WorldWideScience

Sample records for breast imaging comparison

  1. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    Science.gov (United States)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-07-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  2. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    Science.gov (United States)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-01-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity. PMID:26159440

  3. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    Science.gov (United States)

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): A retrospective comparison in 66 breast lesions.

    Science.gov (United States)

    Li, L; Roth, R; Germaine, P; Ren, S; Lee, M; Hunter, K; Tinney, E; Liao, L

    2017-02-01

    The purpose of this study was to retrospectively compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) with that of breast magnetic resonance imaging (BMRI) in breast cancer detection using parameters, including sensitivity, positive predictive value (PPV), lesion size, morphology, lesion and background enhancement, and examination time. A total of 48 women (mean age, 56years±10.6 [SD]) with breast lesions detected between October 2012 and March 2014 were included. Both CESM and BMRI were performed for each patient within 30 days. The enhancement intensity of lesions and breast background parenchyma was subjectively assessed for both modalities and was quantified for comparison. Statistical significance was analyzed using paired t-test for mean size of index lesions in all malignant breasts (an index lesion defined as the largest lesion in each breast), and a mean score of enhancement intensity for index lesions and breast background. PPV, sensitivity, and accuracy were calculated for both CESM and BMRI. The average duration time of CESM and MRI examinations was also compared. A total of 66 lesions were identified, including 62 malignant and 4 benign lesions. Both CESM and BMRI demonstrated a sensitivity of 100% for detection of breast cancer. There was no statistically significant difference between the mean size of index lesions (P=0.108). The enhancement intensity of breast background was significantly lower for CESM than for BMRI (P0.05). The average examination time for CESM was significantly shorter than that of BMRI (P<0.01). CESM has similar sensitivity than BMRI in breast cancer detection, with higher PPV and less background enhancement. CESM is associate with significantly shorter exam time thus a more accessible alternative to BMRI, and has the potential to play an important tool in breast cancer detection and staging. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights

  5. Readout-segmented echo-planar imaging in diffusion-weighted mr imaging in breast cancer: comparison with single-shot echo-planar imaging in image quality.

    Science.gov (United States)

    Kim, Yun Ju; Kim, Sung Hun; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast.

  6. Comparison of breast tissue measurements using magnetic resonance imaging, digital mammography and a mathematical algorithm

    Science.gov (United States)

    Lu, Lee-Jane W.; Nishino, Thomas K.; Johnson, Raleigh F.; Nayeem, Fatima; Brunder, Donald G.; Ju, Hyunsu; Leonard, Morton H.; Grady, James J.; Khamapirad, Tuenchit

    2012-01-01

    Women with mostly mammographically dense fibroglandular tissue (breast density, BD) have a 4- to 6-fold increased risk for breast cancer compared to women with little BD. BD is most frequently estimated from 2-dimensional (2-D) views of mammograms by a histogram segmentation approach (HSM) and more recently by a mathematical algorithm consisting of mammographic imaging parameters (MATH). Two non-invasive clinical magnetic resonance imaging (MRI) protocols: 3-D gradient-echo (3DGRE) and short tau inversion recovery (STIR) were modified for 3-D volumetric reconstruction of the breast for measuring fatty and fibroglandular tissue volumes by a Gaussian-distribution curve-fitting algorithm. Replicate breast exams (N= 2 to 7 replicates in 6 women) by 3DGRE and STIR were highly reproducible for all tissue-volume estimates (coefficients of variation breast volume. For all values estimated, the correlation was stronger for comparisons between the two MRI than between each MRI vs. mammography, and between each MRI vs. MATH data than between each MRI vs. HSM data. All ICC values were >0.75 indicating that all four methods were reliable for measuring BD and that the mathematical algorithm and the two complimentary non-invasive MRI protocols could objectively and reliably estimate different types of breast tissues. PMID:23044556

  7. Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms.

