WorldWideScience

Sample records for breast imaging systems

  1. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system...

  2. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  3. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  4. Value of breast imaging reporting and data system in Chinese breast cancer screening

    International Nuclear Information System (INIS)

    Objective: To study the value of breast imaging reporting and data system (BI-RADS) in Chinese breast cancer screening. Methods: A total number of 3483 women participated in breast cancer screening with mammography in Hexi district in Tianjin from August to December 2009, which was organized by ministry of public health. BI-RADS assessment categories and recommendations were compared with histological findings. The precision, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Results: Among 3483 screening mammography cases, 267 were almost entirely fat breast, 1245 were scattered fibroglandular, 1890 were dense and 81 extremely dense. There were 1011 patients (29.0%) with category 1, 1741 (50.0%) with category 2, 383 (11.0%) with category 3, 59 patients (1.7%) with category 4 and 16 (0.5%) with category 5 according to BI-RADS assessment categories. Totally, 71 women with 77 lesions were confirmed by histological examinations. There were 29 malignant and 48 benign lesions. The diagnostic precision, sensitivity, specificity of' BI-RADS were 63.6% (49/77), 93.1% (27/29) and 45.8% (22/48). The general PPV of BI-RADS was 50.9% (27/53). The PPV of categories 0.4, 5 were 25.0% (1/4), 36.4% (12/33) and 87.5% (14/16). The NPV of categories 2 and 3 were 90.9% (10/11), 100.0% (12/12). Conclusions: BI-RADS is of much value in assessing the breast malignancy. It is applicable in Chinese breast cancer screening. (authors)

  5. Geometric calibration for a SPECT system dedicated to breast imaging

    Institute of Scientific and Technical Information of China (English)

    WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci

    2012-01-01

    Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.

  6. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwav...... and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined....

  7. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  8. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  9. Evolution of Imaging in Breast Cancer.

    Science.gov (United States)

    Garcia, Evelyn M; Crowley, James; Hagan, Catherine; Atkinson, Lisa L

    2016-06-01

    The following topics are discussed in this article. A historical review of the evolution of breast cancer imaging from thermography through digital breast tomosynthesis, molecular breast imaging, and advanced breast magnetic resonance imaging. Discussion of multiple clinical trials, their strengths, and weaknesses. Historical perspective on the Mammography Quality Standards Act and its relationship with development and implementation of the Breast Imaging-Reporting and Data System (BI-RADS). PMID:27029017

  10. Phantom experiments with a microwave imaging system for breast-cancer screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging is emerging as a promising technique for breast-cancer detection. In this paper, the microwave imaging system currently being developed at the Technical University of Denmark is introduced. This system consists of 32 antennas positioned in a cylindrical setup, each equipped...

  11. Optical breast imaging

    NARCIS (Netherlands)

    van de Ven, S.M.W.Y.

    2011-01-01

    Optical breast imaging uses near-infrared light to assess the optical properties of breast tissue. It can be performed relying on intrinsic breast tissue contrast alone or with the use of exogenous imaging agents that accumulate at the tumor site. Different tissue components have unique scattering a

  12. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E. E.; Sellers, T. A.; Lu, B. [Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center, Tampa, Florida 33612 (United States); Heine, J. J. [Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these

  13. Real-time optoacoustic imaging of breast cancer using an interleaved two laser imaging system coregistered with ultrasound

    Science.gov (United States)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Nadvoretsky, Vyacheslav; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2010-02-01

    We present results from a clinical case study on imaging breast cancer using a real-time interleaved two laser optoacoustic imaging system co-registered with ultrasound. The present version of Laser Optoacoustic Ultrasonic Imaging System (LOUIS) utilizes a commercial linear ultrasonic transducer array, which has been modified to include two parallel rectangular optical bundles, to operate in both ultrasonic (US) and optoacoustic (OA) modes. In OA mode, the images from two optical wavelengths (755 nm and 1064 nm) that provide opposite contrasts for optical absorption of oxygenated vs deoxygenated blood can be displayed simultaneously at a maximum rate of 20 Hz. The real-time aspect of the system permits probe manipulations that can assist in the detection of the lesion. The results show the ability of LOUIS to co-register regions of high absorption seen in OA images with US images collected at the same location with the dual modality probe. The dual wavelength results demonstrate that LOUIS can potentially provide breast cancer diagnostics based on different intensities of OA images of the lesion obtained at 755 nm and 1064 nm. We also present new data processing based on deconvolution of the LOUIS impulse response that helps recover original optoacoustic pressure profiles. Finally, we demonstrate the image analysis tool that provides automatic detection of the tumor boundary and quantitative metrics of the optoacoustic image quality. Using a blood vessel phantom submerged in a tissue-like milky background solution we show that the image contrast is minimally affected by the phantom distance from the LOUIS probe until about 60-65 mm. We suggest using the image contrast for quantitative assessment of an OA image of a breast lesion, as a part of the breast cancer diagnostics procedure.

  14. Serum calcium levels, TRPM7, TRPC1, microcalcifications, and breast cancer using breast imaging reporting and data system scores

    Directory of Open Access Journals (Sweden)

    Mandavilli S

    2012-12-01

    Full Text Available Shravya Mandavilli,1 Brij B Singh,2 Abe E Sahmoun11Department of Internal Medicine, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA; 2Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USABackground: An association between higher serum calcium (Ca2+ levels and breast cancer has been previously reported. However, little is known regarding the relationship between serum Ca2+ levels and the expression of Ca2+ channels in the presence of breast microcalcifications.Methods: A retrospective analysis of women newly diagnosed with breast microcalcifications was performed based on the Breast Imaging Reporting and Data System (BI-RADS. The expression of TRPC1, TRPC3, and TRPM7 using normal biopsy without microcalcifications (controls and infiltrating ductal carcinoma with microcalcifications was evaluated.Results: Data on 138 women were analyzed. Seventy percent of women had a BI-RADS score (1–3 corresponding to benign disease. Seventy-six percent of women with a BI-RADS score (4 or 5 were diagnosed with breast cancer, 56% were cancers in situ, and 93% were infiltrating ductal carcinomas. No difference in the distribution of corrected serum Ca2+ levels between BI-RADS scores (1–3 and BI-RADS scores (4–5 (P = 0.82 was observed. Serum Ca2+ levels were similar in women without cancer and women diagnosed with breast cancer (P = 0.94. However, the expression of TRPM7 and TRPC1, but not TRPC3, Ca2+ channels were increased in infiltrating ductal carcinoma samples with microcalcifications when compared with age-matched controls without calcification or cancer.Conclusion: We observed an increase in the expression of TRPM7 and TRPC1 Ca2+ channels in infiltrating ductal carcinoma samples with microcalcifications, whereas no change in serum Ca2+ levels was observed. Together these data suggest that increased expression of these channels might

  15. Validity of breast-specific gamma imaging for Breast Imaging Reporting and Data System 4 lesions on mammography and/or ultrasound

    Science.gov (United States)

    Cho, Min Jeng; Yu, Yeong Beom; Park, Kyoung Sik; Chung, Hyun Woo; So, Young; Choi, Nami; Kim, Mi Young

    2016-01-01

    Purpose The purpose of this study was to assess the breast-specific gamma imaging (BSGI) in Breast Imaging Reporting and Data System (BI-RADS) 4 lesions on mammography and/or ultrasound. Methods We performed a retrospective review of 162 patients who underwent BSGI in BI-RADS 4 lesions on mammography and/or ultrasound. Results Of the 162 breast lesions, 66 were malignant tumors and 96 were benign tumors. Sensitivity and specificity of BSGI were 90.9% and 78.1%, and positive predictive value and negative predictive value were 74.1% and 92.6%. The sensitivity or specificity of mammography and ultrasound were 74.2% and 56.3% and 87.9% and 19.8%, respectively. The sensitivity and specificity of BSGI for breast lesions ≤1 cm were 88.0% and 86.8%, while the values of beast lesions >1 cm were 92.7% and 61.5%. The sensitivity or specificity of BSGI and mammography for patients with dense breasts were 92.0% and 81.3% and 72.0% and 50.0%, respectively. 26 patients showed neither a nodule nor microcalcification on ultrasound, but showed suspicious calcification on mammography. The sensitivity and specificity of BSGI with microcalcification only lesion were 75.0% and 94.4%. Conclusion This study demonstrated that BSGI had shown high sensitivity and specificity, as well as positive and negative predictive values in BI-RADS 4 lesions on ultrasound and/or mammography. BSGI showed excellent results in dense breasts, in lesions that are less than 1 cm in size and lesions with suspicious microcalcification only. PMID:27073789

  16. Analysis of breast imaging reporting and data system category 4 complex cystic masses of the breast: Do all the complex cystic breast masses merit a biopsy?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Yeon; Chang, Yun Woo [Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2013-07-15

    To investigate whether sonographic findings can predict malignancy in complex echoic breast masses using the Breast Imaging Reporting and Data System (BI-RADS) lexicon and to demonstrate the need for biopsy recommendations for all complex breast masses. 135 pathologically proven complex echoic masses detected on sonography were identified. We retrospectively reviewed the sonographic findings according to the BI-RADS lexicon which include shape, margin, orientation, lesion boundary, posterior acoustic features, and vascularity. The sonographic findings were correlated with the pathology and mammographic findings. Differentiation between the sonographic appearance of benign and malignant complex cystic lesions was evaluated using the chi-square test or the Mann-Whitney U test. 59.3% (80/135) were benign lesions and 40.7% (55/135) were malignant lesions. Malignant lesions were correlated with irregular (p < 0.001), nonparallel (p = 0.023), noncircumscribed (p < 0.001), echogenic halo (p < 0.001), increased vascularity (p = 0.001) and large size (p = 0.002) compared to benign lesions. However, 12.7% (7/55) of benign looking complex cystic masses were proved to be malignant. All seven lesions had malignant microcalcifications or abnormality on mammography. Using the sonographic BI-RADS lexicon can be useful for differentiating between malignant and benign complex cystic breast masses. Notably, 12.7% of the complex cystic lesions showing a benign appearance on sonography were pathologically proven malignant. Therefore, radiologist should recommend biopsy for complex cystic lesions.

  17. Analysis of breast imaging reporting and data system category 4 complex cystic masses of the breast: Do all the complex cystic breast masses merit a biopsy?

    International Nuclear Information System (INIS)

    To investigate whether sonographic findings can predict malignancy in complex echoic breast masses using the Breast Imaging Reporting and Data System (BI-RADS) lexicon and to demonstrate the need for biopsy recommendations for all complex breast masses. 135 pathologically proven complex echoic masses detected on sonography were identified. We retrospectively reviewed the sonographic findings according to the BI-RADS lexicon which include shape, margin, orientation, lesion boundary, posterior acoustic features, and vascularity. The sonographic findings were correlated with the pathology and mammographic findings. Differentiation between the sonographic appearance of benign and malignant complex cystic lesions was evaluated using the chi-square test or the Mann-Whitney U test. 59.3% (80/135) were benign lesions and 40.7% (55/135) were malignant lesions. Malignant lesions were correlated with irregular (p < 0.001), nonparallel (p = 0.023), noncircumscribed (p < 0.001), echogenic halo (p < 0.001), increased vascularity (p = 0.001) and large size (p = 0.002) compared to benign lesions. However, 12.7% (7/55) of benign looking complex cystic masses were proved to be malignant. All seven lesions had malignant microcalcifications or abnormality on mammography. Using the sonographic BI-RADS lexicon can be useful for differentiating between malignant and benign complex cystic breast masses. Notably, 12.7% of the complex cystic lesions showing a benign appearance on sonography were pathologically proven malignant. Therefore, radiologist should recommend biopsy for complex cystic lesions.

  18. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kowalchik, Kristin V. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Vallow, Laura A., E-mail: vallow.laura@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); McDonough, Michelle [Department of Radiology, Mayo Clinic, Jacksonville, Florida (United States); Thomas, Colleen S.; Heckman, Michael G. [Section of Biostatistics, Mayo Clinic, Jacksonville, Florida (United States); Peterson, Jennifer L. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Adkisson, Cameron D. [Department of General Surgery, Mayo Clinic, Jacksonville, Florida (United States); Serago, Christopher [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); McLaughlin, Sarah A. [Department of General Surgery, Mayo Clinic, Jacksonville, Florida (United States)

    2013-09-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  19. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  20. Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis.

    Science.gov (United States)

    Opieliński, Krzysztof J; Pruchnicki, Piotr; Gudra, Tadeusz; Podgórski, Przemysław; Kurcz, Jacek; Kraśnicki, Tomasz; Sąsiadek, Marek; Majewski, Jarosław

    2015-12-01

    Nowadays, in the era of common computerization, transmission and reflection methods are intensively developed in addition to improving classical ultrasound methods (US) for imaging of tissue structure, in particular ultrasound transmission tomography UTT (analogous to computed tomography CT which uses X-rays) and reflection tomography URT (based on the synthetic aperture method used in radar imaging techniques). This paper presents and analyses the results of ultrasound transmission tomography imaging of the internal structure of the female breast biopsy phantom CIRS Model 052A and the results of the ultrasound reflection tomography imaging of a wire sample. Imaging was performed using a multi-modal ultrasound computerized tomography system developed with the participation of a private investor. The results were compared with the results of imaging obtained using dual energy CT, MR mammography and conventional US method. The obtained results indicate that the developed UTT and URT methods, after the acceleration of the scanning process, thus enabling in vivo examination, may be successfully used for detection and detailed characterization of breast lesions in women. PMID:25759234

  1. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  2. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O' Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

    2013-01-15

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images

  3. Evaluation of breast microcalcifications according to breast imaging reporting and data system criteria and Le Gal's classification

    Energy Technology Data Exchange (ETDEWEB)

    Guelsuen, Meltem; Demirkazik, Figen Basaran E-mail: fdemirka@hacettepe.edu.com; Ariyuerek, Macit

    2003-09-01

    Introduction/objective: Our aim was to evaluate the positive predictive value (PPV) of the analysis of breast microcalcifications according to Breast Imaging Reporting and Data System (BI-RADS) and Le Gal's classification in identification of malignancy, and to assess the interobserver agreement using these criteria. Methods and material: Eighty-two patients with breast microcalcifications on their screening mammograms underwent surgical excision after a needle localization at our institution between July 1993 and June 2000. The mammograms were examined by two experienced mammographers retrospectively and independently. Each observer noted the morphology, distribution, associated findings, final assessment categories of microcalcifications according to BI-RADS criteria and the morphologic type of microcalcifications according to Le Gal's classification. The PPVs for each radiologist and the interobserver agreement were determined by using these data and histologic findings. Results: Histopathologic results yielded malignancy in 25 (30%) cases. The evaluation of microcalcifications according to BI-RADS criteria revealed PPVs of 17% and 25% for category 4 lesions, and 68% and 44% for categoy 5 lesions. In the assessment of microcalcifications according to Le Gal's classification, the PPV of type 4 lesions was 45% (for both observers), whereas the PPVs of type 5 lesions were 70% and 50%. The interobserver agreement was fair in evaluation of morphology of microcalcifications ({kappa}: 0.31), distribution of microcalcifications ({kappa}: 0.29), final assessment categories ({kappa}: 0.27), and moderate in evaluation of associated findings ({kappa}: 0.48) by using BI-RADS lexicon. It was higher for the assessment of milk of calcium and round microcalcifications than other typically benign microcalcifications, and for fine linear or fine linear branching microcalifications than other probably malignant calcifications. There was a fair interobserver agreement

  4. Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, T.; Krozer, V.;

    2010-01-01

    An active microwave-imaging system for non-invasive detection of breast cancer based on dedicated hardware is described. Thirty-two transceiving channels are used to measure the amplitude and phase of the scattered fields in the three-dimensional (3D) imaging domain using electronic scanning. The...

  5. Design and characterization of a digital image acquisition system for whole-specimen breast histopathology

    Science.gov (United States)

    Clarke, Gina M.; Peressotti, Chris; Mawdsley, Gordon E.; Yaffe, Martin J.

    2006-10-01

    We have developed a digital histopathology imaging system capable of producing a three-dimensional (3D) representation of histopathology from an entire lumpectomy specimen. The system has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. A scanning light microscope was modified to allow digital photomicrography of a stack of large (up to 120 × 170 mm2) histology slides cut serially through the entire specimen. The images are registered and displayed in 2D and 3D. The design of the system, which reduces or eliminates the appearance of 'tiling' and 'seam' artefacts inherent in the scanning method, is described and its resolution, contrast/noise and coverage properties are characterized through measurements of the modulation transfer function (MTF), depth of field (DOF) and signal difference to noise ratio (SDNR). The imaging task requires a lateral resolution of 5 µm, an SDNR of 5 between relevant features, 'tiling artefact' at a level below the detectability threshold of the eye, and 'seam artefact' of less than 5-10 µm. The tests demonstrate that the system is largely adequate for the imaging task, although further optimizations are required to reduce the degradation of coverage incurred by seam artefact.

  6. Design and characterization of a digital image acquisition system for whole-specimen breast histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Gina M [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Peressotti, Chris [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Mawdsley, Gordon E [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Yaffe, Martin J [Imaging Research Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2006-10-21

    We have developed a digital histopathology imaging system capable of producing a three-dimensional (3D) representation of histopathology from an entire lumpectomy specimen. The system has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. A scanning light microscope was modified to allow digital photomicrography of a stack of large (up to 120 x 170 mm{sup 2}) histology slides cut serially through the entire specimen. The images are registered and displayed in 2D and 3D. The design of the system, which reduces or eliminates the appearance of 'tiling' and 'seam' artefacts inherent in the scanning method, is described and its resolution, contrast/noise and coverage properties are characterized through measurements of the modulation transfer function (MTF), depth of field (DOF) and signal difference to noise ratio (SDNR). The imaging task requires a lateral resolution of 5 {mu}m, an SDNR of 5 between relevant features, 'tiling artefact' at a level below the detectability threshold of the eye, and 'seam artefact' of less than 5-10 {mu}m. The tests demonstrate that the system is largely adequate for the imaging task, although further optimizations are required to reduce the degradation of coverage incurred by seam artefact.

  7. Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions?

    Science.gov (United States)

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To build and evaluate predictive models for contrast-enhanced ultrasound (CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system (BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve (ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant (P biopsy, and provide accurate BI-RADS classification. PMID:27358688

  8. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  9. Imaging-Assisted Large-Format Breast Pathology: Program Rationale and Development in a Nonprofit Health System in the United States

    Directory of Open Access Journals (Sweden)

    F. Lee Tucker

    2012-01-01

    Full Text Available Modern breast imaging, including magnetic resonance imaging, provides an increasingly clear depiction of breast cancer extent, often with suboptimal pathologic confirmation. Pathologic findings guide management decisions, and small increments in reported tumor characteristics may rationalize significant changes in therapy and staging. Pathologic techniques to grossly examine resected breast tissue have changed little during this era of improved breast imaging and still rely primarily on the techniques of gross inspection and specimen palpation. Only limited imaging information is typically conveyed to pathologists, typically in the form of wire-localization images from breast-conserving procedures. Conventional techniques of specimen dissection and section submission destroy the three-dimensional integrity of the breast anatomy and tumor distribution. These traditional methods of breast specimen examination impose unnecessary limitations on correlation with imaging studies, measurement of cancer extent, multifocality, and margin distance. Improvements in pathologic diagnosis, reporting, and correlation of breast cancer characteristics can be achieved by integrating breast imagers into the specimen examination process and the use of large-format sections which preserve local anatomy. This paper describes the successful creation of a large-format pathology program to routinely serve all patients in a busy interdisciplinary breast center associated with a community-based nonprofit health system in the United States.

  10. Impact of high energy resolution detectors on the performance of a PET system dedicated to breast cancer imaging.

    Science.gov (United States)

    Levin, Craig S; Foudray, Angela M K; Habte, Frezghi

    2006-01-01

    We are developing a high resolution, high sensitivity PET camera dedicated to breast cancer imaging. We are studying two novel detector technologies for this imaging system: a scintillation detector comprising layers of small lutetium oxyorthosilicate (LSO) crystals coupled to new position sensitive avalanche photodiodes (PSAPDs), and a pure semiconductor detector comprising cadmium zinc telluride (CZT) crystal slabs with thin anode and cathode strips deposited in orthogonal directions on either side of each slab. Both detectors achieve 1 mm spatial resolution with 3-5 mm directly measured photon interaction depth resolution, which promotes uniform reconstructed spatial resolution throughout a compact, breast-size field of view. Both detector types also achieve outstanding energy resolution (4 kcps for 200 microCi in a simulated breast phantom. PMID:17645990

  11. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could possibly be

  12. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: Interobserver variability in the description and assignment of BI-RADS category

    Energy Technology Data Exchange (ETDEWEB)

    El Khoury, Mona, E-mail: monelkhoury@gmail.com [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada); Lalonde, Lucie; David, Julie; Labelle, Maude [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada); Mesurolle, Benoit [Centre Hospitalier Universitaire de McGill, Cedar Breast Centre, Radiology Department, 687 Pine Avenue West, Montreal, QC H3A1A1 (Canada); Trop, Isabelle [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada)

    2015-01-15

    Highlights: • The use of BI-RADS lexicon in interpreting breast MRI examinations is beneficial. • Our study shows: (a) moderate to substantial agreement between observers and (b) better agreement in interpreting mass than non-mass enhancement (NME). • Careful analysis of the NME should be done to help detect cancer as early as possible. - Abstract: Purpose: To retrospectively evaluate interobserver variability between breast radiologists when describing abnormal enhancement on breast MR examinations and assigning a BI-RADS category using the Breast Imaging Reporting and Data System (BI-RADS) terminology. Materials and methods: Five breast radiologists blinded to patients’ medical history and pathologic results retrospectively and independently reviewed 257 abnormal areas of enhancement on breast MRI performed in 173 women. Each radiologist described the focal enhancement using BI-RADS terminology and assigned a final BI-RADS category. Krippendorff's α coefficient of agreement was used to asses interobserver variability. Results: All radiologists agreed on the morphology of enhancement in 183/257 (71%) lesions, yielding a substantial agreement (Krippendorff's α = 0.71). Moderate agreement was obtained for mass descriptors – shape, margins and internal enhancement – (α = 0.55, 0.51 and 0.45 respectively) and NME (non-mass enhancement) descriptors – distribution and internal enhancement – (α = 0.54 and 0.43). Overall substantial agreement was obtained for BI-RADS category assignment (α = 0.71). It was however only moderate (α = 0.38) for NME compared to mass (α = 0.80). Conclusion: Our study shows good agreement in describing mass and NME on a breast MR examination but a better agreement in predicting malignancy for mass than NME.

  13. Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Littrup, P J; Duric, N; Azevedo, S; Chambers, D; Candy, J V; Johnson, S; Auner, G; Rather, J; Holsapple, E T

    2001-09-07

    Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough. Improved tissue characterization could result in reduction of the estimated one million benign biopsies each year in the United States, costing up to several billion dollars. Most breast calcifications are benign and comprise-80% of stereotactic biopsies guided by mammography. Ultrasound has the capability of finding some groups of calcifications, but further improvements in resolution should also address tissue characterization to define the soft tissue filling of ducts by DCIS. In this manner, CURE may be able to more accurately identify the malignant calcifications associated with progression of DCIS or early cancers. Currently, high-resolution US images of the breast are performed in the reflection mode at higher frequencies, which also limits depth of penetration. Reconstruction of reflection ultrasound images relies upon acoustic impedance differences in the tissue and includes only direct backscatter of the ultrasound signal. Resolution and tissue contrast of current US continues to improve with denser transducer arrays and image

  14. How to improve your breast cancer program: Standardized reporting using the new American College of Radiology Breast Imaging-Reporting and Data System

    International Nuclear Information System (INIS)

    In the USA, the use of the American College of Radiology Breast Imaging-Reporting and Data System (ACR BI-RADS) has served not only as a quality assurance tool and guide to standardizing breast imaging reports but has also improved communication between referring physicians, researchers, and patients. In fact, in the USA, the Mammography Quality Standards Act of 1997 requires that all mammograms be assigned a BI-RADS category based on the finding of most concern. In this manuscript, we aim to review the recommendations provided in the 4th edition of the ACR BI-RADS for mammography, USG, and MRI. We also review the major controversies surrounding the use of ACR BI-RADS

  15. Clinical Report on the First Prototype of a Photoacoustic Tomography System with Dual Illumination for Breast Cancer Imaging.

    Directory of Open Access Journals (Sweden)

    Elham Fakhrejahani

    Full Text Available Photoacoustic tomography is a recently developed imaging modality that can provide high spatial-resolution images of hemoglobin distribution in tissues such as the breast. Because breast cancer is an angiogenesis-dependent type of malignancy, we evaluated the clinical acceptability of breast tissue images produced using our first prototype photoacoustic mammography (PAM system in patients with known cancer. Post-excisionally, histological sections of the tumors were stained immunohistochemically (IHC for CD31 (an endothelial marker and carbonic anhydrase IX (CAIX (a marker of hypoxia. Whole-slide scanning and image analyses were used to evaluate the tumor microvessel distribution pattern and to calculate the total vascular perimeter (TVP/area for each lesion. In this clinical study, 42 lesions were primarily scanned using PAM preoperatively, three of which were reported to be benign and were excluded from statistical analysis. Images were produced for 29 out of 39 cancers (visibility rate = 74.4% at the median depth of 26.5 (3.25-51.2 mm. Age, menopausal status, body mass index, history of neoadjuvant treatment, clinical stage and histological tumor angiogenesis markers did not seem to affect the visibility. The oxygen saturation level in all of the measured lesions was lower than in the subcutaneous counterpart vessels (Wilcoxon test, p value<0.001, as well as in the counterpart contralateral normal breast region of interest (ROI (Wilcoxon test, p value = 0.001. Although the oxygen saturation level was not statistically significant between CAIX-positive vs. -negative cases, lesional TVP/area showed a positive correlation with the oxygen saturation level only in the group that had received therapy before PAM. In conclusion, the vascular and oxygenation data obtained by PAM have great potential for identifying functional features of breast tumors.

  16. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    Science.gov (United States)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  17. Molecular breast imaging. An update

    International Nuclear Information System (INIS)

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy (1H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging (23Na-MRI), phosphorus spectroscopy (31P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.)

  18. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, D; Malhotra, H; French, S [Roswell Park Cancer Institute, Buffalo, NY (United States); Hoffmann, K [Neurosurgery at SUNY at Buffalo, Buffalo, NY (United States); Merrow, C [Bassett Healthcare, Oneonta, NY (United States)

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could

  19. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  20. Sentinel lymph node detection in breast cancer patients using surgical navigation system based on fluorescence molecular imaging technology

    Science.gov (United States)

    Chi, Chongwei; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Tian, Jie

    2015-03-01

    Introduction: Precision and personalization treatments are expected to be effective methods for early stage cancer studies. Breast cancer is a major threat to women's health and sentinel lymph node biopsy (SLNB) is an effective method to realize precision and personalized treatment for axillary lymph node (ALN) negative patients. In this study, we developed a surgical navigation system (SNS) based on optical molecular imaging technology for the precise detection of the sentinel lymph node (SLN) in breast cancer patients. This approach helps surgeons in precise positioning during surgery. Methods: The SNS was mainly based on the technology of optical molecular imaging. A novel optical path has been designed in our hardware system and a feature-matching algorithm has been devised to achieve rapid fluorescence and color image registration fusion. Ten in vivo studies of SLN detection in rabbits using indocyanine green (ICG) and blue dye were executed for system evaluation and 8 breast cancer patients accepted the combination method for therapy. Results: The detection rate of the combination method was 100% and an average of 2.6 SLNs was found in all patients. Our results showed that the method of using SNS to detect SLN has the potential to promote its application. Conclusion: The advantage of this system is the real-time tracing of lymph flow in a one-step procedure. The results demonstrated the feasibility of the system for providing accurate location and reliable treatment for surgeons. Our approach delivers valuable information and facilitates more detailed exploration for image-guided surgery research.

  1. Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Kim, Oleksiy S.; Meincke, Peter

    2009-01-01

    The microwave imaging system currently being developed at the Technical University of Denmark is described and its performance tested on simulated data. The system uses an iterative Newton-based imaging algorithm for reconstructing the images in conjunction with an efficient method-of-moments sol...

  2. The Breast Imaging Reporting and Data System (BI-RADS) in the Dutch breast cancer screening programme: its role as an assessment and stratification tool

    International Nuclear Information System (INIS)

    To assess the suitability of the Breast Imaging Reporting and Data System (BI-RADS) as a quality assessment tool in the Dutch breast cancer screening programme. The data of 93,793 screened women in the Amsterdam screening region (November 2005-July 2006) were reviewed. BI-RADS categories, work-up, age, final diagnosis and final TNM classification were available from the screening registry. Interval cancers were obtained through linkage with the cancer registry. BI-RADS was introduced as a pilot in the Amsterdam region before the nationwide introduction of digital mammography (2009-2010). A total of 1,559 women were referred to hospital (referral rate 1.7 %). Breast cancer was diagnosed in 485 women (detection rate 0.52 %); 253 interval cancers were reported, yielding a programme sensitivity of 66 % and specificity of 99 %. BI-RADS 0 had a lower positive predictive value (PPV, 14.1 %) than BI-RADS 4 (39.1 %) and BI-RADS 5 (92.9 %; P < 0.0001). The number of invasive procedures and tumour size also differed significantly between BI-RADS categories (P < 0.0001). The significant differences in PPV, invasive procedures and tumour size match with stratification into BI-RADS categories. It revealed inter-observer variability between screening radiologists and can thus be used as a quality assessment tool in screening and as a stratification tool in diagnostic work-up. (orig.)

  3. A Quantitative Diffuse Reflectance Imaging (QDRI System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Brandon S Nichols

    Full Text Available In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS, our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI system utilizing a wide-field (imaging area = 17 cm(2 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1 and scattering (μs' = 7.0-9.7 cm(-1 coefficients. Very low inter-channel and CCD crosstalk was observed (2% max when used on turbid media (including breast tissue. A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm of an entire margin (area = 17 cm(2 in 13.8 minutes (1.23 cm(2/min. Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative

  4. Multispectral breast imaging using a ten-wavelength, 64x64 source/detector channels silicon photodiode-based diffuse optical tomography system

    International Nuclear Information System (INIS)

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography

  5. Activity-based costing via an information system: an application created for a breast imaging center.

    Science.gov (United States)

    Hawkins, H; Langer, J; Padua, E; Reaves, J

    2001-06-01

    Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis.

  6. Activity-based costing via an information system: an application created for a breast imaging center.

    Science.gov (United States)

    Hawkins, H; Langer, J; Padua, E; Reaves, J

    2001-06-01

    Activity-based costing (ABC) is a process that enables the estimation of the cost of producing a product or service. More accurate than traditional charge-based approaches, it emphasizes analysis of processes, and more specific identification of both direct and indirect costs. This accuracy is essential in today's healthcare environment, in which managed care organizations necessitate responsible and accountable costing. However, to be successfully utilized, it requires time, effort, expertise, and support. Data collection can be tedious and expensive. By integrating ABC with information management (IM) and systems (IS), organizations can take advantage of the process orientation of both, extend and improve ABC, and decrease resource utilization for ABC projects. In our case study, we have examined the process of a multidisciplinary breast center. We have mapped the constituent activities and established cost drivers. This information has been structured and included in our information system database for subsequent analysis. PMID:11442093

  7. Minimal elastographic modeling of breast cancer for model based tumor detection in a digital image elasto tomography (DIET) system

    Science.gov (United States)

    Lotz, Thomas F.; Muller, Natalie; Hann, Christopher E.; Chase, J. Geoffrey

    2011-03-01

    Digital Image Elasto Tomography (DIET) is a non-invasive breast cancer screening technology that images the surface motion of a breast under harmonic mechanical actuation. A new approach capturing the dynamics and characteristics of tumor behavior is presented. A simple mechanical model of the breast is used to identify a transfer function relating the input harmonic actuation to the output surface displacements using imaging data of a silicone phantom. Areas of higher stiffness cause significant changes of damping and resonant frequencies as seen in the resulting Bode plots. A case study on a healthy and tumor silicone breast phantom shows the potential for this model-based method to clearly distinguish cancerous and healthy tissue as well as correctly predicting the tumor position.

  8. Breast Imaging after Breast Augmentation with Autologous Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Seo, Bo Kyung; Shim, Eddeum; Song, Sung Eun; Cho, Kyu Ran [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Yoon, Eul Sik [Korea University Ansan Hospital, Ansan (Korea, Republic of); Woo, Ok Hee [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  9. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Sennett, Charlene A.; Giger, Maryellen L. [Department of Radiology, MC2026, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  10. Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach

    Science.gov (United States)

    Hu, Yue-Houng; Zhao, Bo; Zhao, Wei

    2008-01-01

    Digital breast tomosynthesis (DBT) is a three-dimensional (3D) x-ray imaging modality that reconstructs image slices parallel to the detector plane. Image acquisition is performed using a limited angular range (less than 50 degrees) and a limited number of projection views (less than 50 views). Due to incomplete data sampling, image artifacts are unavoidable in DBT. In this preliminary study, the image artifacts in DBT were investigated systematically using a linear system approximation. A cascaded linear system model of DBT was developed to calculate the 3D presampling modulation transfer function (MTF) with different image acquisition geometries and reconstruction filters using a filtered backprojection (FBP) algorithm. A thin, slanted tungsten (W) wire was used to measure the presampling MTF of the DBT system in the cross-sectional plane defined by the thickness (z-) and tube travel (x-) directions. The measurement was in excellent agreement with the calculation using the model. A small steel bead was used to calculate the artifact spread function (ASF) of the DBT system. The ASF was correlated with the convolution of the two-dimensional (2D) point spread function (PSF) of the system and the object function of the bead. The results showed that the cascaded linear system model can be used to predict the magnitude of image artifacts of small, high-contrast objects with different image acquisition geometry and reconstruction filters. PMID:19175083

  11. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high. (orig.)

  12. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu.; Wei, Wei; Yang, Hua-Wei; Liu, Jian-Lun [Affiliated Cancer Hospital of Guangxi Medical University, Department of Breast Surgery of Guangxi Cancer Hospital, Nanning, Guangxi (China)

    2013-03-15

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high. (orig.)

  13. Assessment and Development of Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard

    At the Technical University of Denmark (DTU), a 3D tomographic microwave imaging system is currently being developed with the aim of using nonlinear microwave imaging for breast-cancer detection. The imaging algorithm used in the system is based on an iterative Newton-type scheme. In this algorithm...

  14. Breast cancer imaging: A perspective for the next decade

    Energy Technology Data Exchange (ETDEWEB)

    Karellas, Andrew; Vedantham, Srinivasan [Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2008-11-15

    Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancer detection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an

  15. Breast Imaging: How We Manage Diagnostic Technology at a Multidisciplinary Breast Center

    Directory of Open Access Journals (Sweden)

    Alejandro Tejerina Bernal

    2012-01-01

    Full Text Available This paper discusses the most important aspects and problems related to the management of breast cancer imaging, at a center specialized in breast pathology. We review the established and emerging diagnostic techniques, their indications, and peculiarities: digital mammography, CAD systems, and the recent digital breast tomosynthesis, ultrasound and complementary elastography, molecular imaging techniques, magnetic resonance imaging, advanced sequences (diffusion, and positron emission mammography (PEM. The adequate integration and rational management of these techniques is essential, but this is not always easy, in order to achieve a successful diagnosis.

  16. Experimental and Other Breast Imaging Methods

    Science.gov (United States)

    ... Home Learn About Cancer Stay Healthy Find Support & Treatment Explore Research Get Involved Find Local ACS Stay Healthy » Find Cancer Early » Exam and Test Descriptions » Mammograms and Other Breast Imaging Procedures » Experimental breast imaging tests Share this Page Close Push ...

  17. A review of biomechanically informed breast image registration

    Science.gov (United States)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  18. Generation of anatomically realistic numerical phantoms for optoacoustic breast imaging

    Science.gov (United States)

    Lou, Yang; Mitsuhashi, Kenji; Appleton, Catherine M.; Oraevsky, Alexander; Anastasio, Mark A.

    2016-03-01

    Because optoacoustic tomography (OAT) can provide functional information based on hemoglobin contrast, it is a promising imaging modality for breast cancer diagnosis. Developing an effective OAT breast imaging system requires balancing multiple design constraints, which can be expensive and time-consuming. Therefore, computer- simulation studies are often conducted to facilitate this task. However, most existing computer-simulation studies of OAT breast imaging employ simple phantoms such as spheres or cylinders that over-simplify the complex anatomical structures in breasts, thus limiting the value of these studies in guiding real-world system design. In this work, we propose a method to generate realistic numerical breast phantoms for OAT research based on clinical magnetic resonance imaging (MRI) data. The phantoms include a skin layer that defines breast-air boundary, major vessel branches that affect light absorption in the breast, and fatty tissue and fibroglandular tissue whose acoustical heterogeneity perturbs acoustic wave propagation. By assigning realistic optical and acoustic parameters to different tissue types, we establish both optic and acoustic breast phantoms, which will be exported into standard data formats for cross-platform usage.

  19. Anatomic Breast Coordinate System for Mammogram Analysis

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Brandt, S; Karssemeijer, N;

    2011-01-01

    inside the breast. Most of the risk assessment and CAD modules use a breast region in a image centered Cartesian x,y coordinate system. Nevertheless, anatomical structure follows curve-linear trajectories. We examined an anatomical breast coordinate system that preserves the anatomical correspondence...... between the mammograms and allows extracting not only the aligned position but also the orientation aligned with the anatomy of the breast tissue structure. Materials and Methods The coordinate system used the nipple location as the point A and the border of the pectoral muscle as a line BC. The skin air...... was represented by geodesic distance (s) from nipple and parametric angle (¿) as shown in figure 1. The scoring technique called MTR (mammographic texture resemblance marker) used this breast coordinate system to extract Gaussian derivative features. The features extracted using the (x,y) and the curve...

  20. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    Science.gov (United States)

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  1. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  2. A CAD System for Identification and Classification of Breast Cancer Tumors in DCE-MR Images Based on Hierarchical Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Rastiboroujeni

    2015-06-01

    Full Text Available In this paper, we propose a computer aided diagnosis (CAD system based on hierarchical convolutional neural networks (HCNNs to discriminate between malignant and benign tumors in breast DCE-MRIs. A HCNN is a hierarchical neural network that operates on two-dimensional images. A HCNN integrates feature extraction and classification processes into one single and fully adaptive structure. It can extract two-dimensional key features automatically, and it is relatively tolerant to geometric and local distortions in input images. We evaluate CNN implementation learning and testing processes based on gradient descent (GD and resilient back-propagation (RPROP approaches. We show that, proposed HCNN with RPROP learning approach provide an effective and robust neural structure to design a CAD base system for breast MRI, and has potential as a mechanism for the evaluation of different types of abnormalities in medical images.

  3. Imaging Breast Density: Established and Emerging Modalities

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2015-12-01

    Full Text Available Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature.

  4. Image Similarity to Improve the Classification of Breast Cancer Images

    OpenAIRE

    Dave Tahmoush

    2009-01-01

    Techniques in image similarity can be used to improve the classification of breast cancer images. Breast cancer images in the mammogram modality have an abundance of non-cancerous structures that are similar to cancer, which make classification of images as containing cancer especially difficult to work with. Only the cancerous part of the image is relevant, so the techniques must learn to recognize cancer in noisy mammograms and extract features from that cancer to appropriately classify ima...

  5. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard;

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...

  6. An Anatomically Oriented Breast Coordinate System for Mammogram Analysis

    DEFF Research Database (Denmark)

    Brandt, Sami; Karemore, Gopal Raghunath; Karssemeijer, Nico;

    2011-01-01

    We have developed a breast coordinate system that is based on breast anatomy to register female breasts into a common coordinate frame in 2D mediolateral (ML) or mediolateral oblique (MLO) view mammograms. The breasts are registered according to the location of the pectoral muscle and the nipple...... and the shape of the breast boundary because these are the most robust features independent of the breast size and shape. On the basis of these landmarks, we have constructed a nonlinear mapping between the parameter frame and the breast region in the mammogram. This mapping makes it possible to identify...... and orientations are registered and extracted without non-linearly deforming the images. We use the proposed breast coordinate transform in a cross-sectional breast cancer risk assessment study of 490 women, in which we attempt to learn breast cancer risk factors from mammograms that were taken prior to when...

  7. Dose reduction in molecular breast imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  8. Comparisons of different contrast resolution effects on a computer-aided detection system intended to cluster microcalcifications detected in dense breast images

    OpenAIRE

    Nunes, Fátima L. S.; Schiabel, Hamero; Escarpinati, Mauricio C.; Góes, Cláudio E.

    2001-01-01

    Clustered microcalcifications, which are frequently an important signal of possible cancer, are usually hidden in dense breast images, adding more difficulty in mammogram medical analysis. In this work we evaluate the performance of a previously developed computer-aided detection scheme, modified for application to dense breast images. The main focus of this investigation was on the effect of different contrast resolutions on the processing performance. We have processed dense breast images d...

  9. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  10. High-frequency ultrasound imaging for breast cancer biopsy guidance.

    Science.gov (United States)

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W; Hovanessian-Larsen, Linda J; Lang, Julie E; Sener, Stephen F; Vallone, John; Martin, Sue E; Kirk Shung, K

    2015-10-01

    Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  11. BI-RADS update: mammography, breast ultrasound and magnetic resonance imaging of the breast; BI-RADS update: Mammographie, Brustultraschall und Kernspinmammographie

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, A.; Kurz, K.D.; Moedder, U. [Universitaetsklinikum Duesseldorf (Germany). Inst. fuer Diagnostische Radiologie

    2005-12-01

    The Breast Imaging Reporting and Data System (BI-RADS) is a quality assurance tool in breast evaluation. A breast imaging lexicon, which has been defined for mammography breast ultrasound and magnetic resonance imaging of the breast, standardizes terminology used in reporting findings on breast examinations. Every report ends with the assignment of a final assessment category to describe the risk of malignancy and recommend the action to be taken after the history and results of all breast examinations are taken into account. This article gives a short introduction to breast imaging lexica mammography, breast ultrasound, magnetic resonance of the breast and reviews the literature about the clinical usefulness of the BI-RADS. (orig.)

  12. Breast imaging with SoftVue: initial clinical evaluation

    Science.gov (United States)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steven; Cheng, Xiaoyang; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2014-03-01

    We describe the clinical performance of SoftVue, a breast imaging device based on the principles of ultrasound tomography. Participants were enrolled in an IRB-approved study at Wayne State University, Detroit, MI. The main research findings indicate that SoftVue is able to image the whole uncompressed breast up to cup size H. Masses can be imaged in even the densest breasts with the ability to discern margins and mass shapes. Additionally, it is demonstrated that multi-focal disease can also be imaged. The system was also tested in its research mode for additional imaging capabilities. These tests demonstrated the potential for generating tissue stiffness information for the entire breast using through-transmission data. This research capability differentiates SoftVue from the other whole breast systems on the market. It is also shown that MRI-like images can be generated using alternative processing of the echo data. Ongoing research is focused on validating and quantifying these findings in a larger sample of study participants and quantifying SoftVue's ability to differentiate benign masses from cancer.

