being used to detect local and metastatic disease and is being investigated for potential imaging biomarkers, which may eventually help personalize treatments and prognoses. This article provides an overview of breast and whole-body PET/MR exam techniques, summarizes PET and MR breast imaging for lesion detection, outlines investigations into multi-parametric breast PET/MR, looks at breast PET/MR in the setting of neo-adjuvant chemotherapy, and reviews the pros and cons of whole-body PET/MR in the setting of metastatic or suspected metastatic breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Toward simultaneous PET/MR breast imaging: systematic evaluation and integration of a radiofrequency breast coil.

    Science.gov (United States)

    Aklan, Bassim; Paulus, Daniel H; Wenkel, Evelyn; Braun, Harald; Navalpakkam, Bharath K; Ziegler, Susanne; Geppert, Christian; Sigmund, Eric E; Melsaether, Amy; Quick, Harald H

    2013-02-01

    With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance (PET/MR) scanners, simultaneous PET/MR breast imaging appears to be a potentially attractive new clinical application. In this study, the technical groundwork toward performing simultaneous PET/MR breast imaging was developed and systematically evaluated in phantom experiments and breast cancer patient hybrid imaging. Measurements were performed on a state-of-the-art whole-body simultaneous PET/MR system (Biograph mMR, Siemens AG, Erlangen, Germany). The PET signal attenuating effects of a MR-only four-channel radiofrequency (RF) breast coil that is present in the PET field-of-view (FoV) during a simultaneous PET/MR data acquisition has been investigated and quantified. For this purpose, a dedicated PET/MR visible breast phantom featuring four modular inserts with various structures (no insert, MR insert, PET insert, and PET/MR insert) was developed. In addition to a systematic evaluation of MR-only image quality, the following phantom scans were performed using (18)F radio tracer: (1) PET emission scan with only the homogeneous breast phantom; (2) PET emission scan additionally with the RF breast coil in the PET FoV. Attenuation correction (AC) of PET data was performed with CT-based three-dimensional (3D) hardware attenuation maps (μ-maps) of the RF coil and breast phantom. Finally, a simultaneous PET/MR breast imaging was performed in two breast cancer patients. The modular breast phantom allowed for systematic evaluation of various MR, PET, and PET/MR image quality parameters. The RF breast coil provided MR images of good image quality, unaffected by PET imaging. The global attenuation of the RF breast coil on the PET emission data was approximately 11%. This hardware attributed PET signal attenuation was successfully corrected by using an appropriate CT-based 3D μ-map of the RF breast coil. Imaging of two breast cancer patients confirmed the

  3. Zr-89- Bevacizumab PET Imaging in Primary Breast Cancer

    NARCIS (Netherlands)

    Gaykema, Sietske B. M.; Brouwers, Adrienne H.; Lub-de Hooge, Marjolijn N.; Pleijhuis, Rick G.; Timmer-Bosscha, Hetty; Pot, Linda; van Dam, Gooitzen M.; van der Meulen, Sibylle B.; de Jong, Johan R.; Bart, Joost; de Vries, Jakob; Jansen, Liesbeth; de Vries, Elisabeth G. E.; Schroder, Carolien P.

    2013-01-01

    Vascular endothelial growth factor (VEGF)-A is overexpressed in most malignant and premalignant breast lesions. VEGF-A can be visualized noninvasively with PET imaging and using the tracer Zr-89-labeled bevacizumab. In this clinical feasibility study, we assessed whether VEGF-A in primary breast

  4. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  5. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  6. 89Zr-bevacizumab PET imaging in primary breast cancer

    NARCIS (Netherlands)

    Gaykema, Sietske B M; Brouwers, Adrienne H; Lub-de Hooge, Marjolijn N; Pleijhuis, Rick G; Timmer-Bosscha, Hetty; Pot, Linda; van Dam, Gooitzen M; van der Meulen, Sibylle B; de Jong, Johan R; Bart, Joost; de Vries, Jakob; Jansen, Liesbeth; de Vries, Elisabeth G. E.; Schröder, Carolien P; de Vries, J

    UNLABELLED: Vascular endothelial growth factor (VEGF)-A is overexpressed in most malignant and premalignant breast lesions. VEGF-A can be visualized noninvasively with PET imaging and using the tracer (89)Zr-labeled bevacizumab. In this clinical feasibility study, we assessed whether VEGF-A in

  7. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Document Server

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  8. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  9. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    OpenAIRE

    Dregely, Isabel; Lanz, Titus; Metz, Stephan; Mueller, Matthias F; Kuschan, Marika; Nimbalkar, Manoj; Ralph A. Bundschuh; Ziegler, Sibylle I; Haase, Axel; Nekolla, Stephan G.; Schwaiger, Markus

    2016-01-01

    OBJECTIVES: To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer.METHODS: A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative (18) F-FDG...

  10. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer.

    Science.gov (United States)

    Dregely, Isabel; Lanz, Titus; Metz, Stephan; Mueller, Matthias F; Kuschan, Marika; Nimbalkar, Manoj; Bundschuh, Ralph A; Ziegler, Sibylle I; Haase, Axel; Nekolla, Stephan G; Schwaiger, Markus

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative (18) F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. • State-of-the-art breast MRI using a dedicated PET/MR breast coil is feasible. • A multi-channel design facilitates shorter MR acquisition times via parallel imaging. • An MR coil inside a simultaneous PET/MR system causes PET photon attenuation. • Including a coil CT-template in PET image reconstruction results in recovering accurate quantification.

  11. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dregely, Isabel [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Department of Radiological Sciences, Los Angeles, CA (United States); Lanz, Titus; Mueller, Matthias F. [Rapid Biomedical GmbH, Rimpar (Germany); Metz, Stephan [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer diagnostische und interventionelle Radiologie, Munich (Germany); Kuschan, Marika [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); IMETUM, Technische Universitaet Muenchen, Munich (Germany); Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Bundschuh, Ralph A. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Universitaetsklinikum Bonn, Nuklearmedizinische Klinik, Bonn (Germany); Haase, Axel [IMETUM, Technische Universitaet Muenchen, Munich (Germany)

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative {sup 18} F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  12. Current status of PET in breast cancer imaging, staging, and therapy.

    Science.gov (United States)

    Wahl, R L

    2001-07-01

    The exact roles of PET in the imaging management of patients with known or suspected breast cancer are still in evolution. For assessing primary lesions, it is sometimes possible with PET to detect cancers occult on standard methods. This could be useful in high-risk patient populations, but in dense breasts, background FDG uptake is often higher than in women with fatty breasts, making identification of lesions primary breast disease would seem better addressed by biopsy. With a positive predictive value of FDG PET for cancer over 96%, any FDG-avid breast lesion is highly suspicious and merits biopsy. Although PET in theory should be useful for depicting multifocal disease before surgery, the limitations in detecting small lesions in the breast limit the contribution of PET at present. It is most likely that PET will have a greater role in depicting primary breast lesions as dedicated PET imaging devices for the breast evolve. For axillary and internal mammary nodal staging, results with FDG PET are variable. Small nodal metastases setting is not known, nor is there consensus on how identifying internal mammary node metastases will change treatment. Based on the available data, for pT1 breast lesions, PET, if negative, is not an adequate replacement for sentinel node surgery or axillary dissection. Results from the multicenter trial will be of great interest. Clearly PET can stage metastatic disease well. Bone scans with 18F- are exquisitely sensitive for metastases, and FDG is also very good. However, FDG PET can miss some blastic metastases to bone so at present FDG is not capable of excluding the presence of bone metastases. PET seems very well suited to detecting recurrences in soft tissues and the brachial plexus region in particular. The utility of PET in planning the treatment of individual patients appears promising. Although results must be confirmed in larger studies, it appears safe to conclude that failure of a chemotherapy regimen to decrease FDG

  13. FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, K.; Seemann, M.D. [Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Strasse 22, 81675, Munich (Germany); Walter, C. [Department of Diagnostic Radiology, Krankenhaus der Barmherzigen Brueder, Trier (Germany)

    2004-06-01

    Mammography is the primary imaging modality for screening of breast cancer and evaluation of breast lesions (T staging). Ultrasonography is an adjunctive tool for mammographically suspicious lesions, in patients with mastopathy and as guidance for reliable histological diagnosis with percutaneous biopsy. Dynamic enhanced magnetic resonance mammography (MRM) has a high sensitivity for the detection of breast cancer, but also a high false positive diagnosis rate. In the literature, MRM is reported to have a sensitivity of 86-96%, a specificity of 64-91%, an accuracy of 79-93%, a positive predictive value (PPV) of 77-92% and a negative predictive value (NPV) of 75-94%. In unclarified cases, metabolic imaging using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) can be performed. In the literature, FDG PET is reported to have a sensitivity of 64-96%, a specificity of 73-100%, an accuracy of 70-97%, a PPV of 81-100% and an NPV of 52-89%. Furthermore, PET or PET/CT using FDG has an important role in the assessment of N and M staging of breast cancer, the prediction of tumour response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy, and the differentiation of scar and cancer recurrence. Other functional radionuclide-based diagnostic tools, such as scintimammography with sestamibi, peptide scintigraphy or immunoscintigraphy, have a lower accuracy than FDG PET and, therefore, are appropriate only for exceptional indications. (orig.)

  14. Molecular imaging using PET and SPECT for identification of breast cancer subtypes.

    Science.gov (United States)

    Liu, Hao; Chen, Yao; Wu, Shuang; Song, Fahuan; Zhang, Hong; Tian, Mei

    2016-11-01

    Breast cancer is a major disease with high morbidity and mortality in women. As a highly heterogeneous tumor, it contains different molecular subtypes: luminal A, luminal B, human epidermal growth factor 2-positive, and triple-negative subtypes. As each subtype has unique features, it may not be universal to the optimal treatment and expected response for individual patients. Therefore, it is critical to identify different breast cancer subtypes. Targeting subcellular levels, molecular imaging, especially PET and single photon emission computed tomography, has become a promising means to identify breast cancer subtypes and monitor treatment. Different biological processes between various subtypes, including changes correlated with receptor expression, cell proliferation, or glucose metabolism, have the potential for imaging with PET and single photon emission computed tomography radiopharmaceuticals. Receptor imaging, with radiopharmaceuticals targeting estrogen receptor, progesterone receptor, or human epidermal growth factor 2, is available to distinguish receptor-positive tumors from receptor-negative ones. Cell proliferation imaging with fluorine-18 fluorothymidine PET aids identification of luminal A and B subtypes on the basis of the correlation with the immunohistochemical biomarker Ki-67. Glucose metabolism imaging with fluorine-18 fluorodeoxyglucose PET may have potential to discriminate triple-negative subtypes from others. With increasing numbers of novel radiopharmaceuticals, noninvasive molecular imaging will be applied widely for the identification of different subtypes and provide more in-vivo information on individualized management of breast cancer patients.

  15. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    Science.gov (United States)

    Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi

    2011-06-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).

  16. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    CERN Document Server

    Dang, J; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Soni...

  17. {sup 68}Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Sathekge, Mike; Lengana, Thabo; Modiselle, Moshe; Vorster, Mariza; Zeevaart, JanRijn; Ebenhan, Thomas [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); Maes, Alex [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); AZ Groeninge, Department of Nuclear Medicine, Kortrijk (Belgium); Wiele, Christophe van de [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); University Ghent, Department of Radiology and Nuclear Medicine, Ghent (Belgium)

    2017-04-15

    To report on imaging findings using {sup 68}Ga-PSMA-HBED-CC PET in a series of 19 breast carcinoma patients. {sup 68}Ga-PSMA-HBED-CC PET imaging results obtained were compared to routinely performed staging examinations and analyzed as to lesion location and progesterone receptor status. Out of 81 tumor lesions identified, 84% were identified on {sup 68}Ga-PSMA-HBED-CC PET. {sup 68}Ga-PSMA-HBED-CC SUVmean values of distant metastases proved significantly higher (mean, 6.86, SD, 5.68) when compared to those of primary or local recurrences (mean, 2.45, SD, 2.55, p = 0.04) or involved lymph nodes (mean, 3.18, SD, 1.79, p = 0.011). SUVmean values of progesterone receptor-positive lesions proved not significantly different from progesterone receptor-negative lesions. SUV values derived from FDG PET/CT, available in seven patients, and {sup 68}Ga-PSMA-HBED-CC PET/CT imaging proved weakly correlated (r = 0.407, p = 0.015). {sup 68}Ga-PSMA-HBED-CC PET/CT imaging in breast carcinoma confirms the reported considerable variation of PSMA expression on human solid tumors using immunohistochemistry. (orig.)

  18. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of 1.6 mm (2.2×2.2×20 mm3 crystal) and 0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  19. Integrated PET/MR breast cancer imaging: Attenuation correction and implementation of a 16-channel RF coil.

    Science.gov (United States)

    Oehmigen, Mark; Lindemann, Maike E; Lanz, Titus; Kinner, Sonja; Quick, Harald H

    2016-08-01

    This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating and applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at positions closer to

  20. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2000-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O- methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  1. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2001-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O-methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  2. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2002-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O-methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  3. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2001-01-01

    .... We have developed 18Fro41-0960, the first radiotracer for visualizing COMT with PET. The hypothesis that 18Fro4l-0960 can map COMT was demonstrated both in vivo and ex vivo in baboon and rodents...

  4. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2002-01-01

    .... We have developed 18Fro4l-096O, the first radiotracer for visualizing COMT with PET. The hypothesis that 18Fro4l-0960 can map COMT was demonstrated both in vivo and ex vivo in baboon and rodents...

  5. PET Imaging of Estrogen Metabolism in Breast Cancer

    Science.gov (United States)

    2001-06-01

    Acquired Immune Deficiency Syndrome . Funded for $25,000 by the Rudin Foundation Grant. Cummings Foundation Grant $60,000 for expanded Breast Self...Zech LA, Stein LA, Kemeny MM, Brennan MF, Brewer EG Jn Massive omental reticuloendothelial cell lipid uptake in Tangier disease following...Jejunal Perforations Secondary to Cytomegalovirus in a Patient with the Acquired Immune Deficiency Syndrome : Case Report and Review. Digestive Diseases

  6. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2007-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth spread and angiogenesis as well as quantifying alpha v-integrin expression level during breast tumor neovascularization over time. (3...

  7. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2006-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth spread and angiogenesis as well as quantifying alpha-v integrin expression level during breast tumor neovascularization over time. (3...

  8. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, C.; Heusner, T.A. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); University of Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Herrmann, J.; Hahn, S.; Lauenstein, T. [University of Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Nagarajah, J.; Bockisch, A. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Hecktor, J.; Kuemmel, S. [University of Duisburg-Essen, Medical Faculty, Department of Gynecology and Obstetrics, Essen (Germany); Otterbach, F. [University of Duisburg-Essen, Institute of Pathology and Neuropathology, Essen (Germany); Antoch, G. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany)

    2012-05-15

    This retrospective study aimed (1) to compare the diagnostic accuracy of whole-body FDG PET/CT for initial breast cancer staging with the accuracy of a conventional, multimodal imaging algorithm, and (2) to assess potential alteration in patient management based on the FDG PET/CT findings. Patients with primary breast cancer (106 women, mean age 57 {+-} 13 years) underwent whole-body FDG PET/CT and conventional imaging (X-ray mammography, MR mammography, chest plain radiography, bone scintigraphy and breast, axillary and liver ultrasonography). The diagnostic accuracies of FDG PET/CT and a conventional algorithm were compared. Diagnostic accuracy was assessed in terms of primary tumour detection rate, correct assessment of primary lesion focality, T stage and the detection rates for lymph node and distant metastases. Histopathology, imaging or clinical follow-up served as the standards of reference. FDG PET/CT was significantly more accurate for detecting axillary lymph node and distant metastases (p = 0.0125 and p < 0.005, respectively). No significant differences were detected for other parameters. Synchronous tumours or locoregional extraaxillary lymph node or distant metastases were detected in 14 patients (13%) solely by FDG PET/CT. Management of 15 patients (14%) was altered based on the FDG PET/CT findings, including 3 patients with axillary lymph node metastases, 5 patients with extraaxillary lymph node metastases, 4 patients with distant metastases and 3 patients with synchronous malignancies. Full-dose, intravenous contrast-enhanced FDG PET/CT was more accurate than conventional imaging for initial breast cancer staging due to the higher detection rate of metastases and synchronous tumours, although the study had several limitations including a retrospective design, a possible selection bias and a relevant false-positive rate for the detection of axillary lymph node metastases. FDG PET/CT resulted in a change of treatment in a substantial proportion of

  9. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, Antonio; Rousseau, Jacques A.; Ouellette, Rene; Cadorette, Jules; Lier, Johan E. van; Lecomte, Roger; Benard, Francois E-mail: francois.benard@USherbrooke.ca

    2004-08-01

    Different animal models of estrogen positive tumors (ER{sup +}) were evaluated for their suitability to follow tumor response after various treatment protocols, using small animal positron emission tomography (PET). ER{sup +} human breast cancer cell lines MCF-7 and T-47D, using MDA-MB-231 as ER{sup -}; control, and murine mammary ductal carcinomas MC4-L2, MC4-L3, and MC7-L1, were compared for their in vivo growth rate and retention of ER{sup +} status. Tumor metabolic activity was estimated from the relative uptake (% injected dose/g) of [{sup 18}F]fluorodeoxyglucose (FDG) uptake, whereas ER content was determined from 16{alpha}-[{sup 18}F]fluoroestradiol (FES) retention. F-18 activity values were obtained by small animal PET imaging and confirmed by tissue sampling and radioactivity counting. Reliable uptake measurements could be obtained for tumors of 200 {mu}l or over. The human cell lines grew at a slower rate in vivo and failed to accumulate FES; in contrast, the Balb/c MC7-L1 and MC4-L2 grew well and showed good uptake of both FDG and FES. Chemotherapy and hormone therapy delayed the growth of MC7-L1 and MC4-L2 tumors, confirming their suitability as an ER{sup +} model for therapeutic interventions. MC4-L3 tumors also showed promising results but required the presence of progestative pellets to grow. These data demonstrate that murine MC7-L1 and MC4-L2 tumors are suitable models for the monitoring of ER{sup +} breast cancer therapy using small animal PET imaging.

  10. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI; Multiparametrische und molekulare Bildgebung von Brusttumoren mit MRT und PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Memorial Sloan-Kettering Cancer Center, Department of Radiology, Molecular Imaging and Therapy Service, New York (United States); State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Marino, M.A. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Policlinico Universitario G. Martino, University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Messina (Italy); Meyer-Baese, A. [State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Helbich, T.H. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria)

    2016-07-15

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ({sup 1}H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ({sup 23}Na MRI), phosphorus spectroscopy ({sup 31}P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [German] Die Magnetresonanztomographie (MRT) der Brust ist ein etabliertes nichtinvasives bildgebendes Verfahren mit vielfaeltigen Indikationen. In den letzten Jahren wurden zahlreiche funktionelle MRT- und Positronenemissionstomographie(PET)-Parameter in der Brustbildgebung evaluiert, und ihre kombinierte Anwendung ist als multiparametrische Bildgebung definiert. Bisherige Daten legen nahe, dass die multiparametrische Bildgebung mit MRT und PET

  11. Diagnostic PET Imaging of Mammary Microcalcifications Using64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    Science.gov (United States)

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as

  12. Assessment of bone metastasis using nuclear medicine imaging in breast cancer: comparison between PET/CT and bone scan

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyoun; Ahn, Byeong Cheol; Kang, Sung Min [Kyungpook National University Medical School, Daegu (Korea, Republic of)] (and others)

    2007-02-15

    Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with {sup 18}F-2-deoxyglucose (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. The study group comprised 157 women patients (range: 28 {approx} 78 years old, mean {+-} SD = 49.5 {+-}8.5) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Six patients (4.4%) showed metastatic bone lesions. Four (66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients (100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion (4.79 {+-} 3.32 vs 1

  13. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.D. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain)]. E-mail: jormarp1@doctor.upv.es; Toledo, J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Esteve, R. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Sebastia, A. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Mora, F.J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Benlloch, J.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Fernandez, M.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, E.N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Lerche, Ch.W. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Pavon, N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Sanchez, F. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain)

    2005-07-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer.

  14. c-Met PET Imaging Detects Early-Stage Locoregional Recurrence of Basal-Like Breast Cancer.

    Science.gov (United States)

    Arulappu, Appitha; Battle, Mark; Eisenblaetter, Michel; McRobbie, Graeme; Khan, Imtiaz; Monypenny, James; Weitsman, Gregory; Galazi, Myria; Hoppmann, Susan; Gazinska, Patrycja; Wulaningsih, Wulan; Dalsgaard, Grethe Tang; Macholl, Sven; Ng, Tony

    2016-05-01

    Locoregional recurrence of breast cancer poses significant clinical problems because of frequent inoperability once the chest wall is involved. Early detection of recurrence by molecular imaging agents against therapeutically targetable receptors, such as c-Met, would be of potential benefit. The aim of this study was to assess (18)F-AH113804, a peptide-based molecular imaging agent with high affinity for human c-Met, for the detection of early-stage locoregional recurrence in a human basal-like breast cancer model, HCC1954. HCC1954 tumor-bearing xenograft models were established, and (18)F-AH113804 was administered. Distribution of radioactivity was determined via PET at 60 min after radiotracer injection. PET and CT images were acquired 10 d after tumor inoculation, to establish baseline distribution and uptake, and then on selected days after surgical tumor resection. CT images and caliper were used to determine the tumor volume. Radiotracer uptake was assessed by (18)F-AH113804 PET imaging. c-Met expression was assessed by immunofluorescence imaging of tumor samples and correlated with (18)F-AH113804 PET imaging results. Baseline uptake of (18)F-AH113804, determined in tumor-bearing animals after 10 d, was approximately 2-fold higher in the tumor than in muscle tissue or the contralateral mammary fat pad. The tumor growth rate, determined from CT images, was comparable between the animals with recurrent tumors, with detection of tumors of low volume (tumor resection. (18)F-AH113804 PET detected local tumor recurrence as early as 6 d after surgery in the recurrent tumor-bearing animals and exhibited significantly higher (18)F-AH113804 uptake (in comparison to mammary fatty tissue), with a target-to-background (muscle) ratio of approximately 3:1 (P tumor samples, determined by immunofluorescence, correlated with the respective (18)F-AH113804 imaging signals (r = 0.82, P tumor and has potential utility for the detection of locoregional recurrence from an early

  15. HER-2-PET imaging with Zr-89-trastuzumab in metastatic breast cancer patients

    NARCIS (Netherlands)

    Munnink, T. Oude; Dijkers, E.; Hooge, M. Lub-de; Kosterink, J.; Brouwers, A.; de Jong, J. R.; van Dongen, G.; de Vries, E.

    2009-01-01

    1045 Background: Non-invasive diagnostic tools can optimize and evaluate HER2 directed therapy in HER2 positive breast cancer patients. HER2 imaging with (111)In-trastuzumab SPECT showed promising results (Perik et al, J Clin Oncol. 2006). To further optimize HER2 imaging, we developed

  16. An Approach to Breast Cancer Diagnosis via PET Imaging of Microcalcifications Using (18)F-NaF.

    Science.gov (United States)

    Wilson, George H; Gore, John C; Yankeelov, Thomas E; Barnes, Stephanie; Peterson, Todd E; True, Jarrod M; Shokouhi, Sepideh; McIntyre, J Oliver; Sanders, Melinda; Abramson, Vandana; Ngyuen, The-Quyen; Mahadevan-Jansen, Anita; Tantawy, Mohammed N

    2014-07-01

    Current radiologic methods for diagnosing breast cancer detect specific morphologic features of solid tumors or any associated calcium deposits. These deposits originate from an early molecular microcalcification process of 2 types: type 1 is calcium oxylate and type II is carbonated calcium hydroxyapatite. Type I microcalcifications are associated mainly with benign tumors, whereas type II microcalcifications are produced internally by malignant cells. No current noninvasive in vivo techniques are available for detecting intratumoral microcalcifications. Such a technique would have a significant impact on breast cancer diagnosis and prognosis in preclinical and clinical settings. (18)F-NaF PET has been used solely for bone imaging by targeting the bone hydroxyapatite. In this work, we provide preliminary evidence that (18)F-NaF PET imaging can be used to detect breast cancer by targeting the hydroxyapatite lattice within the tumor microenvironment with high specificity and soft-tissue contrast-to-background ratio while delineating tumors from inflammation. Mice were injected with approximately 10(6) MDA-MB-231 cells subcutaneously and imaged with (18)F-NaF PET/CT in a 120-min dynamic sequence when the tumors reached a size of 200-400 mm(3). Regions of interest were drawn around the tumor, muscle, and bone. The concentrations of radiotracer within those regions of interest were compared with one another. For comparison to inflammation, rats with inflamed paws were subjected to (18)F-NaF PET imaging. Tumor uptake of (18)F(-) was significantly higher (P microcalcification in the MDA-MB-231 cell line was confirmed histologically using alizarin red S and von Kossa staining as well as Raman microspectroscopy. No uptake of (18)F(-) was observed in the inflamed tissue of the rats. Lack of hydroxyapatite in the inflamed tissue was verified histologically. This study provides preliminary evidence suggesting that specific targeting with (18)F(-) of hydroxyapatite within the

  17. A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy

    Science.gov (United States)

    Wangerin, Kristen A.; Muzi, Mark; Peterson, Lanell M.; Linden, Hannah M.; Novakova, Alena; Mankoff, David A.; E Kinahan, Paul

    2017-05-01

    We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i   =  17%, SUV  =  13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i   =  0.54, SUV  =  0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC  definitions and uptake time scenarios (p  <  0.05). For the patient cohort in this study, which is comprised of non-high-grade ER+  tumors, K i outperformed SUV in an ROC analysis of the parameter uncertainty distributions pre- and post-therapy. This methodology can be applied to different scenarios with the ability to inform the design of clinical trials using PET imaging.

  18. 64Cu-DOTA-Trastuzumab PET Imaging in Women with HER2-Overexpressing Breast Cancer

    Science.gov (United States)

    2013-10-01

    Breast Cancer. J Clin Oncol. May 20, 2006 2006;24(15):2276-2282. Williams L, Somlo G, Zhan J, et al. A pilot imaging trial of 111In- Herceptin in...metastat breast cancer patients receiving cold Herceptin therapy. Therapy with Antibodies and Immunoconjucates. 2008. Wong JYC, Raubitschek A, Yamauchi...labeled trastuzumab was prepared according to procedures defined in IND #109971. The antibody ( Herceptin , purchased from Genentech) was conjugated with

  19. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype.

    Science.gov (United States)

    Catalano, Onofrio Antonio; Horn, Gary Lloyd; Signore, Alberto; Iannace, Carlo; Lepore, Maria; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Lehman, Constance; Salvatore, Marco; Soricelli, Andrea; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-03-28

    Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. ER/PR- tumours demonstrated higher Kepmean and SUVmax than ER or PR+ tumours. HER2- tumours displayed higher ADCmean, Kepmean, and SUVmax than HER2+tumours. Only ADCmean discriminated Ki67⩽14% tumours (lower ADCmean) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62%; P=0.001). Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.

  20. 18F, 64Cu, and 68Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer

    Science.gov (United States)

    Liu, Zhaofei; Yan, Yongjun; Liu, Shuanglong; Wang, Fan; Chen, Xiaoyuan

    2010-01-01

    Radiolabeled RGD and bombesin (BBN) radiotracers that specifically target integrin αvβ3 and gastrin releasing peptide receptor (GRPR) are both promising radiopharmaceuticals for tumor imaging. We recently designed and synthesized a RGD-BBN heterodimeric peptide with both RGD and BBN motifs in one single molecule. The 18F-labeled RGD-BBN heterodimer exhibited dual integrin αvβ3 and GRPR targeting in a PC-3 prostate cancer model. In this study we investigated whether radiolabeled RGD-BBN tracers can be used to detect breast cancer by using microPET. Cell binding assay demonstrated that the high GRPR expressing breast cancer cells typically express low to moderate level of integrin αvβ3, while high integrin αvβ3 expressing breast cancer cells have negligible level of GRPR. We labeled RGD-BBN heterodimer with three positron emitting radionuclides 18F, 64Cu and 68Ga, and investigated the corresponding PET radiotracers in both orthotopic T47D (GRPR+/low integrin αvβ3) and MDA-MB-435 (GRPR−/integrin αvβ3+) breast cancer models. The three radiotracers all possessed in vitro dual integrin αvβ3 and GRPR binding affinity. The advantages of the RGD-BBN radiotracers over the corresponding BBN analogues are obvious for imaging MDA-MB-435 (GRPR−/integrin αvβ3+) tumor. 18F-FB-PEG3-RGD-BBN showed lower tumor uptake than 64Cu-NOTA-RGD-BBN and 68Ga-NOTA-RGD-BBN but was able to visualize breast cancer tumors with high contrast. Synthesis of 64Cu-NOTA-RGD-BBN and 68Ga-NOTA-RGD-BBN is much faster and easier than 18F-FB-PEG3-RGD-BBN. 64Cu-NOTA-RGD-BBN showed prolonged tumor uptake, but also higher liver retention and kidney uptake than 68Ga-NOTA-RGD-BBN and 18F-FB-PEG3-RGD-BBN. 68Ga-NOTA-RGD-BBN possessed high tumor signals, but also relatively high background uptake as compared with the other two radiotracers. In summary, the prosthetic labeling groups, chelators and isotopes all have profound effect on the tumor targeting efficacy and in vivo kinetics of the RGD

  1. A novel approach to breast cancer diagnosis via PET imaging of microcalcifications using 18F-NaF

    Science.gov (United States)

    Wilson, George H.; Gore, John C.; Yankeelov, Thomas E.; Barnes, Stephanie; Peterson, Todd E.; True, Jarrod M.; Shokouhi, Sepideh; McIntyre, J. Oliver.; Sanders, Melinda; Abramson, Vandana; Ngyuen, The-Quyen; Mahadevan-Jansen, Anita; Tantawy, Mohammed N.

    2015-01-01

    Rationale Current radiological methods for diagnosing breast cancer detect specific morphological features of solid tumors and/or any associated calcium deposits. These deposits originate from an early molecular microcalcification process which consists of two types: type 1 is calcium oxylate (CO) and type II is carbonated calcium hydroxyapetite (HAP). Type I microcalcifications are mainly associated with benign tumors while type II have been shown to be produced, internally, by malignant cells. No current non-invasive in vivo techniques are available for detecting intratumoral microcalcifications. Such a technique would have a significant impact on breast cancer diagnosis and prognosis in preclinical and clinical settings. 18F-NaF PET has been solely used for bone imaging by targeting the bone HAP. In this work, we provide preliminary evidence that 18F-NaF PET imaging can be used to detect breast cancer by targeting the HAP lattice within the tumor microenvironment with high specificity and soft-tissue contrast-to-background ratio, while delineating tumors from inflammation. METHODS Mice were injected with approximately 106 MDA-MB-231 cells subcutaneously and imaged with 18F-NaF PET/CT in a 120 min dynamic sequence when the tumors reached a size of ~250 mm3. Regions-of-interest (ROIs) were drawn around the tumor, muscle, and bone. The concentration of the radiotracer within those ROIs were compared to one another. For comparison to inflammation, rats with inflammatory paws were subjected to 18F-NaF PET imaging. RESULTS Tumor uptake of 18F− was significantly higher (pmicrocalcification in the MDA-MB-231 cell line was confirmed histologically using alizarin red S and von Kossa staining as well as Raman microspectroscopy. No uptake of 18F− was observed in the rat inflamed tissue. Lack of HAP in the inflamed tissue was verified histologically. CONCLUSIONS This study provides preliminary evidence suggesting that specific targeting of the HAP within the tumor

  2. Attenuation correction without transmission scan for the MAMMI breast PET

    Science.gov (United States)

    Soriano, A.; González, A.; Orero, A.; Moliner, L.; Carles, M.; Sánchez, F.; Benlloch, J. M.; Correcher, C.; Carrilero, V.; Seimetz, M.

    2011-08-01

    Whole-body Positron Emission Tomography (PET) scanners are required in order to span large Fields of View (FOV). Therefore, reaching the sensitivity and spatial resolution required for early stage breast tumor detection is not straightforward. MAMMI is a dedicated breast PET scanner with a ring geometry designed to provide PET images with a spatial resolution as high as 1.5 mm, being able to detect small breast tumors (radioactivity distribution determination. In dedicated, high resolution breast cancer scanners, this correction would enhance the proper diagnosis in early disease stages. In whole-body PET scanners, AC is usually taken into account with the use of transmission scans, either by external radioactive rod sources or by Computed Tomography (CT). This considerably increases the radiation dose administered to the patient and time needed for the exploration. In this work we propose a method for breast shape identification by means of PET image segmentation. The breast shape identification will be used for the determination of the AC. For the case of a specific breast PET scanner the procedure we propose should provide AC similar to that obtained by transmission scans as we take advantage of the breast anatomical simplicity. Experimental validation of the proposed approach with a dedicated breast PET prototype is also presented. The main advantage of this method is an important dose reduction since the transmission scan is not required.

  3. Comparison of Whole-Body (18)F FDG PET/MR Imaging and Whole-Body (18)F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer.

    Science.gov (United States)

    Melsaether, Amy N; Raad, Roy A; Pujara, Akshat C; Ponzo, Fabio D; Pysarenko, Kristine M; Jhaveri, Komal; Babb, James S; Sigmund, Eric E; Kim, Sungheon G; Moy, Linda A

    2016-10-01

    Purpose To compare fluorine 18 ((18)F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with (18)F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board-approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32-76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material-enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that

  4. Comparison of Whole-Body 18F FDG PET/MR Imaging and Whole-Body 18F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer

    Science.gov (United States)

    Melsaether, Amy N.; Raad, Roy A.; Pujara, Akshat C.; Ponzo, Fabio D.; Pysarenko, Kristine M.; Jhaveri, Komal; Babb, James S.; Sigmund, Eric E.; Kim, Sungheon G.; Moy, Linda A.

    2016-01-01

    Purpose To compare fluorine 18 (18F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with 18F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board–approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32–76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material–enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that

  5. Attenuation correction without transmission scan for the MAMMI breast PET

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, A., E-mail: soriano@ific.uv.es [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Institutos de Paterna. Catedratico Jose Beltran, 2. E-46980 Paterna (Spain); Gonzalez, A. [ONCOVISION (GEM-Imaging group), Valencia (Spain); Orero, A.; Moliner, L.; Carles, M.; Sanchez, F.; Benlloch, J.M. [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Institutos de Paterna. Catedratico Jose Beltran, 2. E-46980 Paterna (Spain); Correcher, C.; Carrilero, V.; Seimetz, M. [ONCOVISION (GEM-Imaging group), Valencia (Spain)

    2011-08-21

    Whole-body Positron Emission Tomography (PET) scanners are required in order to span large Fields of View (FOV). Therefore, reaching the sensitivity and spatial resolution required for early stage breast tumor detection is not straightforward. MAMMI is a dedicated breast PET scanner with a ring geometry designed to provide PET images with a spatial resolution as high as 1.5 mm, being able to detect small breast tumors (<1cm). The patient lays down in prone position during the scan, thus making possible to image the whole breast, up to regions close to the base of the pectoral without the requirement of breast compression. Attenuation correction (AC) for PET data improves the image quality and the quantitative accuracy of radioactivity distribution determination. In dedicated, high resolution breast cancer scanners, this correction would enhance the proper diagnosis in early disease stages. In whole-body PET scanners, AC is usually taken into account with the use of transmission scans, either by external radioactive rod sources or by Computed Tomography (CT). This considerably increases the radiation dose administered to the patient and time needed for the exploration. In this work we propose a method for breast shape identification by means of PET image segmentation. The breast shape identification will be used for the determination of the AC. For the case of a specific breast PET scanner the procedure we propose should provide AC similar to that obtained by transmission scans as we take advantage of the breast anatomical simplicity. Experimental validation of the proposed approach with a dedicated breast PET prototype is also presented. The main advantage of this method is an important dose reduction since the transmission scan is not required.

  6. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  7. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hee; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, In Ae [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Han, Wonshik; Noh, Dong-Young [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of)

    2012-01-15

    To compare the use of diffusion-weighted MR imaging (DWI) and {sup 18}F-FDG PET/CT to predict pathological complete response (pCR) in breast cancer patients receiving neoadjuvant chemotherapy. Thirty-four women with 34 invasive breast cancers underwent DWI and PET/CT before and after chemotherapy and before surgery. The percentage changes in the apparent diffusion coefficient (ADC) and the standardised uptake value (SUV) were calculated, and the diagnostic performances for predicting pCR were evaluated using receiver operating characteristic (ROC) curve analysis. After surgery, 7/34 patients (20.6%) were found to have pCR. A{sub z} values for DWI, PET/CT and the combined use of DWI and PET/CT were 0.910, 0.873 and 0.944, respectively. The best cut-offs for differentiating pCR from non-pCR were a 54.9% increase in the ADC and a 63.9% decrease in the SUV. DWI showed 100% (7/7) sensitivity and 70.4% (19/27) specificity and PET/CT showed 100% sensitivity and 77.8% (21/27) specificity. When DWI and PET/CT were combined, there was a trend towards improved specificity compared with DWI. DWI and FDG PET/CT show similar diagnostic accuracy for predicting pCR to neoadjuvant chemotherapy in breast cancer patients. The combined use of DWI and FDG PET/CT has the potential to improve specificity in predicting pCR. (orig.)

  8. Optimized production, quality control, biological evaluation and PET/CT imaging of {sup 68}Ga-PSMA-617 in breast adenocarcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mehdi; Yousefnia, Hassan; Bahrami-Samani, Ali; Zolghadri, Samaneh; Alirezapour, Behrouz [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Jalilian, Amir Reza; Geramifa, Parham; Beiki, Davood [Tehran Univ. of Medical Sciences (Iran, Islamic Republic of). Research Center for Nuclear Medicine; Maus, Stephan [Univ. Medical Centre Mainz (Germany). Clinic of Nuclear Medicine

    2017-08-01

    Optimized production, quality control and preclinical evaluation of {sup 68}Ga-PSMA-617 as a PET radiotracer for PSMA-positive malignancies as well as successful application in imaging of breast adenocarcinomas are reported. {sup 68}Ga-PSMA-617 radiolabeling and QC optimization, stability, log P, biodistribution in breast adenocarcinomas-bearing mice (direct and blockade studies) and also PET/CT imaging was performed. {sup 68}Ga-PSMA-617 complex was prepared in high radiochemical purity (>96%, ITLC, HPLC) and specific activity of 300-310 GBq/mM at 95 C using 2-4 micrograms of the peptide in 10 min followed by solid phase purification. The tracer was stable in serum and final formulation for at least 120 min. The log P was -1.98. Western blot test on the tumor cell homogenates demonstrated distinct existence of the PSMA on the surface. The biodistribution of the tracer demonstrated specific kidney and tumor significant uptake using blocking study. Significant tumor:blood and tumor:muscle ratio uptake observed at 30 min post-injection (2.69 and 19.1, respectively). A reduction of 40-80% off tumor uptake in the study time period observed using blocking test. {sup 68}Ga-PSMA-617 can be proposing a possible tracer for PET imaging of breast adenocarcinomas and other breast malignancies.

  9. Imaging patients with breast and prostate cancers using combined 18F NaF/18F FDG and TOF simultaneous PET/ MRI

    Energy Technology Data Exchange (ETDEWEB)

    Iagaru, Andrei; Minamimoto, Ryogo; Jamali, Mehran; Barkodhodari, Amir; Gambhir, Sanjiv Sam; Vasanawala, Shreyas [Stanford University, Department of Radiology, Division of Nuclear Medicine and Molecular Imaging (United States)

    2015-05-18

    Here we prospectively compared the combined 18F NaF/18F FDG PET/ MRI against 99mTc-MDP in patients with breast and prostate cancers. Twelve patients referred for 99mTc-MDP bone scans were prospectively enrolled from Oct 14 - Jan 15. The cohort included 6 men with prostate cancer and 6 women with breast cancer, 41 – 85 year-old (average 63 ± 15). 18F NaF (0.7-2.2 mCi, mean: 1.33 mCi) and 18F FDG (3.9-5.2 mCi, mean: 4.6 mCi) were subsequently injected from separate syringes. The PET/MRI was done 6-12 days (average 9.3 ± 3.2) after bone scan. The whole body MRI protocol consisted of T2-weighted, DWI, and contrast-enhanced T1-weighted imaging. Lesions detected with each test were tabulated and the results were compared. All patients tolerated the PET/MRI exam, and PET image quality was diagnostic despite the marked reduction in the administered dosage of radiopharmaceuticals (80% less for 18F NaF and 67% less for 18F FDG). Five patients had no bone metastases identified on either scans. Bone scintigraphy and PET/MRI showed osseous metastases in 7 patients, but more numerous bone findings were noted on PET/MRI than on bone scintigraphy in 3 patients. Lesions outside the skeleton were identified by PET/MRI in 2 patients. The combined 18F NaF/18F FDG PET/MRI is superior to 99mTc-MDP scintigraphy for evaluation of skeletal disease extent. Further, it detected extra- skeletal disease that may change the management of these patients, while allowing a significant reduction in radiation exposure from lower dosages of PET radiopharmaceuticals administered. A combination of 18F NaF/18F FDG PET/MRI may provide the most accurate staging of patients with breast and prostate cancers prior to the start of treatment.

  10. Synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6-(2-[(18)F]fluoroethoxy)benzothiazole ([(18)F]FEDBT) for PET imaging of breast cancer.

    Science.gov (United States)

    Li, Geng-Ying; Vaulina, Daria D; Li, Jia-Je; Fedorova, Olga S; Wang, Hsin-Ell; Liu, Ren-Shyan; Krasikova, Raisa N; Chen, Chuan-Lin

    2017-08-01

    Given the ever-present demand for improved PET radiotracer in oncology imaging, we have synthesized 2-(3,4-dimethoxyphenyl)-6-(2-[(18)F]fluoroethoxy)benzothiazole ([(18)F]FEDBT), a fluorine-18-containing fluoroethylated benzothiazole to explore its utility as a PET imaging tracer. [(18)F]FEDBT was prepared via kryptofix-mediated nucleophilic substitution of the tosyl group precursor. Fractionated ethanol-based solid-phase (SPE cartridge-based) purification afforded [(18)F]FEDBT in 60% radiochemical yield (EOB), with radiochemical purity in excess of 98% and the specific activity was 35GBq/μmol. The radiotracer displayed clearly higher cellular uptake ratio in various breast cancer cell lines MCF7, MDA-MB-468 and MDA-MB-231. However, both biodistribution and microPET studies have showed an higher abdominal accumulation of [(18)F]FEDMBT and the tumor/muscle ratio of 1.8 was observed in the MDA-MB-231 xenograft tumors mice model. Further the lipophilic improvement is needed for the reducement of hepatobilliary accumulation and to promote the tumor uptake for PET imaging of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Predictive and prognostic value of FDG-PET/CT imaging and different response evaluation criteria after primary systemic therapy of breast cancer.

    Science.gov (United States)

    Tőkés, Tímea; Kajáry, Kornélia; Szentmártoni, Gyöngyvér; Lengyel, Zsolt; Györke, Tamás; Torgyík, László; Somlai, Krisztián; Tőkés, Anna-Mária; Kulka, Janina; Dank, Magdolna

    2017-01-01

    (1) To predict pathological complete remission (pCR) and survival after primary systemic therapy (PST) in patients diagnosed with breast cancer by using two different PET/CT based scores: a simplified PERCIST-based PET/CT score (Method 1) and a combined PET/CT score supplemented with the morphological results of the RECIST system (Method 2) and (2) to assess the effect of different breast carcinoma subtypes on tumor response and its evaluation. Eighty-eight patients were enrolled in the study who underwent PET/CT imaging before and after PST. PET/CTs were evaluated by changes in maximum Standardized Uptake Value (SUVmax) and tumor size. Method 1 and 2 were applied to predict pathological complete remission (pCR). Kaplan-Meier analyses for survival were performed. Classification into biological subtypes was performed based on the pre-therapeutic tumor characteristics. A total of 30/88 patients showed pCR (34.1 %). Comparing pCR/non-pCR patient groups, significant differences were detected by changes in SUVmax (p evaluation with Method 2 and not with Method 1. In our study, neither clinical nor pathological CR were predictors of longer progression-free survival. Our results suggest that combined PET/CT criteria are more predictive of pCR. The effect of biological subtypes is significant on pCR rate as well as on the changes in FDG-uptake and morphological tumor response. Response evaluation with combined criteria was also able to reflect the differences between the biological behavior of breast tumor subtypes.

  12. Metabolic imaging using PET

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Takashi [University of Fukui, Biomedical Imaging Research Center, Eiheiji-cho, Fukui (Japan)

    2007-06-15

    There is growing evidence that myocardial metabolism plays a key role not only in ischaemic heart disease but also in a variety of diseases which involve myocardium globally, such as heart failure and diabetes mellitus. Understanding myocardial metabolism in such diseases helps to elucidate the pathophysiology and assists in making therapeutic decisions. As well as providing information on regional changes, PET can deliver quantitative information about both regional and global changes in metabolism. This capability of quantitative measurement is one of the major advantages of PET along with physiological positron tracers, especially relevant in evaluating diseases which involve the whole myocardium. This review discusses major PET tracers for metabolic imaging and their clinical applications and contributions to research regarding ischaemic heart disease and other diseases such as heart failure and diabetic heart disease. Future applications of positron metabolic tracers for the detection of vulnerable plaque are also highlighted briefly. (orig.)