    Science.gov (United States)

    Gong, Zongyi; Williams, Mark B

    2015-07-01

    Breast specific gamma imaging or molecular breast imaging (BSGI) obtains 2D images of (99m)Tc sestamibi distribution in the breast. Molecular breast tomosynthesis (MBT) maps the tracer distribution in 3D by acquiring multiple projections over a limited angular range. Here, the authors compare the performance of the two technologies in terms of spatial resolution, lesion contrast, and contrast-to-noise ratio (CNR) in phantom studies under conditions of clinically relevant sestamibi dose and imaging time. The systems tested were a Dilon 6800 and a MBT prototype developed at the University of Virginia. Both systems comprise a pixelated sodium iodide scintillator, an array of position sensitive photomultipliers, and a parallel hole collimator. The active areas and energy resolution of the systems are similar. System sensitivity, spatial resolution, lesion contrast, and CNR were measured using a Petri dish, a point source phantom, and a breast phantom containing simulated lesions at two depths, respectively. A single BSGI projection was acquired. Five MBT projections were acquired over ±20°. For both modalities, the total scan count density was comparable to that observed for each in typical 10 min human scans following injection of 22 mCi (814 MBq) of (99m)Tc-sestamibi. To assess the impact of reducing the tracer dose, the pixel counts of projection images were later binomially subsampled by a factor of 2 to give images corresponding to an injected activity of approximately 11 mCi (407 MBq). Both unprocessed (pixelated) BSGI projections and interpolated (smoothed) BSGI images displayed by default on the Dilon 6800 workstation were analyzed. Volumetric images were reconstructed from the MBT projections using a maximum likelihood expectation maximization algorithm and extracted slices were analyzed. Over a depth range of 1.5-7.5 cm, BSGI spatial resolution was 5.6-11.5 mm in unprocessed projections and 5.7-12.0 mm in interpolated images. Over the same range, the in

  8. Imaging Guided Breast Interventions.

    Science.gov (United States)

    Masroor, Imrana; Afzal, Shaista; Sufian, Saira Naz

    2016-06-01

    Breast imaging is a developing field, with new and upcoming innovations, decreasing the morbidity and mortality related to breast pathologies with main emphasis on breast cancer. Breast imaging has an essential role in the detection and management of breast disease. It includes a multimodality approach, i.e. mammography, ultrasound, magnetic resonance imaging, nuclear medicine techniques and interventional procedures, done for the diagnosis and definitive management of breast abnormalities. The range of methods to perform biopsy of a suspicious breast lesion found on imaging has also increased markedly from the 1990s with hi-technological progress in surgical as well as percutaneous breast biopsy methods. The image guided percutaneous breast biopsy procedures cause minimal breast scarring, save time, and relieve the patient of the anxiety of going to the operation theatre. The aim of this review was to describe and discuss the different image guided breast biopsy techniques presently employed along with the indications, contraindication, merits and demerits of each method.

  9. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    Science.gov (United States)

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular breast imaging is less likely to show all foci of ILC compared with IDC.

  10. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  11. Comparison of effects of dose on image quality in digital breast tomosynthesis across multiple vendors

    Science.gov (United States)

    Zhao, Amy; Santana, Maira; Samei, Ehsan; Lo, Joseph

    2017-03-01

    In traditional radiography and computed tomography (CT), contrast is an important measure of image quality that, in theory, does not vary with dose. While increasing dose may increase the overall contrast-to-noise ratio (CNR), the contrast in an image should be primarily dependent on variation in tissue density and attenuation. We investigated the behavior of all three currently FDA-approved vendors' 3D DBT systems (Siemens, Hologic, and General Electric (GE)) using the Computerized Imaging Reference Systems (CIRS) Model 011A Breast Phantom and found that for both Siemens and Hologic systems, contrast increased with dose across multiple repeated trials. For these two systems, experimental CNR also appeared to increase above the expected CNR, which suggests that these systems seem to have introduced post-processing by manipulation of contrast, and thus DBT data cannot be used to reliably quantify tissue characteristics. Additional experimentation with both 2D mammography and 3D DBT systems from GE in addition to the previously mentioned vendors, however, suggested that this relationship is not true for all systems. An initial comparison of contrast vs. dose showed no relationship between contrast and dose for 2D mammography, with the contrast remaining relatively constant in the dose range of 33% of the automatic exposure control setting (AEC) to 300% AEC for all three vendors. The GE DBT system also did not exhibit increased contrast with increased dose, suggesting that the behavior of 3D DBT systems is vendor-specific.