  13. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  14. SU-E-J-160: Comparing the Setup Accuracy of Non-Ionizing Patient Localization Systems with CBCT to Reduce Imaging Dose in Prone Breast Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chung, E; Yamamoto, T; Mayadev, J; Dieterich, S [UC Davis Medical Center, Sacramento, CA (United States)

    2014-06-01

    Purpose: CBCT is the current gold standard to verify prone breast patient setup. We investigated in a phantom if non-ionizing localization systems can replace ionizing localization systems for prone breast treatments. Methods: An anthropomorphic phantom was positioned on a prone breast board. Electromagnetic transponders were attached on the left chest surface. The CT images of the phantom were imported to the treatment planning system. The isocenter was set to the center of the transponders. The positions of the isocenter and transponders transferred to the transponder tracking system. The posterior phantom surface was contoured and exported to the optical surface tracking system. A CBCT was taken for the initial setup alignment on the treatment machine. Using the electromagnetic and optical localization systems, the deviation of the phantom setup from the original CT images was measured. This was compared with the difference between the original CT and kV-CBCT images. Results: For the electromagnetic localization system, the phantom position deviated from the original CT in 1.5 mm, 0.0 mm and 0.5 mm in the anterior-posterior (AP), superior-inferior (SI) and left-right (LR) directions. For the optical localization system, the phantom position deviated from the original CT in 2.0 mm, −2.0 mm and 0.1 mm in the AP, SI and LR directions. For the CBCT, the phantom position deviated from the original CT in 4.0 mm, 1.0 mm and −1.0 mm in the AP, SI and LR directions. The measured values from the non-ionizing localization systems differed from those with the CBCT less than 3.0 mm in all directions. Conclusions: This phantom study showed the feasibility of using a combination of non-ionizing localization systems to achieve a similar setup accuracy as CBCT for prone breast patients. This could potentially eliminate imaging dose. As a next step, we are expanding this study to actual patients. This work has been in part supported by Departmental Research Award RODEPT1-JS

  15. Dosimetry in x-ray-based breast imaging

    Science.gov (United States)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  16. Sexuality and body image in younger women with breast cancer.

    Science.gov (United States)

    Schover, L R

    1994-01-01

    Breast cancer has the potential to be most devastating to the sexual function and self-esteem of premenopausal women. Nevertheless, not one study has systematically compared the impact of breast cancer treatment on sexual issues across age groups. Research shows that younger women with breast cancer have more severe emotional distress than older cohorts. In a group of patients seeking sexual rehabilitation in a cancer center, younger couples were more distressed, but also had the best prognosis with treatment. In theory, loss of a breast or poor breast appearance would be more distressing to women whose youth gives them high expectations for physical beauty. Seeking new dating relationships after breast cancer treatment is a special stressor for single women. Potential infertility also may impact on a woman's self-concept as a sexual person. Systemic treatment disrupts sexual function by causing premature menopause, with estrogen loss leading to vaginal atrophy and androgen loss perhaps decreasing sexual desire and arousability. Research on mastectomy versus breast conservation across all ages of women has demonstrated that general psychological distress, marital satisfaction, and overall sexual frequency and function do not differ between the two treatment groups. Women with breast conservation do rate their body image more highly and are more comfortable with nudity and breast caressing. There is some evidence that breast conservation offers more psychological "protection" for younger women. Research on the impact of breast reconstruction is sparse, but reveals similar patterns. Future studies should use rigorous methodology and focus on the impact of premature menopause and the effectiveness of sexual rehabilitation for younger women. PMID:7999462

  17. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  18. Imaging features of complex sclerosing lesions of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Joo Hwa; Choi, Byung Gil; Kim, Sung Hun; Kang, Bong Joo; Lee, Ah Won; Song, Byung Joo [Seoul St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    The purpose of this study was to evaluate the imaging features of complex sclerosing lesions of the breast and to assess the rate of upgrade to breast cancer. From March 2008 to May 2012, seven lesions were confirmed as complex sclerosing lesions by ultrasonography-guided core needle biopsy. Final results by either surgical excision or follow-up imaging studies were reviewed to assess the rate of upgrade to breast cancer. Two radiologists retrospectively analyzed the imaging findings according to the Breast Imaging Reporting and Data System classification. Five lesions underwent subsequent surgical excision and two of them revealed ductal carcinoma in situ (n=1) and invasive ductal carcinoma (n=1). Our study showed a breast cancer upgrade rate of 28.6% (2 of 7 lesions). Two lesions were stable on imaging follow-up beyond 1 year. The mammographic features included masses (n=4, 57.1%), architectural distortion (n=2, 28.6%), and focal asymmetry (n=1, 14.3%). Common B-mode ultrasonographic features were irregular shape (n=6, 85.7%), spiculated margin (n=5, 71.4 %), and hypoechogenicity (n=7, 100%). The final assessment categories were category 4 (n=6, 85.7%) and category 5 (n=1, 14.3%). The complex sclerosing lesions were commonly mass-like on mammography and showed the suspicious ultrasonographic features of category 4. Due to a high underestimation rate, all complex sclerosing lesions by core needle biopsy should be excised.

  19. Intelligent CAD System for Automatic Detection of Mitotic Cells from Breast Cancer Histology Slide Images Based on Teaching-Learning-Based Optimization

    Directory of Open Access Journals (Sweden)

    Ramin Nateghi

    2014-01-01

    Full Text Available This paper introduces a computer-assisted diagnosis (CAD system for automatic mitosis detection from breast cancer histopathology slide images. In this system, a new approach for reducing the number of false positives is proposed based on Teaching-Learning-Based optimization (TLBO. The proposed CAD system is implemented on the histopathology slide images acquired by Aperio XT scanner (scanner A. In TLBO algorithm, the number of false positives (falsely detected nonmitosis candidates as mitosis ones is defined as a cost function and, by minimizing it, many of nonmitosis candidates will be removed. Then some color and texture (textural features such as those derived from cooccurrence and run-length matrices are extracted from the remaining candidates and finally mitotic cells are classified using a specific support vector machine (SVM classifier. The simulation results have proven the claims about the high performance and efficiency of the proposed CAD system.

  20. Population of 100 realistic, patient-based computerized breast phantoms for multi-modality imaging research

    Science.gov (United States)

    Segars, W. Paul; Veress, Alexander I.; Wells, Jered R.; Sturgeon, Gregory M.; Kiarashi, Nooshin; Lo, Joseph Y.; Samei, Ehsan; Dobbins, James T.

    2014-03-01

    Breast imaging is an important area of research with many new techniques being investigated to further reduce the morbidity and mortality of breast cancer through early detection. Computerized phantoms can provide an essential tool to quantitatively compare new imaging systems and techniques. Current phantoms, however, lack sufficient realism in depicting the complex 3D anatomy of the breast. In this work, we created one-hundred realistic and detailed 3D computational breast phantoms based on high-resolution CT datasets from normal patients. We also developed a finiteelement application to simulate different compression states of the breast, making the phantoms applicable to multimodality imaging research. The breast phantoms and tools developed in this work were packaged into user-friendly software applications to distribute for breast imaging research.

  1. Opto-acoustic breast imaging with co-registered ultrasound

    Science.gov (United States)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  2. Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael

    2013-03-01

    Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.

  3. Mono- and multimodal registration of optical breast images

    Science.gov (United States)

    Pearlman, Paul C.; Adams, Arthur; Elias, Sjoerd G.; Mali, Willem P. Th. M.; Viergever, Max A.; Pluim, Josien P. W.

    2012-08-01

    Optical breast imaging offers the possibility of noninvasive, low cost, and high sensitivity imaging of breast cancers. Poor spatial resolution and a lack of anatomical landmarks in optical images of the breast make interpretation difficult and motivate registration and fusion of these data with subsequent optical images and other breast imaging modalities. Methods used for registration and fusion of optical breast images are reviewed. Imaging concerns relevant to the registration problem are first highlighted, followed by a focus on both monomodal and multimodal registration of optical breast imaging. Where relevant, methods pertaining to other imaging modalities or imaged anatomies are presented. The multimodal registration discussion concerns digital x-ray mammography, ultrasound, magnetic resonance imaging, and positron emission tomography.

  4. Multimodal optical imaging for detecting breast cancer

    Science.gov (United States)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  5. Breast magnetic resonance imaging guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Bo La; Kim, Sun Mi; Jang, Mi Jung [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Cho, Nariya; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hak Hee [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Despite the high sensitivity of breast magnetic resonance imaging (MRI), pathologic confirmation by biopsy is essential because of limited specificity. MRI-guided biopsy is required in patients with lesions only seen on MRI. We review preprocedural considerations and the technique of MRI-guided biopsy, challenging situations and trouble-shooting, and correlation of radiologic and pathologic findings.

  6. Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M.; Wei, Jun; Helvie, Mark A.

    2015-11-01

    We propose a novel approach for the detection of microcalcification clusters (MCs) using joint information from digital breast tomosynthesis (DBT) volume and planar projection (PPJ) image. A data set of 307 DBT views was collected with IRB approval using a prototype DBT system. The system acquires 21 projection views (PVs) from a wide tomographic angle of 60° (60°-21PV) at about twice the dose of a digital mammography (DM) system, which allows us the flexibility of simulating other DBT acquisition geometries using a subset of the PVs. In this study, we simulated a 30° DBT geometry using the central 11 PVs (30°-11PV). The narrower tomographic angle is closer to DBT geometries commercially available or under development and the dose is matched approximately to that of a DM. We developed a new joint-CAD system for detection of clustered microcalcifications. The DBT volume was reconstructed with a multiscale bilateral filtering regularized method and a PPJ image was generated from the reconstructed volume. Task-specific detection strategies were designed to combine information from the DBT volume and the PPJ image. The data set was divided into a training set (127 views with MCs) and an independent test set (104 views with MCs and 76 views without MCs). The joint-CAD system outperformed the individual CAD systems for DBT volume or PPJ image alone; the differences in the test performances were statistically significant (p  <  0.05) using JAFROC analysis.

  7. Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images

    International Nuclear Information System (INIS)

    We propose a novel approach for the detection of microcalcification clusters (MCs) using joint information from digital breast tomosynthesis (DBT) volume and planar projection (PPJ) image. A data set of 307 DBT views was collected with IRB approval using a prototype DBT system. The system acquires 21 projection views (PVs) from a wide tomographic angle of 60° (60°-21PV) at about twice the dose of a digital mammography (DM) system, which allows us the flexibility of simulating other DBT acquisition geometries using a subset of the PVs. In this study, we simulated a 30° DBT geometry using the central 11 PVs (30°-11PV). The narrower tomographic angle is closer to DBT geometries commercially available or under development and the dose is matched approximately to that of a DM. We developed a new joint-CAD system for detection of clustered microcalcifications. The DBT volume was reconstructed with a multiscale bilateral filtering regularized method and a PPJ image was generated from the reconstructed volume. Task-specific detection strategies were designed to combine information from the DBT volume and the PPJ image. The data set was divided into a training set (127 views with MCs) and an independent test set (104 views with MCs and 76 views without MCs). The joint-CAD system outperformed the individual CAD systems for DBT volume or PPJ image alone; the differences in the test performances were statistically significant (p  <  0.05) using JAFROC analysis. (paper)

  8. Efficient iterative image reconstruction algorithm for dedicated breast CT

    Science.gov (United States)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  9. Mammographic evaluation of suspicious malignant lesions based on ACR(American College of Radiology) breast imaging reporting and data system(BI-RADS)

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the mammographic features and pathologic outcome of category 4 lesions using the Breast Imaging Reporting and Data System(BI-RADS), and to evaluate the significance of final assessment categories. Using BI-RADS, the interpretations of 8,134 mammograms acquired between January 1997 and May 1998 were categorized. From among 161 lesions categorized as '4' ('suspicious abnormality') and pathologically confirmed by surgery or biopsy, we analysed 113, found in 66 patients. The pathologic outcome of these 113 lesions was as follows:infiltrating ductal carcinoma, 17.7%(20/113); DCIS(ductal carcinoma in sitv), 8.0%(9/113); ADH(atypical ductal hyperplasia), 5.3%(6/113); DEH(ductal epithelial hyperplasia), 1.8%(2/113); ductectasia, 0.9%(1/113), FCD(fibrocystic change), 27.4%(31/113); firoadenoma, 7.1%(8/113); stromal fibrosis, 9.7%(11/113); normal parenchyma, 7.1%(8/113); other pathology, 15.0%(17/113). The most frequent mammographic features of BI-RADS category 4 lesions were irregular mass shape(41.2%), spiculated mass margin(52.3%), amorphous calcification(47.3%) and clustered calcification distribution(37.1%). Because category 4 lesions account for about 25.7% of all breast malignancies, mammographic lesions in this category ('suspicious abnormality') should be considered for supplementary study and breast biopsy rather than short-term follow-up. Initial pathologic findings can thus be confirmed

  10. Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography

    OpenAIRE

    Xia, W; Piras, D; Singh, M. K. A.; van Hespen, J. C. G.; Van Leeuwen, T. G.; Steenbergen, W Van; Manohar, S.

    2013-01-01

    Photoacoustic imaging can visualize vascularization-driven optical absorption contrast with great potential for breast cancer detection and diagnosis. State-of-the-art photoacoustic breast imaging systems are promising but are limited either by only a 2D imaging capability or by an insufficient imaging field-of-view (FOV). We present a laboratory prototype system designed for 3D photoacoustic full breast tomography, and comprehensively characterize it and evaluate its performance in imaging p...

  11. Compositional breast imaging using a dual-energy mammography protocol

    International Nuclear Information System (INIS)

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  12. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  13. Pitfalls of Imaging in Breast Cancer Diagnosis:

    Directory of Open Access Journals (Sweden)

    M. Kalantari

    2009-01-01

    Full Text Available "nWith the introduction of mammography for early diagnosis of breast cancer a new horizon is created in breast cancer diagnosis. Instead of palpated easy-to-manage lesions, now the surgeon is confronted with non palpable findings on the mammogram, sometimes very difficult for decision, that highlight the importance of the role of the interventional breast radiologist in the team and surgeon-radiologist collaboration. "nThis close collaboration would eliminate many difficulties in correct cancer diagnosis, both for the radiologist and the surgeon. "nIn this study, reviewing interesting difficult cases during the last 8 years, we present all pitfalls in imaging that can be avoided in majority by team work collaboration.  

  14. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    Science.gov (United States)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  15. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. PMID:27153374

  16. A review of breast tomosynthesis. Part I. The image acquisition process

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-01-15

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  17. MR imaging of the breast using Gd-DTPA

    International Nuclear Information System (INIS)

    One hundred selected patients underwent preoperative MR imaging of the breast Gd-DTPA. All carcinomas, fibroadenomas, and instances of mastitis enhanced significantly. Normal breast tissue, nonproliferative dysplasia, and scar tissue did not enhance. Borderline focal or generalized enhancement has been observed in cases of focal or generalized proliferative dysplasia. Compared to mammography, MR imaging yielded significant additional information in 20% of cases; the added information concerned mostly dense breasts and breasts with posttreatment changes. No additional information was obtained in fatty breasts, because of the high accuracy of mammography, and in breasts with proliferative dysplasia, because of their generalized enhancement

  18. CT guided diffuse optical tomography for breast cancer imaging

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  19. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  20. Metaplastic carcinoma of the breast: multimodality imaging and histopathologic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bo Bae (Department of Radiology, Chungnam National University Hospital, Daejeon (Korea, Republic of)), Email: med20@hanmail.net; Shu, Kwang Sun (Department of Pathology, Chungnam National University Hospital, Daejeon (Korea, Republic of))

    2012-02-15

    Background Metaplastic carcinomas are ductal carcinomas that display metaplastic transformation of the glandular epithelium to non-glandular mesenchymal tissue. Metaplastic carcinoma has a poorer prognosis than most other breast cancers, so the differential diagnosis is important. Although many clinical and pathologic findings have been reported, to our knowledge, few imaging findings related to metaplastic carcinoma have been reported. Purpose To investigate whole-breast imaging findings, including mammography, sonography, MRI, and pathologic findings, including immunohistochemical studies of metaplastic carcinomas of the breast. Material and Methods We analyzed 33 cases of metaplastic carcinoma between January 2001 and January 2011. Mammography, ultrasonography, and MRI were recorded retrospectively using the American College of Radiology (ACR) breast imaging reporting and data system (BI-RADS) lexicon. Immunohistochemical studies of estrogen receptor (ER), progesterone receptor (PR), p53, and C-erbB-2 were performed. Results The most common mammographic findings were oval shape (37%), circumscribed margin (59%), and high density (74%). The most common sonogfindings were irregular shape (59.4%), microlobulated margin (41%), complex echogenicity (81%), parallel orientation (97%), and posterior acoustic enhancement (50%). Axillary lymph node metastases were noted for 25% of the sonographic examinations. On MRI, the most common findings of margin and shape were irregularity (57% and 52.4%, respectively). High signal intensity was the most common finding on T2-weighted images (57%). Immunohistochemical profile was negative for ER (91%, 29/32) and PR (81%, 26/32). Conclusion Metaplastic carcinomas might display more benign features and less axillary lymph node metastasis than IDC. High signal intensity on T2 MRI images and hormone receptor negativity would be helpful in differentiating this tumor from other breast cancers

  1. Molecular Imaging of Biomarkers in Breast Cancer

    Science.gov (United States)

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  2. 高频超声、乳腺X线检查及乳腺血氧功能成像在乳腺肿块诊断中的价值%The clinical value of high frequency ultrasound, mammography and breast blood-oxygen function imaging system in diagnosis of breast masses

    Institute of Scientific and Technical Information of China (English)

    郑一君; 张渊; 单君; 施秀荣; 贾瑱熙; 江泉

    2013-01-01

    Objective To compare the diagnostic value of high frequency ultrasound,mammography and breast blood-oxygen function imaging system in diagnosis of breast masses.Methods The images of 89 breast masses by high frequency ultrasound,mammography and breast blood-oxygen function imaging system were reviewed.The study compared the sensibilities and specificities of the three methods in the masses and analyzed their cause of missed diagnosis.Results The sensitivity of the diagnosis of breast cancer by high frequency ultrasound,mammography and breast blood-oxygen function imaging system were 80.00%,70.00% and 50.00%,respectively.The specificity of the diagnosis of breast cancer by them were 94.94%,98.73% and 97.47%,respectively.There were sigmfiacant differences in diagnosis of breast benign lesion among the high frequency ultrasound,mammography and breast blood-oxygen function imaging system.The sensitivity of high frequency ultrasound in detecting fibroadenoma of breast was 98.11% higher than the other methods.Mammography was insensitive to the benign breast lesions,but its specificity was high.Conclusions High frequency ultrasound,mammography and breast blood-oxygen function imaging system are the highly effective diagnostic tool for breast cancer,but the diagnostic value of mammography and breast blood-oxygen in breast fibroadenoma and in cystic disease of breast aren' t high.Breast blood-oxygen function imaging system can enhance the accuracy of the diagnosis of mammary inflammation.%目的 比较高频超声、乳腺X线检查以及乳腺血氧功能成像在乳腺肿块诊断中的价值.方法 回顾性分析高频超声、乳腺X线检查及乳腺血氧功能成像在89例乳腺肿块中的诊断结果,比较它们诊断各类乳腺病变的敏感性和特异性,并分析漏诊原因.结果 高频超声、乳腺X线检查以及乳腺血氧功能成像对乳腺癌的敏感性分别为80.00%、70.00%、50.00%;特异性分别为94.94%、98.73

  3. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    Science.gov (United States)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-07-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  4. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  5. Image quality control of mammography equipment -Mammography System MX-300- of the Teachers Hospital of UNSA and dose measurement in breasts with radiographic films

    International Nuclear Information System (INIS)

    This work is part of medical imaging for the evaluation of quality. Will have an accredited breast phantom Rmi-156 that allows evaluating the image quality of mammography equipment and through a series of techniques and processes that will submit to mammography films we obtain characteristic curves, which allows to evaluate different parameters that will serve for our study. Images were acquired with different k Vp and m As of the equipment, also with different thicknesses of the breast phantom. Also we want to use the lowest possible dose for obtaining our images. In this paper we develop a simple protocol that aims to unify the conditions under which are acquired the images for later evaluation. By obtaining these characteristic curves demonstrate that the Kodak film is the most suitable for our study because it requires lower dose for obtaining our images. (Author)

  6. Molecular breast imaging with gamma emitters.

    Science.gov (United States)

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  7. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    Science.gov (United States)

    Helvie, Mark A.

    2011-01-01

    Synopsis This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are confirmed by clinical trials. PMID:20868894

  8. Self-assembled levan nanoparticles for targeted breast cancer imaging.

    Science.gov (United States)

    Kim, Sun-Jung; Bae, Pan Kee; Chung, Bong Hyun

    2015-01-01

    We report on the targeted imaging of breast cancer using self-assembled levan nanoparticles. Indocyanine green (ICG) was encapsulated in levan nanoparticles via self-assembly. Levan-ICG nanoparticles were found to be successfully accumulated in breast cancer via specific interaction between fructose moieties in levan and overexpressed glucose transporter 5 in breast cancer cells. PMID:25383444

  9. Improved MR breast images by contrast optimization using artificial intelligence

    International Nuclear Information System (INIS)

    The clinical relevance of MR imaging of the breast is mainly related to the modelity's ability to differentiate among normal, benign, and malignant tissue and to yield prognostic information. In addition to the MR imaging parameters, morphologic features of these images are calculated. Based on statistical information of a comprehensive, labeled image and knowledge of a data base system, a numerical classifier is deduced. The application of this classifier to all cases leads to estimations of specific tissue types for each pixel. The method is sufficiently sensitive for grading a recognized tissue class. In this manner images with optimal contrast appropriate to particular diagnostic requirements are generated. The discriminant power of each MR imaging parameter as well as of a combination of parameters can be determined objectively with respect to tissue discrimination

  10. TH-A-18A-01: Innovation in Clinical Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B [Massachusetts General Hospital, Boston, MA (United States); Yang, K [University of Oklahoma, Oklahomoa City, OK (United States); Yaffe, M [University Toronto, Toronto, ON (Canada); Chen, J [GE/U-Systems, Sunnyvale, CA (United States)

    2014-06-15

    Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists. In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging.

  11. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  12. Ultrasound imaging of the lactating breast: methodology and application

    OpenAIRE

    Geddes Donna T

    2009-01-01

    Abstract Ultrasound imaging has been used extensively to detect abnormalities of the non-lactating breast. In contrast, the use of ultrasound for the investigation of pathology of the lactating breast is limited. Recent studies have re-examined the anatomy of the lactating breast highlighting features unique to this phase of breast development. These features should be taken into consideration along with knowledge of common lactation pathologies in order to make an accurate diagnosis when exa...

  13. Fast 3-d tomographic microwave imaging for breast cancer detection.

    Science.gov (United States)

    Grzegorczyk, Tomasz M; Meaney, Paul M; Kaufman, Peter A; diFlorio-Alexander, Roberta M; Paulsen, Keith D

    2012-08-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726

  14. Preliminary images from an adaptive imaging system.

    Science.gov (United States)

    Griffiths, J A; Metaxas, M G; Pani, S; Schulerud, H; Esbrand, C; Royle, G J; Price, B; Rokvic, T; Longo, R; Asimidis, A; Bletsas, E; Cavouras, D; Fant, A; Gasiorek, P; Georgiou, H; Hall, G; Jones, J; Leaver, J; Li, G; Machin, D; Manthos, N; Matheson, J; Noy, M; Ostby, J M; Psomadellis, F; van der Stelt, P F; Theodoridis, S; Triantis, F; Turchetta, R; Venanzi, C; Speller, R D

    2008-06-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephalography. In our system, the exposure in each image region is optimised and the beam intensity is a function of tissue thickness and attenuation, and also of local physical and statistical parameters in the image. Using a linear array of detectors, the system will perform on-line analysis of the image during the scan, followed by optimisation of the X-ray intensity to obtain the maximum diagnostic information from the region of interest while minimising exposure of diagnostically less important regions. This paper presents preliminary images obtained with a small area CMOS detector developed for this application. Wedge systems were used to modulate the beam intensity during breast and dental imaging using suitable X-ray spectra. The sensitive imaging area of the sensor is 512 x 32 pixels 32 x 32 microm(2) in size. The sensors' X-ray sensitivity was increased by coupling to a structured CsI(Tl) scintillator. In order to develop the I-ImaS prototype, the on-line data analysis and data acquisition control are based on custom-developed electronics using multiple FPGAs. Images of both breast tissues and jaw samples were acquired and different exposure optimisation algorithms applied. Results are very promising since the average dose has been reduced to around 60% of the dose delivered by conventional imaging systems without decrease in the visibility of details. PMID:18291697

  15. Breast imaging technology: Probing physiology and molecular function using optical imaging - applications to breast cancer

    International Nuclear Information System (INIS)

    The present review addresses the capacity of optical imaging to resolve functional and molecular characteristics of breast cancer. We focus on recent developments in optical imaging that allow three-dimensional reconstruction of optical signatures in the human breast using diffuse optical tomography (DOT). These technologic advances allow the noninvasive, in vivo imaging and quantification of oxygenated and deoxygenated hemoglobin and of contrast agents that target the physiologic and molecular functions of tumors. Hence, malignancy differentiation can be based on a novel set of functional features that are complementary to current radiologic imaging methods. These features could enhance diagnostic accuracy, lower the current state-of-the-art detection limits, and play a vital role in therapeutic strategy and monitoring

  16. Breast imaging reporting and data system (BI-RADS) US lexicon and final assessment category for solid breast masses: the rates of inter-and intraobserver agreement

    International Nuclear Information System (INIS)

    To evaluate the rates of inter-and intraobserver agreement of the BI-RADS US lexicon. Two radiologists reviewed 60 sonograms of solid breast masses to evaluate interobserver agreement. After four weeks, the radiologists reinterpreted the series to evaluate the intraobserver agreement. The radiologists described shape, orientation, margin, lesion boundary, echo pattern, posterior acoustic features and microcalcifications. Final assessment categories and management plans were suggested for each case. The rates of inter-and intraobserver agreements were measured by the use of kappa statistics. Interobserver agreement ranged from the highest for orientation (κ = 0.65) and shape (κ = 0.61) to the lowest for posterior acoustic features (κ = 0.42). For the final assessment categories (κ = 0.46) and management (κ = 0.49), interobserver agreement were moderate. Intraobserver agreement ranged from the highest for microcalcifications in mass (κ = 0.90, 0.82) and orientation (κ 0.87, 0.83) and the lowest for echo patterns (κ = 0.62, 0.57) and posterior acoustic features (κ = 0.59, 0.65). In the final assessment category and management, intraobserver agreements were substantial or nearly complete (κ = 0.65-0.83). There were variable raged inter-and intraobserver agreements in the description of the BI-RADS US lexicon of solid breast masses. Among them, margin and lesion boundary showed lower agreements. A modification of the BI-RADS US lexicon with more detailed guidelines, followed by continuous education, are suggested

  17. The imaging features of MACROLANETM in breast augmentation

    International Nuclear Information System (INIS)

    MacrolaneTM is an injectable, biocompatible, soft-tissue filler that has been available in the UK since 2008 and is promoted for use in breast augmentation. There are few data available on the long-term effects of this relatively new product and concerns have been raised about the implications for breast imaging, in particular breast screening. In this context we present a spectrum of imaging appearances and complications encountered to date.

  18. A similarity study between the query mass and retrieved masses using decision tree content-based image retrieval (DTCBIR) CADx system for characterization of ultrasound breast mass images

    Science.gov (United States)

    Cho, Hyun-Chong; Hadjiiski, Lubomir; Chan, Heang-Ping; Sahiner, Berkman; Helvie, Mark; Paramagul, Chintana; Nees, Alexis V.

    2012-03-01

    We are developing a Decision Tree Content-Based Image Retrieval (DTCBIR) CADx scheme to assist radiologists in characterization of breast masses on ultrasound (US) images. Three DTCBIR configurations, including decision tree with boosting (DTb), decision tree with full leaf features (DTL), and decision tree with selected leaf features (DTLs) were compared. For DTb, the features of a query mass were combined first into a merged feature score and then masses with similar scores were retrieved. For DTL and DTLs, similar masses were retrieved based on the Euclidean distance between the feature vector of the query and those of the selected references. For each DTCBIR configuration, we investigated the use of the full feature set and the subset of features selected by the stepwise linear discriminant analysis (LDA) and simplex optimization method, resulting in six retrieval methods. Among the six methods, we selected five, DTb-lda, DTL-lda, DTb-full, DTL-full and DTLs-full, for the observer study. For a query mass, three most similar masses were retrieved with each method and were presented to the radiologists in random order. Three MQSA radiologists rated the similarity between the query mass and the computer-retrieved masses using a ninepoint similarity scale (1=very dissimilar, 9=very similar). For DTb-lda, DTL-lda, DTb-full, DTL-full and DTLs-full, the average Az values were 0.90+/-0.03, 0.85+/-0.04, 0.87+/-0.04, 0.79+/-0.05 and 0.71+/-0.06, respectively, and the average similarity ratings were 5.00, 5.41, 4.96, 5.33 and 5.13, respectively. Although the DTb measures had the best classification performance among the DTCBIRs studied, and DTLs had the worst performance, DTLs-full obtained higher similarity ratings than the DTb measures.

  19. Processed images in human perception: A case study in ultrasound breast imaging

    International Nuclear Information System (INIS)

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  20. Processed images in human perception: A case study in ultrasound breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Moi Hoon [Department of Computer Science, Loughborough University, FH09, Ergonomics and Safety Research Institute, Holywell Park (United Kingdom)], E-mail: M.H.Yap@lboro.ac.uk; Edirisinghe, Eran [Department of Computer Science, Loughborough University, FJ.05, Garendon Wing, Holywell Park, Loughborough LE11 3TU (United Kingdom); Bez, Helmut [Department of Computer Science, Loughborough University, Room N.2.26, Haslegrave Building, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  1. The current status of imaging diagnosis of breast cancer

    International Nuclear Information System (INIS)

    In recent years, the incidence and the mortality rate of female breast cancer in our country is increasing, Early diagnosis of breast cancer is particularly important. Precious preoperative staging in the breast cancer is advantageous for the treatment planning. Evaluating the efficacy of chemotherapy is beneficial for adjusting the follow-up plan. Imaging examination has become an important role in breast cancer management. At present, commonly used equipment include mammography, ultrasound, CT, and MRI, etc. This article reviews the present study status of these tools in diagnosis of breast cancer. A reasonable and effective choice of those tools can facilitate clinic diagnosis and treatment. (authors)

  2. Including Antenna Models in Microwave Imaging for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Meincke, Peter

    2006-01-01

    Microwave imaging is emerging as a tool for screening for breast cancer, but the lack of methods for including the characteristics of the antennas of the imaging systems in the imaging algorithms limits their performance. In this paper, a method for incorporating the full antenna characteristics,...

  3. Extra-mammary findings detected on breast magnetic resonance imaging: A pictorial Essay

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) of the breast is used for various indications. Contrary to computed tomography as a staging tool, breast MRI focuses on the breast parenchyma and axilla. In spite of narrow field of view, many structures such as the anterior portion of the lungs, mediastinum, bony structures and the liver are included which should not be neglected because the abnormalities detected on the above structures may influence the staging and provide a clue to systemic metastasis, which results in the change of treatment strategy. The purpose of this pictorial essay was to review the unexpected extra-mammary findings seen on the preoperative breast MRI.

  4. Extra-mammary findings detected on breast magnetic resonance imaging: A pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Hee Jung; Choi, Ji Soo; Ko, Kyung Ran [National Cancer Center, Goyang (Korea, Republic of)

    2014-08-15

    Magnetic resonance imaging (MRI) of the breast is used for various indications. Contrary to computed tomography as a staging tool, breast MRI focuses on the breast parenchyma and axilla. In spite of narrow field of view, many structures such as the anterior portion of the lungs, mediastinum, bony structures and the liver are included which should not be neglected because the abnormalities detected on the above structures may influence the staging and provide a clue to systemic metastasis, which results in the change of treatment strategy. The purpose of this pictorial essay was to review the unexpected extra-mammary findings seen on the preoperative breast MRI.

  5. Positive predictive value of additional synchronous breast lesions in whole-breast ultrasonography at the diagnosis of breast cancer: clinical and imaging factors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ah Hyun; Kim, Min Jung; Kim, Eun Kyung; Moon, Hee Jung [Dept. of Radiology, Research Institute of Radiological Science, Seoul (Korea, Republic of); Park, Hee Jung [Dept. of Surgery, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-10-15

    To evaluate the positive predictive value (PPV) of bilateral whole-breast ultrasonography (BWBU) for detection of synchronous breast lesions on initial diagnosis of breast cancer and evaluate factors affecting the PPV of BWBU according to varying clinicoimaging factors. A total of 75 patients who had synchronous lesions with pathologic confirmation at the initial diagnosis of breast cancer during January 2007 and December 2007 were included. The clinical factors of the patients were evaluated. One observer retrospectively reviewed the imaging studies of the index breast cancer lesion and the synchronous lesion. The PPV for additional biopsy was calculated for BWBU and various clinical and imaging factors affecting the PPV for BWBU were evaluated. The overall PPV for additional biopsy was 25.7% (18 of 70). The PPV for synchronous lesions detected both on mammography and BWBU, and detected only on BWBU, was 76.9% (10 of 13) and 14.3% (7 of 49), respectively. There was no clinical factor affecting the PPV for BWBU. Among the imaging factors, ipsilateral location of the synchronous lesion to the index lesion (P=0.06) showed a marginal statistically significant correlation with malignancy in the synchronous breast lesion. A mass with calcification on mammography presentation (P<0.01), presence of calcification among the ultrasonography findings (P<0.01), and high Breast Imaging Reporting and Data System final assessment (P<0.01) were imaging factors that were associated with malignancy in the additional synchronous lesion. BWBU can detect additional synchronous malignancy at the diagnosis of breast cancer with a relatively high PPV, especially when mammography findings are correlated with ultrasonographic findings.

  6. Positive predictive value of additional synchronous breast lesions in whole-breast ultrasonography at the diagnosis of breast cancer: clinical and imaging factors

    International Nuclear Information System (INIS)

    To evaluate the positive predictive value (PPV) of bilateral whole-breast ultrasonography (BWBU) for detection of synchronous breast lesions on initial diagnosis of breast cancer and evaluate factors affecting the PPV of BWBU according to varying clinicoimaging factors. A total of 75 patients who had synchronous lesions with pathologic confirmation at the initial diagnosis of breast cancer during January 2007 and December 2007 were included. The clinical factors of the patients were evaluated. One observer retrospectively reviewed the imaging studies of the index breast cancer lesion and the synchronous lesion. The PPV for additional biopsy was calculated for BWBU and various clinical and imaging factors affecting the PPV for BWBU were evaluated. The overall PPV for additional biopsy was 25.7% (18 of 70). The PPV for synchronous lesions detected both on mammography and BWBU, and detected only on BWBU, was 76.9% (10 of 13) and 14.3% (7 of 49), respectively. There was no clinical factor affecting the PPV for BWBU. Among the imaging factors, ipsilateral location of the synchronous lesion to the index lesion (P=0.06) showed a marginal statistically significant correlation with malignancy in the synchronous breast lesion. A mass with calcification on mammography presentation (P<0.01), presence of calcification among the ultrasonography findings (P<0.01), and high Breast Imaging Reporting and Data System final assessment (P<0.01) were imaging factors that were associated with malignancy in the additional synchronous lesion. BWBU can detect additional synchronous malignancy at the diagnosis of breast cancer with a relatively high PPV, especially when mammography findings are correlated with ultrasonographic findings.

  7. A Dataset for Breast Cancer Histopathological Image Classification.

    Science.gov (United States)

    Spanhol, Fabio A; Oliveira, Luiz S; Petitjean, Caroline; Heutte, Laurent

    2016-07-01

    Today, medical image analysis papers require solid experiments to prove the usefulness of proposed methods. However, experiments are often performed on data selected by the researchers, which may come from different institutions, scanners, and populations. Different evaluation measures may be used, making it difficult to compare the methods. In this paper, we introduce a dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.inf.ufpr.br/vri/breast-cancer-database. The dataset includes both benign and malignant images. The task associated with this dataset is the automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician. In order to assess the difficulty of this task, we show some preliminary results obtained with state-of-the-art image classification systems. The accuracy ranges from 80% to 85%, showing room for improvement is left. By providing this dataset and a standardized evaluation protocol to the scientific community, we hope to gather researchers in both the medical and the machine learning field to advance toward this clinical application. PMID:26540668

  8. Primary Neuroendocrine Tumor of the Breast: Imaging Features

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eun Deok [Department of Clinical Pathology, Uijeongbu St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 480-717 (Korea, Republic of); Kim, Min Kyun [Department of Radiology, Uijeongbu St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 480-717 (Korea, Republic of); Kim, Jeong Soo [Department of Surgery, Uijeongbu St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 480-717 (Korea, Republic of); Whang, In Yong [Department of Radiology, Uijeongbu St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 480-717 (Korea, Republic of)

    2013-07-01

    Focal neuroendocrine differentiation can be found in diverse histological types of breast tumors. However, the term, neuroendocrine breast tumor, indicates the diffuse expression of neuroendocrine markers in more than 50% of the tumor cell population. The imaging features of neuroendocrine breast tumor have not been accurately described due to extreme rarity of this tumor type. We present a case of a pathologically confirmed, primary neuroendocrine breast tumor in a 42-year-old woman, with imaging findings difficult to be differentiated from that of invasive ductal carcinoma.

  9. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    Science.gov (United States)

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  10. Imaging recognition of multidrug resistance in human breast tumors using {sup 99m}Tc-labeled monocationic agents and a high-resolution stationary SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhonglin E-mail: zliu@radiology.arizona.edu; Stevenson, Gail D.; Barrett, Harrison H.; Kastis, George A.; Bettan, Michael; Furenlid, Lars R.; Wilson, Donald W.; Woolfenden, James M

    2004-01-01

    Imaging recognition of multidrug-resistance by {sup 99m}Tc-labeled sestamibi, tetrofosmin and furifosmin in mice bearing human breast tumors was evaluated using a high-resolution SPECT, FASTSPECT. Imaging results showed that the washout rates in drug-resistant MCF7/D40 tumors were significantly greater than that in drug-sensitive MCF7/S tumors. Furifosmin exhibited greater washout from both MCF7/S and MCF7/D40 than sestamibi, while tetrofosmin washout was greater than sestamibi in MCF7/D40 only. Feasibility of the monocationic agents for characterizing MDR expression was well clarified with FASTSPECT imaging.

  11. Ultrasound imaging of the lactating breast: methodology and application

    Directory of Open Access Journals (Sweden)

    Geddes Donna T

    2009-04-01

    Full Text Available Abstract Ultrasound imaging has been used extensively to detect abnormalities of the non-lactating breast. In contrast, the use of ultrasound for the investigation of pathology of the lactating breast is limited. Recent studies have re-examined the anatomy of the lactating breast highlighting features unique to this phase of breast development. These features should be taken into consideration along with knowledge of common lactation pathologies in order to make an accurate diagnosis when examining the lactating breast. Scanning techniques and ultrasound appearances of the normal lactating breast will be contrasted to those of the non-lactating breast. In addition ultrasound characteristics of common pathologies encountered during lactation will be described.

  12. Micropapillary Lung Cancer with Breast Metastasis Simulating Primary Breast Cancer due to Architectural Distortion on Images

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Ran; Hong, Eun Kyung; Lee, See Yeon [Center for Breast Cancer, National Cancer Center, Goyang (Korea, Republic of); Ro, Jae Yoon [The Methodist Hospital, Weill Medical College of Cornell University, Houston (United States)

    2012-03-15

    A 47-year-old Korean woman with right middle lobe lung adenocarcinoma, malignant pleural effusion, and multiple lymph node and bone metastases, after three months of lung cancer diagnosis, presented with a palpable right breast mass. Images of the right breast demonstrated architectural distortion that strongly suggested primary breast cancer. Breast biopsy revealed metastatic lung cancer with a negative result for estrogen receptor (ER), progesterone receptor (PR) and mammaglobin, and a positive result for thyroid transcription factor-1 (TTF-1). We present a case of breast metastasis from a case of lung cancer with an extensive micropapillary component, which was initially misinterpreted as a primary breast cancer due to unusual image findings with architectural distortion.

  13. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  14. Breast Imaging in Evaluation of Breast Cancer: Radiologist’s Point of View

    Directory of Open Access Journals (Sweden)

    Nahid Sedighi

    2010-05-01

    Full Text Available In every breast imaging, the radiologist confronts these questions:"n1. Finding the lesion"n2. Is the lesion real?"n3. Where the pathology lies"n4. What the lesion is "n5. What should be done about it?"nThe major objective in breast imaging is the detection of breast cancers at a small size and early stage in an effort to reduce mortality."nSome conditions limit evaluation of breast cancer imaging."nWhen additional mammographic views or ultrasound are unable to triangulate the location of a lesion, computed tomography can be very helpful for locating lesions three dimensionally. MRI with and without contrast is the other modality for evaluation of problematic cases or ambiguous findings in other modalities."nImplants present a problem for breast imaging in that they may prevent optimal visualization of the tissues."nA focal asymmetric density may merely represent an island of breast tissue. DCIS, with or without calcification, and metastatic axillary lymph nodes in a normal mammogram are some of the problematic cases of breast cancer."nThis presentation is expected to include real cases of breast cancer with the above-mentioned problems or unusual manifestations, which are resolved by a combination of different imaging modalities.    

  15. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    International Nuclear Information System (INIS)

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml−1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml−1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6–1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT

  16. Interference of breast implants with echocardiographic image acquisition and interpretation

    Directory of Open Access Journals (Sweden)

    Movahed Mohammad-Reza

    2007-02-01

    Full Text Available Abstract Echocardiography is one of the most important diagnostic testing in cardiology. The presence of a breast implant overlying heart can cause significant impairment of the echocardiographic acoustic window. Breast implants are increasing in popularity in the USA and the Federal Drug and Food Administration (FDA just approved silicone implants again. In this review, the impact of silicone breast implant on the echocardiographic image acquisition and interpretation is discussed.

  17. Breast CT image simulation framework for optimisation of lesion visualisation

    OpenAIRE

    Diaz, O; Elangovan, P.; Wells, K.; Enshaeifar, S; Veale, MC; Wilson, MD; Seller, P; Cernik, R; Pani, S.