  13. Staging PET-CT Scanning Provides Superior Detection of Lymph Nodes and Distant Metastases than Traditional Imaging in Locally Advanced Breast Cancer.

    Science.gov (United States)

    Garg, Pankaj Kumar; Deo, Suryanarayana V S; Kumar, Rakesh; Shukla, Nootan Kumar; Thulkar, Sanjay; Gogia, Ajay; Sharma, Daya Nand; Mathur, Sandeep R

    2016-08-01

    This study was designed to evaluate the role of a single 18-FDG positron emission tomography and computed tomography (PET-CT) scan in comparison to multiple organ-directed conventional investigations (CI) as a staging tool in locally advanced breast cancer (LABC) to detect regional and distant metastasis. All eligible patients were subjected to CI (chest X-ray, abdominal sonography, and bone scintigraphy) followed by a single 18-FDG PET-CT scan. Standard imaging criteria were used for diagnosis of metastasis. Histopathological confirmation was undertaken for suspicious lesions. An exploratory analysis was done to assess the impact of PET-CT on the staging of LABC and how it resulted in a change in management. The study included 79 patients of LABC. PET-CT detected distant metastasis in 36 (45.5 %) patients while CI could identify distant metastasis in 20 (25.3 %) patients. Two of the 36 patients in whom PET-CT detected distant metastasis were false positive. Overall PET-CT upstaged the disease in 38 (48.1 %) patients as compared to CI: stage III to stage IV migration in 14 (17.7 %) patients due to identification of additional sites of distant metastasis, and within stage III upstaging in 24 (30.3 %) patients due to identification of additional regional lymphadenopathy. PET-CT led to a change in management plan in 14 (17.7 %) patients. PET-CT has a role in identifying additional sites of regional lymphadenopathy and distant metastasis to upstage the disease in a significant number of LABC patients in comparison to CI; this would help in accurate staging, selecting optimal treatment, and better prognostication of disease.

  14. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) Imaging in the Staging and Prognosis of Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alberini, J.L.; Wartski, M.; Gontier, E.; Madar, O.; Pecking, A.P. [Nuclear Medicine Department, Cancer Research Center Rene Huguenin, Saint-Cloud (France); Lerebours, F. [Oncology Department, Cancer Research Center Rene Huguenin, Saint-Cloud (France); Fourme, E. [Biostatistics Department, Cancer Research Center Rene Huguenin, Saint-Cloud (France); Le Stanc, E. [Nuclear Medicine Department, Foch Hospital, Suresnes (France); Cherel, P. [Radiology Department, Cancer Research Center Rene Huguenin, Saint-Cloud (France); Alberini, J.L. [School of Medicine, Versailles Saint-Quentin University (France)

    2009-07-01

    Background: To prospectively assess fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) staging and prognosis value in patients with suspected inflammatory breast cancer (IBC). Methods: Sixty-two women (mean age 50.7 {+-} 11.4 years) presenting with unilateral inflammatory breast tumors (59 invasive carcinomas; 3 mastitis) underwent a PET/CT scan before biopsy. Results: PET/CT scan was positive for the primary malignant tumor in 100% and false positive in 2 of 3 benign mastitis. In 59 IBC patients, FDG nodal foci were detected in axillary (90%; n = 53) and extra-axillary areas (56%; n = 33) ipsilateral to the cancer. Compared with clinical examination, the axillary lymph node status by PET/CT was upstaged and down staged in 35 and 5 patients, respectively. In 7 of 9 N0 patients, the axillary lymph node positivity on PET/CT was correct, as revealed by pathological post surgery assessment (not available in the 2 remaining patients). The nodal foci were compared with preoperative fine needle aspiration and/or pathological post chemotherapy findings available in 44 patients and corresponded to 38 true positive, 4 false-negative, and 2 false-positive cases. In 18 of 59 IBC patients (31%), distant lesions were found. On the basis of a univariate analysis of the first enrolled patients (n = 42), among 28 patients who showed intense tumoral uptake (standard uptake value(max){>=}5), the 11 patients with distant lesions had a worse prognosis than the 17 patients without distant lesions (P =.04). Conclusions: FDG-PET/CT imaging provides additional invaluable information regarding nodal status or distant metastases in IBC patients and should be considered in the initial staging. It seems also that some prognostic information can be derived from FDG uptake characteristics. (authors)

  15. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  16. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Dan; Tolmachev, Vladimir; Olofsson, Helena; Carlsson, Joergen; Lindman, Henrik [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden); Velikyan, Irina; Soerensen, Jens [Uppsala University, Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala (Sweden); Wennborg, Anders; Feldwisch, Joachim [Affibody AB, Solna (Sweden)

    2017-08-15

    In phase I/II-studies radiolabelled ABY-025 Affibody molecules identified human epidermal growth factor receptor 2 (HER2) expression in breast cancer metastases using PET and SPECT imaging. Here, we wanted to investigate the utility of a simple intra-image normalization using tumour-to-reference tissue-ratio (T/R) as a HER2 status discrimination strategy to overcome potential issues related to cross-calibration of scanning devices. Twenty-three women with pre-diagnosed HER2-positive/negative metastasized breast cancer were scanned with [{sup 111}In]-ABY-025 SPECT/CT (n = 7) or [{sup 68}Ga]-ABY-025 PET/CT (n = 16). Uptake was measured in all metastases and in normal spleen, lung, liver, muscle, and blood pool. Normal tissue uptake variation and T/R-ratios were established for various time points and for two different doses of injected peptide from a total of 94 whole-body image acquisitions. Immunohistochemistry (IHC) was used to verify HER2 expression in 28 biopsied metastases. T/R-ratios were compared to IHC findings to establish the best reference tissue for each modality and each imaging time-point. The impact of shed HER2 in serum was investigated. Spleen was the best reference tissue across modalities, followed by blood pool and lung. Spleen-T/R was highly correlated to PET SUV in metastases after 2 h (r = 0.96,P < 0.001) and reached an accuracy of 100% for discriminating IHC HER2-positive and negative metastases at 4 h (PET) and 24 h (SPECT) after injection. In a single case, shed HER2 resulted in intense tracer retention in blood. In the remaining patients shed HER2 was elevated, but without significant impact on ABY-025 biodistribution. T/R-ratios using spleen as reference tissue accurately quantify HER2 expression with radiolabelled ABY-025 imaging in breast cancer metastases with SPECT and PET. Tracer binding to shed HER2 in serum might affect quantification in the extreme case. (orig.)

  17. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT.

    Science.gov (United States)

    Sandberg, Dan; Tolmachev, Vladimir; Velikyan, Irina; Olofsson, Helena; Wennborg, Anders; Feldwisch, Joachim; Carlsson, Jörgen; Lindman, Henrik; Sörensen, Jens

    2017-08-01

    In phase I/II-studies radiolabelled ABY-025 Affibody molecules identified human epidermal growth factor receptor 2 (HER2) expression in breast cancer metastases using PET and SPECT imaging. Here, we wanted to investigate the utility of a simple intra-image normalization using tumour-to-reference tissue-ratio (T/R) as a HER2 status discrimination strategy to overcome potential issues related to cross-calibration of scanning devices. Twenty-three women with pre-diagnosed HER2-positive/negative metastasized breast cancer were scanned with [ 111 In]-ABY-025 SPECT/CT (n = 7) or [ 68 Ga]-ABY-025 PET/CT (n = 16). Uptake was measured in all metastases and in normal spleen, lung, liver, muscle, and blood pool. Normal tissue uptake variation and T/R-ratios were established for various time points and for two different doses of injected peptide from a total of 94 whole-body image acquisitions. Immunohistochemistry (IHC) was used to verify HER2 expression in 28 biopsied metastases. T/R-ratios were compared to IHC findings to establish the best reference tissue for each modality and each imaging time-point. The impact of shed HER2 in serum was investigated. Spleen was the best reference tissue across modalities, followed by blood pool and lung. Spleen-T/R was highly correlated to PET SUV in metastases after 2 h (r = 0.96, P HER2-positive and negative metastases at 4 h (PET) and 24 h (SPECT) after injection. In a single case, shed HER2 resulted in intense tracer retention in blood. In the remaining patients shed HER2 was elevated, but without significant impact on ABY-025 biodistribution. T/R-ratios using spleen as reference tissue accurately quantify HER2 expression with radiolabelled ABY-025 imaging in breast cancer metastases with SPECT and PET. Tracer binding to shed HER2 in serum might affect quantification in the extreme case.

  18. Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT.

    Science.gov (United States)

    Teixeira, Suzana C; Rebolleda, José Ferrér; Koolen, Bas B; Wesseling, Jelle; Jurado, Raúl Sánchez; Stokkel, Marcel P M; Del Puig Cózar Santiago, María; van der Noort, Vincent; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2016-06-01

    The purposes of this study were to evaluate the performance of a mammography with molecular imaging PET (MAMMI-PET) system for breast imaging in the hanging-breast position for the visualization of primary breast cancer lesions and to compare this method with whole-body PET/CT. Between March 2011 and March 2014, a prospective evaluation included women with one or more histologically confirmed primary breast cancer lesions (index lesions). After injection of 180-240 MBq of (18)F-FDG, whole-body PET/CT and MAMMI-PET acquisitions were performed, index lesions were scored 0, 1, or 2 for FDG uptake relative to background. Detection and FDG uptake were compared by breast length, maximal tumor diameter, affected breast quadrants, tumor grade, and histologic and immunologic sub-types. Finally, the two PET modalities were compared for detection of index lesions. For 234 index lesions (diameter, 5-170 mm), the overall sensitivity was 88.9% for MAMMI-PET and 91% for PET/CT (p = 0.61). Twenty-three (9.8%) index lesions located too close to the pectoral muscle were missed with MAMMI-PET, and 20 index lesions were missed with PET/CT. Lesion visibility on MAMMI-PET images was influenced by tumor grade (p = 0.034) but not by cancer subtype (p = 0.65). Although in an overall evaluation MAMMI-PET was not superior to PET/CT, MAMMI-PET does have higher sensitivity for primary breast cancer lesions within the scanning range of the device. Optimization of the positioning device may increase visualization of the most dorsal lesions.

  19. {sup 18}F-FDG PET/CT imaging versus dynamic contrast-enhanced CT for staging and prognosis of inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Champion, Laurence; Edeline, Veronique; Giraudet, Anne-Laure; Wartski, Myriam [Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Service d' Oncologie Medicale, Saint-Cloud (France); Cherel, Pascal [Institut Curie, Hopital Rene Huguenin, Service de Radiologie, Saint-Cloud (France); Bellet, Dominique [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de medecine, Saint-Quentin-en-Yvelines (France)

    2013-08-15

    Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer with a poor prognosis. Locoregional staging is based on dynamic contrast-enhanced (DCE) CT or MRI. The aim of this study was to compare the performances of FDG PET/CT and DCE CT in locoregional staging of IBC and to assess their respective prognostic values. The study group comprised 50 women (median age: 51 {+-} 11 years) followed in our institution for IBC who underwent FDG PET/CT and DCE CT scans (median interval 5 {+-} 9 days). CT enhancement parameters were net maximal enhancement, net early enhancement and perfusion. The PET/CT scans showed intense FDG uptake in all primary tumours. Concordance rate between PET/CT and DCE CT for breast tumour localization was 92 %. No significant correlation was found between SUVmax and CT enhancement parameters in primary tumours (p > 0.6). PET/CT and DCE CT results were poorly correlated for skin infiltration (kappa = 0.19). Ipsilateral foci of increased axillary FDG uptake were found in 47 patients (median SUV: 7.9 {+-} 5.4), whereas enlarged axillary lymph nodes were observed on DCE CT in 43 patients. Results for axillary node involvement were fairly well correlated (kappa = 0.55). Nineteen patients (38 %) were found to be metastatic on PET/CT scan with a significant shorter progression-free survival than patients without distant lesions (p = 0.01). In the primary tumour, no statistically significant difference was observed between high and moderate tumour FDG uptake on survival, using an SUVmax cut-off of 5 (p = 0.7 and 0.9), or between high and low tumour enhancement on DCE CT (p > 0.8). FDG PET/CT imaging provided additional information concerning locoregional involvement to that provided by DCE CT on and allowed detection of distant metastases in the same whole-body procedure. Tumour FDG uptake or CT enhancement parameters were not correlated and were not found to have any prognostic value. (orig.)

  20. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from {sup 68}Ga-RGD PET/CT and {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai-Jeon [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Ewha Womans University School of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Chun, In Kook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kangwon National University Hospital, Department of Nuclear Medicine, Chuncheon, Kangwon-Do (Korea, Republic of); Cho, Nariya [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Jeong, Sunjoo [Dankook University, Department of Molecular Biology, Yongin (Korea, Republic of); Lee, Song [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Jung, Kyeong Cheon [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Lee, Yun-Sang [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Lee, Dong Soo [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul (Korea, Republic of); Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2014-08-15

    Imaging biomarkers from functional imaging modalities were assessed as potential surrogate markers of disease status. Specifically, in this prospective study, we investigated the relationships between functional imaging parameters and histological prognostic factors and breast cancer subtypes. In total, 43 patients with large or locally advanced invasive ductal carcinoma (IDC) were analyzed (47.6 ± 7.5 years old). {sup 68}Ga-Labeled arginine-glycine-aspartic acid (RGD) and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were performed. The maximum and average standardized uptake values (SUV{sub max} and SUV{sub avg}) from RGD PET/CT and SUV{sub max} and SUV{sub avg} from FDG PET/CT were the imaging parameters used. For histological prognostic factors, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression was identified using immunohistochemistry (IHC) or fluorescent in situ hybridization (FISH). Four breast cancer subtypes, based on ER/PR and HER2 expression (ER/PR+,Her2-, ER/PR+,Her2+, ER/PR-,Her2+, and ER/PR-,Her2-), were considered. Quantitative FDG PET parameters were significantly higher in the ER-negative group (15.88 ± 8.73 vs 10.48 ± 6.01, p = 0.02 for SUV{sub max}; 9.40 ± 5.19 vs 5.92 ± 4.09, p = 0.02 for SUV{sub avg}) and the PR-negative group (8.37 ± 4.94 vs 4.79 ± 3.93, p = 0.03 for SUV{sub avg}). Quantitative RGD PET parameters were significantly higher in the HER2-positive group (2.42 ± 0.59 vs 2.90 ± 0.75, p = 0.04 for SUV{sub max}; 1.60 ± 0.38 vs 1.95 ± 0.53, p = 0.04 for SUV{sub avg}) and showed a significant positive correlation with the HER2/CEP17 ratio (r = 0.38, p = 0.03 for SUV{sub max} and r = 0.46, p < 0.01 for SUV{sub avg}). FDG PET parameters showed significantly higher values in the ER/PR-,Her2- subgroup versus the ER/PR+,Her2- or ER/PR+,Her2+ subgroups, while RGD PET parameters showed significantly lower values in the ER

  1. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  2. A case of recurrence-mimicking charcoal granuloma in a breast cancer patient: Ultrasound,CT, PET/CT and breast-specific gamma imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong; Park, Ji Yeon; Park, Noh Hyuck; Kim, Seon Jeong; Shin, Hyuck Jai; Lee, Jeong Ju [Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Yi, Seong Yoon [Div. of Hematology-Oncology, Dept. of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2016-07-15

    Charcoal remains stable without causing a foreign body reaction and it may be used for preoperative localization of a non-palpable breast mass. However, cases of post-charcoal-marking granuloma have only rarely been reported in the breast, and a charcoal granuloma can be misdiagnosed as malignancy. Herein, we report the ultrasound, computed tomography (CT), 18F-fluorodeoxyglucose-positron emission tomography/CT, and breast-specific gamma imaging findings of recurrence-mimicking charcoal granuloma after breast conserving surgery, following localization with charcoal in a breast cancer patient.

  3. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  4. Multiple 18F-FDG, PET-CT for Postoperative Monitoring of Breast Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, A.; Murata, Y.; Kubota, K.; Shibuya, H. (Dept. of Radioloy, Tokyo Medical and Dental Univ. Hospital, Tokyo (Japan)); Osanai, T. (Dept. of Breast Surgery, Tokyo Medical and Dental Univ. Hospital, Tokyo (Japan))

    2009-11-15

    Background: Positron emission tomography (PET)-computed tomography (CT) may be useful in the post-treatment follow-up of breast cancer patients. Purpose: To assess the usefulness of 18F-fluorodeoxyglucose (FDG) PET-CT (PET-CT) for postoperative monitoring of breast cancer patients. Material and Methods: One hundred twenty-nine PET-CT studies performed on 55 female postoperative breast cancer patients (median age 56 years, range 36-86 years) were analyzed. The median interval between the PET-CT studies was 6 months (range 1-15 months). In order to determine the usefulness of serial PET-CT examinations in the postoperative follow-up of breast cancer patients, the PET-CT findings were compared with the physical findings, findings obtained by other imaging modalities, and the 18F-FDG-PET (PET) findings. Results: The PET findings were negative in 4 metastatic bone lesions with a positive bone scan. The PET findings were also negative in 6 of 9 osteogenic bone metastases and one of 64 osteolytic bone lesions. There were 5 cases with false-positive of PET, which were determined to be areas of soft-tissue hyperactivity. All false-positive/-negative findings were corrected by the addition of CT. Conclusion: The results of this study lend support to the clinical role of PET-CT in the postoperative follow-up/monitoring of breast cancer patients

  5. The diagnostic value of PET/CT in recurrence and distant metastasis in breast cancer patients and impact on disease free survival

    Directory of Open Access Journals (Sweden)

    Dina M. Abo-Sheisha

    2014-12-01

    Conclusion: In breast cancer, PET/CT is superior to conventional imaging procedures for detection of recurrence, distant metastases and PET/CT can be used to improve prediction of the clinical outcome of breast cancer patients.

  6. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  7. Radiopharmacological evaluation of 6-deoxy-6-[{sup 18}F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Melinda, E-mail: mwuest@ualberta.c [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); Trayner, Brendan J. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Grant, Tina N. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Department of Chemistry, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Jans, Hans-Soenke; Mercer, John R.; Murray, David [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); West, Frederick G. [Department of Chemistry, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); McEwan, Alexander J.B.; Wuest, Frank [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); Cheeseman, Chris I. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada)

    2011-05-15

    Introduction: Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ([{sup 18}F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[{sup 18}F]fluoro-D-fructose (6-[{sup 18}F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers. Methods: Uptake of 6-[{sup 18}F]FDF was studied in murine EMT-6 and human MCF-7 breast cancer cells over 60 min and compared to [{sup 18}F]FDG. Biodistribution of 6-[{sup 18}F]FDF was determined in BALB/c mice. Tumor uptake was studied with dynamic small animal PET in EMT-6 tumor-bearing BALB/c mice and human xenograft MCF-7 tumor-bearing NIH-III mice in comparison to [{sup 18}F]FDG. 6-[{sup 18}F]FDF metabolism was investigated in mouse blood and urine. Results: 6-[{sup 18}F]FDF is taken up by EMT-6 and MCF-7 breast tumor cells independent of extracellular glucose levels but dependent on the extracellular concentration of fructose. After 60 min, 30{+-}4% (n=9) and 12{+-}1% (n=7) ID/mg protein 6-[{sup 18}F]FDF was found in EMT-6 and MCF-7 cells, respectively. 6-deoxy-6-fluoro-D-fructose had a 10-fold higher potency than fructose to inhibit 6-[{sup 18}F]FDF uptake into EMT-6 cells. Biodistribution in normal mice revealed radioactivity uptake in bone and brain. Radioactivity was accumulated in EMT-6 tumors reaching 3.65{+-}0.30% ID/g (n=3) at 5 min post injection and decreasing to 1.75{+-}0.03% ID/g (n=3) at 120 min post injection. Dynamic small animal PET showed significantly lower radioactivity uptake after 15 min post injection in MCF-7 tumors [standard uptake value (SUV)=0

  8. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer.

    Science.gov (United States)

    Wuest, Melinda; Trayner, Brendan J; Grant, Tina N; Jans, Hans-Soenke; Mercer, John R; Murray, David; West, Frederick G; McEwan, Alexander J B; Wuest, Frank; Cheeseman, Chris I

    2011-05-01

    Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers. Uptake of 6-[(18)F]FDF was studied in murine EMT-6 and human MCF-7 breast cancer cells over 60 min and compared to [(18)F]FDG. Biodistribution of 6-[(18)F]FDF was determined in BALB/c mice. Tumor uptake was studied with dynamic small animal PET in EMT-6 tumor-bearing BALB/c mice and human xenograft MCF-7 tumor-bearing NIH-III mice in comparison to [(18)F]FDG. 6-[(18)F]FDF metabolism was investigated in mouse blood and urine. 6-[(18)F]FDF is taken up by EMT-6 and MCF-7 breast tumor cells independent of extracellular glucose levels but dependent on the extracellular concentration of fructose. After 60 min, 30±4% (n=9) and 12±1% (n=7) ID/mg protein 6-[(18)F]FDF was found in EMT-6 and MCF-7 cells, respectively. 6-deoxy-6-fluoro-d-fructose had a 10-fold higher potency than fructose to inhibit 6-[(18)F]FDF uptake into EMT-6 cells. Biodistribution in normal mice revealed radioactivity uptake in bone and brain. Radioactivity was accumulated in EMT-6 tumors reaching 3.65±0.30% ID/g (n=3) at 5 min post injection and decreasing to 1.75±0.03% ID/g (n=3) at 120 min post injection. Dynamic small animal PET showed significantly lower radioactivity uptake after 15 min post injection in MCF-7 tumors [standard uptake value (SUV)=0.76±0.05; n=3] compared to EMT-6 tumors (SUV=1.23±0.09; n=3). Interestingly, [(18)F]FDG uptake

  9. Simultaneous PET and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yiping Shao; Cherry, Simon R.; Meadors, Ken; Siegel, Stefan; Silverman, Robert W. [Crump Institute for Biological Imaging, Department of Molecular and Medical Pharmacology, 10833 Le Conte Avenue, UCLA School of Medicine, Los Angeles, CA 90095 (United States); Farahani, Keyvan [Department of Radiological Sciences, 10833 Le Conte Avenue, UCLA School of Medicine, Los Angeles, CA 90095 (United States); Marsden, Paul K. [Guy' s and St Thomas' Clinical PET Centre, Division of Radiological Sciences, UMDS, London (United Kingdom)

    1997-10-01

    We have developed a prototype PET detector which is compatible with a clinical MRI system to provide simultaneous PET and MR imaging. This single-slice PET system consists of 48 2x2x10mm{sup 3} LSO crystals in a 38 mm diameter ring configuration that can be placed inside the receiver coil of the MRI system, coupled to three multi-channel photomultipliers housed outside the main magnetic field via 4 m long and 2 mm diameter optical fibres. The PET system exhibits 2 mm spatial resolution, 41% energy resolution at 511 keV and 20 ns timing resolution. Simultaneous PET and MR phantom images were successfully acquired. (author)

  10. MicroPET/CT Imaging of AXL Downregulation by HSP90 Inhibition in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Wanqin Wang

    2017-01-01

    Full Text Available AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC. AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG, a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.

  11. HER2 Expression Changes in Breast Cancer Xenografts Following Therapeutic Intervention Can Be Quantified Using PET Imaging and 18F-Labelled Affibody Molecules.

    Science.gov (United States)

    Kramer-Marek, Gabriela; Kiesewetter, Dale O.; Capala, Jacek

    2009-01-01

    Rationale In vivo imaging of HER2 expression may allow direct assessment of HER2 status in tumor tissue and provide means to quantify changes in receptor expression following HER2-targeted therapies. This work describes in vivo characterization of HER2-specific 18F-FBEM-ZHER2:342–Affibody molecule and its application to study the effect of 17-DMAG on HER2 expression by PET imaging. Methods To assess the correlation of signal observed by PET with receptor expression, the tracer was administered to athymic nude mice bearing subcutaneous human breast cancer xenografts with different levels of HER2 expression. To study the down-regulation of HER2, mice were treated with four doses (40 mg/kg) of 17-DMAG, an inhibitor of Hsp90, known to decrease the HER2 expression. Animals were scanned before and after the treatment. After the last scan, mice were euthanized and tumors were frozen for receptor analysis. Results The tracer was eliminated quickly from the blood and normal tissues, providing high tumor/blood and tumor/muscle ratios as early as 20 min post injection. The high contrast images between normal and tumor tissue were recorded for BT474 and MCF7/clone18 tumors. Very low but still detectable uptake was observed for MCF7 tumors and none for MDA-MB-468. The signal correlated with the receptor expression assessed by immunohistochemistry as well as western blot and ELISA. The levels of HER2 expression, estimated by post-treatment PET imaging, decreased 71% (p < 4 × 10−6) and 33% (p < 0.002), respectively, for BT474- and MCF7/clone18-tumor bearing mice. These changes were confirmed by the biodistribution studies, ELISA and western blot. Conclusion Our results suggest that the described 18F-FBEM-ZHER2:342–Affibody molecule can be used to assess HER2 expression in vivo by PET imaging and monitor possible changes of receptor expression in response to therapeutic interventions. PMID:19525458

  12. Discordant Findings of Skeletal Metastasis Between Tc99m MDP Bone Scans and F18 FDG PET/CT Imaging for Advanced Breast and Lung Cancers—Two Case Reports and Literature Review

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chen

    2007-12-01

    Full Text Available Traditionally, Tc99m methyl diphosphate (MDP bone scintigraphy provides high-sensitivity detection of skeletal metastasis from breast and lung cancers in regular follow-up. Fluorodeoxyglucose (FDG positron emission tomography/computed tomography (PET/CT, based on the glucose metabolism of malignant cells, plays a role in describing rumor growth, proliferation of neoplasm and the extent of metastasis. In general, concordant findings of skeletal metastasis are seen on both types of image, especially in cases of breast and lung cancer. However, there were extremely discordant findings of skeletal metastasis between bone scans and F18 FDG PET/CT imaging in two cases among 300 consecutive F18 FDG PET/CT follow-up exams of patients with malignancies, during the past year, in our center. Both cases, one of breast cancer and one of lung cancer, had negative bone scintigraphic findings, but a diffusely high grade of F18 FDG avid marrow infiltration in the axial spine, leading to the diagnosis of stage IV disease in both cases. Owing to variant genetic aberrance of malignance, F18 FDG PET/CT reveals direct evidence of diffuse, rapid neoplasm metabolism in the bone marrow of the spine, but not of secondary osteoblastic reactions in vivo. F18 FDG PET/CT should always be employed in the follow-up of patients with malignancies.

  13. PET scan for breast cancer

    Science.gov (United States)

    ... radioactive substance (called a tracer) to look for breast cancer. This tracer can help identify areas of cancer ... only after a woman has been diagnosed with breast cancer. It is done to see if the cancer ...

  14. The value of delayed {sup 18}F-FDG PET/CT imaging for differentiating axillary lymph nodes in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young Sik; Son, Ju Cheol [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of); Park, Cheol Woo [Dept. of Radiological Technology Dong-Eui Institute of Technology, Busan (Korea, Republic of)

    2013-12-15

    Positron emission tomography/computed tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) have been used as a powerful fusion modality in nuclear medicine not only for detecting cancer but also for staging and therapy monitoring. Nevertheless, there are various causes of FDG uptake in normal and/or benign tissues. The purpose of present study was to investigate whether additional delayed imaging can improve the diagnosis to differentiate the rates of FDG uptake at axillary lymph nodes (ALN) between malignant and benign in breast cancer patients. 180 PET/CT images were obtained for 27 patients with ALN uptake. The patients who had radiotherapy and chemotherapy were excluded from the study. {sup 18}F-FDG PET/CT scan at 50 min (early phase) and 90 min (delayed phase) after {sup 18}F-FDG injection were included in this retrospective study. The staging of cancers was confirmed by final clinical according to radiologic follow-up and pathologic findings. The standardized uptake value (SUV) of ALN was measured at the Syngo Acquisition Workplace by Siemens. The 27 patients included 18 malignant and 9 ALN benign groups and the 18 malignant groups were classified into the 3 groups according to number of metastatic ALN in each patient. ALNs were categorized less than or equal 3 as N1, between 4 to 9 as N2 and more than 10 as N3 group. Results are expressed as the mean ± standard deviation (S.D.) and statistically analyzed by SPSS. As a result, Retention index (RI-SUV max) in metastasis was significantly higher than that in non-metastasis about 5 fold increased. On the other hand, RI-SUV max in N group tended to decrease gradually from N1 to N3. However, we could not prove significance statistically in malignant group with ANOVA. As a consequence, RI-SUV max was good indicator for differentiating ALN positive group from node negative group in breast cancer patients. These results show that dual-time-point scan appears to be useful in distinguishing malignant from benign.

  15. Imaging Guided Breast Interventions.

    Science.gov (United States)

    Masroor, Imrana; Afzal, Shaista; Sufian, Saira Naz

    2016-06-01

    Breast imaging is a developing field, with new and upcoming innovations, decreasing the morbidity and mortality related to breast pathologies with main emphasis on breast cancer. Breast imaging has an essential role in the detection and management of breast disease. It includes a multimodality approach, i.e. mammography, ultrasound, magnetic resonance imaging, nuclear medicine techniques and interventional procedures, done for the diagnosis and definitive management of breast abnormalities. The range of methods to perform biopsy of a suspicious breast lesion found on imaging has also increased markedly from the 1990s with hi-technological progress in surgical as well as percutaneous breast biopsy methods. The image guided percutaneous breast biopsy procedures cause minimal breast scarring, save time, and relieve the patient of the anxiety of going to the operation theatre. The aim of this review was to describe and discuss the different image guided breast biopsy techniques presently employed along with the indications, contraindication, merits and demerits of each method.

  16. FDG-PET/CT detection of very early breast cancer in women with breast microcalcification lesions found in mammography screening.

    Science.gov (United States)

    Peng, Nan-Jing; Chou, Chen-Pin; Pan, Huay-Ben; Chang, Tsung-Hsien; Hu, Chin; Chiu, Yu-Li; Fu, Ting-Ying; Chang, Hong-Tai

    2015-08-01

    To assess the efficacy of positron emission tomography/computed tomography with the glucose analogue 2-[(18) F]fluoro-2-deoxy-D-glucose (FDG-PET/CT) in Taiwanese women with early breast cancer detected by mammography screening. Dual-time-point imaging of whole-body supine and breast prone scans using FDG-PET/CT were performed sequentially in the pre-operative stage. A total of 11,849 patients underwent screening mammography, of whom 1,209 (10.2%) displayed positive results. After further investigation, 54 patients underwent FDG-PET/CT. Post-operative pathology examinations revealed malignancies in 26 lesions, including invasive breast cancer in 11 cases and non-invasive breast cancer in 15 cases, as well as benign disease in 30 lesions. The FDG-PET/CT findings from the whole-body scans were positive for 9 of 11 invasive breast cancers (81.8%) and 3 of 15 non-invasive cancers (20%), and they were negative for all benign lesions. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of FDG-PET/CT with whole-body supine imaging were 46.2%, 100%, 100% and 68.2%, respectively. Breast prone imaging revealed another patient with ductal carcinoma in situ, increasing the sensitivity to 50%. Importantly, positive PET findings were significantly correlated with tumour histology (P = 0.006), tumour size (P = 0.039) and Ki-67 expression (P = 0.011). FDG-PET/CT with whole-body scanning demonstrated high sensitivity to invasive breast cancer, limited sensitivity to non-invasive breast cancer, and high specificity for breast cancer. FDG-PET/CT might be useful for differentiating tumour invasiveness. However, the good PPV but poor NPV do not allow the physician to discard the biopsy. © 2015 The Royal Australian and New Zealand College of Radiologists.

  17. Carcinoma en Cuirasse from Recurrent Breast Cancer seen on FDG-PET/CT.

    Science.gov (United States)

    Win, Aung Zaw; Aparici, Carina Mari

    2015-01-01

    Our patient was a 36-year-old female diagnosed with Grade II ER+/PR-/Her-2 - ductal carcinoma in situ (DCIS) in the left breast. She underwent left lumpectomy and received treatment with tamoxifen and radiotherapy. Three years later, she presented with multiple diffused skin nodules on the chest and upper left arm. 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) exam showed widespread metastasis in the chest, upper left arm, left axillary lymph nodes, and left suprascapular muscle. FDG-PET/CT imaging of breast carcinoma en cuirasse is very rare. FDG-PET/CT is useful in detecting recurrent breast cancer.

  18. Cardiac Applications of PET/MR Imaging.

    Science.gov (United States)

    Lau, Jeffrey M C; Laforest, Richard; Nensa, Felix; Zheng, Jie; Gropler, Robert J; Woodard, Pamela K

    2017-05-01

    Simultaneous acquisition PET/MR imaging combines the anatomic capabilities of cardiac MR imaging with quantitative capabilities of both PET and MR imaging. Cardiac PET/MR imaging has the potential not only to assess cardiac tumors but also to provide thorough assessment of myocardial ischemia, infarction, and function and specific characterization of cardiomyopathies, such as cardiac sarcoid. In this article, the authors start with a discussion of the technical challenges specific to cardiovascular PET/MR imaging followed by a discussion of the use of PET/MR imaging in various cardiovascular conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  20. Neurotransmission imaging by PET

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Akihiro; Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    2001-08-01

    PET studies on neurotransmission in psychological disorders to evaluate abnormal neurotransmission and therapeutic effects are thoroughly reviewed by type of major neurotransmitters. Studies on dopaminergic neurotransmission have focused on the function of dopamine D{sub 2} receptors, receptor subtypes, such as the D{sub 1} receptor, and ligands, such as transporters. PET studies of dopamine D{sub 2} receptor, which began in the early 1980s, have predominantly been performed in schizophrenia, and most have failed to detect any statistically significant differences between schizophrenia patients and controls. The studies in the early 1980s were performed by using [{sup 11}C]N-methyl-spiperone (NMSP) and [{sup 11}C]raclopride, ligands for striatal dopamine D{sub 2} receptors. [{sup 11}C]FLB457, which has much higher affinity for D{sub 2} receptors than raclopride, began to be used in the 1990s. Dopamine D{sub 2} occupancy after drug ingestion has also been investigated to clarify the mechanisms and effects of antipsychotic drugs, and there have also been studies on the effect of aging and personality traits on dopamine D{sub 2} receptor levels in healthy subjects. In studies on dopamine receptor subtypes other than D{sub 2}, dopamine D{sub 1} receptors have been studied in connection with assessments of cognitive functions. Most studies on dopamine transporters have been related to drug dependence. Serotonin 5-HT{sub 2A} receptors have been studied with [{sup 11}C]NMSP in schizophrenia patients, while studies of another serotonin receptor subtype, 5-HT{sub 1A} receptors, have been mainly conducted in patients with depression. [{sup 11}C]NMSP PET showed no difference between schizophrenia patients who had not undergone phamacotherapy and normal subjects. Because serotonin selective reuptake inhibitors (SSRIs) affect serotonin transporters, and abnormalities in serotonin transporters detected in mood disorders, PET ligands for serotonin transporters have increasingly

  1. PET/MR Imaging in Gynecologic Oncology.

    Science.gov (United States)

    Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina

    2017-08-01

    MR imaging and PET using 2-Deoxy-2-[18F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. FDG PET imaging dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong Cheol [Kyungpook National University Medical School and Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2007-04-15

    Dementia is a major burden for many countries including South Korea, where life expectancy is continuously growing and the proportion of aged people is rapidly growing. Neurodegenerative disorders, such as, Alzheimer disease, dementia with Lewy bodies, frontotemporal dementia. Parkinson disease, progressive supranuclear palsy, corticobasal degeneration, Huntington disease, can cause dementia, and cerebrovascular disease also can cause dementia. Depression or hypothyroidism also can cause cognitive deficits, but they are reversible by management of underlying cause unlike the forementioned dementias. Therefore these are called pseudodementia. We are entering an era of dementia care that will be based upon the identification of potentially modifiable risk factors and early disease markers, and the application of new drugs postpone progression of dementias or target specific proteins that cause dementia. Efficient pharmacologic treatment of dementia needs not only to distinguish underlying causes of dementia but also to be installed as soon as possible. Therefore, differential diagnosis and early diagnosis of dementia are utmost importance. F-18 FDG PET is useful for clarifying dementing diseases and is also useful for early detection of the disease. Purpose of this article is to review the current value of FDG PET for dementing diseases including differential diagnosis of dementia and prediction of evolving dementia.

  3. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    Science.gov (United States)

    2008-08-01

    January 2011 ness, are now being raised as arguments against randomised trials of diagnostic techniques” (8). This still applies (at least partly) in 2012...for up to 20 days before euthanasia . MicroPET imaging Detailed procedure for positron emission tomography (PET) imaging has been reported earlier [21...and 18F-FLT production. Grant support was from the National Cancer Institute (NCI; R01 120188, R01 CA119053, R21 CA121842, R21 CA102123, P50 CA114747

  4. Prognostic value of primary tumor SUVmax on F-18 FDG PET/CT compared with semi-quantitative tumor uptake on Tc-99m sestamibi breast-specific gamma imaging in invasive ductal breast cancer.

    Science.gov (United States)

    Yoo, Jang; Yoon, Hai-Jeon; Kim, Bom Sahn

    2017-01-01

    This study aimed to evaluate the prognostic value of F-18 FDG PET/CT in comparison with Tc-99m sestamibi breast-specific gamma imaging (BSGI) and previously established clinical prognostic parameters of invasive ductal breast carcinoma (IDC). We retrospectively included 157 female IDC patients (mean age 49.2 years, range 29.9-78.9) who underwent PET/CT and BSGI. The maximum standardized uptake value (SUVmax) and tumor to normal background ratios (TNRs) of their primary tumors were measured on PET/CT and BSGI, respectively. Univariate and multivariate survival analyses were performed to evaluate the prognostic value of the measured parameters and other clinical prognostic factors: age, menopausal status, breast density, pathologic tumor size (pTS), axillary nodal status (ANS), nuclear grade, histologic grade, hormone receptor status of estrogen (ER) and progesterone receptors (PR) and HER-2 expression. Among 157 patients, recurrences occurred in 22 patients (14.0 %). In univariate analyses, pTS (p < 0.0001), ANS (p < 0.0001), nuclear grade (p = 0.0046), histologic grade (p = 0.0001), ER status (p < 0.0001), PR status (p = 0.0037), HER-2 status (p = 0.0007), primary tumor SUVmax (p < 0.0001) and TNR (p = 0.0001) were significant predictors of recurrence. Among them, pTS (p = 0.0172), ANS (p = 0.0416), ER status (p = 0.0375) and primary tumor SUVmax (p = 0.0239) were independent prognostic factors in multivariate regression analysis. High primary tumor SUVmax of PET/CT and high TNR of BSGI were poor prognostic factors in IDC patients; in addition, primary tumor SUVmax was an independent prognostic factor along with pTS, ANS and ER status.

  5. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Munnink, T. H. Oude; Nagengast, W. B.; Brouwers, A. H.; Schroder, C. P.; Hospers, G. A.; Lub-de Hooge, M. N.; van der Wall, E.; van Diest, P. J.; de Vries, E. G. E.

    2009-01-01

    Molecular imaging of breast cancer can potentially be used for breast cancer screening, staging, restaging, response evaluation and guiding therapies. Techniques for molecular breast cancer imaging include magnetic resonance imaging (MRI), optical imaging, and radionuclide imaging with positron

  6. Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging.

    Science.gov (United States)

    Botsikas, Diomidis; Kalovidouri, Anastasia; Becker, Minerva; Copercini, Michele; Djema, Dahila Amal; Bodmer, Alexandre; Monnier, Sindy; Becker, Christoph D; Montet, Xavier; Delattre, Benedicte M A; Ratib, Osman; Garibotto, Valentina; Tabouret-Viaud, Claire

    2016-07-01

    To evaluate the performance of 18F-fluorodeoxyglucose (FDG) positron emission tomography magnetic resonance imaging (PET/MR) for preoperative breast cancer staging. Preoperative PET/MR exams of 58 consecutive women with breast cancer were retrospectively reviewed. Histology and mean follow-up of 26 months served as gold standard. Four experienced readers evaluated primary lesions, lymph nodes and distant metastases with contrast-enhanced MRI, qualitative/quantitative PET, and combined PET/MR. ROC curves were calculated for all modalities and their combinations. The study included 101 breast lesions (83 malignant, 18 benign) and 198 lymph node groups, (34 malignant, 164 benign). Two patients had distant metastases. Areas under the curve (AUC) for breast cancer were 0.9558, 0.8347 and 0.8855 with MRI, and with qualitative and quantitative PET/MR, respectively (p = 0.066). Sensitivity for primary cancers with MRI and quantitative PET/MR was 100 % and 77 % (p = 0.004), and for lymph nodes 88 % and 79 % (p = 0.25), respectively. Specificity for MRI and PET/MR for primary cancers was 67 % and 100 % (p = 0.03) and for lymph nodes 98 % and 100 % (p = 0.25). In breast cancer patients, MRI alone has the highest sensitivity for primary tumours. For nodal metastases, both MRI and PET/MR are highly specific. • MRI alone and PET/MR have a similar overall diagnostic performance. • MRI alone has a higher sensitivity than PET/MR for local tumour assessment. • Both MRI and PET/MR have a limited sensitivity for nodal metastases. • Positive lymph nodes on MRI or PET/MR do not require presurgical biopsy.

  7. Musculoskeletal imaging using fluoride PET.

    Science.gov (United States)

    Fischer, Dorothee Rita

    2013-11-01

    The convenience of (18)F-fluoride imaging is undeniable both because of its favorable tracer and because of its technical characteristics, including high image quality and short examination times leading to increased patient comfort. Depending on the activity administered, the radiation dose to patients is about comparable to higher using (18)F-fluoride for bone imaging compared with conventional scintigraphy using 99mTc-methylene diphosphonate. In times of molybdenum shortage, (18)F-fluoride represents a good alternative to 99mTc-based bone tracers. Besides malignant skeletal disease(18)F-fluoride PET/CT has in the last decade been investigated in a variety of non-oncologic musculoskeletal disorders of all parts of the skeleton. Studies included imaging of the skull with a special focus on bisphosphonate-induced osteonecrosis of the jaw in patients treated with bisphosphonates due to benign or malignant bone changes. Further studies evaluated the appendicular skeleton with emphasis on postsurgical changes including patients after knee and hip surgery and patients having received bone grafts of their limbs. Also, therapeutic effect of (18)F-fluoride PET/CT on patients with unclear foot pain was investigated. Finally imaging of the axial skeleton was analyzed including patients with ankylosing spondylitis and with Paget disease as well as patients after spine surgery including assessment of cage incorporation after cervical and lumbar spine fusion surgery. Furthermore, children suspected of child abuse as well as young patients with back pain were investigated by either (18)F-fluoride PET or PET/CT. Regarding its favorable technical aspects as well as study results presented, it is imaginable that (18)F-fluoride PET/(CT) will be increasingly used for non-oncologic musculoskeletal imaging in the future either as an adjunct or alternative to so far established imaging modalities and seems to be promising regarding decision making in the therapeutic management of

  8. Optical breast imaging

    NARCIS (Netherlands)

    van de Ven, S.M.W.Y.

    2011-01-01

    Optical breast imaging uses near-infrared light to assess the optical properties of breast tissue. It can be performed relying on intrinsic breast tissue contrast alone or with the use of exogenous imaging agents that accumulate at the tumor site. Different tissue components have unique scattering

  9. PET Imaging of Estrogen Receptors as a Diagnostic Tool for Breast Cancer Patients Presenting with a Clinical Dilemma

    NARCIS (Netherlands)

    van Kruchten, Michel; Glaudemans, Andor W. J. M.; Beets-Tan, Regina G. H.; Schroder, Carolien P.; Dierckx, Rudi A.; de Vries, Elisabeth G. E.; Hospers, Geke A. P.; de Vries, Erik

    16 alpha-F-18-fluoro-17 beta-estradiol (F-18-FES) is an estrogen receptor (ER)-specific PET tracer with various potential interesting applications. The precise contribution of this technique in current clinical practice, however, has yet to be determined. Therefore, the aim of this study was to

  10. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  11. Combined PET/MR imaging in neurology

    DEFF Research Database (Denmark)

    Andersen, Flemming Littrup; Ladefoged, Claes Nøhr; Beyer, Thomas

    2014-01-01

    ). RESULTS: PET activity values in patients following MR-AC (A) showed a substantial radial dependency when compared to PET/CT. In all patients cortical PET activity was lower than the activity in the central region of the brain (10-15%). When adding bone attenuation values to standard MR-AC (B and C......) the radial gradient of PET activity values was removed. Further evaluation of PET/MR activity following MR-AC (A) relative to MR-AC (C) using the full CT for attenuation correction showed an underestimation of 25% in the cortical regions and 5-10% in the central regions of the brain. Observations in patients...... were replicated by observations from the phantom study. CONCLUSION: Our phantom and patient data demonstrate a spatially varying bias of the PET activity in PET/MR images of the brain when bone tissue is not accounted for during attenuation correction. This has immediate implications for PET/MR imaging...