  12. A comparison of automated versus manual segmentation of breast UST transmission images to measure breast volume and sound speed

    Science.gov (United States)

    Sak, Mark; Duric, Neb; Littrup, Peter; Westerberg, Katelyn

    2017-03-01

    Ultrasound tomography (UST) is an emerging breast imaging modality that can be used to quantitatively measure breast density. However, the sound speed images that are used in this analysis must first be segmented in order to accurately parse any quantitative information. Previously, this segmentation has been done manually, but this is time consuming, especially when dealing with a large number of images that must be masked. An automated masking algorithm has been developed that applies thresholding and morphological operators to UST attenuation images to automatically create masks that separate the breast tissue from the water bath. An initial set of images was tested using this algorithm to fine tune settings and very good agreement was achieved. However, when the optimized settings were applied to a larger dataset of 286 images, the robustness of the algorithm was tested. The manual masks measured a larger volume (921 cm3) than the automated masks (713 cm3), but fortunately, the difference in mean sound speed was much smaller (1449 m/s versus 1448 m/s). A majority of the automated masks (72.7%) had a measured Dice similarity coefficient (DSC) of greater than 0.8 which indicates that there was good to great overlap in the volumes of tissue created by the automated method. This algorithm shows promise to be used as a tool to quickly and effectively measure breast density.

  13. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Munnink, T. H. Oude; Nagengast, W. B.; Brouwers, A. H.; Schroder, C. P.; Hospers, G. A.; Lub-de Hooge, M. N.; van der Wall, E.; van Diest, P. J.; de Vries, E. G. E.

    2009-01-01

    Molecular imaging of breast cancer can potentially be used for breast cancer screening, staging, restaging, response evaluation and guiding therapies. Techniques for molecular breast cancer imaging include magnetic resonance imaging (MRI), optical imaging, and radionuclide imaging with positron

  14. Optical breast imaging

    NARCIS (Netherlands)

    van de Ven, S.M.W.Y.

    2011-01-01

    Optical breast imaging uses near-infrared light to assess the optical properties of breast tissue. It can be performed relying on intrinsic breast tissue contrast alone or with the use of exogenous imaging agents that accumulate at the tumor site. Different tissue components have unique scattering

  15. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P < .001 for all). Conclusion There was substantial agreement between readers for BPE detected on CE spectral mammographic and MR images. © RSNA

  16. Optical Imaging of the Breast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Kim, Eun Kyung [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-03-15

    As the increased prevalence of breast cancer and the advances in breast evaluation awareness have resulted in an increased number of breast examinations and benign breast biopsies, several investigations have been performed to improve the diagnostic accuracy for breast lesions. Optical imaging of the breast that uses nearinfrared light to assess the optical properties of breast tissue is a novel non-invasive imaging technique to characterize breast lesions in clinical practice. This review provides a summary of the current state of optical breast imaging and it describes the basic concepts of optical imaging, the potential clinical applications for breast cancer imaging and its potential incorporation with other imaging modalities

  17. A comparison of body image, marital satisfaction, and public health among breast cancer patients with breast evacuation, breast keeping and normal people in Tehran

    Directory of Open Access Journals (Sweden)

    Zahra Esfandiari

    2015-09-01

    Full Text Available Abstract Purpose and background: despite outstanding breakthroughs in medical sciences, breast cancer is still considered one of the most important disease and the most prevalent women cancer and the second reason of death among them. The present study was conducted aiming to compare public health and marital satisfaction among breast cancer patients with breast evacuation, breast keeping and normal women in Tehran. Material and methods: the method of the present study, due to the lack of interference to alter the research variables, was causal comparative. The statistical population included all women with breast cancer and normal women in the city of Tehran. From these people in each group (breast cancer patients with breast evacuation, breast keeping and normal people 80 individuals were selected through available sampling from clients of medical centers and special hospitals in Tehran during October 2012 to December 2013. The applied instruments were the questionnaires of public health, body image, and marital satisfaction. The achieved data were analyzed via one-way ANOVA and Tukey test by SPSS software. Findings: the results of the analysis showed that there is a significant difference between the mean scores of marital satisfaction, body image and public health in three groups (women with cancer who evacuated their breast, those who didn't and normal ones(p<0.01. Conclusion: according to the findings of the present study the women with breast cancer are in more different state in variables of marital satisfaction, mental health and body image comparing to normal group. So it seems necessary for cancer treatment centers to consider psychological treatment courses for these people.