    2013-01-01

    Although X-ray mammography is the gold standard technique for breast cancer detection, it suffers from limitations due to tissue superposition which could either obscure or mimic a breast lesion. Dedicated breast computed-tomography (BrCT) represents an alternative technology with the potential to overcome these limitations. However, this technology is still under investigation in order to study and improve certain parameters (e.g. dose, scattered radiation, etc.). In this work, an image simu...

  18. Optimal laser wavelength for photoacoustic imaging of breast microcalcifications

    Science.gov (United States)

    Kang, Jeeun; Kim, Eun-Kyung; Young Kwak, Jin; Yoo, Yangmo; Song, Tai-Kyong; Ho Chang, Jin

    2011-10-01

    This paper presents photoacoustic imaging (PAI) for real-time detection of micro-scale calcifications (e.g., <1 mm) in the breast, which are an indicator of the cancer occurrence. Optimal wavelength of incident laser for the microcalcification imaging was ascertained through ex vivo experiments with seven breast specimens of volunteers. In the ex vivo experiments, the maximum amplitude of photoacoustic signals from the microcalcifications occurred when the laser wavelength ranged from 690 to 700 nm. This result demonstrated that PAI can serve as a real-time imaging and guidance tool for diagnosis and biopsy of the breast microcalcifications.

  19. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    Science.gov (United States)

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  20. Magnetic resonance imaging of the breast: A clinicial perspective

    Directory of Open Access Journals (Sweden)

    Jenny Edge

    2012-06-01

    Full Text Available The role of magnetic resonance imaging (MRI in screening for breast cancer and its use after the diagnosis of breast cancer is discussed. The topic is enormous, with over 5 000 papers published in the last 10 years. In this précis, we focused on articles that examine its clinical relevance. We did not look at economic factors.

  1. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers m

  2. Review of Metaplastic Carcinoma of the Breast: Imaging Findings and Pathologic Features

    Directory of Open Access Journals (Sweden)

    Rebecca Leddy

    2012-01-01

    Full Text Available Metaplastic carcinoma (MPC, an uncommon but often aggressive breast cancer, can be challenging to differentiate from other types of breast cancer and even benign lesions based on the imaging appearance. It has a variable pathology classification system. These types of tumors are generally rapidly growing palpable masses. MPCs on imaging can present with imaging features similar to invasive ductal carcinoma and probably even benign lesions. The purpose of this article is to review MPC of the breast including the pathology subtypes, imaging features, and imaging pathology correlations. By understanding the clinical picture, pathology, and overlap in imaging characteristics of MPC with invasive ductal carcinoma and probably benign lesions can assist in diagnosing these difficult malignancies.

  3. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B. [Department of Radiology, University of Chicago, 5841 S. Maryland Avenue Chicago, Illinois 60637 (United States); Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2009-11-15

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  4. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    Science.gov (United States)

    Sidky, Emil Y.; Pan, Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness whenp=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging. PMID:19994501

  5. Image-guided breast biopsy: state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    O' Flynn, E.A.M., E-mail: lizoflynn@doctors.org.u [South East London Breast Screening Programme and National Breast Screening Training Centre, Kings College Hospital NHS Foundation Trust, London SE5 9RS (United Kingdom); Wilson, A.R.M.; Michell, M.J. [South East London Breast Screening Programme and National Breast Screening Training Centre, Kings College Hospital NHS Foundation Trust, London SE5 9RS (United Kingdom)

    2010-04-15

    Percutaneous image-guided breast biopsy is widely practised to evaluate predominantly non-palpable breast lesions. There has been steady development in percutaneous biopsy techniques. Fine-needle aspiration cytology was the original method of sampling, followed in the early 1990s by large core needle biopsy. The accuracy of both has been improved by ultrasound and stereotactic guidance. Larger bore vacuum-assisted biopsy devices became available in the late 1990s and are now commonplace in most breast units. We review the different types of breast biopsy devices currently available together with various localization techniques used, focusing on their advantages, limitations and current controversial clinical management issues.

  6. Image-guided breast biopsy: state-of-the-art.

    Science.gov (United States)

    O'Flynn, E A M; Wilson, A R M; Michell, M J

    2010-04-01

    Percutaneous image-guided breast biopsy is widely practised to evaluate predominantly non-palpable breast lesions. There has been steady development in percutaneous biopsy techniques. Fine-needle aspiration cytology was the original method of sampling, followed in the early 1990s by large core needle biopsy. The accuracy of both has been improved by ultrasound and stereotactic guidance. Larger bore vacuum-assisted biopsy devices became available in the late 1990s and are now commonplace in most breast units. We review the different types of breast biopsy devices currently available together with various localization techniques used, focusing on their advantages, limitations and current controversial clinical management issues. PMID:20338392

  7. Image-guided breast biopsy: state-of-the-art

    International Nuclear Information System (INIS)

    Percutaneous image-guided breast biopsy is widely practised to evaluate predominantly non-palpable breast lesions. There has been steady development in percutaneous biopsy techniques. Fine-needle aspiration cytology was the original method of sampling, followed in the early 1990s by large core needle biopsy. The accuracy of both has been improved by ultrasound and stereotactic guidance. Larger bore vacuum-assisted biopsy devices became available in the late 1990s and are now commonplace in most breast units. We review the different types of breast biopsy devices currently available together with various localization techniques used, focusing on their advantages, limitations and current controversial clinical management issues.

  8. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    International Nuclear Information System (INIS)

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account

  9. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    Energy Technology Data Exchange (ETDEWEB)

    Batumalai, Vikneswary, E-mail: vikneswary.batumalai@sswahs.nsw.gov.au [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Quinn, Alexandra; Jameson, Michael [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Delaney, Geoff [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Liverpool, New South Wales (Australia); School of Medicine, University of Western Sydney, New South Wales (Australia); Holloway, Lois [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); School of Physics, University of Sydney, Sydney, New South Wales (Australia)

    2015-03-15

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.

  10. Breast Cancer in Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Tessier Cloutier, B; Clarke, A E; Ramsey-Goldman, R;

    2013-01-01

    Evidence points to a decreased breast cancer risk in systemic lupus erythematosus (SLE). We analyzed data from a large multisite SLE cohort, linked to cancer registries.......Evidence points to a decreased breast cancer risk in systemic lupus erythematosus (SLE). We analyzed data from a large multisite SLE cohort, linked to cancer registries....

  11. MR imaging-guided biopsy and localization of the breast

    International Nuclear Information System (INIS)

    If suspicious lesions found with MR imaging cannot be visualized by either mammography or ultrasound, MR imaging - based guidance systems are needed to guide needle biopsy or to allow localization of the lesion before surgery. The authors give an overview of the advantages and disadvantages of biopsy devices presented by different working groups. Furthermore, MR-compatible needle equipment for interventions of the breast is demonstrated. The angulation of the needle and the type of sequence are the most important factors for signal loss due to susceptibility. The strategy in special problem cases (multicentricity, bilateral lesions) is discussed. Control MR imaging within the first week after open biopsy is the best way to document the complete excision of a suspicious hypervascularized lesion after MR-guided wire localization. At our institute, percutaneous biopsy (36 interventions) revealed benign findings in 67% and malignant lesions in 25% of cases. Three biopsies were insufficient. Histology after MR-guided wire localization (136 interventions) showed benign findings in 51% and malignancy in 49% of cases. The suspicious lesion was missed by the surgeion in three cases. We perform MR-guided interventions of the breast routinely in indicated cases. (orig.)

  12. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine.

    Science.gov (United States)

    Manning, H Charles; Buck, Jason R; Cook, Rebecca S

    2016-02-01

    Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed.

  13. Evaluation of scatter effects on image quality for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J. [Imaging Research, Sunnybrook Health Sciences Centre, S-657, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, X-ray Imaging Laboratory, U. C. Davis Medical Center, 4701 X Street, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616 (United States); Imaging Research, Sunnybrook Health Sciences Centre, S-657, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada)

    2009-10-15

    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  14. In vivo breast sound-speed imaging with ultrasound tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTITUTE; Duric, Neb [KARMANOS CANCER INSTITUTE; Littrup, Peter [KARMONOS CANCER INSTITUTE

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided pbreast density (, and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor clinical response of breast cancer patients to neo-adjuvant chemotherapy.

  15. A minimum spanning forest based classification method for dedicated breast CT images

    NARCIS (Netherlands)

    Pike, R.; Sechopoulos, I.; Fei, B.

    2015-01-01

    PURPOSE: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. METHODS: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bila

  16. Nuclear Breast Imaging: Clinical Results and Future Directions.

    Science.gov (United States)

    Berg, Wendie A

    2016-02-01

    Interest in nuclear breast imaging is increasing because of technical improvements in dedicated devices that allow the use of relatively low doses of radiotracers with high sensitivity for even small breast cancers. For women with newly diagnosed cancer, primary chemotherapy is often recommended, and improved methods of assessing treatment response are of interest. With widespread breast density notification, functional rather than anatomic methods of screening are of increasing interest as well. For a cancer imaging technology to be adopted, several criteria must be met that will be discussed: evidence of clinical benefit with minimal harm, standardized interpretive criteria, direct biopsy guidance, and acceptable cost-effectiveness.

  17. THE CLINICAL SIGNIFICANCE OF 99mTc-MIBI BREAST IMAGING IN THE DIAGNOSIS OF EARLY BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    任长才; 金少津; 邹强; 朱汇庆; 王红鹰; 梁春立

    2001-01-01

    Objective: To find an effective, sensitive, specific and noninvasive diagnostic method of breast cancer. Methods: 109 masses of 102 patients with breast lesions smaller than 2 cm in diameter were divided into three groups to undergo 99mTc-MIBI imaging and compared with the results of pathology examination. 20 cases without breast lesions were selected as control. Abnormal condensation of 99mTc-MIBI in the breast reaching 10% higher than that in the counterpart of the healthy breast was regarded as positive. Results: Of 32 breast cancers, positive imaging appeared in 25. Negative imaging were found in 31 of 38 benign breast lesions. Of 39 occult breast lesions, positive imaging appeared in 6 and 3 of them were breast cancer, 2 of 3 patients with slightly increased 99mTc-MIBI imaging threshold were breast cancer also. No positive imaging was found in the control group. The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value of 99mTc-MIBI was 88.4%, 89.2%, 88.0%, 75.0% and 95.3%, respectively. Conclusion: 99mTc-MIBI imaging had higher sensitivity and accuracy in the diagnosis of breast cancer and differentiation between benign and malignant breast lesions. It could provide useful information for the diagnosis of clinically suspected breast cancer.

  18. Avaliação de microcalcificações mamárias de acordo com as classificações do Breast Imaging Reporting and Data System (BI-RADS TM e de Le Gal Evaluation of breast microcalcifications according to Breast Imaging Reporting and Data System (BI-RADS TM and Le Gal's classifications

    Directory of Open Access Journals (Sweden)

    Lúcio Márcio Perri de Resende

    2008-02-01

    Full Text Available OBJETIVO: avaliar a acurácia da mamografia para o diagnóstico de microcalcificações mamárias suspeitas, com as classificações do Breast Imaging Reporting and Data System (BI-RADS TM e Le Gal em comparação com o resultado histopatológico utilizado como padrão-ouro. MÉTODOS: foram selecionados dos arquivos dos blocos cirúrgicos, 130 casos operados com mamografias contendo somente microcalcificações mamárias, inicialmente classificadas como suspeitas sem lesões detectáveis ao exame clínico. Estas foram reclassificadas por dois examinadores, utilizando as classificações de Le Gal e BI-RADS TM, obtendo-se diagnóstico de consenso. As biópsias foram revistas por dois patologistas e foi obtido diagnóstico de consenso. A leitura das mamografias e a revisão das lâminas foram feitas em duplo-cego. As análises estatísticas utilizadas neste estudo foram o teste do chi2, o modelo Fleiss quadrático para VPP e o programa Epi-Info 6.0. RESULTADOS: a correlação entre a análise histopatológica e mamográfica, usando BI-RADS TM e Le Gal, mostrou a mesma sensibilidade de 96,4%, especificidade de 55,9 e 30,3%, valor preditivo positivo (VPP de 37,5% e 27,5% e acurácia de 64,6 e 44,6%, respectivamente. Quando discriminamos por categorias de BI-RADS TM, obtivemos VPPs: categoria 2, 0%; categoria 3, 1,8%; categoria 4, 31,6% e categoria 5, 60%. Os VPPs pela classificação de Le Gal foram: categoria 2, 3,1%; categoria 3, 18,1 %; categoria 4, 26,4%; categoria 5, 66,7% e não classificável, 5,2%. CONCLUSÕES: observou-se uma maior precisão com a classificação de BI-RADS TM, porém não se conseguiu reduzir a ambigüidade na avaliação das microcalcificações mamárias.PURPOSE: the aim of this study is to evaluate the accuracy of mammography in the diagnosis of suspicious breast microcalcifications, using BI-RADS TM and Le Gal's classifications. METHODS: one hundred and thirty cases were selected with mammograms contain only

  19. Multicenter prospective study of magnetic resonance imaging prior to breast-conserving surgery for breast cancer

    Institute of Scientific and Technical Information of China (English)

    Liu Qian; Liu Yinhua; Xu Ling; Duan Xuening; Li Ting; Qin Naishan; Kang Hua

    2014-01-01

    Background This multicenter prospective study aimed to assess the utility of dynamic enhanced magnetic resonance imaging (MRI) prior to breast-conserving surgery for breast cancer.Methods The research subjects were drawn from patients with primary early resectable breast cancer treated in the breast disease centers of six three-level hospitals in Beijing from 1 January 2010 to 31 December 2012.The participants were allocated to a breast-conserving surgery group (breast-conserving group) or a total mastectomy group (total mastectomy group).Enhanced MRI was used to measure breast volume,longest diameter of tumor and tumor volume.The correlations between these measurements and those derived from histopathologic findings were assessed.The relationships between the success rate of breast-conserving surgery and MRI-and pathology-based measurement results were statistically analyzed in the breast-conserving group.Results The study included 461 cases in the total mastectomy group and 195 in the breast-conserving group.Allocation to these groups was based on clinical indications and patient preferences.The cut-off for concurrence between MRI-and pathology-based measurements of the longest diameter of tumor was set at 0.3 cm.In the total mastectomy group,the confidence interval for 95% concurrence of these measurements was 35.41%-44.63%.Correlation coefficients for MRI and histopathology-based measurements of breast volume,tumor volume and tumor volume/breast volume ratio were r=0.861,0.569,and 0.600,respectively (all P <0.001).In the breast-conserving group,with 0.30 cm taken as the cut-off for concurrence,the 95% confidence interval for MRI and pathology-based measurements of the longest diameter of tumor was 29.98%-44.01%.The subjective and objective success rates for breast-conserving surgery were 100% and 88.54%,respectively.Conclusions There were significant correlations between dynamic enhanced MRI-and histopathology-based measurements of the longest

  20. Identification of occult breast lesions detected by magnetic resonance imaging with targeted ultrasound: A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Aracava, Márcia M., E-mail: marcia.aracava@gmail.com; Chojniak, Rubens, E-mail: chojniak@uol.com.br; Souza, Juliana A., E-mail: julianaalves79@hotmail.com; Bitencourt, Almir G.V., E-mail: almirgvb@yahoo.com.br; Marques, Elvira F., E-mail: elvira.marques@ig.com.br

    2014-03-15

    Objective: To verify the capacity of targeted ultrasound (US) to identify additional lesions detected on breast magnetic resonance imaging (MRI), but occult to initial mammography, US and clinical examinations. Methods: This prospective study included 68 additional relevant breast lesions identified on MRI of 49 patients. As an inclusion criterion, breast US and mammography were required and performed up to six months before MRI. These lesions were then subjected to targeted “second-look” US up to 2 weeks after MRI, performed by one or two radiologists with expertise on breast imaging. Lesions were evaluated according to the established Breast Imaging Report and Data System (BI-RADS) lexicon. Results: Targeted US identified 46/68 (67.6%) lesions revealed by MRI. No significant associations were observed between US identification and the type of lesion, dimensions, morphological characteristics and enhancement pattern according to MRI findings. Targeted US identified 100% of BI-RADS category 5 lesions, 90% of category 4 lesions, and just over 50% of category 3 lesions (p < 0.05). There was significant agreement (p < 0.001) between MRI and US BI-RADS classification for all three categories. Conclusion: Targeted US can identify a large proportion of the lesions detected by breast MRI, especially those at high risk of malignancy, when performed by a professional with experience in both breast US and MRI.

  1. From Bombs to Breast Cancer Imaging: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Rebecca M [Los Alamos National Laboratory

    2012-07-26

    . Currently, there is fierce debate surrounding the age at which breast cancer screening should begin, and once begun, how often it should occur. The American Cancer Society recommends yearly mammograms starting at age 40. On the other hand, the U.S. Preventive Services Task Force recommends against routine so early. Rather, the Task Force recommends biennial mammography screening for women aged 50 to 74 years. The ten-year discrepancy in the onset of screening results from recent data suggesting that the frequent use of X-ray radiation during screenings could potentially increase the likelihood of developing cancer. This danger is increased by the low sensitivity and accuracy of mammograms, which sometimes require multiple screenings to yield results. Furthermore, mammograms are often not only inaccurate, but average appalling misdiagnoses rates: about 80% false positives and 15% false negatives. These misdiagnoses lead to unwarranted biopsies at an estimated health care cost of $2 billion per year, while at the same time, resulting in excessive cases of undetected cancer. As such, the National Cancer Institute recommends more studies on the advantages of types and frequency of screenings, as well as alternative screening options. The UST technology developed at LANL could be an alternative option to greatly improve the specificity and sensitivity of breast cancer screening without using ionizing radiation. LANL is developing high-resolution ultrasound tomography algorithms and a clinical ultrasound tomography scanner to conduct patient studies at the UNM Hospital. During UST scanning, the patient lies face-down while her breast, immersed in a tank of warm water, is scanned by phased-transducer arrays. UST uses recorded ultrasound signals to reconstruct a high-resolution three-dimensional image of the breast, showing the spatial distribution of mechanical properties within the breast. Breast cancers are detected by higher values of mechanical properties compared to

  2. Emotional distress in women presenting for breast imaging

    International Nuclear Information System (INIS)

    The aim of this study was to assess anxiety and depression in a sample of women presenting for imaging of breast following a clinical referral. Emotional distress in the women was also assessed in relation to demographic factors, reason for referral, presence for breast symptoms, type of imaging procedure performed and self-reported pain and discomfort during imaging. The study comprised 167 patients. The Hopkins Symptom Checklist-25 (HSCL-25) and a discomfort rating scale were used to assess emotional distress and discomfort or pain experienced during the imaging. While less than 10% of all subjects scored above psychiatric cut-off points for anxiety and depression, 25% and 20% reported significant distress associated with anxiety and depression symptoms respectively. Education alone was associated with higher anxiety scores, while the presence of breast symptoms significantly increased depression scores and reports of specific nonsomatic symptoms of depression. Higher anxiety and depression scores were also associated with pain experienced during the imaging procedure. Emotional distress may negatively impact women's experience of breast imaging. Screening for emotional distress is important within the context of breast imaging. (author)

  3. Regional spectroscopy of paraffin-embedded breast cancer tissue using pulsed terahertz transmission imaging

    Science.gov (United States)

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas

    2016-03-01

    This work seeks to obtain the properties of paraffin-embedded breast cancer tumor tissues using transmission imaging and spectroscopy. Formalin-fixed and paraffin-embedded breast tumors are first sectioned into slices of 20 μm and 30 μm and placed between two tsurupica slides. The slides are then scanned in a pulsed terahertz system using transmission imaging. The tissue regions in adjacent pathology section are compared to the transmission imaging scan in order to define a region of points over which to average the electrical properties results from the scan.

  4. Functional Imaging of Breast Tissue and Clinical Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel approach to image hemoglobin concentration(ΔDhb) and oxygen saturation (ΔDoxy) of breast tissue is presented. The scenograph of dual-wavelength (760 and 850 nm) near infrared lights through breast tissue is acquired by high sensitive charge coupled device (CCD) camera. The evaluation criterion of the difference of ΔDhb and ΔDoxy between detected and referenced breast tissue can be obtained by a calculation formula without complicate caculation. This approach is applied to clinic detection in breast tissue. The ongoing clinical experiments indicate that malignant tumor usually exhibits characterize of "higher ΔDhb and lower ΔDoxy", while benign lesion often shows "lower ΔDhb and higher ΔDoxy" or other characters. So it is useful to assist the diagnosis of breast disease.

  5. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging.

    Science.gov (United States)

    Yang, Yaliang; Li, Fuhai; Gao, Liang; Wang, Zhiyong; Thrall, Michael J; Shen, Steven S; Wong, Kelvin K; Wong, Stephen T C

    2011-08-01

    We present a label-free, chemically-selective, quantitative imaging strategy to identify breast cancer and differentiate its subtypes using coherent anti-Stokes Raman scattering (CARS) microscopy. Human normal breast tissue, benign proliferative, as well as in situ and invasive carcinomas, were imaged ex vivo. Simply by visualizing cellular and tissue features appearing on CARS images, cancerous lesions can be readily separated from normal tissue and benign proliferative lesion. To further distinguish cancer subtypes, quantitative disease-related features, describing the geometry and distribution of cancer cell nuclei, were extracted and applied to a computerized classification system. The results show that in situ carcinoma was successfully distinguished from invasive carcinoma, while invasive ductal carcinoma (IDC) and invasive lobular carcinoma were also distinguished from each other. Furthermore, 80% of intermediate-grade IDC and 85% of high-grade IDC were correctly distinguished from each other. The proposed quantitative CARS imaging method has the potential to enable rapid diagnosis of breast cancer.

  6. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation

    International Nuclear Information System (INIS)

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed. (authors)

  7. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    Science.gov (United States)

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed.

  8. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    CERN Document Server

    Sidky, Emil Y; Reiser, Ingrid S; Nishikawa, Robert M; Moore, Richard H; Kopans, Daniel B

    2009-01-01

    PURPOSE: We develop a practical, iterative algorithm for image-reconstruction in under-sampled tomographic systems, such as digital breast tomosynthesis (DBT). METHOD: The algorithm controls image regularity by minimizing the image total $p$-variation (TpV), a function that reduces to the total variation when $p=1.0$ or the image roughness when $p=2.0$. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets (POCS). The fact that the tomographic system is under-sampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) reduction of the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this...

  9. Effect of shaped filter design on dose and image quality in breast CT

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the effect of shaped filters specifically designed for dedicated breast computed tomography (CT) scanners on dose and image quality. Optimization of filter shape and material in fan direction was performed using two different design methods, one aiming at homogeneous noise distributions in the CT images and the other aiming at a uniform dose distribution in the breast. The optimal filter thickness as a function of fan angle was determined iteratively to fulfil the above mentioned criteria for each breast diameter. Different filter materials (aluminium, copper, carbon, polytetrafluoroethylene) and breast phantoms with diameters between 80–180 mm were investigated. Noise uniformity in the reconstructed images, obtained from CT simulations based on ray-tracing methods, and dose in the breast, calculated with a Monte Carlo software tool, were used as figure of merit. Furthermore, CT-value homogeneity, the distribution of noise in cone direction, spatial resolution from centre to periphery and the contrast-to-noise ratio weighted by dose (CNRD) were evaluated. In addition, the decrease of scatter due to shaped filters was investigated. Since only few or one filter are practical in clinical CT systems, the effects of one shaped filter for different breast diameters were also investigated. In this case the filter, designed for the largest breast diameter, was simulated at variable source-to-filter distances depending on breast diameter. With the filter design method aiming at uniform noise distribution best results were obtained for aluminium as the filter material. Noise uniformity improved from 20% down to 5% and dose was reduced by about 30–40% for all breast diameters. No decrease of noise uniformity in cone direction, CT-value homogeneity, spatial resolution and the CNRD was detected with the shaped filter. However, a small improvement of CNRD was observed. Furthermore, a scatter reduction of about 20–30% and a more

  10. Elastography of the Breast: Imaging Techniques and Pitfalls in Interpretation

    International Nuclear Information System (INIS)

    Ultrasound (US) elastography is a tool that indicates the hardness of a lesion. Recent studies using elastography with freehand compression have shown similar diagnostic performance to conventional US in differentiating benign lesions from malignant breast masses. On the other hand, the acquired information is not quantitative, and the reliability of the imaging technique to correctly compress the tissue depends on the skill of the operator, resulting in substantial interobserver variability during data acquisition and interpretation. To overcome this, shear wave elastography was developed to provide quantitative information on the tissue elasticity. The system works by remotely inducing mechanical vibrations through the acoustic radiation force created by a focused US beam. This review discusses the principles and examination techniques of the two types of elastography systems and provides practical points to reduce the interobserver variability or errors during data acquisition and interpretation

  11. Database-guided breast tumor detection and segmentation in 2D ultrasound images

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua K.; Brunke, Shelby; Lowery, Carol; Comaniciu, Dorin

    2010-03-01

    Ultrasonography is a valuable technique for diagnosing breast cancer. Computer-aided tumor detection and segmentation in ultrasound images can reduce labor cost and streamline clinic workflows. In this paper, we propose a fully automatic system to detect and segment breast tumors in 2D ultrasound images. Our system, based on database-guided techniques, learns the knowledge of breast tumor appearance exemplified by expert annotations. For tumor detection, we train a classifier to discriminate between tumors and their background. For tumor segmentation, we propose a discriminative graph cut approach, where both the data fidelity and compatibility functions are learned discriminatively. The performance of the proposed algorithms is demonstrated on a large set of 347 images, achieving a mean contour-to-contour error of 3.75 pixels with about 4.33 seconds.

  12. Anatomical background noise power spectrum in differential phase contrast breast images

    Science.gov (United States)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  13. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    International Nuclear Information System (INIS)

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients

  14. Coded aperture coherent scatter imaging for breast cancer detection: a Monte Carlo evaluation

    Science.gov (United States)

    Lakshmanan, Manu N.; Morris, Robert E.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2016-03-01

    It is known that conventional x-ray imaging provides a maximum contrast between cancerous and healthy fibroglandular breast tissues of 3% based on their linear x-ray attenuation coefficients at 17.5 keV, whereas coherent scatter signal provides a maximum contrast of 19% based on their differential coherent scatter cross sections. Therefore in order to exploit this potential contrast, we seek to evaluate the performance of a coded- aperture coherent scatter imaging system for breast cancer detection and investigate its accuracy using Monte Carlo simulations. In the simulations we modeled our experimental system, which consists of a raster-scanned pencil beam of x-rays, a bismuth-tin coded aperture mask comprised of a repeating slit pattern with 2-mm periodicity, and a linear-array of 128 detector pixels with 6.5-keV energy resolution. The breast tissue that was scanned comprised a 3-cm sample taken from a patient-based XCAT breast phantom containing a tomosynthesis- based realistic simulated lesion. The differential coherent scatter cross section was reconstructed at each pixel in the image using an iterative reconstruction algorithm. Each pixel in the reconstructed image was then classified as being either air or the type of breast tissue with which its normalized reconstructed differential coherent scatter cross section had the highest correlation coefficient. Comparison of the final tissue classification results with the ground truth image showed that the coded aperture imaging technique has a cancerous pixel detection sensitivity (correct identification of cancerous pixels), specificity (correctly ruling out healthy pixels as not being cancer) and accuracy of 92.4%, 91.9% and 92.0%, respectively. Our Monte Carlo evaluation of our experimental coded aperture coherent scatter imaging system shows that it is able to exploit the greater contrast available from coherently scattered x-rays to increase the accuracy of detecting cancerous regions within the breast.

  15. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15 deg. angular range (from -7.5 deg. to +7.5 deg.). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44

  16. Online advertising by three commercial breast imaging services: message takeout and effectiveness.

    Science.gov (United States)

    Johnson, Rebecca; Jalleh, Geoffrey; Pratt, Iain S; Donovan, Robert J; Lin, Chad; Saunders, Christobel; Slevin, Terry

    2013-10-01

    Mammography is widely acknowledged to be the most cost-effective technique for population screening for breast cancer. Recently in Australia, imaging modalities other than mammography, including thermography, electrical impedance, and computerised breast imaging, have been increasingly promoted as alternative methods of breast cancer screening. This study assessed the impact of three commercial breast imaging companies' promotional material upon consumers' beliefs about the effectiveness of the companies' technology in detecting breast cancer, and consumers' intentions to seek more information or consider having their breasts imaged by these modalities. Results showed 90% of respondents agreed that the companies' promotional material promoted the message that the advertised breast imaging method was effective in detecting breast cancer, and 80% agreed that the material promoted the message that the imaging method was equally or more effective than a mammogram. These findings have implications for women's preference for and uptake of alternative breast imaging services over mammography. PMID:23422256

  17. Ectopic Axillary Breast during Systemic Lupus

    Directory of Open Access Journals (Sweden)

    Besma Ben Dhaou

    2012-01-01

    Full Text Available Many breast changes may occur in systemic lupus erythematosus. We report a 41-year-old woman with lupus who presented three years after the onset of lupus an ectopic mammary gland confirmed by histological study.

  18. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    Science.gov (United States)

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  19. Mitosis Detection for Invasive Breast Cancer Grading in Histopathological Images.

    Science.gov (United States)

    Paul, Angshuman; Mukherjee, Dipti Prasad

    2015-11-01

    Histopathological grading of cancer not only offers an insight to the patients' prognosis but also helps in making individual treatment plans. Mitosis counts in histopathological slides play a crucial role for invasive breast cancer grading using the Nottingham grading system. Pathologists perform this grading by manual examinations of a few thousand images for each patient. Hence, finding the mitotic figures from these images is a tedious job and also prone to observer variability due to variations in the appearances of the mitotic cells. We propose a fast and accurate approach for automatic mitosis detection from histopathological images. We employ area morphological scale space for cell segmentation. The scale space is constructed in a novel manner by restricting the scales with the maximization of relative-entropy between the cells and the background. This results in precise cell segmentation. The segmented cells are classified in mitotic and non-mitotic category using the random forest classifier. Experiments show at least 12% improvement in F1 score on more than 450 histopathological images at 40× magnification.

  20. Identification of breast contour for nipple segmentation in breast magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, Chih-Ying [Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan 320, Taiwan (China); Gwo, Allen [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 (United States); Wei, Chia-Hung, E-mail: rogerwei@uch.edu.tw [Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan 320, Taiwan and Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan (China); Huang, Pai Jung [Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan and Comprehensive Breast Health Center, Taipei Medical University Hospital, Taipei 110, Taiwan (China)

    2014-02-15

    Purpose: The purpose of this study is to develop a method to simulate the breast contour and segment the nipple in breast magnetic resonance images. Methods: This study first identifies the chest wall and removes the chest part from the breast MR images. Subsequently, the cleavage and its motion artifacts are removed, distinguishing the separate breasts, where the edge points are sampled for curve fitting. Next, a region growing method is applied to find the potential nipple region. Finally, the potential nipple region above the simulated curve can be removed in order to retain the original smooth contour. Results: The simulation methods can achieve the least root mean square error (RMSE) for certain cases. The proposed YBnd and (Dmin+Dmax)/2 methods are significant due toP = 0.000. The breast contour curve detected by the two proposed methods is closer than that determined by the edge detection method. The (Dmin+Dmax)/2 method can achieve the lowest RMSE of 1.1029 on average, while the edge detection method results in the highest RMSE of 6.5655. This is only slighter better than the comparison methods, which implies that the performance of these methods depends upon the conditions of the cases themselves. Under this method, the maximal Dice coefficient is 0.881, and the centroid difference is 0.36 pixels. Conclusions: The contributions of this study are twofold. First, a method was proposed to identify and segment the nipple in breast MR images. Second, a curve-fitting method was used to simulate the breast contour, allowing the breast to retain its original smooth shape.

  1. Design and Analysis of Breast Cancer Detection System Using Mammogram Features Extraction

    Directory of Open Access Journals (Sweden)

    Satish Saini

    2014-12-01

    Full Text Available Breast cancer is the most frequently diagnosed among women. Mammogram is a radiograph of the breast tissue and is one of the most effective, non-invasive methods of detecting breast cancer in its earliest and most treatable stage This paper aims at designing a breast cancer detection system based on Artificial Neural Network (ANN and Image Processing Techniques in digital mammography. The effectiveness of the ANN based detection system will be investigated for different number of layers and optimum number of layers will be chosen. The performance of the system will be analyzed on the basis of Mean Square Error (MSE.

  2. Optical tomography of the breast using a multi-channel time-resolved imager

    International Nuclear Information System (INIS)

    A time-resolved optical tomography system has been used to generate cross-sectional images of the human breast. Images are reconstructed using an iterative, nonlinear algorithm and measurements of mean photon flight time relative to those acquired on a homogeneous reference phantom. Thirty-eight studies have been performed on three healthy volunteers and 21 patients with a variety of breast lesions including cancer. We have successfully detected 17 out of 19 lesions, and shown that optical images of the healthy breast of the same volunteer display a heterogeneity which is repeatable over a period of months. However, results also indicate that the lack of accurate quantitation of optical parameters and limited morphological information limits the ability to characterize different types of lesions and distinguish benign from malignant tissues. Drawbacks of our current methodology and plans for overcoming them are discussed

  3. Impact of breast MRI on surgical treatment, axillary approach, and systemic therapy for breast cancer.

    Science.gov (United States)

    Mameri, Claudia S; Kemp, Claudio; Goldman, Suzan M; Sobral, Luiz A; Ajzen, Sergio

    2008-01-01

    The purpose of this study is to determine how often breast magnetic resonance imaging (MRI) brings additional information that influences management of patients with breast cancer concerning surgical treatment, axillary lymph node approach, and systemic therapy. From July 2004 to July 2005, 99 patients recently diagnosed with breast cancer in clinical stages 0, I, and II were prospectively evaluated about their therapeutic plans, at first based on usual protocol (physical examination, mammography and ultrasound) and next going through bilateral breast MR. Examinations were carried out at 1.5 T on five sequences of FSPGR 3D for 90 seconds (four post-gadolinium diethylenetriaminepenta acetic acid 0.16 mM/Kg). Parameters analyzed on MRI were extension of primary lesion; detection of multifocality, multicentricity, or contra lateral lesion; muscular or skin involvement; and presence of lymph node involvement. Pathologic confirmation of additional lesions was achieved by core or excisional biopsy. MRI made 69 additional findings in 53 patients. Fifty-one findings were true-positives (51/69 = 73.9%) including 16 larger single lesions; 18 cases of multifocality; 7 cases of multicentricity; 3 cases of contra lateral lesion; 5 cases of lymph node involvement (one of them involved medial thoracic chain); 1 with muscular involvement; 1 with skin involvement. MRI has changed previous management plans in 44.4% of 99 patients. We observed increase in mastectomies (26.8%) on axillary lymph node dissection (25%) and changes on systemic therapy (20.2%), all because of additional MRI true-positive findings. Breast MRI alters significantly the rate of mastectomy, the approach of axillary chain for staging, and the use of systemic therapy because of its accuracy in evaluating breast cancer local extent. PMID:18476882

  4. Count rate studies of a box-shaped PET breast imaging system comprised of position sensitive avalanche photodiodes utilizing monte carlo simulation.

    Science.gov (United States)

    Foudray, Angela M K; Habte, Frezghi; Chinn, Garry; Zhang, Jin; Levin, Craig S

    2006-01-01

    We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi). PMID:17645997

  5. Experimental Study of Breast Cancer Detection Using UWB Imaging

    Directory of Open Access Journals (Sweden)

    Saleh A. Alshehri

    2011-01-01

    Full Text Available Breast cancer detection using UWB imaging is presented in this paper. The study is performed experimentally. Homogeneous breast phantom is constructed using pure petroleum jelly. The tumor is modeled using mixture of water and wheat flour. The breast fatty tissue and tumor tissue are put in breast shaped glass which mimics the skin. The dielectric properties values are comparable to previous study. Neural Network (NN was trained and tested using feature vector which is prepared by performing discrete cosine transform (DCT of the received UWB signals. Very encouraging results were obtained. Up to 100 % tumor existence detection was achieved. Tumor size and location detection rate were 91.3% and 95.6% respectively.

  6. Medical imaging and computers in the diagnosis of breast cancer

    Science.gov (United States)

    Giger, Maryellen L.

    2014-09-01

    Computer-aided diagnosis (CAD) and quantitative image analysis (QIA) methods (i.e., computerized methods of analyzing digital breast images: mammograms, ultrasound, and magnetic resonance images) can yield novel image-based tumor and parenchyma characteristics (i.e., signatures that may ultimately contribute to the design of patient-specific breast cancer management plans). The role of QIA/CAD has been expanding beyond screening programs towards applications in risk assessment, diagnosis, prognosis, and response to therapy as well as in data mining to discover relationships of image-based lesion characteristics with genomics and other phenotypes; thus, as they apply to disease states. These various computer-based applications are demonstrated through research examples from the Giger Lab.

  7. Is general practitioner access to breast imaging safe?

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, G.D. [Breast Unit, Royal Glamorgan Hospital, Llantrisant (United Kingdom)]. E-mail: garyosborn2@aol.com; Gahir, J.K. [Breast Unit, Royal Glamorgan Hospital, Llantrisant (United Kingdom); Preece, K. [Cancer Services, Royal Glamorgan Hospital, Llantrisant (United Kingdom); Vaughan-Williams, E. [Breast Unit, Royal Glamorgan Hospital, Llantrisant (United Kingdom); Gower-Thomas, K. [Radiology, Royal Glamorgan Hospital, Llantrisant (United Kingdom)

    2006-05-15

    AIM: The aim of this study was to assess the consultant radiologist run open-access breast radiology service (OAR) to investigate whether the system was safe or whether cancers were being missed. METHODS: A retrospective review of the national cancer registry database to identify patients presenting with symptomatic breast cancer in the catchment area of the Royal Glamorgan Hospital (RGH) from April 2000 to April 2002 was performed. Pathology, radiology and outpatient records were reviewed to identify patients previously assessed at the RGH. RESULTS: Fifty-four patients with breast cancer were diagnosed via the OAR and 159 by the breast clinic (BC). Twelve patients with breast cancer were diagnosed after their initial presentation. Eight patients had been previously seen for benign breast lesions. Four patients had missed breast cancers (two were initially seen via the BC and two via the OAR). A significant difference in the number of cancers missed by the two referral routes was not observed (p=0.221). CONCLUSION: OAR is as accurate a means of diagnosing breast cancer as traditional rapid access BCs. Women presenting with discrete lumps with no radiological abnormality should still undergo assessment with clinical fine core-biopsy.

  8. Preliminary results of acoustic radiation force impulses (ARFI) ultrasound imaging of solid suspicious breast lesions

    Institute of Scientific and Technical Information of China (English)

    Lei Ye; Liping Wang; Yuan Huang; Youbin Deng

    2013-01-01

    Objective: The aim of our study was to make the qualitative and quantitative analysis to breast lesions usingacoustic radiation force impulses (ARFI), and assess the diagnostic value of ARFI for differentiation between benign andmalignant solid breast masses, meanwhile evaluate the influences of ARFI with breast imaging reporting and data system(BI-RADS) of suspicious masses. Methods: Seventy-five women with 86 breast lesions underwent conventional breast ultrasoundexamination. Then B-mode BI-RADS features and assessments were recorded and standard breast US supplementedby ARFI elastographic examination were repeated. The data were recorded and analyzed as following: area ratio of breastlesion, the shear-wave velocity, the ratio of the shear-wave velocity between lesions and surrounding normal tissues, andaccording to the elastographic data reconsidered the BI-RADS category, all the results have been correlated with pathologicalresults and make statistical evaluations of ARFI for differentiation between benign and malignant solid breast masses.Meantime our study has correlated the adjusted BI-RADS category of suspicious breast lesions with the pathological resultsand made assessment. Results: Thirty-eight patients were malignant breast carcinoma (31 invasive ductal carcinoma, 5intraductal carcinoma in situ, 2 medullary carcinoma, 2 invasive lobular carcinoma), 48 patients were benign breast lesions(23 fibroadenoma, 12 benign nodular hyperplasia, 5 phyllodes tumor, 6 adenosis, 2 intraductal papilloma). Underwent conventionalbreast ultrasound exam, 42 cases were BI-RADS category 3, 23 cases were BI-RADS category 4. When addingelastographic data, 46 cases were BI-RADS category 3 and 20 cases were BI-RADS category 4. Compared with pathologicalresults showed for both the specificity of BIRADS features and the area under ROC curve has risen. Virtual touch tissue imaging(VTI) and virtual touch tissue quantification (VTQ) data showed the area ratio (AR) between

  9. Reproducing 2D breast mammography images with 3D printed phantoms

    Science.gov (United States)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  10. Full Angle Spatial Compound of ARFI images for breast cancer detection.

    Science.gov (United States)

    González-Salido, Nuria; Medina, Luis; Camacho, Jorge

    2016-09-01

    Automated ultrasound breast imaging would overcome most of the limitations that precludes conventional hand-held echography to be an effective screening method for breast cancer diagnosis. If a three dimensional (3D) ultrasound dataset is acquired without manual intervention of the technician, repeatability and patient follow-up could be improved. Furthermore, depending on the system configuration, resolution and contrast could be enhanced with regard to conventional echography, improving lesion detectability and evaluation. Having multiple modalities is another major advantage of these automated systems, currently under development by several research groups. Because of their circular structure, some of them include through-transmission measurements that allow constructing speed of sound and attenuation maps, which adds complementary information to the conventional reflectivity B-Mode image. This work addresses the implementation of the Acoustic Radiation Force Impulse (ARFI) imaging technique in a Full Angle Spatial Compound (FASC) automated breast imaging system. It is of particular interest because of the high specificity of ARFI for breast cancer diagnosis, by representing tissue elasticity differences rather than acoustic reflectivity. First, the image formation process is analyzed and a compounding strategy is proposed for ARFI-FASC. Then, experimental results with a prototype system and two gelatin phantoms are presented: Phantom A with a hard inclusion in a soft background, and phantom B with three soft inclusions in a hard background and with three steel needles. It is demonstrated that the full angle composition of ARFI images improves image quality, enhancing Contrast to Noise Ratio (CNR) from 4.9 to 20.6 and 3.6 to 13.5 in phantoms A and B respectively. Furthermore, this CNR increase improved detectability of small structures (needles) with regard to images obtained from a single location, in which image texture masked their presence. PMID:27362998

  11. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    CERN Document Server

    Dang, J; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Soni...