  12. Alpha-V Integrin Targeted PET Imagining of Breast Cancer Angiogenesis and Lose-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2005-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth, spread, and angiogenesis as well as quantifying av-integrin expression level during breast tumor neovascularization overtime. (3...

  13. Optical Imaging of the Breast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Kim, Eun Kyung [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-03-15

    As the increased prevalence of breast cancer and the advances in breast evaluation awareness have resulted in an increased number of breast examinations and benign breast biopsies, several investigations have been performed to improve the diagnostic accuracy for breast lesions. Optical imaging of the breast that uses nearinfrared light to assess the optical properties of breast tissue is a novel non-invasive imaging technique to characterize breast lesions in clinical practice. This review provides a summary of the current state of optical breast imaging and it describes the basic concepts of optical imaging, the potential clinical applications for breast cancer imaging and its potential incorporation with other imaging modalities

  14. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-C-11]tyrosine PET

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Pruim, J; Paans, AMJ; Plukker, JTM; Hoekstra, HJ; Vaalburg, W; Schraffordt Koops, H.

    The aims of the study were to compare the value of L-[1-C-11]tyrosine (TYR) and [F-18]fluoro-2-deoxy-D-glucose (FDG) as tumor tracers in patients with breast cancer, to investigate the correlation between quantitative values and standardized uptake values (SUVs) and to estimate the value of SUVs for

  15. Breast Fibroadenoma With Increased Activity on 68Ga DOTATATE PET/CT.

    Science.gov (United States)

    Papadakis, Georgios Z; Millo, Corina; Sadowski, Samira M; Karantanas, Apostolos H; Bagci, Ulas; Patronas, Nicholas J

    2017-02-01

    Fibroadenoma is the most common benign breast tumor in women of reproductive age, carrying little to no risk of breast cancer development. We report on a case of a woman with history of neuroendocrine tumor who on follow-up imaging tests underwent whole-body PET/CT study using Ga DOTATATE. The scan showed increased focal activity in the right breast, which was biopsied revealing a fibroadenoma. The presented data suggests cell surface overexpression of somatostatin receptors by this benign breast tumor. Moreover, this finding emphasizes the need for cautious interpretation of Ga DOTATATE-avid breast lesions that could mimic malignancy in neuroendocrine tumor patients.

  16. Kinetic modeling in PET imaging of hypoxia

    DEFF Research Database (Denmark)

    Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET......Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can...... analysis for PET imaging of hypoxia....

  17. Kinetic modeling in PET imaging of hypoxia

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Hansen, Anders E

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can...... be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET...... analysis for PET imaging of hypoxia....

  18. Standardized Uptake Values from PET/MRI in Metastatic Breast Cancer: An Organ-based Comparison With PET/CT.

    Science.gov (United States)

    Pujara, Akshat C; Raad, Roy A; Ponzo, Fabio; Wassong, Carolyn; Babb, James S; Moy, Linda; Melsaether, Amy N

    2016-05-01

    Quantitative standardized uptake values (SUVs) from fluorine-18 (18F) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) are commonly used to evaluate the extent of disease and response to treatment in breast cancer patients. Recently, PET/magnetic resonance imaging (MRI) has been shown to qualitatively detect metastases from various primary cancers with similar sensitivity to PET/CT. However, quantitative validation of PET/MRI requires assessing the reliability of SUVs from MR attenuation correction (MRAC) relative to CT attenuation correction (CTAC). The purpose of this retrospective study was to assess the utility of PET/MRI-derived SUVs in breast cancer patients by testing the hypothesis that SUVs derived from MRAC correlate well with those from CTAC. Between August 2012 and May 2013, 35 breast cancer patients (age 37-78 years, 1 man) underwent clinical 18F-FDG PET/CT followed by PET/MRI. One hundred seventy metastases were seen in 21 of 35 patients; metastases to bone in 16 patients, to liver in seven patients, and to nonaxillary lymph nodes in eight patients were sufficient for statistical analysis on an organ-specific per patient basis. SUVs in the most FDG-avid metastasis per organ per patient from PET/CT and PET/MRI were measured and compared using Pearson's correlations. Correlations between CTAC- and MRAC-derived SUVmax and SUVmean in 31 metastases to bone, liver, and nonaxillary lymph nodes were strong overall (ρ = 0.80, 0.81). SUVmax and SUVmean correlations were also strong on an organ-specific basis in 16 bone metastases (ρ = 0.76, 0.74), seven liver metastases (ρ = 0.85, 0.83), and eight nonaxillary lymph node metastases (ρ = 0.95, 0.91). These strong organ-specific correlations between SUVs from PET/CT and PET/MRI in breast cancer metastases support the use of SUVs from PET/MRI for quantitation of 18F-FDG activity. © 2016 Wiley Periodicals, Inc.

  19. Clinical PET/MR Imaging in Oncology

    DEFF Research Database (Denmark)

    Kjær, Andreas; Torigian, Drew A.

    2016-01-01

    . The question, therefore, arises regarding what the future clinical applications of PET/MR imaging will be. In this article, the authors discuss ways in which PET/MR imaging may be used in future applications that justify the added cost, predominantly focusing on oncologic applications. The authors suggest...

  20. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  1. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. FDG-PET in monitoring therapy of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Bender, H.; Palmedo, H. [Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn (Germany)

    2004-06-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been used successfully for the staging and re-staging of breast cancer. Another significant indication is the evaluation of therapy response. Only limited data are available on the use of FDG-PET in breast cancer after radiation therapy. The same holds true for chemotherapy. Only the therapy response in locally advanced breast cancer after chemotherapy has been investigated thoroughly. Histopathological response could be predicted with an accuracy of 88-91% after the first and second courses of therapy. A quantitative evaluation is, of course, a prerequisite when FDG-PET is used for therapy monitoring. Only a small number of studies have focussed on hormone therapy. In this context, a flare phenomenon with increasing standardised uptake values after initiation of tamoxifen therapy has been observed. More prospective multicentre trials will be needed to make FDG-PET a powerful tool in monitoring chemotherapy in breast cancer. (orig.)

  3. [FDG-PET/CT in staging of breast carcinoma: use in tumour stage III and locoregional recurrent breast carcinoma].

    NARCIS (Netherlands)

    Bulten, B.F.; Haas, M.J. de; Rodenburg, C.J.; Ooijen, B. van; Baas, I.O.; Klerk, J.M. de

    2014-01-01

    In stage III breast carcinoma, metastasized disease needs to be determined. In the past, conventional imaging by liver ultrasound, chest X-ray and bone scintigraphy was the work-up of choice. Recently, FDG-PET/CT was found to have additional value, but clinicians are hesitant to introduce this

  4. Preoperative PET/CT in early-stage breast cancer

    DEFF Research Database (Denmark)

    Bernsdorf, M; Berthelsen, A K; Wielenga, V T

    2012-01-01

    The aim of this study was to assess the diagnostic and therapeutic impact of preoperative positron emission tomography and computed tomography (PET/CT) in the initial staging of patients with early-stage breast cancer.......The aim of this study was to assess the diagnostic and therapeutic impact of preoperative positron emission tomography and computed tomography (PET/CT) in the initial staging of patients with early-stage breast cancer....

  5. PET tracer for imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a radiolabelled peptide-based compound for diagnostic imaging using positron emission tomography (PET). The compound may thus be used for diagnosis of malignant diseases. The compound is particularly useful for imaging of somatostatin overexpression in tumors, wherein the compound...... is capable of being imaged by PET when administered with a target dose in the range of 150-350 MBq, such as 150-250 MBq, preferable in the range of 191-210 MBq....

  6. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  7. Imaging neuronal pathways with 52Mn PET

    DEFF Research Database (Denmark)

    Napieczynska, Hanna; Severin, Gregory; Fonslet, Jesper

    2017-01-01

    tomography (PET) neuronal tract tracer. We used 52Mn for imaging dopaminergic pathways after a unilateral injection into the ventral tegmental area (VTA), as well as the striatonigral pathway after an injection into the dorsal striatum (STR) in rats. Furthermore, we tested potentially noxious effects...... of the radioactivity dose with a behavioral test and histological staining. 24 h after 52Mn administration, the neuronal tracts were clearly visible in PET images and statistical analysis confirmed the observed distribution of the tracer. We noticed a behavioral impairment in some animals treated with 170 kBq of 52Mn...... for PET imaging....

  8. Quantitative PET imaging with the 3T MR-BrainPET

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, C., E-mail: c.weirich@fz-juelich.de [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany); Scheins, J.; Lohmann, P.; Tellmann, L. [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany); Byars, L.; Michel, C. [Siemens Healthcare, Molecular Imaging, Knoxville, TN (United States); Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N.J. [Forschungszentrum Jülich, Institute of Neuroscience and Medicine – 4, Juelich (Germany)

    2013-02-21

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  9. Carcinoma en Cuirasse from Recurrent Breast Cancer seen on FDG-PET/CT

    Directory of Open Access Journals (Sweden)

    Aung Zaw Win

    2015-01-01

    Full Text Available Our patient was a 36-year-old female diagnosed with Grade II ER+/PR−/Her-2 − ductal carcinoma in situ (DCIS in the left breast. She underwent left lumpectomy and received treatment with tamoxifen and radiotherapy. Three years later, she presented with multiple diffused skin nodules on the chest and upper left arm. 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT exam showed widespread metastasis in the chest, upper left arm, left axillary lymph nodes, and left suprascapular muscle. FDG-PET/CT imaging of breast carcinoma en cuirasse is very rare. FDG-PET/CT is useful in detecting recurrent breast cancer.

  10. Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera

    Science.gov (United States)

    2014-02-01

    biochemical activity, rather than lesions’ morphology, which is visualized by other imag- ing modalities such as mammography , MRI, and ultrasound. We will...evaluate and compare lesion size, contrast and standard uptake value (SUV). Pilot Study II will validate the utility of 1 mm3 resolution breast-dedicated PET

  11. PET/MR Imaging in Vascular Disease

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Pedersen, Sune Folke; Kjær, Andreas

    2016-01-01

    For imaging of atherosclerotic disease, lumenography using computed tomography, ultrasonography, or invasive angiography is still the backbone of evaluation. However, these methods are less effective to predict the likelihood of future thromboembolic events caused by vulnerability of plaques. PET...

  12. Molecular markers in breast cancer: new tools in imaging and prognosis

    OpenAIRE

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluorescent labeled (NIRF) tracers for detection of breast cancer. Thus far, only a few molecular imaging tracers have been taken to the clinic of which most are suitable for PET. My thesis describes the e...

  13. Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?

    OpenAIRE

    Ravichandran Rajkumar; Elena Rota Kops; Jörg Mauler; Lutz Tellmann; Christoph Lerche; Hans Herzog; N Jon Shah; Irene Neuner

    2017-01-01

    Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of sim...

  14. PET/MRI for Oncologic Brain Imaging

    DEFF Research Database (Denmark)

    Rausch, Ivo; Rischka, Lucas; Ladefoged, Claes N

    2017-01-01

    by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs...... of the whole brain and 10 anatomic regions segmented on MR images.Results:For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUVmeanwere -10%, -4%, and -3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD......, respectively.Conclusion:The diagnostic reading of PET/MR patients with brain tumors did not change with the chosen AC method. Quantitative accuracy of SUVs was clinically acceptable for UTE- and BD-AC for group A, whereas for group B BD was in accordance with CTref. Nevertheless, for the quantification...

  15. Detection of synchronous parathyroid adenoma and breast cancer with {sup 18}F-fluorocholine PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Vorselaars, Wessel MCM; Kluijfthout, Wiuter P.; Vriens, Menno R; Van der Pol, Carmen C.; Rinkes, Inne HM Borel; Valk, Gerlof D.; De Keizer, Bart [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    A 71-year-old woman was referred to our tertiary care center for evaluation of asymptomatic recurrence of primary hyperparathyroidism. As per our protocol, the patient underwent neck/mediastinum {sup 18}F-fluorocholine (FCH) positron emission tomography-computed tomography (PET-CT) for localization. In our institution, FCH PET-CT is performed in patients with hyperparathyroidism and negative conventional imaging. FCH PET-CT is a promising new imaging modality for detection of hyperfunctioning parathyroid glands. As can be seen in the case presented, high FCH uptake was seen in a small breast cancer. Due to its favorable half-life and wide availability by its use as a localization technique for patients with prostate cancer and complicated hyperparathyroidism, FCH PET-CT may be a new promising modality in the imaging of breast cancer.

  16. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Willemink, Martin J; Eldib, Mootaz [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Leiner, Tim [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Fayad, Zahi A; Mani, Venkatesh [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (United States)

    2015-05-18

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  17. [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Gerke, Oke; Baun, Christina

    2016-01-01

    PURPOSE: To prospectively investigate the diagnostic accuracy of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) with dual-time-point imaging, contrast-enhanced CT (ceCT), and bone scintigraphy (BS) in patients with suspected breast cancer recurrence....... PATIENTS AND METHODS: One hundred women with suspected recurrence of breast cancer underwent 1-hour and 3-hour FDG-PET/CT, ceCT, and BS within approximately 10 days. The study was powered to estimate the precision of the individual imaging tests. Images were visually interpreted using a four...... the receiver operating curve and higher sensitivity, specificity, and superior likelihood ratios. CONCLUSION: FDG-PET/CT was accurate in diagnosing recurrence in breast cancer patients. It allowed for distant recurrence to be correctly ruled out and resulted in only a small number of false-positive cases...

  18. PET and SPECT imaging in veterinary medicine.

    Science.gov (United States)

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. (18)F-Fluorodeoxyglucose PET/MR Imaging in Lymphoma.

    Science.gov (United States)

    Platzek, Ivan

    2016-10-01

    (18)F-Fluorodeoxyglucose (FDG) PET/MR imaging is feasible for initial staging and therapy response assessment in lymphoma. Although FDG PET/MR imaging is equivalent to FDG PET/CT for initial staging of lymphoma, not enough data are available with regard to other indications yet. Diffusion-weighted MR imaging is a promising addition to FDG PET/MR imaging, but has not been evaluated systematically. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cardiac sympathetic neuronal imaging using PET

    Energy Technology Data Exchange (ETDEWEB)

    Lautamaeki, Riikka; Tipre, Dnyanesh [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Bengel, Frank M. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Cardiovascular Nuclear Medicine, Baltimore, MD (United States)

    2007-06-15

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  1. Breast fibroadenoma with increased activity on 68Ga-DOTATATE PET/CT

    Science.gov (United States)

    Papadakis, Georgios Z.; Millo, Corina; Sadowski, Samira M.; Karantanas, Apostolos H.; Bagci, Ulas; Patronas, Nicholas J.

    2016-01-01

    Fibroadenoma is the most common benign breast tumor in women of reproductive age, carrying little to no risk of breast cancer development. We report on a case of a woman with history of neuroendocrine tumor (NET), who on follow-up imaging tests underwent whole-body PET/CT study using 68Ga-DOTATATE. The scan showed increased focal activity in the right breast, which was biopsied revealing a fibroadenoma. The presented data suggests cell surface over-expression of somatostatin receptors (SSTRs) by this benign breast tumor. Moreover, this finding emphasizes the need for cautious interpretation of 68Ga-DOTATATE avid breast lesions which could mimic malignancy in NET patients. PMID:27879489

  2. PET imaging in patients with Modic changes

    Energy Technology Data Exchange (ETDEWEB)

    Albert, H.B.; Manniche, C. [Univ. of Southern Denmark, Funen (Denmark). Back Research Centre; Petersen, H.; Hoeilund-Carlsen, P.F. [Odense University Hospital, Univ. of Southern Denmark (Denmark). Dept. of Nuclear Medicine

    2009-07-01

    The aim of this study was via PET imaging to reveal if any highly metabolic processes were occurring in Modic changes type 1 and/or in the adjacent discs. Modic changes (MC) are signal changes in the vertebral endplate and body visualised by magnetic resonance imaging (MRI). MC are strongly associated with low back pain (LBP). MC type 1 appear to be inflammation on MRI, and histological and biochemical findings make it highly likely that an inflammation is present. Though MC is painful no known treatment is available, and it is unknown which entities affect the progress or regress of MC. The changes observed on MRI are slow and take months to develop, but faster changes in the metabolism might provide a platform for monitoring patients. Patients from The Back Centre Funen, with low back pain in the area of L1 to S1, MC type 1 in L1 to L5, and a previous herniated lumbar disc. All patients had a PET scan using FDG ({sup 18}F-fluorodeoxyglucose) as tracer. Included in the study were 11 patients, 4 women and 7 men, mean age 48.1 year (range 20-65). All MC were situated in the vertebrae both above and below the previously herniated disc/discs. Ten patients had MC at 1 level, and 1 had MC at 2 levels. The affected levels were 1 at L2/L3, 6 at L4 /L5, and 5 at L5/S1. All had a previous disc herniation and MC larger than 4 mm in diameter. Technically satisfactory PET scans were obtained. However, PET imaging showed no increases in metabolism in any vertebra or disc of any patient. Modic type 1 changes do not reveal themselves by showing increased metabolism with ordinary FDG PET imaging. PET tracers illuminating inflammation are being developed and hopefully may become more successful. (orig.)

  3. {sup 18F} FDG PET/CT Findings in a Breast Cancer Patient with Concomitant Tuberculous Axillary Lymphadenitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won [Jeju National Univ. Hospital, Jeju (Korea, Republic of); Lee, Sang Mi [Soonchunhyang Univ. Cheonan Hospital, Cheonan (Korea, Republic of); Choi, Jae Hyuck [Jeju National Univ. School of Medicine, Jeju (Korea, Republic of)

    2011-06-15

    Although {sup 18F} fluorodeoxyglucose ({sup 18F} FDG) positron emission tomography (PET) is a sensitive modality for detecting a malignant lesion, increased {sup 18F} FDG uptake is also seen in infected or inflammatory processes. Here, we report the case of a a breast cancer patient with concomitant tuberculous axillary lymphadenitis that showed increased {sup 18F} FDG uptake. A 39 year old woman underwent preoperative {sup 18F} FDG PET/computed tomography (CT) as a part of the work up for right breast cancer. {sup 18F} FDG PET/CT images showed a malignant lesion in the right breast with moderate {sup 18F} FDG uptake, and multiple enlarged right axillary lymph nodes with intense {sup 18F} FDG uptake. Subsequently, the patient underwent right mastectomy and right axillary lymph node dissection. Histopathological examination confirmed breast cancer and tuberculous lymphadenitis, and the patient was treated concomitantly with anti tuberculous therapy.

  4. Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Baum, R. P.; Przetak, C. [Zentralklinik Bad Berka, Clinic of Nuclear Medicine, Center for PET, Bad Berka (Germany)

    2001-09-01

    Positron emission tomography (PET) has the potential to contribute significantly to treatment planning and to the evaluation of response to therapy in patients with cancer. For disease recurrence PET imaging provides information non-invasively. The final goal is to biologically characterize an individual patients' tumor and to predict the response to treatment at the earliest possible time. Quantitative and/or semi-quantitative PET studies yield valuable information in breast cancer regarding prognosis and response to chemohormontherapy in a timely fashion. In ovarian cancer, up to now only few studies have been performed applying PET techniques for the evaluation of treatment response. These preliminary studies indicate that serial assessment of tumor metabolism by FDG-PET early during effective chemotherapy may predict subsequent response to such therapy. PET studies can be repeated without any side-effects and with low radiation exposure and results can be directly correlated with clinical laboratory data and histology. Therapy monitoring by PET could help to optimize neoadjuvant therapy protocols and to avoid ineffective preoperative therapy in non-responders, but this has to be proven in a larger number of patients and in different neoadjuvant settings such as chemotherapy, radiation therapy, hormone therapy or a combination of these.

  5. PET/MR Imaging in Musculoskeletal Disorders

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Jensen, Karl Erik; Loft, Annika

    2016-01-01

    , treatment planning and monitoring, and follow-up of patients with musculoskeletal malignancies, and may also prove helpful in assessment of musculoskeletal infectious and inflammatory disorders. The application of more sophisticated MR imaging sequences and PET radiotracers other than FDG in the diagnostic...... workup and follow-up of patients with musculoskeletal disorders should be explored....

  6. MRI fused with prone FDG PET/CT improves the primary tumour staging of patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Velloso, Maria J.; Ribelles, Maria J.; Rodriguez, Macarena; Sancho, Lidia; Prieto, Elena [Clinica Universidad de Navarra, Department of Nuclear Medicine, Pamplona (Spain); Fernandez-Montero, Alejandro [Clinica Universidad de Navarra, Department of Occupational Medicine, Pamplona (Spain); Santisteban, Marta [Clinica Universidad de Navarra, Department of Oncology, Pamplona (Spain); Rodriguez-Spiteri, Natalia; Martinez-Regueira, Fernando [Clinica Universidad de Navarra, Department of Surgery, Pamplona (Spain); Idoate, Miguel A. [Clinica Universidad de Navarra, Department of Pathology, Pamplona (Spain); Elizalde, Arlette; Pina, Luis J. [Clinica Universidad de Navarra, Department of Radiology, Pamplona (Spain)

    2017-08-15

    Our aim was to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) fused with prone 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in primary tumour staging of patients with breast cancer. This retrospective study evaluated 45 women with 49 pathologically proven breast carcinomas. MRI and prone PET-CT scans with time-of-flight and point-spread-function reconstruction were performed with the same dedicated breast coil. The studies were assessed by a radiologist and a nuclear medicine physician, and evaluation of fused images was made by consensus. The final diagnosis was based on pathology (90 lesions) or follow-up ≥ 24 months (17 lesions). The study assessed 72 malignant and 35 benign lesions with a median size of 1.8 cm (range 0.3-8.4 cm): 31 focal, nine multifocal and nine multicentric cases. In lesion-by-lesion analysis, sensitivity, specificity, positive and negative predictive values were 97%, 80%, 91% and 93% for MRI, 96%, 71%, 87%, and 89% for prone PET, and 97%. 94%, 97% and 94% for MRI fused with PET. Areas under the curve (AUC) were 0.953, 0.850, and 0.983, respectively (p < 0.01). MRI fused with FDG-PET is more accurate than FDG-PET in primary tumour staging of breast cancer patients and increases the specificity of MRI. (orig.)

  7. Hybrid {sup 18}F-FDG PET/MRI might improve locoregional staging of breast cancer patients prior to neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Goorts, Briete; Nijnatten, Thiemo J.A. van [Maastricht University Medical Center, GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Maastricht University Medical Center, Department of Surgery, P.O. Box 5800, Maastricht (Netherlands); Maastricht University Medical Center, Department of Radiology and Nuclear Medicine, Maastricht (Netherlands); Voeoe, Stefan; Wildberger, Joachim E.; Lobbes, Marc B.I. [Maastricht University Medical Center, Department of Radiology and Nuclear Medicine, Maastricht (Netherlands); Kooreman, Loes F.S. [Maastricht University Medical Center, GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Maastricht University Medical Center, Department of Pathology, Maastricht (Netherlands); Boer, Maaike de [Maastricht University Medical Center, Department of Medical Oncology, Maastricht (Netherlands); Keymeulen, Kristien B.M.I. [Maastricht University Medical Center, Department of Surgery, P.O. Box 5800, Maastricht (Netherlands); Aarnoutse, Romy; Smidt, Marjolein L. [Maastricht University Medical Center, GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Maastricht University Medical Center, Department of Surgery, P.O. Box 5800, Maastricht (Netherlands); Mottaghy, Felix M. [Maastricht University Medical Center, Department of Radiology and Nuclear Medicine, Maastricht (Netherlands); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany)

    2017-10-15

    Our purpose in this study was to assess the added clinical value of hybrid {sup 18}F-FDG-PET/MRI compared to conventional imaging for locoregional staging in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). In this prospective study, primary invasive cT2-4 N0 or cT1-4 N+ breast cancer patients undergoing NAC were included. A PET/MRI breast protocol was performed before treatment. MR images were evaluated by a breast radiologist, blinded for PET images. PET images were evaluated by a nuclear physician. Afterwards, a combined PET/MRI report was written. PET/MRI staging was compared to conventional imaging, i.e., mammography, ultrasound and MRI. The proportion of patients with a modified treatment plan based on PET/MRI findings was analyzed. A total of 40 patients was included. PET/MRI was of added clinical value in 20.0% (8/40) of patients, changing the treatment plan in 10% and confirming the malignancy of suspicious lesions on MRI in another 10%. In seven (17.5%) patients radiotherapy fields were extended because of additional or affirmative PET/MRI findings being lymph node metastases (n = 5) and sternal bone metastases (n = 2). In one (2.5%) patient radiotherapy fields were reduced because of fewer lymph node metastases on PET/MRI compared to conventional imaging. Interestingly, all treatment changes were based on differences in number of lymph nodes suspicious for metastasis or number of distant metastasis, whereas differences in intramammary tumor extent were not observed. Prior to NAC, PET/MRI shows promising results for locoregional staging compared to conventional imaging, changing the treatment plan in 10% of patients and potentially replacing PET/CT or tissue sampling in another 10% of patients. (orig.)

  8. PET imaging in patients with Modic changes

    DEFF Research Database (Denmark)

    Albert, Hanne; Pedersen, Henrik; Manniche, Claus

    2009-01-01

    The aim of this study was via PET imaging to reveal if any highly metabolic processes were occurring in Modic changes type 1 and/or in the adjacent discs. Modic changes (MC) are signal changes in the vertebral endplate and body visualised by magnetic resonance imaging (MRI). MC are strongly...... disc. All patients had a PET scan using FDG (18F-fluorodeoxyglucose) as tracer. RESULTS: Included in the study were 11 patients, 4 women and 7 men, mean age 48.1 year (range 20-65). All MC were situated in the vertebrae both above and below the previously herniated disc/discs. Ten patients had MC at 1...... level, and 1 had MC at 2 levels. The affected levels were 1 at L2/L3, 6 at L4 /L5, and 5 at L5/S1. All had a previous disc herniation and MC larger than 4 mm in diameter. Technically satisfactory PET scans were obtained. However, PET imaging showed no increases in metabolism in any vertebra or disc...

  9. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT in combination with ultrasonography for axillary staging in primary breast cancer

    Directory of Open Access Journals (Sweden)

    Tamura Katsumi

    2008-06-01

    Full Text Available Abstract Background Accurate evaluation of axillary lymph node (ALN involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT and axillary ultrasonography (AUS for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB and preoperative systemic chemotherapy (PSC. Methods One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND. Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV for axillary staging. Results In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12 in 18F-FDG PET uptake only, 80% (4 of 5 in AUS positive only, and 100% (28 of 28 in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03. Conclusion The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their

  10. PET imaging of the autonomic nervous system.

    Science.gov (United States)

    Thackeray, James T; Bengel, Frank M

    2016-12-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  11. Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, John C. [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); London Regional Cancer Program, Knoxville, TN (United States); So, Aaron [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Imaging Laboratories - Robarts Research Institute, Knoxville, TN (United States); Butler, John [Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Faul, David [Siemens Healthcare Molecular Imaging, Knoxville, TN (United States); Yartsev, Slav [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Department of Oncology, Western University, Knoxville, TN (United States); London Regional Cancer Program, Knoxville, TN (United States); Thompson, Terry [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Prato, Frank S. [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); Diagnostic Imaging St Joseph' s Health Care London, Knoxville, TN (United States); Gaede, Stewart [Department of Medical Biophysics, Western University, Knoxville, TN (United States); Department of Oncology, Western University, Knoxville, TN (United States); Imaging, Lawson Health Research Institute, Knoxville, TN (United States); London Regional Cancer Program, Knoxville, TN (United States)

    2014-08-15

    In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process. Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.

  12. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert.

    Science.gov (United States)

    Grant, Alexander M; Lee, Brian J; Chang, Chen-Ming; Levin, Craig S

    2017-01-01

    A brain sized radio frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ nonmagnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: The maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0 ± 7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. © 2016 American Association of Physicists in Medicine.

  13. Breast pain (image)

    Science.gov (United States)

    ... breast pain is from hormonal fluctuations from menstruation, pregnancy, puberty, menopause, and breastfeeding. Breast pain can also be associated with fibrocystic breast disease, but it is a very unusual symptom of breast cancer.

  14. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  15. Fat-constrained 18F-FDG PET reconstruction in hybrid PET/MR imaging.

    Science.gov (United States)

    Prevrhal, Sven; Heinzer, Susanne; Wülker, Christian; Renisch, Steffen; Ratib, Osman; Börnert, Peter

    2014-10-01

    Fusion of information from PET and MR imaging can increase the diagnostic value of both modalities. This work sought to improve (18)F FDG PET image quality by using MR Dixon fat-constrained images to constrain PET image reconstruction to low-fat regions, with the working hypothesis that fatty tissue metabolism is low in glucose consumption. A novel constrained PET reconstruction algorithm was implemented via a modification of the system matrix in list-mode time-of-flight ordered-subsets expectation maximization reconstruction, similar to the way time-of-flight weighting is incorporated. To demonstrate its use in PET/MR imaging, we modeled a constraint based on fat/water-separating Dixon MR images that shift activity away from regions of fat tissue during PET image reconstruction. PET and MR imaging scans of a modified National Electrical Manufacturers Association/International Electrotechnical Commission body phantom simulating body fat/water composition and in vivo experiments on 2 oncology patients were performed on a commercial time-of-flight PET/MR imaging system. Fat-constrained PET reconstruction visibly and quantitatively increased resolution and contrast between high-uptake and fatty-tissue regions without significantly affecting the images in nonfat regions. The incorporation of MR tissue information, such as fat, in image reconstruction can improve the quality of PET images. The combination of a variety of potential other MR tissue characteristics with PET represents a further justification for merging MR data with PET data in hybrid systems. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Preclinical molecular imaging using PET and MRI.

    Science.gov (United States)

    Wolf, Gunter; Abolmaali, Nasreddin

    2013-01-01

    Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.

  17. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    DEFF Research Database (Denmark)

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær

    2012-01-01

    was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity...

  18. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    Science.gov (United States)

    ... is scintimammography? Scintimammography, also known as nuclear medicine breast imaging, is an examination that may be used to ... as Breast Specific Gamma Imaging (BSGI) or Molecular Breast Imaging (MBI). Nuclear medicine is a branch of medical ...

  19. SPECT and PET Imaging of Meningiomas

    Directory of Open Access Journals (Sweden)

    Varvara Valotassiou

    2012-01-01

    Full Text Available Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical and grade III (anaplastic meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT and Magnetic Resonance Imaging (MRI are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT and Positron Emission Tomography (PET could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  20. Development of PET insert for simultaneous PET/MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun; Lim, Hyun Keong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Oh, Changheun; Park, HyunWook; Cho, Gyuseong [Departments of Electrical Engineering and Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2014-07-29

    Recently, there has been great interest on the development of combined PET/MR, which is a useful tool for both functional and anatomic imaging. The purpose of this study was to develop a MR compatible PET insert for simultaneous PET and MR imaging of human brain and to evaluate the performance of the hybrid PET-MRI. The PET insert consisted of 18 detector blocks arranged in a ring of 390 mm diameter with 60 mm axial FOV. Each detector block was composed of 4 × 4 matrix of detector modules, each of which consisted of a 4 × 4 array LYSO coupled to a 4 × 4 GAPD array. The PET gantry was shielded with gold-plated conductive fabric tapes. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuits (PDCs) and then transferred to FPGA-embedded DAQ modules. The PDCs and DAQ modules were enclosed in an aluminum box and located at the rear of the MR bore inside MRI room. 3-T human MRIs of two different vendors were used to evaluate the MR compatibility of developed PET insert. No significant changes of the PET performance and the homogeneity of MR images caused by the non-compatibility of PET-MRI were observed with the 2 different MRIs. The signal intensities of MR images were slightly degraded (<3.6%) with the both MRI systems. The difference between independently and simultaneously acquired PET images of brain phantom was negligibly small (<4.3%). High quality simultaneous brain PET and MRI of 3 normal volunteers were successfully acquired. Experimental results indicate that the high performance compact and lightweight PET insert for hybrid PET/MRI, which could be utilized with the MRI from various manufactures, can be developed using GAPD arrays and charge signal transmission method proposed in this study.

  1. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing

  2. Augmented reality for breast imaging.

    Science.gov (United States)

    Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio

    2018-02-21

    Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented Breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. The contrast agent used was (CA) gadolinium (Gd) injection (0.1 mmol/kg at 2 ml/s) by a programmable power injector. Dicom formated images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into Augmented reality images. Augmented breast imaging (ABI) demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. Augmented breast imaging (ABI) to the breast can improve clinical outcomes, giving an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.

  3. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.|info:eu-repo/dai/nl/338877169

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared

  4. The application of PET imaging in psychoneuroimmunology research.

    Science.gov (United States)

    Hannestad, Jonas

    2012-01-01

    Positron emission tomography (PET) imaging is a research tool that allows in vivo measurements of brain metabolism and specific target molecules. PET imaging can be used to measure these brain variables in a variety of species, including human and non-human primates, and rodents. PET imaging can therefore be combined with various experimental and clinical model systems that are commonly used in psychoneuroimmunology research.

  5. [¹⁸F]-fluorodeoxyglucose PET imaging of atherosclerosis

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Høilund-Carlsen, Poul Flemming

    2015-01-01

    [(18)F]-fluorodeoxyglucose PET ((18)FDG PET) imaging has emerged as a promising tool for assessment of atherosclerosis. By targeting atherosclerotic plaque glycolysis, a marker for plaque inflammation and hypoxia, (18)FDG PET can assess plaque vulnerability and potentially predict risk...... of atherosclerosis-related disease, such as stroke and myocardial infarction. With excellent reproducibility, (18)FDG PET can be a surrogate end point in clinical drug trials, improving trial efficiency. This article summarizes key findings in the literature, discusses limitations of (18)FDG PET imaging...

  6. The role of 18F-FDG-PET/CT in the management of patients with high-risk breast cancer: case series and guideline comparison

    NARCIS (Netherlands)

    Bulten, Ben; de Haas, M.J.; Bloemendal, H.J.; van Overbeeke, A.J.; Esser, J.P.; Baarslag, H.J.; de Geus-Oei, Lioe-Fee; de Klerk, J.M.H.

    2014-01-01

    Objectives: In grade III-IV breast cancer, dissemination of disease needs to be assessed. Until now this was done by conventional imaging (liver ultrasonography, chest X-ray and bone scintigraphy), but evidence favoring the use of FDG-PET/CT is accumulating. Methods: Patients with high-risk breast

  7. Quantitative, Simultaneous PET/MRI for Intratumoral Imaging with an MRI-Compatible PET Scanner

    Science.gov (United States)

    Ng, Thomas S.C.; Bading, James R.; Park, Ryan; Sohi, Hargun; Procissi, Daniel; Colcher, David; Conti, Peter S.; Cherry, Simon R.; Raubitschek, Andrew A.; Jacobs, Russell E.

    2012-01-01

    Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. Methods Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following 64Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. Results The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both 18F-FDG and a 64Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing

  8. Research Progress of Amino Acid Metabolism PET Imaging in Tumor

    Directory of Open Access Journals (Sweden)

    NIE Da-hong

    2015-11-01

    Full Text Available Amino acid metabolism PET imaging plays a very important role in metabolism molecular imaging. Amino acid PET tracers include [1-11C]amino acid, labeling α-C amino acid, labeling side-chain amino acid, and N-substituted labeling amino acid. Uptake mechanism of these amino acids in tumor mainly involves in amino acid transport and amino acid metabolism PET imaging has an advantage of differential diagnosis of neuropsychiatric diseases, brain cancer, neuroendocrine tumor, and other tumors. The research progress of amino acid metabolism PET imaging in tumor were summarized.

  9. Fluorine-18 labeled amino acids for tumor PET/CT imaging.

    Science.gov (United States)

    Qi, Yiqiang; Liu, Xiaohui; Li, Jun; Yao, Huiqian; Yuan, Shuanghu

    2017-09-01

    Tumor glucose metabolism and amino acid metabolism are usually enhanced, (18)F-FDG for tumor glucose metabolism PET imaging has been clinically well known, but tumor amino acid metabolism PET imaging is not clinically familiar. Radiolabeled amino acids (AAs) are an important class of PET/CT tracers that target the upregulated amino acid transporters to show elevated amino acid metabolism in tumor cells. Radiolabeled amino acids were observed to have high uptake in tumor cells but low in normal tissues and inflammatory tissues. The radionuclides used in labeling amino acids include (15)O, (13)N, (11)C, (123)I, (18)F and (68)Ga, among which the most commonly used is (18)F [1]. Available data support the use of certain (18)F-labeled AAs for PET/CT imaging of gliomas, neuroendocrine tumors, prostate cancer and breast cancer [2, 3]. With the progress of the method of (18)F labeling AAs [4-6], (18)F-labeled AAs are well established for tumor PET/CT imaging. This review focuses on the current status of key clinical applications of 18F-labeled AAs in tumor PET/CT imaging.

  10. Practical Considerations for Clinical PET/MR Imaging.

    Science.gov (United States)

    Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan

    2018-01-01

    Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology

    DEFF Research Database (Denmark)

    Stauss, J.; Franzius, C.; Pfluger, T.

    2008-01-01

    tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published...

  12. Molecular breast imaging. An update; Molekulare Brustbildgebung. Ein Update

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K.; Helbich, T.H.; Magometschnigg, H.; Baltzer, P. [Medizinische Universitaet Wien, Abteilung fuer Molekulare Bildgebung, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Fueger, B. [Medizinische Universitaet Wien, Abteilung fuer Molekulare Bildgebung, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Medizinische Universitaet Wien, Abteilung fuer Nuklearmedizin, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria)

    2014-03-15

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ({sup 1}H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ({sup 23}Na-MRI), phosphorus spectroscopy ({sup 31}P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.) [German] Die molekulare Bildgebung zielt auf die Darstellung, Beschreibung und Quantifizierung biologischer, physiologischer und pathologischer Prozesse auf zellulaerer und molekularer Ebene ab. In den letzten Jahren hat sich die molekulare Bildgebung mit ihren verschiedenen Modalitaeten in der Brustdiagnostik etabliert. Die molekularen Brustbildgebung umfasst derzeit die multiparametrische(MP)-MRT mit funktioneller und morphologischer kontrastmittelverstaerkter MRT (KM-MRT), molekularer diffusionsgewichteter Bildgebung (''diffusion-weighted imaging'', DWI) und metabolischer Protonenspektroskopie ({sup 1}H-MRSI) sowie nuklearmedizinische Verfahren (brustspezifische Gammakamerabildgebung [BSGI], Positronenemissionstomographie [PET], PET

  13. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    DEFF Research Database (Denmark)

    Lassen, Martin L; Muzik, Otto; Beyer, Thomas

    2017-01-01

    observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods...

  14. Noninvasive 89Zr-Transferrin PET Shows Improved Tumor Targeting Compared with 18F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer.

    Science.gov (United States)

    Henry, Kelly E; Dilling, Thomas R; Abdel-Atti, Dalya; Edwards, Kimberly J; Evans, Michael J; Lewis, Jason S

    2018-01-01

    The current standard for breast PET imaging is 18F-FDG. The heterogeneity of 18F-FDG uptake in breast cancer limits its utility, varying greatly among receptor status, histopathologic subtypes, and proliferation markers. 18F-FDG PET often exhibits nonspecific internalization and low specificity and sensitivity, especially with tumors smaller than 1 cm3 MYC is a protein involved in oncogenesis and is overexpressed in triple-negative breast cancer (TNBC). Increased surface expression of transferrin receptor (TfR) is a downstream event of MYC upregulation and has been validated as a clinically relevant target for molecular imaging. Transferrin labeled with 89Zr has successfully identified MYC status in many cancer subtypes preclinically and been shown to predict response and changes in oncogene status via treatment with small-molecule inhibitors that target MYC and PI3K signaling pathways. We hypothesized that 89Zr-transferrin PET will noninvasively detect MYC and TfR and improve upon the current standard of 18F-FDG PET for MYC-overexpressing TNBC. Methods: In this study, 89Zr-transferrin and 18F-FDG imaging were compared in preclinical models of TNBC. TNBC cells (MDA-MB-157, MDA-MB-231, and Hs578T) were treated with bromodomain-containing protein 4 (BRD4) inhibitors JQ1 and OTX015 (0.5-1 μM). Cell proliferation, gene expression, and protein expression were assayed to explore the effects of these inhibitors on MYC and TfR. Results: Head-to-head comparison showed that 89Zr-transferrin targets TNBC tumors significantly better (P PET imaging and biodistribution studies in MDA-MB-231 and MDA-MB-157 xenografts and a patient-derived xenograft model of TNBC. c-Myc and TfR gene expression was decreased upon treatment with BRD4 inhibitors and c-MYC small interfering RNA (P PET imaging and biodistribution studies. 89Zr-transferrin is a useful tool to interrogate MYC via TfR-targeted PET imaging in TNBC. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  15. Overdiagnosis in breast imaging.

    Science.gov (United States)

    Evans, Andy; Vinnicombe, Sarah

    2017-02-01

    The main harm of overdiagnosis is overtreatment. However a form of overdiagnosis also occurs when foci of cancer are found by imaging in addition to the symptomatic lesion when this leads to additional treatment which does not benefit the patient. Even if overtreatment is avoided, knowledge of the diagnosis can still cause psychological harm. Overdiagnosis is an inevitable effect of mammographic screening as the benefit comes from diagnosing breast cancer prior to clinical detectability. Estimates of the rate of overdiagnosis at screening are around 10%. DCIS represents 20% of cancers detected by screening and is the main focus in the overdiagnosis debate. Detection and treatment of low grade DCIS and invasive tubular cancer would appear to represent overdiagnosis in most cases. Supplementary screening with tomosynthesis or US are both likely to increase overdiagnosis as both modalities detect predominantly low grade invasive cancers. MRI causes overdiagnosis because it is so sensitive that it detects real tumour foci which after radiotherapy and systemic therapy do not, in many cases go on and cause local recurrence if the women had had no MRI and undergone breast conservation and adjuvant therapy with these small foci left in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dual-time FDG-PET/CT in patients with potential breast cancer recurrence

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; Gerke, Oke

    Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: head-to-head comparison with CT and bonescintigraphy......Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: head-to-head comparison with CT and bonescintigraphy...

  17. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  18. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  19. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  20. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  1. Tumour markers and FDG PET/CT for prediction of disease relapse in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista, Laura [Istituto Oncologico Veneto IOV - IRCCS, Radiotherapy and Nuclear Medicine Unit, Padova (Italy); University of Naples ' ' Federico II' ' , Departments of Biomorphological and Functional Imaging, Naples (Italy); Baretta, Zora; Ghiotto, Cristina [Istituto Oncologico Veneto IOV - IRCCS, Oncology Unit, Padova (Italy); Vinante, Lorenzo; Cervino, Anna Rita; Gregianin, Michele; Saladini, Giorgio; Sotti, Guido [Istituto Oncologico Veneto IOV - IRCCS, Radiotherapy and Nuclear Medicine Unit, Padova (Italy)

    2011-02-15

    The aim of the study was to assess the role of CA 15.3, CT and positron emission tomography (PET)/CT in patients with breast cancer and suspected disease relapse after primary treatment. We studied 111 consecutive patients (mean age 61 {+-} 12 years) with previous breast cancer, already treated and with clinical or biochemical suspicion of disease relapse. All patients underwent CT and {sup 18}F-fluorodeoxyglucose (FDG) PET/CT. In all patients, the value of CA 15.3 was compared to PET/CT and CT. The final diagnosis of relapse was established by invasive and noninvasive follow-up and was compared with CA 15.3, CT and PET/CT results. Univariate and multivariate analyses were used to identify the independent predictors of disease relapse and receiver-operating characteristic (ROC) curve for the identification of optimal CA 15.3 cutoff. Of all patients, 40 (36%) showed an increased CA 15.3 value, CT was positive in 73 (66%), whereas at PET/CT imaging 64 (58%) showed positive findings for disease relapse. Of 40 patients with increased marker levels, 22 patients had positive CT and 30 positive PET/CT (55 vs 75%, p < 0.001). At the end of follow-up, recurrence occurred in 32 (29%) patients, 16 (50%) of whom showed high levels of CA 15.3. PET/CT predicted relapse in 26 (81%) patients, whereas CT correctly identified 23 (72%). At univariate analysis, recurrence was significantly associated with high CA 15.3 values (p < 0.05) and positive PET/CT (p < 0.005). At multivariable analysis only positive PET/CT remained an independent predictor of disease relapse (p < 0.05). ROC analysis showed an optimal cutoff point for CA 15.3 of 19.1 U/ml (AUC 0.65, p < 0.01) to individuate positive PET/CT. FDG PET/CT is more sensitive than CT and CA 15.3 in the evaluation of disease relapse. PET/CT might be considered a complementary imaging technique during follow-up in patients with breast cancer. (orig.)

  2. Breast infection (image)

    Science.gov (United States)

    Most breast infections occur in breastfeeding women when bacteria enters the breast through cracks in the nipple. In severe infections, abscesses may occur. Antibiotics may be indicated for treatment.