  18. Error rates in breast imaging reports: comparison of automatic speech recognition and dictation transcription.

    Science.gov (United States)

    Basma, Sarah; Lord, Bridgette; Jacks, Lindsay M; Rizk, Mohamed; Scaranelo, Anabel M

    2011-10-01

    The purpose of this study was to compare the error rates in breast imaging reports generated with automated speech recognition (ASR) technology as opposed to conventional dictation transcription. Breast imaging reports reviewed from January 2009 to April 2010 during multidisciplinary tumor board meetings at two hospitals were scrutinized for minor and major errors. Of 615 reports obtained, 308 were generated with ASR and 307 with conventional dictation transcription. At least one major error was found in 23% of ASR reports, as opposed to 4% of conventional dictation transcription reports (p dictation transcription reports to contain major errors (p dictation transcription. The imaging modality used is a predictor of the occurrence of reporting errors. Conversely, native language and academic rank of the speaker do not have a significant influence on error rate.

  19. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  20. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    NARCIS (Netherlands)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, Johannes C.G.; van den Engh, F.M.; van der Schaaf, M.; Klaase, J.M.; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2015-01-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise

  1. Diffusion-weighted imaging of breast tumours at 3 Tesla and 7 Tesla: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S.; Minarikova, L.; Zaric, O.; Chmelik, M.; Strasser, B.; Trattnig, S.; Bogner, W. [Medical University Vienna, MRCE, Department of Biomedical imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Pinker, K.; Baltzer, P.; Helbich, T. [Medical University Vienna, Division of Molecular and Gender Imaging, Department of Biomedical imaging and Image-Guided Therapy, Vienna (Austria)

    2016-05-15

    To compare bilateral diffusion-weighted MR imaging (DWI) at 3 T and 7 T in the same breast tumour patients. Twenty-eight patients were included in this IRB-approved study (mean age 56 ± 16 years). Before contrast-enhanced imaging, bilateral DWI with b = 0 and 850 s/mm{sup 2} was performed in 2:56 min (3 T) and 3:48 min (7 T), using readout-segmented echo planar imaging (rs-EPI) with a 1.4 x 1.4 mm{sup 2} (3 T)/0.9 x 0.9 mm{sup 2} (7 T) in-plane resolution. Apparent diffusion coefficients (ADC), signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were assessed. Twenty-eight lesions were detected (18 malignant, 10 benign). CNR and SNR were comparable at both field strengths (p > 0.3). Mean ADC values at 7 T were 4-22 % lower than at 3 T (p ≤ 0.03). An ADC threshold of 1.275 x 10{sup -3} mm{sup 2}/s resulted in a diagnostic specificity of 90 % at both field strengths. The sensitivity was 94 % and 100 % at 3 T and 7 T, respectively. 7-T DWI of the breast can be performed with 2.4-fold higher spatial resolution than 3 T, without significant differences in SNR if compared to 3 T. (orig.)

  2. Comparison of mammographic image quality in various methods of reconstructive breast surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lindbichler, F. [University Hospital, Graz (Austria). Dept. of Radiology; Hoflehner, H. [University Hospital, Graz (Austria). Dept. of Plastic and Reconstructive Surgery; Schmidt, F. [University Hospital, Graz (Austria). Dept. of Radiology; Pierer, G.R. [University Hospital, Graz (Austria). Dept. of Plastic and Reconstructive Surgery; Raith, J. [University Hospital, Graz (Austria). Dept. of Radiology; Umschaden, J. [University Hospital, Graz (Austria). Dept. of Plastic and Reconstructive Surgery; Preidler, K.W. [University Hospital, Graz (Austria). Dept. of Radiology

    1996-12-01

    The purpose of our study was to evaluate mammographic image quality of various methods of reconstructive breast surgery with specific reference to the possibility of diagnosis of recurrent tumors. A total of 39 patients who underwent breast reconstruction following modified radical mastectomy were subject to clinical and mammographic examination. Three groups were formed: (a) autonomous tissue reconstruction (TRAM-flap; n=9), (b) submuscular silicon gel prostheses (n=21), and (c) supramuscular silicon gel prostheses (n=9). Mammographic images quality of the groups was compared by two radiologists working together using a point system where five specific criteria were valued and scored. The result was tabulated into three quality levels: good, acceptable, and limited. Mammograms were assessed as good, acceptable, or limited, respectively, as follows: group I: 7 (77.8%), 1 (11.1%), 1 (11.1%); group II; 4 (19%), 11 (52.4%), 6 (28.6%); group III: 3 (33.3%), 4 (44.5%), 2 (22.2%). The TRAM-flap method of reconstruction displays a high degree of mammographic image quality and therefore is preferable with respect to early diagnosis of recurrent tumors. (orig.)