  12. Economic challenges in breast imaging. A survivor's guide to success.

    Science.gov (United States)

    Feig, S A

    2000-07-01

    Most breast imaging centers today operate under financial strain. Among strategies designed to improve their bottom line, more efficient use of the radiologist's time is the most fundamental strategy and the one most likely to succeed in all breast imaging centers. Tasks performed by the radiologist that are not directly related to interpretation and consultation should be shifted to other personnel. Other strategies that may help some breast imaging centers include accepting only self-paying patients, renegotiating the hospital contract, performing more interventional procedures, and extending the hours of operation. Measures that can improve the economic efficiency of screening mammography include batch interpretation of mammograms; paperwork reduction; brief automated reports; limiting requests for previous films from other facilities to only potentially necessary cases; dedicated screening mammography examination rooms; reduction in recall rates; and, in certain circumstances, extension of breast center hours. Measures that can improve the economic efficiency of diagnostic mammography performance and interpretation include dedicated diagnostic mammography examination rooms, automated film rotators, improved scheduling, and efficient work-flow patterns for examination performance. Measures that can improve the economic efficiency of both screening and diagnostic mammography include improved triage of screening and diagnostic patients, reminder telephone calls to confirm mammography appointments, greater use of medical assistants to help the radiologists and technologists, and streamlined film library procedures and operations. Measures that can improve the economic efficiency of breast interventional procedures include preprocedure work-up, establishment of scheduling protocols, and greater involvement of technologists and medical assistants in assisting the radiologist who performs the interventional procedures. All of these methods are intended to create a

  13. Digital image analysis outperforms manual biomarker assessment in breast cancer.

    Science.gov (United States)

    Stålhammar, Gustav; Fuentes Martinez, Nelson; Lippert, Michael; Tobin, Nicholas P; Mølholm, Ida; Kis, Lorand; Rosin, Gustaf; Rantalainen, Mattias; Pedersen, Lars; Bergh, Jonas; Grunkin, Michael; Hartman, Johan

    2016-04-01

    In the spectrum of breast cancers, categorization according to the four gene expression-based subtypes 'Luminal A,' 'Luminal B,' 'HER2-enriched,' and 'Basal-like' is the method of choice for prognostic and predictive value. As gene expression assays are not yet universally available, routine immunohistochemical stains act as surrogate markers for these subtypes. Thus, congruence of surrogate markers and gene expression tests is of utmost importance. In this study, 3 cohorts of primary breast cancer specimens (total n=436) with up to 28 years of survival data were scored for Ki67, ER, PR, and HER2 status manually and by digital image analysis (DIA). The results were then compared for sensitivity and specificity for the Luminal B subtype, concordance to PAM50 assays in subtype classification and prognostic power. The DIA system used was the Visiopharm Integrator System. DIA outperformed manual scoring in terms of sensitivity and specificity for the Luminal B subtype, widely considered the most challenging distinction in surrogate subclassification, and produced slightly better concordance and Cohen's κ agreement with PAM50 gene expression assays. Manual biomarker scores and DIA essentially matched each other for Cox regression hazard ratios for all-cause mortality. When the Nottingham combined histologic grade (Elston-Ellis) was used as a prognostic surrogate, stronger Spearman's rank-order correlations were produced by DIA. Prognostic value of Ki67 scores in terms of likelihood ratio χ(2) (LR χ(2)) was higher for DIA that also added significantly more prognostic information to the manual scores (LR-Δχ(2)). In conclusion, the system for DIA evaluated here was in most aspects a superior alternative to manual biomarker scoring. It also has the potential to reduce time consumption for pathologists, as many of the steps in the workflow are either automatic or feasible to manage without pathological expertise. PMID:26916072

  14. An anatomically oriented breast coordinate system for mammogram analysis

    NARCIS (Netherlands)

    Brandt, S.S.; Karemore, G.; Karssemeijer, N.; Nielsen, M.

    2011-01-01

    We have developed a breast coordinate system that is based on breast anatomy to register female breasts into a common coordinate frame in 2-D mediolateral (ML) or mediolateral oblique (MLO) view mammograms. The breasts are registered according to the location of the pectoral muscle and the nipple an

  15. A multi-image approach to CADx of breast cancer with integration into PACS

    Science.gov (United States)

    Elter, Matthias; Wittenberg, Thomas; Schulz-Wendtland, Rüdiger; Deserno, Thomas M.

    2009-02-01

    While screening mammography is accepted as the most adequate technique for the early detection of breast cancer, its low positive predictive value leads to many breast biopsies performed on benign lesions. Therefore, we have previously developed a knowledge-based system for computer-aided diagnosis (CADx) of mammographic lesions. It supports the radiologist in the discrimination of benign and malignant lesions. So far, our approach operates on the lesion level and employs the paradigm of content-based image retrieval (CBIR). Similar lesions with known diagnosis are retrieved automatically from a library of references. However, radiologists base their diagnostic decisions on additional resources, such as related mammographic projections, other modalities (e.g. ultrasound, MRI), and clinical data. Nonetheless, most CADx systems disregard the relation between the craniocaudal (CC) and mediolateral-oblique (MLO) views of conventional mammography. Therefore, we extend our approach to the full case level: (i) Multi-frame features are developed that jointly describe a lesion in different views of mammography. Taking into account the geometric relation between different images, these features can also be extracted from multi-modal data; (ii) the CADx system architecture is extended appropriately; (iii) the CADx system is integrated into the radiology information system (RIS) and the picture archiving and communication system (PACS). Here, the framework for image retrieval in medical applications (IRMA) is used to support access to the patient's health care record. Of particular interest is the application of the proposed CADx system to digital breast tomosynthesis (DBT), which has the potential to succeed digital mammography as the standard technique for breast cancer screening. The proposed system is a natural extension of CADx approaches that integrate only two modalities. However, we are still collecting a large enough database of breast lesions with images from

  16. Molecular imaging of HER2-positive breast cancer

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  17. Nonrigid registration algorithm for longitudinal breast MR images and the preliminary analysis of breast tumor response

    Science.gov (United States)

    Li, Xia; Dawant, Benoit M.; Welch, E. Brian; Chakravarthy, A. Bapsi; Freehardt, Darla; Mayer, Ingrid; Kelley, Mark; Meszoely, Ingrid; Gore, John C.; Yankeelov, Thomas E.

    2009-02-01

    Although useful for the detection of breast cancers, conventional imaging methods, including mammography and ultrasonography, do not provide adequate information regarding response to therapy. Dynamic contrast enhanced MRI (DCE-MRI) has emerged as a promising technique to provide relevant information on tumor status. Consequently, accurate longitudinal registration of breast MR images is critical for the comparison of changes induced by treatment at the voxel level. In this study, a nonrigid registration algorithm is proposed to allow for longitudinal registration of breast MR images obtained throughout the course of treatment. We accomplish this by modifying the adaptive bases algorithm (ABA) through adding a tumor volume preserving constraint in the cost function. The registration results demonstrate the proposed algorithm can successfully register the longitudinal breast MR images and permit analysis of the parameter maps. We also propose a novel validation method to evaluate the proposed registration algorithm quantitatively. These validations also demonstrate that the proposed algorithm constrains tumor deformation well and performs better than the unconstrained ABA algorithm.

  18. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  19. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  20. Automated breast imaging-reporting and data system (BI-RADS) category 3 follow-up application: improving patient care and compliance

    Science.gov (United States)

    Kandula, Praveena; Cook, T. S.; Boonn, W. W.; Kim, W.

    2011-03-01

    With the current emphasis on healthcare reform and cost effectiveness, methods to increase healthcare efficiency while improving outcomes are paramount. With reference to breast cancer, delay in diagnosis can cause significant morbidity and mortality, as well as increased long term health care costs. Assessment with short interval mammographic follow-up of BI-RADS category 3 lesions has been shown to increase detection of a small number of breast cancers at an early stage. Because of the importance of timely follow-up for these patients, we propose a novel computer application that identifies patients due for short-term mammographic follow-up, thus reducing costly hours spent by personnel, reducing human error, and improving patient compliance. Our web-based application mines radiology reports and scheduling information to generate lists of patients due for short-term mammographic follow-up of BI-RADS category 3 results. The results can be placed in a worklist that can be used by a staff member to contact patients to schedule follow-up appointments. Additional analytic features of the application can identify referral characteristics that may serve as potential sources for improvement of patient follow-up. We believe that an automated system can be designed to improve patient care and compliance with follow-up of BI-RADS category 3 results.

  1. Breast imaging reporting and data system (BI-RADS) or French "classification ACR" What tool for what use? A point of view.

    Science.gov (United States)

    Dilhuydy, Marie Hélène

    2007-02-01

    The American College of Radiology Task Force on Breast Cancer published in 2003 the fourth edition of BI-RADS for Mammography. It is a lexicon of mammography terms including illustrations of each feature described, followed by a reporting format with assessment categories according to the degree of concern. The aim is to reduce inconsistencies in mammography reports and recommendations for assessment, to facilitate outcome monitoring and to allow each radiologist to audit his own mammography practice. In France, the Société Française de Radiologie acquired the rights to translate BI-RADS, word for word and without adaptation or influence. The last edition was published in 2004. Simultaneously, French Haute Autorité de Santé and National Committee for Breast Cancer Screening proposed to all community practice mammography facilities a classification of detected abnormalities stating more clearly than BI-RADS do which feature has to be included in such and such assessment category and how to manage it. This "classification ACR" is adapted from BI-RADS but strongly influenced by the context of the French nationwide screening programme, and by European recommendations to limitate undesirable risks of screening such as false positive and overdiagnosis. The differences between the two systems are discussed.

  2. An infrared image based methodology for breast lesions screening

    Science.gov (United States)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective

  3. Metabolic Imaging of Breast Cancer and the Normal Brain

    DEFF Research Database (Denmark)

    Asghar Butt, Sadia

    biological systems - breast cancer and normal brain. Breast cancer metabolism was longitudinally monitored in a mouse model using MRS of hyperpolirized pyruvate. The results demonstrated that we could monitor the changes in metabolism with increasing disease severity. The normal cerebral metabolism of α......-ketoisocaproate (KIC) was studied in the rat brain. The findings showed that hyperpolarized KIC is a promising substrate for in vivo evaluation of specific enzymatic activity....

  4. MR imaging of brachial plexopathy in breast cancer patients without palpable recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Lingawi, S.S. (Department of Radiology, St. Paul' s Hospital, Vancouver, BC (Canada) Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada) Radiology Department, Vancouver General Hospital, BC (Canada)); Bilbey, J.H. (Department of Radiology, St. Paul' s Hospital, Vancouver, BC (Canada)); Munk, P.L.; Marchinkow, L.O. (Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada)); Poon, P.Y. (Department of Diagnostic Imaging, British Columbia Cancer Agency, Vancouver, BC (Canada)); Allan, B.M. (Department of Neurology, Vancouver Hospital, Vancouver, BC (Canada)); Olivotto, I.A. (Division of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada))

    1999-06-01

    Objective. To investigate the role of MR imaging in detecting brachial plexus (BP) abnormalities in breast cancer patients with plexopathy but without palpable masses.Design. MR imaging of the BP was performed on 26 breast cancer patients with brachial plexopathy without palpable regional masses, using 0.5 T and 1.5 T imaging systems. Findings were correlated with the clinical diagnoses.Patients. Twenty-six patients with brachial plexopathy and history of breast cancer were enrolled in the study. All patients presented with plexopathy symptoms. Fourteen patients were positive and 12 patients were indeterminate for BP metastasis according to clinical criteria.Results and conclusion. MR imaging demonstrated masses involving the BP representing metastases in two patients. Nine patients had other regional abnormalities with a normal brachial plexus. It is concluded that MR imaging is useful in the assessment and direction of therapy of brachial plexopathy in breast cancer patients by detecting both metastases to the BP as well as other abnormalities, unrelated to the BP, which may explain the patient's symptoms. (orig.) With 4 figs., 1 tab., 18 refs.

  5. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Soimakallio, S; Järvenpää, R; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Dastidar, P

    2008-01-01

    Five combinations of image-processing algorithms were applied to dynamic infrared (IR) images of six breast cancer patients preoperatively to establish optimal enhancement of cancer tissue before frequency analysis. mid-wave photovoltaic (PV) IR cameras with 320x254 and 640x512 pixels were used. The signal-to-noise ratio and the specificity for breast cancer were evaluated with the image-processing combinations from the image series of each patient. Before image processing and frequency analysis the effect of patient movement was minimized with a stabilization program developed and tested in the study by stabilizing image slices using surface markers set as measurement points on the skin of the imaged breast. A mathematical equation for superiority value was developed for comparison of the key ratios of the image-processing combinations. The ability of each combination to locate the mammography finding of breast cancer in each patient was compared. Our results show that data collected with a 640x512-pixel mid-wave PV camera applying image-processing methods optimizing signal-to-noise ratio, morphological image processing and linear image restoration before frequency analysis possess the greatest superiority value, showing the cancer area most clearly also in the match centre of the mammography estimation. PMID:18666012

  6. Ultrasonography in diagnosis of level 3-5 of breast imaging reporting and data system grading of breast lump%超声诊断BI-RADS Ⅲ~Ⅴ级乳腺肿块的临床价值探讨

    Institute of Scientific and Technical Information of China (English)

    方景华; 农丽录; 张绍芳; 陈少华

    2014-01-01

    目的 探讨彩色多普勒超声诊断BI-RADSⅢ~Ⅴ级乳腺肿块的临床价值.方法 回顾性分析术前应用彩色多普勒超声诊断为BI-RADSⅢ~Ⅴ级的乳腺肿块患者共252例,将超声所见与手术病理结果进行对照分析.结果 252例乳腺肿块病灶中,BI-RADSⅢ级154例,病理学证实良性138例(89.6%),恶性16例(10.4%);BI-RADSⅣ级66例,病理学证实良性23例(34.8%),恶性43例(65.2%);BI-RADS Ⅴ级31例,病理学证实良性1例(3.2%),恶性30例(96.8%).结论 在乳腺彩色多普勒超声检查中,应用BI-RADS分级诊断标准可以对乳腺肿块进行良恶性的风险评估,对乳腺肿块的临床诊治具有重要的指导价值.%Objective To explore the clinical value of color doppler ultrasonography in the diagnosis of level 3-5 of breast imaging reporting and data system grading of breast lump.Methods 252 patients diagnosed with level 3-5 of breast imaging reporting and data system grading (BI-RADS Ⅲ~ Ⅴ) of breast lump by color doppler ultrasonography were retrospectively analyzed.The ultrasonic results were compared with the operative and pathological findings.Results Among the 252 cases,138 (89.6%) were confirmed as benighn and 16 (10.4%) as malignant by pathology in 154 cases of BI-RADS Ⅲ ; 23 (34.8%) benighn and 43 (65.2%) malignant in 66 cases of BI-RADS Ⅳ ; and 1 (3.2%) benighn and 30 (96.8%) malignant in 31 cases of BI-RADS Ⅴ.Conclusions Evaluating the benighn-malignant risk of breast lump applying BI-RADS in color doppler ultrasound examination has important instruction value to the clinical diagnosis and treatment of breast lump.

  7. Automated analysis of image mammogram for breast cancer diagnosis

    Science.gov (United States)

    Nurhasanah, Sampurno, Joko; Faryuni, Irfana Diah; Ivansyah, Okto

    2016-03-01

    Medical imaging help doctors in diagnosing and detecting diseases that attack the inside of the body without surgery. Mammogram image is a medical image of the inner breast imaging. Diagnosis of breast cancer needs to be done in detail and as soon as possible for determination of next medical treatment. The aim of this work is to increase the objectivity of clinical diagnostic by using fractal analysis. This study applies fractal method based on 2D Fourier analysis to determine the density of normal and abnormal and applying the segmentation technique based on K-Means clustering algorithm to image abnormal for determine the boundary of the organ and calculate the area of organ segmentation results. The results show fractal method based on 2D Fourier analysis can be used to distinguish between the normal and abnormal breast and segmentation techniques with K-Means Clustering algorithm is able to generate the boundaries of normal and abnormal tissue organs, so area of the abnormal tissue can be determined.

  8. Roles of biologic breast tissue composition and quantitative image analysis of mammographic images in breast tumor characterization

    Science.gov (United States)

    Drukker, Karen; Giger, Maryellen L.; Duewer, Fred; Malkov, Serghei; Flowers, Christopher I.; Joe, Bonnie; Kerlikowske, Karla; Drukteinis, Jennifer S.; Shepherd, John

    2014-03-01

    Purpose. Investigate whether knowledge of the biologic image composition of mammographic lesions provides imagebased biomarkers above and beyond those obtainable from quantitative image analysis (QIA) of X-ray mammography. Methods. The dataset consisted of 45 in vivo breast lesions imaged with the novel 3-component breast (3CB) imaging technique based on dual-energy mammography (15 malignant, 30 benign diagnoses). The 3CB composition measures of water, lipid, and protein thicknesses were assessed and mathematical descriptors, `3CB features', were obtained for the lesions and their periphery. The raw low-energy mammographic images were analyzed with an established in-house QIA method obtaining `QIA features' describing morphology and texture. We investigated the correlation within the `3CB features', within the `QIA features', and between the two. In addition, the merit of individual features in the distinction between malignant and benign lesions was assessed. Results. Whereas many descriptors within the `3CB features' and `QIA features' were, often by design, highly correlated, correlation between descriptors of the two feature groups was much weaker (maximum absolute correlation coefficient 0.58, pappeared equally well-suited for the distinction between malignant and benign lesions, with maximum area under the ROC curve 0.71 for a protein feature (3CB) and 0.71 for a texture feature (QIA). Conclusions. In this pilot study analyzing the new 3CB imaging modality, knowledge of breast tissue composition appeared additive in combination with existing mammographic QIA methods for the distinction between benign and malignant lesions.

  9. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  10. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  11. Clinical Outcome of Magnetic Resonance Imaging-Detected Additional Lesions in Breast Cancer Patients

    OpenAIRE

    Ha, Gi-Won; Yi, Mi Suk; Lee, Byoung Kil; Youn, Hyun Jo; Jung, Sung Hoo

    2011-01-01

    Purpose The aim of this study was to investigate the clinical outcome of additional breast lesions identified with breast magnetic resonance imaging (MRI) in breast cancer patients. Methods A total of 153 patients who underwent breast MRI between July 2006 and March 2008 were retrospectively reviewed. Thirty-three patients (21.6&) were recommended for second-look ultrasound (US) for further characterization of additional lesions detected on breast MRI and these patients constituted our study ...

  12. Magnetic resonance imaging texture analysis classification of primary breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, S.A.; Lerski, R.A. [Ninewells Hospital and Medical School, Department of Medical Physics, Dundee (United Kingdom); Purdie, C.A.; Jordan, L.B. [Ninewells Hospital and Medical School, Department of Pathology, Dundee (United Kingdom); Vinnicombe, S. [University of Dundee, Division of Imaging and Technology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Martin, P. [Ninewells Hospital and Medical School, Department of Clinical Radiology, Dundee (United Kingdom); Thompson, A.M. [University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Houston, TX (United States)

    2016-02-15

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. (orig.)

  13. Magnetic resonance imaging of trilucent TM breast implants

    International Nuclear Information System (INIS)

    AIM: To demonstrate the magnetic resonance imaging (MRI) appearances of intact and ruptured Trilucent TM implants with imaging and surgical correlation. The appearances of the implant transponder artefact are also described MATERIALS AND METHODS: A retrospective review of the MRI findings in 34 patients with bilateral subpectoral Trilucent TM breast implants (Lipomatrix, Inc./Collagen Aesthetics International Inc., Neuchatel, Switzerland) was performed. Patients under implant surveillance and those with suspected implant rupture formed the study group. Imaging findings were correlated with surgical appearances. RESULTS: Surgical correlation was available in 53% of patients. Fifty per cent (18/36) of implants were intact at surgery, 50% (18/36) of implants were ruptured. Of the 18 ruptured implants, 17 were intracapsular ruptures and one an extracapsular rupture. The sensitivity of MRI for detection of intracapsular rupture in Trilucent TM breast implants was 82% specificity 76%, positive predictive value 78%, negative predictive value 81% and accuracy 79% in this study group. No case of implant rupture was obscured by the transponder artefact. Four implants were found to have 'pseudocapsules' at surgery (5·9%), the implants were intact with fluid present between the implant and capsule. Only one pseudocapsule was demonstrated on MRI. CONCLUSION: Magnetic resonance imaging is currently the most accurate technique for diagnosis of implant rupture in Trilucent TM breast implants. Transponder artefact does not appear to interfere with the assessment of implant rupture. Elson, E. M. et al. (2002)

  14. Magnetic Resonance Spectroscopic Imaging (MRSI Study of Breast Cancer

    Directory of Open Access Journals (Sweden)

    K. B. Ashok

    2011-05-01

    Full Text Available Background: Breast cancer is the fifth most common cause of cancer death worldwide and most serious form of neoplastic diseases in both developed and developing countries. Mammography and ultrasound are the most often used screening methods in breast cancer. Magnetic Resonance Imaging (MRI uses the protons in water and fat to create the image of breast cancer. But recent studies says neoplastic breast lesions contains elevated choline concentration (tCho and altered mean apparent diffusion coefficient (ADC which can be used as good biomarkers to evaluate the cancer stages even follow up the Neoadjuvent Chemotherapy (NACT.Aim & Objectives:1. To evaluate the relation of age, tCho concentration and mean ADC with breast cancer.2. To estimate the correlation between the factors.3. To calculate the main difference between breast cancer patient before and after menopause.Methods/Study Design: This was a cross sectional, observational study done on 14 randomly selected diagnosed stage I breast cancer patients newly registered in surgery department of All India Institute of Medical Sciences, New Delhi, India during 3 months study period. Intentionally 7 of them were selected to be postmenopausal and rest 7 premenopausal. Patients with claustrophobia, serious illness, pacemaker or associated diseases were excluded. Volunteers were selected by lottery method after confirmation of absence of the exclusion criteria in them. All the breast MRS images were taken only after signing the consent form of being a volunteer for the study with breast coil. All the spectroscopic images were analyzed with computer technologies and SPPS software with the help of non-parametric statistical tests.Results/Findings: Mean age of patients were 44.85±6.97 where in premenopausal and postmenopausal women it was 40.14±4.59 and 49.57±5.26 respectively. tCho concentration was high in postmenopausal women (4.85±2.64 mmol/kg vs 3.72±1.64 where unlike to them premenopausal women

  15. Role of MRI (magnetic resonance imaging) versus conventional imaging for breast cancer presurgical staging in young women or with dense breast

    OpenAIRE

    Biglia, N.; Bounous, V.E.; Martincich, L.; Panuccio, E.; Liberale, V.; Ottino, L.; Ponzone, R; Sismondi, P.

    2011-01-01

    Abstract Aims The role of magnetic resonance imaging (MRI) in the local staging of breast cancer is currently uncertain. The purpose of this prospective study is to evaluate the accuracy of preoperative MRI compared to conventional imaging in detecting breast cancer and the effect of pre-operative MRI on the surgical treatment in a subgroup of women with dense breasts, young age, invasive lobular cancer (ILC) or multiple lesions. Methods Between Jan...

  16. Imaging Surveillance of Patients with Breast Cancer after Primary Treatment: Current Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung Hyun; Kim, Min Jung; Kim, Eun-Kyung; Moon, Hee Jung [Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-11-01

    Women who have been treated for breast cancer are at risk for second breast cancers, such as ipsilateral recurrence or contralateral metachronous breast cancer. As the number of breast cancer survivors increases, interest in patient management and surveillance after treatment has also increased. However, post-treatment surveillance programs for patients with breast cancer have not been firmly established. In this review, we focus on the imaging modalities that have been used in post-treatment surveillance for patients with breast cancer, such as mammography, ultrasonography, magnetic resonance imaging, and positron emission tomography, the effectiveness of each modality for detecting recurrence, and how they can be applied to manage patients.

  17. Breast

    International Nuclear Information System (INIS)

    Ultrasound is not an efficacious screening modality to detect early-stage breast malignancy in a clinically unremarkable population of women. Computed body tomography is similarly not practical for screening because of slice thickness and partial volume averaging, a higher radiation dose than modern mammography, and the lack of availability of such units for such a high throughput requirement. Nevertheless, these two imaging modalities can be very useful in management to guide the least invasive and efficacious treatment of the patient. X-ray mammography remains the principal imaging modality in the search for breast malignancy, but ultrasound is the single most important second study in the diagnostic evaluation of the breast. The combined use of these techniques and the ability to perform guided aspiration and localization procedures can result in a reduction in the surgical removal of benign cysts and reduction in the amount of tissue volume required if excision becomes necessary

  18. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  19. Molecular Imaging of Breast Cancer: Present and future directions

    Science.gov (United States)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  20. The Ongoing Revolution in Breast Imaging Calls for a Similar Revolution in Breast Pathology

    Directory of Open Access Journals (Sweden)

    L. Tabár

    2012-01-01

    Full Text Available Communication between pathologists and radiologists suffers from a lack of common ground: the pathologists examine cells in ultrathin tissue slices having the area of a postage stamp, while the radiologists examine images of an entire organ, but without seeing the cellular details. The current practice of examining breast cancer specimens is analogous to scrutinizing individual pieces of a jigsaw puzzle, without examining all of them and never putting all the pieces into place. The routine use of large section histopathology technique could help to alleviate much of this problem, especially with nonpalpable, screen-detected breast cancers. The study of three-dimensional (3D images of subgross, thick section pathology specimens by both radiologists and pathologists could greatly assist in the communication of findings.

  1. Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob;

    2011-01-01

    The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updat...

  2. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection

    OpenAIRE

    Grzegorczyk, Tomasz M.; Meaney, Paul M.; Kaufman, Peter A.; DiFlorio-Alexander, Roberta M.; Paulsen, Keith D.

    2012-01-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to ...

  3. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  4. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    Science.gov (United States)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  5. Online gamma-camera imaging of {sup 103}Pd seeds (OGIPS) for permanent breast seed implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Ananth [Department of Medical Biophysics, University of Toronto (Canada); Caldwell, Curtis B [Department of Medical Biophysics, University of Toronto (Canada); Keller, Brian M [Medical Physics, Sunnybrook Health Sciences Centre (Canada); Reznik, Alla [Department of Medical Biophysics, University of Toronto (Canada); Pignol, Jean-Philippe [Department of Medical Biophysics, University of Toronto (Canada)

    2007-09-21

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq {sup 103}Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  6. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography. (paper)

  7. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  8. Photoacoustic imaging of breast microcalcifications: a preliminary study with 8-gauge core-biopsied breast specimens.

    Directory of Open Access Journals (Sweden)

    Ga Ram Kim

    Full Text Available We presented the photoacoustic imaging (PAI tool and to evaluate whether microcalcifications in breast tissue can be detected on photoacoustic (PA images.We collected 21 cores containing microcalcifications (n = 11, microcalcification group and none (n = 10, control group in stereotactic or ultrasound (US guided 8-gauge vacuum-assisted biopsies. Photoacoustic (PA images were acquired through ex vivo experiments by transmitting laser pulses with two different wavelengths (700 nm and 800 nm. The presence of microcalcifications in PA images were blindly assessed by two radiologists and compared with specimen mammography. A ratio of the signal amplitude occurring at 700 nm to that occurring at 800 nm was calculated for each PA focus and was called the PAI ratio.Based on the change of PA signal amplitude between 700 nm and 800 nm, 10 out of 11 specimens containing microcalcifications and 8 out of 10 specimens without calcifications were correctly identified on blind review; the sensitivity, specificity, accuracy, positive predictive and negative predictive values of our blind review were 90.91%, 80.0%, 85.71%, 83.33% and 88.89%. The PAI ratio in the microcalcification group was significantly higher than that in the control group (the median PAI ratio, 2.46 versus 1.11, respectively, P =  .001. On subgroup analysis in the microcalcification group, neither malignant diagnosis nor the number or size of calcification-foci was proven to contribute to PAI ratios.Breast microcalcifications generated distinguishable PA signals unlike breast tissue without calcifications. So, PAI, a non-ionizing and non-invasive hybrid imaging technique, can be an alternative in overcoming the limitations of conventional US imaging.

  9. Imaging of common breast implants and implant-related complications: A pictorial essay.

    Science.gov (United States)

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  10. Imaging of common breast implants and implant-related complications: A pictorial essay

    Directory of Open Access Journals (Sweden)

    Amisha T Shah

    2016-01-01

    Full Text Available The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  11. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    Energy Technology Data Exchange (ETDEWEB)

    Turley, Jessica; Claridge Mackonis, Elizabeth [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales (Australia)

    2015-09-15

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging.

  12. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    International Nuclear Information System (INIS)

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging

  13. Phase-contrast X-ray imaging of breast

    Energy Technology Data Exchange (ETDEWEB)

    Keyrilaeinen, Jani; Tenhunen, Mikko (Dept. of Physics, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)), e-mail: jani.keyrilainen@hus.fi; Bravin, Alberto (Bio-medical Beamline ID17, European Synchrotron Radiation Facility, Grenoble (France)); Fernandez, Manuel (High Brilliance Beamline ID2, European Synchrotron Radiation Facility, Grenoble (France)); Virkkunen, Pekka (Dept. of Radiology, HUCH Cancer Center, Helsinki Univ. Central Hospital, Helsinki (Finland)); Suortti, Pekka (Dept. of Physics, Univ. of Helsinki, Helsinki (Finland))

    2010-10-15

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here

  14. Phase-contrast X-ray imaging of breast.

    Science.gov (United States)

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  15. Multi-modality fusion of CT, 3D ultrasound, and tracked strain images for breast irradiation planning

    Science.gov (United States)

    Foroughi, Pezhman; Csoma, Csaba; Rivaz, Hassan; Fichtinger, Gabor; Zellars, Richard; Hager, Gregory; Boctor, Emad

    2009-02-01

    Breast irradiation significantly reduces the risk of recurrence of cancer. There is growing evidence suggesting that irradiation of only the involved area of the breast, partial breast irradiation (PBI), is as effective as whole breast irradiation. Benefits of PBI include shortened treatment time, and perhaps fewer side effects as less tissue is treated. However, these benefits cannot be realized without precise and accurate localization of the lumpectomy cavity. Several studies have shown that accurate delineation of the cavity in CT scans is very challenging and the delineated volumes differ dramatically over time and among users. In this paper, we propose utilizing 3D ultrasound (3D-US) and tracked strain images as complementary modalities to reduce uncertainties associated with current CT planning workflow. We present the early version of an integrated system that fuses 3D-US and real-time strain images. For the first time, we employ tracking information to reduce the noise in calculation of strain image by choosing the properly compressed frames and to position the strain image within the ultrasound volume. Using this system, we provide the tools to retrieve additional information from 3D-US and strain image alongside the CT scan. We have preliminarily evaluated our proposed system in a step-by-step fashion using a breast phantom and clinical experiments.

  16. Molecular markers in breast cancer: new tools in imaging and prognosis

    OpenAIRE

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluorescent labeled (NIRF) tracers for detection of breast cancer. Thus far, only a few molecular imaging tracers have been taken to the clinic of which most are suitable for PET. My thesis describes the e...

  17. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  18. Image quality evaluation of breast tomosynthesis with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Malliori, A.; Bliznakova, K.; Speller, R. D.; Horrocks, J. A.; Rigon, L.; Tromba, G.; Pallikarakis, N. [Department of Medical Physics, Faculty of Medicine, University of Patras, Patras 26500 (Greece); Department of Medical Physics and Bioengineering, University College London, London WVC1E 6BT (United Kingdom); Clinical Physics CAU, St Bartholomew' s Hospital, London EC1A 7BE (United Kingdom); INFN, Sezione di Trieste, Trieste 34127 (Italy); ELETTRA, Basovizza, Trieste 34012 (Italy); Department of Medical Physics, Faculty of Medicine, University of Patras, Patras 26500 (Greece)

    2012-09-15

    Purpose: This study investigates the image quality of tomosynthesis slices obtained from several acquisition sets with synchrotron radiation using a breast phantom incorporating details that mimic various breast lesions, in a heterogeneous background. Methods: A complex Breast phantom (MAMMAX) with a heterogeneous background and thickness that corresponds to 4.5 cm compressed breast with an average composition of 50% adipose and 50% glandular tissue was assembled using two commercial phantoms. Projection images using acquisition arcs of 24 Degree-Sign , 32 Degree-Sign , 40 Degree-Sign , 48 Degree-Sign , and 56 Degree-Sign at incident energy of 17 keV were obtained from the phantom with the synchrotron radiation for medical physics beamline at ELETTRA Synchrotron Light Laboratory. The total mean glandular dose was set equal to 2.5 mGy. Tomograms were reconstructed with simple multiple projection algorithm (MPA) and filtered MPA. In the latter case, a median filter, a sinc filter, and a combination of those two filters were applied on the experimental data prior to MPA reconstruction. Visual inspection, contrast to noise ratio, contrast, and artifact spread function were the figures of merit used in the evaluation of the visualisation and detection of low- and high-contrast breast features, as a function of the reconstruction algorithm and acquisition arc. To study the benefits of using monochromatic beams, single projection images at incident energies ranging from 14 to 27 keV were acquired with the same phantom and weighted to synthesize polychromatic images at a typical incident x-ray spectrum with W target. Results: Filters were optimised to reconstruct features with different attenuation characteristics and dimensions. In the case of 6 mm low-contrast details, improved visual appearance as well as higher contrast to noise ratio and contrast values were observed for the two filtered MPA algorithms that exploit the sinc filter. These features are better visualized

  19. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.

    Science.gov (United States)

    Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant

    2016-01-01

    Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies. PMID:26208307

  20. Invasive micropapillary carcinoma of the breast: MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyo Soon; Jeong, Seo In; Choi, You Ri; Kim, Jin Woong; Lee, Ji Shin; Park, Min Ho [Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina, Chapel Hill (Korea, Republic of)

    2013-08-15

    To analyze the magnetic resonance (MR) imaging findings of invasive micropapillary carcinoma of the breast. MR images were retrospectively evaluated in 14 patients (age range: 37-67, mean age: 49 years) with pathologically confirmed invasive micropapillary carcinoma of the breast. The enhancement type (mass/non-mass), shape, margin, contrast enhancement, and time-intensity curve pattern on the dynamic study were correlated with the histopathologic features. Associated findings, such as edema, nipple change, skin change and enlarged axillary lymph nodes were also studied. The most common features of the masses were irregular shape (12 of 14 patients, 85.8%) and irregular or spiculated margin (11 of 14 patients, 78.7%). The contrast enhancement was heterogeneous in 11 patients (78.7%), rim enhancement in 2 cases (14.2%), and homogeneous in one patient (7.1%). The predominant kinetic pattern was rapid increase (14 of 14, 100%) in the initial phase and washout (11 of 14, 78.7%) in the delayed phase. Associated non-mass like enhancement was shown in 4 patients, representing ductal carcinoma in situ. MR imaging helped detect additional sites of cancer other than the index lesion in 3 patients (21.4%). Enlarged axillary lymphadenopathy was identified in 7 of the 14 patients (50%). Invasive micropapillary carcinoma appears as a mass with an irregular shape, irregular or spiculated margin and heterogeneous enhancement on MR imaging. Though these findings are not specific and are also observed with other breast malignancies, invasive micropapillary carcinoma frequently showed multiple lesions, accompanying non-mass enhancement and axillary lymph node enlargement.

  1. Diagnostic Workup and Costs of a Single Supplemental Molecular Breast Imaging Screen of Mammographically Dense Breasts

    Science.gov (United States)

    Hruska, Carrie B.; Conners, Amy Lynn; Jones, Katie N.; O’Connor, Michael K.; Moriarty, James P.; Boughey, Judy C.; Rhodes, Deborah J.

    2016-01-01

    OBJECTIVE The purpose of this study was to examine additional diagnostic workup and costs generated by addition of a single molecular breast imaging (MBI) examination to screening mammography for women with dense breasts. SUBJECTS AND METHODS Women with mammographically dense breasts presenting for screening mammography underwent adjunct MBI performed with 300 MBq 99mTc-sestamibi and a direct-conversion cadmium-zinc-telluride dual-head gamma camera. All subsequent imaging tests and biopsies were tracked for a minimum of 1 year. The positive predictive value of biopsies performed (PPV3), benign biopsy rate, cost per patient screened, and cost per cancer detected were determined. RESULTS A total of 1651 women enrolled in the study. Among the 1585 participants with complete reference standard, screening mammography alone prompted diagnostic workup of 175 (11.0%) patients and biopsy of 20 (1.3%) and yielded five malignancies (PPV3, 25%). Results of combined screening mammography plus MBI prompted diagnostic workup of 279 patients (17.6%) and biopsy of 67 (4.2%) and yielded 19 malignancies (PPV3, 28.4%). The benign biopsy rates were 0.9% (15 of 1585) for screening mammography alone and 3.0% (48 of 1585) for the combination (p cost per patient screened from $176 for mammography alone to $571 for the combination. However, cost per cancer detected was lower for the combination ($47,597) than for mammography alone ($55,851). CONCLUSION The addition of MBI to screening mammography of women with dense breasts increased the overall costs and benign biopsy rate but also increased the cancer detection rate, which resulted in a lower cost per cancer detected than with screening mammography alone. PMID:26001247

  2. Radiofrequency Heat-Enhanced Chemotherapy for Breast Cancer: Towards Interventional Molecular Image-Guided Chemotherapy

    OpenAIRE

    Zhou, Yurong; Han, Guocan; Wang, Yue; Hu, Xi; Li, Zhiming; Chen, Lumin; Bai, Weixian; Luo, Jingfeng; Zhang, Yajing; Sun, Jihong; Yang, Xiaoming

    2014-01-01

    Breast cancer is the most common malignancy in women worldwide. Recent developments in minimally invasive interventional radiology techniques have significantly improved breast cancer treatment. This study aimed to develop a novel technique for the local management of breast cancers using radiofrequency heat (RFH). We performed both in vitro experiments using human breast cancer cells and in vivo validation in xenograft animal models with magnetic resonance imaging (MRI) and pathological corr...

  3. High-Resolution CT Imaging of Single Breast Cancer Microcalcifications In Vivo

    Science.gov (United States)

    Inoue, Kazumasa; Liu, Fangbing; Hoppin, Jack; Lunsford, Elaine P.; Lackas, Christian; Hesterman, Jacob; Lenkinski, Robert E.; Fujii, Hirofumi; Frangioni, John V.

    2010-01-01

    Microcalcification is a hallmark of breast cancer and a key diagnostic feature for mammography. We recently described the first robust animal model of breast cancer microcalcification. In this study, we hypothesized that high-resolution computed tomography (CT) could potentially detect the genesis of a single microcalcification in vivo and quantify its growth over time. Using a commercial CT scanner, we systematically optimized acquisition and reconstruction parameters. Two ray-tracing image reconstruction algorithms were tested, a voxel-driven “fast” cone beam algorithm (FCBA) and a detector-driven “exact” cone beam algorithm (ECBA). By optimizing acquisition and reconstruction parameters, we were able to achieve a resolution of 104 µm full-width at half maximum (FWHM). At an optimal detector sampling frequency, ECBA provided a 28 µm (21%) FWHM improvement in resolution over FCBA. In vitro, we were able to image a single 300 µm by 100 µm hydroxyapatite crystal. In a syngeneic rat model of breast cancer, we were able to detect the genesis of a single microcalcification in vivo and follow its growth longitudinally over weeks. Taken together, this study provides an in vivo “gold standard” for the development of calcification-specific contrast agents and a model system for studying the mechanism of breast cancer microcalcification. PMID:21504703

  4. Monte Carlo simulation of novel breast imaging modalities based on coherent x-ray scattering

    Science.gov (United States)

    Ghammraoui, Bahaa; Badal, Andreu

    2014-07-01

    We present upgraded versions of MC-GPU and penEasy_Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT, that have been extended and validated to account for the effect of molecular interference in the coherent x-ray scatter. The codes were first validation by comparison between simulated and measured energy dispersive x-ray diffraction (EDXRD) spectra. A second validation was by evaluation of the rejection factor of a focused anti-scatter grid. To exemplify the capabilities of the new codes, the modified MC-GPU code was used to examine the possibility of characterizing breast tissue composition and microcalcifications in a volume of interest inside a whole breast phantom using EDXRD and to simulate a coherent scatter computed tomography (CSCT) system based on first generation CT acquisition geometry. It was confirmed that EDXRD and CSCT have the potential to characterize tissue composition inside a whole breast. The GPU-accelerated code was able to simulate, in just a few hours, a complete CSCT acquisition composed of 9758 independent pencil-beam projections. In summary, it has been shown that the presented software can be used for fast and accurate simulation of novel breast imaging modalities relying on scattering measurements and therefore can assist in the characterization and optimization of promising modalities currently under development.

  5. Sensitivity of imaging for multifocal-multicentric breast carcinoma

    Directory of Open Access Journals (Sweden)

    Viale Giuseppe

    2008-09-01

    Full Text Available Abstract Background This retrospective study aims to determine: 1 the sensitivity of preoperative mammography (Mx and ultrasound (US, and re-reviewed Mx to detect multifocal multicentric breast carcinoma (MMBC, defined by pathology on surgical specimens, and 2 to analyze the characteristics of both detected and undetected foci on Mx and US. Methods Three experienced breast radiologists re-reviewed, independently, digital mammography of 97 women with MMBC pathologically diagnosed on surgical specimens. The radiologists were informed of all neoplastic foci, and blinded to the original mammograms and US reports. With regards to Mx, they considered the breast density, number of foci, the Mx characteristics of the lesions and their BI-RADS classification. For US, they considered size of the lesions, BI-RADS classification and US pattern and lesion characteristics. According to the histological size, the lesions were classified as: index cancer, 2nd lesion, 3rd lesion, and 4th lesion. Any pathologically identified malignant foci not previously described in the original imaging reports, were defined as undetected or missed lesions. Sensitivity was calculated for Mx, US and re-reviewed Mx for detecting the presence of the index cancer as well as additional satellite lesions. Results Pathological examination revealed 13 multifocal and 84 multicentric cancers with a total of 303 malignant foci (282 invasive and 21 non invasive. Original Mx and US reports had an overall sensitivity of 45.5% and 52.9%, respectively. Mx detected 83/97 index cancers with a sensitivity of 85.6%. The number of lesions undetected by original Mx was 165/303. The Mx pattern of breasts with undetected lesions were: fatty in 3 (1.8%; scattered fibroglandular density in 40 (24.3%, heterogeneously dense in 91 (55.1% and dense in 31 (18.8% cases. In breasts with an almost entirely fatty pattern, Mx sensitivity was 100%, while in fibroglandular or dense pattern it was reduced to 45

  6. Image Processing System

    Science.gov (United States)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  7. Image Cytometry Data From Breast Lesions Analyzed using Hybrid Networks.

    Science.gov (United States)

    Mat Sakim, H A; Mat Isa, N A; G Naguib, Raouf; Sherbet, Gajanan

    2005-01-01

    The treatment and therapy to be administered on breast cancer patients are dependent on the stage of the disease at time of diagnosis. It is therefore crucial to determine the stage at the earliest time possible. Tumor dissemination to axillary lymph nodes has been regarded as an indication of tumor aggression, thus the stage of the disease. Neural networks have been employed in many applications including breast cancer prognosis. The performance of the networks have often been quoted based on accuracy and mean squared error. In this paper, the performance of hybrid networks based on Multilayer Perceptron and Radial Basis Function networks to predict axillary lymph node involvement have been investigated. A measurement of how confident the networks are with respect to the results produced is also proposed. The input layer of the networks include four image cytometry features extracted from fine needle aspiration of breast lesions. The highest accuracy achieved by the hybrid networks was 69% only. However, most of the correctly predicted cases had a high confidence level.