  3. PET/MR Imaging in Cancers of the Gastrointestinal Tract.

    Science.gov (United States)

    Paspulati, Raj Mohan; Gupta, Amit

    2016-10-01

    PET/computed tomography (PET/CT) is an established hybrid imaging technique for staging and follow-up of gastrointestinal (GI) tract malignancies, especially for colorectal carcinoma. Dedicated hybrid PET/MR imaging scanners are currently available for clinical use. Although they will not replace regular use of PET/CT, they may have utility in selected cases of GI tract malignancies. The superior soft tissue contrast resolution and depiction of anatomy and the functional information obtained from diffusion-weighted imaging (DWI) provided by MR imaging in PET/MR imaging are advantages over CT of PET/CT for T staging and follow-up of rectal carcinoma and for better characterization of liver lesions. Functional information from DWI and use of liver-specific MR imaging contrast agents are an added advantage in follow-up of liver metastases after systemic and locoregional treatment. New radiotracers will improve the utility of PET/MR imaging in staging and follow-up of tumors, which may not be [18F]-2-fluoro-2-deoxy-d-glucose avid, such as hepatocellular carcinoma and neuroendocrine tumors. PET/MR imaging also has application in selected cases of cholangiocarcinoma, gallbladder cancer, and pancreatic carcinoma for initial staging and follow-up assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  5. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    Directory of Open Access Journals (Sweden)

    Christopher J Thompson

    2014-08-01

    Full Text Available Recently, positron emission tomography (PET is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs and more recently silicon photo-multipliers (SiPMs are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.

  6. APD-based PET detector for simultaneous PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grazioso, Ronald [Siemens Molecular Imaging, Knoxville, TN (United States)]. E-mail: ron.grazioso@siemens.com; Zhang, Nan [Siemens Molecular Imaging, Knoxville, TN (United States); Corbeil, James [Siemens Molecular Imaging, Knoxville, TN (United States); Schmand, Matthias [Siemens Molecular Imaging, Knoxville, TN (United States); Ladebeck, Ralf [Siemens AG Medical Solutions MR, Erlangen (Germany); Vester, Markus [Siemens AG Medical Solutions MR, Erlangen (Germany); Schnur, Guenter [Siemens AG Medical Solutions MR, Erlangen (Germany); Renz, Wolfgang [Siemens AG Medical Solutions MR, Erlangen (Germany); Fischer, Hubertus [Siemens AG Medical Solutions MR, Erlangen (Germany)

    2006-12-20

    Two, APD-based, PET modules have been evaluated for use in combined PET/MR imaging. Each module consists of 4 independent, optically isolated detectors. Each detector consists of an 8x8 array of 2x2x20 mm LSO crystals read out by a 2x2 array of 5x5 mm Hamamatsu S8664-55 APDs. The average crystal energy resolution and time resolution (against a plastic scintillator on a PMT) of the detectors was 17% and 1.8 ns, respectively. The modules were positioned in the tunnel of a 1.5 T Siemens Symphony MR scanner. The presence of the PET modules decreased the MR signal-to-noise ratio by about 15% but no image interference was observed. The gradient and RF pulse sequences of the MR produced adverse effects on the PET event signals. These high-frequency pulses did not affect the true PET events but did increase the dead time of the PET system. Simultaneous, artifact-free, images were acquired with the PET and MR system using a small Derenzo phantom. These results show that APD-based PET detectors can be used for a high-resolution and cost-effective integrated PET/MR system.

  7. APD-based PET detector for simultaneous PET/MR imaging

    Science.gov (United States)

    Grazioso, Ronald; Zhang, Nan; Corbeil, James; Schmand, Matthias; Ladebeck, Ralf; Vester, Markus; Schnur, Günter; Renz, Wolfgang; Fischer, Hubertus

    2006-12-01

    Two, APD-based, PET modules have been evaluated for use in combined PET/MR imaging. Each module consists of 4 independent, optically isolated detectors. Each detector consists of an 8×8 array of 2×2×20 mm LSO crystals read out by a 2×2 array of 5×5 mm Hamamatsu S8664-55 APDs. The average crystal energy resolution and time resolution (against a plastic scintillator on a PMT) of the detectors was 17% and 1.8 ns, respectively. The modules were positioned in the tunnel of a 1.5 T Siemens Symphony MR scanner. The presence of the PET modules decreased the MR signal-to-noise ratio by about 15% but no image interference was observed. The gradient and RF pulse sequences of the MR produced adverse effects on the PET event signals. These high-frequency pulses did not affect the true PET events but did increase the dead time of the PET system. Simultaneous, artifact-free, images were acquired with the PET and MR system using a small Derenzo phantom. These results show that APD-based PET detectors can be used for a high-resolution and cost-effective integrated PET/MR system.

  8. Clinical PET/MR Imaging in Oncology: Future Perspectives.

    Science.gov (United States)

    Kjær, Andreas; Torigian, Drew A

    2016-10-01

    In 2011, the first fully integrated commercially available clinical PET/MR imaging systems became available, and the imaging community thought that these scanners would replace PET/CT systems. However, today a disappointing number of less than 100 scanners have been installed worldwide. The question, therefore, arises regarding what the future clinical applications of PET/MR imaging will be. In this article, the authors discuss ways in which PET/MR imaging may be used in future applications that justify the added cost, predominantly focusing on oncologic applications. The authors suggest that such areas include combined molecular and functional imaging, multimodality radiomics, and hyperPET. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Metastatic Male Breast Cancer With Increased Uptake on 18F-Fluciclovine PET/CT Scan.

    Science.gov (United States)

    Gill, Harkanwar S; Tade, Funmilayo; Greenwald, David Theodore; Yonover, Paul M; Savir-Baruch, Bital

    2018-01-01

    Prostate imaging with F-labeled 1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC, F-fluciclovine) PET/CT scan (Axumin) was recently approved by the US Food and Drug Administration for men with suspected prostate cancer recurrence based on elevated blood prostate-specific antigen levels following prior treatment. We present a rare case of a 77-year-old man with suspected recurrent prostate cancer with an incidental finding of advanced-stage breast cancer showing different degrees of F-fluciclovine uptake.

  10. Unusual Horner's syndrome in recurrent breast cancer: Evaluating using {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Hyun; Kim, Tae Sung; Kim, Seok Ki [Dept. of Nuclear Medicine, National Cancer Center, Goyang (Korea, Republic of)

    2017-03-15

    {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is a widely used imaging modality in the initial diagnosis of cancer, treatment response evaluation and detection of recurrence. Herein, we present the case of a 39-year-old female who presented right ptosis on the follow-up of breast cancer after surgery. Clinicians suspected Horner's syndrome, and the patient underwent FDG PET/CT for the evaluation of recurrence that could cause Horner's syndrome. FDG PET/CT demonstrated a focal hypermetabolic lesion in the right cervicothoracic junction area, corresponding to the preganglionic cervical sympathetic trunk. A subsequent needle biopsy was done, and the lesion was confirmed as metastatic ductal carcinoma. In this case, we could detect the exact location of the recurring lesion that caused Horner's syndrome using FDG PET/CT.

  11. A High Resolution Clinical PET with Breast and Whole Body Transfigurations

    Science.gov (United States)

    2006-08-01

    continues to be difficult, whether the density is a result of fibrocystic diseases or young age. Accurate detection of very small breast tumors (2...DAMD17-02-1-0461 TITLE: A High Resolution Clinical PET with Breast and Whole Body Transfigurations PRINCIPAL INVESTIGATOR: Wai-Hoi...SUBTITLE 5a. CONTRACT NUMBER A High Resolution Clinical PET with Breast and Whole Body Transfigurations 5b. GRANT NUMBER DAMD17-02-1-0461

  12. {sup 18}F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groheux, David, E-mail: dgroheux@yahoo.fr [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Hindié, Elif [Department of Nuclear Medicine, Haut-Lévêque Hospital, CHU Bordeaux, University Bordeaux-Segalen, Bordeaux (France); Marty, Michel [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris (France); Espié, Marc [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Rubello, Domenico [Department of Nuclear Medicine, Santa Maria della Misericordia, Rovigo Hospital, Rovigo (Italy); Vercellino, Laetitia [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Bousquet, Guilhem [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); INSERM U728, University Institute of Hematology, University of Paris VII, Paris (France); Ohnona, Jessica; Toubert, Marie-Elisabeth [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Merlet, Pascal [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Misset, Jean-Louis [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France)

    2014-10-15

    Purpose: Male breast cancer (BC) is a rare disease, with patterns different from those found in women. Most tumors are detected at more advanced stages than in women. The aim of this study was to analyze the performance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) in staging, restaging, and therapy response assessment. Methods: We performed a systematic analysis in the database of Saint-Louis Hospital to identify male patients with BC referred for PET/CT. {sup 18}F-FDG-PET/CT findings considered suspicious for malignancy were compared to biopsy results, further work-up and/or patient follow-up of at least 6 months. Performances of {sup 18}F-FDG-PET/CT were compared to that of conventional imaging (CI) using the McNemar test. The impact of PET/CT on management was evaluated. Results: During 6 consecutive years, among 12,692 {sup 18}F-FDG-PET/CT oncology studies, 30 were performed in 15 men with BC: 7 examinations for initial staging, 11 for restaging, and 12 for response assessment. Tumors profile was ER+ and one had HER2 overexpression. PET/CT sensitivity, specificity, positive predictive value, negative predictive value and accuracy to detect distant metastases were 100%, 67%, 86%, 100% and 89%, respectively. PET/CT was more informative than CI in 40% of studies (p = 0.03; 95% confidence interval: 3.26 – 40%). Findings from {sup 18}F-FDG-PET/CT led to modification in the planned treatment in 13/30 cases (43%). Conclusion: Although all the tumors were ER+, primary lesions and metastases were diagnosed with high sensitivity. {sup 18}F-FDG-PET/CT seems to be a powerful imaging method to perform staging, restaging and treatment response assessment in male patients with BC.

  13. Limitations of PET for imaging lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, Sally F.; O' Doherty, Michael J. [Clinical PET Centre of Guy' s and St Thomas' Hospitals, St Thomas' Hospital, SE1 7EH, London (United Kingdom)

    2003-06-01

    The uptake of fluorine-18 fluorodeoxyglucose (FDG) is increased in processes with enhanced glycolysis, including malignancy. It is this property of FDG which is exploited in positron emission tomography (PET) imaging for lymphoma. FDG, whilst a good oncology tracer, is not perfect and there are limitations to its use. FDG may have low uptake in some types of lymphoma, predominantly low-grade lymphomas. High physiological uptake may occur within the bowel, urinary tract, muscle, salivary glands and lymphoid tissue. FDG is not specific for malignancy and increased uptake occurs in benign conditions with increased glycolysis such as infection, inflammation and granulomatous disease. Benign conditions usually have lower uptake than malignancy but there is overlap. These limitations of FDG mean that tumour may be 'missed', 'masked' or 'mimicked' by other pathology. These limitations are described in this article and methods to circumvent them where possible are discussed. These include performing baseline scans at presentation with lymphoma for comparison with post-treatment scans, simple manoeuvres to reduce physiological uptake such as administration of frusemide and diazepam and remaining alert to the possibility of alternative pathology in immunosuppressed patients. Patients with disease secondary to human immunodeficiency virus are a particular challenge in this regard as they often have dual or multiple pathology. One of the most important skills in PET reporting may be to recognise its limitations and be clear when a definitive answer cannot be given to the referring clinician's question. This may require using PET to direct the clinician to biopsy the site most likely to yield the correct diagnosis. (orig.)

  14. Correlation between hybrid 18F-FDG PET/CT and apoptosis induced by neoadjuvant chemotherapy in breast cancer.

    Science.gov (United States)

    Li, Dong; Yao, Qing; Li, Liwen; Wang, Ling; Chen, Jianghao

    2007-09-01

    Quantitative or semi-quantitative analysis of fluorine-18 fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has been reported to correlate with the clinical and pathological response of tumors to preoperative treatment. This study was conceived to evaluate the correlation between hybrid (18)F-FDG PET/CT and apoptosis in breast cancer after neoadjuvant chemotherapy. Three cycles of neoadjuvant chemotherapy were given to forty-five patients with primary breast cancer proven by core needle biopsy. Hybrid PET/CT was performed before and after treatment and tumor to non-tumor radioactivity ratio (T/N) was calculated. The apoptotic index (AI) in core-cut and surgically resected samples was determined using TUNEL techniques. The mean T/N pre- and postchemotherapy was 3.23 +/- 0.63 and 2.31 +/- 0.49, respectively (p = 0.006), with the mean reduction rate below baseline of 31.18 +/- 13.18% (range, 6.4-50.8%). The mean AI pre- and post-chemotherapy was 2.81 +/- 0.76% and 17.31 +/- 6.85%, respectively (p chemotherapy may effectively induce apoptosis in breast tumors and decrease their glucose uptake. Hybrid PET/CT imaging appeared to be positively related to apoptosis level and therefore to be of value in predicting the response of breast cancer to neoadjuvant chemotherapy.

  15. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  16. Contrast media in breast imaging.

    Science.gov (United States)

    Serrano, Luis F; Morrell, Brooke; Mai, Andrew

    2012-11-01

    Although mammography is the standard imaging modality for detection of breast cancer, magnetic resonance (MR) imaging is a valuable adjunct and, in certain cases, is the imaging of choice. Contrast-enhanced breast MR imaging provides a noninvasive means of staging disease, assessing posttreatment response, and screening of high-risk patients with genetic predispositions. Additional indications for MR mammography include lesion characterization, contralateral breast evaluation in patients with proved malignancy, and identifying primary malignancy in patients with axillary nodal disease. There are several competing factors that influence the quality of the study. Finding the right balance is the key to providing high-quality images that can be accurately interpreted. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Molecular cardiac PET besides FDG viability imaging; Molekulare Kardiale PET jenseits der FDG-Vitalitaetsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, O.; Burchert, W. [Universitaetsklinik der Ruhr-Univ. Bochum (Germany). Inst. fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabetszentrum NRW

    2009-06-15

    Molecular cardiac non F-18-FDG PET is currently based on perfusion imaging. It is of excellent diagnostic accuracy to detect coronary artery disease (CAD) and superior to perfusion SPECT. There is also evidence for its incremental prognostic value. The unique feature of PET to measure myocardial perfusion in absolute terms and in short time periods define its impact on cardiac imaging enabling both the evaluation of early changes in CAD and the accurate characterization of multivessel disease. Currently, all available PET perfusion tracers in Europe are cyclotron products. Rb-82, a generator product, is the most frequently employed perfusion tracer in the United States and cyclotron independent. This tracer has the potential to become an alternative in Europe soon. Nowadays, PET systems are manufactured as hybrid PET-CT scanners. In oncology, hybrid imaging revealed, that the combination of functional and morphological imaging is superior to the single components. In cardiology, the integration of perfusion PET imaging with CT calcium scoring and CT anatomy of the coronary arteries represents a similar constellation. Atherosclerotic plaque evaluation by combined PET-CT technique will be one of the most promising future applications with a potential immense impact on prophylaxis, diagnosis and therapy of CAD in the future. (orig.)

  18. Combined use of {sup 18}F-FDG PET/CT and MRI for response monitoring of breast cancer during neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Pengel, Kenneth E.; Loo, Claudette E. [The Netherlands Cancer Institute, Department of Radiology, PO Box 90203, Amsterdam (Netherlands); Koolen, Bas B.; Vogel, Wouter V.; Valdes Olmos, Renato A. [The Netherlands Cancer Institute, Department of Nuclear Medicine, Amsterdam (Netherlands); Wesseling, Jelle; Lips, Esther H. [The Netherlands Cancer Institute, Department of Pathology, Amsterdam (Netherlands); Rutgers, Emiel J.T.; Vrancken Peeters, Marie Jeanne T.F.D. [The Netherlands Cancer Institute, Department of Surgical Oncology, Amsterdam (Netherlands); Rodenhuis, Sjoerd [The Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam (Netherlands); Gilhuijs, Kenneth G.A. [The Netherlands Cancer Institute, Department of Radiology, PO Box 90203, Amsterdam (Netherlands); University Medical Center Utrecht, Department of Radiology/Image Sciences Institute, Utrecht (Netherlands)

    2014-08-15

    To explore the potential complementary value of PET/CT and dynamic contrast-enhanced MRI in predicting pathological response to neoadjuvant chemotherapy (NAC) of breast cancer and the dependency on breast cancer subtype. We performed {sup 18}F-FDG PET/CT and MRI examinations before and during NAC. The imaging features evaluated on both examinations included baseline and changes in {sup 18}F-FDG maximum standardized uptake value (SUVmax) on PET/CT, and tumour morphology and contrast uptake kinetics on MRI. The outcome measure was a (near) pathological complete response ((near-)pCR) after surgery. Receiver operating characteristic curves with area under the curve (AUC) were used to evaluate the relationships between patient, tumour and imaging characteristics and tumour responses. Of 93 patients, 43 achieved a (near-)pCR. The responses varied among the different breast cancer subtypes. On univariate analysis the following variables were significantly associated with (near-)pCR: age (p = 0.033), breast cancer subtype (p < 0.001), relative change in SUVmax on PET/CT (p < 0.001) and relative change in largest tumour diameter on MRI (p < 0.001). The AUC for the relative reduction in SUVmax on PET/CT was 0.78 (95 % CI 0.68-0.88), and for the relative reduction in tumour diameter at late enhancement on MRI was 0.79 (95 % CI 0.70-0.89). The AUC increased to 0.90 (95 % CI 0.83-0.96) in the final multivariate model with PET/CT, MRI and breast cancer subtype combined (p = 0.012). PET/CT and MRI showed comparable value for monitoring response during NAC. Combined use of PET/CT and MRI had complementary potential. Research with more patients is required to further elucidate the dependency on breast cancer subtype. (orig.)

  19. FDG PET evaluation of early axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Caroline [Comprehensive Cancer Center Rene Gauducheau, IRCNA, Nuclear Medicine Department, Saint Herblain (France); Nantes University, INSERM UMR 892, Cancer Research Center CRCNA, Nantes (France); Centre Rene Gauducheau, Service de Medecine Nucleaire, Saint Herblain Cedex (France); Devillers, Anne [Eugene Marquis Cancer Center, Nuclear Medicine Department, Rennes (France); Campone, Mario [Comprehensive Cancer Center Rene Gauducheau, Medical Oncology Department, Saint Herblain (France); Campion, Loic [Comprehensive Cancer Center Rene Gauducheau, Statistic Department, Saint Herblain (France); Ferrer, Ludovic [Comprehensive Cancer Center Rene Gauducheau, Medical Physics Department, Saint Herblain (France); Sagan, Christine [University Hospital, Pathology Department, Nantes (France); Ricaud, Myriam [Comprehensive Cancer Center Rene Gauducheau, Radiology Department, Saint Herblain (France); Bridji, Boumediene [Comprehensive Cancer Center Rene Gauducheau, IRCNA, Nuclear Medicine Department, Saint Herblain (France); Kraeber-Bodere, Francoise [Comprehensive Cancer Center Rene Gauducheau, IRCNA, Nuclear Medicine Department, Saint Herblain (France); Nantes University, INSERM UMR 892, Cancer Research Center CRCNA, Nantes (France)

    2011-06-15

    Regional axillary lymph node status has remained the single most independent variable to predict prognosis both in terms of disease recurrence and survival. This study aimed to prospectively assess sequential [{sup 18}F]fluorodeoxyglucose (FDG) positron emission tomography (PET) findings as early predictors of axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients. Images were acquired with a PET/CT scanner in 52 patients after administration of FDG (5 MBq/kg) at baseline and after the first, second, third and sixth course of chemotherapy before surgery. Clinical examination and ultrasound (US) were used to assess the size of axillary nodes. Decrease in the standardized uptake value (SUV) with PET corrected or not for partial volume effects was compared to the pathological response. The sensitivity, specificity and accuracy of axillary node staging was higher with PET (75, 87 and 80%) than with US (50, 83 and 65%), and even more so when PET images were corrected for partial volume effects (86, 83 and 84%). While FDG uptake did not vary much in non-responders, as confirmed by histopathological analysis, it markedly decreased to baseline levels in responders (p < 10{sup -5}). Fifty per cent of baseline SUV was considered the best cutoff value to distinguish responders from non-responders. The sensitivity, specificity, negative predictive value and accuracy of FDG PET after one course of chemotherapy were, respectively, 96, 75, 95 and 84%. The pathological status of regional axillary lymph nodes in stage II and III breast cancer patients could be accurately predicted after one course of neoadjuvant chemotherapy based on FDG PET images. (orig.)

  20. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  1. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients.

    Science.gov (United States)

    Grueneisen, Johannes; Sawicki, Lino Morris; Wetter, Axel; Kirchner, Julian; Kinner, Sonja; Aktas, Bahriye; Forsting, Michael; Ruhlmann, Verena; Umutlu, Lale

    2017-04-01

    To investigate the diagnostic value of different MR sequences and 18F-FDG PET data for whole-body restaging of breast cancer patients utilizing PET/MRI. A total of 36 patients with suspected tumor recurrence of breast cancer based on clinical follow-up or abnormal findings in follow-up examinations (e.g. CT, MRI) were prospectively enrolled in this study. All patients underwent a PET/CT and subsequently an additional PET/MR scan. Two readers were instructed to identify the occurrence of a tumor relapse in subsequent MR and PET/MR readings, utilizing different MR sequence constellations for each session. The diagnostic confidence for the determination of a malignant or benign lesion was qualitatively rated (3-point ordinal scale) for each lesion in the different reading sessions and the lesion conspicuity (4-point ordinal scale) for the three different MR sequences was additionally evaluated. Tumor recurrence was present in 25/36 (69%) patients. All three PET/MRI readings showed a significantly higher accuracy as well as higher confidence levels for the detection of recurrent breast cancer lesions when compared to MRI alone (pPET/MR sequence constellations showed comparable diagnostic accuracy for the identification of a breast cancer recurrence (p>0.05), yet the highest confidence levels were obtained, when all three MR sequences were used for image interpretation. Moreover, contrast-enhanced T1-weighted VIBE imaging showed significantly higher values for the delineation of malignant and benign lesions when compared to T2w HASTE and diffusion-weighted imaging. Integrated PET/MRI provides superior restaging of breast cancer patients over MRI alone. Facing the need for appropriate and efficient whole-body PET/MR protocols, our results show the feasibility of fast and morphologically adequate PET/MR protocols. However, considering an equivalent accuracy for the detection of breast cancer recurrences in the three PET/MR readings, the application of contrast-agent and

  2. PET/MRI in Oncological Imaging: State of the Art

    Science.gov (United States)

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  3. Contourlet-based active contour model for PET image segmentation

    NARCIS (Netherlands)

    Abdoli, M.; Dierckx, R. A. J. O.; Zaidi, H.

    Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the

  4. Diagnostic and prognostic correlates of preoperative FDG PET for breast cancer.

    Science.gov (United States)

    Vinh-Hung, Vincent; Everaert, Hendrik; Lamote, Jan; Voordeckers, Mia; van Parijs, Hilde; Vanhoeij, Marian; Verfaillie, Guy; Fontaine, Christel; Vees, Hansjoerg; Ratib, Osman; Vlastos, Georges; De Ridder, Mark

    2012-10-01

    To explore the preoperative utility of FDG PET for the diagnosis and prognosis in a retrospective breast cancer case series. In this retrospective study, 104 patients who had undergone a preoperative FDG PET scan for primary breast cancer at the UZ Brussel during the period 2002-2008 were identified. Selection criteria were: histological confirmation, FDG PET performed prior to therapy, and breast surgery integrated into the primary therapy plan. Patterns of increased metabolism were recorded according to the involved locations: breast, ipsilateral axillary region, internal mammary chain, or distant organs. The end-point for the survival analysis using Cox proportional hazards was disease-free survival. The contribution of prognostic factors was evaluated using the Akaike information criterion and the Nagelkerke index. PET positivity was associated with age, gender, tumour location, tumour size >2 cm, lymphovascular invasion, oestrogen and progesterone receptor status. Among 63 patients with a negative axillary PET status, 56 (88.9 %) had three or fewer involved nodes, whereas among 41 patients with a positive axillary PET status, 25 (61.0 %) had more than three positive nodes (P < 0.0001). In the survival analysis of preoperative characteristics, PET axillary node positivity was the foremost statistically significant factor associated with decreased disease-free survival (hazard ratio 2.81, 95% CI 1.17-6.74). Preoperative PET axillary node positivity identified patients with a higher burden of nodal involvement, which might be important for treatment decisions in breast cancer patients.

  5. Diagnostic and prognostic correlates of preoperative FDG PET for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vinh-Hung, Vincent [University of Geneva, Department of Imaging and Medical Information Sciences, University Hospitals of Geneva, Geneva (Switzerland); University of Geneva, Radiation Oncology, University Hospitals of Geneva, Geneva (Switzerland); Everaert, Hendrik [Vrije Universiteit Brussel, Department of Nuclear Medicine, UZ Brussel, Brussels (Belgium); Lamote, Jan; Vanhoeij, Marian; Verfaillie, Guy [Vrije Universiteit Brussel, Department of Surgery, UZ Brussel, Brussels (Belgium); Voordeckers, Mia; Parijs, Hilde van; Ridder, Mark de [Vrije Universiteit Brussel, Department of Radiotherapy, UZ Brussel, Brussels (Belgium); Fontaine, Christel [Vrije Universiteit Brussel, Department of Medical Oncology UZ Brussel, Brussels (Belgium); Vees, Hansjoerg; Ratib, Osman [University of Geneva, Department of Imaging and Medical Information Sciences, University Hospitals of Geneva, Geneva (Switzerland); Vlastos, Georges [University of Geneva, Department of Surgical Senology, University Hospitals of Geneva, Geneva (Switzerland)

    2012-10-15

    To explore the preoperative utility of FDG PET for the diagnosis and prognosis in a retrospective breast cancer case series. In this retrospective study, 104 patients who had undergone a preoperative FDG PET scan for primary breast cancer at the UZ Brussel during the period 2002-2008 were identified. Selection criteria were: histological confirmation, FDG PET performed prior to therapy, and breast surgery integrated into the primary therapy plan. Patterns of increased metabolism were recorded according to the involved locations: breast, ipsilateral axillary region, internal mammary chain, or distant organs. The end-point for the survival analysis using Cox proportional hazards was disease-free survival. The contribution of prognostic factors was evaluated using the Akaike information criterion and the Nagelkerke index. PET positivity was associated with age, gender, tumour location, tumour size >2 cm, lymphovascular invasion, oestrogen and progesterone receptor status. Among 63 patients with a negative axillary PET status, 56 (88.9 %) had three or fewer involved nodes, whereas among 41 patients with a positive axillary PET status, 25 (61.0 %) had more than three positive nodes (P < 0.0001). In the survival analysis of preoperative characteristics, PET axillary node positivity was the foremost statistically significant factor associated with decreased disease-free survival (hazard ratio 2.81, 95% CI 1.17-6.74). Preoperative PET axillary node positivity identified patients with a higher burden of nodal involvement, which might be important for treatment decisions in breast cancer patients. (orig.)

  6. Primary Rectal Adenocarcinoma Metastasizing to Bilateral Breast - a Rare Case Demonstrated by {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Soundararajan, Ramya; Arora, Saurabh; Das, Chandan Jyoti; Roy, Maitrayee; Kumar, Rakesh; Bal, Chandrasekhar [All India Institute of Medical Sciences, New Delhi (India)

    2016-06-15

    A 22-year-old female presented with multiple painless bilateral breast masses for the past 2 months. On Further questioning she had hematochezia and constipation for three months. On digital rectal examination, thickening of rectal mucosa at 5 cm from the anal verge was found. On physical examination, multiple firm, non-tender, nodular lesions were found in bilateral breasts. Metastatic breast disease from extra mammary primaries is uncommon and it constitutes 0.5 - 6% of all breast malignancies. melanomas, lymphomas, leukemias, ands sarcomas are the most common malignancies causing breast metastases. Infrequently, carcinomas of the lung, stomach, ovary, liver, tonsil, pleura, pancreas, cervix, perineum, endometrium, bladder, carcinoid tumors and renal cell carcinomas can cause metastatic breast disease. Metastatic breast disease from colorectal cancer is characterised by disseminated metastatic disease and a poor prognosis. In this case, It was essential to distinguish between metastatic breast disease primary breast carcinoma to plan appropriate management. Because of its rare incidence and high index of clinical suspicion, appropriate radiological investigations and histopathology is essential for accurate diagnosis. {sup 18}F-FDG PET/CT, being a whole-body metabolic functional imaging modality, helped us determine the extent of the primary and metastatic disease. In view of disseminated metastases, the bilateral breast disease was also considered as metastatic involvement, Which was proven by histopathology.

  7. The effect of patient positioning aids on PET quantification in PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mantlik, Frederic; Hofmann, Matthias [University of Tuebingen, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Radiology, Tuebingen (Germany); Max Planck Institute for Biological Cybernetics, Tuebingen (Germany); Werner, Matthias K.; Sauter, Alexander [University Hospital, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [University Hospital, Department of Nuclear Medicine, Tuebingen (Germany); Schoelkopf, Bernhard [Max Planck Institute for Biological Cybernetics, Tuebingen (Germany); Pichler, Bernd J. [University of Tuebingen, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [University Hospital, Imaging Science Institute, Tuebingen (Germany)

    2011-05-15

    Clinical PET/MR requires the use of patient positioning aids to immobilize and support patients for the duration of the combined examination. Ancillary immobilization devices contribute to overall attenuation of the PET signal, but are not detected with conventional MR sequences and, hence, are ignored in standard MR-based attenuation correction (MR-AC). We report on the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. We used phantom and patient data acquired with positioning aids on a PET/CT scanner (Biograph 16, HI-REZ) to mimic PET/MR imaging conditions. Reference CT-based attenuation maps were generated from measured (original) CT transmission images (origCT-AC). We also created MR-like attenuation maps by following the same conversion procedure of the attenuation values except for the prior delineation and subtraction of the positioning aids from the CT images (modCT-AC). First, a uniform {sup 68}Ge cylinder was positioned centrally in the PET/CT scanner and fixed with a vacuum mattress (10 cm thick) and, in a repeat examination, with MR positioning foam pads. Second, 16 patient datasets were selected for subsequent processing. All patients were regionally immobilized with positioning aids: a vacuum mattress for head/neck imaging (nine patients) and a foam mattress for imaging of the lower extremities (seven patients). PET images were reconstructed following CT-based attenuation and scatter correction using the original and modified (MR-like) CT images: PET{sub origCT-AC} and PET{sub modCT-AC}, respectively. PET images following origCT-AC and modCT-AC were compared visually and in terms of mean differences of voxels with a standardized uptake value of at least 1.0. In addition, we report maximum activity concentration in lesions for selected patients. In the phantom study employing the vacuum mattress the average voxel activity in PET{sub modCT-AC} was underestimated by 6.4% compared to PET

  8. The effect of patient positioning aids on PET quantification in PET/MR imaging.

    Science.gov (United States)

    Mantlik, Frederic; Hofmann, Matthias; Werner, Matthias K; Sauter, Alexander; Kupferschläger, Jürgen; Schölkopf, Bernhard; Pichler, Bernd J; Beyer, Thomas

    2011-05-01

    Clinical PET/MR requires the use of patient positioning aids to immobilize and support patients for the duration of the combined examination. Ancillary immobilization devices contribute to overall attenuation of the PET signal, but are not detected with conventional MR sequences and, hence, are ignored in standard MR-based attenuation correction (MR-AC). We report on the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. We used phantom and patient data acquired with positioning aids on a PET/CT scanner (Biograph 16, HI-REZ) to mimic PET/MR imaging conditions. Reference CT-based attenuation maps were generated from measured (original) CT transmission images (origCT-AC). We also created MR-like attenuation maps by following the same conversion procedure of the attenuation values except for the prior delineation and subtraction of the positioning aids from the CT images (modCT-AC). First, a uniform (68)Ge cylinder was positioned centrally in the PET/CT scanner and fixed with a vacuum mattress (10 cm thick) and, in a repeat examination, with MR positioning foam pads. Second, 16 patient datasets were selected for subsequent processing. All patients were regionally immobilized with positioning aids: a vacuum mattress for head/neck imaging (nine patients) and a foam mattress for imaging of the lower extremities (seven patients). PET images were reconstructed following CT-based attenuation and scatter correction using the original and modified (MR-like) CT images: PET(origCT-AC) and PET(modCT-AC), respectively. PET images following origCT-AC and modCT-AC were compared visually and in terms of mean differences of voxels with a standardized uptake value of at least 1.0. In addition, we report maximum activity concentration in lesions for selected patients. In the phantom study employing the vacuum mattress the average voxel activity in PET(modCT-AC) was underestimated by 6.4% compared to PET(origCT-AC), with 3

  9. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick [Nuclear Medicine, University Hospital Zurich (Switzerland)

    2015-05-18

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  10. 18F-FDG PET/CT and PET for evaluation of pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xu; Liu, Biao; Xu, Zhaoqiang; Bao, Lihua [Dept. of Nuclear Medcine, The First Affiliated Hospital of Nanjing Medical Univ., Nanjing, Jiangsu (China); Li, Yongjun; Wang, Jie [Dept. of Radiology, The First Affiliated Hospital of Nanjing Medical Univ., Nanjing, Jiangsu (China)], E-mail: cheng7515@163.com

    2012-07-15

    Background. Neoadjuvant chemotherapy is increasingly the treatment for patients with inoperable breast cancer. Considering the side-effects of chemotherapy, there is a need for early evaluating response to neoadjuvant chemotherapy. Purpose. To determinate the diagnostic performance of 18F-fluorodeoxyglucose position emission tomography/computed tomography (FDG PET/CT) and FDG PET for evaluating response to neoadjuvant chemotherapy in patients with breast cancer. Material and Methods. 'PubMed' (MEDLINE included) database, EMBASE, and Cochrane Database of Systematic Reviews were searched for relevant articles. We assessed the methodological quality of included study with Quality Assessment of Diagnosis Accuracy Studies (QUADAS) score tool, and used 'Meta-DiSc' statistic software to obtain pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver-operating characteristic (SROC) curve. Results. Seventeen studies (a total of 781 subjects) met the inclusion criteria. The pooled sensitivity was 0.840 (95% confidence interval [CI] 0.796-0.878). The pooled specificity was 0.713 (95% CI 0.667-0.756). For FDG PET/CT (10 studies included), the pooled sensitivity was 0.847 (95% CI 0.793-0.892), the pooled specificity was 0.661 (95% CI 0.598-0.720). The pooled likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR) were 2.835 (95% CI 1.640-4.900), 0.221 (95% CI 0.160-0.305), and 17.628 (95% CI 7.431-41.818). The area under the SROC curve (AUC) was 0.8934. For FDG PET (7 studies included), the pooled sensitivity and specificity were 0.826 (95% CI 0.741-0.892) and 0.789 (95% CI 0.719-0.849). The pooled LR + , LR-, and DOR were 3.601 (95% CI 2.601-4.986), 0.242 (95% CI 0.157-0.374), and 13.641 (95% CI 7.433-25.030). The AUC was 0.8764. Conclusion. Our results indicate that FDG PET/CT and PET have reasonable sensitivity in evaluating response to neoadjuvant chemotherapy in breast cancer

  11. {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel; Riedl, Christopher C.; Jochelson, Maxine S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Goldman, Debra A.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Pinker-Domenig, Katja [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2016-10-15

    National Comprehensive Cancer Network guidelines recommend {sup 18}F-FDG-PET/CT, in addition to standard staging procedures, for systemic staging of newly diagnosed stage III breast cancer patients. However, factors in addition to stage may influence PET/CT utility. As breast cancers that are negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (triple-negative breast cancer, or TNBC) are more aggressive and metastasize earlier than other breast cancers, we hypothesized that receptor expression may be one such factor. This study assesses {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed TNBC. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with TNBC who underwent {sup 18}F-FDG-PET/CT in 2007-2013 prior to systemic or radiation therapy. Initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery, if performed prior to {sup 18}F-FDG-PET/CT. {sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases, as well as unsuspected synchronous malignancies. Kaplan Meier survival estimates were calculated for initial stage IIB patients stratified by whether or not stage 4 disease was detected by {sup 18}F-FDG-PET/CT. A total of 232 patients with TNBC met inclusion criteria. {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 30 (13 %): 0/23 initial stage I, 4/82 (5 %) stage IIA, 13/87 (15 %) stage IIB, 4/23 (17 %) stage IIIA, 8/14 (57 %) stage IIIB, and 1/3 (33 %) stage IIIC. Twenty-six of 30 patients upstaged to IV by {sup 18}F-FDG-PET/CT were confirmed by pathology, with the remaining four patients confirmed by follow-up imaging. In addition, seven unsuspected synchronous malignancies were identified in six patients. Initial stage 2B patients who were upstaged to 4 by {sup 18}F-FDG-PET/CT had significantly shorter survival compared to

  12. Coronary Artery PET/MR Imaging: Feasibility, Limitations, and Solutions.

    Science.gov (United States)

    Robson, Philip M; Dweck, Marc R; Trivieri, Maria Giovanna; Abgral, Ronan; Karakatsanis, Nicolas A; Contreras, Johanna; Gidwani, Umesh; Narula, Jagat P; Fuster, Valentin; Kovacic, Jason C; Fayad, Zahi A

    2017-10-01

    The aims of this study were to describe the authors' initial experience with combined coronary artery positron emission tomographic (PET) and magnetic resonance (MR) imaging using 18F-fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (18F-NaF) radiotracers, describe common problems and their solutions, and demonstrate the feasibility of coronary PET/MR imaging in appropriate patients. Recently, PET imaging has been applied to the aortic valve and regions of atherosclerosis. 18F-FDG PET imaging has become established for imaging inflammation in atherosclerosis in the aorta and carotid arteries. Moreover, 18F-NaF has emerged as a novel tracer of active microcalcification in the aortic valve and coronary arteries. Coronary PET imaging remains challenging because of the small caliber of the vessels and their complex motion. Currently, most coronary imaging uses combined PET and computed tomographic imaging, but there is increasing enthusiasm for PET/MR imaging because of its reduced radiation, potential to correct for motion, and the complementary information available from cardiac MR in a single scan. Twenty-three patients with diagnosed or documented risk factors for coronary artery disease underwent either 18F-FDG or 18F-NaF PET/MR imaging. Standard breath-held MR-based attenuation correction was compared with a novel free-breathing approach. The impact on PET image artifacts and the interpretation of vascular uptake were evaluated semiquantitatively by expert readers. Moreover, PET reconstructions with more algorithm iterations were compared visually and by target-to-background ratio. Image quality was significantly improved by novel free-breathing attenuation correction. Moreover, conspicuity of coronary uptake was improved by increasing the number of algorithm iterations from 3 to 6. Elevated radiotracer uptake could be localized to individual coronary lesions using both 18F-FDG (n = 1, maximal target-to-background ratio = 1.61) and 18F-NaF (n = 7

  13. Evaluation and comparison of contrast to noise ratio and signal to noise ratio according to change of reconstruction on breast PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jae [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); Lee, Eul Kyu [Dept. of Radiology, Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, The Baekseok Culture University, Cheonan (Korea, Republic of); Lyu, Kwang Yeul; Park, Hoon Hee; Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, The Shingu University, Sungnam (Korea, Republic of)

    2017-03-15

    The purpose of this study was to measure contrast to noise ratio (CNR) and signal to noise ratio (SNR) according to change of reconstruction from region of interest (ROI) in breast positron emission tomography- computed tomography (PET-CT), and to analyze the CNR and SNR statically. We examined images of breast PET-CT of 100 patients in a University-affiliated hospital, Seoul, Korea. Each patient's image of breast PET-CT were calculated by using Image J. Differences of CNR and SNR among four reconstruction algorithms were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p<0.05). We have analysis socio-demographical variables, CNR and SNR according to reconstruction images, 95% confidence according to CNR and SNR of reconstruction and difference in a mean of CNR and SNR. SNR results, with the quality of distributions in the order of PSF{sub T}OF, Iterative and Iterative-TOF, FBP-TOF. CNR, with the quality of distributions in the order of PSF{sub T}OF, Iterative and Iterative-TOF, FBP-TOF. CNR and SNR of PET-CT reconstruction methods of the breast would be useful to evaluate breast diseases.

  14. PET IMAGING STUDIES IN DRUG ABUSE RESEARCH.

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Ding, Y.S.; Logan, J.; Wang, G.J.

    2001-01-29

    There is overwhelming evidence that addiction is a disease of the brain (Leshner, 1997). Yet public perception that addiction is a reflection of moral weakness or a lack of willpower persists. The insidious consequence of this perception is that we lose sight of the fact that there are enormous medical consequences of addiction including the fact that a large fraction of the total deaths from cancer and heart disease are caused by smoking addiction. Ironically the medical school that educates physicians in addiction medicine and the cancer hospital that has a smoking cessation clinic are vanishingly rare and efforts at harm reduction are frequently met with a public indignation. Meanwhile the number of people addicted to substances is enormous and increasing particularly the addictions to cigarettes and alcohol. It is particularly tragic that addiction usually begins in adolescence and becomes a chronic relapsing problem and there are basically no completely effective treatments. Clearly we need to understand how drugs of abuse affect the brain and we need to be creative in using this information to develop effective treatments. Imaging technologies have played a major role in the conceptualization of addiction as a disease of the brain (Fowler et al., 1998a; Fowler et al., 1999a). New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology and medicine. This topic cuts across the medical specialties of neurology, psychiatry, cancer and heart disease because of the high medical, social and economic toll that drugs of abuse, including and especially the legal drugs, cigarettes and alcohol, take on society. In this chapter we will begin by highlighting the important role that chemistry has played in making it possible to quantitatively image the movement of drugs as well as their effects on the human brain

  15. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: Lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Leonardo, E-mail: lpace@unisa.it [Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno (Italy); Nicolai, Emanuele, E-mail: enicolai@sdn-napoli.it [IRCCS–SDN, Napoli (Italy); Luongo, Angelo, E-mail: angelo_luongo@libero.it [Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II (Italy); Aiello, Marco, E-mail: maiello@sdn-napoli.it [IRCCS–SDN, Napoli (Italy); Catalano, Onofrio A., E-mail: onofriocatalano@yahoo.it [IRCCS–SDN, Napoli (Italy); Soricelli, Andrea, E-mail: andrea.soricelli@uniparthenope.it [Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università degli Studi Parthenope di Napoli (Italy); Salvatore, Marco, E-mail: marsalva@unina.it [Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II (Italy)

    2014-02-15

    Purpose: To compare the performance of PET/MRI imaging using MR attenuation correction (MRAC) (DIXON-based 4-segment -map) in breast cancer patients with that of PET/CT using CT-based attenuation correction and to compare the quantification accuracy in lesions and in normal organ tissues. Methods: A total of 36 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 62 min later a second scan using a hybrid PET/MRI system. PET/MRI and PET/CT were compared visually by rating anatomic allocation and image contrast. Regional tracer uptake in lesions was quantified using volumes of interest, and maximal and mean standardized uptake values (SUVmax and SUVmean, respectively) were calculated. Metabolic tumor volume (MTV) of each lesion was computed on PET/MRI and PET/CT. Tracer uptake in normal organ tissue was assessed as SUVmax and SUVmean in liver, spleen, left ventricular myocardium, lung, and muscle. Results: Overall 74 FDG positive lesions were visualized by both PET/CT and PET/MRI. No significant differences in anatomic allocation scores were found between PET/CT and PERT/MRI, while contrast score of lesions on PET/MRI was significantly higher. Both SUVmax and SUVmean of lesions were significantly higher on PET/MRI than on PET/CT, with strong correlations between PET/MRI and PET/CT data (ρ = 0.71–0.88). MTVs of all lesions were 4% lower on PET/MRI than on PET/CT, but no statistically significant difference was observed, and an excellent correlation between measurements of MTV with PET/MRI and PET/CT was found (ρ = 0.95–0.97; p < 0.0001). Both SUVmax and SUVmean were significantly lower by PET/MRI than by PET/CT for lung, liver and muscle, no significant difference was observed for spleen, while either SUVmax and SUVmean of myocardium were significantly higher by PET/MRI. High correlations were found between PET/MRI and PET/CT for both SUVmax and SUVmean of the left ventricular myocardium (ρ = 0.91; p < 0.0001), while moderate

  16. Alternative screening for women with dense breasts: breast-specific gamma imaging (molecular breast imaging).

    Science.gov (United States)

    Holbrook, Anna; Newel, Mary S

    2015-02-01

    OBJECTIVE. Given mammography's limitations in evaluating dense breasts, examination with breast-specific gamma imaging (BSGI)-also called molecular breast imaging (MBI)-has been proposed. We review the literature pertinent to the performance of BSGI in patients with dense breasts. CONCLUSION. Many studies have reported the sensitivity of BSGI in finding cancers even in dense breasts. However, BSGI has not yet been validated as an effective screening tool in large prospective studies. In addition, whole-body dose remains a significant concern.