  3. Comparison of mammographic image quality in various methods of reconstructive breast surgery.

    Science.gov (United States)

    Lindbichler, F; Hoflehner, H; Schmidt, F; Pierer, G R; Raith, J; Umschaden, J; Preidler, K W

    1996-01-01

    The purpose of our study was to evaluate mammographic image quality of various methods of reconstructive breast surgery with specific reference to the possibility of diagnosis of recurrent tumors. A total of 39 patients who underwent breast reconstruction following modified radical mastectomy were subject to clinical and mammographic examination. Three groups were formed: (a) autonomous tissue reconstruction (TRAM-flap; n = 9), (b) submuscular silicon gel prostheses (n = 21), and (c) supramuscular silicon gel prostheses (n = 9). Mammographic image quality of the groups was compared by two radiologists working together using a point system where five specific criteria were valued and scored. The result was tabulated into three quality levels: good, acceptable, and limited. Mammograms were assessed as good, acceptable, or limited, respectively, as follows: group I: 7 (77.8%), 1 (11.1%), 1 (11.1%); group II: 4 (19%), 11 (52.4%), 6 (28.6%); group III: 3 (33.3%), 4 (44.5%), 2 (22.2%). The TRAM-flap method of reconstruction displays a high degree of mammographic image quality and therefore is preferable with respect to early diagnosis of recurrent tumors.

  4. The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: comparison with colour and power Doppler imaging regarding diagnostic performance.

    Science.gov (United States)

    Park, A Y; Seo, B K; Woo, O H; Jung, K S; Cho, K R; Park, E K; Cha, S H; Cha, J

    2017-11-06

    To investigate the utility of superb microvascular imaging (SMI) for evaluating the vascularity of breast masses in comparison with colour or power Doppler ultrasound (US) and the effect on diagnostic performance. A total of 191 biopsy-proven masses (99 benign and 92 malignant) in 166 women with greyscale, colour Doppler, power Doppler, and SMI images were enrolled in this retrospective study. Three radiologists analysed the vascular images using a three-factor scoring system to evaluate the number, morphology, and distribution of tumour vessels. They assessed the Breast Imaging-Reporting and Data System categories for greyscale US alone and combinations of greyscale US and each type of vascular US. The Kruskal-Wallis test was performed and the area under the receiver-operating characteristic curve (AUC) measured. On SMI, vascular scores were compared between benign and malignant masses and the optimal cut-off value for the overall score was determined. SMI showed higher vascular scores than colour or power Doppler US and malignant masses had higher scores than benign masses (pDoppler US (AUC, 0.815 versus 0.774, 0.789, 0.791; pDoppler US for characterising the vascularity in breast masses and improving diagnostic performance. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of readout segmented echo planar imaging (EPI) and EPI with reduced field-of-VIew diffusion-weighted imaging at 3t in patients with breast cancer.

    Science.gov (United States)

    Park, Jin Young; Shin, Hee Jung; Shin, Ki Chang; Sung, Yu Sub; Choi, Woo Jung; Chae, Eun Young; Cha, Joo Hee; Kim, Hak Hee

    2015-12-01

    To qualitatively and quantitatively compare the diagnostic performance of rs-EPI (readout segmented echo planar imaging) and reduced FOV (field-of-view) EPI in patients with biopsy-proven breast cancer at 3T. Between November 2013 and July 2014, 96 patients (age range, 30-75 years: mean, 52 years) with breast cancer were retrospectively enrolled in this study. In all patients, rs-EPI and rFOV EPI were performed using a 3T MR scanner. Differences between two sequences were compared quantitatively by measuring the tumor apparent diffusion coefficient (ADC), signal-to-noise ratio (SNR), contrast, and contrast-to-noise ratio (CNR). Two independent readers visually assessed overall image quality, lesion conspicuity, and reader preference. The regions of interest (ROIs) were drawn in the whole tumor and in the normal breast parenchyma. Comparisons of quantitative and qualitative parameters between two sequences were performed using the Mann-Whitney and the paired t-test. SNR was significantly higher in rFOV EPI than in rs-EPI (51.88 ± 27.68 vs. 76.46 ± 50.20, P EPI (P EPI were significantly lower than those of rs-EPI (P EPI were significantly higher than those of rs-EPI for both readers (P = 0.025 and EPI provided significantly higher image quality, lesion conspicuity, and SNR than rs-EPI. © 2015 Wiley Periodicals, Inc.