  8. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  9. The Application of the Edge Sharpening Operator to the Breast Near-Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The principles of Gradient operator, Laplacian operator, LOG operator and Sobel operator are discussed. Certain features of breast can be extracted in different degrees and aspects from original images by applying four edge sharpening operators to the breast near-infrared imaging. A great number of cases prove that compared with the other three operators, the improved Sobel operator can effectively extract the structural features of the breast from an original image. It can be concluded that the improved Sobel operator can assist in diagnosing breast diseases.

  10. Breast Imaging in the Era of Big Data: Structured Reporting and Data Mining

    Science.gov (United States)

    Margolies, Laurie R.; Pandey, Gaurav; Horowitz, Eliot R.; Mendelson, David S.

    2016-01-01

    OBJECTIVE The purpose of this article is to describe structured reporting and the development of large databases for use in data mining in breast imaging. CONCLUSION The results of millions of breast imaging examinations are reported with structured tools based on the BI-RADS lexicon. Much of these data are stored in accessible media. Robust computing power creates great opportunity for data scientists and breast imagers to collaborate to improve breast cancer detection and optimize screening algorithms. Data mining can create knowledge, but the questions asked and their complexity require extremely powerful and agile databases. New data technologies can facilitate outcomes research and precision medicine. PMID:26587797

  11. Animal testing using 3D microwave tomography system for breast cancer detection.

    Science.gov (United States)

    Lee, Jong Moon; Son, Sung Ho; Kim, Hyuk Je; Kim, Bo Ra; Choi, Heyng Do; Jeon, Soon Ik

    2014-01-01

    The three dimensional microwave tomography (3D MT) system of the Electronics and Telecommunications Research Institute (ETRI) comprises an antenna array, transmitting receiving module, switch matrix module and a signal processing component. This system also includes a patient interface bed as well as a 3D reconstruction algorithm. Here, we perform a comparative analysis of image reconstruction results using the assembled system and MRI results, which is used to image the breasts of dogs. Microwave imaging reconstruction results (at 1,500 MHz) obtained using the ETRI 3D MT system are presented. The system provides computationally reliable diagnosis results from the reconstructed MT Image. PMID:25160233

  12. Use of magnetic resonance imaging in detection of breast cancer recurrence: a systematic review.

    LENUS (Irish Health Repository)

    Quinn, Edel Marie

    2012-09-01

    Diagnosis of breast cancer recurrence can be difficult as a result of the presence of scar tissue in the breast. Magnetic resonance imaging (MRI) may be superior to traditional imaging in diagnosis of recurrence because of its ability to differentiate malignancy from scarring. Current guidelines on investigation of suspected breast cancer recurrence recommend MRI when other investigations have equivocal findings. We performed the first systematic review on this topic.

  13. The imaging features of MACROLANE{sup TM} in breast augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Pienaar, W.E., E-mail: wilmipienaar@yahoo.com [Guy' s and St Thomas' NHS Foundation Trust, Guy' s Hospital, London (United Kingdom); McWilliams, S. [Guy' s and St Thomas' NHS Foundation Trust, Guy' s Hospital, London (United Kingdom); Wilding, L.J. [West Middlesex University Hospital, Twickenham Road, Isleworth, Middlesex (United Kingdom); Perera, I.T. [East Kent University Hospital, Ethelbert Road, Canterbury, Kent (United Kingdom)

    2011-10-15

    Macrolane{sup TM} is an injectable, biocompatible, soft-tissue filler that has been available in the UK since 2008 and is promoted for use in breast augmentation. There are few data available on the long-term effects of this relatively new product and concerns have been raised about the implications for breast imaging, in particular breast screening. In this context we present a spectrum of imaging appearances and complications encountered to date.

  14. Role of Diffusion Weighted Magnetic Resonance Imaging in Evaluation of Suspicious Breast Lesions

    OpenAIRE

    Marwa E Abdelrahman *, Aida M Elshibiny *, Marwa I Fahmy *,

    2013-01-01

    Introduction: Diffusion weighted Imaging “DWI” is a specific modality to produce images of tissues weighted with the local microstructural characteristics of water diffusion. DWI can give information as regards cellularity of breast lesions and it can be used for distinguishing between benign and malignant breast lesions, differentiating surgical scar from recurrence and monitoring therapies in locally advanced breast cancerAim of the work: To assess the diagnostic value of diffusion weighted...

  15. Application of signal detection theory to assess optoacoustic imaging systems

    Science.gov (United States)

    Lou, Yang; Oraevsky, Alexander; Anastasio, Mark A.

    2016-03-01

    The hybrid nature of optoacoustic tomography (OAT) brings together the advantages of both optical imaging and ultrasound imaging, making it a promising tool for breast cancer imaging. It is advocated in the modern imaging science literature to utilize objective, or task-based, measures of system performance to guide the optimization of hardware design and image reconstruction algorithms. In this work, we investigate this approach to assess the performance of OAT breast imaging systems. In particular, we apply principles from signal detection theory to compute the detectability of a simulated tumor at different depths within a breast, for two different system designs. The signal-to-noise ratio of the test statistic computed by a numerical observer is employed as the task-specific summary measure of system performance. A numerical breast model is employed that contains both slowly varying background and vessel structures as the background model, and superimpose a deterministic signal to emulate a tumor. This study demonstrates how signal detection performance of a numerical observer will vary as a function of signal depth and imaging system characteristics. The described methodology can be employed readily to systematically optimize other OAT imaging systems for tumor detection tasks.

  16. Magnetic resonance imaging features of papillary breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sarica, Ozgur, E-mail: sozgur@yahoo.com; Uluc, Fatih, E-mail: drfatihuluc@yahoo.com; Tasmali, Deniz, E-mail: deniztasmali@hotmail.com

    2014-03-15

    Purpose: This study was aimed to assess the role of magnetic resonance imaging (MRI) in the evaluation of the papillary lesions of the breast and their morphological relationship with the mammary ducts. The potential diagnostic contributory role of ductal oriented protocols to conventional dynamic magnetic resonance examination was also explored. Materials and methods: Retrospective data were collected from 46 patients who had been diagnosed with papillary breast lesions and undergone magnetic resonance examination. The presence of dilated ducts and their morphological relation with the lesion were recorded. Lesions were classified as follows: papilloma, papillomatosis and malignant papillary lesion. Statistical difference between groups was studied for each morphological and dynamic lesion characteristic. Results: Dilated ducts and characteristics of intraductal material can be identified by magnetic resonance imaging. Certain MRI findings such as a mass with crescentic peripheral fluid or focal intraductal mass on T2 weighted images may suggest the presence of an intraductal/papillary lesion. In this respect, non-fatsat T2 weighted images appear particularly useful. There was a significant difference between papilloma and papillomatosis with regard to segmental and heterogeneous contrast enhancement (p < 0.05 for both comparisons). In addition, there was a significant difference between papillomas and carcinomas with regard to homogenous, heterogeneous and segmental contrast enhancement (p < 0.05 for all). On the other hand, papillomatosis and carcinoma did not differ significantly in terms of any of the morphological or dynamical MR criteria compared. Conclusion: Papillary lesions can be detected by MRI. Despite some overlaps in MRI findings between carcinoma, papilloma and papillomatosis, MRI may help differentiate these lesions. Major benefit of retroareolar imaging appears to arise from its ability to demonstrate ductal relation and extension of contrast

  17. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluoresc

  18. Scintimammography: The new role of Technetium-99 m Sestamibi imaging for the diagnosis of breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Khalkhali, I.; Diggles, L. E.; Cutrone, J. A.; Mishkin, F. S. [Los Angeles Medical Center, Torrance (United States). Dept. of Radiology; Iraniha, S. [Los Angeles Medical Center, Torrance (United States). Surgery

    1997-09-01

    Technetium-99-Sestamibi scintimammography has emerged as a new procedure for the imaging of breast tumors, Currently, a large clinical experience has been developed and the results published. At the present time, the major drawback of this procedure appears to be its low sensitivity for the detection of breast carcinomas smaller than 1 cm in diameter. There are other biologic and technical issues that remain to be overcome to optimally image the breasts. Some of these include: development of a dedicated breast imager using nuclear medicine techniques, development of stereotactic needle localization of the abnormalities that demonstrate focal increase uptake in women with normal mammogram and breast physical examination, manufacturing of a breast compression device so that they can immobilize the breast in place for more adequate imaging, overcoming the issue of unilateral or bilateral diffuse breast uptake that is noted in 7 - 10 percent of the cases and finally determination of optimal dose and imaging factors. This review includes their experience at Harbor-University of California, Los Angeles Medical Center with the use of this agent for breast imaging since 1992.

  19. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models

    NARCIS (Netherlands)

    Chughtai, K; Jiang, L.; Greenwood, T.R.; Glunde, K.; Heeren, R.M.A.

    2013-01-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis

  20. Preliminary clinical observation of 99mTc-MIBI breast tumor imaging

    International Nuclear Information System (INIS)

    An effective, noninvasive diagnostic method of breast cancer is investigated. 99mTc-MIBI breast tumor imaging was performed in 78 patients with palpable breast mass. All was pathologically proved after operation. Of 78 patients, 42 were breast carcinoma, among them 35 were detected using 99MTc-MIBI scintigraphy. The smallest detectable mass was a infiltrating ductal carcinoma measuring 1.5 cm x 1.5 cm x 1.2 cm. Of 36 patients with benign lesions, 30 with negative result, among the 6 positive one, 5 were big adenoma, 1 was plasma cell mastitis. The sensitivity and specificity of 99mTc-MIBI imaging in detecting breast cancer wa 83.3% either. 99mTc-MIBI scintigraphy can be used as an accessory method in detecting breast cancer. But it was useless for differentiation between breast cancer and big adenoma

  1. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    Science.gov (United States)

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  2. Dual Energy Method for Breast Imaging: A Simulation Study

    Directory of Open Access Journals (Sweden)

    V. Koukou

    2015-01-01

    Full Text Available Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp was used to simulate microcalcifications. The contrast to noise ratio (CNRtc of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels.

  3. Breast cancer targeting novel microRNA-nanoparticles for imaging

    Science.gov (United States)

    Natarajan, Arutselvan; Venugopal, Senthil K.; DeNardo, Sally J.; Zern, Mark A.

    2009-02-01

    MicroRNAs (miRNAs) are one of the most prevalent small (~22 nucleotide) regulatory RNA classes in animals. These miRNAs constitute nearly one percent of genes in the human genome, making miRNA genes one of the more abundant types of regulatory molecules. MiRNAs have been shown to play important roles in cell development, apoptosis, and other fundamental biological processes. MiRNAs exert their influence through complementary base-pairing with specific target mRNAs, leading to degradation or translational repression of the targeted mRNA. We have identified and tested a novel microRNA (miR-491) and demonstrated increased apoptosis in hepatocellular carcinoma cells (HepG2) and in human breast cancer cells (HBT3477) in vitro. We prepared a novel cancer targeting assembly of gold nanoparticles (GNP) with Quantum dots, miR-491, and MAb-ChL6 coupled through streptavidin/biotin for effective transfection, and to induce apoptosis in specific cancer cells for imaging and targeted therapy. The targeting and apoptosis inducing ability was tested by confocal and electron microscopy. The MAb-GNP-miR491-Qdot construct effectively transfected into the HBT3477 cells and induced apoptosis the confirmation of these results would suggest a new class of molecules for the imaging and therapy of breast cancer.

  4. Automatic tissue segmentation of breast biopsies imaged by QPI

    Science.gov (United States)

    Majeed, Hassaan; Nguyen, Tan; Kandel, Mikhail; Marcias, Virgilia; Do, Minh; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2016-03-01

    The current tissue evaluation method for breast cancer would greatly benefit from higher throughput and less inter-observer variation. Since quantitative phase imaging (QPI) measures physical parameters of tissue, it can be used to find quantitative markers, eliminating observer subjectivity. Furthermore, since the pixel values in QPI remain the same regardless of the instrument used, classifiers can be built to segment various tissue components without need for color calibration. In this work we use a texton-based approach to segment QPI images of breast tissue into various tissue components (epithelium, stroma or lumen). A tissue microarray comprising of 900 unstained cores from 400 different patients was imaged using Spatial Light Interference Microscopy. The training data were generated by manually segmenting the images for 36 cores and labelling each pixel (epithelium, stroma or lumen.). For each pixel in the data, a response vector was generated by the Leung-Malik (LM) filter bank and these responses were clustered using the k-means algorithm to find the centers (called textons). A random forest classifier was then trained to find the relationship between a pixel's label and the histogram of these textons in that pixel's neighborhood. The segmentation was carried out on the validation set by calculating the texton histogram in a pixel's neighborhood and generating a label based on the model learnt during training. Segmentation of the tissue into various components is an important step toward efficiently computing parameters that are markers of disease. Automated segmentation, followed by diagnosis, can improve the accuracy and speed of analysis leading to better health outcomes.

  5. Combined ultrasonic and photoacoustic system for deep tissue imaging

    Science.gov (United States)

    Kim, Chulhong; Erpelding, Todd N.; Jankovic, Ladislav; Wang, Lihong V.

    2011-03-01

    A combined ultrasonic and photoacoustic imaging system is presented that is capable of deep tissue imaging. The system consists of a modified clinical ultrasound array system and tunable dye laser pumped by a Nd:YAG laser. The system is designed for noninvasive detection of sentinel lymph nodes and guidance of needle biopsies for axillary lymph node staging in breast cancer patients. Using a fraction of the American National Standards Institute (ANSI) safety limit, photoacoustic imaging of methylene blue achieved penetration depths of greater than 5 cm in chicken breast tissue. Photoacoustic imaging sensitivity was measured by varying the concentration of methylene blue dye placed at a depth of 3 cm within surrounding chicken breast tissue. Signal-to-noise ratio, noise equivalent sensitivity, and axial spatial resolution were quantified versus depth based on in vivo and chicken breast tissue experiments. The system has been demonstrated in vivo for detecting sentinel lymph nodes in rats following intradermal injection of methylene blue. These results highlight the clinical potential of photoacoustic image-guided identification and needle biopsy of sentinel lymph nodes for axillary staging in breast cancer patients.

  6. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario

    Science.gov (United States)

    Güren, Onan; Çayören, Mehmet; Tükenmez Ergene, Lale; Akduman, Ibrahim

    2014-10-01

    A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.

  7. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario.

    Science.gov (United States)

    Güren, Onan; Çayören, Mehmet; Ergene, Lale Tükenmez; Akduman, Ibrahim

    2014-10-01

    A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.

  8. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Directory of Open Access Journals (Sweden)

    Katsinis Constantine

    2006-10-01

    Full Text Available Abstract Background Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E stained tissue sections based on cancer tissue texture features. Methods Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. Results The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1 the number density of cell nuclei with dispersed chromatin and (2 the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. Conclusion The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process.

  9. Three-dimensional linear system analysis for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhao, Wei

    2008-01-01

    The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly

  10. Radiation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  11. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ikejimba, Lynda C., E-mail: lci@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-06-15

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ′}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ′} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ′}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ′} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of

  12. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    International Nuclear Information System (INIS)

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  13. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  14. A minimum spanning forest based classification method for dedicated breast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Robert [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States); Fei, Baowei, E-mail: bfei@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States); Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322 (United States); Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States)

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  15. A minimum spanning forest based classification method for dedicated breast CT images

    International Nuclear Information System (INIS)

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging

  16. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  17. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy (31P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  18. Preliminary images from an adaptive imaging system

    NARCIS (Netherlands)

    J.A. Griffiths; M.G. Metaxas; S. Pani; H. Schulerud; C. Esbrand; G.J. Royle; B. Price; T. Rokvic; R. Longo; A. Asimidis; E. Bletsas; D. Cavouras; A. Fant; P. Gasiorek; H. Georgiou; G. Hall; J. Jones; J. Leaver; G. Li; D. Machin; N. Manthos; J. Matheson; M. Noy; J.M. Østby; F. Psomadellis; P.F. van der Stelt; S. Theodoridis; F. Triantis; R. Turchetta; C. Venanzi; R.D. Speller

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephal

  19. Modified Bi-Rads Scoring of Breast Imaging Findings Improves Clinical Judgment.

    Science.gov (United States)

    Silberman, Howard; Sheth, Pulin A; Parisky, Yuri R; Hovanessian-Larsen, Linda J; Sheth, Sindu; Tripathy, Debasish

    2015-01-01

    In contrast with the reporting requirements currently mandated under the Federal Mammography Quality Standards Act (MQSA), we propose a modification of the Breast Imaging Reporting and Data System (Bi-Rads) in which a concluding assessment category is assigned, not to the examination as a whole, but to every potentially malignant abnormality observed. This modification improves communication between the radiologist and the attending clinician, thereby facilitating clinical judgment leading to appropriate management. In patients with breast cancer eligible for breast conserving therapy, application of this modification brings to attention the necessity for such patients to undergo pretreatment biopsies of all secondary, synchronous ipsilateral lesions scored Bi-Rads 3-5. All contralateral secondary lesions scored Bi-Rads 3-5 also require pretreatment biopsies. The application of this modification of the MSQA demonstrates the necessity to alter current recommendations ("short-interval follow-up") for secondary, synchronous Bi-Rads 3 ("probably benign") image-detected abnormalities prior to treatment of the index malignancy.

  20. Three-dimensional finite element model for lesion correspondence in breast imaging

    Science.gov (United States)

    Qiu, Yan; Li, Lihua; Goldgof, Dmitry; Sarkar, Sudeep; Anton, Sorin; Clark, Robert A.

    2004-05-01

    Predicting breast tissue deformation is of great significance in several medical applications such as biopsy, diagnosis, and surgery. In breast surgery, surgeons are often concerned with a specific portion of the breast, e.g., tumor, which must be located accurately beforehand. Also clinically it is important for combining the information provided by images from several modalities or at different times, for the detection/diagnosis, treatment planning and guidance of interventions. Multi-modality imaging of the breast obtained by X-ray mammography, MRI is thought to be best achieved through some form of data fusion technique. However, images taken by these various techniques are often obtained under entirely different tissue configurations, compression, orientation or body position. In these cases some form of spatial transformation of image data from one geometry to another is required such that the tissues are represented in an equivalent configuration. We propose to use a 3D finite element model for lesion correspondence in breast imaging. The novelty of the approach lies in the following facts: (1) Finite element is the most accurate technique for modeling deformable objects such as breast. The physical soundness and mathematical rigor of finite element method ensure the accuracy and reliability of breast modeling that is essential for lesion correspondence. (2) When both MR and mammographic images are available, a subject-specific 3D breast model will be built from MRIs. If only mammography is available, a generic breast model will be used for two-view mammography reading. (3) Incremental contact simulation of breast compression allows accurate capture of breast deformation and ensures the quality of lesion correspondence. (4) Balance between efficiency and accuracy is achieved through adaptive meshing. We have done intensive research based on phantom and patient data.

  1. Remote positioning optical breast magnetic resonance coil for slice-selection during image-guided near-infrared spectroscopy of breast cancer

    OpenAIRE

    Mastanduno, Michael A.; Jiang, Shudong; DiFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2011-01-01

    The design and testing of a pneumatic optical positioning interface produced with the goal of improving fiber positioning in magnetic resonance (MR)-guided diffuse spectral imaging of breast cancer is presented. The system was created for vertical positioning of optical fibers inside the MR bore during a patient exam to target suspicious lesions with MR scans for reference and collect multiple planes of optical data. The interface includes new fiber plates for mechanical and optical coupling ...

  2. Digital Image Processing Technique for Breast Cancer Detection

    Science.gov (United States)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  3. Four dimensional optoacoustic imaging of perfusion in preclinical breast tumor model in vivo (Conference Presentation)

    Science.gov (United States)

    Deán-Ben, Xosé Luís.; Ermolayev, Vladimir; Mandal, Subhamoy; Ntziachristos, Vasilis; Razansky, Daniel

    2016-03-01

    Imaging plays an increasingly important role in clinical management and preclinical studies of cancer. Application of optical molecular imaging technologies, in combination with highly specific contrast agent approaches, eminently contributed to understanding of functional and histological properties of tumors and anticancer therapies. Yet, optical imaging exhibits deterioration in spatial resolution and other performance metrics due to light scattering in deep living tissues. High resolution molecular imaging at the whole-organ or whole-body scale may therefore bring additional understanding of vascular networks, blood perfusion and microenvironment gradients of malignancies. In this work, we constructed a volumetric multispectral optoacoustic tomography (vMSOT) scanner for cancer imaging in preclinical models and explored its capacity for real-time 3D intravital imaging of whole breast cancer allografts in mice. Intrinsic tissue properties, such as blood oxygenation gradients, along with the distribution of externally administered liposomes carrying clinically-approved indocyanine green dye (lipo-ICG) were visualized in order to study vascularization, probe penetration and extravasation kinetics in different regions of interest within solid tumors. The use of v-MSOT along with the application of volumetric image analysis and perfusion tracking tools for studies of pathophysiological processes within microenvironment gradients of solid tumors demonstrated superior volumetric imaging system performance with sustained competitive resolution and imaging depth suitable for investigations in preclinical cancer models.

  4. Tangible imaging systems

    Science.gov (United States)

    Ferwerda, James A.

    2013-03-01

    We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.

  5. Three-Dimensional Imaging as a Novel Approach to Breast Cancer Reconstruction

    Directory of Open Access Journals (Sweden)

    Lauren Rudolph

    2007-06-01

    Full Text Available Today surgical planning in reconstruction of female breast cancer patients is limited by the inability of plastic surgeons to define the necessary volume, shape and contour of the breast. A novel approach to breast cancer reconstruction is three-dimensional imaging, which has gained popularity in an array of industries. Three-dimensional (3D images of a patient’s breasts enable a surgeon to not only visually assess the size, shape, contour, and symmetry of the breasts, but also to obtain quantitative breast measurements and make volumetric calculations. The following study is a preliminary analysis of female patient volunteers undergoing unilateral tissue-expander/implant reconstruction by one of two senior authors. 3D images were obtained during routine preoperative and postoperative office visits and served as a guide by the surgeon for surgical planning. Twelve patients have completed 3D assisted unilateral breast reconstruction to date. Overall breast symmetry improved at the completion of reconstruction in the majority of patients. Average postoperative symmetry was 95% as compared to 88% preoperatively. With 3D images plastic surgeons are able to objectively assess their patient, which is an improvement to the current surgical planning that utilizes subjective two-dimensional images and visual estimates.

  6. Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images

    International Nuclear Information System (INIS)

    Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70-98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

  7. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ghayathri Balasundaram,1,* Chris Jun Hui Ho,1,* Kai Li,2 Wouter Driessen,3 US Dinish,1 Chi Lok Wong,1 Vasilis Ntziachristos,3 Bin Liu,2 Malini Olivo1,41Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC, 2Institute of Materials Research and Engineering (IMRE, Agency for Science, Technology and Research (A*STAR, Singapore; 3Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany; 4School of Physics, National University of Ireland, Galway, Ireland *These authors contributed equally to this work Abstract: Conjugated polymers (CPs are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used

  8. Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening

    OpenAIRE

    2010-01-01

    Breast cancer is the most common malignancy in women. Screen-film mammography (SFM) has been considered the gold standard for breast cancer screening and detection. Despite its recognized value in detecting and characterizing breast disease, mammography has important limitations and its false-negative rate ranges from 4% to 34%. Given these limitations, development of imaging modalities that would enhance, complement, or replace mammography has been a priority. Digital mammography (FFDM) and ...

  9. The choice of the correct imaging modality in breast cancer management

    Energy Technology Data Exchange (ETDEWEB)

    Bombardieri, Emilio [Division of Nuclear Medicine, PET Centre, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1, 20133, Milan (Italy); Gianni, Luca [Division of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan (Italy)

    2004-06-01

    This brief overview discusses which of the diagnostic options are more reliable and effective for breast cancer imaging with a view to avoiding the unjustified use of techniques that are suboptimal. The technological development of diagnostic imaging has been very impressive, and both radiological (mammography, ultrasonography, computed tomography, magnetic resonance imaging) and nuclear medicine tools (bone scan, planar and SPECT scintigraphy, sentinel node biopsy, positron emission tomography) have helped to overcome past limitations in the detection of small lesions. Furthermore, new approaches have been developed that permit successful differential diagnosis of doubtful lesions and rapid identification of systemic metastases, and allow non-invasive characterisation of the biology of cancer tissue. There is evidence that these advances may have helped in optimising therapeutic strategies. Importantly, the metabolic information provided by nuclear medicine procedures may be combined with the anatomical data supplied by radiological techniques in order to assist in predicting tumour response, planning radiotherapy and monitoring patient outcome. It is difficult to formulate conclusive diagnostic guidelines for application in the work-up of breast cancer, because while the role of some examinations, such as mammography and ultrasonography, is well established, that of others, such as magnetic resonance imaging and positron emission tomography, is still a matter of debate. There is a need for further prospective evaluations with appropriate clinical trials designed to evaluate the impact of these approaches in improving survival and quality of life. (orig.)

  10. Speckle noise reduction in breast ultrasound images: SMU (srad median unsharp) approch

    International Nuclear Information System (INIS)

    Image denoising has become a very essential for better information extraction from the image and mainly from so noised ones, such as ultrasound images. In certain cases, for instance in ultrasound images, the noise can restrain information which is valuable for the general practitioner. Consequently medical images are very inconsistent, and it is crucial to operate case to case. This paper presents a novel algorithm SMU (Srad Median Unsharp) for noise suppression in ultrasound breast images in order to realize a computer aided diagnosis (CAD) for breast cancer.

  11. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    International Nuclear Information System (INIS)

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  12. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Hwa; Chang, Jung Min; Moon, Woo Kyung [Seoul National University Hospital, Department of Radiology, 101 Daehangno, Jongno-gu, Seoul (Korea, Republic of); Moon, Hyeong-Gon [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Yi, Ann [Seoul National University Hospital, Department of Radiology, Gangnan Healthcare Center, Seoul (Korea, Republic of); Koo, Hye Ryoung [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Gweon, Hye Mi [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2016-06-15

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  13. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    International Nuclear Information System (INIS)

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  14. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Glaser, A [Dartmouth College, Hanover, NH - New Hampshire (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon); Andreozzi, J; Hitchcock, W; Pogue, B [Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  15. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications.

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  16. An interactive method based on the live wire for segmentation of the breast in mammography images.

    Science.gov (United States)

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  17. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    Directory of Open Access Journals (Sweden)

    Zhang Zewei

    2014-01-01

    Full Text Available In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  18. Breast magnetic resonance imaging in patients with occult breast carcinoma: evaluation on feasibility and correlation with histopathological findings

    Institute of Scientific and Technical Information of China (English)

    LU Hong; XU Yi-lin; ZHANG Shu-ping; LANG Rong-gang; Chi S.Zee; LIU Pei-fang; FU Li

    2011-01-01

    Background As an uncommon presentation, occult primary breast cancer remains a diagnostic and therapeutic challenge in clinical practice. This study aimed to retrospectively assess the feasibility of breast magnetic resonance imaging (MRI) in patients with malignant axillary lymphadenopathy and unknown primary malignancy, and correlation with histopathological characteristics.Methods A total of 35 women with occult breast carcinoma were evaluated with dynamic contrast-enhanced breast MRI. Whole seriate section was used in all cases. MRI performance was assessed and correlated with histopathological findings.Results Twenty-one of 35 patients were found to have primary breast carcinoma histologically. Twenty of the 21 patients had abnormal MR findings and 1 patient had a normal MRI study. Of the remaining 14 patients, 10 were negative on both MRI and surgery. Four had suspicious enhancement on MRI and no corresponding tumor was found. Lesions with mass enhancement were found in 55% (11/20) and ductual and segmental enhancement in 45%. The average diameter of the primary tumors was 15 mm. Invasive ductal carcinomas were found in 81% (17/21). One of 17 invasive ductual carcinomas was too small to be graded. Fourteen of the remaining 16 were classified as grade II and 2 as grade I. Thirty-two of the 35 patients had received estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 examinations and the 12 of 32 were triple-negative breast carcinoma.Conclusions Mass lesions with small size and lesions with ductal or segment enhancement are common MRI features in patients with occult breast cancer. The dominant types of primary tumors are invasive ductal carcinoma with moderate histopathological grade. The rate of triple-negative breast carcinoma may be higher in occult breast cancer.

  19. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    Science.gov (United States)

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  20. Does Breast Magnetic Resonance Imaging Combined With Conventional Imaging Modalities Decrease the Rates of Surgical Margin Involvement and Reoperation?

    Science.gov (United States)

    Lai, Hung-Wen; Chen, Chih-Jung; Lin, Ying-Jen; Chen, Shu-Ling; Wu, Hwa-Koon; Wu, Yu-Ting; Kuo, Shou-Jen; Chen, Shou-Tung; Chen, Dar-Ren

    2016-01-01

    Abstract The objective of this study was to assess whether preoperative breast magnetic resonance imaging (MRI) combined with conventional breast imaging techniques decreases the rates of margin involvement and reexcision. Data on patients who underwent surgery for primary operable breast cancer were obtained from the Changhua Christian Hospital (CCH) breast cancer database. The rate of surgical margin involvement and the rate of reoperation were compared between patients who underwent conventional breast imaging modalities (Group A: mammography and sonography) and those who received breast MRI in addition to conventional imaging (Group B: mammography, sonography, and MRI). A total of 1468 patients were enrolled in this study. Among the 733 patients in Group A, 377 (51.4%) received breast-conserving surgery (BCS) and 356 (48.6%) received mastectomy. Among the 735 patients in Group B, 348 (47.3%) received BCS and 387 (52.7%) received mastectomy. There were no significant differences in operative method between patients who received conventional imaging alone and those that received MRI and conventional imaging (P = 0.13). The rate of detection of pathological multifocal/multicentric breast cancer was markedly higher in patients who received preoperative MRI than in those who underwent conventional imaging alone (14.3% vs 8.6%, P < 0.01). The overall rate of surgical margin involvement was significantly lower in patients who received MRI (5.0%) than in those who received conventional imaging alone (9.0%) (P < 0.01). However, a significant reduction in rate of surgical margin positivity was only observed in patients who received BCS (Group A, 14.6%; Group B, 6.6%, P < 0.01). The overall BCS reoperation rates were 11.7% in the conventional imaging group and 3.2% in the combined MRI group (P < 0.01). There were no significant differences in rate of residual cancer in specimens obtained during reoperation between the 2 preoperative imaging groups

  1. 21 CFR 866.5170 - Breast milk immunological test system.

    Science.gov (United States)

    2010-04-01

    ... that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breast milk immunological test system. 866.5170 Section 866.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  2. Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images

    Science.gov (United States)

    Petersson, Hannie; Dustler, Magnus; Tingberg, Anders; Timberg, Pontus

    2016-03-01

    The large image volumes in breast tomosynthesis (BT) have led to large amounts of data and a heavy workload for breast radiologists. The number of slice images can be decreased by combining adjacent image planes (slabbing) but the decrease in depth resolution can considerably affect the detection of lesions. The aim of this work was to assess if thicker slabbing of the outer slice images (where lesions seldom are present) could be a viable alternative in order to reduce the number of slice images in BT image volumes. The suggested slabbing (an image volume with thick outer slabs and thin slices between) were evaluated in two steps. Firstly, a survey of the depth of 65 cancer lesions within the breast was performed to estimate how many lesions would be affected by outer slabs of different thicknesses. Secondly, a selection of 24 lesions was reconstructed with 2, 6 and 10 mm slab thickness to evaluate how the appearance of lesions located in the thicker slabs would be affected. The results show that few malignant breast lesions are located at a depth less than 10 mm from the surface (especially for breast thicknesses of 50 mm and above). Reconstruction of BT volumes with 6 mm slab thickness yields an image quality that is sufficient for lesion detection for a majority of the investigated cases. Together, this indicates that thicker slabbing of the outer slice images is a promising option in order to reduce the number of slice images in BT image volumes.

  3. Ultra-high field magnetic resonance imaging of breast cancer

    NARCIS (Netherlands)

    Stehouwer, B.L.

    2014-01-01

    Dynamic contrast-enhanced (DCE) breast MRI plays an important role in the detection and staging of breast cancer. It has a high sensitivity of approximately 0.90 for the detection breast cancer, although the specificity of 0.72 is relatively low. Therefore, research has focused on improving specific

  4. Breast ultrasound image segmentation: an optimization approach based on super-pixels and high-level descriptors

    Science.gov (United States)

    Massich, Joan; Lemaître, Guillaume; Martí, Joan; Mériaudeau, Fabrice

    2015-04-01

    Breast cancer is the second most common cancer and the leading cause of cancer death among women. Medical imaging has become an indispensable tool for its diagnosis and follow up. During the last decade, the medical community has promoted to incorporate Ultra-Sound (US) screening as part of the standard routine. The main reason for using US imaging is its capability to differentiate benign from malignant masses, when compared to other imaging techniques. The increasing usage of US imaging encourages the development of Computer Aided Diagnosis (CAD) systems applied to Breast Ultra-Sound (BUS) images. However accurate delineations of the lesions and structures of the breast are essential for CAD systems in order to extract information needed to perform diagnosis. This article proposes a highly modular and flexible framework for segmenting lesions and tissues present in BUS images. The proposal takes advantage of optimization strategies using super-pixels and high-level descriptors, which are analogous to the visual cues used by radiologists. Qualitative and quantitative results are provided stating a performance within the range of the state-of-the-art.

  5. Design and feasibility studies of a stationary digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G., E-mail: yangg@email.unc.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Qian, X. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Phan, T. [Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Sprenger, F. [XinRay Systems LLC, Research Triangle Park, NC 27709 (United States); Sultana, S.; Calderon-Colon, X. [Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kearse, B.; Spronk, D. [XinRay Systems LLC, Research Triangle Park, NC 27709 (United States); Lu, J. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Zhou, O., E-mail: zhou@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2011-08-21

    Studies have shown that digital breast tomosynthesis (DBT) can improve breast cancer diagnosis by reconstructing 3D images. However, DBT scanners based on rotation gantry prolong the imaging time and reduce spatial resolution due to motion comparing with the regular two-view mammography. To obtain three dimension reconstruction images and maintain the high image quality of conventional mammography, we proposed a prototype stationary digital breast tomosynthesis system (s-DBT). The proposed s-DBT system acquires projection images without mechanical movement. The core component of the s-DBT system is a specially designed spatially distributed multi-beam X-ray tube based on the carbon nanotube field emission X-ray technology. The multi-beam X-ray source array enables collection of all projection images from different viewing angles without mechanical motion. Preliminary results show the s-DBT system can achieve a scan time comparable with the regular two-view mammography, and improve the spatial resolution comparing with rotating gantry DBT.

  6. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals

    Science.gov (United States)

    Sarcinelli, Michelle Alvares; Albernaz, Marta de Souza; Szwed, Marzena; Iscaife, Alexandre; Leite, Kátia Ramos Moreira; Junqueira, Mara de Souza; Bernardes, Emerson Soares; da Silva, Emerson Oliveira; Tavares, Maria Ines Bruno; Santos-Oliveira, Ralph

    2016-01-01

    Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose) administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA)/polyvinyl alcohol (PVA)/montmorillonite (MMT)/trastuzumab nanoparticles labeled with technetium-99m (99mTc) for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200–500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta potential of −14,6 mV. The cytotoxicity results demonstrated that the nanoparticles were capable of reaching breast cancer cells. The biodistribution data demonstrated that the PLA/PVA/MMT/trastuzumab nanoparticles labeled with 99mTc have great renal clearance and also a high uptake by the lesion, as ~45% of the PLA/PVA/MMT/trastuzumab nanoparticles injected were taken up by the lesion. The data support PLA/PVA/MMT/trastuzumab labeled with 99mTc nanoparticles as nanoradiopharmaceuticals for breast cancer imaging. PMID:27713638

  7. Features of undiagnosed breast cancers at screening breast MR imaging and potential utility of computer-aided evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae; Cho, Nariya; Bea, Min Sun; Koo, Hye Ryoung; Kim, Won Hwa; Lee, Su Hyun; Chu, A Jung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-02-15

    To retrospectively evaluate the features of undiagnosed breast cancers on prior screening breast magnetic resonance (MR) images in patients who were subsequently diagnosed with breast cancer, as well as the potential utility of MR-computer-aided evaluation (CAE). Between March 2004 and May 2013, of the 72 consecutive pairs of prior negative MR images and subsequent MR images with diagnosed cancers (median interval, 32.8 months; range, 5.4-104.6 months), 36 (50%) had visible findings (mean size, 1.0 cm; range, 0.3-5.2 cm). The visible findings were divided into either actionable or under threshold groups by the blinded review by 5 radiologists. MR imaging features, reasons for missed cancer, and MR-CAE features according to actionability were evaluated. Of the 36 visible findings on prior MR images, 33.3% (12 of 36) of the lesions were determined to be actionable and 66.7% (24 of 36) were underthreshold; 85.7% (6 of 7) of masses and 31.6% (6 of 19) of non-mass enhancements were classified as actionable lesions. Mimicking physiologic enhancements (27.8%, 10 of 36) and small lesion size (27.8%, 10 of 36) were the most common reasons for missed cancer. Actionable findings tended to show more washout or plateau kinetic patterns on MR-CAE than underthreshold findings, as the 100% of actionable findings and 46.7% of underthreshold findings showed washout or plateau (p = 0.008). MR-CAE has the potential for reducing the number of undiagnosed breast cancers on screening breast MR images, the majority of which are caused by mimicking physiologic enhancements or small lesion size.

  8. ‘It was daunting’: Experience of women with a diagnosis of breast cancer attending for breast imaging

    International Nuclear Information System (INIS)

    Background: A quarter of cancer cases worldwide are attributed to breast cancer. Imaging plays an important role in diagnosis and care. Increasing value is placed on patient experience to inform service delivery. The main aim was to explore the experiences of women attending for diagnostic tests prior to and after diagnosis in order to inform practice. Methods: A convenience sample (n = 16) was recruited throughout the North-east of Scotland. A qualitative, exploratory and longitudinal study design was employed using semi-structured interviews. Twenty five interviews took place, with seven participants taking part in a single interview, a further seven and one participants taking part in two and three interviews respectively. Interviews were recorded, transcripts produced and analysed following the thematic approach. Results: Twelve participants attended imaging after discovering a breast lump and four via breast screening. Participants demonstrated differing attitudes to printed information material, and this changed over time. Imaging was ‘something to just get on and have done’ and almost without exception mammography was described as painful. The descriptions of invasive breast imaging provide a hitherto unknown insight into these procedures. Skill and attitude of staff was described as essential to the quality of the experience. This longitudinal study enabled women returning for follow-up procedures to identify their issues. Conclusion: This study provided a unique insight of the experiences of women when attending breast imaging. By listening to their narrative we can learn how services may be improved, and include this perspective to develop a quality patient-centred imaging service

  9. Content-based image retrieval utilizing explicit shape descriptors: applications to breast MRI and prostate histopathology

    Science.gov (United States)

    Sparks, Rachel; Madabhushi, Anant

    2011-03-01

    Content-based image retrieval (CBIR) systems, in the context of medical image analysis, allow for a user to compare a query image to previously archived database images in terms of diagnostic and/or prognostic similarity. CBIR systems can therefore serve as a powerful computerized decision support tool for clinical diagnostics and also serve as a useful learning tool for medical students, residents, and fellows. An accurate CBIR system relies on two components, (1) image descriptors which are related to a previously defined notion of image similarity and (2) quantification of image descriptors in order to accurately characterize and capture the a priori defined image similarity measure. In many medical applications, the morphology of an object of interest (e.g. breast lesions on DCE-MRI or glands on prostate histopathology) may provide important diagnostic and prognostic information regarding the disease being investigated. Morphological attributes can be broadly categorized as being (a) model-based (MBD) or (b) non-model based (NMBD). Most computerized decision support tools leverage morphological descriptors (e.g. area, contour variation, and compactness) which belong to the latter category in that they do not explicitly model morphology for the object of interest. Conversely, descriptors such as Fourier descriptors (FDs) explicitly model the object of interest. In this paper, we present a CBIR system that leverages a novel set of MBD called Explicit Shape Descriptors (ESDs) which accurately describe the similarity between the morphology of objects of interest. ESDs are computed by: (a) fitting shape models to objects of interest, (b) pairwise comparison between shape models, and (c) a nonlinear dimensionality reduction scheme to extract a concise set of morphological descriptors in a reduced dimensional embedding space. We utilized our ESDs in the context of CBIR in three datasets: (1) the synthetic MPEG-7 Set B containing 1400 silhouette images, (2) DCE-MRI of

  10. Anatomy-Correlated Breast Imaging and Visual Grading Analysis Using Quantitative Transmission Ultrasound™

    Science.gov (United States)

    Iuanow, Elaine; Malik, Bilal; Obuchowski, Nancy A.; Wiskin, James

    2016-01-01

    Objectives. This study presents correlations between cross-sectional anatomy of human female breasts and Quantitative Transmission (QT) Ultrasound, does discriminate classifier analysis to validate the speed of sound correlations, and does a visual grading analysis comparing QT Ultrasound with mammography. Materials and Methods. Human cadaver breasts were imaged using QT Ultrasound, sectioned, and photographed. Biopsies confirmed microanatomy and areas were correlated with QT Ultrasound images. Measurements were taken in live subjects from QT Ultrasound images and values of speed of sound for each identified anatomical structure were plotted. Finally, a visual grading analysis was performed on images to determine whether radiologists' confidence in identifying breast structures with mammography (XRM) is comparable to QT Ultrasound. Results. QT Ultrasound identified all major anatomical features of the breast, and speed of sound calculations showed specific values for different breast tissues. Using linear discriminant analysis overall accuracy is 91.4%. Using visual grading analysis readers scored the image quality on QT Ultrasound as better than on XRM in 69%–90% of breasts for specific tissues. Conclusions. QT Ultrasound provides accurate anatomic information and high tissue specificity using speed of sound information. Quantitative Transmission Ultrasound can distinguish different types of breast tissue with high resolution and accuracy.

  11. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    Science.gov (United States)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  12. Breast histopathology image segmentation using spatio-colour-texture based graph partition method.