  17. Cardiovascular hybrid imaging using PET/MRI; Kardiovaskulaere Hybridbildgebung mit PET/MRT

    Energy Technology Data Exchange (ETDEWEB)

    Nensa, Felix; Schlosser, Thomas [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie

    2014-12-15

    The following overview provides a summary of the state of the art and research as well as potential clinical applications of cardiovascular PET/MR imaging. PET/MRI systems have been clinically available for a few years, and their use in cardiac imaging has been successfully demonstrated. At this period in time, some of the technical difficulties that arose at the beginning have been solved; in particular with respect to MRI-based attenuation correction, caution should be exercised with PET quantification. In addition, many promising technical options are still in the developmental stage, such as MRI-based motion correction of PET data resulting from simultaneous MR acquisition, and are not yet available for cardiovascular imaging. On the other hand, PET/MRI has been used to demonstrate significant pathologies such as acute and chronic myocardial infarction, myocarditis or cardiac sarcoidosis; future applications in clinical routine or within studies appear to be possible. In coming years additional studies will have to be performed to prove diagnostic gain at a reasonable cost-benefit ratio before valid conclusions are possible regarding the clinical utility and future of cardiovascular PET/MR imaging.

  18. Fluorine-18 NaF PET imaging of child abuse

    Energy Technology Data Exchange (ETDEWEB)

    Drubach, Laura A. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Sapp, Mark.V. [School of Osteopathic Medicine, Child Abuse Research Education and Services (CARES) Institute University of Medicine and Dentistry of New Jersey, New Jersey (United States); Laffin, Stephen [Children' s Hospital Boston, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Kleinman, Paul K. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Division of Musculoskeletal Imaging, Boston, MA (United States)

    2008-07-15

    We describe the use of {sup 18}F-NaF positron emission tomography (PET) whole-body imaging for the evaluation of skeletal trauma in a case of suspected child abuse. To our knowledge, 18F NaF PET has not been used in the past for the evaluation of child abuse. In our patient, this technique detected all sites of trauma shown by initial and follow-up skeletal surveys, including bilateral metaphyseal fractures of the proximal humeri. Fluorine-18 NaF PET has potential advantage over Tc-99m-labeled methylene diphosphonate (MDP) based upon superior image contrast and spatial resolution. (orig.)

  19. 18F-FDOPA PET Imaging in Prolactinoma.

    Science.gov (United States)

    Ginet, Merwan; Cuny, Thomas; Schmitt, Emmanuelle; Marie, Pierre-Yves; Verger, Antoine

    2017-08-01

    Pituitary macroadenoma constitutes a frequently misdiagnosed benign tumor. We report herein a case where such macroadenoma, a prolactinoma, was incidentally discovered in a 63-year-old man who had been referred to F-FDG PET and F-FDOPA PET imaging for a pharmacoresistant epilepsy. An increased uptake was documented for both radiotracers within the sellar region, although with a much higher contrast for F-FDOPA than for F-FDG. This case presents an increased uptake documented within a prolactinoma owing to the high contrast and image quality provided by F-FDOPA PET.

  20. Commissioning and Characterization of a Dedicated High Resolution Breast PET Camera

    Science.gov (United States)

    2013-07-01

    mammography , MRI, and ultrasound. We will test this high-resolution PET system in the following indications: (1) resolving inconclusive screening mammograms...lesion size, contrast and 8 standard uptake value (SUV). Pilot Study II will validate the utility of 1 mm3 resolution breast-dedicated PET in 10 women with

  1. Magnetic resonance imaging of invasive breast cancer

    African Journals Online (AJOL)

    G5

    graphic findings, and screening for breast cancer in younger women with familial breast cancer. Interpretation of MR images requires a meticulous imaging technique including the use of contrast enhancement and fat suppression MR sequences using a good breast coil. Introduction. The role of MR imaging in the diagno-.

  2. Mechanical imaging of the breast.

    Science.gov (United States)

    Egorov, Vladimir; Sarvazyan, Armen P

    2008-09-01

    In this paper, we analyze the physical basis for elasticity imaging of the breast by measuring breast skin stress patterns that result from a force sensor array pressed against the breast tissue. Temporal and spatial changes in the stress pattern allow detection of internal structures with different elastic properties and assessment of geometrical and mechanical parameters of these structures. The method entitled mechanical imaging is implemented in the breast mechanical imager (BMI), a compact device consisting of a hand held probe equipped with a pressure sensor array, a compact electronic unit, and a touchscreen laptop computer. Data acquired by the BMI allows calculation of size, shape, consistency/hardness, and mobility of detected lesions. The BMI prototype has been validated in laboratory experiments on tissue models and in an ongoing clinical study. The obtained results prove that the BMI has potential to become a screening and diagnostic tool that could largely supplant clinical breast examination through its higher sensitivity, quantitative record storage, ease-of-use, and inherent low cost.

  3. Assessment of response to endocrine therapy using FDG PET/CT in metastatic breast cancer: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi-Jehanno, Nina; Giraudet, Anne-Laure; Champion, Laurence; Edeline, Veronique; Madar, Olivier; Pecking, Alain Paul [Institut Curie, Hopital Rene Huguenin, Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Institut Curie, Hopital Rene Huguenin, Service d' Oncologie Medicale, Saint-Cloud (France); Stanc, Elise Le [Hopital Foch, Service de Medecine Nucleaire, Suresnes (France); Bellet, Dominique [Institut Curie, Hopital Rene Huguenin, Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Institut Curie, Hopital Rene Huguenin, Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de Medecine, Versailles (France)

    2012-03-15

    The purpose of this pilot study was to assess whether outcome in metastatic or recurrent breast cancer patients is related to metabolic response to endocrine therapy determined by {sup 18}F-FDG PET/CT. The study group comprised 22 patients with breast cancer (age 58 {+-} 11 years, mean {+-} SD) who were scheduled to receive endocrine therapy. They were systematically assessed by PET/CT at baseline and after a mean of 10 {+-} 4 weeks for evaluation of response after induction. All patients demonstrated FDG-avid lesions on the baseline PET/CT scan. The metabolic response was assessed according to EORTC criteria and based on the mean difference in SUV{sub max} between the two PET/CT scans, and the patients were classified into four groups: complete or partial metabolic response, or stable or progressive metabolic disease (CMR, PMR, SMD and PMD, respectively). All patients were followed in our institution. Metastatic sites were localized in bone (n = 15), lymph nodes (n = 11), chest wall (n = 3), breast (n = 5), lung (n = 3), soft tissue (n = 1) and liver (n = 1). PMR was observed in 11 patients (50%), SMD in 5 (23%) and PMD in 6 (27%). The median progression-free survival (PFS) times were 20, 27 and 6 months in the PMR, SMD and PMD groups, respectively. PFS in the SMD group differed from that in the PMR and SMD groups (p < 0.0001). Metabolic response assessed by FDG PET/CT imaging in patients with metastatic breast cancer treated with endocrine therapy is predictive of the patients' PFS. (orig.)

  4. Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging.

    NARCIS (Netherlands)

    Vogel, W.V.; Dalen, J.A. van; Wiering, B.; Huisman, H.J.; Corstens, F.H.M.; Ruers, T.J.M.; Oyen, W.J.G.

    2007-01-01

    Multimodality PET/CT of the liver can be performed with an integrated (hybrid) PET/CT scanner or with software fusion of dedicated PET and CT. Accurate anatomic correlation and good image quality of both modalities are important prerequisites, regardless of the applied method. Registration accuracy

  5. Development of a PET-Transrectal Ultrasound Prostate Imaging System

    Science.gov (United States)

    Huber, Jennifer S.; Peng, Qiyu.; Moses, William W.; Reutter, Bryan W.; Pouliot, Jean; Hsu, I. Chow

    2011-06-01

    Multimodality imaging has an increasing role in the management of a large number of diseases, particularly if both functional and structural information are acquired and accurately registered. Transrectal ultrasound (TRUS) imaging is currently an integral part of prostate cancer diagnosis and treatment procedures, providing high-resolution anatomical detail of the prostate region. Positron Emission Tomography (PET) imaging with 11C-choline is a sensitive functional imaging technique that can identify biochemical states associated with prostate cancer. We believe that merging these prostate imaging technologies will help identify the location and aggressiveness of prostate cancer. We envision using dual PET-TRUS prostate imaging to guide biopsy, guide treatment procedures, and detect local recurrence earlier than is currently possible. Hence, we have developed a dual PET-TRUS prostate imaging system and protocol designed to allow accurate 3-D image registration. We have evaluated this PET-TRUS system by performing dual PET-TRUS imaging of custom phantoms. We describe here our dual-modality imaging system, custom phantoms and phantom study results. We also discuss our investigation of the PET-TRUS registration accuracy. We measure an average PET-TRUS registration error for our phantom studies of 2.1 ±1.7 mm in the x direction, 1.9 ±1.6 mm in the y direction, and 0.6 ±0.2 mm in the z direction. This registration accuracy is sufficient for some clinical applications such as biopsy guidance and early detection of recurrence.

  6. Quantifying hypoxia in human cancers using static PET imaging

    Science.gov (United States)

    Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G.; Milosevic, Michael; Hedley, David W.; Jaffray, David A.

    2016-11-01

    Compared to FDG, the signal of 18F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties—well-perfused without substantial necrosis or partitioning—for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in ‘inter-corporal’ transport properties—blood volume and clearance rate—as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.

  7. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  8. Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/CT.

    Science.gov (United States)

    Ulaner, Gary A; Hyman, David M; Ross, Dara S; Corben, Adriana; Chandarlapaty, Sarat; Goldfarb, Shari; McArthur, Heather; Erinjeri, Joseph P; Solomon, Stephen B; Kolb, Hartmuth; Lyashchenko, Serge K; Lewis, Jason S; Carrasquillo, Jorge A

    2016-10-01

    Our objective was to determine whether imaging with a human epidermal growth factor receptor 2 (HER2)-targeted PET tracer can detect HER2-positive metastases in patients with HER2-negative primary breast cancer. Patients with HER2-negative primary breast cancer and evidence of distant metastases were enrolled in an Institutional Review Board-approved prospective clinical trial. Archived pathologic samples from the patient's primary breast cancer were retested to confirm HER2-negative disease. Patients with confirmed HER2-negative primary breast cancer underwent 89Zr-trastuzumab PET/CT to screen for 89Zr-trastuzumab metastases. Metastases avid for 89Zr-trastuzumab by PET/CT were biopsied and pathologically examined to define HER2 status. Patients with pathologically proven HER2-positive metastases subsequently received off-protocol HER2-targeted therapy to evaluate treatment response. Nine patients were enrolled, all of whom had pathologic retesting that confirmed HER2-negative primary breast cancer. Five demonstrated suggestive foci on 89Zr-trastuzumab PET/CT. Of these 5 patients, 2 had biopsy-proven HER2-positive metastases and went on to benefit from HER2-targeted therapy. In the other 3 patients, biopsy showed no evidence of HER2-positive disease, and their foci on 89Zr-trastuzumab PET were considered false-positive. In this proof-of-concept study, we demonstrated that 89Zr-trastuzmab PET/CT detects unsuspected HER2-positive metastases in patients with HER2-negative primary breast cancer. Although these are only initial results in a small sample, they are a proof of the concept that HER2-targeted imaging can identify additional candidates for HER2-targeted therapy. More specific HER2-targeted agents will be needed for clinical use. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Metastatic Breast Lesion to the Falx Detected with PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Chester; Schuster, David M. [Emory Univ., Atlanta (United States)

    2012-06-15

    Intracranial dural metastasis is increasingly encountered in imaging. Autopsies conducted on patients with advanced metastatic disease demonstrate dural involvement in 9% of cases, with breast and prostate cancer the most common primaries. Awareness of this entity and imaging appearances is especially important in evaluating malignancies prone to dural metastasis. A 57-year-old woman with a strong family history of breast cancer initially presented after self-detection of a right breast lump. Subsequent mammogram and biopsies yielded a diagnosis of right infiltrating ductal carcinoma with a positive lymph node as well as left invasive lobular carcinoma. Initial staging PET-CT (not shown) at the time of diagnosis demonstrated no abnormal FDG uptake remote from the breast. Neoadjuvant chemotherapy was instituted, and a PET-CT was obtained to evaluate disease response, demonstrating an approximately 1.8 cm hypermetabolic intra-cranial mass, localized to the region of the anterior corpus callosum on axian PET (Fig. 1a), axial fused PET-CT (Fig. 1b), and sagittal fused PET-CT (Fig. 1c) with a maximum SUV of 15.9. There was associated bifrontal vasogenic edema (Fig. 1d) on the CT demonstrated on brain windows. Marked progression of disease was noted elsewhere, including hypermetabolic adenopathy and skeletal disease. A contrast-enhanced MRI of the brain was obtained demonstrating extensive T1 hypointensity, T2, and FLAIR (Fig. 2a) hyperintensity in the bilateral paramedian frontallobes representing vasogenic edema. Post-contrast imaging demonstrated three solidly enhancing masses in the areas of described vasogenic edema, one large extra-axial and two sub-centimeter parenchymal lesions. The large extra-axial and two sub-centimeter parenchymal lesions. The large extra-axial mass demonstrated homogeneous solid enhancement, in the midline anteriorly centered on the falx, just superior to the anterior corpus callosum. This measured 1.7cm transverse x 3.1cm AP x 2.4cm

  10. Normal physiologic and Benign foci with F-18 FDG avidity on PET/CT in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Lee, Kwang Man; Choi, Un Jong; Kim, Hun Soo; Kim, Hye Won; Song, Jeong Hoon [College of Medicine, Wonkwnag University, Iksan (Korea, Republic of)

    2010-12-15

    The aim of this study was to evaluate the physiologic and benign F-18 fluorodeoxyglucose (FDG) avid foci in patients with breast cancer. On 309 F-18 FDG PET/CT scans of 241 women with breast cancer, the hypermetabolic lesions compared with the surrounding normal region were evaluated retrospectively. Available reports of other relevant radiological imaging medical records, and follow-up PET/CT were reviewed for explanations of the abnormal uptake. Among the 70 physiologic foci, muscular uptake of the lower neck following the surgical and/or radiation therapy of ipsilateral breast (29%), hypermetabolic ovaries (16%) and uterine (10%) uptake during the ovulatory and menstrual phases during the normal menstrual cycle were identified, and also hypermetabolic brown fat in cold-induced thermogenesis (7%), non-specific bowel uptake (35%) were observed. Among the 147 benign lesions, sequelae of the chest wall and breasts following surgical and/or radiation therapy, were often observed (27%). Hypermetabolic thyroid glands were noted as adenomas and chronic thyroiditis (18%). Reactive hyperplasia of cervical or mediastinal lymph nodes (32%), degenerative osteoarthritis and healed fractures (15%), hypermetabolic benign lung lesions (6%) were observed. Altered physiologic and benign F-18 FDG uptake in the cervical muscle and chest wall following ipsilateral breast surgery or radiotherapy were common, and also normal physiologic uptake in ovary and uterus, brown fat, thyroid were considered as predominant findings in women patients with breast cancer. Knowledge of these findings might aid in the interpretation of FDG PET/CT in patients with breast cancer

  11. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study.

    Science.gov (United States)

    Eldib, Mootaz; Oesingmann, Niels; Faul, David D; Kostakoglu, Lale; Knešaurek, Karin; Fayad, Zahi A

    2016-08-01

    Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background. Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.

  12. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients

    OpenAIRE

    Catalano, O A; Nicolai, E; Rosen, B R; Luongo, A; Catalano, M; Iannace, C; Guimaraes, A; Vangel, M G; Mahmood, U; Soricelli, A; Salvatore, M

    2015-01-01

    Background: Despite improvements in treatments, metastatic breast cancer remains difficult to cure. Bones constitute the most common site of first-time recurrence, occurring in 40?75% of cases. Therefore, evaluation for possible osseous metastases is crucial. Technetium 99 (99Tc) bone scintigraphy and fluorodexossyglucose (FDG) positron emission tomography (PET)-computed tomography (PET-CT) are the most commonly used techniques to assess osseous metastasis. PET magnetic resonance (PET-MR) ima...

  13. Ultrasonography Fused with PET-CT Hybrid Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Ewertsen, Caroline; Gran, Fredrik

    2011-01-01

    We present a method with fusion of images of three modalities 18F-FDG PET, CT, and 3-D ultrasound (US) applied to imaging of the anal canal and the rectum. To obtain comparable geometries in the three imaging modalities, a plexiglas rod, with the same dimensions as the US transducer, is placed in...

  14. Correlation between PET/CT results and histological and immunohistochemical findings in breast carcinomas

    Directory of Open Access Journals (Sweden)

    Almir Galvão Vieira Bitencourt

    2014-04-01

    Full Text Available Objective To correlate the results of 18F-fluoro-2-deoxy-D-glucose (18F-FDG positron emission tomography/computed tomography (PET/CT performed with a specific protocol for assessment of breasts with histological/immunohistochemical findings in breast carcinoma patients. Materials and Methods Cross-sectional study with prospective data collection, where patients with biopsy-confirmed breast carcinomas were studied. The patients underwent PET/CT examination in prone position, with a specific protocol for assessment of breasts. PET/CT findings were compared with histological and immunohistochemical data. Results The authors identified 59 malignant breast lesions in 50 patients. The maximum diameter of the lesions ranged from 6 to 80 mm (mean: 32.2 mm. Invasive ductal carcinoma was the most common histological type (n = 47; 79.7%. At PET/CT, 53 (89.8% of the lesions demonstrated anomalous concentrations of 18F-FDG, with maximum SUV ranging from 0.8 to 23.1 (mean: 5.5. A statistically significant association was observed between higher values of maximum SUV and histological type, histological grade, molecular subtype, tumor diameter, mitotic index and Ki-67 expression. Conclusion PET/CT performed with specific protocol for assessment of breasts has demonstrated good sensitivity and was associated with relevant histological/immunohistochemical factors related to aggressiveness and prognosis of breast carcinomas.

  15. Quantitative Comparison of Y-90 and Ge-68 PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Kwak, Shin Hye; Lee, Jeong A; Song, Han Kyeol; Kang, Joo Hyun; Lim, Sang Moo; KIm, Kyeong Min [Korea Institute of Raiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Su Young [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2014-05-15

    The purpose of this study was to assess statistical characteristics and to improve count rate of image for enhancing Y-90 image quality by using non-parametric bootstrap method. The results showed that Y-90 PET image can be improved using non-parametric bootstrap method. PET data was able to be improved using non-parametric bootstrap method and it was verified with showing improved prompts rate. Y-90 PET image quality was improved and bias indicated that the bootstrapped image was more similar to the gold standard than other images. The non-parametric bootstrap method will be useful tool for enhancing Y-90 PET image and it will be expected to reduce time for acquisition and to elevate performance for diagnosis and treatment. Yttrium-90 (Y-90) radioembolization is one of the treatment methods unrespectable stage of hepatocellular carcinoma (HCC) and metastatic colon cancer to the liver. However, Y-90 radioembolization is a catheter-based therapy that delivers internal radiation to tumors, it results in greater radiation exposure to the tumors than using external radiation. Also, unlike other current therapies for the treatment of unresectable liver tumors, Y-90 radioembolization is much less often associated with toxicities such as abdominal pain, fever, nausea, and vomiting. Therefore Y-90 has been received much interest and studied by many researchers. Imaging of Y-90 has been conducted using most commonly gamma camera but quantitative PET imaging is required due to low sensitivity and resolution. Y-90 imaging is generally performed with SPECT by Bremsstrahlung photons. Unfortunately, the low image quality due to the nature of the Bremsstrahlung photon limits the quantitative accuracy of Y-90 SPECT. To overcome this limitation in SPECT imaging, Y-90 PET has been suggested as an alternative.

  16. Baseline DCE-MRI and PET-CT as a predictor of pathologic response in patients treated with neodjuvant chemotherapy (NAC) for locally advanced breast cancer

    OpenAIRE

    colleter, Loïc

    2015-01-01

    Purpose: To evaluate DCE-MRI and PET-CT at baseline for prediction of pathological response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer. Materials and methods: 88 patients with locally advanced breast cancer treated with NAC followed in DCE-MRI at 1.5T and PET-CT were included in this retrospective study. Perfusion parameters (Ktrans, kep, ve) and SUVmax were measured at baseline of the NAC. Imaging datas were compared with tumoral and nodal pathologic re...

  17. PKU-PET-II: A novel SiPM-based PET imaging system for small animals

    Science.gov (United States)

    Xie, Zhaoheng; Li, Suying; Zhou, Kun; Vuletic, Ivan; Meng, Xiangxi; Zhu, Sihao; Xu, Huan; Yang, Kun; Xu, Baixuan; Zhang, Jinming; Ren, Qiushi

    2018-01-01

    The objective of this study was to introduce, describe, and validate the performance of a novel preclinical silicon photomultiplier (SiPM)-based PET system (PKU-PET-II). Briefly, the detector assembly consisted of cerium-doped lutetium-yttrium oxyorthosilicate (LYSO) crystals, with dimensions of 2 ×2 ×15 mm3, that offered a 60 mm transaxial field of view (FOV) and 32 mm axial FOV, respectively. The compact front-end electronics readout and digital controller implemented architecture in the FPGA were noteworthy improvements in PKU-PET-II over its predecessor (PKU-PET-I). Based on the National Electrical Manufacturers Association (NEMA) NU 04-2008 standards, the design of the PKU-PET-II system was validated by a phantom experiment. The results presented spatial resolution (evaluated as full width at half maximum) with a system range from 1.68 ±0.07 to 2.31 ±0.03 mm at the FOV center and from 1.43 ±0.02 to 2.10 ±0.10 mm at the 1/4th axial FOV, respectively. The system's absolute sensitivity at the center position was 1.35% with the coincidence window of 6 ns and energy window of 300-700 keV. In addition, the NEMA image quality phantom and an animal study results validated the system imaging performance in preclinical imaging application. In conclusion, this SiPM-based, small-animal PET system (PKU-PET-II) provided higher-resolution, adequate sensitivity, and excellent image quality and has potential as a useful tool for real-time imaging of disease progression and development in vivo.

  18. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  19. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System.

    Science.gov (United States)

    Lassen, Martin L; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (V T ). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of -33 ± 14% (p PET/MR resulted in slightly lower systematic differences of -16 ± 18% for K1 and -9 ± 10% for k2. The average differences in V T were -18 ± 10% (p PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19.

  20. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    Science.gov (United States)

    Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742

  1. {sup 18}F-FLT PET/CT as an imaging tool for early prediction of pathological response in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Crippa, Flavio; Padovano, Barbara; Alessi, Alessandra; Bombardieri, Emilio; Pascali, Claudio; Bogni, Anna [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Nuclear Medicine Unit; Agresti, Roberto; Maugeri, Ilaria; Rampa, Mario; Martelli, Gabriele [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Breast Surgery Unit; Sandri, Marco [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Molecular Targeting Unit; Mariani, Gabriella; Bianchi, Giulia; De Braud, Filippo [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Medical Oncology Unit; Carcangiu, Maria Luisa [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Pathology Unit; Trecate, Giovanna [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan (Italy). Radiology-RMI Unit

    2015-05-01

    We evaluated whether {sup 18}F-3'-deoxy-3'-fluorothymidine positron emission tomography (FLT PET) can predict the final postoperative histopathological response in primary breast cancer after the first cycle of neoadjuvant chemotherapy (NCT). In this prospective cohort study of 15 patients with locally advanced operable breast cancer, FLT PET evaluations were performed before NCT, after the first cycle of NCT, and at the end of NCT. All patients subsequently underwent surgery. Variables from FLT PET examinations were correlated with postoperative histopathological results. At baseline, median of maximum standardized uptake values (SUV{sub max}) in the groups showing a complete pathological response (pCR) + residual cancer burden (RCB) I, RCB II or RCB III did not differ significantly for the primary tumour (5.0 vs. 2.9 vs. 8.9, p = 0.293) or for axillary nodes (7.9 vs. 1.6 vs. 7.0, p = 0.363), whereas the Spearman correlation between SUV{sub max} and Ki67 proliferation rate index was significant (r = 0.69, p < 0.001). Analysis of the relative percentage change of SUV{sub max}in the primary tumour (∇SUVT{sub max}(t{sub 1})) and axillary nodes (∇SUVN{sub max}(t{sub 1})) after the first NCT cycle showed that the power of ∇SUVT{sub max}(t{sub 1}) to predict pCR + RCB I responses (AUC = 0.91, p < 0.001) was statistically significant, whereas ∇SUVN{sub max}(t{sub 1}) had a moderate ability (AUC = 0.77, p = 0.119) to separate subjects with ΔSUVT{sub max}(t{sub 1}) > -52.9 % into two groups: RCB III patients and a heterogeneous group that included RCB I and RCB II patients. A predictive score μ based on ΔSUVT{sub max}(t{sub 1}) and ΔSUVN{sub max}(t{sub 1}) parameters is proposed. The preliminary findings of the present study suggest the potential utility of FLT PET scans for early monitoring of response to NCT and to formulate a therapeutic strategy consistent with the estimated efficacy of NCT. However, these results in a small patient population

  2. Evaluation of a silicon photomultiplier PET insert for simultaneous PET and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Guen Bae; Kim, Kyeong Yun; Yoon, Hyun Suk; Son, Jeong-Whan [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Lee, Min Sun [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799, South Korea and Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Im, Hyung-Jun [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Lee, Jae Sung, E-mail: jaes@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2016-01-15

    Purpose: In this study, the authors present a silicon photomultiplier (SiPM)-based positron emission tomography (PET) insert dedicated to small animal imaging with high system performance and robustness to temperature change. Methods: The insert consists of 64 LYSO-SiPM detector blocks arranged in 4 rings of 16 detector blocks to yield a ring diameter of 64 mm and axial field of view of 55 mm. Each detector block consists of a 9 × 9 array of LYSO crystals (1.2 × 1.2 × 10 mm{sup 3}) and a monolithic 4 × 4 SiPM array. The temperature of each monolithic SiPM is monitored, and the proper bias voltage is applied according to the temperature reading in real time to maintain uniform performance. The performance of this PET insert was characterized using National Electrical Manufacturers Association NU 4-2008 standards, and its feasibility was evaluated through in vivo mouse imaging studies. Results: The PET insert had a peak sensitivity of 3.4% and volumetric spatial resolutions of 1.92 (filtered back projection) and 0.53 (ordered subset expectation maximization) mm{sup 3} at center. The peak noise equivalent count rate and scatter fraction were 42.4 kcps at 15.08 MBq and 16.5%, respectively. By applying the real-time bias voltage adjustment, an energy resolution of 14.2% ± 0.3% was maintained and the count rate varied ≤1.2%, despite severe temperature changes (10–30 °C). The mouse imaging studies demonstrate that this PET insert can produce high-quality images useful for imaging studies on the small animals. Conclusions: The developed MR-compatible PET insert is designed for insertion into a narrow-bore magnetic resonance imaging scanner, and it provides excellent imaging performance for PET/MR preclinical studies.

  3. Utility of 18FDG-PET/CT in breast cancer diagnostics--a systematic review

    DEFF Research Database (Denmark)

    Warning, Karina; Hildebrandt, Malene Grubbe; Kristensen, Bent

    2011-01-01

    as a primary diagnostic procedure in breast cancer; but it has the potential to be useful for the detection of distant metastases and for monitoring response to chemotherapy in breast cancer patients. PET/CT should still be regarded as a supplement to conventional diagnostic procedures such as CT and MRI....

  4. Atlas of PET/MR imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ratib, Osman [University Hospital of Geneva (Switzerland). Nuclear Medicine Division; Schwaiger, Markus [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Beyer, Thomas (eds.) [General Hospital Vienna (Austria). Center for Medical Physics and Biomedical Engineering

    2013-08-01

    Numerous illustrated clinical cases in different oncology domains. Includes digital interactive software matching the cases in the book. Interactive version based on the latest web standard, HTML5, ensuring the widest compatibility. Edited by three international opinion leaders/imaging experts in the field. This new project on PET/MR imaging in oncology includes digital interactive software matching the cases in the book. The interactive version of the atlas is based on the latest web standard, HTML5, ensuring compatibility with any computer operating system as well as a dedicated version for Apple iPad and iPhone. The book opens with an introduction to the principles of hybrid imaging that pays particular attention to PET/MR imaging and standard PET/MR acquisition protocols. A wide range of illustrated clinical case reports are then presented. Each case study includes a short clinical history, findings, and teaching points, followed by illustrations, legends, and comments. The multimedia version of the book includes dynamic movies that allow the reader to browse through series of rotating 3D images (MIP or volume rendered), display blending between PET and MR, and dynamic visualization of 3D image volumes. The movies can be played either continuously or sequentially for better exploration of sets of images. The editors of this state-of-the-art publication are key opinion leaders in the field of multimodality imaging. Professor Osman Ratib (Geneva) and Professor Markus Schwaiger (Munich) were the first in Europe to initiate the clinical adoption of PET/MR imaging. Professor Thomas Beyer (Zurich) is an internationally renowned pioneering physicist in the field of hybrid imaging. Individual clinical cases presented in this book are co-authored by leading international radiologists and nuclear physicians experts in the use of PET and MRI.

  5. Towards real-time topical detection and characterization of FDG dose infiltration prior to PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jason M.; Arlinghaus, Lori R. [Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN (United States); Rani, Sudheer D. [Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Shone, Martha D. [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Abramson, Vandana G. [Vanderbilt University Medical Center, Department of Medicine, Nashville, TN (United States); Vanderbilt-Ingram Cancer Center, Nashville, TN (United States); Pendyala, Praveen [Vanderbilt University Medical Center, Department of Radiation Oncology, Nashville, TN (United States); Chakravarthy, A.B. [Vanderbilt-Ingram Cancer Center, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiation Oncology, Nashville, TN (United States); Gorge, William J.; Knowland, Joshua G.; Lattanze, Ronald K.; Perrin, Steven R. [Lucerno Dynamics, LLC, Morrisville, NC (United States); Scarantino, Charles W. [Lucerno Dynamics, LLC, Morrisville, NC (United States); University of North Carolina, Department of Radiation Oncology, Chapel Hill, NC (United States); Townsend, David W. [Lucerno Dynamics, LLC, Morrisville, NC (United States); Technology and Research-National University of Singapore, Clinical Imaging Research Centre, Agency for Science, Singapore (Singapore); Abramson, Richard G. [Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Vanderbilt-Ingram Cancer Center, Nashville, TN (United States); Yankeelov, Thomas E. [The University of Texas at Austin, Institute for Computational and Engineering Sciences, and Departments of Biomedical Engineering and Internal Medicine, Austin, TX (United States)

    2016-12-15

    To dynamically detect and characterize {sup 18}F-fluorodeoxyglucose (FDG) dose infiltrations and evaluate their effects on positron emission tomography (PET) standardized uptake values (SUV) at the injection site and in control tissue. Investigational gamma scintillation sensors were topically applied to patients with locally advanced breast cancer scheduled to undergo limited whole-body FDG-PET as part of an ongoing clinical study. Relative to the affected breast, sensors were placed on the contralateral injection arm and ipsilateral control arm during the resting uptake phase prior to each patient's PET scan. Time-activity curves (TACs) from the sensors were integrated at varying intervals (0-10, 0-20, 0-30, 0-40, and 30-40 min) post-FDG and the resulting areas under the curve (AUCs) were compared to SUVs obtained from PET. In cases of infiltration, observed in three sensor recordings (30 %), the injection arm TAC shape varied depending on the extent and severity of infiltration. In two of these cases, TAC characteristics suggested the infiltration was partially resolving prior to image acquisition, although it was still apparent on subsequent PET. Areas under the TAC 0-10 and 0-20 min post-FDG were significantly different in infiltrated versus non-infiltrated cases (Mann-Whitney, p < 0.05). When normalized to control, all TAC integration intervals from the injection arm were significantly correlated with SUV{sub peak} and SUV{sub max} measured over the infiltration site (Spearman ρ ≥ 0.77, p < 0.05). Receiver operating characteristic (ROC) analyses, testing the ability of the first 10 min of post-FDG sensor data to predict infiltration visibility on the ensuing PET, yielded an area under the ROC curve of 0.92. Topical sensors applied near the injection site provide dynamic information from the time of FDG administration through the uptake period and may be useful in detecting infiltrations regardless of PET image field of view. This dynamic information

  6. FDG PET/CT imaging in canine cancer patients

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; McEvoy, Fintan; Engelholm, Svend Aage

    2011-01-01

    .0, and for sarcomas from 2.0 to 10.6. The FDG SUV of several organs and tissues, including regional brain uptake is reported, to serve as a reference for future FDG PET studies in canine cancer patients. Several potential pitfalls have been recognized in interpretation of FDG PET images of human patients, a number...... and organs in canine cancer patients. FDG PET/CT was performed in 14 dogs including, nine mesenchymal tumors, four carcinomas, and one incompletely excised mast cell tumor. A generally higher FDG uptake was observed in carcinomas relative to sarcomas. Maximum SUV of carcinomas ranged from 7.6 to 27...

  7. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  8. Assessment of attenuation correction for myocardial PET imaging using combined PET/MRI.

    Science.gov (United States)

    Lassen, Martin Lyngby; Rasul, Sazan; Beitzke, Dietrich; Stelzmüller, Marie-Elisabeth; Cal-Gonzalez, Jacobo; Hacker, Marcus; Beyer, Thomas

    2017-11-22

    To evaluate the frequency of artifacts in MR-based attenuation correction (AC) maps and their impact on the quantitative accuracy of PET-based flow and metabolism measurements in a cohort of consecutive heart failure patients undergoing combined PET/MR imaging. Myocardial viability studies were performed in 20 patients following a dual-tracer protocol involving the assessment of myocardial perfusion (13N-NH3: 813 ± 86 MBq) and metabolism (18F-FDG: 335 ± 38 MBq). All acquisitions were performed using a fully-integrated PET/MR system, with standard DIXON-attenuation correction (DIXON-AC) mapping for each PET scan. All AC maps were examined for spatial misalignment with the emission data, total lung volume, susceptibility artifacts, and tissue inversion (TI). Misalignment and susceptibility artifacts were corrected using rigid co-registration and retrospective filling of the susceptibility-induced gaps, respectively. The effects of the AC artifacts were evaluated by relative difference measures and perceived changes in clinical interpretations. Average respiratory misalignment of (7 ± 4) mm of the PET-emission data and the AC maps was observed in 18 (90%) patients. Substantial changes in the lung volumes of the AC maps were observed in the test-retest analysis (ratio: 1.0 ± 0.2, range: 0.8-1.4). Susceptibility artifacts were observed in 10 (50%) patients, while six (30%) patients had TI artifacts. Average differences of 14 ± 10% were observed for PET images reconstructed with the artifactual AC maps. The combined artifact effects caused false-positive findings in three (15%) patients. Standard DIXON-AC maps must be examined carefully for artifacts and misalignment effects prior to AC correction of cardiac PET/MRI studies in order to avoid misinterpretation of biased perfusion and metabolism readings from the PET data.

  9. Comparison of prone versus supine 18F-FDG-PET of locally advanced breast cancer: Phantom and preliminary clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jason M.; Rani, Sudheer D.; Li, Xia; Whisenant, Jennifer G.; Abramson, Richard G. [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 and Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232 (United States); Arlinghaus, Lori R. [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 (United States); Lee, Tzu-Cheng [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); MacDonald, Lawrence R.; Partridge, Savannah C. [Department of Radiology, University of Washington, Seattle, Washington 98195 (United States); Kang, Hakmook [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 and Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37232 (United States); Linden, Hannah M. [Department of Medical Oncology, University of Washington, Seattle, Washington 98195 (United States); Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, Washington 98195 (United States); Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States); Yankeelov, Thomas E., E-mail: thomas.yankeelov@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Physics, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232 (United States)

    2015-07-15

    Purpose: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors’ primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [{sup 18}F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. Methods: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone and supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUV{sub peak} and SUV{sub max}, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland–Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. Results: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4–30.9 min), which was significantly—but not completely—reduced by the linear correction method. SUV{sub peak} and SUV{sub max} from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUV{sub peak} and SUV{sub max} were

  10. Imaging with {sup 124}I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Umutlu, L. [University of Duisburg-Essen, Medical Faculty, Department of Radiology, Essen (Germany)

    2016-06-15

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using {sup 124}I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT{sub 2}) followed by PET/MRI of the neck 24 h after {sup 124}I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT{sub 2} acquisition time (2 min, PET/MRI{sub 2}) and the other covering the whole MRI scan time (30 min, PET/MRI{sub 30}). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI{sub 2} detected significantly more iodine-positive metastases and thyroid remnants than PET/CT{sub 2} (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI{sub 30} tended to detect more PET-positive metastases than PET/MRI{sub 2} (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine

  11. Burkitt lymphoma and cavernous sinus syndrome with breast uptake on 18F-FDG-PET/CT: A case report.

    Science.gov (United States)

    Reyneke, Florette; Mokgoro, Neo; Vorster, Mariza; Sathekge, Mike

    2017-11-01

    Burkitt lymphoma (BL) is a type of non-Hodgkin lymphoma that arises in the B-cells. Cavernous sinus involvement is rare, especially in adults. Here we report an unusual case of a 30-year-old HIV-positive woman with BL and cavernous sinus syndrome who also had intense bilateral breast uptake, related to menstrual cycle. Fluorine-18 2-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) has been found to be useful in the management of BL. A 30-year old female patient presented with a history of diplopia and headache. Magnetic resonance imaging revealed a large cavernous sinus mass. A bone marrow biopsy was done and demonstrated extensive marrow infiltration by Burkitt lymphoma. Further investigation detected the Epstein-Barr virus in her cerebrospinal fluid using qualitative polymerase chain reaction. 18F-FDG PET/CT imaging done revealed a hypermetabolic cavernous sinus mass, conglomerates of enlarged pelvic and para-aortic lymph nodes as well as diffuse bone marrow uptake. Intense bilateral breast uptake was noted coinciding with the start of menses. She was started on chemotherapy with adjuvant radiotherapy. After her first cycle of chemotherapy, repeat 18F-FDG PET/CT imaging revealed a marked reduction in the metabolic activity and size of the cavernous sinus mass and conglomerates of lymph nodes. The bone marrow activity was still visualized but less intense compared to the staging PET/CT. A cavernous sinus mass will rarely be the primary lesion in Burkitt's Lymphoma. Our case demonstrates the role of 18F-FDG PET/CT in the assessment of such cases to detect other primary areas of disease involvement. It is useful in accurate initial staging and monitoring of treatment response in patients with Burkitt's Lymphoma.

  12. PET/MR imaging of atherosclerosis: initial experience and outlook.

    Science.gov (United States)

    Rischpler, Christoph; Nekolla, Stephan G; Beer, Ambros J

    2013-01-01

    Hybrid scanners such as PET/CT have in the past emerged as a valuable modality in clinical routine as well as an important research tool. Recently, the newly developed fully integrated PET/MR scanners were introduced to the market, raising high expectations especially due to the excellent soft tissue contrast and functional imaging capabilities of MRI. In this issue of the American Journal of Nuclear Medicine and Molecular Imaging, initial experiences using a hybrid PET/MR scanner for carotid artery imaging in a group of patients with increased risk for atherosclerosis are described. This represents a proof-of-principle study, which could stimulate future applications of this powerful modality in atherosclerotic plaque imaging.

  13. Non-local means denoising of dynamic PET images.

    Directory of Open Access Journals (Sweden)

    Joyita Dutta

    Full Text Available Dynamic positron emission tomography (PET, which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM.NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high

  14. Detection of metastases in breast cancer patients. Comparison of FDG PET with chest X-ray, bone scintigraphy and ultrasound of the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Dose-Schwarz, J.; Mahner, S.; Schirrmacher, S.; Mueller, V. [Klinik und Poliklinik fuer Gynaekologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Jenicke, L.; Brenner, W. [Klinik fuer Nuklearmedizin, Universitaetsklinikum Hamburg-Eppendorf (Germany); Habermann, C.R. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany)

    2008-07-01

    Distant metastases at primary diagnosis are a prognostic key factor in breast cancer patients and play a central role in therapeutic decisions. To detect them, chest X-ray, abdominal ultrasound, and bone scintigraphy are performed as standard of care in Germany and many centers worldwide. Although FDG PET detects metastatic disease with high accuracy, its diagnostic value in breast cancer still needs to be defined. The aim of this study was to compare the diagnostic performance of FDG PET with conventional imaging. Patients, methods: a retrospective analysis of 119 breast cancer patients who presented for staging was performed. Whole-body FDG-PET (n = 119) was compared with chest X-ray (n = 106) and bone scintigraphy (n = 95). Each imaging modality was independently assessed and classified for metastasis (negative, equivocal and positive). The results of abdominal ultrasound (n = 100) were classified as negative and positive according to written reports. Imaging results were compared with clinical follow-up including follow-up imaging procedures and histopathology. Results: FDG-PET detected distant metastases with a sensitivity of 87.3% and a specificity of 83.3%. In contrast, the sensitivity and specificity of combined conventional imaging procedures was 43.1% and 98.5%, respectively. Regarding so-called equivocal and positive results as positive, the sensitivity and specificity of FDG-PET was 93.1% and 76.6%, respectively, compared to 61.2% and 86.6% for conventional imaging. Regarding different locations of metastases the sensitivity of FDG PET was superior in the detection of pulmonary metastases and lymph node metastases of the mediastinum in comparison to chest X-ray, whereas the sensitivity of FDG PET in the detection of bone and liver metastases was comparable with bone scintigraphy and ultrasound of the abdomen. Conclusions: FDG-PET is more sensitive than conventional imaging procedures for detection of distant breast cancer metastases and should be

  15. Simultaneous whole-body {sup 18}F-FDG PET-MRI in primary staging of breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, Sangeeta, E-mail: s_taneja1974@yahoo.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Jena, Amarnath, E-mail: drjena2002@yahoo.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Goel, Reema, E-mail: reemagoell@gmail.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Sarin, Ramesh, E-mail: sarinramesh@hotmail.com [Department of Surgical Oncology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi––Mathura Road, New Delhi 110076 (India); Kaul, Sumaid, E-mail: sumaidkaul53@hotmail.com [Department of Pathology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India)

    2014-12-15

    Highlights: • Initial staging of breast cancer important in treatment planning and prognostication. • We assessed role of simultaneous {sup 18}F-FDG PET-MRI in initial staging of breast cancer. • Primary, nodes and metastases on PET, MRI and PET-MRI for count and diagnostic confidence. • High diagnostic accuracy and confidence in detecting index and satellite lesions. • Comprehensive nodal and distant metastases staging with altered management (12 cases). - Abstract: Purpose: Accurate initial staging in breast carcinoma is important for treatment planning and for establishing the likely prognosis. The purpose of this study was to assess the utility of whole body simultaneous {sup 18}F-FDG PET-MRI in initial staging of breast carcinoma. Methods: 36 patients with histologically confirmed invasive ductal carcinoma underwent simultaneous whole body {sup 18}F-FDG PET-MRI on integrated 3 T PET-MR scanner (Siemens Biograph mMR) for primary staging. Primary lesion, nodes and metastases were evaluated on PET, MRI and PET-MRI for lesion count and diagnostic confidence (DC). Kappa co relation analysis was done to assess agreement between the satellite, nodal and metastatic lesions detected by PET and MRI. Histopathology, clinical/imaging follow-up served as the reference standard. Results: 36 patients with 37 histopathologically proven index breast cancer were retrospectively studied. Of 36 patients, 25 patients underwent surgery and 11 patients received systemic therapy. All index cancers were seen on PET and MR. Fused PET-MRI showed highest diagnostic confidence score of 5 as compared to PET (median 4; range 3–5) and MRI (median 4; range 4–5) alone. 2/36 (5.5%) patients were detected to have unsuspected contralateral synchronous cancer. 47 satellite lesions were detected on DCE MRI of which 23 were FDG avid with multifocality and multicentricity in 21 (58%) patients. Kappa co relation analysis revealed fair agreement for satellite lesion detection by the two

  16. Impact of Point-Spread Function Modeling on PET Image Quality in Integrated PET/MR Hybrid Imaging.

    Science.gov (United States)

    Aklan, Bassim; Oehmigen, Mark; Beiderwellen, Karsten; Ruhlmann, Marcus; Paulus, Daniel H; Jakoby, Bjoern W; Ritt, Philipp; Quick, Harald H

    2016-01-01

    The aim of this study was to systematically assess the quantitative and qualitative impact of including point-spread function (PSF) modeling into the process of iterative PET image reconstruction in integrated PET/MR imaging. All measurements were performed on an integrated whole-body PET/MR system. Three substudies were performed: an (18)F-filled Jaszczak phantom was measured, and the impact of including PSF modeling in ordinary Poisson ordered-subset expectation maximization reconstruction on quantitative accuracy and image noise was evaluated for a range of radial phantom positions, iteration numbers, and postreconstruction smoothing settings; 5 representative datasets from a patient population (total n = 20, all oncologic (18)F-FDG PET/MR) were selected, and the impact of PSF on lesion activity concentration and image noise for various iteration numbers and postsmoothing settings was evaluated; and for all 20 patients, the influence of PSF modeling was investigated on visual image quality and number of detected lesions, both assessed by clinical experts. Additionally, the influence on objective metrics such as changes in SUVmean, SUVpeak, SUVmax, and lesion volume was assessed using the manufacturer-recommended reconstruction settings. In the phantom study, PSF modeling significantly improved activity recovery and reduced the image noise at all radial positions. This effect was measurable only at a high number of iterations (>10 iterations, 21 subsets). In the patient study, again, PSF increased the detected activity in the patient's lesions at concurrently reduced image noise. Contrary to the phantom results, the effect was notable already at a lower number of iterations (>1 iteration, 21 subsets). Lastly, for all 20 patients, when PSF and no-PSF reconstructions were compared, an identical number of congruent lesions was found. The overall image quality of the PSF reconstructions was rated better when compared with no-PSF data. The SUVs of the detected lesions

  17. Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging

    National Research Council Canada - National Science Library

    Akamatsu, Go; Ikari, Yasuhiko; Nishio, Tomoyuki; Nishida, Hiroyuki; Ohnishi, Akihito; Aita, Kazuki; Sasaki, Masahiro; Sasaki, Masayuki; Senda, Michio

    2016-01-01

    The purpose of this study was to optimize image reconstruction conditions for brain 18F-FDG, 11C-PiB, 18F-florbetapir and 18F-flutemetamol PET imaging with Discovery-690 PET/CT for diagnosis and research on Alzheimer’s disease (AD...