  6. Newly Diagnosed Breast Cancer: Comparison of Contrast-enhanced Spectral Mammography and Breast MR Imaging in the Evaluation of Extent of Disease.

    Science.gov (United States)

    Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita

    2017-11-01

    Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed

  7. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    NARCIS (Netherlands)

    Heijblom, M.; Piras, D.; van den Engh, F.M.; Klaase, Joost M.; Brinkhuis, M.; Steenbergen, Wiendelt; Manohar, Srirang; Ntziachristos, Vasilis; Lin, Charles P.

    2013-01-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is

  8. Comparison of Arab breast cancer survivors and healthy controls for spousal relationship, body image, and emotional distress.

    Science.gov (United States)

    Cohen, Miri; Mabjish, Ahlam Abdallah; Zidan, Jamal

    2011-03-01

    Cultural perceptions and norms affect individuals' psychological reactions to cancer and quality of life, but very few studies have assessed reactions to breast cancer in specific cultural groups. Such assessments are especially rare for Arab women with breast cancer. To assess the effect of spousal support, sharing household tasks, and body image in relation to emotional distress in Arab breast cancer survivors compared with matched healthy controls. Fifty-six Israeli Arab breast cancer survivors (stages I-III), and 66 age- and education-matched women answered Brief Symptoms Inventory-18, Perceived Body Image, Perceived Spousal Support and Division of Household Labor scale questionnaires. Breast cancer patients experienced higher psychological distress, especially anxiety and somatization. They reported receiving more support from their spouses and higher sharing of household tasks than did matched healthy controls, but were not different regarding body image. Twenty-eight percent of the variance of psychological distress was explained, with group, perceived support, and group × body image interaction. Thus, higher psychological distress was more likely to occur in participants receiving lower support and in breast cancer survivors with lower body image. The study described the effects of breast cancer on Arab women compared to healthy women. It highlights the need for culture-sensitive care for Arab breast cancer patients, as well as other patients from minority groups residing in other Western countries.

  9. [Detection of invasive breast lobular carcinoma by image analysis: comparison between mammography and ultrasound].

    Science.gov (United States)

    López-Narváez, Ricardo A; Garza-Montemayor, Margarita L; Garza-García, Nancy L; Ojeda-Mendez, Erik E; Rangel-Nava, Hugo; Méndez-Lozano, Daniel; Morales-Caballero, Fidel G

    2012-05-01

    Early detection of lobular cancer has for long implied a challenge for diagnostic imaging due to the peculiar histology it presents that makes clinical and radiology detection rather difficult. The aim of our study was to compare the sensitivity and specificity of mammography and ultrasound for the diagnosis of invasive breast lobular carcinoma. This is a retrospective study of women with histopathological diagnosis of invasive breast lobular carcinoma in the period between September 2006 and August 2009. All patients underwent mammography and ultrasound. The final pathology report was used as reference standard and the sensitivity and specificity of mammography and ultrasound were evaluated statistically using chi-square test (chi2). The analysis included 654 patients who underwent biopsy. Among them, 148 (22.62%) were positive and 506 (77.37%) negative for cancer. The average age was 48 years (range 18-89). The sensitivity of ultrasound was higher in the group of invasive lobular cancer (ILC) in 14/14 (100%) cases, in contrast to 87/111 (78%) cases of invasive ductal carcinoma (IDC) and 9/18 (50 %) cases of ductal carcinoma in situ (DCIS). The mammography showed greater sensitivity in the group of DCIS in 17/18 (94%) cases, unlike 9/14 (64%) cases of ILC and 89/111 (80%) cases of IDC. Ultrasound improves the detection of ILC with sensitivity up to 100% compared to 64% by mammography. The combination of both diagnostic tests showed sensitivity equal to the ultrasound, but it decreased 30% the specificity in this group.

  10. Mammography with and without radiolucent positioning sheets : Comparison of projected breast area, pain experience, radiation dose and technical image quality

    NARCIS (Netherlands)

    Timmers, Janine; ten Voorde, Marloes; van Engen, Ruben E.; van Landsveld-Verhoeven, Cary; Pijnappel, Ruud; Droogh-de Greve, Kitty; den Heeten, Gerard J.; Broeders, Mireille J. M.