    Science.gov (United States)

    Belsare, A D; Mushrif, M M; Pangarkar, M A; Meshram, N

    2016-06-01

    This paper proposes a novel integrated spatio-colour-texture based graph partitioning method for segmentation of nuclear arrangement in tubules with a lumen or in solid islands without a lumen from digitized Hematoxylin-Eosin stained breast histology images, in order to automate the process of histology breast image analysis to assist the pathologists. We propose a new similarity based super pixel generation method and integrate it with texton representation to form spatio-colour-texture map of Breast Histology Image. Then a new weighted distance based similarity measure is used for generation of graph and final segmentation using normalized cuts method is obtained. The extensive experiments carried shows that the proposed algorithm can segment nuclear arrangement in normal as well as malignant duct in breast histology tissue image. For evaluation of the proposed method the ground-truth image database of 100 malignant and nonmalignant breast histology images is created with the help of two expert pathologists and the quantitative evaluation of proposed breast histology image segmentation has been performed. It shows that the proposed method outperforms over other methods. PMID:26708167

  13. Transmission RF diffuse optical tomography instrument for human breast imaging

    Science.gov (United States)

    Lee, Kijoon; Konecky, Soren D.; Choe, Regine; Ban, Han Y.; Corlu, Alper; Durduran, Turgut; Yodh, Arjun G.

    2007-07-01

    In this paper, we describe a novel clinical breast diffuse optical tomography (DOT) instrument for CW and RF data acquisition in transmission geometry. It is designed to be able to acquire a massive amount of data in a short amount of time available for patient measurement by using a 209-channel galvo-based fast optical switch and a fast electron-multiplying CCD. In addition to CW measurements, RF measurements were made by using an electro-optic modulator for source modulation and a gain-modulated image intensifier for detection. The patient bed has many clinically-oriented features as well as improved data acquisition rate and transmission RF measurement capability. A series of preliminary results will be shown, including a heterodyne RF experiment for bulk property measurement and a CW experiment for 3D imaging. In order to deal with large data size, a linear reconstruction algorithm that exploits separability of the inverse problem in Fourier domain is used for fast and memory-load-free reconstruction.

  14. Bilateral image subtraction features for multivariate automated classification of breast cancer risk

    Science.gov (United States)

    Celaya-Padilla, Jose M.; Rodriguez-Rojas, Juan; Galván-Tejada, Jorge I.; Martínez-Torteya, Antonio; Treviño, Victor; Tamez-Peña, José G.

    2014-03-01

    Early tumor detection is key in reducing breast cancer deaths and screening mammography is the most widely available method for early detection. However, mammogram interpretation is based on human radiologist, whose radiological skills, experience and workload makes radiological interpretation inconsistent. In an attempt to make mammographic interpretation more consistent, computer aided diagnosis (CADx) systems has been introduced. This paper presents an CADx system aimed to automatically triage normal mammograms form suspicious mammograms. The CADx system co-reregister the left and breast images, then extracts image features from the co-registered mammographic bilateral sets. Finally, an optimal logistic multivariate model is generated by means of an evolutionary search engine. In this study, 440 subjects form the DDSM public data sets were used: 44 normal mammograms, 201 malignant mass mammograms, and 195 mammograms with malignant calci cations. The results showed a cross validation accuracy of 0.88 and an area under receiver operating characteristic (AUC) of 0.89 for the calci cations vs. normal mammograms. The optimal mass vs. normal mammograms model obtained an accuracy of 0.85 and an AUC of 0.88.

  15. A modified Seeded Region Growing algorithm for vessel segmentation in breast MRI images for investigating the nature of potential lesions

    Science.gov (United States)

    Glotsos, D.; Vassiou, K.; Kostopoulos, S.; Lavdas, El; Kalatzis, I.; Asvestas, P.; Arvanitis, D. L.; Fezoulidis, I. V.; Cavouras, D.

    2014-03-01

    The role of Magnetic Resonance Imaging (MRI) as an alternative protocol for screening of breast cancer has been intensively investigated during the past decade. Preliminary research results have indicated that gadolinium-agent administrative MRI scans may reveal the nature of breast lesions by analyzing the contrast-agent's uptake time. In this study, we attempt to deduce the same conclusion, however, from a different perspective by investigating, using image processing, the vascular network of the breast at two different time intervals following the administration of gadolinium. Twenty cases obtained from a 3.0-T MRI system (SIGNA HDx; GE Healthcare) were included in the study. A new modification of the Seeded Region Growing (SRG) algorithm was used to segment vessels from surrounding background. Delineated vessels were investigated by means of their topology, morphology and texture. Results have shown that it is possible to estimate the nature of the lesions with approximately 94.4% accuracy, thus, it may be claimed that the breast vascular network does encodes useful, patterned, information, which can be used for characterizing breast lesions.

  16. Computerized database management system for breast cancer patients

    OpenAIRE

    Sim, Kok Swee; Chong, Sze Siang; Tso, Chih Ping; Nia, Mohsen Esmaeili; Chong, Aun Kee; Abbas, Siti Fathimah

    2014-01-01

    Data analysis based on breast cancer risk factors such as age, race, breastfeeding, hormone replacement therapy, family history, and obesity was conducted on breast cancer patients using a new enhanced computerized database management system. My Structural Query Language (MySQL) is selected as the application for database management system to store the patient data collected from hospitals in Malaysia. An automatic calculation tool is embedded in this system to assist the data analysis. The r...

  17. Comparison of mammographic image quality in various methods of reconstructive breast surgery

    International Nuclear Information System (INIS)

    The purpose of our study was to evaluate mammographic image quality of various methods of reconstructive breast surgery with specific reference to the possibility of diagnosis of recurrent tumors. A total of 39 patients who underwent breast reconstruction following modified radical mastectomy were subject to clinical and mammographic examination. Three groups were formed: (a) autonomous tissue reconstruction (TRAM-flap; n=9), (b) submuscular silicon gel prostheses (n=21), and (c) supramuscular silicon gel prostheses (n=9). Mammographic images quality of the groups was compared by two radiologists working together using a point system where five specific criteria were valued and scored. The result was tabulated into three quality levels: good, acceptable, and limited. Mammograms were assessed as good, acceptable, or limited, respectively, as follows: group I: 7 (77.8%), 1 (11.1%), 1 (11.1%); group II; 4 (19%), 11 (52.4%), 6 (28.6%); group III: 3 (33.3%), 4 (44.5%), 2 (22.2%). The TRAM-flap method of reconstruction displays a high degree of mammographic image quality and therefore is preferable with respect to early diagnosis of recurrent tumors. (orig.)

  18. Design and implementation of coded aperture coherent scatter spectral imaging of cancerous and healthy breast tissue samples.

    Science.gov (United States)

    Lakshmanan, Manu N; Greenberg, Joel A; Samei, Ehsan; Kapadia, Anuj J

    2016-01-01

    A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice. PMID:26962543

  19. Tactical Imaging System

    Science.gov (United States)

    Mocenter, Michael M.

    1990-02-01

    The ability to send photographic information to command centers is a vital element in performing effective near real-time reconnaissance and surveillance operations. This imagery, in conjunction with other battlefield data, provides the battlefield commander with up-to-date intelligence for making decisions. Until recently, the ability to provide this real-time information was severely restricted by the logistics of physically moving, developing, and then disseminating the film. This time delay resulted in out-of-date, stale intelligence. This problem situation has eased recently due to technological developments that have been instrumental in facilitating the dissemination of near real-time information to forward operating areas and behind enemy lines. The Naval Air Development Center (NAVAIRDEVCEN) has capitalized on these developments and established the Tactical Imaging System (TIS). This miniaturized, man-pack, SATCOM/HF transmitting system provides near real-time tactical imagery. It consists of an image sensor, image intensifier, zoom lens, and image transmission processor. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications. The TIS will have potential application in areas such as identification (friend or foe), reconnaissance, surveillance, and battlefield assessment. Under the TIS program, NAVAIRDEVCEN has developed hands-on experience in still video images and related technologies, including fleet satellite communications, HF transmission, image compression algorithms, VSLI integrated circuitry design, and day/night imagery techniques. NAVAIRDEVCEN has developed a complete, miniaturized system to conduct operational demonstrations, and to demonstrate operational tactics and utilization concepts. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications.

  20. Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images

    International Nuclear Information System (INIS)

    Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials. (paper)

  1. Segmentation of the whole breast from low-dose chest CT images

    Science.gov (United States)

    Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.

  2. Multispectral Panoramic Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  3. Validation of the instrument "Body image after breast cancer" in Brazil

    OpenAIRE

    Carolina de Oliveira Gonçalves; Maria da Consolação Gomes Cunha Fernandes Tavares; Angela Nogueira Neves Betanho Campana; César Cabello

    2014-01-01

    The body image is an important aspect to be considered during the treatment of women with breast cancer. Therefore, we understand the importance of the quality of an instrument that evaluates this condition. The instrument validated in this study can bring new possibilities of studying the effects of cancer treatments on body image. Validation of the questionnaire, translation, cultural adaptation and pre-tests were done with women with breast cancer residents of the States of Alagoas, Pernam...

  4. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  5. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G.

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  6. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    International Nuclear Information System (INIS)

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  7. Assembling a prototype resonance electrical impedance spectroscopy system for breast tissue signal detection: preliminary assessment

    Science.gov (United States)

    Sumkin, Jules; Zheng, Bin; Gruss, Michelle; Drescher, John; Leader, Joseph; Good, Walter; Lu, Amy; Cohen, Cathy; Shah, Ratan; Zuley, Margarita; Gur, David

    2008-03-01

    Using electrical impedance spectroscopy (EIS) technology to detect breast abnormalities in general and cancer in particular has been attracting research interests for decades. Large clinical tests suggest that current EIS systems can achieve high specificity (>= 90%) at a relatively low sensitivity ranging from 15% to 35%. In this study, we explore a new resonance frequency based electrical impedance spectroscopy (REIS) technology to measure breast tissue EIS signals in vivo, which aims to be more sensitive to small tissue changes. Through collaboration between our imaging research group and a commercial company, a unique prototype REIS system has been assembled and preliminary signal acquisition has commenced. This REIS system has two detection probes mounted in the two ends of a Y-shape support device with probe separation of 60 mm. During REIS measurement, one probe touches the nipple and the other touches to an outer point of the breast. The electronic system continuously generates sweeps of multi-frequency electrical pulses ranging from 100 to 4100 kHz. The maximum electric voltage and the current applied to the probes are 1.5V and 30mA, respectively. Once a "record" command is entered, multi-frequency sweeps are recorded every 12 seconds until the program receives a "stop recording" command. In our imaging center, we have collected REIS measurements from 150 women under an IRB approved protocol. The database includes 58 biopsy cases, 78 screening negative cases, and other "recalled" cases (for additional imaging procedures). We measured eight signal features from the effective REIS sweep of each breast. We applied a multi-feature based artificial neural network (ANN) to classify between "biopsy" and normal "non-biopsy" breasts. The ANN performance is evaluated using a leave-one-out validation method and ROC analysis. We conducted two experiments. The first experiment attempted to classify 58 "biopsy" breasts and 58 "non-biopsy" breasts acquired on 58 women

  8. Quantitative Luminescence Imaging System

    International Nuclear Information System (INIS)

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R ampersand D Magazine 1991 R ampersand D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support

  9. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    An increasing number of operational microwave imaging systems have been presented in recent years, especially for medical imaging. This has increased the focus on the practical aspects of microwave imaging, such as the need for calibration, how to decrease measurement time, and how to minimize...... the effect of noise. At the Technical University of Denmark, a 32-channel microwave imaging system for breast cancer screening has been under development for some time. In this system, each antenna is equipped with its own transceiver module, containing amplifiers, switches, and a mixer. This design ensures...

  10. Adjuvant systemic therapy in older women with breast cancer.

    Science.gov (United States)

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  11. Adjuvant systemic therapy in older women with breast cancer

    Science.gov (United States)

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  12. Conceptual detector development and Monte Carlo simulation of a novel 3D breast computed tomography system

    Science.gov (United States)

    Ziegle, Jens; Müller, Bernhard H.; Neumann, Bernd; Hoeschen, Christoph

    2016-03-01

    A new 3D breast computed tomography (CT) system is under development enabling imaging of microcalcifications in a fully uncompressed breast including posterior chest wall tissue. The system setup uses a steered electron beam impinging on small tungsten targets surrounding the breast to emit X-rays. A realization of the corresponding detector concept is presented in this work and it is modeled through Monte Carlo simulations in order to quantify first characteristics of transmission and secondary photons. The modeled system comprises a vertical alignment of linear detectors hold by a case that also hosts the breast. Detectors are separated by gaps to allow the passage of X-rays towards the breast volume. The detectors located directly on the opposite side of the gaps detect incident X-rays. Mechanically moving parts in an imaging system increase the duration of image acquisition and thus can cause motion artifacts. So, a major advantage of the presented system design is the combination of the fixed detectors and the fast steering electron beam which enable a greatly reduced scan time. Thereby potential motion artifacts are reduced so that the visualization of small structures such as microcalcifications is improved. The result of the simulation of a single projection shows high attenuation by parts of the detector electronics causing low count levels at the opposing detectors which would require a flat field correction, but it also shows a secondary to transmission ratio of all counted X-rays of less than 1 percent. Additionally, a single slice with details of various sizes was reconstructed using filtered backprojection. The smallest detail which was still visible in the reconstructed image has a size of 0.2mm.

  13. Breast MRI scan

    Science.gov (United States)

    MRI - breast; Magnetic resonance imaging - breast; Breast cancer - MRI; Breast cancer screening - MRI ... your stomach on a narrow table with your breasts hanging down into cushioned openings. The table slides ...

  14. X-ray attenuation of adipose breast tissue: in-vitro and in-vivo measurements using spectral imaging

    Science.gov (United States)

    Fredenberg, Erik; Erhard, Klaus; Berggren, Karl; Dance, David R.; Young, Kenneth C.; Cederström, Björn; Johansson, Henrik; Lundqvist, Mats; Moa, Elin; Homan, Hanno; Willsher, Paula; Kilburn-Toppin, Fleur; Wallis, Matthew

    2015-03-01

    The development of new x-ray imaging techniques often requires prior knowledge of tissue attenuation, but the sources of such information are sparse. We have measured the attenuation of adipose breast tissue using spectral imaging, in vitro and in vivo. For the in-vitro measurement, fixed samples of adipose breast tissue were imaged on a spectral mammography system, and the energy-dependent x-ray attenuation was measured in terms of equivalent thicknesses of aluminum and poly-methyl methacrylate (PMMA). For the in-vivo measurement, a similar procedure was applied on a number of spectral screening mammograms. The results of the two measurements agreed well and were consistent with published attenuation data and with measurements on tissue-equivalent material.

  15. Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Andy K. W.; Darambara, Dimitra G.; Stewart, Alexander; Gunn, Spencer; Bullard, Edward [Joint Department of Physics, Institute of Cancer Research and The Royal Marsden Hospital, Fulham Road, London SW3 6JJ (United Kingdom); Dexela Ltd., 1 Water Lane, Camden Town, London NW1 8NZ (United Kingdom)

    2008-12-15

    Breast cancer screening with x-ray mammography, using one or two projection images of the breast, is an indispensible tool in the early detection of breast cancer in women. Digital breast tomosynthesis (DBT) is a 3D imaging technique that promises higher sensitivity and specificity in breast cancer screening at a similar radiation dose to conventional two-view screening mammography. In DBT a 3D volume is reconstructed with anisotropic voxels from a limited number of x-ray projection images acquired over a limited angle. Although the benefit of early cancer detection through screening mammography outweighs the potential risks associated with radiation, the radiation dosage to women in terms of mean glandular dose (MGD) is carefully monitored. This work studies the MGD arising from a prototype DBT system under various parameters. Two anode/filter combinations (W/Al and W/Al+Ag) were investigated; the tube potential ranges from 20 to 50 kVp; and the breast size varied between 4 and 10 cm chest wall-to-nipple distance and between 3 and 7 cm compressed breast thickness. The dosimetric effect of breast positioning with respect to the imaging detector was also reviewed. It was found that the position of the breast can affect the MGD by as much as 5% to 13% depending on the breast size.

  16. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenbin [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Jiang, Yanni [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Chen, Lin; Ling, Lijun; Liang, Mengdi; Pan, Hong [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Siqi [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Ding, Qiang [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Liu, Xiaoan, E-mail: liuxiaoan@126.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Shui, E-mail: ws0801@hotmail.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China)

    2014-10-15

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future.

  17. Breast imaging reports for malignant lesions: are we maintaining recommended BI-RADS® lexicon standards?

    Directory of Open Access Journals (Sweden)

    Masroor I

    2012-11-01

    Full Text Available Imrana Masroor,1 Muhammad Azeemuddin,1 Saima Sakhawat,1 Madiha Beg,1 Saba Sohail,2 Rashid Ahmed,3 Irfan-Ul-Haq,4 Javed Mehboob51Radiology Department, Aga Khan University Hospital, 2Radiology Department, Civil Hospital, 3Advanced Radiology Clinic, 4Radiology Department, Pakistan Naval Station Shifa Hospital, 5Karachi Institute of Radiotherapy and Nuclear Medicine, Karachi, PakistanBackground: The purpose of this study was to evaluate mammography reports for diagnosed breast cancer cases in major government and private centers in Karachi, Pakistan, with respect to concordance with the Breast Imaging Reports And Data System (BI-RADS® lexicon.Methods: A prospective, descriptive, multicenter study was conducted in the radiology sections of the Aga Khan University Hospital, Pakistan Naval Station Shifa Hospital, Advanced Radiology Clinic, Karachi Institute of Radiotherapy and Nuclear Medicine, and Civil Hospital Karachi between May and October 2010 after approval from the ethical review committee of Aga Khan University. Mammograms reported as BI-RADS category 4 and 5 were included in the study. Mammograms reported as BI-RADS category 0, 1, 2 and 3 were excluded. Fifty reports were collected from each center. Data were collected about the clinical indication, breast density, location and description of the lesion, calcification, and comments on axillary lymph nodes. This description was compared with the BI-RADS lexicon.Results: The mean age of the patients was 50 ± 12 years. The clinical indication, breast parenchymal density, lesion location, and presence of calcification were better described by the private centers, while description of lymph node status was better stated by the government centers. This difference was statistically significant, except for lesion description. The description of masses by the two reporting groups was comparable.Conclusion: Mammographic reporting of malignant breast lesions in the private sector is more in line with

  18. Using image simulation to test the effect of detector type on breast cancer detection

    Science.gov (United States)

    Mackenzie, Alistair; Warren, Lucy M.; Dance, David R.; Chakraborty, Dev P.; Cooke, Julie; Halling-Brown, Mark D.; Looney, Padraig T.; Wallis, Matthew G.; Given-Wilson, Rosalind M.; Alexander, Gavin G.; Young, Kenneth C.

    2014-03-01

    Introduction: The effect that the image quality associated with different image receptors has on cancer detection in mammography was measured using a novel method for changing the appearance of images. Method: A set of 270 mammography cases (one view, both breasts) was acquired using five Hologic Selenia and two Hologic Dimensions X-ray sets: 160 normal cases, 80 cases with subtle real non-calcification malignant lesions and 30 cases with biopsy proven benign lesions. Simulated calcification clusters were inserted into half of the normal cases. The 270 cases (Arm 1) were converted to appear as if they had been acquired on three other imaging systems: caesium iodide detector (Arm 2), needle image plate computed radiography (CR) (Arm 3) and powder phosphor CR (Arm 4). Five experienced mammography readers marked the location of suspected cancers in the images and classified the degree of visibility of the lesions. Statistical analysis was performed using JAFROC. Results: The differences in the visibility of calcification clusters between all pairs of arms were statistically significant (plesions was smaller than for calcification clusters, but the differences were still significant except between Arms 1 and 2 and between Arms 3 and 4. Conclusion: Detector type had a significant impact on the visibility of all types of subtle cancers, with the largest impact being on the visibility of calcification clusters.

  19. Basic research and clinical application of optical molecular imaging in breast cancer

    International Nuclear Information System (INIS)

    As a rapidly developing biomedical imaging technology,in vivo optical molecular imaging has been widely applied in various research fields owing to its unique real-time, quantitative and noninvasive characteristics. The applications of in vivo optical imaging technology in the basic and clinical research of breast cancer were reviewed, including detection of distant metastasis,tumor apoptosis, cell cycle, hypoxia and angiogenesis, ER-mediated molecular pathway, breast cancer stem cells, early diagnosis, sentinel node biopsy, evaluation of drug efficacy and detection of human epidermal growth factor receptor-2 (HER-2) expression. They all seem to have a promising potential in in vivo optical molecular imaging. (authors)

  20. Pigeons (Columba livia as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    Directory of Open Access Journals (Sweden)

    Richard M Levenson

    Full Text Available Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult task-namely, classification of suspicious mammographic densities (masses-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.

  1. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    Science.gov (United States)

    Levenson, Richard M; Krupinski, Elizabeth A; Navarro, Victor M; Wasserman, Edward A

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.

  2. Investigation of a scanned cylindrical ultrasound system for breast hyperthermia

    International Nuclear Information System (INIS)

    This paper investigates the feasibility of a scanned cylindrical ultrasound system for producing uniform heating from the central to the superficial portions of the breast or localized heating within the breast at a specific location. The proposed system consists of plane ultrasound transducer(s) mounted on a scanned cylindrical support. The breast was immersed in water and surrounded by this system during the treatment. The control parameters considered are the size of the transducer, the ultrasound frequency, the scan angle and the shifting distance between the axes of the breast and the system. Three-dimensional acoustical and thermal models were used to calculate the temperature distribution. Non-perfused phantom experiments were performed to verify the simulation results. Simulation results indicate that high frequency ultrasound could be used for the superficial heating, and the scan angle of the transducer could be varied to obtain an appropriate high temperature region to cover the desired treatment region. Low frequency ultrasound could be used for deep heating and the high temperature region could be moved by shifting the system. In addition, a combination of low and high frequency ultrasound could result in a portion treatment from the central to the superficial breast or an entire breast treatment. Good agreement was obtained between non-perfused experiments and simulation results. The findings of this study can be used to determine the effects of the control parameters of this system, as well as to select the optimal parameters for a specific treatment

  3. The effect of breast composition on absorbed dose and image contrast

    International Nuclear Information System (INIS)

    We have studied the effect of breast composition on the average whole breast dose, average glandular dose, and image contrast in mammography, using both computational and experimental methods. Three glandular/adipose compositions were considered: 30/70, 50/50, and 70/30 by weight, for both 3- and 5-cm breast thickness. Absorbed dose was found to increase with greater glandular content and this increase is more pronounced for thick breasts and softer beams. For typical screen-film x-ray beams, the average dose to a highly glandular breast is nearly twice the dose to a highly adipose breast and the average glandular dose about 40% higher. Dose was reduced when higher energy beams were employed. The use of a grid increased the dose by a factor of 2.0 to 2.6. Finally, the measured image contrast decreases with increasing breast glandularity, to a greater extent in small breasts and when low energy beams were employed

  4. Characteristics, Malignancy Rate, and Follow-up of BI-RADS Category 3 Lesions Identified at Breast MR Imaging: Implications for MR Image Interpretation and Management.

    Science.gov (United States)

    Chikarmane, Sona A; Birdwell, Robyn L; Poole, Patricia S; Sippo, Dorothy A; Giess, Catherine S

    2016-09-01

    Purpose To (a) evaluate the frequency of Breast Imaging Reporting and Data System (BI-RADS) category 3 assessment in screening and diagnostic breast magnetic resonance (MR) imaging, (b) review findings considered indicative of BI-RADS category 3, and (c) determine outcomes of BI-RADS category 3 lesions, including upgrades, downgrades, and malignancy rates. Materials and Methods This retrospective study was approved by the institutional review board and compliant with HIPAA. The authors retrospectively reviewed the breast MR imaging database (2009-2011) to identify breast MR images classified as showing BI-RADS category 3 lesions. There were 9216 BI-RADS assessments in 5778 examinations (3360 women). Of the 9216 assessments, 567 (6%) in 483 women (average age, 47.2 years; median age, 47.0 years) were assigned BI-RADS category 3. In women with more than one BI-RADS category 3 lesion, the first lesion reported in the impression was used for data analysis. Outcomes data were available for 435 of the 483 women (90.1%). These women comprised the study cohort. Medical records from January 1, 2009, to May 31, 2015, were reviewed to obtain demographic characteristics and outcomes. χ(2) statistics and 95% exact confidence intervals (CIs) were constructed. Results MR imaging was performed for high-risk screening in 240 of the 435 patients (55.2%) and for diagnostic purposes in 195 (44.8%). Findings included mass (n = 125, 28.7%), focus (n = 111, 25.5%), nonmass enhancement (n = 80, 18.3%), moderate or marked background parenchymal enhancement (BPE) (n = 91, 20.9%), posttreatment changes (n = 16, 3.8%), and other findings (n = 12, 2.8%). Outcomes were as follows: 339 of the 435 patients (78%) did not have evidence of malignancy at more than 24 months, 28 (6.4%) underwent mastectomy (all benign), and 68 (15.6%) had lesion upgrades, with 11 cancers (2.5%). All 11 cancers were diagnosed in women with a genetic mutation or a personal history of breast cancer. No cancer was

  5. Factors Associated with Preoperative Magnetic Resonance Imaging Use among Medicare Beneficiaries with Nonmetastatic Breast Cancer.

    Science.gov (United States)

    Henderson, Louise M; Weiss, Julie; Hubbard, Rebecca A; O'Donoghue, Cristina; DeMartini, Wendy B; Buist, Diana S M; Kerlikowske, Karla; Goodrich, Martha; Virnig, Beth; Tosteson, Anna N A; Lehman, Constance D; Onega, Tracy

    2016-01-01

    Preoperative breast magnetic resonance imaging (MRI) use among Medicare beneficiaries with breast cancer has substantially increased from 2005 to 2009. We sought to identify factors associated with preoperative breast MRI use among women diagnosed with ductal carcinoma in situ (DCIS) or stage I-III invasive breast cancer (IBC). Using Surveillance, Epidemiology, and End Results and Medicare data from 2005 to 2009 we identified women ages 66 and older with DCIS or stage I-III IBC who underwent breast-conserving surgery or mastectomy. We compared preoperative breast MRI use by patient, tumor and hospital characteristics stratified by DCIS and IBC using multivariable logistic regression. From 2005 to 2009, preoperative breast MRI use increased from 5.9% to 22.4% of women diagnosed with DCIS and 7.0% to 24.3% of women diagnosed with IBC. Preoperative breast MRI use was more common among women who were younger, married, lived in higher median income zip codes and had no comorbidities. Among women with IBC, those with lobular disease, smaller tumors (2 cm). The likelihood of receiving preoperative breast MRI is similar for women diagnosed with DCIS and IBC. Use of MRI is more common in women with IBC for tumors that are lobular and smaller while for DCIS MRI is used for evaluation of larger lesions. PMID:26511204

  6. Conspicuity of breast cancer according to histopathological type and breast density when imaged by full-field digital mammography compared with screen-film mammography

    International Nuclear Information System (INIS)

    To compare the conspicuity of different histopathological types of breast cancer according to breast density and mammographic imaging in patients with screen-detected breast cancers undergoing both full-field digital mammography (FFDM) and screen-film mammography (SFM) in the United Kingdom National Health Service Breast Screening Programme (NHSBSP). 185 patients underwent routine screening with SFM followed by further imaging using FFDM with consequent diagnosis of breast cancer. All SFM and soft-copy FFDM images were evaluated by two readers in an independent, retrospective review. The visualisation and conspicuity of the mammographic abnormality were recorded and graded using a four-level scale. Conspicuity of breast cancer was qualitatively evaluated. Breast density and conspicuity were correlated with histopathological diagnosis and inter-observer correlation was calculated. Mixed Model ANOVA demonstrated significant differences between FFDM and SFM (p < 0.001) and breast densities (p = 0.009): conspicuity of the mammographic abnormality (p < 0.001) and visualisation of the dominant mammographic feature (p < 0.001) were significantly greater with FFDM than SFM. This held true for both readers and for all histopathological tumour types with no significant differences between each tumour type. FFDM is significantly superior to SFM for conspicuity of screen-detected breast cancers for all histopathological types and breast densities. (orig.)

  7. Molecular Imaging Probes for Diagnosis and Therapy Evaluation of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Qingqing Meng

    2013-01-01

    Full Text Available Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.

  8. Cerenkov luminescence imaging of human breast cancer: a Monte Carlo simulations study

    International Nuclear Information System (INIS)

    Cerenkov luminescence imaging (CLI) is a novel molecular imaging technique based on the detection of Cerenkov light produced by beta particles traveling through biological tissues. In this paper we simulated using 18F and 90Y the possibility of detecting Cerenkov luminescence in human breast tissues, in order to evaluate the potential of the CLI technique in a clinical setting. A human breast digital phantom was obtained from an 18F-FDG CT-PET scan. The spectral features of the breast surface emission were obtained as well as the simulated images obtainable by a cooled CCD detector. The simulated images revealed a signal to noise ratio equal to 6 for a 300 s of acquisition time. We concluded that a dedicated human Cerenkov imaging detector can be designed in order to offer a valid low cost alternative to diagnostic techniques in nuclear medicine, in particular allowing the detection of beta-minus emitters used in radiotherapy

  9. Novel systemic therapies for breast cancer.

    Science.gov (United States)

    Lo, Soo; Johnston, Stephen R D

    2003-12-01

    The rapid expansion in our knowledge of the molecular pathogenesis of cancer has created several opportunities for novel strategies in anti-cancer drug design and development. Recent developments have included a series of new endocrine therapies such as pure anti-oestrogens and selective oestrogen receptor modulators, and trials are in progress to determine their role in the sequence of therapies given the first-line role now occupied by the aromatase inhibitors. Novel cytotoxic drugs have been developed with an improved toxicity profile, including oral prodrugs that are activated within tumour cells, and liposomal delivery mechanisms for conventional drugs that reduce some of the systemic toxicities. There has been much success with monoclonal antibodies targeted against growth factor receptors, both as monotherapy and in enhancing the efficacy of cytotoxic drugs. A number of small molecule signal transduction inhibitors are in early stages of clinical development for breast cancer, including tyrosine-kinase inhibitors and farnesyl transferase inhibitors. Emerging pre-clinical evidence suggests that these drugs may best be used in combination with endocrine therapy. Other novel strategies that are being tested include vaccines and anti-angiogenesis drugs. As these new therapies evolve towards the clinic, the challenge to oncologists is whether their potential seen in the laboratory can be matched by further substantial improvements in clinical outcome.

  10. Matching methods evaluation framework for stereoscopic breast x-ray images.

    Science.gov (United States)

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps. PMID:26587552

  11. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals

    Directory of Open Access Journals (Sweden)

    Sarcinelli MA

    2016-09-01

    Full Text Available Michelle Alvares Sarcinelli,1,2 Marta de Souza Albernaz,3 Marzena Szwed,4 Alexandre Iscaife,2 Kátia Ramos Moreira Leite,2 Mara de Souza Junqueira,5 Emerson Soares Bernardes,6 Emerson Oliveira da Silva,1 Maria Ines Bruno Tavares,1 Ralph Santos-Oliveira7 1Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; 2Laboratory of Medical Investigation, Faculty of Medicine, São Paulo University, São Paulo, Brazil; 3Radiopharmacy Sector, University Hospital Clementino Fraga Filho, Rio de Janeiro, Brazil; 4Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; 5Laboratory of Experimental Oncology, Faculty of Medicine, São Paulo University, São Paulo, Brazil; 6Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN, São Paulo, Brazil; 7Laboratory of Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil Abstract: Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA/polyvinyl alcohol (PVA/montmorillonite (MMT/trastuzumab nanoparticles labeled with technetium-99m (99mTc for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200–500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta

  12. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  13. SOUND-SPEED AND ATTENUATION IMAGING OF BREAST TISSUE USING WAVEFORM TOMOGRAPHY OF TRANSMISSION ULTRASOUND DATA

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; PRATT, R. GERHARD [Los Alamos National Laboratory; DURIC, NEB [Los Alamos National Laboratory; LITTRUP, PETER [Los Alamos National Laboratory

    2007-01-25

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  14. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.

    Science.gov (United States)

    Han, Lianghao; Hipwell, John H; Eiben, Björn; Barratt, Dean; Modat, Marc; Ourselin, Sebastien; Hawkes, David J

    2014-03-01

    Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration

  15. Fat suppression techniques in breast magnetic resonance imaging: a critical comparison and state of the art

    Directory of Open Access Journals (Sweden)

    Lin C

    2015-03-01

    Full Text Available Chen Lin, Clark David Rogers, Shadie Majidi Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Robust and accurate fat suppression is highly desirable in breast magnetic resonance imaging (MRI because it can considerably improve the image quality and lesion conspicuity. However, fat suppression is also more challenging in the breast compared with other regions in the body. Technical advances have been made over time to make fat suppression more efficient and reliable. Combined with other innovations, breast MRI continues to be the most sensitive and comprehensive diagnostic modality in the detection and evaluation of breast lesions. This review offers a critical comparison of various fat suppression techniques in breast MRI including spectral-selective excitation and saturation techniques based on the chemical shift difference between fat and water, the inversion recovery techniques based on the T1 relaxation time difference, the hybrid spectral-selective inversion recovery techniques, and the new Dixon fat and water separation techniques based on the phase difference between fat and water signal at different echo times. This review will also cover less frequently used techniques such as slice-selective gradient reversal. For each fat suppression technique in breast MRI, a detailed explanation of the technical principle, the advantages and disadvantages, the approaches for optimization as well as the clinical examples are included. The additional challenges of fat suppression in breast MRI at higher field strength and in the presence of metallic and silicone implants are also discussed. Keywords: breast MRI, fat suppression, dynamic contrast enhanced imaging, diffusion weighted imaging, magnetic resonance spectroscopy

  16. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K [Massachusetts General Hospital, Boston, MA (United States); Gazi, P [University of California, Davis, Sacramento, CA (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantify image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize

  17. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    International Nuclear Information System (INIS)

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantify image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize

  18. Digital breast tomosynthesis: computer-aided detection of clustered microcalcifications on planar projection images

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M.; Wei, Jun; Helvie, Mark A.

    2014-12-01

    This paper describes a new approach to detect microcalcification clusters (MCs) in digital breast tomosynthesis (DBT) via its planar projection (PPJ) image. With IRB approval, two-view (cranio-caudal and mediolateral oblique views) DBTs of human subject breasts were obtained with a GE GEN2 prototype DBT system that acquires 21 projection angles spanning 60° in 3° increments. A data set of 307 volumes (154 human subjects) was divided by case into independent training (127 with MCs) and test sets (104 with MCs and 76 free of MCs). A simultaneous algebraic reconstruction technique with multiscale bilateral filtering (MSBF) regularization was used to enhance microcalcifications and suppress noise. During the MSBF regularized reconstruction, the DBT volume was separated into high frequency (HF) and low frequency components representing microcalcifications and larger structures. At the final iteration, maximum intensity projection was applied to the regularized HF volume to generate a PPJ image that contained MCs with increased contrast-to-noise ratio (CNR) and reduced search space. High CNR objects in the PPJ image were extracted and labeled as microcalcification candidates. Convolution neural network trained to recognize the image pattern of microcalcifications was used to classify the candidates into true calcifications and tissue structures and artifacts. The remaining microcalcification candidates were grouped into MCs by dynamic conditional clustering based on adaptive CNR threshold and radial distance criteria. False positive (FP) clusters were further reduced using the number of candidates in a cluster, CNR and size of microcalcification candidates. At 85% sensitivity an FP rate of 0.71 and 0.54 was achieved for view- and case-based sensitivity, respectively, compared to 2.16 and 0.85 achieved in DBT. The improvement was significant (p-value = 0.003) by JAFROC analysis.

  19. Incidental breast masses detected by computed tomography: are any imaging features predictive of malignancy?

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)], E-mail: Gareth.Porter@phnt.swest.nhs.uk; Steel, J.; Paisley, K.; Watkins, R. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Holgate, C. [Department of Histopathology, Derriford Hospital, Plymouth (United Kingdom)

    2009-05-15

    Aim: To review the outcome of further assessment of breast abnormalities detected incidentally by multidetector computed tomography (MDCT) and to determine whether any MDCT imaging features were predictive of malignancy. Material and methods: The outcome of 34 patients referred to the Primrose Breast Care Unit with breast abnormalities detected incidentally using MDCT was prospectively recorded. Women with a known diagnosis of breast cancer were excluded. CT imaging features and histological diagnoses were recorded and the correlation assessed using Fisher's exact test. Results: Of the 34 referred patients a malignant diagnosis was noted in 11 (32%). There were 10 breast malignancies (seven invasive ductal carcinomas, one invasive lobular carcinoma, two metastatic lesions) and one axillary lymphoma. CT features suggestive of breast malignancy were spiculation [6/10 (60%) versus 0/24 (0%) p = 0.0002] and associated axillary lymphadenopathy [3/10 (33%) versus 0/20 (0%) p = 0.030]. Conversely, a well-defined mass was suggestive of benign disease [10/24 (42%) versus 0/10 (0%); p = 0.015]. Associated calcification, ill-definition, heterogeneity, size, and multiplicity of lesions were not useful discriminating CT features. There was a non-significant trend for lesions in involuted breasts to be more frequently malignant than in dense breasts [6/14 (43%) versus 4/20 (20%) p = 0.11]. Conclusion: In the present series there was a significant rate (32%) of malignancy in patients referred to the breast clinic with CT-detected incidental breast lesions. The CT features of spiculation or axillary lymphadenopathy are strongly suggestive of malignancy.

  20. Computerized database management system for breast cancer patients.

    Science.gov (United States)

    Sim, Kok Swee; Chong, Sze Siang; Tso, Chih Ping; Nia, Mohsen Esmaeili; Chong, Aun Kee; Abbas, Siti Fathimah

    2014-01-01

    Data analysis based on breast cancer risk factors such as age, race, breastfeeding, hormone replacement therapy, family history, and obesity was conducted on breast cancer patients using a new enhanced computerized database management system. My Structural Query Language (MySQL) is selected as the application for database management system to store the patient data collected from hospitals in Malaysia. An automatic calculation tool is embedded in this system to assist the data analysis. The results are plotted automatically and a user-friendly graphical user interface is developed that can control the MySQL database. Case studies show breast cancer incidence rate is highest among Malay women, followed by Chinese and Indian. The peak age for breast cancer incidence is from 50 to 59 years old. Results suggest that the chance of developing breast cancer is increased in older women, and reduced with breastfeeding practice. The weight status might affect the breast cancer risk differently. Additional studies are needed to confirm these findings.

  1. Fully automated quantitative analysis of breast cancer risk in DCE-MR images

    Science.gov (United States)

    Jiang, Luan; Hu, Xiaoxin; Gu, Yajia; Li, Qiang

    2015-03-01

    Amount of fibroglandular tissue (FGT) and background parenchymal enhancement (BPE) in dynamic contrast enhanced magnetic resonance (DCE-MR) images are two important indices for breast cancer risk assessment in the clinical practice. The purpose of this study is to develop and evaluate a fully automated scheme for quantitative analysis of FGT and BPE in DCE-MR images. Our fully automated method consists of three steps, i.e., segmentation of whole breast, fibroglandular tissues, and enhanced fibroglandular tissues. Based on the volume of interest extracted automatically, dynamic programming method was applied in each 2-D slice of a 3-D MR scan to delineate the chest wall and breast skin line for segmenting the whole breast. This step took advantages of the continuity of chest wall and breast skin line across adjacent slices. We then further used fuzzy c-means clustering method with automatic selection of cluster number for segmenting the fibroglandular tissues within the segmented whole breast area. Finally, a statistical method was used to set a threshold based on the estimated noise level for segmenting the enhanced fibroglandular tissues in the subtraction images of pre- and post-contrast MR scans. Based on the segmented whole breast, fibroglandular tissues, and enhanced fibroglandular tissues, FGT and BPE were automatically computed. Preliminary results of technical evaluation and clinical validation showed that our fully automated scheme could obtain good segmentation of the whole breast, fibroglandular tissues, and enhanced fibroglandular tissues to achieve accurate assessment of FGT and BPE for quantitative analysis of breast cancer risk.

  2. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    Science.gov (United States)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  3. Magnetic resonance imaging appearances in primary and secondary angiosarcoma of the breast.

    LENUS (Irish Health Repository)

    O'Neill, Ailbhe C

    2014-04-01

    Angiosarcomas are malignant tumours of endovascular origin. They are rare tumours accounting for 0.04-1% of all breast malignancies. Two different forms are described: primary, occurring in young women, and secondary angiosarcoma, which occurs in older women with a history of breast-conserving surgery and radiation therapy. Imaging findings on mammography and ultrasound are non-specific, but magnetic resonance imaging with dynamic contrast enhancement is more informative. We present two cases - one of primary and one of secondary angiosarcoma - and review the imaging findings.

  4. Characterization of materials for optimal near-infrared and x-ray imaging of the breast.

    Science.gov (United States)

    Michaelsen, Kelly; Krishnaswamy, Venkataramanan; Pogue, Brian W; Brooks, Ken; Defreitas, Ken; Shaw, Ian; Poplack, Steven P; Paulsen, Keith D

    2012-09-01

    Development of a detector case for complete co-registration of images in a non-fiber-based combined near-infrared spectral tomography and digital breast tomosynthesis, required analysis to find materials that could support a breast under full mammographic compression without affecting the x-ray images or the quality of the near infrared measurements. Several possible solutions were considered, and many types of plastics were tested in the development of the detector case. Light channeling within the detector case changed the data obtained in resin and agarose phantoms, lowering recovered absorption values. Additional developments focusing on blocking stray light were successful and permitted a normal subject imaging exam.

  5. Breast varices: imaging findings of an unusual presentation of collateral pathways in superior vena caval syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Ayseguel E-mail: aozdemir@tip.gazi.edu.tr; Ilgit, Erhan T.; Konus, Oeznur L.; Cetin, Meltem; Oezsunar, Yelda

    2000-11-01

    Imaging findings are presented of an unusual pathway of collateral circulation consisting of bilateral and diffuse dilated breast veins from a patient with long standing superior vena caval syndrome. The main importance of this case is the extent of the collateral development through the breast veins, serving as the major pathway of collateral circulation. Identification of this unusual collateral development, which resembles breast varices, was performed with contrast-enhanced chest CT scans, digital subtraction venography, color Doppler ultrasonography, and mammographic studies. Collateral development was secondary to a long segment idiopathic venous occlusion involving bilateral subclavian and brachiocephalic veins as well as vena cava superior. We conclude that dilated breast veins when detected on any imaging modality should raise the suspicion of central venous obstruction.

  6. Risk of Needle-track Seeding After Diagnostic Image-guided Core Needle Biopsy in Breast Cancer

    OpenAIRE

    Knight, Rebecca; Horiuchi, Kent; Parker, Steve H.; Ratzer, Erick R.; Fenoglio, Michael E.

    2002-01-01

    Objective: Image-guided core needle biopsy (IGCNB) is an accepted technique for sampling nonpalpable mammographically detected suspicious breast lesions. However, the concern for needle-track seeding in malignant lesions remains. An alternative to IGCNB is needle-localization breast biopsy (NLBB). No study has been done to compare the local recurrence rate of breast cancer after IGCNB versus NLBB. Methods: We have retrospectively reviewed the local recurrence of breast cancer in patients diag...