  18. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  19. PET imaging in ectopic Cushing syndrome: a systematic review.

    Science.gov (United States)

    Santhanam, Prasanna; Taieb, David; Giovanella, Luca; Treglia, Giorgio

    2015-11-01

    Cushing syndrome due to endogenous hypercortisolism may cause significant morbidity and mortality. The source of excess cortisol may be adrenal, pituitary, or ectopic. Ectopic Cushing syndrome is sometimes difficult to localize on conventional imaging like CT and MRI. After performing a multilevel thoracoabdominal imaging with CT, the evidence regarding the use of radiotracers for PET imaging is unclear due to significant molecular and etiological heterogeneity of potential causes of ectopic Cushing's syndrome. In our systematic review of literature, it appears that GalLium-based (Ga68) somatostatin receptor analogs have better sensitivity in diagnosis of bronchial carcinoids causing Cushing syndrome and FDG PET appears superior for small-cell lung cancers and other aggressive tumors. Further large-scale studies are needed to identify the best PET tracer for this condition.

  20. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Sara Gargiulo

    2012-01-01

    Full Text Available Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT, high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.

  1. Monitoring proton radiation therapy with in-room PET imaging

    Science.gov (United States)

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R.; El Fakhri, Georges

    2011-07-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  2. Simultaneous maximum a posteriori longitudinal PET image reconstruction

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J.

    2017-09-01

    Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.

  3. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    National Research Council Canada - National Science Library

    Shi, Jiyun; Liu, Tracy W B; Chen, Juan; Green, David; Jaffray, David; Wilson, Brian C; Wang, Fan; Zheng, Gang

    2011-01-01

    ...)Cu-PPF into a positron emission tomography (PET) probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of (64)Cu-PPF. (64...

  4. Diagnostic Performance of and Breast Tissue Changes at Early Breast MR Imaging Surveillance in Women after Breast Conservation Therapy.

    Science.gov (United States)

    Kim, Eun Jeong; Kang, Bong Joo; Kim, Sung Hun; Youn, In Kyung; Baek, Ji Eun; Lee, Hyun Sil

    2017-09-01

    Purpose To investigate the diagnostic performance and tissue changes in early (1 year or less) breast magnetic resonance (MR) imaging surveillance in women who underwent breast conservation therapy for breast cancer. Materials and Methods This prospective study was approved by the institutional review board, and written informed consent was obtained. Between April 2014 and June 2016, 414 women (mean age, 51.5 years; range, 21-81 years) who underwent 422 early surveillance breast MR imaging examinations (median, 6.0 months; range, 2-12 months) after breast conservation therapy were studied. The cancer detection rate, positive predictive value of biopsy, sensitivity, specificity, accuracy, and area under the curve of surveillance MR imaging, mammography, and ultrasonography (US) were assessed. Follow-up was also obtained in 95 women by using positron emission tomography (PET)/computed tomography (CT). Background parenchymal enhancement (BPE) changes in the contralateral breast were assessed according to adjuvant therapy by using the McNemar test. Results Of 11 detected cancers, six were seen at MR imaging only, one was seen at MR imaging and mammography, two were seen at MR imaging and US, one was seen at mammography only, and one was seen at PET/CT only. Three MR imaging-depicted cancers were observed at the original tumor bed, and two MR imaging-depicted cancers were observed adjacent to the original tumor. Among two false-negative MR imaging diagnoses (two cases of ductal carcinoma in situ), one cancer had manifested as calcifications at mammography without differentiated enhancement at MR imaging, and the other cancer was detected at PET/CT, but MR imaging results were negative because of marked BPE, which resulted in focal lesion masking. The positive predictive value of biopsy and the sensitivity, specificity, accuracy, and area under the curve for MR imaging were 32.1% (nine of 28), 81.8% (nine of 11), 95.1% (391 of 411), 94.7% (400 of 422), and 0

  5. Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging.

    Science.gov (United States)

    Ko, Guen Bae; Yoon, Hyun Suk; Kim, Kyeong Yun; Lee, Min Sun; Yang, Bo Yeun; Jeong, Jae Min; Lee, Dong Soo; Song, In Chan; Kim, Seok-Ki; Kim, Daehong; Lee, Jae Sung

    2016-08-01

    Visualization of biologic processes at molecular and cellular levels has revolutionized the understanding and treatment of human diseases. However, no single biomedical imaging modality provides complete information, resulting in the emergence of multimodal approaches. Combining state-of-the-art PET and MRI technologies without loss of system performance and overall image quality can provide opportunities for new scientific and clinical innovations. Here, we present a multiparametric PET/MR imager based on a small-animal dedicated, high-performance, silicon photomultiplier (SiPM) PET system and a 7-T MR scanner. A SiPM-based PET insert that has the peak sensitivity of 3.4% and center volumetric resolution of 1.92/0.53 mm(3) (filtered backprojection/ordered-subset expectation maximization) was developed. The SiPM PET insert was placed between the mouse body transceiver coil and gradient coil of a 7-T small-animal MRI scanner for simultaneous PET/MRI. Mutual interference between the MRI and SiPM PET systems was evaluated using various MR pulse sequences. A cylindric corn oil phantom was scanned to assess the effects of the SiPM PET on the MR image acquisition. To assess the influence of MRI on the PET imaging functions, several PET performance indicators including scintillation pulse shape, flood image quality, energy spectrum, counting rate, and phantom image quality were evaluated with and without the application of MR pulse sequences. Simultaneous mouse PET/MRI studies were also performed to demonstrate the potential and usefulness of the multiparametric PET/MRI in preclinical applications. Excellent performance and stability of the PET system were demonstrated, and the PET/MRI combination did not result in significant image quality degradation of either modality. Finally, simultaneous PET/MRI studies in mice demonstrated the feasibility of the developed system for evaluating the biochemical and cellular changes in a brain tumor model and facilitating the

  6. Importance of PET/CT for imaging of colorectal cancer; Stellenwert der PET/CT zur Bildgebung des kolorektalen Karzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Haug, A.R. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Klinik und Poliklinik fuer Nuklearmedizin, Muenchen (Germany)

    2012-06-15

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [German] Die Fluordesoxyglukose-Positronenemissionstomographie/Computertomographie (FDG-PET/CT) hat in den letzten Jahren zunehmende Bedeutung zur Bildgebung des kolorektalen Karzinoms erlangt. In diesem Beitrag stellen wir den Stand der Literatur zur Rolle der PET/CT bei Screening, Staging, Bestrahlungsplanung, Beurteilung eines Therapieansprechens und Nachsorge des kolorektalen Karzinoms dar. Zudem wird auf gesundheitsoekonomische Aspekte und zukuenftige Entwicklungen eingegangen. CT, MRT, FDG-PET, beim Rektumkarzinom zusaetzlich endorektaler Ultraschall. Kombinierte FDG-PET/CT. Waehrend

  7. Multimodality imaging of TGFβ signaling in breast cancer metastases

    Science.gov (United States)

    Serganova, Inna; Moroz, Ekaterina; Vider, Jelena; Gogiberidze, George; Moroz, Maxim; Pillarsetty, Nagavarakishore; Doubrovin, Michael; Minn, Andy; Thaler, Howard T.; Massague, Joan; Gelovani, Juri; Blasberg, Ronald

    2009-01-01

    The skeleton is a preferred site for breast cancer metastasis. We have developed a multimodality imaging approach to monitor the transforming growth factor β (TGFβ) signaling pathway in bone metastases, sequentially over time in the same animal. As model systems, two MDA-MB-231 breast cancer cells lines with different metastatic tropisms, SCP2 and SCP3, were transduced with constitutive and TGFβ-inducible reporter genes and were tested in vitro and in living animals. The sites and expansion of metastases were visualized by bioluminescence imaging using a constitutive firefly luciferase reporter, while TGFβ signaling in metastases was monitored by microPET imaging of HSV1-TK/GFP expression with [18F]FEAU and by a more sensitive and cost-effective bioluminescence reporter, based on nonsecreted Gaussia luciferase. Concurrent and sequential imaging of metastases in the same animals provided insight into the location and progression of metastases, and the timing and course of TGFβ signaling. The anticipated and newly observed differences in the imaging of tumors from two related cell lines have demonstrated that TGFβ signal transduction pathway activity can be noninvasively imaged with high sensitivity and reproducibility, thereby providing the opportunity for an assessment of novel treatments that target TGFβ signaling.—Serganova, I., Moroz, E., Vider, J., Gogiberidze, G., Moroz, M., Pillarsetty, N., Doubrovin, M., Minn, A., Thaler, H. T., Massague, J., Gelovani, J., Blasberg, R. Multimodality imaging of TGFβ signaling in breast cancer metastases. PMID:19325038

  8. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR.

    Science.gov (United States)

    Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges

    2015-07-01

    Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%-107% for 14 mm diameter lung lesions and 39%-120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors' results show that the MC image yields 19%-190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6

  9. Breast image registration and deformation modeling.

    Science.gov (United States)

    Boehler, Tobias; Zoehrer, Fabian; Harz, Markus; Hahn, Horst Karl

    2012-01-01

    Image-based examination of the breast facilitates the detection of breast diseases, particularly of present benign and malignant lesions. For computer-aided processing of serial and multimodal clinical data, both for visual correlation and quantitative analysis, automated image-registration methods are an indispensable tool. The wide range of modalities and the high variability of breast appearance have led to a large diversity of proposed approaches for tissue deformation modeling and image registration. In this article, we review current developments in breast image registration techniques, and comment on their clinical relevance, individual capabilities, and open challenges.

  10. Breast Imaging after Breast Augmentation with Autologous Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Seo, Bo Kyung; Shim, Eddeum; Song, Sung Eun; Cho, Kyu Ran [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Yoon, Eul Sik [Korea University Ansan Hospital, Ansan (Korea, Republic of); Woo, Ok Hee [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  11. Evaluation of novel genetic algorithm generated schemes for positron emission tomography (PET)/magnetic resonance imaging (MRI) image fusion.

    Science.gov (United States)

    Baum, K G; Schmidt, E; Rafferty, K; Krol, A; Helguera, María

    2011-12-01

    The use and benefits of a multimodality approach in the context of breast cancer imaging are discussed. Fusion techniques that allow multiple images to be viewed simultaneously are discussed. Many of these fusion techniques rely on the use of color tables. A genetic algorithm that generates color tables that have desired properties such as satisfying the order principle, the rows, and columns principle, have perceivable uniformity and have maximum contrast is introduced. The generated 2D color tables can be used for displaying fused datasets. The advantage the proposed method has over other techniques is the ability to consider a much larger set of possible color tables, ensuring that the best one is found. We asked radiologists to perform a set of tasks reading fused PET/MRI breast images obtained using eight different fusion techniques. This preliminary study clearly demonstrates the need and benefit of a joint display by estimating the inaccuracies incurred when using a side-by-side display. The study suggests that the color tables generated by the genetic algorithm are good choices for fusing MR and PET images. It is interesting to note that popular techniques such as the Fire/Gray and techniques based on the HSV color space, which are prevalent in the literature and clinical practice, appear to give poorer performance.

  12. Quantitative carotid PET/MR imaging: clinical evaluation of MR-Attenuation correction versus CT-Attenuation correction in 18F-FDG PET/MR emission data and comparison to PET/CT

    OpenAIRE

    Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Eldib, Mootaz; Fayad, Zahi A.

    2015-01-01

    Current PET/MR systems employ segmentation of MR images and subsequent assignment of empirical attenuation coefficients for quantitative PET reconstruction. In this study we examine the differences in the quantification of 18F-FDG uptake in the carotid arteries between PET/MR and PET/CT scanners. Five comparisons were performed to asses differences in PET quantification: i) PET/MR MR-based AC (MRAC) versus PET/MR CTAC, ii) PET/MR MRAC versus PET/CT, iii) PET/MR MRAC with carotid coil versus P...

  13. PET imaging in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Semah, F. [Service Hospitalier Frederic Joliot, DSV-CEA, 91 Orsay (France)

    2006-07-01

    The research projects on epilepsy addressed two main issues: the pathophysiology of the inter-ictal hypo-metabolism in temporal lobe epilepsy and the role of the basal ganglia in the control of seizure. Our research projects focused primarily on temporal lobe epilepsy: The pathophysiology of inter-ictal hypo-metabolism and its correlation with the epileptogenic network was investigated in patients with mesial temporal lobe epilepsy. Inter-ictal hypo-metabolism is commonly found in mesio-temporal lobe epilepsy (MTLE) but its pathophysiology remains incompletely understood. We hypothesized that metabolic changes reflect the preferential networks involved in ictal discharges. We analyzed the topography of inter-ictal hypo-metabolism according to electro-clinical patterns in 50 patients with unilateral hippocampal sclerosis (HS) and consistent features of MTLE. Based on electro-clinical correlations we identified 4 groups:1) mesial group characterized by mesial seizure onset without evidence of early spread beyond the temporal lobe; 2) anterior mesio-lateral group (AML) with early anterior spread, involving the anterior lateral temporal cortex and insulo-fronto-opercular areas; 3) widespread mesio-lateral group (WML) with widespread spread, involving both anterior and posterior lateral temporal and peri-sylvian areas; 4) bi-temporal group (BT) with early contralateral temporal spread. Results of FDG-PET imaging in each group were compared to control subjects using statistical parametric mapping software (SPM99). MRI data and surgical outcome in each group were compared to metabolic findings. Hypo-metabolism was limited to the hippocampal gyrus, the temporal pole and the insula in the mesial group. Gradual involvement of the lateral temporal cortex, the insula and the peri-sylvian areas was observed in the AML and WML groups. The BT group differed from the others by mild bi-temporal involvement, bilateral insular hypo-metabolism and longer epilepsy duration. MRI

  14. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI

    DEFF Research Database (Denmark)

    Keller, Sune H; Holm, Søren; Hansen, Adam E

    2013-01-01

    Integrated whole-body PET/MRI tomographs have become available. PET/MR imaging has the potential to supplement, or even replace combined PET/CT imaging in selected clinical indications. However, this is true only if methodological pitfalls and image artifacts arising from novel MR-based attenuation...

  15. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    of more effective treatment modalities that could improve outcome. Prostate cancer represents an attractive target for radioimmunotherapy (RIT) for several reasons, including pattern of metastatic spread (lymph nodes and bone marrow, sites with good access to circulating antibodies) and small volume......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  16. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    Full Text Available A critical challenge in the management of Glioblastoma Multiforme (GBM tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models.An anti-human MT1-MMP monoclonal antibody (mAb, LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251 expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7 as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543 and U251 cells, with different degrees of blood-brain barrier (BBB disruption were also used for PET imaging experiments.89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90% and specific activity (78.5 MBq/mg. Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models.A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high

  17. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  18. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M. [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); Plishker, William; Zaki, George F. [IGI Technologies, Inc., College Park, MD (United States); Shekhar, Raj [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); IGI Technologies, Inc., College Park, MD (United States)

    2016-10-15

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV{sub max}) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV{sub max} difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  19. Story of rubidium-82 and advantages for myocardial perfusion PET imaging

    Directory of Open Access Journals (Sweden)

    Jean-Francois eChatal

    2015-09-01

    Full Text Available Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow, clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time thousands of patients have been tested and their results have been reported in 3 meta-analyses. Pooled patient-based sensitivity and specificity were respectively 0.91 and 0.90. By comparison with 99mTc-SPECT, 82Rb-PET had a much better diagnostic accuracy, especially in obese patients with BMI (Body Mass Index ≥30 kg/m2 (85% versus 67% with SPECT and in women with large breasts. A great advantage of 82Rb-PET is its capacity to accurately quantify myocardial blood flow. Quite importantly it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners.There is still some debate on the relative advantages of 82Rb-PET with regard to 99mTc-SPECT. For the last ten years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of 82Rb/PET. Currently the main advantages of PET are its capacity to accurately quantify myocardial blood flow and to deliver a low radiation exposure.

  20. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging.

    Science.gov (United States)

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with (99m)Tc-SPECT, (82)Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m(2) (85 versus 67% with SPECT) and in women with large breasts. A great advantage of (82)Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of (82)Rb PET with regard to (99m)Tc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of (82)Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure.

  1. Diagnostic accuracy of {sup 18}F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Magometschnigg, Heinrich F.; Baltzer, Pascal A.; Fueger, Barbara; Helbich, Thomas H.; Weber, Michael [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Dubsky, Peter [Medical University of Vienna, Department of Surgery, Vienna (Austria); Rudas, Margaretha [Medical University of Vienna, Department of Pathology, Vienna (Austria); Pinker, Katja [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York (United States)

    2015-10-15

    To compare the diagnostic accuracy of prone {sup 18}F-FDG PET/CT with that of contrast-enhanced MRI (CE-MRI) at 3 T in suspicious breast lesions. To evaluate the influence of tumour size on diagnostic accuracy and the use of maximum standardized uptake value (SUV{sub MAX}) thresholds to differentiate malignant from benign breast lesions. A total of 172 consecutive patients with an imaging abnormality were included in this IRB-approved prospective study. All patients underwent {sup 18}F-FDG PET/CT and CE-MRI of the breast at 3 T in the prone position. Two reader teams independently evaluated the likelihood of malignancy as determined by {sup 18}F-FDG PET/CT and CE-MRI independently. {sup 18}F-FDG PET/CT data were qualitatively evaluated by visual interpretation. Quantitative assessment was performed by calculation of SUV{sub MAX}. Sensitivity, specificity, diagnostic accuracy, area under the curve and interreader agreement were calculated for all lesions and for lesions <10 mm. Histopathology was used as the standard of reference. There were 132 malignant and 40 benign lesions; 23 lesions (13.4 %) were <10 mm. Both {sup 18}F-FDG PET/CT and CE-MRI achieved an overall diagnostic accuracy of 93 %. There were no significant differences in sensitivity (p = 0.125), specificity (p = 0.344) or diagnostic accuracy (p = 1). For lesions <10 mm, diagnostic accuracy deteriorated to 91 % with both {sup 18}F-FDG PET/CT and CE-MRI. Although no significant difference was found for lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than {sup 18}F-FDG PET/CT. Interreader agreement was excellent (κ = 0.85 and κ = 0.92). SUV{sub MAX} threshold was not helpful in differentiating benign from malignant lesions. {sup 18}F-FDG PET/CT and CE-MRI at 3 T showed equal diagnostic accuracies in breast cancer diagnosis. For lesions <10 mm, diagnostic accuracy deteriorated, but was equal for {sup 18}F-FDG PET/CT and CE-MRI at 3 T. For lesions <10 mm, CE-MRI at 3 T seemed

  2. PET imaging in the surgical management of pediatric brain tumors.

    Science.gov (United States)

    Pirotte, Benoit; Acerbi, Francesco; Lubansu, Alphonse; Goldman, Serge; Brotchi, Jacques; Levivier, Marc

    2007-07-01

    The present article illustrates whether positron-emission tomography (PET) imaging may improve the surgical management of pediatric brain tumors (PBT) at different steps. Among 400 consecutive PBT treated between 1995 and 2005 at Erasme Hospital, Brussels, Belgium, we have studied with (18) F-2-fluoro-2-deoxy-D-glucose (FDG)-PET and/or L-(methyl-(11)C)methionine (MET)-PET and integrated PET images in the diagnostic workup of 126 selected cases. The selection criteria were mainly based on the lesion appearance on magnetic resonance (MR) sequences. Cases were selected when MR imaging showed limitations for (1) assessing the evolving nature of an incidental lesion (n = 54), (2) selecting targets for contributive and accurate biopsy (n = 32), and (3) delineating tumor tissue for maximal resection (n = 40). Whenever needed, PET images were integrated in the planning of image-guided surgical procedures (frame-based stereotactic biopsies (SB), frameless navigation-based resections, or leksell gamma knife radiosurgery). Like in adults, PET imaging really helped the surgical management of the 126 children explored, which represented about 30% of all PBT, especially when the newly diagnosed brain lesion was (1) an incidental finding so that the choice between surgery and conservative MR follow-up was debated, and (2) so infiltrative or ill-defined on MR that the choice between biopsy and resection was hardly discussed. Integrating PET into the diagnostic workup of these two selected groups helped to (1) take a more appropriate decision in incidental lesions by detecting tumor/evolving tissue; (2) better understand complex cases by differentiating indolent and active components of the lesion; (3) improve target selection and diagnostic yield of stereotactic biopsies in gliomas; (4) illustrate the intratumoral histological heterogeneity in gliomas; (5) provide additional prognostic information; (6) reduce the number of trajectories in biopsies performed in eloquent areas such

  3. Diagnostic implications of a small-voxel reconstruction for loco-regional lymph node characterization in breast cancer patients using FDG-PET/CT.

    Science.gov (United States)

    Koopman, Daniëlle; van Dalen, Jorn A; Arkies, Hester; Oostdijk, Ad H J; Francken, Anne Brecht; Bart, Jos; Slump, Cornelis H; Knollema, Siert; Jager, Pieter L

    2018-01-16

    We evaluated the diagnostic implications of a small-voxel reconstruction for lymph node characterization in breast cancer patients, using state-of-the-art FDG-PET/CT. We included 69 FDG-PET/CT scans from breast cancer patients. PET data were reconstructed using standard 4 × 4 × 4 mm3 and small 2 × 2 × 2 mm3 voxels. Two hundred thirty loco-regional lymph nodes were included, of which 209 nodes were visualised on PET/CT. All nodes were visually scored as benign or malignant, and SUVmax and TBratio(=SUVmax/SUVbackground) were measured. Final diagnosis was based on histological or imaging information. We determined the accuracy, sensitivity and specificity for both reconstruction methods and calculated optimal cut-off values to distinguish benign from malignant nodes. Sixty-one benign and 169 malignant lymph nodes were included. Visual evaluation accuracy was 73% (sensitivity 67%, specificity 89%) on standard-voxel images and 77% (sensitivity 78%, specificity 74%) on small-voxel images (p = 0.13). Across malignant nodes visualised on PET/CT, the small-voxel score was more often correct compared with the standard-voxel score (89 vs. 76%, p <  0.001). In benign nodes, the standard-voxel score was more often correct (89 vs. 74%, p = 0.04). Quantitative data were based on the 61 benign and 148 malignant lymph nodes visualised on PET/CT. SUVs and TBratio were on average 3.0 and 1.6 times higher in malignant nodes compared to those in benign nodes (p <  0.001), on standard- and small-voxel PET images respectively. Small-voxel PET showed average increases in SUVmax and TBratio of typically 40% over standard-voxel PET. The optimal SUVmax cut-off using standard-voxels was 1.8 (sensitivity 81%, specificity 95%, accuracy 85%) while for small-voxels, the optimal SUVmax cut-off was 2.6 (sensitivity 78%, specificity 98%, accuracy 84%). Differences in accuracy were non-significant. Small-voxel PET/CT improves the sensitivity of visual lymph node

  4. PET imaging of acute and chronic inflammation in living mice

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qizhen; Cai, Weibo; Li, Zi-Bo; Chen, Kai; He, Lina; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Li, Hui-Cheng; Hui, Mizhou [AmProtein Corporation, Camarillo, CA (United States)

    2007-11-15

    In this study, we evaluated the 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced acute and chronic inflammation in living mice by PET imaging of TNF-{alpha} and integrin {alpha}{sub v}{beta}{sub 3} expression. TPA was topically applied to the right ear of BALB/c mice every other day to create the inflammation model. {sup 64}Cu-DOTA-etanercept and {sup 64}Cu-DOTA-E{l_brace}E[c(RGDyK)]{sub 2}{r_brace}{sub 2} were used for PET imaging of TNF-{alpha} and integrin {alpha}{sub v}{beta}{sub 3} expression in both acute and chronic inflammation. Hematoxylin and eosin staining, ex vivo autoradiography, direct tissue sampling, and immunofluorescence staining were also performed to confirm the non-invasive PET imaging results. The ear thickness increased significantly and the TNF-{alpha} level more than tripled after a single TPA challenge. MicroPET imaging using {sup 64}Cu-DOTA-etanercept revealed high activity accumulation in the inflamed ear, reaching 11.1 {+-} 1.3, 13.0 {+-} 2.0, 10.9 {+-} 1.4, 10.2 {+-} 2.2%ID/g at 1, 4, 16, and 24 h post injection, respectively (n = 3). Repeated TPA challenges caused TPA-specific chronic inflammation and reduced {sup 64}Cu-DOTA-etanercept uptake due to lowered TNF-{alpha} expression. {sup 64}Cu-DOTA-E{l_brace}E[c(RGDyK)]{sub 2}{r_brace}{sub 2} uptake in the chronically inflamed ears (after four and eight TPA challenges) was significantly higher than in the control ears and those after one TPA challenge. Immunofluorescence staining revealed increased integrin {beta}{sub 3} expression, consistent with the non-invasive PET imaging results using {sup 64}Cu-DOTA-E{l_brace}E[c(RGDyK)]{sub 2}{r_brace}{sub 2} as an integrin {alpha}{sub v} {beta}{sub 3}-specific radiotracer. Biodistribution and autoradiography studies further confirmed the quantification capability of microPET imaging. Successful PET imaging of TNF- {alpha} expression in acute inflammation and integrin {alpha}{sub v} {beta}{sub 3} expression in chronic inflammation provides

  5. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...... is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small...

  6. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging

    OpenAIRE

    Ziegler, Susanne; Jakoby, Bjoern W.; Braun, Harald; Paulus, Daniel H.; Quick, Harald H.

    2015-01-01

    Background In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2?2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. Methods NEMA IQ measurements were performed on the integrated 3.0 T...

  7. Breast-Dedicated Radionuclide Imaging Systems.

    Science.gov (United States)

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Characterizing Tumors Using Metabolic Imaging: PET Imaging of Cellular Proliferation and Steroid Receptors

    Directory of Open Access Journals (Sweden)

    David A. Mankoff

    2000-01-01

    Full Text Available Treatment decisions in oncology are increasingly guided by information on the biologic characteristics of tumors. Currently, patient-specific information on tumor biology is obtained from the analysis of biopsy material. Positron emission tomography (PET provides quantitative estimates of regional biochemistry and receptor status and can overcome the sampling error and difficulty in performing serial studies inherent with biopsy. Imaging using the glucose metabolism tracer, 2-deoxy-2-fluoro-D-glucose (FDG, has demonstrated PET's ability to guide therapy in clinical oncology. In this review, we highlight PET approaches to imaging two other aspects of tumor biology: cellular proliferation and tumor steroid receptors. We review the biochemical and biologic processes underlying the imaging, positron-emitting radiopharmaceuticals that have been developed, quantitative image-analysis considerations, and clinical studies to date. This provides a basis for evaluating future developments in these promising applications of PET metabolic imaging.

  9. What are the Best Ways to Reduce the False positive Rate of 18F FDG PET/CT in Patients with Breast Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Evangelista, Laura; Baretta, Zora; Vinante, Lorenzo; Sotti, Guido [Istituto Oncologico Veneto, Padova (Italy)

    2011-03-15

    Dear Editor, We were interested to read the recent article by Park et al that described the interpretation of physiologic and benign sites of {sup 18F} fluorodeoxyglucose (18F FDG) uptake on positron emission tomography/computed tomography (PET/CT) imaging og patients with breast cancer. The central messages were: (1) to know and (2) to discriminate the main sites of FDG avidity, avoiding a misinterpretation and thus reducing the false positive rate. Some considerations referring to the report can be made. The authors declared that several normal and altered physiologic foci and various benign lesions demonstrated significant FDG uptake in patients with breast cancer and the accurate interpretation of these findings can be challenging for clinicians; they concluded that {sup t}o avoid misinterpretations, we suggest that careful attention to these normal or altered physiological FDG uptake patterns and hypermetabolic benign disease is required for more accurate image interpretation for the correct staging and detection of disease recurrence in patients with breast cancer.{sup I}n our Department, in cases of indeterminate or inconclusive PET/CT exams, we try to conclude for pathological or physiological uptake on the basis of abnormal/normal correspondence of CT findings, considering the natural history of disease (i.e. loco regional lymph node or others) and using specific protocols (i.e. dual time PET/CT). As reported in the literature, metabolic abnormalities detected on PET images can be precisely localised anatomically by hardware fusion with the CT images obtained in the same sitting; the CT portion of PET/CT, in fact, provides anatomical details and offers an anatomical mapping for FDG distribution. Moreover, an accurate lesion localisation leads to accurate staging, a clear advantage of PET/CT over PET alone in the clinical situation. Some steps could be taken to reduce the false positive rate of PET/CT in breast cancer: 1. Prolonging the time between the

  10. Detection of Isolated Diffuse Cutaneous and Subcutaneous Metastasis of Breast Cancer on FDG-PET/CT

    Directory of Open Access Journals (Sweden)

    Müge Öner Tamam

    2015-06-01

    Full Text Available Cutaneous metastasis from internal malignancies are rare with a reported incidence between 0.7% and 10%. The most common tumor that metastasize to the skin is breast cancer. We present a 53-year-old woman with a history of bilateral breast cancer who underwent FDG-PET/CT for re-staging, which demonstrated isolated cutaneous and subcutaneous chest wall metastases. Histopathologic verification confirmed invasive ductal carcinoma invasion of the dermis and the lymphatic vessels

  11. Dynamic comparison of PET imaging performance between state-of-the-art ToF-PET/CT and ToF-PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Delso, Gaspar; Deller, Tim; Khalighi, Mehdi [GE Healthcare (Switzerland); Veit-Haibach, Patrick; Schulthess, Gustav von [University Hospital of Zurich (Switzerland)

    2014-07-29

    The goal of the present work was to determine the potential for dose reduction in a new clinical ToF-PET/MR scanner. This was achieved by means of long dynamic phantom acquisitions designed to provide a fair comparison of image quality and lesion detectability, as a function of activity, between the new PET/MR system and a state-of-the art PET/CT.

  12. Breast MR Imaging in Newly Diagnosed Breast Cancer.

    Science.gov (United States)

    Gupta, Dipti; Billadello, Laura

    2017-05-01

    The role of breast MR imaging in preoperative evaluation of disease extent remains controversial. MR imaging increases detection of mammographically occult ipsilateral and contralateral disease, but the clinical impact of these incidental cancers in unknown. There are no randomized trials of recurrence or mortality as the primary end point. This missing evidence is needed before the role of extent of disease MR imaging can be outlined. There are specific clinical scenarios in which breast MR imaging plays a clear role. In most cases, the decision to obtain MR imaging depends on physician practice style and patient preference. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Segmentation of Striatal Brain Structures from High Resolution PET Images

    Directory of Open Access Journals (Sweden)

    Ricardo J. P. C. Farinha

    2009-01-01

    Full Text Available We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum from parametric C11-raclopride positron emission tomography (PET brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.

  14. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    Directory of Open Access Journals (Sweden)

    Martin L. Lassen

    2017-07-01

    Full Text Available The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R-[11C]verapamil imaging on the same day using a GE-Advance (PET-only and a Siemens Biograph mMR system (PET/MR. PET-emission data were reconstructed using a transmission-based attenuation correction (AC map (PET-only, whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2 and distribution volume (VT. Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA. Comparison of DIXON-based AC (PET/MR with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05 for the K1 parameter and −19 ± 9% (p < 0.05 for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05 for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods.Clinical Trial Registration:www.clinicaltrialsregister.eu, identifier 2013-001724-19

  15. High Resolution Image Reconstruction Method for a Double-plane PET System with Changeable Spacing

    CERN Document Server

    Gu, Xiao-Yue; Li, Lin; Yin, Peng-Fei; Shang, Lei-Min; Yun, Ming-Kai; Lu, Zhen-Rui; Huang, Xian-Chao; Wei, Long

    2015-01-01

    Positron Emission Mammography (PEM) imaging systems with the ability in detection of millimeter-sized tumors were developed in recent years. And some of them have been well used in clinical applications. In consideration of biopsy application, a double-plane detector configuration is practical for the convenience of breast immobilization. However, the serious blurring effect in the double-plane system with changeable spacing for different breast size should be studied. Methods: We study a high resolution reconstruction method applicable for a double-plane PET system with a changeable detector spacing. Geometric and blurring components should be calculated at real time for different detector distance. Accurate geometric sensitivity is obtained with a tube area model. Resolution recovery is achieved by estimating blurring effects derived from simulated single gamma response information. Results: The results show that the new geometric modeling gives a more finite and smooth sensitivity weight in double-plane sy...

  16. Integrated (18)F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy.

    Science.gov (United States)

    Cho, Nariya; Im, Seock-Ah; Cheon, Gi Jeong; Park, In-Ae; Lee, Kyung-Hun; Kim, Tae-Yong; Kim, Young Seon; Kwon, Bo Ra; Lee, Jung Min; Suh, Hoon Young; Suh, Koung Jin

    2017-11-04

    To explore whether integrated (18)F-FDG PET/MRI can be used to predict pathological response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Between November 2014 and April 2016, 26 patients with breast cancer who had received NAC and subsequent surgery were prospectively enrolled. Each patient underwent (18)F-FDG PET/MRI examination before and after the first cycle of NAC. Qualitative MRI parameters, including morphological descriptors and the presence of peritumoral oedema were assessed. Quantitatively, PET parameters, including maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis (TLG), and MRI parameters, including washout proportion and signal enhancement ratio (SER), were measured. The performance of the imaging parameters singly and in combination in predicting a pathological incomplete response (non-pCR) was assessed. Of the 26 patients, 7 (26.9%) exhibited a pathological complete response (pCR), and 19 (73.1%) exhibited a non-pCR. No significant differences were found between the pCR and non-pCR groups in the qualitative MRI parameters. The mean percentage reductions in TLG30% on PET and SER on MRI were significantly greater in the pCR group than in the non-pCR group (TLG30% -64.8 ± 15.5% vs. -25.4 ± 48.7%, P = 0.005; SER -34.6 ± 19.7% vs. -8.7 ± 29.0%, P = 0.040). The area under the receiver operating characteristic curve for the percentage change in TLG30% (0.789, 95% CI 0.614 to 0.965) was similar to that for the percentage change in SER (0.789, 95% CI 0.552 to 1.000; P = 1.000).The specificity of TLG30% in predicting pCR) was 100% (7/7) and that of SER was 71.4% (5/7). The sensitivity of TLG30% in predicting non-pCR was 63.2% (12/19) and that of SER was 84.2% (16/19). When the combined TLG30% and SER criterion was applied, sensitivity was 100% (19/19), and specificity was 71.4% (5/7). (18)F-FDG PET/MRI can be used to predict non-pCR after the first cycle of NAC in patients with

  17. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  18. Lymphadenopathy resulting from acute hepatitis C infection mimicking metastatic breast carcinoma on FDG PET/CT.

    Science.gov (United States)

    Jacene, Heather A; Stearns, Vered; Wahl, Richard L

    2006-07-01

    We report a case documenting fluorodeoxyglucose (FDG) accumulation in upper abdominal lymph nodes resulting from acute hepatitis C infection. A 42-year-old African-American female with a history of metastatic breast carcinoma was found to have hypermetabolic porta hepatic, peripancreatic, and paraaortic lymphadenopathy and hypermetabolism in the spleen on a surveillance FDG positron emission tomography/computed tomography (PET/CT) scan. Concurrently, she was diagnosed with acute hepatitis C infection. Antiviral therapy was not recommended secondary to the low level of detectable virus at the time of diagnosis. Her breast cancer therapy regimen was continued unaltered. FDG PET/CT scan was repeated 2 months later as a result of concern that the hypermetabolic lymph nodes represented metastatic disease; however, the scan revealed complete resolution of the previously abnormal findings. The resolution of the lymphadenopathy and the patient's clinical course led to the conclusion that the most likely explanation for the FDG PET/CT findings was inflammation secondary to acute hepatitis C infection and not metastatic breast carcinoma. Inflammatory and infectious processes accumulate FDG, occasionally resulting in false-positives for malignancy. Infected macrophages in the lymph nodes draining the liver in this case and stimulation of a cellular immune response by the hepatitis C virus, with resultant cytokine production by cytotoxic and T-helper cells, offer possible explanations for the findings seen on FDG PET/CT in this case. This case highlights the importance of clinical history and laboratory correlation for the proper interpretation of FDG PET scans.

  19. Value of C-11-methionine PET in imaging brain tumours and metastases

    NARCIS (Netherlands)

    Glaudemans, Andor W J M; Enting, Roeline; Heesters, Martinus; Dierckx, Rudi A J O; van Rheenen, Ronald W J; Walenkamp, Annemiek M E; Slart, Riemer H J A

    C-11-methionine (MET) is the most popular amino acid tracer used in PET imaging of brain tumours. Because of its characteristics, MET PET provides a high detection rate of brain tumours and good lesion delineation. This review focuses on the role of MET PET in imaging cerebral gliomas. The

  20. Radiolabeled Sugars Used for PET and SPECT Imaging.

    Science.gov (United States)

    Barrios-Lopez, Brianda; Bergstrom, Kim

    2016-01-01

    There are new efforts to develop "sugar" probes for molecular imaging focusing on human clinical studies. Radiolabeled carbohydrates are used as substrate probes for studying specific processes in tissues and organisms. The best application case is 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG), which is incorporated by cancer cells. The introduction of ltF-FDG has advanced enormously human Positron Emission Tomography (PET). This review focuses on the importance of 18FFDG and other sugars as imaging probes in PET and Single Photon Emission Computed Tomography (SPECT) imaging. In conclusion, new radiolabeled molecules that can be used as radiopharmaceuticals also would possibly help in the treatment of cancer cells in human patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  2. PET imaging biomarkers in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Differding, Sarah; Gregoire, Vincent [Universite Catholique de Louvain, St-Luc University Hospital, Department of Radiation Oncology, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Experimentale et Clinique (IREC), Brussels (Belgium); Hanin, Francois-Xavier [Universite Catholique de Louvain, St-Luc University Hospital, Department of Nuclear Medicine, and Center for Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Experimentale et Clinique (IREC), Brussels (Belgium)

    2015-04-01

    In locally advanced head and neck squamous cell carcinoma (HNSCC), the role of imaging becomes more and more critical in the management process. In this framework, molecular imaging techniques such as PET allow noninvasive assessment of a range of tumour biomarkers such as metabolism, hypoxia and proliferation, which can serve different purposes. First, in a pretreatment setting they can influence therapy selection strategies and target delineation for radiation therapy. Second, their predictive and/or prognostic value could help enhance the therapeutic ratio in the management of HNSCC. Third, treatment modification can be performed through the generation of a molecular-based heterogeneous dose distribution with dose escalation to the most resistant parts of the tumour, a concept known as dose painting. Fourth, they are increasingly becoming a tool for monitoring response to therapy. In this review, PET imaging biomarkers used in the routine management of HNSCC or under investigation are discussed. (orig.)

  3. Energy dependence of scatter components in multispectral PET imaging.

    Science.gov (United States)

    Bentourkia, M; Msaki, P; Cadorette, J; Lecomte, R

    1995-01-01

    High resolution images in PET based on small individual detectors are obtained at the cost of low sensitivity and increased detector scatter. These limitations can be partially overcome by enlarging discrimination windows to include more low-energy events and by developing more efficient energy-dependent methods to correct for scatter radiation from all sources. The feasibility of multispectral scatter correction was assessed by decomposing response functions acquired in multiple energy windows into four basic components: object, collimator and detector scatter, and trues. The shape and intensity of these components are different and energy-dependent. They are shown to contribute to image formation in three ways: useful (true), potentially useful (detector scatter), and undesirable (object and collimator scatter) information to the image over the entire energy range. With the Sherbrooke animal PET system, restoration of detector scatter in every energy window would allow nearly 90% of all detected events to participate in image formation. These observations suggest that multispectral acquisition is a promising solution for increasing sensitivity in high resolution PET. This can be achieved without loss of image quality if energy-dependent methods are made available to preserve useful events as potentially useful events are restored and undesirable events removed.

  4. [18F]fluorodeoxyglucose PET/computed tomography in breast cancer and gynecologic cancers

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Kodahl, Annette Raskov; Teilmann-Jørgensen, Dorte

    2015-01-01

    In this literature review, an update is provided on the role of [(18)F]fluorodeoxyglucose PET/computed tomography in different clinical settings of the 4 most frequent female-specific cancer types: breast, endometrial, ovarian, and cervical cancer. The most recent knowledge regarding primary...

  5. [18F]fluorodeoxyglucose PET/computed tomography in breast cancer and gynecologic cancers

    DEFF Research Database (Denmark)

    Hildebrandt, Malene; Kodahl, Annette Raskov; Teilmann-Jørgensen, Dorte

    2015-01-01

    In this literature review, an update is provided on the role of [(18)F]fluorodeoxyglucose PET/computed tomography in different clinical settings of the 4 most frequent female-specific cancer types: breast, endometrial, ovarian, and cervical cancer. The most recent knowledge regarding primary diag...

  6. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging.

    Science.gov (United States)

    Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H

    2015-12-01

    In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.

  7. Decoding intratumoral heterogeneity of breast cancer by multiparametric in vivo imaging: A translational study

    Science.gov (United States)

    Schmitz, Jennifer; Schwab, Julian; Schwenck, Johannes; Chen, Qian; Quintanilla-Martinez, Leticia; Hahn, Markus; Wietek, Beate; Schwenzer, Nina; Staebler, Annette; Kohlhofer, Ursula; Aina, Olulanu H.; Hubbard, Neil E.; Reischl, Gerald; Borowsky, Alexander D.; Brucker, Sara; Nikolaou, Konstantin; la Fougère, Christian; Cardiff, Robert D.; Pichler, Bernd J.; Schmid, Andreas M.

    2016-01-01

    Differential diagnosis and therapy of heterogeneous breast tumors poses a major clinical challenge. To address the need for a comprehensive, non-invasive strategy to define the molecular and functional profiles of tumors in vivo, we investigated a novel combination of metabolic positron emission tomography (PET) and diffusion-weighted (DW) magnetic resonance imaging (MRI) in the polyoma virus middle T transgenic mouse model of breast cancer. The implementation of a voxelwise analysis for the clustering of intra- and intertumoral heterogeneity in this model resulted in a multiparametric profile based on [18F]FDG-PET and DW-MRI which identified 3 distinct tumor phenotypes in vivo, including solid acinar and solid nodular malignancies as well as cystic hyperplasia. To evaluate the feasibility of this approach for clinical use, we examined estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) breast tumors from 5 patient cases using DW-MRI and [18F]FDG-PET in a simultaneous PET/MRI system. The post-surgical in vivo PET/MRI data was correlated to whole-slide histology using the latter traditional diagnostic standard to define phenotype. By this approach, we showed how molecular, structural (microscopic, anatomic) and functional information could be simultaneously obtained non-invasively to identify precancerous and malignant subtypes within heterogeneous tumors. Combined with an automatized analysis, our results suggest that multiparametric molecular and functional imaging may be capable of providing comprehensive tumor profiling for non-invasive cancer diagnostics. PMID:27466286

  8. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-08-15

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  9. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    Science.gov (United States)

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count

  10. PET/MR Imaging: New Frontier in Alzheimer's Disease and Other Dementias.

    Science.gov (United States)

    Zhang, Xin Y; Yang, Zhen L; Lu, Guang M; Yang, Gui F; Zhang, Long J

    2017-01-01

    Alzheimer's disease (AD) is the most common form of dementia; a progressive neurodegenerative disease that currently lacks an effective treatment option. Early and accurate diagnosis, in addition to quick elimination of differential diagnosis, allows us to provide timely treatments that delay the progression of AD. Imaging plays an important role for the early diagnosis of AD. The newly emerging PET/MR imaging strategies integrate the advantages of PET and MR to diagnose and monitor AD. This review introduces the development of PET/MR imaging systems, technical considerations of PET/MR imaging, special considerations of PET/MR in AD, and the system's potential clinical applications and future perspectives in AD.