    2015-01-01

    Purpose: To compare projected breast area, image quality, pain experience and radiation dose between mammography performed with and without radiolucent positioning sheets. Methods: 184 women screened in the Dutch breast screening programme (May-June 2012) provided written informed consent to have

  11. Dose comparison using deformed image registration method on breast cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of); Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2017-03-15

    The purpose of this study is to reconstruct the treatment plan by applying CBCT and DIR to dose changes according to the change of the patient's motion and breast shape in the large breast cancer patients and to compare the doses using TWF, FIF and IMRT. CT and CBCT were performed with MIM6 to create DIRCT and each treatment plan was made. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) were determined and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram and the unique property of each organ. The value of HI of the PTV breast increased in all treatment planning methods using DIRCT, and CVI and CI were decreased in the treatment planning methods using DIRCT.

  12. Optical imaging for breast cancer prescreening.

    Science.gov (United States)

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach.

  13. Optical imaging for breast cancer prescreening

    Science.gov (United States)

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503

  14. Mammography with and without radiolucent positioning sheets: Comparison of projected breast area, pain experience, radiation dose and technical image quality.

    Science.gov (United States)

    Timmers, Janine; Voorde, Marloes Ten; Engen, Ruben E van; Landsveld-Verhoeven, Cary van; Pijnappel, Ruud; Greve, Kitty Droogh-de; Heeten, Gerard J den; Broeders, Mireille J M

    2015-10-01

    To compare projected breast area, image quality, pain experience and radiation dose between mammography performed with and without radiolucent positioning sheets. 184 women screened in the Dutch breast screening programme (May-June 2012) provided written informed consent to have one additional image taken with positioning sheets. 5 cases were excluded (missing data). Pain was scored using the Numeric Rating Scale. Radiation dose was estimated using the Dance model and projected breast area using computer software. Two radiologists and two radiographers assessed image quality. With positioning sheets significantly more pectoral muscle, lateral and medial breast tissue was projected (CC-views) and more and deeper depicted pectoral muscle (MLO-views). In contrast, visibility of white and darker areas was better on images without positioning sheets, radiologists were therefore better able to detect abnormalities (MLO-views). Women experienced more pain with positioning sheets (MLO-views only, mean difference NRS 0.98; SD 1.71; p=0,00). Mammograms with positioning sheets showed more breast tissue. Increased breast thickness after compression with sheets resulted in less visibility of white and darker areas and thus reduced detection of abnormalities. Also, women experienced more pain (MLO-views) due to the sheet material. A practical consideration is the fact that more subcutaneous fat tissue and skin are being pulled forward leading to folds in the nipple area. On balance, improvement to the current design is required before implementation in screening practice can be considered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Youk, Ji Hyun; Son, Eun Ju; Chung, Jin; Kim, Jeong-Ah; Kim, Eun-kyung [Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-08-15

    To determine the MRI features of triple-negative invasive breast cancer (TNBC) on dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted MR imaging (DWI) in comparison with ER-positive/HER2-negative (ER+) and HER2-positive cancer (HER2+). A total of 271 invasive cancers in 269 patients undergoing preoperative MRI and surgery were included. Two radiologists retrospectively assessed morphological and kinetic characteristics on DCE-MRI and tumour detectability on DWI. Apparent diffusion coefficient (ADC) values of lesions were measured. Clinical and MRI features of the three subtypes were compared. Compared with ER+ (n = 119) and HER2+ (n = 94), larger size, round/oval mass shape, smooth mass margin, and rim enhancement on DCE-MRI were significantly associated with TNBC (n = 58; P < 0.0001). On DWI, mean ADC value (x 10{sup -3} mm{sup 2}/s) of TNBC (1.03) was higher than the mean ADC values for ER+ and HER2+ (0.89 and 0.84; P < 0.0001). There was no difference in tumour detectability (P = 0.099). Tumour size (P = 0.009), mass margin (smooth, P < 0.0001; irregular, P = 0.020), and ADC values (P = 0.002) on DCE-MRI and DWI were independent features of TNBC. In addition to the morphological features, higher ADC values on DWI were independently associated with TNBC and could be useful in differentiating TNBC from ER+ and HER2+. (orig.)

  16. Breast pain (image)

    Science.gov (United States)

    ... breast pain is from hormonal fluctuations from menstruation, pregnancy, puberty, menopause, and breastfeeding. Breast pain can also be associated with fibrocystic breast disease, but it is a very unusual symptom of breast cancer.