  7. Mitosis detection in breast cancer histology images with deep neural networks.

    Science.gov (United States)

    Cireşan, Dan C; Giusti, Alessandro; Gambardella, Luca M; Schmidhuber, Jürgen

    2013-01-01

    We use deep max-pooling convolutional neural networks to detect mitosis in breast histology images. The networks are trained to classify each pixel in the images, using as context a patch centered on the pixel. Simple postprocessing is then applied to the network output. Our approach won the ICPR 2012 mitosis detection competition, outperforming other contestants by a significant margin.

  8. Local binary pattern texture-based classification of solid masses in ultrasound breast images

    Science.gov (United States)

    Matsumoto, Monica M. S.; Sehgal, Chandra M.; Udupa, Jayaram K.

    2012-03-01

    Breast cancer is one of the leading causes of cancer mortality among women. Ultrasound examination can be used to assess breast masses, complementarily to mammography. Ultrasound images reveal tissue information in its echoic patterns. Therefore, pattern recognition techniques can facilitate classification of lesions and thereby reduce the number of unnecessary biopsies. Our hypothesis was that image texture features on the boundary of a lesion and its vicinity can be used to classify masses. We have used intensity-independent and rotation-invariant texture features, known as Local Binary Patterns (LBP). The classifier selected was K-nearest neighbors. Our breast ultrasound image database consisted of 100 patient images (50 benign and 50 malignant cases). The determination of whether the mass was benign or malignant was done through biopsy and pathology assessment. The training set consisted of sixty images, randomly chosen from the database of 100 patients. The testing set consisted of forty images to be classified. The results with a multi-fold cross validation of 100 iterations produced a robust evaluation. The highest performance was observed for feature LBP with 24 symmetrically distributed neighbors over a circle of radius 3 (LBP24,3) with an accuracy rate of 81.0%. We also investigated an approach with a score of malignancy assigned to the images in the test set. This approach provided an ROC curve with Az of 0.803. The analysis of texture features over the boundary of solid masses showed promise for malignancy classification in ultrasound breast images.

  9. Clinical experiences with photoacoustic breast imaging: the appearance of suspicious lesions

    NARCIS (Netherlands)

    Heijblom, Michelle

    2014-01-01

    This thesis describes photoacoustic (PA) imaging of suspicious breast lesions. In PA imaging, the tissue of interest is illuminated by short pulses of laser light, usually in the near infrared (NIR) regime. Upon absorption by primarily the tumor vasculature, the light causes a small temperature incr

  10. Intraindividual, randomized comparison of the macrocyclic contrast agents gadobutrol and gadoterate meglumine in breast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fallenberg, Eva M.; Renz, Diane M.; Hamm, Bernd [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Department of Radiology, Berlin (Germany); Karle, Bettina [Clinic of Radiation Therapy, Helios Clinics, Berlin (Germany); Schwenke, Carsten [SCOSSIS Statistical Consulting, Berlin (Germany); Ingod-Heppner, Barbara [Charite Universitaetsmedizin, Campus Charite Mitte, Institute of Pathology, Berlin (Germany); Reles, Angela [Charite Universitaetsmedizin, Charite-Partner-Practice, Interdisciplinary Breast Center, Berlin (Germany); Engelken, Florian J. [Charite - Universitaetsmedizin Berlin, Charite Campus Mitte, Department of Radiology, Berlin (Germany); Huppertz, Alexander; Taupitz, Matthias [Charite - Universitaetsmedizin Berlin, Campus Benjamin Franklin, Department of Radiology, Berlin (Germany)

    2014-09-25

    To compare intraindividually two macrocyclic contrast agents - gadobutrol and gadoterate meglumine (Gd-DOTA) - for dynamic and quantitative assessment of relative enhancement (RE) in benign and malignant breast lesions. This was an ethically approved, prospective, single-centre, randomized, crossover study in 52 women with suspected breast lesions referred for magnetic resonance imaging (MRI). Each patient underwent one examination with gadobutrol and one with Gd-DOTA (0.1 mmol/kg BW) on a 1.5 T system 1 - 7 days apart. Dynamic, T1-weighted, 3D gradient echo sequences were acquired under identical conditions. Quantitative evaluation with at least three regions of interest (ROI) per lesion was performed. Primary endpoint was RE during the initial postcontrast phase after the first and second dynamic acquisition, and peak RE. All lesions were histologically proven; differences between the examinations were evaluated. Forty-five patients with a total of 11 benign and 34 malignant lesions were assessed. Mean RE was significantly higher for gadobutrol than Gd-DOTA (p < 0.0001). Gadobutrol showed significantly less washout (64.4 %) than Gd-DOTA (75.4 %) in malignant lesions (p = 0.048) Gadobutrol has higher RE values compared with Gd-DOTA, whereas Gd-DOTA shows more marked washout in malignant lesions. This might improve the detection of breast lesions and influence the specificity of breast MRI-imaging. (orig.)

  11. A Case of Granulocytic Sarcoma of the Breast: Imaging Findings and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Babak Radmehr

    2010-05-01

    Full Text Available Granulocytic sarcoma (GS or chloroma is a solid tumor composed of extramedullary proliferation of myeloid cells. It can appear in a variety of locations, but it is rare, especially in the breast. Diagnosis of GS in the breast could be a challenge for clinicians, radiologists, and even pathologists; especially, in the absence of clinical history. "nIn this report, we present imaging features of a 20-year-old woman with relapse of acute myeloid leu-kemia as GS in her left breast and a brief review of the literature

  12. 18F-fluoride PET imaging in a nude rat model of bone metastasis from breast cancer: Comparison with 18F-FDG and bioluminescence imaging

    International Nuclear Information System (INIS)

    Introduction: Clinically-relevant animal models and appropriate imaging diagnostic tools are essential to study cancer and develop novel therapeutics. We evaluated a model of bone metastasis in nude rats by micro-PET and bioluminescence imaging. Methods: A bone metastasis model was produced by intracardiac injection of osteotropic MDA-MB-231Bo-Luc human breast cancer cells into nude rats. Bioluminescence imaging and micro-PET scans using 18F-FDG and 18F-fluoride were acquired serially for 5 weeks. We correlated bioluminescence imaging, 18F-FDG and 18F-fluoride PET images, and histological slides. Results: Multiple bone metastases were successfully evaluated by bioluminescence imaging and 18F-FDG and 18F-fluoride PET scans. Bioluminescence photon flux increased exponentially on weekly follow-up. 18F-FDG PET revealed increased FDG uptake at the spine and bilaterally in the hind legs in week 2 images, and showed a progressive pattern up to 4 weeks that correlated with bioluminescence imaging. 18F-fluoride PET showed minimal abnormal findings in week 2 images, but it showed an irregular pattern at the spine from week 3 or 4 images. On quantitative analysis with standardized uptake values, a pattern of gradual increase was observed from week 2 to week 4 in both 18F-FDG PET and fluoride PET. Histopathological examination confirmed the formation of osteolytic metastasis and necrosis of the distal femur, which appeared as a photon defect on PET scans. Conclusion: Developing bone metastasis from breast cancer in a nude rat model was successfully evaluated with an animal PET imaging system and bioluminescence imaging. This nude rat model of bone metastasis, which can be evaluated by PET imaging, may be a valuable tool for evaluating early responses to novel therapeutics

  13. Aesthetic breast augmentation with hyaluronic acid: imaging findings and implications for radiological assessment

    Directory of Open Access Journals (Sweden)

    Divanei Aparecida Bottaro Criado

    2012-06-01

    Full Text Available New injectable fillers such as hyaluronic acid have recently been employed as a non-surgical alternative to implants such as silicone for aesthetic breast enhancement. Although their utilization is not yet widespread in Brazil, radiologists should be aware of the imaging findings in this context and of the implications of the presence of this filler for the radiological evaluation in the screening for breast cancer.

  14. Aesthetic breast augmentation with hyaluronic acid: imaging findings and implications for radiological assessment

    OpenAIRE

    Divanei Aparecida Bottaro Criado; Fernanda Del Campo Braojos; Ulysses dos Santos Torres; Marcos Pontes Muniz

    2012-01-01

    New injectable fillers such as hyaluronic acid have recently been employed as a non-surgical alternative to implants such as silicone for aesthetic breast enhancement. Although their utilization is not yet widespread in Brazil, radiologists should be aware of the imaging findings in this context and of the implications of the presence of this filler for the radiological evaluation in the screening for breast cancer.

  15. Image quality control of mammography equipment -Mammography System MX-300- of the Teachers Hospital of UNSA and dose measurement in breasts with radiographic films; Control de calidad de imagen del equipo de mamografia -Mammography System MX-300- del Hospital de Docentes de la UNSA y medicion de dosis en mamas con peliculas radiograficas

    Energy Technology Data Exchange (ETDEWEB)

    Quispe F, L. K.; Vega R, J., E-mail: karinaqflores839@gmail.com [Universidad Nacional de San Agustin, Escuela Profesional de Fisica, Arequipa (Peru)

    2015-10-15

    This work is part of medical imaging for the evaluation of quality. Will have an accredited breast phantom Rmi-156 that allows evaluating the image quality of mammography equipment and through a series of techniques and processes that will submit to mammography films we obtain characteristic curves, which allows to evaluate different parameters that will serve for our study. Images were acquired with different k Vp and m As of the equipment, also with different thicknesses of the breast phantom. Also we want to use the lowest possible dose for obtaining our images. In this paper we develop a simple protocol that aims to unify the conditions under which are acquired the images for later evaluation. By obtaining these characteristic curves demonstrate that the Kodak film is the most suitable for our study because it requires lower dose for obtaining our images. (Author)

  16. Clinical evaluation of fat suppressed fast-SPGR sequence of the breast MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mitsuyuki; Hasegawa, Makoto; Matsubara, Tadashi [Yokohama Sakae Kyosai Hospital (Japan)

    1998-05-01

    MR-mammography by fat suppressed Fast-SPGR was evaluated for diagnosis and determination of invasion of tumor. Dynamic MRIs were performed in 12 phases, such as, before infusion of contrast media, right after and one to ten minutes after infusion with interval of one minute. In 15 patients (breast cancer, fibroadenoma, lymphocytic lobulitits and cystic intraductal papilloma), underwent MRI, the images were compared with pathological findings. Ten cases were confirmed as malignancy among 11 cases of breast cancer (sensitivity 91%). Eleven cases were confirmed as breast cancer among 12 cases diagnosed as breast cancer by MRI (specificity 92%). In 12 of all 15 cases, benignity or malignancy was checked correctly (accuracy 80%). Invasion of breast cancer was defined as the deep color dyeing area which was neighbored with the tumor in early stage of cystography. Eight of 11 cases were diagnosed precisely with fat suppression image, and nine were by subtraction image. Diagnosis was possible only by subtraction image in a case of scirrhous carcinoma accompanied with intradutal invasion. The area of invasion was not defined correctly in the case accompanied by mastopathy. It is difficult to evaluate benignity or malignancy of mammary gland tumor only by dynamic MRI, it is necessary to diagnose the shape and deep color image of tumor generally. (K.H.)

  17. Imaging Features of AlloDerm® Used in Postmastectomy Breast Reconstructions

    Directory of Open Access Journals (Sweden)

    Christine U Lee

    2014-01-01

    Full Text Available The purpose of this pictorial essay is to demonstrate the imaging features (ultrasound, mammogram, and magnetic resonance imaging (MRI of AlloDerm® (LifeCell Corp.; Branchburg, NJ, an acellular dermal matrix sometimes used in both primary and reconstructive breast surgeries. AlloDerm® is derived from cadaveric dermis and provides an immunologically inert scaffold in tissue reconstruction. Since there is little literature on the imaging of this substance, radiologists may be unfamiliar with its appearance in breast imaging. For this manuscript, ex vivo and in vivo images of AlloDerm® in postmastectomy patients were evaluated using different imaging modalities. The appearance of AlloDerm® can vary based on length of time postsurgery and incorporation into the host. AlloDerm® appears as an isodense to glandular tissue on a mammogram and isoechoic to glandular tissue on ultrasound imaging. On MRI, in comparison with normal breast parenchyma, AlloDerm® is hyperintense on T2-weighted imaging and isointense on T1-weighted imaging and demonstrates mild enhancement. To the best of the authors′ knowledge, this is the first multimodality imaging description of AlloDerm® used in postmastectomy patients. The conformation of AlloDerm® at surgical placement and the degree of host cell migration and neoangiogenesis are factors to take into consideration when performing diagnostic evaluations; and, familiarity with the various imaging appearances of AlloDerm® can be helpful to exclude residual or recurrent disease.

  18. Full Intelligent Cancer Classification of Thermal Breast Images to Assist Physician in Clinical Diagnostic Applications.

    Science.gov (United States)

    Lashkari, AmirEhsan; Pak, Fatemeh; Firouzmand, Mohammad

    2016-01-01

    Breast cancer is the most common type of cancer among women. The important key to treat the breast cancer is early detection of it because according to many pathological studies more than 75% - 80% of all abnormalities are still benign at primary stages; so in recent years, many studies and extensive research done to early detection of breast cancer with higher precision and accuracy. Infra-red breast thermography is an imaging technique based on recording temperature distribution patterns of breast tissue. Compared with breast mammography technique, thermography is more suitable technique because it is noninvasive, non-contact, passive and free ionizing radiation. In this paper, a full automatic high accuracy technique for classification of suspicious areas in thermogram images with the aim of assisting physicians in early detection of breast cancer has been presented. Proposed algorithm consists of four main steps: pre-processing & segmentation, feature extraction, feature selection and classification. At the first step, using full automatic operation, region of interest (ROI) determined and the quality of image improved. Using thresholding and edge detection techniques, both right and left breasts separated from each other. Then relative suspected areas become segmented and image matrix normalized due to the uniqueness of each person's body temperature. At feature extraction stage, 23 features, including statistical, morphological, frequency domain, histogram and Gray Level Co-occurrence Matrix (GLCM) based features are extracted from segmented right and left breast obtained from step 1. To achieve the best features, feature selection methods such as minimum Redundancy and Maximum Relevance (mRMR), Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating Forward Selection (SFFS), Sequential Floating Backward Selection (SFBS) and Genetic Algorithm (GA) have been used at step 3. Finally to classify and TH labeling procedures

  19. Breast vasculitis in association with breast gigantism in a pregnant patient with systemic lupus erythematosus.

    OpenAIRE

    Propper, D J; Reid, D.M.; Stankler, L.; Eastmond, C J

    1991-01-01

    A 24 year old woman with systemic lupus erythematosus (SLE) developed widespread necrotic skin ulceration and gigantism of both breasts during an exacerbation of SLE in the last trimester of her second pregnancy. Over the remainder of the pregnancy the ulceration was only controlled by high dose corticosteroids. After parturition, however, it was possible to reduce the steroid dose without recurrence of the ulceration.

  20. Systemic Treatment Approaches in Breast Cancer

    NARCIS (Netherlands)

    M. Bontenbal (Marijke)

    1997-01-01

    textabstractBreast cancer is the most conmlon malignant tumor among women, with an estimated 135,000 new cases and 58,000 recorded deaths per year in the Europeau Community in 1990. With respect to the Netherlands, the most recent data of The Netherlands Cancer Registry show an incidence of nearly 1

  1. Developing and testing a multi-probe resonance electrical impedance spectroscopy system for detecting breast abnormalities

    Science.gov (United States)

    Gur, David; Zheng, Bin; Dhurjaty, Sreeram; Wolfe, Gene; Fradin, Mary; Weil, Richard; Sumkin, Jules; Zuley, Margarita

    2009-02-01

    clinical breast imaging facility. We are conducting a prospective study to assess performance when using this REIS system under an approved IRB protocol. Over 200 examinations have been conducted to date. Our experience showed that this new REIS system was easy to operate and the REIS examination was fast and considered "comfortable" by examinees since the women presses her breast into the cup herself without any need for forced breast compression, and all but a few highly sensitive women have any sensation of an electrical current during the measurement.

  2. Feeling like me again: a grounded theory of the role of breast reconstruction surgery in self-image.

    Science.gov (United States)

    McKean, L N; Newman, E F; Adair, P

    2013-07-01

    The present study aimed to develop a theoretical understanding of the role of breast reconstruction in women's self-image. Semi-structured interviews were conducted with 10 women from breast cancer support groups who had undergone breast reconstruction surgery. A grounded theory methodology was used to explore their experiences. The study generated a model of 'breast cancer, breast reconstruction and self-image', with a core category entitled 'feeling like me again' and two principal categories of 'normal appearance' and 'normal life'. A further two main categories, 'moving on' and 'image of sick person' were generated. The results indicated a role of breast reconstruction in several aspects of self-image including the restoration of pre-surgery persona, which further promoted adjustment.

  3. The effects of gantry tilt on breast dose and image noise in cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Stevens, Grant M. [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Foley, W. Dennis [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  4. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    Science.gov (United States)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  5. Normal breast tissue stiffness measured by a new ultrasound technique: Virtual touch tissue imaging quantification (VTIQ)

    International Nuclear Information System (INIS)

    Objective: To evaluate normal breast tissue stiffness with virtual touch tissue imaging quantification (VTIQ) using prospectively collected data. Materials and Methods: B-mode ultrasound and VTIQ were performed in 132 breasts in 97 women. Mean values of VTIQ for parenchyma and fatty tissue were compared between those measured in healthy breasts and in the surrounding of histologically proven benign and malignant breast lesions. Moreover we reviewed VTIQ values according to breast density measured by the American College of Radiology (ACR) categories. In addition we analyzed re-test reliability of VTIQ. Results: In 132 breasts the mean VTIQ values in parenchyma were significantly higher than in fatty tissue (3.23 m/s ± 0.74 versus 2.5 m/s ± 0.61; p < 0.0001). In healthy breasts as well as in the surrounding of a benign or malignant lesions the VTIQ values of parenchyma were similar (p = 0.12). In fatty tissue, small differences between mean VTIQ values of 2.25 m/s ± 0.51, 2.52 m/s ± 0.48 and 2.65 m/s ± 0.71 (p = 0.01) in the respective groups were observed. The comparison of mean VTIQ values of parenchyma and fatty tissue in more and less dense breasts (ACR 1 + 2 versus ACR 3 + 4 breasts) also yielded no statistically significant difference. The re-test reliability of VTIQ assessed with three independent measurements was moderate (interclass-correlation of 0.52 (p < 0.0001)). Conclusion: VTIQ is a reliable method for measuring the stiffness of breast tissue. We propose standard values for healthy parenchyma and fatty tissues independent of the surrounding tissue or the ACR category

  6. Imaging screening of breast cancer: primary results in 5307 cases

    International Nuclear Information System (INIS)

    Objective: To discuss the values of three screening methods for the detection of early breast cancer, and to analyze the features of the screening cancer. Methods: The first screening of breast cancer were performed in 5307 women who aged from 20 to 76 years with median age of 49 years. The three screening methods included physical examination with ultrasound and mammography, physical examination with mammography and mammography only. The rate of recall, biopsy, cancer detection of three methods were analyzed and the mammographic findings were reviewed. Chi-square test or Fisher's exact test were used for the statistics. Results: The recall rates were 4.90% (49/1001), 6.90% (166/2407) and 4. 48% (85/1899) in three methods respectively, the biopsy rates were 1.60% (16/1001), 1.04% (25/2407) and 0.63% (12/1899), the cancer detection rates were 0.50% (5/1001), 0.17% (4/2407) and 0 (0/1899). There were statistical differences among the three groups (χ2=12.99,6.264,8.764, P<0.05). Physical examination with ultrasound and mammography had the highest cancer detection rate, ten breast cancers were detected and 8 were early stage breast cancer. Of seven cancers detected by mammography, only two were found by ultrasound. A cluster of calcifications were found in 2 cases, linear calcifications in 2 cases. One case presented as a asymmetric density, one as a asymmetric density with calcifications, one as multiple nodules with a cluster of calcifications. Two breast cancers presented as asymmetric density were missed on mammography and diagnosed correctly after retrospective review. Conclusion: Physical examination with ultrasound and mammography is the best method for breast cancer screening. The breast cancer can be detected by mammography earlier than other methods. (authors)

  7. Silicone-selective multishot echo-planar imaging for rapid MRI survey of breast implants

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Kumita, Shinichiro; Kumazaki, Tatsuo [Nippon Medical School, Department of Radiology, Tokyo (Japan); Aoki, Ritsu [Nippon Medical School, Department of Plastic Surgery, Tokyo (Japan)

    2007-07-15

    The purpose of this study was to assess the usefulness of silicone-selective multishot echo-planar imaging (EPI) for the rapid magnetic resonance imaging (MRI) survey of breast implants. Twenty patients with bilateral breast implants underwent MRI. The use of inversion recovery and magnetization transfer pulses led to silicone-selective images. The rapid MRI survey required only 43 s, which accurately distinguished between silicone and non-silicone materials in the implants, and therefore induced the final MRI sequences appropriate for the detailed characterization of the implants. In 5 of the 20 patients, the rapid MRI survey showed implanted materials that were not indicated from clinical information. This silicone-selective multishot EPI allows a rapid survey of breast implants, which is useful to avoid unnecessary sequences in these patients. (orig.)

  8. Investigation of near infrared autofluorescence imaging for the detection of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Bold, R; White, R d; Ramsamooj, R

    2005-08-19

    Detection of breast cancer in fresh tissue obtained from surgery is investigated using Near-infrared autofluorescence imaging under laser excitation at 532-nm and 632.8-nm. The differences in intensity between the three main components of breast tissue (cancer, fibrous and adipose) are estimated and compared to those obtained from cross-polarized light scattering images recorded under polarized illumination at 700-nm. The optical spectroscopic images for each tissue sample were subsequently compared with the histopathology slides. The experimental results indicate that the intensity of the near-infrared emission is considerably different in breast cancer compared to that of the adjacent non-neoplastic tissues (adipose and fibrous tissue). The experimental results suggest that 632.8-nm excitation offers key advantages compared to 532-nm excitation.

  9. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Science.gov (United States)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    mortality associated with it, within the EU and throughout the world. Although x-ray mammography is recognized as an effective tool for cancer screening in women over 35-40 years of age, it suffers from a significant number of false positives which often lead to unnecessary biopsy. X-ray mammography is also less effective for younger women with denser breasts, and involves the use of potentially harmful ionizing radiation. While other conventional diagnostic techniques such as ultrasound and magnetic resonance imaging (MRI) are also widely used in the diagnosis and characterization of breast disease, their roles in the detection and staging of breast tumours have so far been limited. The development of optical methods of imaging the breast is attractive partly because they are safe, but chiefly because they can reveal contrast between normal and diseased tissues which are not evident using conventional methods. The principal mechanism for contrast at near-infrared wavelengths is the characteristic absorption by haemoglobin and other dominant tissue chromophores, such as fat and water. Furthermore, the differences between the absorption of oxy-haemoglobin and deoxy-hemoglobin provide a means of determining oxygenation, and therefore of studying tissue function. The OPTIMAMM project focused specifically on the diagnostic potential of time-resolved methods. Systems which measure the flight-times of photons transmitted across highly scattering breast tissue offer the potential to provide greater spatial resolution and contrast than systems based on intensity measurements alone, and facilitate better separation between the effects of scatter and those of absorption. A major component of the project was a series of clinical trials performed at four European sites, in particular in Berlin (Germany) and Milan (Italy) using similar scanning instrumentation, carried out under a harmonized clinical protocol where appropriate. The clinical trials were augmented by efforts to refine

  10. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, J.R.; La Riviere, P.J. [The University of Chicago, Department of Radiology (United States); Sandhu, J.S. [Santec Systems Inc., Arlington Heights, IL (United States)

    2014-06-15

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm{sup 2} and 50 J/cm{sup 2} on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the

  11. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    Science.gov (United States)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  12. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    Science.gov (United States)

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  13. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gene expression profiling test system for breast... Associated Antigen immunological Test Systems § 866.6040 Gene expression profiling test system for breast cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer...

  14. The Role of Preoperative Bilateral Breast Magnetic Resonance Imaging in Patient Selection for Partial Breast Irradiation in Ductal Carcinoma In Situ

    Directory of Open Access Journals (Sweden)

    Kristin V. Kowalchik

    2012-01-01

    Full Text Available Purpose. Women with ductal carcinoma in situ (DCIS are often candidates for breast-conserving therapy, and one option for radiation treatment is partial breast irradiation (PBI. This study evaluates the use of preoperative breast magnetic resonance imaging (MRI for PBI selection in DCIS patients. Methods. Between 2002 and 2009, 136 women with newly diagnosed DCIS underwent a preoperative bilateral breast MRI at Mayo Clinic in Florida. One hundred seventeen women were deemed eligible for PBI by the NSABP B-39 (National Surgical Adjuvant Breast and Bowel Project, Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. MRIs were reviewed for their impact on patient eligibility, and findings were pathologically confirmed. Results. Of the 117 patients, 23 (20% were found ineligible because of pathologically proven MRI findings. MRI detected additional ipsilateral breast cancer in 21 (18% patients. Of these women, 15 (13% had more extensive disease than originally noted before MRI, and 6 (5% had multicentric disease in the ipsilateral breast. In addition, contralateral breast cancer was detected in 4 (4%. Conclusions. Preoperative breast MRI altered the PBI recommendations for 20% of women. Bilateral breast MRI should be an integral part of the preoperative evaluation of all patients with DCIS being considered for PBI.

  15. Breast cancer screening: emerging role of new imaging techniques as adjuncts to mammography.

    Science.gov (United States)

    Houssami, Nehmat; Lord, Sarah J; Ciatto, Stefano

    2009-05-01

    Early detection of breast cancer has been shown to reduce breast cancer deaths in randomised controlled trials (RCTs) of mammography in women aged 50-69 years, with weaker evidence of benefit in those aged 40-49 or 70 years and older. Magnetic resonance imaging (MRI) and ultrasonography have been evaluated in breast cancer screening, relative to, or in addition to, mammography, in selected populations; neither test has been examined in an RCT, and thus evidence of associated screening benefit is uncertain. MRI is more sensitive than mammography in screening women with suspected or proven inherited mutations of the breast cancer genes. The addition of MRI in screening this population detects 8-24 additional cancers per 1000 screens, but also significantly increases a woman's risk of being recalled for investigation or surgical biopsy for false-positive findings. In Australia, Medicare funding for MRI screening of women in specific risk groups was announced in February 2009. Ultrasonography can detect cancers not identified on mammography in asymptomatic women with dense breast tissue. Incremental ultrasound cancer detection is reported in 0.27%-0.46% of women with mammography-negative dense breasts; evidence varies on its association with false-positive findings. Computer-aided detection (CAD) is a complementary tool to mammography, prompting the reader to consider lesions on the mammogram that may represent cancer. Emerging evidence and improved CAD technology are likely to help define its role in breast screening. PMID:19413520

  16. Association between dynamic features of breast DCE-MR imaging and clinical response of neoadjuvant chemotherapy: a preliminary analysis

    Science.gov (United States)

    Huang, Lijuan; Fan, Ming; Li, Lihua; Zhang, Juan; Shao, Guoliang; Zheng, Bin

    2016-03-01

    Neoadjuvant chemotherapy (NACT) is being used increasingly in the management of patients with breast cancer for systemically reducing the size of primary tumor before surgery in order to improve survival. The clinical response of patients to NACT is correlated with reduced or abolished of their primary tumor, which is important for treatment in the next stage. Recently, the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used for evaluation of the response of patients to NACT. To measure this correlation, we extracted the dynamic features from the DCE- MRI and performed association analysis between these features and the clinical response to NACT. In this study, 59 patients are screened before NATC, of which 47 are complete or partial response, and 12 are no response. We segmented the breast areas depicted on each MR image by a computer-aided diagnosis (CAD) scheme, registered images acquired from the sequential MR image scan series, and calculated eighteen features extracted from DCE-MRI. We performed SVM with the 18 features for classification between patients of response and no response. Furthermore, 6 of the 18 features are selected to refine the classification by using Genetic Algorithm. The accuracy, sensitivity and specificity are 87%, 95.74% and 50%, respectively. The calculated area under a receiver operating characteristic (ROC) curve is 0.79+/-0.04. This study indicates that the features of DCE-MRI of breast cancer are associated with the response of NACT. Therefore, our method could be helpful for evaluation of NACT in treatment of breast cancer.

  17. 3-T breast magnetic resonance imaging in patients with suspicious microcalcifications on mammography

    Energy Technology Data Exchange (ETDEWEB)

    Stehouwer, B.L.; Merckel, L.G.; Verkooijen, H.M.; Peters, N.H.G.M.; Mali, W.P.T.M.; Veldhuis, W.B.; Bosch, M.A.A.J. van den [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Mann, R.M. [University Medical Center St Radboud, Departement of Radiology, Nijmegen (Netherlands); Duvivier, K.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Peeters, P.H.M. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2014-03-15

    To investigate the diagnostic value of 3-Tesla (T) breast MRI in patients presenting with microcalcifications on mammography. Between January 2006 and May 2009, 123 patients with mammographically detected BI-RADS 3-5 microcalcifications underwent 3-T breast MRI before undergoing breast biopsy. All MRIs of the histopathologically confirmed index lesions were reviewed by two breast radiologists. The detection rate of invasive carcinoma and ductal carcinoma in situ (DCIS) was evaluated, as well as the added diagnostic value of MRI over mammography and breast ultrasound. At pathology, 40/123 (33 %) lesions proved malignant; 28 (70 %) DCIS and 12 (30 %) invasive carcinoma. Both observers detected all invasive malignancies at MRI, as well as 79 % (observer 1) and 86 % (observer 2) of in situ lesions. MRI in addition to conventional imaging led to a significant increase in area under the receiver operating characteristic (ROC) curve from 0.67 (95 % CI 0.56-0.79) to 0.79 (95 % CI 0.70-0.88, observer 1) and to 0.80 (95 % CI 0.71-0.89, observer 2), respectively. 3-T breast MRI was shown to add significant value to conventional imaging in patients presenting with suspicious microcalcifications on mammography. (orig.)

  18. Non-invasive estimation of the metabolic heat production of breast tumors using digital infrared imaging

    CERN Document Server

    González, Francisco Javier

    2011-01-01

    In this work the metabolic heat generated by breast tumors was estimated indirectly and noninvasively from digital infrared images and numerically simulating a simplified breast model and a cancerous tumor, this parameter can be of clinical importance since it has been related to the doubling volume's time and malignancy for that particular tumor. The results indicate that digital infrared imaging has the potential to estimate in a non-invasive way the malignancy of a tumor by calculating its metabolic heat generation from bioheat thermal transfer models.

  19. Medical image segmentation to estimate HER2 gene status in breast cancer

    Science.gov (United States)

    Palacios-Navarro, Guillermo; Acirón-Pomar, José Manuel; Vilchez-Sorribas, Enrique; Zambrano, Eddie Galarza

    2016-02-01

    This work deals with the estimation of HER2 Gene status in breast tumour images treated with in situ hybridization techniques (ISH). We propose a simple algorithm to obtain the amplification factor of HER2 gene. The obtained results are very close to those obtained by specialists in a manual way. The developed algorithm is based on colour image segmentation and has been included in a software application tool for breast tumour analysis. The developed tool focus on the estimation of the seriousness of tumours, facilitating the work of pathologists and contributing to a better diagnosis.

  20. Low Rates of Additional Cancer Detection by Magnetic Resonance Imaging in Newly Diagnosed Breast Cancer Patients Who Undergo Preoperative Mammography and Ultrasonography

    OpenAIRE

    Kim, Jisun; Han, Wonshik; Moon, Hyeong-Gon; Ahn, Soo Kyung; Shin, Hee-Chul; You, Jee-Man; Chang, Jung Min; Cho, Nariya; Moon, Woo Kyung; Park, In-Ae; Noh, Dong-Young

    2014-01-01

    Purpose We evaluated the efficacy of breast magnetic resonance imaging (MRI) for detecting additional malignancies in breast cancer patients newly diagnosed by breast ultrasonography and mammography. Methods We retrospectively reviewed the records of 1,038 breast cancer patients who underwent preoperative mammography, bilateral breast ultrasonography, and subsequent breast MRI between August 2007 and December 2010 at single institution in Korea. MRI-detected additional lesions were defined as...

  1. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue-Houng, E-mail: yuehoung.hu@gmail.com; Zhao, Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  2. Dynamic Breast Magnetic Resonance Imaging without Complications in a Patient with Dual-Chamber Demand Pacemaker

    Energy Technology Data Exchange (ETDEWEB)

    Sardanelli, F.; Lupo, P.; Esseridou, A.; Fausto, A.; Quarenghi, M. [Policlinico San Donato, San Donato Milanese, Milan (Italy). Depts. of Radiology, Arrhythmia and Electrophysiology Center

    2006-02-15

    Mammography and ultrasound indicated a cancer of the right breast in a 77-year-old woman with a dual-chamber demand pacemaker. The patient was not pacemaker-dependent. She underwent breast 1.5T magnetic resonance imaging (MRI) (dynamic gradient echo sequence with Gd-DOTA 0.1 mmol/kg). Before the patient entered the MR room, the configuration of the device was changed (the response to magnet was switched from asynchronous to off and the rate-responsive algorithm was disabled). No relevant modifications of heart rhythm or rate were observed during the MR examination. No symptom was reported. Immediately after the examination, the pacemaker interrogation showed neither program changes nor alert warnings. MRI detected a bifocal cancer in the right breast which allowed tailored breast-conserving treatment to be initiated. Histopathology confirmed a bifocal invasive ductal carcinoma.

  3. Validation of mean glandular dose values provided by a digital breast tomosynthesis system in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Beraldo O, B.; Paixao, L.; Donato da S, S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations Minerals and Materials, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil); Araujo T, M. H. [Dr Maria Helena Araujo Teixeira Clinic, Guajajaras 40, 30180-100 Belo Horizonte (Brazil); Nogueira, M. S., E-mail: bbo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil)

    2014-08-15

    Digital breast tomosynthesis (DBT) is an emerging imaging modality that provides quasi-three-dimensional structural information of the breast and has strong promise to improve the differentiation of normal tissue and suspicious masses reducing the tissue overlaps. DBT images are reconstructed from a sequence of low-dose X-ray projections of the breast acquired at a small number of angles over a limited angular range. The Ho logic Selen ia Dimensions system is equipped with an amorphous Selenium (a-Se) detector layer of 250 μm thickness and a 70 μm pixel pitch. Studies are needed to determine the radiation dose of patients that are undergoing this emerging procedure to compare with the results obtained in DBT images. The mean glandular dose (D{sub G}) is the dosimetric quantity used in quality control of the mammographic systems. The aim of this work is to validate D{sub G} values for different breast thicknesses provided by a Ho logic Selen ia Dimensions system using a DBT mode in comparison with the same results obtained by a calibrated 90 X 5-6M-model Radcal ionization chamber. D{sub G} values were derived from the incident air kerma (K{sub i}) measurements and tabulated conversion coefficients that are dependent on the half value layer (HVL) of the X-ray spectrum. Voltage and tube loading values were recorded in irradiations using W/Al anode/filter combination, automatic exposure control mode and polymethyl methacrylate (PMMA) slabs which simulate different breast thicknesses. For K{sub i} measurements, the ionization chamber was positioned at 655 mm from the focus and the same radiographic technique values were selected with the manual mode. D{sub G} values for a complete procedure ranged from 0.9 ± 0.1 to 3.7 ± 0.4 mGy. The results for different breast thicknesses are in accordance with values obtained by DBT images and with acceptable levels established by the Commission of the European Communities (Cec) and the International Atomic Energy Agency (IAEA

  4. Molecular imaging of HER2-positive breast cancer: a step toward an individualized 'image and treat' strategy

    DEFF Research Database (Denmark)

    Capala, Jacek; Bouchelouche, Kirsten

    2010-01-01

    HER2 overexpression is correlated with aggressive tumor behavior and poor clinical outcome. Therefore, HER2 has become an important prognostic and predictive factor, as well as a target for molecular therapies. The article reviews recent advances in molecular imaging of HER2 that could facilitate...... individual approaches to targeted therapy of HER2-positive breast cancers....

  5. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Science.gov (United States)

    Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael

    2010-03-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and reconstruct images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  6. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  7. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    Science.gov (United States)

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS.

  8. Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

    Science.gov (United States)

    Lee, Woo Yeon; Kim, Min Jung; Lew, Dae Hyun; Song, Seung Yong

    2016-01-01

    Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

  9. Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

    Science.gov (United States)

    Lee, Woo Yeon; Kim, Min Jung; Lew, Dae Hyun; Song, Seung Yong

    2016-01-01

    Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods. PMID:27689050

  10. Volumetric x-ray coherent scatter imaging of cancer in resected breast tissue: a Monte Carlo study using virtual anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Breast cancer patients undergoing surgery often choose to have a breast conserving surgery (BCS) instead of mastectomy for removal of only the breast tumor. If post-surgical analysis such as histological assessment of the resected tumor reveals insufficient healthy tissue margins around the cancerous tumor, the patient must undergo another surgery to remove the missed tumor tissue. Such re-excisions are reported to occur in 20%–70% of BCS patients. A real-time surgical margin assessment technique that is fast and consistently accurate could greatly reduce the number of re-excisions performed in BCS. We describe here a tumor margin assessment method based on x-ray coherent scatter computed tomography (CSCT) imaging and demonstrate its utility in surgical margin assessment using Monte Carlo simulations. A CSCT system was simulated in Geant4 and used to simulate two virtual anthropomorphic CSCT scans of phantoms resembling surgically resected tissue. The resulting images were volume-rendered and found to distinguish cancerous tumors embedded in complex distributions of adipose and fibroglandular breast tissue (as is expected in the breast). The images exhibited sufficient spatial and spectral (i.e. momentum transfer) resolution to classify the tissue in any given voxel as healthy or cancerous. ROC analysis of the classification accuracy revealed an area under the curve of up to 0.97. These results indicate that coherent scatter imaging is promising as a possible fast and accurate surgical margin assessment technique. (paper)

  11. Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging

    Science.gov (United States)

    Leproux, Anaïs; Kim, You Me; Min, Jun Won; McLaren, Christine E.; Chen, Wen-Pin; O'Sullivan, Thomas D.; Lee, Seung-ha; Chung, Phil-Sang; Tromberg, Bruce J.

    2016-07-01

    Young patients with dense breasts have a relatively low-positive biopsy rate for breast cancer (˜1 in 7). South Korean women have higher breast density than Westerners. We investigated the benefit of using a functional and metabolic imaging technique, diffuse optical spectroscopic imaging (DOSI), to help the standard of care imaging tools to distinguish benign from malignant lesions in premenopausal Korean women. DOSI uses near-infrared light to measure breast tissue composition by quantifying tissue concentrations of water (ctH2O), bulk lipid (ctLipid), deoxygenated (ctHHb), and oxygenated (ctHbO2) hemoglobin. DOSI spectral signatures specific to abnormal tissue and absent in healthy tissue were also used to form a malignancy index. This study included 19 premenopausal subjects (average age 41±9), corresponding to 11 benign and 10 malignant lesions. Elevated lesion to normal ratio of ctH2O, ctHHb, ctHbO2, total hemoglobin (THb=ctHHb+ctHbO2), and tissue optical index (ctHHb×ctH2O/ctLipid) were observed in the malignant lesions compared to the benign lesions (p90% sensitivity and specificity. Malignant lesions showed significantly higher metabolism and perfusion than benign lesions. DOSI spectral features showed high discriminatory power for distinguishing malignant and benign lesions in dense breasts of the Korean population.

  12. Large-angle x-ray scatter in Talbot–Lau interferometry for breast imaging

    International Nuclear Information System (INIS)

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot–Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2>0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2–8 cm thick adipose breasts and from 0.12 to 0.28 for 2–8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ∼18% for 2 cm thick adipose breast and by ∼35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2–8 cm thick adipose breasts and from 2.7 to 3.4 for 2–8 cm thick fibroglandular breasts. (paper)

  13. Imaging of breast cancer with mid- and long-wave infrared camera.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory. PMID:18432466

  14. Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector

    Science.gov (United States)

    Ren, Baorui; Ruth, Chris; Stein, Jay; Smith, Andrew; Shaw, Ian; Jing, Zhenxue

    2005-04-01

    We have developed a breast tomosynthesis system utilizing a selenium-based direct conversion flat panel detector. This prototype system is a modification of Selenia, Hologic"s full field digital mammography system, using an add-on breast holding device to allow 3D tomosynthetic imaging. During a tomosynthesis scan, the breast is held stationary while the x-ray source and detector mounted on a c-arm rotate continuously around the breast over an angular range up to 30 degrees. The x-ray tube is pulsed to acquire 11 projections at desired c-arm angles. Images are reconstructed in planes parallel to the breastplate using a filtered backprojection algorithm. Processing time is typically 1 minute for a 50 mm thick breast at 0.1 mm in-plane pixel size, 1 mm slice-to-slice separation. Clinical studies are in progress. Performance evaluations were carried out at the system and the subsystem levels including spatial resolution, signal-to-noise ratio, spectra optimization, imaging technique, and phantom and patient studies. Experimental results show that we have successfully built a tomosynthesis system with images showing less structure noise and revealing 3D information compared with the conventional mammogram. We introduce, for the first time, the definition of "Depth of Field" for tomosynthesis based on a spatial resolution study. This parameter is used together with Modulation Transfer Function (MTF) to evaluate 3D resolution of a tomosynthesis system as a function of system design, imaging technique, and reconstruction algorithm. Findings from the on-going clinical studies will help the design of the next generation tomosynthesis system offering improved performance.

  15. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  16. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  17. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  18. Role of diffusion-weighted imaging as an adjunct to contrast-enhanced breast MRI in evaluating residual breast cancer following neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Objective: To investigate whether the addition of diffusion-weighted imaging (DWI) to dynamic contrast-enhanced MRI (DCE-MRI) improves diagnostic performance in predicting pathologic response and residual breast cancer size following neoadjuvant chemotherapy. Materials and methods: A total of 78 consecutive patients who underwent preoperative breast MRI with DWI following neoadjuvant chemotherapy were enrolled. DWI was performed on a 1.5 T system with b values of 0 and 750 s/mm. or on a 3 T system with b values of 0 and 800 or 0 and 1000 s/mm. The images on DCE-MRI alone, DWI alone, and DCE-MRI plus DWI were retrospectively reviewed. We evaluated the diagnostic performances of the three MRI protocols for the detection of residual cancer. The tumor size as predicted by MRI was compared with histopathologic findings. Apparent diffusion coefficient (ADC) values were also compared between the groups with and without residual cancer. Results: Of the 78 patients, 59 (75.6%) had residual cancer. For detection of residual cancer, DCE-MRI plus DWI had higher specificity (80.0%), accuracy (91.0%), and PPV (93.2%) than DCE-MRI or DWI alone (P = 0.004, P = 0.007, and P = 0.034, respectively). The ICC values for residual cancer size between MRI and histopathology were 0.891 for DCE-MRI plus DWI, 0.792 for DCE-MRI, and 0.773 for DWI. ADC values showed no significant differences between residual cancer and chemotherapeutic changes (P = 0.130). Conclusions: The addition of DWI to DCE-MRI significantly improved diagnostic performance in predicting pathologic response and residual breast cancer size after neoadjuvant chemotherapy

  19. Breast reconstruction - methods and imaging; Brustaugmentation - Methoden und Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Pfleiderer, B.; Weigel, S.; Hurtienne, B.; Heindel, W. [Universitaetsklinikum Muenster (Germany). Inst. fuer Klinische Radiologie

    2007-12-15

    Silicon implants are used for breast reconstruction or for cosmetic operations. The contribution outlines the role of mammography, sonography and MR for defect assessment, tumour detection and monitoring after prosthesis implantation. Instrument adjustment for mammographic screening of patients with implants is gone into. Autologic reconstruction techniques and protocols of secondary and tertiary early detection are presented. (orig.)