  11. Assessment of cardiac autonomic neuronal function using PET imaging.

    Science.gov (United States)

    Thackeray, James T; Bengel, Frank M

    2013-02-01

    The autonomic nervous system is the primary extrinsic control of cardiac performance, and altered autonomic activity has been recognized as an important factor in the progression of various cardiac pathologies. Molecular imaging techniques have been developed for global and regional interrogation of pre- and postsynaptic targets of the cardiac autonomic nervous system. Building on established work with the guanethidine analogue ¹²³I-metaiodobenzylguanidine (MIBG) for single-photon emission tomography (SPECT), development of radiotracers and protocols for positron emission tomography (PET) investigation of autonomic signaling has expanded. PET is limited in availability and requires specialized centers for radiosynthesis and interpretation, but the higher resolution allows for improved regional analysis and kinetic modeling provides more true quantification than is possible with SPECT. A wider array of radiolabeled catecholamines, analogues of catecholamines, and receptor ligands have been characterized and evaluated. Sympathetic neuronal PET tracers have shown promise in the identification of several cardiac pathologies. In particular, recent studies have elucidated a mechanistic role for heterogeneous sympathetic innervation in the development of lethal ventricular arrhythmias. Evaluation of cardiomyocyte adrenergic receptor expression and the parasympathetic nervous system has been slower to develop, with clinical studies beginning to emerge. This review summarizes the clinical and the experimental PET tracers currently available for autonomic imaging and discusses their application in health and cardiovascular disease, with particular emphasis on the major findings of the last decade.

  12. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  13. Optical imaging for breast cancer prescreening.

    Science.gov (United States)

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach.

  14. Optical imaging for breast cancer prescreening

    Science.gov (United States)

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503

  15. Imaging Surveillance After Primary Breast Cancer Treatment

    Science.gov (United States)

    Lam, Diana L.; Houssami, Nehmat; Lee, Janie M.

    2017-01-01

    OBJECTIVE Current clinical guidelines are consistent in supporting annual mammography for women after treatment of primary breast cancer. Surveillance imaging beyond standard digital mammography, including digital breast tomosynthesis (DBT), breast ultrasound, and MRI, may improve outcomes. This article reviews the evidence on the performance and effectiveness of breast imaging modalities available for surveillance after treatment of sporadic unilateral primary breast cancer and identifies additional factors to be considered when selecting an imaging surveillance regimen. CONCLUSION Evidence review supports the use of mammography for surveillance after primary breast cancer treatment. Variability exists in guideline recommendations for surveillance initiation, interval, and cessation. DBT offers the most promise as a potential modality to replace standard digital mammography as a front-line surveillance test; a single published study to date has shown a significant decrease in recall rates compared with standard digital mammography alone. Most guidelines do not support the use of whole-breast ultrasound in breast cancer surveillance, and further studies are needed to define the characteristics of women who may benefit from MRI surveillance. The emerging evidence about surveillance imaging outcomes suggests that additional factors, including patient and imaging characteristics, tumor biology and gene expression profile, and choice of treatment, warrant consideration in selecting personalized posttreatment imaging surveillance regimens. PMID:28075622

  16. Digital Breast Imaging Warehouse for Research and Clinical Decision Support

    National Research Council Canada - National Science Library

    Zhang, Hong

    2001-01-01

    Breast imaging is used intensively for breast cancer detection. As routine screening examination becomes more popular for women over 40, tremendous amount of breast imaging data has been accumulated...

  17. {sup 18}F-FDG-PET/CT for systemic staging of patients with newly diagnosed ER-positive and HER2-positive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Goenen, Mithat; Goldman, Debra A. [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States)

    2017-08-15

    This study assesses {sup 18}F-FDG-PET/CT for patients with newly diagnosed estrogen receptor-positive/human epidermal growth factor receptor-negative (ER+/HER2-) and human epidermal growth factor receptor-positive (HER2+) breast cancer. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with ER+/HER2- and HER2+ breast cancer who underwent {sup 18}F-FDG-PET/CT prior to systemic or radiation therapy. The initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery.{sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases. The proportion of patients upstaged overall and stratified by stage and receptor phenotypes was calculated along with confidence intervals (CI). A total of 238 patients with ER+/HER2- and 245 patients with HER2+ who met inclusion criteria were evaluated. For patients with ER+/HER2-breast cancer, {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 3/71 (4%) initial stage IIA, 13/95 (14%) stage IIB, and 15/57 (26%) stage III. For patients with HER2+ breast cancer, {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 3/72 (4%) initial stage IIA, 13/93 (14%) stage IIB, and 13/59 (22%) stage III. The overall upstaging rate for IIB was 14% (95% confidence interval (CI): 9-20%). {sup 18}F-FDG-PET/CT revealed distant metastases in 14% (95% CI: 9-20%) of patients with stage IIB ER+/HER2- and HER2+ breast cancer, which is similar to upstaging rates previously seen in patients with stage IIB triple-negative breast cancer (15%, 95% CI: 9-24%). The detection of unsuspected distant metastases in these patients alters treatment and prognosis. NCCN guidelines should consider adding patients with stage IIB breast cancer for consideration of systemic staging with {sup 18}F-FDG-PET/CT at the time of initial diagnosis. (orig.)

  18. Imaging Breast Density: Established and Emerging Modalities

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2015-12-01

    Full Text Available Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature.

  19. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study.

    Science.gov (United States)

    Jena, Amarnath; Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan; Sarin, Ramesh

    2017-01-01

    To evaluate the reliability of pharmacokinetic parameters like K(trans), Kep and ve derived through DCE MRI breast protocol using 3T Simultaneous PET/MRI (3Tesla Positron Emission Tomography/Magnetic Resonance Imaging) system in distinguishing benign and malignant lesions. High temporal resolution DCE (Dynamic Contrast Enhancement) MRI performed as routine breast MRI for diagnosis or as a part of PET/MRI for cancer staging using a 3T simultaneous PET/MRI system in 98 women having 109 breast lesions were analyzed for calculation of pharmacokinetic parameters (K(trans), ve, and Kep) at 60s time point using an in-house developed computation scheme. Receiver operating characteristic (ROC) curve analysis revealed a cut off value for K(trans), Kep, ve as 0.50, 2.59, 0.15 respectively which reliably distinguished benign and malignant breast lesions. Data analysis revealed an overall accuracy of 94.50%, 79.82% and 87.16% for K(trans), Kep, ve respectively. Introduction of native T1 normalization with an externally placed phantom showed a higher accuracy (94.50%) than without native T1 normalization (93.50%) with an increase in specificity of 87% vs 84%. Overall the results indicate that reliable measurement of pharmacokinetic parameters with reduced acquisition time is feasible in a 3TMRI embedded PET/MRI system with reasonable accuracy and application may be extended to exploit the potential of simultaneous PET/MRI in further work on breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Effect of glucose level on brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Seongnam (Korea, Republic of)

    2017-06-15

    In addition to tumors, normal tissues, such as the brain and myocardium can intake {sup 18}F-FDG, and the amount of {sup 18}F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting {sup 18}F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using {sup 18}F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

  1. Hybrid PET/MR Imaging and Brain Connectivity.

    Science.gov (United States)

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity.

  2. Hybrid PET/MR Imaging and Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Marco eAiello

    2016-03-01

    Full Text Available In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity.

  3. FDG PET Imaging of Extremities in Rheumatoid Arthritis.

    Science.gov (United States)

    Dhawan, Richa; Lokitz, Kyla; Lokitz, Stephen; Caldito, Gloria; Takalkar, Amol M

    2016-01-01

    The primary objective of this study was to evaluate the utility of fluorodeoxyglucose positive emission tomography imaging in assessing the degree of joint inflammation and response to therapy in patients with rheumatoid arthritis using standard PET parameters. Five subjects with newly diagnosed RA were enrolled in this IRB-approved prospective study. After standard conventional workup that included clinical and laboratory evaluation and disease activity score (DAS3v) calculation, subjects underwent baseline FDG PET scans of their hands and feet prior to initiation of treatment and after six months of standard treatment. The uptake of FDG in involved joints was assessed qualitatively (visual evaluation) as well as semi quantitatively using standardized uptake value (SUV). Findings from the FDG PET scans were correlated with clinical and laboratory parameters including DAS and ESR. In all five patients, increased FDG uptake was noted in various joints affected by RA. The intensity of uptake varied from mild to intense (SUVmax values from 3.10 to 6.0). Overall, these correlated well with the clinical evaluation of involved joints. FDG PET imaging provided additional information by showing involvement in joints that were difficult to evaluate clinically (e.g. mid foot joints). The PET data also provided a distribution of joint involvement with varying degrees of severity in the same subject. On objective analysis using Spearman rank correlation coefficient for statistical analysis, no significant correlations were observed (p>0.05) between DAS, ESR, and the different PET parameters at baseline (before treatment) despite large calculated positive correlation coefficients. This was due to the small sample size (n=5). At post-treatment, the significant correlations were those between DAS and Maximum metabolic disease burden (MDB max) (RS=0.9, p=0.04) and between ESR and MDB max (RS=0.9, p=0.04). The positive correlations between total metabolic disease burden (Total MDB

  4. Strategies of statistical windows in PET image reconstruction to improve the user’s real time experience

    Science.gov (United States)

    Moliner, L.; Correcher, C.; Gimenez-Alventosa, V.; Ilisie, V.; Alvarez, J.; Sanchez, S.; Rodríguez-Alvarez, M. J.

    2017-11-01

    Nowadays, with the increase of the computational power of modern computers together with the state-of-the-art reconstruction algorithms, it is possible to obtain Positron Emission Tomography (PET) images in practically real time. These facts open the door to new applications such as radio-pharmaceuticals tracking inside the body or the use of PET for image-guided procedures, such as biopsy interventions, among others. This work is a proof of concept that aims to improve the user experience with real time PET images. Fixed, incremental, overlapping, sliding and hybrid windows are the different statistical combinations of data blocks used to generate intermediate images in order to follow the path of the activity in the Field Of View (FOV). To evaluate these different combinations, a point source is placed in a dedicated breast PET device and moved along the FOV. These acquisitions are reconstructed according to the different statistical windows, resulting in a smoother transition of positions for the image reconstructions that use the sliding and hybrid window.

  5. {sup 11}C-Choline PET/pathology image coregistration in primary localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Grosu, Anca-Ligia; Prokic, Vesna [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Weirich, Gregor [Technical University of Munich, Institute of Pathology, Munich (Germany); Wendl, Christina; Geinitz, Hans; Molls, Michael [Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Kirste, Simon [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Souvatzoglou, Michael; Schwaiger, Markus [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); Gschwend, Juergen E.; Treiber, Uwe [Technical University of Munich, Department of Urology, Munich (Germany); Weber, Wolfgang A. [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, New York (United States); Krause, Bernd Joachim [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); University of Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2014-12-15

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of {sup 11}C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, {sup 11}C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. {sup 11}C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  6. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification.

    Science.gov (United States)

    Hansen, Adam E; Andersen, Flemming L; Henriksen, Sarah T; Vignaud, Alexandre; Ardenkjaer-Larsen, Jan H; Højgaard, Liselotte; Kjaer, Andreas; Klausen, Thomas L

    2016-12-01

    Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and

  7. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...... and conductivity in the breast. In this paper two nonlinear tomographic algorithms are compared – one is a single-frequency algorithm and the other is a time-domain algorithm....

  8. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    Science.gov (United States)

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  9. CT, PET and MR-Imaging in experimental baromedical research

    DEFF Research Database (Denmark)

    Hansen, Kasper

    CBF), T and T * relaxation, and blood brain barrier (BBB) breakage 90 min following decompression. Results: Simulated diving induced significant changes in all measured parameters during 3 T MRI. SUV of F-FDG was unchanged in both groups, although following μCT-examination revealed intracranial bubbles...... it is intrinsically difficult to study humans or animals inside a pressure chamber. We have developed a preclinical pressure chamber system compatible with CT, PET and MR-imaging during pressurisation up to 1.013 mPa, which allows for anatomical visualisations and measurements of certain physiological processes......Pa pressurisation, and repeatedly after 500 kPa/min decompression. After MRI, venous bubble development was monitored using ultrasound. Second, preclinical μCT, PET/MRI, and high-field 9.4 T MR-Imaging systems evaluated changes in cerebral standard uptake value (SUV) of F-FDG, changes in cerebral blood flow (delta...

  10. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  11. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R; Majewski, Stan; Velan, S Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F; Weisenberger, Andrew G

    2007-06-01

    Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ∼14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.

  12. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    Science.gov (United States)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  13. Metastatic Brachial Plexopathy in a Case of Recurrent Breast Carcinoma Demonstrated on {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Madhavi; Das, Chandan J.; Srivastava, Anurag; Bal, ChandraSekhar; Malhotra, Arun [All India Institute of Medical Sciences, New Delhi (India)

    2014-03-15

    This case highlights the importance of recognition of the pattern of metastatic brachialplexopathy in breast cancer patients undergoing {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography/computed tomography (PET/CT) for evaluation of recurrent disease.This pattern can be appreciated on maximum intensity projection (MIP) and coronal {sup 18}F-FDG PET/CT images as a linear extension of tracer activity from superomedial aspect(supra/infraclavicular) to lateral aspect of the axilla closely related to the subclavian/axillary vessels). A 35-year-old woman diagnosed with infiltrating ductal carcinoma of the right breast had undergone six cycles of neoadjuvant chemotherapy, followed by wide local incision and radiotherapy. She had local recurrence, for which she was operated upon and given chemotherapy. She presented to her oncologist with pain and swelling in the right breast, nodules in the right axilla and restriction of movement of the right upper limb. The patient was referred for {sup 18}F-FDG PET/CT to evaluate the extent of recurrent/metastatic disease. Whole-body PET/CT was acquired 1 h following the intravenous injection of 296 MBq of {sup 18}F-FDG on a Biograph mCT scanner (Siemens). Evaluation of the MIP image revealed abnormal FDG accumulation at multiple sites in the thorax, along with a linear pattern of FDG uptake in the right lateral aspect of the upper chest (Fig. 1a, arrow). The coronal fused PET/CT image revealed a linear pattern of FDG uptake corresponding to an ill-defined mass extending from just behind the right clavicle into the right axilla (arrow). In addition, abnormal FDG accumulation was seen in a soft tissue density mass in the upper outer quadrant of the right breast, skin of the right breast laterally, both pectoral muscles (discrete foci) and in a few subpectoral nodes. Soft tissue nodular opacities in both lungs showed FDG accumulation suggestive of pulmonary metastasis (Fig. 1b, thick arrow). The patient was

  14. Early Recognition of Chronic Traumatic Encephalopathy through FDDNP PET Imaging

    Science.gov (United States)

    2016-10-01

    in those exposed to cumulative head trauma . 15. SUBJECT TERMS Traumatic Brain ury Positron Emission .<..IUlU’::!.!. "’. 16. SECURITY...brain template with gray mask applied. The results indicate a relationship between increased exposure to head trauma (measured by number of fights...boxers and non trauma exposed controls. ·Outcomes: To determine if PET FDDNP imaging may be a potential biomarker of and diagnostic tool for CTE

  15. Netupitant PET imaging and ADME studies in humans

    OpenAIRE

    Spinelli, Tulla; Calcagnile, Selma; Giuliano, Claudio; Rossi, Giorgia; Lanzarotti, Corinna; Mair, Stuart; Stevens, Lloyd; Nisbet, Ian

    2013-01-01

    Netupitant is a new, selective NK1 receptor antagonist under development for the prevention of chemotherapy-induced nausea and vomiting. Two studies were conducted to evaluate the brain receptor occupancy (RO) and disposition (ADME) of netupitant in humans. Positron emission tomography (PET) imaging with the NK1 receptor-binding?selective tracer [11C]-GR205171 was used to evaluate the brain penetration of different doses of netupitant (100, 300, and 450?mg) and to determine the NK1-RO duratio...

  16. Optical imaging for breast cancer prescreening

    Directory of Open Access Journals (Sweden)

    Godavarty A

    2015-07-01

    Full Text Available Anuradha Godavarty,1 Suset Rodriguez,1 Young-Jin Jung,2 Stephanie Gonzalez1 1Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA; 2Department of Radiological Science, Dongseo University, Busan, South Korea Abstract: Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE or self-breast examinations (SBEs. Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. Keywords: diffuse optical imaging, near-infrared, hand-held devices, breast cancer, prescreening, early detection 

  17. PET Imaging of Epigenetic Influences on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Paul J. Couto

    2015-01-01

    Full Text Available The precise role of environment-gene interactions (epigenetics in the development and progression of Alzheimer’s disease (AD is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.

  18. [Evaluation of new technologies PET/CT nuclear imaging].

    Science.gov (United States)

    Giraldes, Maria Rosário

    2010-01-01

    Nuclear imaging has used initially anatomic and volumetric technologies as CT or MRI. In recent years new dimensions of non invasive studies, as PET, have shown a higher utility in the effectiveness of the treatment. The evaluation of need must be done according to a principle of Horizontal Equity, equal treatment for equal need and of a principle of Vertical Equity, Different treatment, at regional level, according to each hospital level. The evaluation of need has been made according to the Potential Demand by Potential User Groups: diabetes, type 2, (50 years and more); screening colorectal (50 years and more); morbidity by cancer; surgery of lung cancer; cardiology; heart surgery; acute chest pain in the emergency department. In a Macro Perspective need has been evaluated using the Population Estimations for 2007, at municipality level. Relatively to Lisbon and Porto data at locality level has been used, from the 2001 Census. According to Campos, J.R. (2007), in 2006, it existed 1 PET by 1 million inhabitants and after that date 2 more were created (Quadrantes and Hospital ad Luz), belonging to the private sector. Mores 15 PET are needed in the NHS, 1 PET for about 504128 inhabitants. According to The Potential Demand perspective 18 new PET are needed, 15 from the public sector. The private sector will cover progressively the demand. Dorado and Albertino (2002), in Spain, mention that the introduction of this new technique in our Health System must be done slowly due to the cost and complexity. In Portugal exists already 6 PET and this applies also. As a first priority the intervention in Oncology in the IPO (Coimbra). A priority must be given to the University Hospitals of Santa Maria and São João. The Central Hospitals of Viseu and VilaReal/Régua must have also 1 PET. A priority must be given to the interior in order to avoid transports of patients and families. In fourth place the HC Central Lisbon must have also 1 PET, which will go to the New Hospital

  19. Clinical Photoacoustic Breast Imaging: The Twente experience

    NARCIS (Netherlands)

    Heijblom, M.; Steenbergen, Wiendelt; Manohar, Srirang

    2015-01-01

    Globally, breast cancer is the most frequently occurring malignancy in women and the leading cause of cancer deaths, with up to half a million women dying of the disease in 2008. Early detection and accurate diagnosis of breast cancer is crucial for optimizing survival chances, with imaging

  20. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.

    Science.gov (United States)

    Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P

    2016-04-01

    PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Generalized PSF modeling for optimized quantitation in PET imaging

    Science.gov (United States)

    Ashrafinia, Saeed; Mohy-ud-Din, Hassan; Karakatsanis, Nicolas A.; Jha, Abhinav K.; Casey, Michael E.; Kadrmas, Dan J.; Rahmim, Arman

    2017-06-01

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUVmean and SUVmax, including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUVmean bias in small tumours. Overall, the results indicate that exactly matched PSF

  2. Generalized PSF modeling for optimized quantitation in PET imaging.

    Science.gov (United States)

    Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman

    2017-06-21

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUVmean and SUVmax, including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUVmean bias in small tumours. Overall, the results indicate that exactly matched PSF

  3. A meta-analysis of {sup 18}FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Yang, Hui-Lin [The First Affiliated Hospital of Soochow University, Department of Orthopaedic Surgery, Suzhou (China); Cheng, Tao [Shanghai Jiaotong University School of Medicine, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital, Shanghai (China); Xu, Wen [Public Health School of Soochow University, Department of Epidemiology and Biostatistics, Suzhou (China); Yan, Wei-Li [Shanghai Jiaotong University School of Medicine, Departments of Nuclear Medicine, Shanghai Renji Hospital, Shanghai (China); Liu, Jia [Shanghai Jiaotong University School of Medicine, Departments of Radiology, Shanghai Renji Hospital, Shanghai (China)

    2011-05-15

    To perform a meta-analysis comparing the diagnostic value of {sup 18}FDG-PET, MRI, and bone scintigraphy (BS) in detecting bone metastases in patients with breast cancer. MEDLINE, EMBASE, Scopus, ScienceDirect, SpringerLink, Web of Knowledge, EBSCO, and the Cochrane Database of Systematic Review databases were searched for relevant original articles published from January 1995 to January 2010. Inclusion criteria was as follows: {sup 18}FDG-PET, MRI or {sup 99m}Tc-MDP BS was performed to detect bone metastases (the number of published CT studies was inadequate for meta-analysis and therefore could not be included in this study); sufficient data were presented to construct a 2 x 2 contingency table; histopathological analysis and/or close clinical and imaging follow-up for at least 6 months were used as the reference standard. Two reviewers independently assessed potentially eligible studies and extracted relevant data. A software program called ''META-DiSc'' was used to obtain the pooled estimates for sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curves, and the *Q index for each modality. Thirteen articles consisting of 23 studies fulfilled all inclusion criteria. On a per-patient basis, the pooled sensitivity estimates for MRI (97.1%) were significantly higher than those for PET (83.3%) and BS (87.0%; P <0.05). There was no significant difference between PET and BS (P <0.05). The pooled specificity estimates for PET (94.5%) and MRI (97.0%) were both significantly higher than those for BS (88.1%; P <0.05). There was no significant difference between PET and MRI (P >0.05). The pooled DOR estimates for MRI (298.5) were significantly higher than those for PET (82.1%) and BS (49.3%; P <0.05). There was no significant difference between PET and BS (P >0.05). The SROC curve for MRI showed better diagnostic accuracy than those for PET and BS. The SROC curve for PET was better than that for BS

  4. Multiparametric Evaluation of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer Using Integrated PET/MR.

    Science.gov (United States)

    Wang, Jane; Shih, Tiffany Ting-Fang; Yen, Ruoh-Fang

    2017-07-01

    The aim of this study was to investigate whether integrated PET/MR system can predict the treatment response to neoadjuvant chemotherapy (NAC) early in the course of breast cancer treatment. Fourteen women with newly diagnosed invasive breast cancer (median age, 54.5 years) were recruited. Each participant underwent 2 PET/MR studies. Study 1 was pre-NAC; study 2 was early in NAC treatment (after the first or second cycle). PET parameters included SUVmax and total lesion glycolysis (TLG). MRI parameters included choline signal-to-noise ratio (ChoSNR), peak enhancement ratio (PER), and the minimum apparent diffusion coefficient (ADCmin). The pathologic response was categorized as a pathologic complete response or residual cellularity of less than 10% (group 1) and residual cellularity of 10% or greater (group 2). The accuracy of the NAC response prediction was obtained by receiver operating characteristic analysis. Group 1 showed a greater reduction of SUVmax (percentage change, [INCREMENT]% SUVmax, P = 0.013; area under the receiver operating characteristic curve [AUC], 0.898), TLG ([INCREMENT]%TLG, P = 0.018; AUC = 0.878), and PER ([INCREMENT]% PER, P = 0.035; AUC = 0.837) than did group 2. The ChoSNR, ADCmin, [INCREMENT]%ChoSNR, and [INCREMENT]%ADCmin did not differ significantly between the 2 groups. The hybrid markers, [INCREMENT]%SUVmax/[INCREMENT]%ADCmin (AUC = 0.976) and [INCREMENT]%TLG/[INCREMENT]%ADCmin (AUC = 0.905), showed greater accuracy in predicting NAC response than the individual PET/MR parameters. The PET/MR parameters can predict the NAC response early in the course of breast cancer treatment. The hybrid markers more accurately predicted treatment response than the individual PET/MR parameters.

  5. Molecular imaging for prostate cancer: Performance analysis of (68)Ga-PSMA PET/CT versus choline PET/CT.

    Science.gov (United States)

    Michaud, L; Touijer, K A

    2017-06-01

    There is a need for a precise and reliable imaging to improve the management of prostate cancer. In recent years the PET/CT with choline has changed the handling of prostate cancer in Europe, and it is commonly used for initial stratification or for the diagnosis of a biochemical recurrence, although it does not lack limitations. Other markers are being tested, including the ligand of prostate-specific membrane antigen (PSMA), that seems to offer encouraging prospects. The goal of this piece of work was to critically review the role of choline and PSMA PET/CT in prostate cancer. A systematic literature review of databases PUBMED/MEDLINE and EMBASE was conducted searching for articles fully published in English on the PET marker in prostate cancer and its clinical application. It seems as 68Ga-PSMA PET/CT is better than PET/CT in prostate cancer to detect primary prostate lesions, initial metastases in the lymph nodes and recurrence. However, further research is required to obtain high-level tests. Also, other PET markers are studied. Moreover, the emergence of a new PET/MR camera could change the performance of PET imaging. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Simultaneous water activation and glucose metabolic rate imaging with PET.

    Science.gov (United States)

    Verhaeghe, Jeroen; Reader, Andrew J

    2013-02-07

    A novel imaging and signal separation strategy is proposed to be able to separate [(18)F]FDG and multiple [(15)O]H(2)O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [(18)F]FDG and 6 [(15)O]H(2)O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [(18)F]FDG uptake and blood flow estimated from the [(15)O]H(2)O component, requiring a full dynamic analysis of the two components, static images of [(18)F]FDG and the water components as well as [(15)O]H(2)O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [(18)F]FDG and [(15)O]H(2)O components.

  7. Clinical, FDG and amyloid PET imaging in posterior cortical atrophy.

    Science.gov (United States)

    Singh, Tarun D; Josephs, Keith A; Machulda, Mary M; Drubach, Daniel A; Apostolova, Liana G; Lowe, Val J; Whitwell, Jennifer L

    2015-06-01

    The purpose of this study was to identify the clinical, [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) and amyloid-PET findings in a large cohort of posterior cortical atrophy (PCA) patients, to examine the neural correlates of the classic features of PCA, and to better understand the features associated with early PCA. We prospectively recruited 25 patients who presented to the Mayo Clinic between March 2013 and August 2014 and met diagnostic criteria for PCA. All patients underwent a standardized set of tests and amyloid imaging with [(11)C] Pittsburg compound B (PiB). Seventeen (68 %) underwent FDG-PET scanning. We divided the cohort at the median disease duration of 4 years in order to assess clinical and FDG-PET correlates of early PCA (n = 13). The most common clinical features were simultanagnosia (92 %), dysgraphia (68 %), poly-mini-myoclonus (64 %) and oculomotor apraxia (56.5 %). On FDG-PET, hypometabolism was observed bilaterally in the lateral and medial parietal and occipital lobes. Simultanagnosia was associated with hypometabolism in the right occipital lobe and posterior cingulum, optic ataxia with hypometabolism in left occipital lobe, and oculomotor apraxia with hypometabolism in the left parietal lobe and posterior cingulate gyrus. All 25 PCA patients were amyloid positive. Simultanagnosia was the only feature present in 85 % of early PCA patients. The syndrome of PCA is associated with posterior hemisphere hypometabolism and with amyloid deposition. Many of the classic features of PCA show associated focal, but not widespread, areas of involvement of these posterior hemispheric regions. Simultanagnosia appears to be the most common and hence sensitive feature of early PCA.

  8. PET tracers for somatostatin receptor imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Johnbeck, Camilla Bardram; Knigge, Ulrich; Kjær, Andreas

    2014-01-01

    Neuroendocrine tumors have shown rising incidence mainly due to higher clinical awareness and better diagnostic tools over the last 30 years. Functional imaging of neuroendocrine tumors with PET tracers is an evolving field that is continuously refining the affinity of new tracers in the search...... for the perfect neuroendocrine tumor imaging tracer. (68)Ga-labeled tracers coupled to synthetic somatostatin analogs with differences in affinity for the five somatostatin receptor subtypes are now widely applied in Europe. Comparison of sensitivity between the most used tracers - (68)Ga-DOTA-Tyr3-octreotide...

  9. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...... for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm...

  10. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Cristina [University of Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela (Spain); Imaging Science Institute, Tuebingen (Germany); Bezrukov, Ilja [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Max Plank Institute for Intelligent Systems, Department of Empirical Inference, Tuebingen (Germany); Schmidt, Holger [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Schwenzer, Nina; Werner, Matthias K. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [Imaging Science Institute, Tuebingen (Germany); cmi-experts GmbH, Zuerich (Switzerland)

    2012-11-15

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem {sup registered} (oral) and Gadovist {sup registered} (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and {sup 18}F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist {sup registered} (IV) and a volunteer study employing two different oral MRCA (Lumirem {sup registered} and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT and PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT and PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation

  11. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging.

    Science.gov (United States)

    Lois, Cristina; Bezrukov, Ilja; Schmidt, Holger; Schwenzer, Nina; Werner, Matthias K; Kupferschläger, Jürgen; Beyer, Thomas

    2012-11-01

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem (oral) and Gadovist (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and (18)F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist (IV) and a volunteer study employing two different oral MRCA (Lumirem and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT&PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT&PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation of the PET emission signals. MR-based attenuation maps may be biased by oral iron

  12. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NARCIS (Netherlands)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M-J; van der Graaf, E. R.; Brandenburg, Sijtze

    2015-01-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option,

  13. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?

    Science.gov (United States)

    Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.

  14. OPTIMIZATION OF DIAGNOSTIC IMAGING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Velichko

    2015-01-01

    Full Text Available The paper presents the results of breast imaging for 47200 women. Breast cancer was detected in 862 (1.9% patients, fibroadenoma in 1267 (2.7% patients and isolated breast cysts in 1162 (2.4% patients. Different types of fibrocystic breast disease (adenosis, diffuse fibrocystic changes, local fibrosis and others were observed in 60.1% of women. Problems of breast cancer visualization during mammography, characterized by the appearance of fibrocystic mastopathy (sclerosing adenosis, fibrous bands along the ducts have been analyzed. Data on the development of diagnostic algorithms including the modern techniques for ultrasound and interventional radiology aimed at detecting early breast cancer have been presented.  

  15. Will PET amyloid imaging lead to overdiagnosis of Alzheimer dementia?

    Science.gov (United States)

    Dubroff, Jacob G; Nasrallah, Ilya M

    2015-08-01

    Alzheimer disease (AD), a progressive neurodegenerative disease that causes dementia, affects millions of elderly Americans and represents a growing problem with the aging of the population. There has been an increasing effort for improved and earlier diagnosis for AD. Several newly developed radiolabeled compounds targeting β-amyloid plaques, one of the major pathologic biomarkers of AD, have recently become available for clinical use. These radiopharmaceuticals allow for in vivo noninvasive visualization of abnormal β-amyloid deposits in the brain using positron emission tomography (PET). Amyloid PET imaging has demonstrated high sensitivity for pathologic cerebral amyloid deposition in multiple studies. Principal drawbacks to this new diagnostic test are declining specificity in older age groups and uncertain clinical role given lack of disease-modifying therapy for AD. Although there is strong evidence for the utility of amyloid PET in certain situations, detailed in a set of guidelines for appropriate use from the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging, the question of overdiagnosis, the diagnosis of a disease that would result in neither symptoms nor deaths, using this new medical tool needs to be carefully considered in light of efforts to secure reimbursement for the new technology that is already widely available for use as a clinical tool. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  16. Association of pharmacokinetic and metabolic parameters derived using simultaneous PET/MRI: Initial findings and impact on response evaluation in breast cancer.

    Science.gov (United States)

    Jena, Amarnath; Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan; Ahuja, Aashim; Singhal, Manish; Sarin, Ramesh

    2017-07-01

    To study relationships among pharmacokinetic and 18F-fluorodeoxyglucose (18F-FDG) PET parameters obtained through simultaneous PET/MRI in breast cancer patients and evaluate their combined potential for response evaluation. The study included 41 breast cancer patients for correlation study and 9 patients (pre and post therapy) for response evaluation. All patients underwent simultaneous PET/MRI with dedicated breast imaging. Pharmacokinetic parameters and PET parameters for tumor were derived using an in- house developed and vendor provided softwares respectively. Relationships between SUV and pharmacokinetic parameters and clinical as well as histopathologic parameters were evaluated using Spearman correlation analysis. Response to chemotherapy was derived as percentage reduction in size and in parameters post therapy. Significant correlations were observed between SUVmean, max, peak, TLG with Ktrans (ρ=0.446, 0.417, 0.491, 0.430; p≤0.01); with Kep(ρ=0.303, ρ=0.315, ρ=0.319; p≤0.05); and with iAUC(ρ=0.401, ρ=0.410, ρ=0.379; p≤0.05, p≤0.01). The ratio of ve/iAUC showed significant negative correlation to SUVmean, max, peak and TLG (ρ=0.420, 0.446, 0.443, 0.426; p≤0.01). Ability of SUV as well as pharmacokinetic parameters to predict response to therapy matched the RECIST criteria in 9 out of 11 lesions in 9 patients. Maximum post therapy quantitative reduction was observed in SUVpeak, TLG and Ktrans. Simultaneous PET/MRI enables illustration of close interactions between glucose metabolism and pharmacokinetic parameters in breast cancer patients and potential of their simultaneity in response assessment to therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao [Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  18. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, P; Peng, Y; Sun, M; Yang, X [Suzhou Institute of Biomedical Engineering and Technology Chinese Academy o, Suzhou, Jiangsu (China)

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI will be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.

  19. Silicone breast phantoms for elastographic imaging evaluation.

    Science.gov (United States)

    Kashif, Amer S; Lotz, Thomas F; McGarry, Matthew D; Pattison, Adam J; Chase, James G

    2013-06-01

    Breast cancer is a major public health issue for women, and early detection significantly increases survival rate. Currently, there is increased research interest in elastographic soft-tissue imaging techniques based on the correlation between pathology and mechanical stiffness. Anthropomorphic breast phantoms are critical for ex vivo validation of emerging elastographic technologies. This research develops heterogeneous breast phantoms for use in testing elastographic imaging modalities. Mechanical property estimation of eight different elastomers is performed to determine storage moduli (E') and damping ratios (ζ) using a dynamic mechanical analyzer. Dynamic compression testing was carried out isothermally at room temperature over a range of 4-50 Hz. Silicone compositions with physiologically realistic storage modulus were chosen for mimicking skin adipose, cancerous tumors, and pectoral muscles and 13 anthropomorphic breast phantoms were constructed for ex vivo trials of digital image elastotomography (DIET) breast cancer screening system. A simpler fabrication was used to assess the possibility of multiple tumor detection using magnetic resonance elastography (MRE). Silicone materials with ranges of storage moduli (E') from 2 to 570 kPa and damping ratios (ζ) from 0.03 to 0.56 were identified. The resulting phantoms were tested in two different elastographic breast cancer diagnostic modalities. A significant contrast was successfully identified between healthy tissues and cancerous tumors both in MRE and DIET. The phantoms presented promise aid to researchers in elastographic imaging modalities for breast cancer detection and provide a foundation for silicone based phantom materials for mimicking soft tissues of other human organs.

  20. Partial volume correction of whole body PET images using the wavelet transform

    Science.gov (United States)

    Spinelli, Antonello E.; Guerrieri, Luca; D'Ambrosio, Daniela; Franchi, Roberto; Boschi, Stefano; Marengo, Mario

    2008-04-01

    A general approach for partial volume correction of positron emission tomography (PET) images is introduced. The method is based on the merging of functional information from PET images and anatomical information using high resolution anatomical images. In order to decompose the PET and high resolution images the "á trous" algorithm was implemented. Results obtained with simulated and real patients images show a significant partial volume reduction and image enhancement. The relative errors in the partial volume corrected image are always less than 3,6% with respect to 16% of the original image.

  1. Amyloid PET Imaging in Lewy body disorders.

    Science.gov (United States)

    Donaghy, Paul; Thomas, Alan J; O'Brien, John T

    2015-01-01

    Lewy body (LB) disorders, including Parkinson disease (PD), Parkinson disease dementia (PDD), and dementia with Lewy bodies (DLB), are the second most common type of neurodegenerative dementia. Although the pathological hallmarks of LB disorders are Lewy bodies and Lewy neurites, cortical amyloid-beta (Aβ) deposition is also often seen. The relationship between Aβ pathology and dementia in LB disorders is unclear. Recently, positron emission tomography Aβ ligands have been developed that enable in vivo imaging of Aβ. In this paper we review amyloid imaging studies in LB disorders. LB disorders are associated with lower mean cortical Aβ ligand binding compared with Alzheimer disease. In DLB and PDD many subjects have normal levels of cortical Aβ, though a subset show increased Aβ ligand binding. Those with DLB show greater ligand binding than PDD; binding does not appear to be increased in PD without dementia. Cortical Aβ deposition may be a factor in the development of cognitive impairment in some cases of dementia in LB disorders. Amyloid imaging is of limited use in the diagnosis of LB disorders but Aβ deposition may predict the future development of dementia in PD. Reports of correlation between Aβ deposition and symptom profile, severity, and progression have been inconsistent. Some results suggest a synergistic interaction between Aβ and α-synuclein. Interpretation of the current evidence is hampered by differing methodologies across studies and small sample sizes. Large, prospective longitudinal studies are needed to clarify the association of Aβ with symptom development, progression, severity, and treatment response in LB disorders. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

    Science.gov (United States)

    Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B

    2018-02-01

    Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared

  3. {sup 18}F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, Alexandre [Centre Georges-Francois Leclerc, Department of Nuclear Medicine, Dijon Cedex (France); Le2i UMR CNRS 6306, Dijon (France); Dygai-Cochet, Inna; Riedinger, Jean-Marc; Berriolo-Riedinger, Alina; Toubeau, Michel [Centre Georges-Francois Leclerc, Department of Nuclear Medicine, Dijon Cedex (France); Humbert, Olivier; Brunotte, Francois [Centre Georges-Francois Leclerc, Department of Nuclear Medicine, Dijon Cedex (France); Le2i UMR CNRS 6306, Dijon (France); CHU Dijon, MRI and Spectroscopy Unit, Dijon (France); Guiu, Severine; Coudert, Bruno [Centre Georges-Francois Leclerc, Department of Oncology, Dijon (France); Coutant, Charles; Fumoleau, Pierre [Centre Georges-Francois Leclerc, Department of Surgery, Dijon (France)

    2014-03-15

    The objective of this study was to assess the impact on management and the prognostic value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT for initial staging of newly diagnosed large breast cancer (BC) when compared with conventional staging. We prospectively included 142 patients with newly diagnosed BC and at least grade T2 tumour. All patients were evaluated with complete conventional imaging (CI) procedures (mammogram and/or breast ultrasound, bone scan, abdominal ultrasound and/or CT, X-rays and/or CT of the chest), followed by FDG PET/CT exploration, prior to treatment. The treatment plan based on CI staging was compared with that based on PET/CT findings. CI and PET/CT findings were confirmed by imaging and clinical follow-up and/or pathology when assessable. Progression-free survival (PFS) was analysed using the Cox proportional hazards regression model. According to CI staging, 79 patients (56 %) were stage II, 46 (32 %) stage III and 17 (12 %) stage IV (distant metastases). Of the patients, 30 (21 %) were upstaged by PET/CT, including 12 (8 %) from stage II or III to stage IV. On the other hand, 23 patients (16 %) were downstaged by PET/CT, including 4 (3 %) from stage IV to stage II or III. PET/CT had a high or medium impact on management planning for 18 patients (13 %). Median follow-up was 30 months (range 9-59 months); 37 patients (26 %) experienced recurrence or progression of disease during follow-up and 17 patients (12 %) died. The Cox model indicated that CI staging was significantly associated with PFS (p = 0.01), but PET/CT staging provided stronger prognostic stratification (p < 0.0001). Moreover, Cox regression multivariate analysis showed that only PET/CT staging remained associated with PFS (p < 0.0001). FDG PET/CT provides staging information that more accurately stratifies prognostic risk in newly diagnosed large BC when compared with conventional explorations alone. (orig.)

  4. 90Y PET/CT quantitative accuracy and image quality

    Directory of Open Access Journals (Sweden)

    Wendy Siman

    2014-03-01

    Full Text Available Purpose: To optimize 90Y-PET/CT image reconstruction for quantitative accuracy and optimal image quality.Methods: PET/CT scans of a NEMA IEC phantom (3GBq 90YCl2, sphere uptake ratio of ~7 were acquired on 4 GE (BGO:DSTE, DST & LYSO:DRX, D690 and 1 Siemens (LSO:mCT scanners in 3D list mode with 30 min/bed; replayed to 20, 15, 10 min/bed. Iterative reconstruction parameters explored were SUB × IT (3 – 80 and post-reconstruction filters: transaxial: 5 – 25 mm cutoff & z-axis (GE only: std vs. heavy. The effects of PSF modeling and TOF correction were evaluated for D690 and mCT. VOIs were drawn inside spheres and in adjacent background regions. The accuracy of sphere activity concentration (AC in kBq/mL and contrast to noise ratio (CNR was calculated as function of SUB × IT. Reconstructed PET images were also evaluated qualitatively for sphere detectability and artifacts.Results: AC converged to 70 – 90% accuracy for 37 mm sphere and further degraded for smaller spheres. Spheres at max CNR might not reach AC convergence yet. Smaller spheres have slower convergence but reach CNR max together with other spheres. Scan duration did not strongly affect sphere convergence but shorter scans increased noise and reduced detectability; 13 mm spheres were not visible going from 30 to 15 min/bed. Heavy z-axis (GE and transaxial filter with 10 – 15 mm cutoff helped suppress noise and increase sphere detectability at the expense of accuracy. Images with PSF+TOF corrections had higher sphere detectability and converged faster. Hot cluster artifacts 5 – 7 times the background were seen in some cases with SUB × IT near convergence and lower filtration.Conclusion: Accurate 90Y AC was not achieved even at convergence and noise is a major concern. 90YPET/CT reconstruction parameters are different than those for 18F and benefit substantially from PSF+TOF corrections. Optimum image quality and accurate AC may not be simultaneously achievable

  5. An adaptive patient specific deformable registration for breast images of positron emission tomography and magnetic resonance imaging using finite element approach

    Science.gov (United States)

    Xue, Cheng; Tang, Fuk-Hay

    2014-03-01

    A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.

  6. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong, E-mail: ouyang.jinsong@mgh.harvard.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Ackerman, Jerome L. [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  7. PET/MR Versus PET/CT Imaging: Impact on the Clinical Management of Small-Bowel Crohn's Disease.

    Science.gov (United States)

    Pellino, Gianluca; Nicolai, Emanuele; Catalano, Onofrio A; Campione, Severo; D'Armiento, Francesco P; Salvatore, Marco; Cuocolo, Alberto; Selvaggi, Francesco

    2016-03-01

    The aim of this study was to compare the accuracy and clinical impact of hybrid positron emission tomography [PET]/magnetic resonance-enterography [MR-E] and PET/computed tomography-enterography [CT-E] in patients with Crohn's disease [CD]. A total of 35 patients with symptomatic small-bowel CD who were scheduled to undergo operation were evaluated before operation by same-day PET/CT-E and PET/MR-E. PET/MR-E was also compared with MR-E alone. Imaging accuracy for detecting pathological sites and discriminating between fibrotic and inflammatory strictures was assessed. Treatment was adjusted according to imaging findings and change in medical/surgical strategy was also evaluated. PET/CT-E, PET/MR-E, and MR-E were equally accurate in detecting CD sites. PET/MR-E was more accurate in assessing extra-luminal disease [p = 0.002], which was associated with higher need for stoma [p = 0.022] and distant localisation [p = 0.002]. When the latter was observed, laparoscopy was started with hand-assisted device, reducing operative time [p = 0.022]. PET/MR-E was also more accurate in detecting a fibrotic component compared with PET/CT-E [p = 0.043] and with MR-E [p = 0.024]. Fibrosis was more frequently classified as inflammation with MR-E compared with PET/MR-E [p = 0.019]. Out of 8 patients with predominantly inflammatory CD who received medical treatment, 6 [75%] remained surgery free. Overall, 29 patients received surgery. At median follow-up of 9 [6-22] months, no recurrences occurred in either the medical or the surgical group. Preoperative PET/MR-E imaging is highly accurate for assessing CD lesions before operation and contributed to clinical management of patients with small-bowel CD more often than PET/CT-E. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. ACR accreditation of nuclear medicine and PET imaging departments.

    Science.gov (United States)

    MacFarlane, Carolyn Richards

    2006-03-01

    The accreditation programs of the American College of Radiology (ACR) are the most established and widely proven for all imaging modalities. For facilities committed to quality imaging, the ACR Nuclear Medicine and PET Accreditation Program provides a solid foundation for a continuous quality improvement program through a peer review and educational process. This article provides general information describing the goals and development of the ACR accreditation programs. The ACR Nuclear Medicine and PET Accreditation Program evaluates the qualifications of personnel, equipment, image quality, and quality control measures. It is believed that these are the primary factors that have an impact on the quality of patient imaging. This article describes the application process, including the clinical examinations that are required and the quality control and performance tests that are expected from each facility. Outcomes and pass/fail statistics are discussed, as are common pitfalls that may cause deficiencies. Upon completion of this article, the reader should be able to describe the application process, the components of the ACR accreditation program, the most common causes for failure, and the site survey process.

  9. Chronic thyroiditis in patients with advanced breast carcinoma: metabolic and morphologic changes on PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Ukihide [University of Texas, MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan); University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); Gamez, Cristina; Yeung, Henry W.D.; Macapinlac, Homer A. [University of Texas, MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Dawood, Shaheenah; Cristofanilli, Massimo [University of Texas, MD Anderson Cancer Center, Division of Breast Medical Oncology, Houston, TX (United States); Inoue, Tomio [Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan)

    2009-06-15

    To investigate clinical implications of FDG uptake in the thyroid glands in patients with advanced breast carcinoma by comparing metabolic and morphologic patterns on positron emission tomography (PET)/computed tomography (CT). The institutional review board waived the requirement for informed consent. A retrospective analysis was performed in 146 women (mean age 54 years) with advanced breast carcinoma who received systemic treatment. All patients underwent PET-CT before and after treatment. All PET-CT studies were reviewed in consensus by two reviewers. Morphologic changes including volume and mean parenchymal density of the thyroid glands were evaluated. Maximum standardized uptake value (SUVmax) and total lesion glycolysis (TLG) were determined to evaluate metabolic changes. These parameters were compared between patients with chronic thyroiditis who received thyroid hormone replacement therapy and those who did not. Of the 146 patients, 29 (20%) showed bilaterally diffuse uptake in the thyroid glands on the baseline PET-CT scan. The SUVmax showed a linear relationship with volume (r = 0.428, p = 0.021) and the mean parenchymal density (r = -0.385, p = 0.039) of the thyroid glands. In 21 of the 29 patients (72%) with hypothyroidism who received thyroid hormone replacement therapy, the volume, mean parenchymal density, SUVmax, and TLG of the thyroid glands showed no significant changes. In contrast, 8 of the 29 patients (28%) who did not receive thyroid hormone replacement therapy showed marked decreases in SUVmax and TLG. Diffuse thyroid uptake on PET-CT represents active inflammation caused by chronic thyroiditis in patients with advanced breast carcinoma. Diffuse thyroid uptake may also address the concern about subclinical hypothyroidism which develops into overt disease during follow-up. (orig.)

  10. Feasibility of using respiration-averaged MR images for attenuation correction of cardiac PET/MR imaging.

    Science.gov (United States)

    Ai, Hua; Pan, Tinsu

    2015-07-08

    Cardiac imaging is a promising application for combined PET/MR imaging. However, current MR imaging protocols for whole-body attenuation correction can produce spatial mismatch between PET and MR-derived attenuation data owing to a disparity between the two modalities' imaging speeds. We assessed the feasibility of using a respiration-averaged MR (AMR) method for attenuation correction of cardiac PET data in PET/MR images. First, to demonstrate the feasibility of motion imaging with MR, we used a 3T MR system and a two-dimensional fast spoiled gradient-recalled echo (SPGR) sequence to obtain AMR images ofa moving phantom. Then, we used the same sequence to obtain AMR images of a patient's thorax under free-breathing conditions. MR images were converted into PET attenuation maps using a three-class tissue segmentation method with two sets of predetermined CT numbers, one calculated from the patient-specific (PS) CT images and the other from a reference group (RG) containing 54 patient CT datasets. The MR-derived attenuation images were then used for attenuation correction of the cardiac PET data, which were compared to the PET data corrected with average CT (ACT) images. In the myocardium, the voxel-by-voxel differences and the differences in mean slice activity between the AMR-corrected PET data and the ACT-corrected PET data were found to be small (less than 7%). The use of AMR-derived attenuation images in place of ACT images for attenuation correction did not affect the summed stress score. These results demonstrate the feasibility of using the proposed SPGR-based MR imaging protocol to obtain patient AMR images and using those images for cardiac PET attenuation correction. Additional studies with more clinical data are warranted to further evaluate the method.

  11. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  12. Added value of dedicated axillary hybrid 18F-FDG PET/MRI for improved axillary nodal staging in clinically node-positive breast cancer patients: a feasibility study.

    Science.gov (United States)

    van Nijnatten, Thiemo J A; Goorts, B; Vöö, S; de Boer, M; Kooreman, L F S; Heuts, E M; Wildberger, J E; Mottaghy, F M; Lobbes, M B I; Smidt, M L

    2018-02-01

    To investigate the feasibility and potential added value of dedicated axillary 18F-FDG hybrid PET/MRI, compared to standard imaging modalities (i.e. ultrasound [US], MRI and PET/CT), for axillary nodal staging in clinically node-positive breast cancer. Twelve patients with clinically node-positive breast cancer underwent axillary US and dedicated axillary hybrid 18F-FDG PET/MRI. Nine of the 12 patients also underwent whole-body PET/CT. Maximum standardized uptake values (SUVmax) were measured for the primary breast tumor and the most FDG-avid axillary lymph node. A positive axillary lymph node on dedicated axillary hybrid PET/MRI was defined as a moderate to very intense FDG-avid lymph node. The diagnostic performance of dedicated axillary hybrid PET/MRI was calculated by comparing quantitative and its qualitative measurements to results of axillary US, MRI and PET/CT. The number of suspicious axillary lymph nodes was subdivided as follows: N0 (0 nodes), N1 (1-3 nodes), N2 (4-9 nodes) and N3 (≥ 10 nodes). According to dedicated axillary hybrid PET/MRI findings, seven patients were diagnosed with N1, four with N2 and one with N3. With regard to mean SUVmax, there was no significant difference in the primary tumor (9.0 [±5.0] vs. 8.6 [±5.7], p = 0.678) or the most FDG-avid axillary lymph node (7.8 [±5.3] vs. 7.7 [±4.3], p = 0.767) between dedicated axillary PET/MRI and PET/CT. Compared to standard imaging modalities, dedicated axillary hybrid PET/MRI resulted in changes in nodal status as follows: 40% compared to US, 75% compared to T2-weighted MRI, 40% compared to contrast-enhanced MRI, and 22% compared to PET/CT. Adding dedicated axillary 18F-FDG hybrid PET/MRI to diagnostic work-up may improve the diagnostic performance of axillary nodal staging in clinically node-positive breast cancer patients.

  13. Imaging results and TOF studies with axial PET detectors

    CERN Document Server

    Joram, Christian

    2013-01-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the held of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The Fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations ( <2 mm FWHM in all three coordinates over the complete held of view) and also demonstrated the ability to include Compton interactions (inter-cr...

  14. Physiological imaging with PET and SPECT in Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jagust, W.J. (California Univ., San Francisco, CA (United States). Dept. of Neurology Lawrence Berkeley Lab., CA (United States))

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  15. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    Science.gov (United States)

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-07-01

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATACpatientBone (air and tissue from the atlas with patient bone), and PET with ATACboneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P PET with ATACboneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P PET with ATACpatientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.

  16. Detection of Atherosclerotic Inflammation by $^{68}$Ga-DOTATATE PET Compared to [$^{18}$F]FDG PET Imaging

    OpenAIRE

    Tarkin, JM; Joshi, FR; Evans, NR; Chowdhury, MM; Figg, NL; Shah, AV; Starks, LT; Martin-Garrido, A; Manavaki, R; Yu, E; Kuc, RE; Grassi, L.; Kreuzhuber, R; Kostadima, MA; Frontini, M.

    2017-01-01

    $\\textbf{Background}$ Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([$^{18}$F]FDG PET), [$^{18}$F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. $\\textbf{Objectives}$ Objectives This study tested the efficacy of gallium-68-labeled DOTATATE ($^{68}$Ga-DOTATATE), a somatostatin receptor subtype-2 (SST2)-binding PET t...

  17. [{sup 18}F]FDG imaging of head and neck tumours: comparison of hybrid PET and morphological methods

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.; Grammerstorff, J.; Brinkbaeumer, K.; Schmid, R.; Hahn, K. [Klinik und Poliklinik fuer Nuklearmedizin, Ludwig-Maximilians-Universitaet, Ziemssenstrasse 1, 80336, Muenchen (Germany); Schwenzer, K. [Klinik fuer Mund-Kiefer-Gesichtschirurgie, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Pfluger, T. [Institut fuer Radiologische Diagnostik, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2003-07-01

    The aim of this study was to evaluate fluorine-18 fluorodeoxyglucose ([{sup 18}F]FDG) imaging of head and neck tumours using a second- or third-generation hybrid PET device. Results were compared with the findings of spiral computed tomography (CT) and magnetic resonance imaging (MRI), and, as regards lymph node metastasis, the ultrasound findings. A total of 116 patients with head and neck tumours (83 males and 33 females aged 27-88 years) were examined using a hybrid PET scanner after injection of 185-350 MBq of [{sup 18}F]FDG (Picker Prism 2000 XP-PCD, Marconi Axis {gamma}-PET{sup 2} AZ). Hybrid PET examinations were performed in list mode using an axial filter. Reconstruction of data was performed iteratively. Ninety-six patients underwent CT using a multislice technique (Siemens Somatom Plus 4, Marconi MX 8000), 18 patients underwent MRI and 100 patients were examined by ultrasound. All findings were verified by histology, which was considered the gold standard, or, in the event of negative histology, by follow-up. Correct diagnosis of the primary or recurrent lesion was made in 73 of 85 patients using the hybrid PET scanner, in 50 of 76 patients on CT and in 7 of 10 patients on MRI. Hybrid PET successfully visualised metastatic disease in cervical lymph nodes in 28 of 34 patients, while 23 of 31 were correctly diagnosed with CT, 3 of 4 with MRI and 30 of 33 with ultrasound. False positive results regarding lymph node metastasis were seen in three patients with hybrid PET, in 14 patients with CT and in 13 patients with ultrasound. MRI yielded no false positive results concerning lymph node metastasis. In one patient, unrecognised metastatic lesions were seen on hybrid PET elsewhere in the body (lung: n=1; bone: n=1). Additional malignant lesions at sites other than the head and neck tumour were found in three patients (one patient with lung cancer, one patient with pelvic metastasis due to a carcinoma of the prostate and one patient with pulmonary metastasis

  18. Automatic delineation of brain regions on MRI and PET images from the pig.

    Science.gov (United States)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2017-11-13

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [11C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017. Published by Elsevier B.V.

  19. Breast Hypertrophy, Reduction Mammaplasty, and Body Image.

    Science.gov (United States)

    Fonseca, Cristiane Costa; Veiga, Daniela Francescato; Garcia, Edgard da Silva; Cabral, Isaías Vieira; de Carvalho, Monique Maçais; de Brito, Maria José Azevedo; Ferreira, Lydia Masako

    2018-02-07

    Body image dissatisfaction is one of the major factors that motivate patients to undergo plastic surgery. However, few studies have associated body satisfaction with reduction mammaplasty. The aim of this study was to evaluate the impact of breast hypertrophy and reduction mammaplasty on body image. Breast hypertrophy patients, with reduction mammaplasty already scheduled between June 2013 and December 2015 (mammaplasty group, MG), were prospectively evaluated through the body dysmorphic disorder examination (BDDE), body investment scale (BIS), and breast evaluation questionnaire (BEQ55) tools. Women with normal-sized breasts were also evaluated as study controls (normal-sized breast group, NSBG). All the participants were interviewed at the initial assessment and after six months. Data were analyzed before and after six months. Each group consisted of 103 women. The MG group had a significant improvement in BDDE, BIS, and BEQ55 scores six months postoperatively (P ≤ 0.001 for the three instruments), whereas the NSBG group showed no alteration in results over time (P = 0.876; P = 0.442; and P = 0.184, respectively). In the intergroup comparison it was observed that the MG group began to invest more in the body, similarly to the NSBG group, and surpassed the level of satisfaction and body image that the women of the NSBG group had after the surgery. Reduction mammaplasty promoted improvement in body image of women with breast hypertrophy.

  20. MO-FG-207-00: Technological Advances in PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.

  1. Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay.

    Science.gov (United States)

    Paparo, Francesco; Piccazzo, Riccardo; Cevasco, Luca; Piccardo, Arnoldo; Pinna, Francesco; Belli, Fiorenza; Bacigalupo, Lorenzo; Biscaldi, Ennio; De Caro, Giovanni; Rollandi, Gian Andrea

    2014-10-01

    Positron emission tomography (PET) is a functional imaging technique that can investigate the metabolic characteristics of tissues. Currently, PET images are acquired and co-registered with a computed tomography (CT) scan (PET-CT), which is employed for correction of attenuation and anatomical localization. In spite of the high negative predictive value of PET, false-positive results may occur; indeed, Fluorine 18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) uptake is not specific to cancer. As (18)F-FDG uptake may also be seen in non-malignant infectious or inflammatory processes, FDG-avid lesions may necessitate biopsy to confirm or rule out malignancy. However, some PET-positive lesions may have little or no correlative ultrasound (US) and/or CT findings (i.e., low conspicuity on morphological imaging). Since it is not possible to perform biopsy under PET guidance alone, owing to intrinsic technical limitations, PET information has to be integrated into a CT- or US-guided biopsy procedure (multimodal US/PET-CT fusion imaging). The purpose of this pictorial essay is to describe the technique of multimodal imaging fusion between real-time US and PET/CT, and to provide an overview of the clinical settings in which this multimodal integration may be useful in guiding biopsy procedures in PET-positive abdominal lesions.

  2. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  3. Breast Microcalcification Detection Using Super-Resolution Ultrasound Image Reconstruction

    Science.gov (United States)

    2010-09-01

    imag- ing for breast microcalcification detection. Breast microcalcifications can be seen in malignant cancerous masses. We construct a numerical... cancers detected by mam- mography, and approximately 95% of all DCIS is diagnosed because of mammographically detected microcalcifications . Breast ...detection using numerical breast phantoms. Microcalcifications can be found in different breast tissues, such as cancerous masses or cysts. We build two

  4. Pet Imaging Of The Chemistry Of The Brain

    Science.gov (United States)

    Wagner, Henry N., Jr.

    1986-06-01

    Advances in neurobiology today are as important as the advances in atomic physics at the turn of the century and molecular genetics in the 1950's. Positron-emission tomography is participating in these advances by making it possible for the first time to measure the chemistry of the living human brain in health and disease and to relate the changes at the molecular level to the functioning of the human mind. The amount of data generated requires modern data processing, display, and archiving capabilities. To achieve maximum benefit from the PET imaging and the derived quantitative measurements, the data must be combined with information, usually of a structural nature, from other imaging modalities, chiefly computed tomography and magnetic resonance imaging.

  5. Body conformation, diet, and risk of breast cancer in pet dogs: a case-control study.

    Science.gov (United States)

    Sonnenschein, E G; Glickman, L T; Goldschmidt, M H; McKee, L J

    1991-04-01

    Canine and human breast cancer share several important clinical and histologic features. A case-control study of nutritional factors and canine breast cancer was conducted at the Veterinary Hospital of the University of Pennsylvania in 1984-1987 by interviewing owners of 150 pet dogs diagnosed with breast cancer, owners of 147 cancer control dogs, and owners of 131 noncancer control dogs. The risk of breast cancer was significantly reduced in dogs spayed at or before 2.5 years of age. Neither a high-fat diet nor obesity 1 year before diagnosis increased the risk of breast cancer according to multiple logistic regression analysis. However, the risk of breast cancer among spayed dogs was significantly reduced in dogs that had been thin at 9-12 months of age (odds ratio (OR) = 0.04 (95% confidence interval (CI) 0.004-0.4) and OR = 0.04 (95% CI 0.004-0.5) for cases vs. cancer controls and cases vs. noncancer controls, respectively, after adjustment for age at spay). Among intact dogs, the risk associated with being thin at 9-12 months of age was reduced, but not significantly so (OR = 0.60 (95% CI 0.2-1.9) and OR = 0.51 (95% CI 0.2-1.4) for the two comparisons, respectively). Results of this study suggest that nutritional factors operating early in life may be of etiologic importance in canine breast cancer.

  6. Non-oncologic Applications of PET/CT and PET/MR in Musculoskeletal, Orthopedic, and Rheumatologic Imaging: General Considerations, Techniques, and Radiopharmaceuticals.

    Science.gov (United States)

    Gholamrezanezhad, Ali; Basques, Kyle; Batouli, Ali; Olyaie, Mojtaba; Matcuk, George; Alavi, Abass; Jadvar, Hossein

    2017-11-10

    Positron Emission Tomography (PET) is often underutilized in the field of musculoskeletal imaging, with key reasons including the excellent performance of conventional musculoskeletal MRI, the limited spatial resolution of PET, and the lack of reimbursement for PET for non-oncologic musculoskeletal indications. However, with improvements in PET/CT and PET/MR imaging over the last decade as well as an increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic patients. Specific advantages of PET include the convenience of whole body imaging in a single session, the relative resilience of the modality in the imaging of metallic implants compared to CT and MRI, the ability to evaluate deep joints not amenable to palpation, and the potential for improved specificity of diagnosis with novel radiopharmaceuticals. In this review, we discuss multiple radiopharmaceuticals and technical consideration of PET/CT and PET/MRI that can be employed in imaging of non-tumoral bone and soft tissue disorders. Both PET/CT and PET/MR hold significant promise in the field of musculoskeletal imaging, and with further radiopharmaceutical development and clinical research, these hybrid modalities can potentially transform the current management of patients with orthopedic and rheumatologic disease. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging.

    Science.gov (United States)

    Wollenweber, Scott D; Delso, Gaspar; Deller, Timothy; Goldhaber, David; Hüllner, Martin; Veit-Haibach, Patrick

    2014-04-01

    The aim of this study was to determine the impact to PET quantification, image quality and possible diagnostic impact of an anterior surface array used in a combined PET/MR imaging system. An extended oval phantom and 15 whole-body FDG PET/CT subjects were re-imaged for one bed position following placement of an anterior array coil at a clinically realistic position. The CT scan, used for PET attenuation correction, did not include the coil. Comparison, including liver SUV(mean), was performed between the coil present and absent images using two methods of PET reconstruction. Due to the time delay between PET scans, a model was used to account for average physiologic time change of SUV. On phantom data, neglecting the coil caused a mean bias of -8.2% for non-TOF/PSF reconstruction, and -7.3% with TOF/PSF. On clinical data, the liver SUV neglecting the coil presence fell by -6.1% (± 6.5%) for non-TOF/PSF reconstruction; respectively -5.2% (± 5.3%) with TOF/PSF. All FDG-avid features seen with TOF/PSF were also seen with non-TOF/PSF reconstruction. Neglecting coil attenuation for this anterior array coil results in a small but significant reduction in liver SUV(mean) but was not found to change the clinical interpretation of the PET images.

  8. Review of optical breast imaging and spectroscopy

    Science.gov (United States)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  9. Review of optical breast imaging and spectroscopy.

    Science.gov (United States)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  10. Small Animal [{sup 18}F]FDG PET Imaging for Tumor Model Study

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong [Radiological and Medical Sciences Research Institute, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-02-15

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [{sup 18}F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [{sup 18}F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [{sup 18}F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model.

  11. PET/MR Imaging in Head and Neck Cancer: Current Applications and Future Directions.

    Science.gov (United States)

    Galgano, Samuel J; Marshall, Ryan V; Middlebrooks, Erik H; McConathy, Jonathan E; Bhambhvani, Pradeep

    2018-02-01

    Clinical PET/MR imaging is being implemented at institutions worldwide as part of the standard-of-care imaging for select oncology patients. This article focuses on oncologic applications of PET/MR imaging in cancers of the head and neck. Although current published literature is relatively sparse, the potential benefits of a hybrid modality of PET/MR imaging are discussed along with several possible areas of research. With the increasing number of PET/MR imaging scanners in clinical use and ongoing research, the role of PET/MR imaging in the management of head and neck cancer is likely to become more evident in the near future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. PET imaging reveals brain functional changes in internet gaming disorder.

    Science.gov (United States)

    Tian, Mei; Chen, Qiaozhen; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong

    2014-07-01

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D2 (D2)/Serotonin 2A (5-HT2A) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and (11)C-N-methylspiperone ((11)C-NMSP) to assess the availability of D2/5-HT2A receptors and with (18)F-fluoro-D-glucose ((18)F-FDG) to assess regional brain glucose metabolism, a marker of brain function. (11)C-NMSP and (18)F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D2/5-HT2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects.

  13. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  14. Diffuse Intense {sup 18}F-FDG Uptake at PET in Unilateral Breast Related to Breastfeeding Practice

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Hee; Jung, Hye Kyoung [Department of Radiololgy, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Jeon, Tae Joo [Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of)

    2013-07-01

    We present an interesting case of incidental diffuse fluorodeoxyglucose (FDG) uptake at PET in her left breast, related to atypical breastfeeding practice. Clinically, differential diagnoses of diffuse intense FDG uptake in unilateral breast include advanced breast cancer, breast lymphoma and inflammatory condition. However, normal physiologic lactation may also show increased FDG uptake in the breasts. Therefore, if we encounter that finding in daily practice, we should question the patient regarding unilateral breastfeeding. In addition, mammography and ultrasound would be helpful to confirm the diagnosis.

  15. Breast ultrasound image segmentation: a survey.

    Science.gov (United States)

    Huang, Qinghua; Luo, Yaozhong; Zhang, Qiangzhi

    2017-03-01

    Breast cancer is the most common form of cancer among women worldwide. Ultrasound imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities of the breast. Recently, computer-aided diagnosis (CAD) systems using ultrasound images have been developed to help radiologists to increase diagnosis accuracy. However, accurate ultrasound image segmentation remains a challenging problem due to various ultrasound artifacts. In this paper, we investigate approaches developed for breast ultrasound (BUS) image segmentation. In this paper, we reviewed the literature on the segmentation of BUS images according to the techniques adopted, especially over the past 10 years. By dividing into seven classes (i.e., thresholding-based, clustering-based, watershed-based, graph-based, active contour model, Markov random field and neural network), we have introduced corresponding techniques and representative papers accordingly. We have summarized and compared many techniques on BUS image segmentation and found that all these techniques have their own pros and cons. However, BUS image segmentation is still an open and challenging problem due to various ultrasound artifacts introduced in the process of imaging, including high speckle noise, low contrast, blurry boundaries, low signal-to-noise ratio and intensity inhomogeneity CONCLUSIONS: To the best of our knowledge, this is the first comprehensive review of the approaches developed for segmentation of BUS images. With most techniques involved, this paper will be useful and helpful for researchers working on segmentation of ultrasound images, and for BUS CAD system developers.

  16. Influence of CA 15-3 blood level and doubling time on diagnostic performances of 18F-FDG PET in breast cancer patients with occult recurrence.

    Science.gov (United States)

    Aide, Nicolas; Huchet, Virginie; Switsers, Odile; Heutte, Natacha; Delozier, Thierry; Hardouin, Agnes; Bardet, Stéphane

    2007-04-01

    To evaluate the influence of CA 15-3 blood level and doubling time on diagnostic performances of 18F-FDG PET in breast cancer patients with occult recurrence. Thirty-five 18F-FDG PET examinations in 32 patients with CA 15-3 blood level above the normal range, and negative conventional imaging within 3 months before PET examination were included in this retrospective study. PET examinations were reviewed blindly by two experienced nuclear medicine physicians who were unaware of any clinical, biological or radiological information. CA 15-3 assays performed prior to the PET examinations and all using the same technique were collected and used for doubling time calculation if (1) no therapeutic modification occurred in the meantime, and (2) the delay between assays was less than 6 months. Median CA 15-3 blood levels were higher in the positive PET group (100 U x ml(-1)) than in the negative group (65 U x ml(-1)) (P=0.04). The likelihood of depicting recurrence was higher in patients with a short doubling time (60 U x ml(-1) (P=0.05), and when a short doubling time was associated with a CA 15-3 blood level >60 U x ml(-1) (P=0.03). The likelihood of depicting recurrence was influenced by CA 15-3 blood level and doubling time. Further studies are required to confirm that selections of patients based on those criteria could improve the sensitivity of positron emission tomography in the detection of breast cancer recurrence, particularly in the case of low CA 15-3 blood level.

  17. PET imaging predicts future body weight and cocaine preference

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides M.; Wang G.; Michaelides M.; Thanos P.K. Kim R.; Cho J.; Ananth M.; Wang G.-J.; Volkow N.D.

    2011-08-28

    Deficits in dopamine D2/D3 receptor (D2R/D3R) binding availability using PET imaging have been reported in obese humans and rodents. Similar deficits have been reported in cocaine-addicts and cocaine-exposed primates. We found that D2R/D3R binding availability negatively correlated with measures of body weight at the time of scan (ventral striatum), at 1 (ventral striatum) and 2 months (dorsal and ventral striatum) post scan in rats. Cocaine preference was negatively correlated with D2R/D3R binding availability 2 months (ventral striatum) post scan. Our findings suggest that inherent deficits in striatal D2R/D3R signaling are related to obesity and drug addiction susceptibility and that ventral and dorsal striatum serve dissociable roles in maintaining weight gain and cocaine preference. Measuring D2R/D3R binding availability provides a way for assessing susceptibility to weight gain and cocaine abuse in rodents and given the translational nature of PET imaging, potentially primates and humans.

  18. The motivations and methodology for high-throughput PET imaging of small animals in cancer research.

    NARCIS (Netherlands)

    Aide, N.; Visser, E.P.; Lheureux, S.; Heutte, N.; Szanda, I.; Hicks, R.J.

    2012-01-01

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has

  19. Development of F-18-IL2 : a PET radiotracer for imaging activated T-cells

    NARCIS (Netherlands)

    van der Veen, Elly L.; Maarsingh, Petra; van Scheltinga, Anton G. T. Terwisscha; Lub-de Hooge, Marjolijn N.; Hospers, G.A.P.; Vries, de Erik; Vries, de Elisabeth G. E.

    2016-01-01

    Introduction: Activation of T-cells is accompanied by a strong up-regulation of interleukin-2 (IL2) receptor (CD25). Therefore PET imaging of IL2 receptors might be a suitable imaging biomarker for T-cell activation. 18F-IL2 PET could detect CD25-positive T-cells and the migration of these T-cells

  20. The future of hybrid imaging—part 3: PET/MR, small-animal imaging and beyond

    National Research Council Canada - National Science Library

    Beyer, Thomas; Freudenberg, Lutz S; Czernin, Johannes; Townsend, David W

    2011-01-01

    ... (MRI). Unlike PET/computed tomography (CT), PET/MRI started out from developments in small-animal imaging technology, and, therefore, we add a section on advances in dual- and multi-modality imaging technology for small animals...

  1. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  2. 18F-FDG PET/CT in breast cancer: Evidence-based recommendations in initial staging.

    Science.gov (United States)

    Caresia Aroztegui, Ana Paula; García Vicente, Ana María; Alvarez Ruiz, Soledad; Delgado Bolton, Roberto Carlos; Orcajo Rincon, Javier; Garcia Garzon, Jose Ramon; de Arcocha Torres, Maria; Garcia-Velloso, Maria Jose

    2017-10-01

    Current guidelines do not systematically recommend 18F-FDG PET/CT for breast cancer staging; and the recommendations and level of evidence supporting its use in different groups of patients vary among guidelines. This review summarizes the evidence about the role of 18F-FDG PET/CT in breast cancer staging and the therapeutic and prognostic impact accumulated in the last decade. Other related aspects, such as the association of metabolic information with biology and prognosis are considered and evidence-based recommendations for the use of 18F-FDG PET/CT in breast cancer staging are offered. We systematically searched MEDLINE for articles reporting studies with at least 30 patients related to clinical questions following the Problem/Population, Intervention, Comparison, and Outcome framework. We critically reviewed the selected articles and elaborated evidence tables structuring the summarized information into methodology, results, and limitations. The level of evidence and the grades of recommendation for the use of 18F-FDG PET/CT in different contexts are summarized. Level III evidence supports the use of 18F-FDG PET/CT for initial staging in patients with recently diagnosed breast cancer; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a weak recommendation in this population. In patients with locally advanced breast cancer, level II evidence supports the use of 18F-FDG PET/CT for initial staging; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a strong recommendation in this population. In patients with recently diagnosed breast cancer, the metabolic information from baseline 18F-FDG PET/CT is associated with tumor biology and has prognostic implications, supported by level II evidence. In conclusion, 18F-FDG PET/CT is not recommended for staging all patients with early breast cancer, although evidence of improved regional and systemic staging supports its use in locally advanced

  3. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR

    Science.gov (United States)

    Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong

    2017-01-01

    PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P  <  0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed

  4. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    DEFF Research Database (Denmark)

    Boellaard, Ronald; O'Doherty, Mike J; Weber, Wolfgang A

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography......-computed tomography (PET/CT) and is provided to help the physician and physicist to assist to carrying out,interpret, and document quantitative FDG PET/CT examinations,but will concentrate on the optimisation of diagnostic quality and quantitative information....

  5. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Science.gov (United States)

    Meng, Qingqing; Li, Zheng

    2013-01-01

    Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained. PMID:23533377

  6. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R; Badawi, Ramsey D; Qi, Jinyi

    2017-03-21

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18 F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  7. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  8. Bayesian statistics, factor analysis, and PET images I. Mathematical background.

    Science.gov (United States)

    Phillips, P R

    1989-01-01

    The problem of image reconstruction in positron emission tomography (PET) is examined, although the approach is quite general and may have other applications. The approach is based on the maximum-likelihood method L.A. Shepp and Y. Vardi (1982), with their assumption that the number of image pixels is greater than the number of data points. In this situation a (nonunique) solution can be written down directly, although it is not guaranteed to be positive definite. The arbitrariness in this solution can be precisely characterized by a geometric argument. A unique solution can be obtained only by introducing prior information. It is suggested that factor analysis is an efficient way to do this. In the simplest application of the method, the solution is written as the sum of two parts, r(alpha )+t(alpha), where r(alpha) is determined solely by the data and t(alpha) is determined by r(alpha) and the prior information.

  9. Non rigid respiratory motion correction in whole body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi [INSERM UMR1101, LaTIM, Brest (France); Schmidt, Holger [Université de Bretagne Occidentale, Brest (France); Wuerslin, Christian [University Hospital of Tübingen (Germany); Visvikis, Dimitris [INSERM UMR1101, LaTIM, Brest (France)

    2014-07-29

    Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted elastic transformations were applied to list-mode data either inside the image reconstruction or to the reconstructed respiratory synchronized images to obtain respiration corrected PET images.

  10. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  11. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    Science.gov (United States)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  12. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  13. Imaging Neoadjuvant Therapy Response in Breast Cancer.

    Science.gov (United States)

    Fowler, Amy M; Mankoff, David A; Joe, Bonnie N

    2017-11-01

    The use of neoadjuvant systemic therapy in the treatment of breast cancer patients is increasing beyond the scope of locally advanced disease. Imaging provides important information in assessing response to therapy as a complement to conventional tumor measurements via physical examination. The purpose of this article is to discuss the advantages and limitations of current assessment methods, as well as review functional and molecular imaging approaches being investigated as emerging techniques for evaluating neoadjuvant therapy response for patients with primary breast cancer. (©) RSNA, 2017.

  14. The Emerging Role of PET/MR Imaging in Gynecologic Cancers.

    Science.gov (United States)

    Ponisio, Maria Rosana; Fowler, Kathryn J; Dehdashti, Farrokh

    2016-10-01

    This article summarizes recent advances in PET/MR imaging in gynecologic cancers and the emerging clinical value of PET/MR imaging in the management of the 3 most common gynecologic malignancies: cervical, endometrial, and ovarian cancers. PET/MR imaging offers superior soft tissue contrast, improved assessment of primary tumor involvement because of high-resolution multiplanar reformats, and functional MR techniques such as diffusion-weighted MR imaging and dynamic contrast-enhanced MR imaging. This article discusses the challenges, future directions, and technical advances of PET/MR imaging, and the emerging new multimodality, multiparametric imaging techniques for integrating morphologic, functional, and molecular imaging data. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    Science.gov (United States)

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An update on novel quantitative techniques in the context of evolving whole-body PET imaging

    DEFF Research Database (Denmark)

    Houshmand, Sina; Salavati, Ali; Hess, Søren

    2015-01-01

    Since its foundation PET has established itself as one of the standard imaging modalities enabling the quantitative assessment of molecular targets in vivo. In the past two decades, quantitative PET has become a necessity in clinical oncology. Despite introduction of various measures...... for quantification and correction of PET parameters, there is debate on the selection of the appropriate methodology in specific diseases and conditions. In this review, we have focused on these techniques with special attention to topics such as static and dynamic whole body PET imaging, tracer kinetic modeling...

  17. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [(18)F]FDG PET.

    Science.gov (United States)

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2017-10-23

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[(18)F-]fluoro-D-glucose ([(18)F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [(18)F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [(18)F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [(18)F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  18. Malignant pleural mesothelioma: initial experience in integrated (18)F-FDG PET/MR imaging.

    Science.gov (United States)

    Schaarschmidt, Benedikt M; Sawicki, Lino M; Gomez, Benedikt; Grueneisen, Johannes; Hoiczyk, Mathias; Heusch, Philipp; Buchbender, Christian

    2016-01-01

    This study aims to compare staging results of (18)F-FDG PET/computed tomography (CT) and integrated PET/magnetic resonance (MR) in malignant pleural mesothelioma (MPM) patients and to investigate a potential apparent diffusion coefficient (ADC)/SUV correlation. Six patients with MPM underwent (18)F-FDG PET/CT and PET/MR including diffusion-weighted imaging. Thoracic TNM staging was performed for both modalities. SUV and ADC were assessed in therapy-naive pleural lesions. In thoracic TNM staging, no differences were found between PET/CT and PET/MR. An inverse correlation was observed between SUVmean and ADCmin (r=-0.63, P=.002). MPM can be staged using PET/MR. The inverse correlation ADC/SUV indicates that future research on multiparametric therapy response evaluation may be warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Direct Parametric Image Reconstruction in Reduced Parameter Space for Rapid Multi-Tracer PET Imaging.

    Science.gov (United States)

    Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu

    2015-02-12

    The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.

  20. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, R.; O'Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.G.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; Marsden, P.K.; Tatsch, K.; Hoekstra, C.J.; Visser, E.P.; Arends, B.; Verzijlbergen, F.J.; Zijlstra, J.M.; Comans, E.F.I.; Lammertsma, A.A.; Paans, A.M.; Willemsen, A.T.; Beyer, T.; Bockisch, A.; Schaefer-Prokop, C.; Delbeke, D.; Baum, R.P.; Chiti, A.; Krause, B.J.

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  1. Accuracy of Breast Density Estimation from Mammographic Images

    OpenAIRE

    Geeraert, N.; Klaus, R.; Bloch, Isabelle; Muller, S.; Bosmans, H

    2013-01-01

    International audience; Breast density has been defined as an important risk factor for the development of breast cancer but the mechanisms of the impact on breast cancer development remain unsolved. One of the main discussions is the definition of breast density. Traditionally breast density is derived by dividing the area of the fibroglandular tissue in the image by the area of the total breast. From a physics point of view the ratio of volumes is a much more representative measure of the d...

  2. Parametric diffusion tensor imaging of the breast.

    Science.gov (United States)

    Eyal, Erez; Shapiro-Feinberg, Myra; Furman-Haran, Edna; Grobgeld, Dov; Golan, Talia; Itzchak, Yacov; Catane, Raphael; Papa, Moshe; Degani, Hadassa

    2012-05-01

    To investigate the ability of parametric diffusion tensor imaging (DTI), applied at 3 Tesla, to dissect breast tissue architecture and evaluate breast lesions. All protocols were approved and a signed informed consent was obtained from all subjects. The study included 21 healthy women, 26 women with 33 malignant lesions, and 14 women with 20 benign lesions. Images were recorded at 3 Tesla with a protocol optimized for breast DTI at a spatial resolution of 1.9 × 1.9 × (2-2.5) mm3. Image processing algorithms and software, applied at pixel resolution, yielded vector maps of prime diffusion direction and parametric maps of the 3 orthogonal diffusion coefficients and of the fractional anisotropy and maximal anisotropy. The DTI-derived vector maps and parametric maps revealed the architecture of the entire mammary fibroglandular tissue and allowed a reliable detection of malignant lesions. Cancer lesions exhibited significantly lower values of the orthogonal diffusion coefficients, λ1, λ2, λ3, and of the maximal anisotropy index λ1-λ3 as compared with normal breast tissue (P architecture. Parametric maps of λ1 and λ1-λ3 facilitate the detection and diagnosis of breast cancer.

  3. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, O; Xhaferllari, I; Gaede, S [Western Univeristy, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Sykes, J; Butler, J [Lawson Health Research Institute, London, ON (United Kingdom); Wisenberg, G; Prato, F [Western Univeristy, London, ON (United Kingdom); Lawson Health Research Institute, London, ON (United Kingdom)

    2015-06-15

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  4. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  5. Molecular imaging of head and neck cancers. Perspectives of PET/MRI; Molekulare Bildgebung bei Kopf-ï]¿Hals-Tumoren. Perspektive der PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Stumpp, P.; Kahn, T. [Universitaetsklinikum Leipzig AoeR, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany); Purz, S.; Sabri, O. [Universitaetsklinikum Leipzig, Klinik und Poliklinik fuer Nuklearmedizin, Leipzig (Germany)

    2016-07-15

    The {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers ?The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. Currently, {sup 18}F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research. (orig.) [German] Die {sup 18}F-Fluordesoxyglukose-Positronenemissionstomographie-Computertomographie ({sup 18}F-FDG-PET-CT) hat ihren festen Stellenwert in der Diagnostik von Kopf-Hals-Tumoren. Seit einigen Jahren ist die PET-MRT als weitere hybride Bildgebungsmodalitaet verfuegbar. Bringt die PET-MRT Fortschritte bei der Diagnostik von Kopf-Hals-Tumoren ?Darstellung der diagnostischen Genauigkeit der bisherigen Bildgebungsmethoden CT, MRT und PET-CT anhand von Metaanalysen und Zusammenfassung der bisherigen Publikationen zur PET-MRT auf diesem Gebiet. Die PET-MRT zeigt in allen bisherigen Studien keine Ueberlegenheit bzgl. der diagnostischen Genauigkeit von Kopf-Hals-Tumoren. Sie kann jedoch durch die multiparametrische Diagnostik perspektivisch Beitraege zur Tumorcharakterisierung und damit moeglicherweise Voraussagen zum

  6. An alternative approach to histopathological validation of PET imaging for radiation therapy image-guidance: a proof of concept.

    Science.gov (United States)

    Axente, Marian; He, Jun; Bass, Christopher P; Sundaresan, Gobalakrishnan; Zweit, Jamal; Williamson, Jeffrey F; Pugachev, Andrei

    2014-02-01

    In radiotherapy, PET images can be used to guide the delivery of selectively escalated doses to biologically relevant tumour subvolumes. Validation of PET for such applications requires demonstration of spatial coincidence between PET tracer uptake pattern and the histopathologically confirmed target. This study introduces a novel approach to histopathological validation of PET image segmentation for radiotherapy guidance. Sequential tissue sections from surgically excised whole-tumour specimens were used to acquire full 3D-sets of both histopathological images (microscopy) and PET tracer distribution images (autoradiography). After these datasets were accurately registered, a full 3D autoradiographic distribution of PET tracer was reconstructed and used to obtain synthetic PET images (sPET) by simulating the image deterioration induced by processes involved in PET image formation. To illustrate the method, sPET images were used in this study to investigate spatial coincidence between high FDG uptake areas and the distribution of viable tissue in two small animal tumour models. The reconstructed 3D autoradiographic distribution of the PET tracer was spatially coherent, as indicated by the high average value of the normalised pixel-by-pixel correlation of intensities between successive slices (0.84 ± 0.05 and 0.94 ± 0.02). The loss of detail in the sPET images versus the 3D autoradiography was significant as indicated by Dice coefficient values corresponding to the two tumours (0 and 0.1 at 70% threshold). The maximum overlap between the FDG segmented volumes and the extent of the viable tissue as indicated by Dice coefficient values, was 0.8 for one tumour (for the image thresholded at 22% of max intensity) and 0.88 for the other (threshold of 14% of max intensity). It was demonstrated that the use of synthetic PET images for histopathological validation allows for bypassing a technically challenging and error-prone step of registering non-invasive PET images

  7. PET/CT and MRI in the imaging assessment of cervical cancer.

    Science.gov (United States)

    Kusmirek, Joanna; Robbins, Jessica; Allen, Hailey; Barroilhet, Lisa; Anderson, Bethany; Sadowski, Elizabeth A

    2015-10-01

    Imaging plays a central role in the evaluation of patients with cervical cancer and helps guide treatment decisions. The purpose of this pictorial review is to describe magnetic resonance (MR) imaging and positron emission tomography (PET)/computed tomography (CT) assessment of cervical cancer, including indications for imaging, important findings that may result in management change, as well as limitations of both modalities. The International Federation of Gynecology and Obstetrics cervical cancer staging system does not officially include imaging; however, the organization endorses the use of MR imaging and PET/CT in the management of patients with cervical cancer where these modalities are available. MR imaging provides the best visualization of the primary tumor and extent of soft tissue disease. PET/CT is recommended for assessment of nodal involvement, as well as distant metastases. Both MR imaging and PET/CT are used to follow patients post-treatment to assess for recurrence. This review focuses on the current MR imaging and PET/CT protocols, the utility of these modalities in assessing primary tumors and recurrences, with emphasis on imaging findings which change management and on imaging pitfalls to avoid. It is important to be familiar with the MR imaging and PET/CT appearance of the primary tumor and metastasis, as well as the imaging pitfalls, so that an accurate assessment of disease burden is made prior to treatment.

  8. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner.

    Science.gov (United States)

    Visvikis, D; Griffiths, D; Costa, D C; Bomanji, J; Ell, P J

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions.

  9. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [CHU Morvan, U650 INSERM, Laboratoire de Traitement de l' Information Medicale (LaTIM), Brest (France); Griffiths, D. [Lister Healthcare, London PET Centre, London (United Kingdom); Costa, D.C. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom); HPP Medicina Molecular, SA Porto (Portugal); Bomanji, J.; Ell, P.J. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom)

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions. (orig.)

  10. Automatic delineation of brain regions on MRI and PET images from the pig

    DEFF Research Database (Denmark)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M

    2018-01-01

    BACKGROUND: The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. COMPARISON WITH EXISTING METHODS......: Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. NEW METHOD: A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer....... RESULTS: MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same...

  11. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer

    DEFF Research Database (Denmark)

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe

    2016-01-01

    (NODAGA). The resulting NODAGA-SCH1 was then radiolabeled with (68)Ga and evaluated for PET imaging of PCa. Compared with (68)Ga-NODAGA-JMV594 probe, (68)Ga-NODAGA-SCH1 exhibited excellent PET/CT imaging properties on PC-3 tumor-bearing nude mice, such as high tumor uptake (5.80 ± 0.42 vs 3.78 ± 0.28%ID...... the kidney and the liver. Overall, (68)Ga-NODAGA-SCH1 showed promising in vivo properties and is a promising candidate for translation into clinical PET-imaging of PCa patients.......Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high...

  12. PET/MR Imaging: New Frontier in Alzheimer's Disease and Other Dementias

    Directory of Open Access Journals (Sweden)

    Xin Y. Zhang

    2017-11-01

    Full Text Available Alzheimer's disease (AD is the most common form of dementia; a progressive neurodegenerative disease that currently lacks an effective treatment option. Early and accurate diagnosis, in addition to quick elimination of differential diagnosis, allows us to provide timely treatments that delay the progression of AD. Imaging plays an important role for the early diagnosis of AD. The newly emerging PET/MR imaging strategies integrate the advantages of PET and MR to diagnose and monitor AD. This review introduces the development of PET/MR imaging systems, technical considerations of PET/MR imaging, special considerations of PET/MR in AD, and the system's potential clinical applications and future perspectives in AD.

  13. FDG PET/MR in initial staging of sarcoma: Initial experience and comparison with conventional imaging.

    Science.gov (United States)

    Platzek, Ivan; Beuthien-Baumann, Bettina; Schramm, Georg; Maus, Jens; Laniado, Michael; Kotzerke, Jörg; van den Hoff, Jörg; Schuler, Markus

    To assess the feasibility of positron emission tomography/magnetic resonance imaging (PET/MR) with 18F-fluordeoxyglucose (FDG) for initial staging of sarcoma. Twenty-nine patients with sarcoma were included in this study. Weighted kappa (κ) was used to assess the agreement between PET/MR and conventional imaging (CT and MR). The accuracy of PET/MR and conventional imaging for distant metastases was compared using receiver operating characteristic (ROC) analysis. T and M stage were identical for PET/MR and conventional modalities in all patients (κ=1). N stage was identical for 28/29 patients (κ=0.65). FDG PET/MR shows excellent agreement with the currently preferred imaging methods (CT and MR) in initial staging of sarcoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models

    DEFF Research Database (Denmark)

    Pérez-Medina, Carlos; Binderup, Tina; Lobatto, Mark E

    2016-01-01

    OBJECTIVES: The goal of this study was to develop and validate a noninvasive imaging tool to visualize the in vivo behavior of high-density lipoprotein (HDL) by using positron emission tomography (PET), with an emphasis on its plaque-targeting abilities. BACKGROUND: HDL is a natural nanoparticle......,2-distearoyl-sn-glycero-3-phosphoethanolamine-deferoxamine B). Biodistribution and plaque targeting of radiolabeled HDL were studied in established murine, rabbit, and porcine atherosclerosis models by using PET combined with computed tomography (PET/CT) imaging or PET