  20. Imagable 4T1 model for the study of late stage breast cancer

    International Nuclear Information System (INIS)

    The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function in vivo. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported. The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells in vivo. Biophotonic imaging was used to characterize growth and metastasis of the lines in vivo and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed. Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified. The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more direct role than previously appreciated in orchestrating changes

  1. Imagable 4T1 model for the study of late stage breast cancer

    Directory of Open Access Journals (Sweden)

    Alroy Joseph

    2008-08-01

    Full Text Available Abstract Background The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function in vivo. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported. Methods The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells in vivo. Biophotonic imaging was used to characterize growth and metastasis of the lines in vivo and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed. Results Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified. Conclusion The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more

  2. Systemic chemotherapy for metastatic breast cancer

    Institute of Scientific and Technical Information of China (English)

    Yannan Zhao; Biyun Wang

    2015-01-01

    Breast cancer is the leading cause of cancer among women worldwide and the most common cancer in China. Many factors influence the treatment strategy for metastatic breast cancer (MBC). Chemotherapy should be administered to patients with hormone receptor-negative tumors, symptomatic visceral metastasis, and a short disease-free interval. Sequential single-agent chemotherapy has similar efficacy as combination agents in terms of overall survival and quality of life. Anthracyclines are the cornerstone of first-line treatment for MBC, and taxanes represent the second treatment option after resistance. When progression or intolerable toxicity occurs after optimal treatment, the alternative treatments include capecitabine, vinorel-bine, and gemcitabine. Ixabepilone and eribulin are relatively new effective single agents. A combination of cytotoxic agents for patients with rapid clinical progression can further improve the overall response rate and time to progression compared to single-agent treatment. For patients with MBC who were pretreated with anthracyclines in the neoadjuvant/adjuvant setting, a taxane-containing regimen such as docetaxel plus capecitabine or gemcitabine plus paclitaxel should be administered. Platinum-based therapies such as cisplatin or carboplatin have a role in the treatment of triple-negative breast cancer. Meanwhile, the efficacy of the addition of targeted drugs such as iniparib, bevacizumab, and cetuximab to chemotherapy remains unproven. Maintenance chemotherapy is routinely recommended in clinical practice at present. Patients who were previously treated with paclitaxel and gemcitabine have better progression-free and overall survival with maintenance chemotherapy according to a Korean phase Ⅲ clinical trial. Sequential maintenance treatment with capecitabine monotherapy after capecitabine-based combination chemotherapy (X-based X) appears favorable based on a series of domestic studies.

  3. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Science.gov (United States)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    mortality associated with it, within the EU and throughout the world. Although x-ray mammography is recognized as an effective tool for cancer screening in women over 35-40 years of age, it suffers from a significant number of false positives which often lead to unnecessary biopsy. X-ray mammography is also less effective for younger women with denser breasts, and involves the use of potentially harmful ionizing radiation. While other conventional diagnostic techniques such as ultrasound and magnetic resonance imaging (MRI) are also widely used in the diagnosis and characterization of breast disease, their roles in the detection and staging of breast tumours have so far been limited. The development of optical methods of imaging the breast is attractive partly because they are safe, but chiefly because they can reveal contrast between normal and diseased tissues which are not evident using conventional methods. The principal mechanism for contrast at near-infrared wavelengths is the characteristic absorption by haemoglobin and other dominant tissue chromophores, such as fat and water. Furthermore, the differences between the absorption of oxy-haemoglobin and deoxy-hemoglobin provide a means of determining oxygenation, and therefore of studying tissue function. The OPTIMAMM project focused specifically on the diagnostic potential of time-resolved methods. Systems which measure the flight-times of photons transmitted across highly scattering breast tissue offer the potential to provide greater spatial resolution and contrast than systems based on intensity measurements alone, and facilitate better separation between the effects of scatter and those of absorption. A major component of the project was a series of clinical trials performed at four European sites, in particular in Berlin (Germany) and Milan (Italy) using similar scanning instrumentation, carried out under a harmonized clinical protocol where appropriate. The clinical trials were augmented by efforts to refine

  4. Query Adaptive Image Retrieval System

    Directory of Open Access Journals (Sweden)

    Amruta Dubewar

    2014-03-01

    Full Text Available Images play a crucial role in various fields such as art gallery, medical, journalism and entertainment. Increasing use of image acquisition and data storage technologies have enabled the creation of large database. So, it is necessary to develop appropriate information management system to efficiently manage these collections and needed a system to retrieve required images from these collections. This paper proposed query adaptive image retrieval system (QAIRS to retrieve images similar to the query image specified by user from database. The goal of this system is to support image retrieval based on content properties such as colour and texture, usually encoded into feature vectors. In this system, colour feature extracted by various techniques such as colour moment, colour histogram and autocorrelogram and texture feature extracted by using gabor wavelet. Hashing technique is used to embed high dimensional image features into hamming space, where search can be performed by hamming distance of compact hash codes. Depending upon minimum hamming distance it returns the similar image to query image.

  5. The Relationship of Body Image with Psychological Distress in Women with Breast Cancer

    Directory of Open Access Journals (Sweden)

    F Moradi Manesh

    2012-08-01

    Full Text Available Background & aim: Surgery and adjuvant therapies lead to body image problems and psychological distress in young women with breast cancer. The goal of this study was to examine the relationship of body image with psychological distress in women with breast cancer. Methods: This correlation study was carried out on 294 women with breast cancer at Imam Reza Hospital of Kermanshah, Iran, in 2011. The selection of the participants was based on purposive sampling. The Body image was assessed by BIS. The Psychological distress was assessed by DASS-21. The collected data was analyzed by Pearson correlation and Independent sample test. Results: Results showed that body image had a significant positive relationship with psychological distress (P < 0.001. Furthermore, younger women had greater trouble about body image and experienced greater psychological distress compared to elder women. Conclusion: This study showed that dissatisfaction about body image accompanied psychological distress. Also, younger women experience greater difficulties about body image and psychological distress. Therefore, suitable psychological interventions are recommended.

  6. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Dragana Roganovic

    2015-11-01

    Full Text Available Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI, digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities.  We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p < 0.001, while the difference between breast tomosynthesis and breast MRI was not significant (p = 0.20. 

  7. The study of 18F-FDG DHC imaging used for diagnosing breast cancer

    International Nuclear Information System (INIS)

    Objective: To explore the diagnostic value of 18F-fluorodeoxyglucose (FDG) dual-head coincidence (DHC) imaging for detecting breast cancer and axillary lymph node metastases. Methods: Thirty-one female patients were studied by 18F-FDG DHC imaging, and 21 of them received fine needle aspiration biopsy after 18F-FDG DHC imaging. The results of 18F-FDG DHC imaging and fine needle aspiration biopsy were compared with those of histopathology. Results: 1) Among the 26 cases of breast carcinoma by 18F-FDG DHC imaging, the FDG uptake of 21 cases showed positive. The lesion diameters ranged from 1.7-8 (mean 3.2 ±1.6) cm, the lesion/background (L/B) ratio range was 1.4-7.3 (mean 2.4 ±1.3). The other 5 malignancies were negative, their diameter range was 0.8-3.3 (mean 1.9) cm. 2) Ten cases of the malignancies were confirmed with axillary lymph node metastases. Three cases by 18F-FDG DHC imaging were positive. Those lymph node diameters were 1.4, 1.8 and 5.2 cm, respectively. The L/B ratios were 1.3, 1.5 and 6.2, respectively. The other 7 cases were negative. The lymph node diameter range was 0.2-1.8 cm. 3) Twenty-one cases received fine needle aspiration biopsy. Tumor cells were found in 13 cases. 4) The sensitivity, specificity and accuracy of 18F-FDG DHC imaging for diagnosing primary breast carcinoma were 80.8%, 5/5 and 83.9%, respectively. The sensitivity, specificity and accuracy of 18F-FDG DHC imaging for diagnosing lymph node metastases were 30.0%, 100% and 77.4%, respectively. The sensitivity, specificity and accuracy of fine needle aspiration biopsy for diagnosing primary breast carcinoma were 72.2%, 3/3 and 76.2%, respectively. 5) There was no significant difference between the sensitivity of 18F-FDG DHC imaging and fine needle aspiration biopsy (P>0.05). Conclusion: 18F-FDG DHC imaging possesses higher sensitivity and specificity in the diagnosis of breast cancer. It can be used as a noninvasive modality for evaluating breast cancer

  8. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    Science.gov (United States)

    Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-06-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.

  9. Detection of incidental vertebral fractures in breast imaging: the potential role of MR localisers

    Energy Technology Data Exchange (ETDEWEB)

    Bazzocchi, Alberto [Orthopaedic Institute, Diagnostic and Interventional Radiology, Bologna (Italy); Bologna Univ. (Italy). Imaging Div.; Spinnato, Paolo; Garzillo, Giorgio; Ciccarese, Federica [Bologna Univ. (Italy). Imaging Div.; Albisinni, Ugo; Mignani, Stefano; Battista, Giuseppe [Orthopaedic Institute, Diagnostic and Interventional Radiology, Bologna (Italy); Rossi, Cristina [Parma Univ. (Italy). Imaging Div.

    2012-12-15

    Incidental diagnosis of vertebral fractures (VFs) may represent a key point in the assessment of bone health status. Our purpose was to retrospectively evaluate localisation sequences (MR-loc) of breast MRI as a potential tool to detect osteoporotic VFs. MR-loc sagittal images of 856 breast MRIs were reviewed by three expert musculoskeletal radiologists with a semiquantitative approach to detecting VFs. Anamnesis and data of patients were investigated. Official breast MRI and previous imaging reports were checked to understand if VFs or other relevant bone findings were known in patients' clinical history. A total of 780/856 female patients (91.1 %) undergoing MRI for oncological reasons and 76/856 (8.9 %) with non-oncological aims were recruited into the study (54.7 {+-} 12.2 years old, 21-89 years); 57/856 MR-loc images (6.7 %) were considered inadequate for diagnostic purposes and were excluded from the analysis. MR-loc detected VFs in 71/799 patients (8.9 %). VFs were neither reported nor previously known in the clinical history of 63/71 patients (88.7 %; P < 0.001). No mention of VFs was found in any breast MR reports. In four patients MR-loc identified vertebral metastases. A systematic evaluation of MR-loc may offer additional clinical information to prevent unrecognised VFs. MR-loc may screen for VFs in other imaging settings. (orig.)

  10. Clinical value of mammography, ultrasound and MR imaging during the first year after breast conserving therapy of breast cancer

    International Nuclear Information System (INIS)

    Purpose: To compare the accuracy of lesion detection and characterization and to determine the agreement of observers, methods and timing of mammography (MX), ultrasound (US) and MR imaging (MRI) during the first year after breast conserving therapy: Materials and Methods: The study included 20 patients diagnosed with breast cancer of stages equal or inferior to T2 N1bi M0 after breast conserving therapy and subsequent radiotherapy. Patients with any history of breast diseases in the affected or contralateral breast were excluded. Patients were examined before and at 3, 6 and 12 months after adjuvant radiotherapy with MX, US and dynamic MR mammography. Additional US and MRI were performed 3 months after radiotherapy. All 220 examinations were retrospectively read in a randomized order by two independent readers, blinded for the results of the other examinations. The outcome after 2.5 years of follow-up was used as gold standard. Histological examination was available in one case. Lesion detection and specificity were assessed including kappa values for different reliabilities between observers, timing and methods. The kappa values were used to characterize the degree of agreement as follows: >0.8 very good; 0.6 - 0.8 good; 0.4 - 0.6 fair; 0.2 - 0.4 minimal; and <0.2 negligible. Results: Based on the interpretation of all available findings (clinical examination, MX, US, MRT and histology in one case), 20 patients observed for a mean period of 2.5 years had no evidence of intramammary recurrence. Therefore the sensitivity of the various methods could not be assessed. The reading of certainly no lesion was given by MRI in 43%, by MX in 30% and by US in 5% of all examinations (p<0.05). True negative findings were observed by MRI in 94.4%, by MX in 90.4% and by US in 82.5%. Reliability between observers, timing and imaging methods was 0.496, 0.411, and 0.215 for lesion detection and 0.303, 0.282, and 0.030 for lesion characterization. (orig.)

  11. Usefulness and biological background of dynamic contrast-enhanced MR images in patients with primary breast cancer

    International Nuclear Information System (INIS)

    Dynamic contrast-enhanced MR images were obtained between September 1998 and May 2000 from 44 primary breast cancer patients who were scheduled to undergo breast-conserving surgery. The MR images and clinico-pathological findings were analyzed to investigate the risk factors for histologically positive margins and histologically positive lymph node metastases. We elucidated the relationship between MR images and the biological background of breast cancer. The following interesting findings were made from these analyses. An irregular shape and unclear border of the tumor mass and the coexistence of daughter nodule(s) were significant risk factors for positive-surgical margins; an irregularly shaped tumor mass and spiculated tumor mass were significant risk factors for positive lymph node metastases; breast tumors with a strand-like appearance had a significantly lower histological grade; breast tumors with high contrast enhancement ratios had a significantly higher nuclear grade and progesterone receptor negativity; and breast tumors showing a ring-like enhancement expressed a low level of VEGF. These findings suggest that preoperative MR images of primary breast cancer provide not only useful information on the extent of breast tumors and the possibility of lymph node metastasis but also on the malignant potency and hormone responsiveness of breast tumors. (author)

  12. Breast Magnetic Resonance Imaging Findings in Women Treated with Toremifene for Premenstrual Mastalgia

    Energy Technology Data Exchange (ETDEWEB)

    Oksa, S. (Dept. of Obstetrics and Gynecology, Satakunta Central Hospital, Pori (Finland)); Parkkola, R. (Dept. of Radiology, Univ. Hospital of Turku, Turku (Finland)); Luukkaala, T.; Maeenpaeae, J. (Medical School, Univ. of Tampere, Tampere (Finland))

    2009-11-15

    Background: Toremifene, a selective estrogen receptor modulator, has been shown to be effective in alleviating premenstrual breast pain. However, the exact mechanism by which toremifene and related compounds work in premenstrual mastalgia is poorly understood. Purpose: To find out if the effect of toremifene on breast would be detectable with dynamic magnetic resonance imaging (MRI). Material and Methods: This randomized, double-blind crossover study was performed on women suffering from marked premenstrual mastalgia. Ten women were randomized to receive either toremifene (20 mg) or placebo from cycle day 15 until next menstruation for three menstrual cycles. After a washout period, the treatment was crossed over for three additional cycles. The MRI evaluations were performed premenstrually at the end of each treatment phase. Breast pain and quality-of-life scores were collected from one baseline cycle and from all the treatment cycles. Results: Nine patients were evaluable for this analysis. Both the enhancement ratio and the maximum slope of enhancement tended to be smaller during the toremifene cycles as compared to placebo. On the left side, the difference in the maximum slope of enhancement between toremifene and placebo was statistically significant (median 5.150 [range 3.7-6.7] and 6.500 [range 4.9-9.5], respectively; P=0.047). T2 relaxation times as well as breast pain and quality-of-life scores were inconsistent. Conclusion: Use of toremifene is associated with measurable changes in dynamic breast MRI findings in women with cyclic breast pain

  13. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors.

    Science.gov (United States)

    Mao, Xinxin; He, Jiuming; Li, Tiegang; Lu, Zhaohui; Sun, Jian; Meng, Yunxiao; Abliz, Zeper; Chen, Jie

    2016-01-01

    Distinguishing breast invasive ductal carcinoma (IDC) and breast ductal carcinoma in situ (DCIS) is a key step in breast surgery, especially to determine whether DCIS is associated with tumor cell micro-invasion. However, there is currently no reliable method to obtain molecular information for breast tumor analysis during surgery. Here, we present a novel air flow-assisted ionization (AFAI) mass spectrometry imaging method that can be used in ambient environments to differentiate breast cancer by analyzing lipids. In this study, we demonstrate that various subtypes and histological grades of IDC and DCIS can be discriminated using AFAI-MSI: phospholipids were more abundant in IDC than in DCIS, whereas fatty acids were more abundant in DCIS than in IDC. The classification of specimens in the subtype and grade validation sets showed 100% and 78.6% agreement with the histopathological diagnosis, respectively. Our work shows the rapid classification of breast cancer utilizing AFAI-MSI. This work suggests that this method could be developed to provide surgeons with nearly real-time information to guide surgical resections. PMID:26868906

  14. Stereo-vision system for finger tracking in breast self-examination

    Science.gov (United States)

    Zeng, Jianchao; Wang, Yue J.; Freedman, Matthew T.; Mun, Seong K.

    1997-05-01

    minor changes in illumination. Neighbor search is employed to ensure real time performance, and a three-finger pattern topology is always checked for extracted features to avoid any possible false features. After detecting the features in the images, 3D position parameters of the colored fingers are calculated using the stereo vision principle. In the experiments, a 15 frames/second performance is obtained using an image size of 160 X 120 and an SGI Indy MIPS R4000 workstation. The system is robust and accurate, which confirms the performance and effectiveness of the proposed approach. The system is robust and accurate, which confirms the performance and effectiveness of the proposed approach. The system can be used to quantify search strategy of the palpation and its documentation. With real-time visual feedback, it can be used to train both patients and new physicians to improve their performance of palpation and thus visual feedback, it can be used to train both patients and new physicians to improve their performance of palpation and thus improve the rate of breast tumor detection.

  15. The Clinical Utility of Automated Breast Volume Scanner: A Pilot Study of 139 Cases

    OpenAIRE

    Kim, Young Wook; Kim, Seon Kwang; Youn, Hyun Jo; Choi, Eun Jung; Jung, Sung Hoo

    2013-01-01

    Purpose The aim of this study is to evaluate the clinical utility of automated breast volume scanner (ABVS) for detecting and diagnosing the breast lesions. Methods From December 2010 to January 2012, bilateral whole breast examinations were performed with ABVS for 139 women. Based on the Breast Imaging Reporting and Data System (BI-RADS) categories, the breast lesions were evaluated on coronal multiplanar reconstruction images using the ABVS workstation. Then, the imaging results were compar...

  16. Evaluation of {sup 99m}Tc-glucarate as a breast cancer imaging agent in a xenograft animal model

    Energy Technology Data Exchange (ETDEWEB)

    Gambini, Juan Pablo [Nuclear Medicine Center, Clinical Hospital, University of Uruguay, Montevideo, 11600 (Uruguay); Cabral, Pablo [Nuclear Investigations Center, School of Science, University of Uruguay, Montevideo, 11400 (Uruguay); Alonso, Omar [Nuclear Medicine Center, Clinical Hospital, University of Uruguay, Montevideo, 11600 (Uruguay); Savio, Eduardo [Department of Radiochemistry, School of Chemistry, University of Uruguay, Montevideo, 11800 (Uruguay); Daibes Figueroa, Said [Research Service, Harry S. Truman Veterans Memorial Hospital, Columbia, MO 65201 (United States); Zhang Xiuli [Research Service, Harry S. Truman Veterans Memorial Hospital, Columbia, MO 65201 (United States); Department of Biochemistry, University of Missouri, Columbia, MO 65211 (United States); Ma Lixin [Research Service, Harry S. Truman Veterans Memorial Hospital, Columbia, MO 65201 (United States); Department of Radiology, University of Missouri, Columbia, MO 65212 (United States); Deutscher, Susan L. [Research Service, Harry S. Truman Veterans Memorial Hospital, Columbia, MO 65201 (United States); Department of Biochemistry, University of Missouri, Columbia, MO 65211 (United States); Quinn, Thomas P., E-mail: quinnt@missouri.ed [Research Service, Harry S. Truman Veterans Memorial Hospital, Columbia, MO 65201 (United States); Department of Biochemistry, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65212 (United States)

    2011-02-15

    Introduction: The use of [{sup 99m}Tc]glucarate has been reported as an infarct-avid agent with the potential for very early detection of myocardial infarction. [{sup 99m}Tc]Glucarate has also been postulated as an agent for non-invasive detection of tumors. The aim of our study was to develop a Glucarate kit and evaluate [{sup 99m}Tc]glucarate as a potential cancer imaging agent in female SCID mice bearing human MDA-MB-435 breast tumors. Methods: Glucarate in a kit formulation was labeled with {sup 99m}Tc and evaluated for radiolabelling efficiency and radiochemical purity. The Glucarate kit stability was assessed by monthly quality controls. The pharmacokinetics of [{sup 99m}Tc]glucarate were determined in female SCID mice bearing MDA-MB-435 human breast carcinoma tumors at 0.5, 1, 2, 4 and 24 h. Nuclear imaging studies were performed with a micro-single photon emission tomography (SPECT)/computed tomography (CT) system at 2 h post injection, while magnetic resonance imaging (MRI) was employed for tumor morphology analysis and metastatic deposit localization. Results: The Glucarate kits exhibited a stable shelf life of 6 months. [{sup 99m}Tc]Glucarate was obtained with radiochemical purity greater than 95%. Biodistribution studies demonstrated moderate tumor uptake coupled with high renal clearance. Tumor-to-muscle ratios were 4.85 and 5.14 at 1 and 4 h post injection. MRI analysis showed tumors with dense cellular growth and moderate central necrosis. [{sup 99m}Tc]Glucarate uptake in the primary MDA-MB-435 shoulder tumors and metastatic lesions were clearly visualized with micro-SPECT/CT imaging. Conclusions: Selective tumor uptake and rapid clearance from nontarget organs makes [{sup 99m}Tc]glucarate a potential agent for breast cancer imaging that awaits validation in a clinical trial.

  17. Correlation of centroid-based breast size, surface-based breast volume, and asymmetry-score-based breast symmetry in three-dimensional breast shape analysis

    Directory of Open Access Journals (Sweden)

    Henseler, Helga

    2016-06-01

    Full Text Available Objective: The aim of this study was to investigate correlations among the size, volume, and symmetry of the female breast after reconstruction based on previously published data. Methods: The centroid, namely the geometric center of a three-dimensional (3D breast-landmark-based configuration, was used to calculate the size of the breast. The surface data of the 3D breast images were used to measure the volume. Breast symmetry was assessed by the Procrustes analysis method, which is based on the 3D coordinates of the breast landmarks to produce an asymmetry score. The relationship among the three measurements was investigated. For this purpose, the data of 44 patients who underwent unilateral breast reconstruction with an extended latissimus dorsi flap were analyzed. The breast was captured by a validated 3D imaging system using multiple cameras. Four landmarks on each breast and two landmarks marking the midline were used.Results: There was a significant positive correlation between the centroid-based breast size of the unreconstructed breast and the measured asymmetry (p=0.024; correlation coefficient, 0.34. There was also a significant relationship between the surface-based breast volume of the unaffected side and the overall asymmetry score (p<0.001; correlation coefficient, 0.556. An increase in size and especially in volume of the unreconstructed breast correlated positively with an increase in breast asymmetry in a linear relationship.Conclusions: In breast shape analysis, the use of more detailed surface-based data should be preferred to centroid-based size data. As the breast size increases, the latissimus dorsi flap for unilateral breast reconstruction increasingly falls short in terms of matching the healthy breast in a linear relationship. Other reconstructive options should be considered for larger breasts. Generally plastic surgeons should view the two breasts as a single unit when assessing breast aesthetics and not view each

  18. Magnetic resonance imaging in patients with newly diagnosed breast cancer: a review of the literature.

    Science.gov (United States)

    Pilewskie, Melissa; King, Tari A

    2014-07-15

    The use of magnetic resonance imaging (MRI) in patients with newly diagnosed breast cancer remains controversial. Here we review the current use of breast MRI and the impact of MRI on short-term surgical outcomes and rates of local recurrence. In addition, we address the use of MRI in specific patient populations, such as those with ductal carcinoma in situ, invasive lobular carcinoma, and occult primary breast cancer, and discuss the potential role of MRI for assessing response to neoadjuvant chemotherapy. Although MRI has improved sensitivity compared with conventional imaging, this has not translated into improved short-term surgical outcomes or long-term patient benefit, such as improved local control or survival, in any patient population. MRI is an important diagnostic test in the evaluation of patients presenting with occult primary breast cancer and has shown promise in monitoring response to neoadjuvant chemotherapy; however, the data do not support the routine use of perioperative MRI in patients with newly diagnosed breast cancer. Cancer 2014;120:120:2080-2089. © 2014 American Cancer Society.

  19. Electrical impedance scanning in breast tumor imaging: correlation with the growth pattern of lesion

    Institute of Scientific and Technical Information of China (English)

    WANG Kan; WANG Ting; FU Feng; JI Zhen-yu; LIU Rui-gang; LIAO Qi-mei; DONG Xiu-zhen

    2009-01-01

    Background This study researched the electric impedance properties of breast tissue and demonstrated the differentcharacteristic of electrical impedance scanning (EIS) images.Methods The impedance character of 40 malignant tumors, 34 benign tumors and some normal breast tissue from 69patients undergoing breast surgery was examined by EIS in vivo measurement and mammography screening, with aseries of frequencies set between 100 Hz-100 kHz in the ex vivo spectroscopy measurement.Results Of the 39 patients with 40 malignant tumors, 24 showed bright spots, 11 showed dark areas in EIS and 5showed no specific image. Of the 30 patients with 34 benign tumors there were almost no specific abnormality shown inthe EIS results. Primary ex vivo spectroscopy experiments showed that the resistivity of various breast tissue take thefollowing pattern: adipose tissue>cancerous tissue>mammary gland and benign tumor tissue.Conclusions There are significant differences in the electrical impedance properties between cancerous tissue andhealthy tissue. The impedivity of benign tumor is lower, and is at the same level with that of the mammary glandulartissue. The distinct growth pattern of breast lesions determined the different electrical impedance characteristics in theEIS results.

  20. Evaluation of some ratio effects in 99mTc-MIBI imaging of breast tumors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effectiveness of using some ratios in 99mTc-MIBI imaging fbr the diagnosis of breast tumors was evaluated. After 100 patients with the breast tumor underwent 99mTc-MIBI imaging, the ratios of tunor to contralateral uptake (T/N). tumor to heart uptake (T/H), and tumor to sternum uptake (T/S) were obtained and then analysed about their reproducibility and values in differentiating benign breast lesion the from malignant tumor. To detect breast cancers, the sensitivity, specificit y and accuracy of T/N were 92%, 90% and 91%, respectively. However, those of T/S were 70% (p <0.01), 74% (p <0.05), 72% (p <0.01), and those of T/H were 74%(p <0.05). 76% (p >0.05). 75% (p <0.01). The average coefticients of variation(CV) of T/N, T/S and T/H were 9.439±9.712. 4.856+4.420 (p >0.05), and 3.736±3.489 (p <0.05). It was found that T/N had the best sensitivity, specificity and accuracy todetect the breast cancer, but its reproducibility is poor. On the other hand, T/H has better reproducibility.

  1. Tryptophan metabolism in breast cancers: molecular imaging and immunohistochemistry studies

    International Nuclear Information System (INIS)

    Introduction: Tryptophan oxidation via the kynurenine pathway is an important mechanism of tumoral immunoresistance. Increased tryptophan metabolism via the serotonin pathway has been linked to malignant progression in breast cancer. In this study, we combined quantitative positron emission tomography (PET) with tumor immunohistochemistry to analyze tryptophan transport and metabolism in breast cancer. Methods: Dynamic α-[11C]methyl-L-tryptophan (AMT) PET was performed in nine women with stage II–IV breast cancer. PET tracer kinetic modeling was performed in all tumors. Expression of L-type amino acid transporter 1 (LAT1), indoleamine 2,3-dioxygenase (IDO; the initial and rate-limiting enzyme of the kynurenine pathway) and tryptophan hydroxylase 1 (TPH1; the initial enzyme of the serotonin pathway) was assessed by immunostaining of resected tumor specimens. Results: Tumor AMT uptake peaked at 5–20 min postinjection in seven tumors; the other two cases showed protracted tracer accumulation. Tumor standardized uptake values (SUVs) varied widely (2.6–9.8) and showed a strong positive correlation with volume of distribution values derived from kinetic analysis (P < .01). Invasive ductal carcinomas (n = 6) showed particularly high AMT SUVs (range, 4.7–9.8). Moderate to strong immunostaining for LAT1, IDO and TPH1 was detected in most tumor cells. Conclusions: Breast cancers show differential tryptophan kinetics on dynamic PET. SUVs measured 5–20 min postinjection reflect reasonably the tracer's volume of distribution. Further studies are warranted to determine if in vivo AMT accumulation in these tumors is related to tryptophan metabolism via the kynurenine and serotonin pathways.

  2. Clinical experiences with photoacoustic breast imaging: the appearance of suspicious lesions

    OpenAIRE

    Heijblom, Michelle

    2014-01-01

    This thesis describes photoacoustic (PA) imaging of suspicious breast lesions. In PA imaging, the tissue of interest is illuminated by short pulses of laser light, usually in the near infrared (NIR) regime. Upon absorption by primarily the tumor vasculature, the light causes a small temperature increase, which is converted into a pressure wave by the process of thermoelastic expansion. This pressure wave can be detected by ultrasound detectors with the appropriate frequency and bandwidth. The...

  3. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [UAM-Xochimilco, 04960 Mexico D.F. (Mexico); Azorin N, J. [UAM-Iztapalapa, 09340 Mexico D.F. (Mexico); Diaz G, J.A.I. [CICATA, Unidad Legaria, Av. Legaria 694, 11599 mexico D.F. (Mexico); Arreola, M. [Department of Radiology, Shands Hospital at UF, PO Box 100374, Gainesville, FL 32610-0374 (United States)

    2006-07-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  4. Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

    Directory of Open Access Journals (Sweden)

    Jeroen F Vermeulen

    Full Text Available INTRODUCTION: Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. METHODS: Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. RESULTS: Growth factor receptors were variably expressed in 4.5% (MET up to 38.5% (IGF1-R of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. CONCLUSIONS: Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of

  5. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dregely, Isabel [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Department of Radiological Sciences, Los Angeles, CA (United States); Lanz, Titus; Mueller, Matthias F. [Rapid Biomedical GmbH, Rimpar (Germany); Metz, Stephan [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer diagnostische und interventionelle Radiologie, Munich (Germany); Kuschan, Marika [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); IMETUM, Technische Universitaet Muenchen, Munich (Germany); Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Bundschuh, Ralph A. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Universitaetsklinikum Bonn, Nuklearmedizinische Klinik, Bonn (Germany); Haase, Axel [IMETUM, Technische Universitaet Muenchen, Munich (Germany)

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative {sup 18} F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  6. The Korean Version of the Body Image Scale-Reliability and Validity in a Sample of Breast Cancer Patients

    OpenAIRE

    Khang, Dongwoo; Rim, Hyo-Deog; Woo, Jungmin

    2013-01-01

    Objective The Body Image Scale (BIS) developed in collaboration with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Study Group is a brief questionnaire for measuring body image concerns in patients with cancer. This study sought to assess the reliability and validity of the Korean version of the Body Image Scale (K-BIS). Methods The participants consisted of 155 postoperative breast cancer patients (56 breast conserving surgery, 56 mastectomy, and 43 o...

  7. Dual energy contrast enhanced breast imaging optimization using contrast to noise ratio

    Science.gov (United States)

    Arvanitis, C. D.; Royle, G.; Speller, R.

    2007-03-01

    The properties of dual energy contrast enhanced breast imaging have been analyzed by imaging a 4 cm breast equivalent phantom consisting of adipose and glandular equivalent plastics. This phantom had superimposed another thin plastic which incorporated a 2 mm deep cylinder filled with iodinated contrast media. The iodine projected thicknesses used for this study was 3 mg/cm2. Low and high energy spectra that straddle the iodine K-edge were used. Critical parameters such as the energy spectra and exposure are discussed, along with post processing by means of nonlinear energy dependent function. The dual energy image was evaluated using the relative contrast to noise ratio of a 2.5 mm x 2.5 mm region of the image at the different iodine concentrations incorporating different breast composition with respect to the noniodinated areas. Optimum results were achieved when the low and high-energy images were used in such a way that relative contrast to noise ratio of the iodine with respect to the background tissue was maximum. A figure of merit suggests that higher noise levels can be tolerated at the benefit of lower exposure. Contrast media kinetics of a phantom incorporating a water flow of 20.4 ml/min through the plastic cylinder suggests that time domain imaging could be performed with this approach. The results suggest that optimization of dual energy contrast enhanced mammography has the potential to lead to the development of perfusion digital mammography.

  8. Fusion of digital breast tomosynthesis images via wavelet synthesis for improved lesion conspicuity

    Science.gov (United States)

    Hariharan, Harishwaran; Pomponiu, Victor; Zheng, Bin; Whiting, Bruce; Gur, David

    2014-03-01

    Full-field digital mammography (FFDM) is the most common screening procedure for detecting early breast cancer. However, due to complications such as overlapping breast tissue in projection images, the efficacy of FFDM reading is reduced. Recent studies have shown that digital breast tomosynthesis (DBT), in combination with FFDM, increases detection sensitivity considerably while decreasing false-positive, recall rates. There is a huge interest in creating diagnostically accurate 2-D interpretations from the DBT slices. Most of the 2-D syntheses rely on visualizing the maximum intensities (brightness) from each slice through different methods. We propose a wavelet based fusion method, where we focus on preserving holistic information from larger structures such as masses while adding high frequency information that is relevant and helpful for diagnosis. This method enables the spatial generation of a 2D image from a series of DBT images, each of which contains both smooth and coarse structures distributed in the wavelet domain. We believe that the wavelet-synthesized images, generated from their DBT image datasets, provide radiologists with improved lesion and micro-calcification conspicuity as compared with FFDM images. The potential impact of this fusion method is (1) Conception of a device-independent, data-driven modality that increases the conspicuity of lesions, thereby facilitating early detection and potentially reducing recall rates; (2) Reduction of the accompanying radiation dose to the patient.

  9. Detection of breast surgical margins with optical coherence tomography imaging: a concept evaluation study

    Science.gov (United States)

    Savastru, Dan; Chang, Ernest W.; Miclos, Sorin; Pitman, Martha B.; Patel, Ankit; Iftimia, Nicusor

    2014-05-01

    This study aimed to evaluate the concept of using high-resolution optical coherence tomography (OCT) imaging to rapidly assess surgical specimens and determine if cancer positive margins were left behind in the surgical bed. A mouse model of breast cancer was used in this study. Surgical specimens from 30 animals were investigated with OCT and automated interpretation of the OCT images was performed and tested against histopathology findings. Specimens from 10 animals were used to build a training set of OCT images, while the remaining 20 specimens were used for a validation set of images. The validation study showed that automated interpretation of OCT images can differentiate tissue types and detect cancer positive margins with at least 81% sensitivity and 89% specificity. The findings of this pilot study suggest that OCT imaging of surgical specimens and automated interpretation of OCT data may enable in the future real-time feedback to the surgeon about margin status in patients with breast cancer, and potentially with other types of cancers. Currently, such feedback is not provided and if positive margins are left behind, patients have to undergo another surgical procedure. Therefore, this approach can have a potentially high impact on breast surgery outcome.

  10. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status.

    Science.gov (United States)

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors' ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  11. Estrogen receptor targeted contrast agents for molecular magnetic resonance imaging of breast cancer hormonal status

    Directory of Open Access Journals (Sweden)

    Adi ePais

    2016-04-01

    Full Text Available The estrogen receptor α (ER is over expressed in most breast cancers and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer, as well as in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging effects of two novel ER- targeted contrast agents (CAs based on pyridine-tetra-acetate-Gd(III chelate conjugated to 17β-estradiol (EPTA-Gd or to tamoxifen (TPTA-Gd. The experiments were conducted in solution, in human breast cancer cells and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen like agonistic activity, enhancing cell proliferation, as well as up-regulating cMyc oncogene and down-regulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also

  12. A New CAD System for Breast Microcalcifications Diagnosis

    Directory of Open Access Journals (Sweden)

    H. Boulehmi

    2016-04-01

    Full Text Available Breast cancer is one of the most deadly cancers in the world, especially among women. With no identified causes and absence of effective treatment, early detection remains necessary to limit the damages and provide possible cure. Submitting women with family antecedent to mammography periodically can provide an early diagnosis of breast tumors. Computer Aided Diagnosis (CAD is a powerful tool that can help radiologists improving their diagnostic accuracy at earlier stages. Several works have been developed in order to analyze digital mammographies, detect possible lesions (especially masses and microcalcifications and evaluate their malignancy. In this paper a new approach of breast microcalcifications diagnosis on digital mammograms is introduced. The proposed approach begins with a preprocessing procedure aiming artifacts and pectoral muscle removal based on morphologic operators and contrast enhancement based on galactophorous tree interpolation. The second step of the proposed CAD system consists on segmenting microcalcifications clusters, using Generalized Gaussian Density (GGD estimation and a Bayesian back-propagation neural network. The last step is microcalcifications characterization using morphologic features which are used to feed a neuro-fuzzy system to classify the detected breast microcalcifications into benign and malignant classes.

  13. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy.

    Science.gov (United States)

    Crop, Frederik; Pasquier, David; Baczkiewic, Amandine; Doré, Julie; Bequet, Lena; Steux, Emeline; Gadroy, Anne; Bouillon, Jacqueline; Florence, Clement; Muszynski, Laurence; Lacour, Mathilde; Lartigau, Eric

    2016-01-01

    A surface imaging system, Catalyst (C-Rad), was compared with laser-based positioning and daily mega voltage computed tomography (MVCT) setup for breast patients with nodal involvement treated by helical TomoTherapy. Catalyst-based positioning performed better than laser-based positioning. The respective modalities resulted in a standard deviation (SD), 68% confidence interval (CI) of positioning of left-right, craniocaudal, anterior-posterior, roll: 2.4 mm, 2.7 mm, 2.4 mm, 0.9° for Catalyst positioning, and 6.1 mm, 3.8 mm, 4.9 mm, 1.1° for laser-based positioning, respectively. MVCT-based precision is a combination of the interoperator variability for MVCT fusion and the patient movement during the time it takes for MVCT and fusion. The MVCT fusion interoperator variability for breast patients was evaluated at one SD left-right, craniocaudal, ant-post, roll as: 1.4 mm, 1.8 mm, 1.3 mm, 1.0°. There was no statistically significant difference between the automatic MVCT registration result and the manual adjustment; the automatic fusion results were within the 95% CI of the mean result of 10 users, except for one specific case where the patient was positioned with large yaw. We found that users add variability to the roll correction as the automatic registration was more consistent. The patient position uncertainty confidence interval was evaluated as 1.9 mm, 2.2 mm, 1.6 mm, 0.9° after 4 min, and 2.3 mm, 2.8 mm, 2.2 mm, 1° after 10 min. The combination of this patient movement with MVCT fusion interoperator variability results in total standard deviations of patient posi-tion when treatment starts 4 or 10 min after initial positioning of, respectively: 2.3 mm, 2.8 mm, 2.0 mm, 1.3° and 2.7 mm, 3.3 mm, 2.6 mm, 1.4°. Surface based positioning arrives at the same precision when taking into account the time required for MVCT imaging and fusion. These results can be used on a patient-per-patient basis to decide which positioning system performs the best after the

  14. Critical analysis of the images methods in detection and diagnosis in breast cancer

    International Nuclear Information System (INIS)

    The female breast cancer is a relevant health issue among female population, due its incidence and remarkable effects in the biological, psychological and social levels. Its early diagnosis is important because it allows more effective treatments and enhances changes of cure, even allowing conservative surgical procedures. To make this possible it is essential the periodic breast imaging exams. The available imaging methods to date are: mammography, ultrasonography, thermography, nuclear medicine, computed tomography and MRI. All these methods have their advantages and disadvantages, applications and limitations and some are even in experimental stages. These methods must exercised in association to become more effective. Mammography is still, beyond and doubt the elected breast exam. even though imperfect. It must be performed repeatedly at periodic intervals depending upon the intrinsic conditions of the patient. The other methods complement the mammographic findings, clearing some of them. In this paper, the imaging methods available in our environmental for detected diagnosis of the early breast cancer are analyzed with emphasis in mammography and ultrasonography. Their advantages, disadvantages, indications and limitations are discussed. (author)

  15. Magnetic resonance imaging of radial sclerosing lesions (radial scars) of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Linda, Anna, E-mail: annalinda33@gmail.com [Institute of Diagnostic Radiology, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine (Italy); Zuiani, Chiara; Londero, Viviana [Institute of Diagnostic Radiology, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine (Italy); Cedolini, Carla [Department of Surgery, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine (Italy); Girometti, Rossano; Bazzocchi, Massimo [Institute of Diagnostic Radiology, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Udine (Italy)

    2012-11-15

    Purpose: To identify magnetic resonance (MR) imaging (MRI) features of radial sclerosing lesions (RSLs) of the breast. Methods and materials: The radiologic and pathologic records for 4629 consecutive patients undergoing MR examinations of the breast were retrospectively reviewed. Patients who received a pathologic diagnosis of RSL without atypia or carcinoma at surgical excision were identified. The MR images were evaluated according to the BI-RADS-MRI lexicon by two experienced breast radiologists. The frequency of morphologic and kinetic patterns and of BI-RADS-MRI assessment categories was calculated. Results: Twenty-nine patients with 29 surgically excised RSL were identified. Nine (31%) RSL were MR-occult; the remaining 20 (69%) RSL presented as masses (10/20, 50%), architectural distortions (5/20, 25%), non-mass lesions (4/20, 20%), and focus (1/20, 5%). Kinetic analysis was performed in 18 RSL: enhancement features were benign in 9 (50%) cases, suspicious in 7 (39%) cases and indeterminate in 2 (11%) cases. Twelve (41%) MR examinations were assessed as suspicious (BI-RADS-MRI 4 and 5), and 17 (59%) as negative (BI-RADS-MRI 1) or benign (BI-RADS-MRI 2 and 3). Conclusion: RSLs are often visualized on MR imaging. Just as in mammography and sonography, RSL can have variable morphologic and kinetic features, and not infrequently they can mimic invasive carcinoma of the breast.