  17. Optical imaging for breast cancer prescreening

    Directory of Open Access Journals (Sweden)

    Godavarty A

    2015-07-01

    Full Text Available Anuradha Godavarty,1 Suset Rodriguez,1 Young-Jin Jung,2 Stephanie Gonzalez1 1Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA; 2Department of Radiological Science, Dongseo University, Busan, South Korea Abstract: Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE or self-breast examinations (SBEs. Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. Keywords: diffuse optical imaging, near-infrared, hand-held devices, breast cancer, prescreening, early detection 

  18. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    Science.gov (United States)

    ... is scintimammography? Scintimammography, also known as nuclear medicine breast imaging, is an examination that may be used to ... as Breast Specific Gamma Imaging (BSGI) or Molecular Breast Imaging (MBI). Nuclear medicine is a branch of medical ...

  19. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; Zeijen, Nicole Jeane Louise; Zeijen, Nicole J.L.; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2010-01-01

    The Her2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast carcinomas. The roles of Her2/neu have been reported before in literature, showing different relations to intracellular lipid composition. Here, we use Raman microspectroscopic imaging to reveal the chemical

  20. Dynamic magnetic resonance imaging of the breast: Comparison of gadobutrol vs. Gd-DTPA.

    Science.gov (United States)

    Escribano, F; Sentís, M; Oliva, J C; Tortajada, L; Villajos, M; Martín, A; Ganau, S

    2017-12-04

    To compare the pharmacokinetic profile of gadobutrol versus Gd-DTPA in dynamic contrast-enhanced MRI (DCE-MRI) in patients with breast cancer. Secondary objectives included comparing the safety profiles and diagnostic efficacy of the two contrast agents for detecting additional malignant lesions. This retrospective observational study included 400 patients with histologically confirmed breast cancer; 200 underwent DCE-MRI with Gd-DTPA (Magnevist®) and 200 underwent DCE-MRI with gadobutrol (Gadovist®). Pharmacokinetic parameters and signal intensity were analyzed in a region of interest placed in the area within the lesion that had greatest signal intensity in postcontrast sequences. We compared the two groups on pharmacokinetic variables (Ktrans, Kep, and Ve), time-signal intensity curves, and the number of additional malignant lesions detected. The relative signal intensity (enhancement) was higher with gadobutrol than with Gd-DTPA. Washout was lower with gadobutrol than with Gd-DTPA (46% vs. 58,29%, respectively; p=0,0323). Values for Ktrans and Kep were higher for gadobutrol (p=0,001). There were no differences in the number of histologically confirmed additional malignant lesions detected (p=0,387). Relative enhancement is greater with gadobutrol, but washout is more pronounced with Gd-DTPA. The number of additional malignant lesions detected did not differ between the two contrast agents. Both contrasts are safe. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Novel High Spatiotemporal Resolution Versus Standard-of-Care Dynamic Contrast-Enhanced Breast MRI: Comparison of Image Quality.

    Science.gov (United States)

    Morrison, Courtney K; Henze Bancroft, Leah C; DeMartini, Wendy B; Holmes, James H; Wang, Kang; Bosca, Ryan J; Korosec, Frank R; Strigel, Roberta M

    2017-04-01

    Currently, dynamic contrast-enhanced (DCE) breast magnetic resonance imaging (MRI) prioritizes spatial resolution over temporal resolution given the limitations of acquisition techniques. The purpose of our intrapatient study was to assess the ability of a novel high spatial and high temporal resolution DCE breast MRI method to maintain image quality compared with the clinical standard-of-care (SOC) MRI. Thirty patients, each demonstrating a focal area of enhancement (29 benign, 1 cancer) on their SOC MRI, consented to undergo a research DCE breast MRI on a second date. For the research DCE MRI, a method (DIfferential Subsampling with Cartesian Ordering [DISCO]) using pseudorandom k-space sampling, view sharing reconstruction, 2-point Dixon fat-water separation, and parallel imaging was used to produce images with an effective temporal resolution 6 times faster than the SOC MRI (27 vs 168 seconds, respectively). Both the SOC and DISCO MRI scans were acquired with matching spatial resolutions of 0.8 × 0.8 × 1.6 mm. Image quality (distortion/artifacts, resolution, fat suppression, lesion conspicuity, perceived signal-to-noise ratio, and overall image quality) was scored by 3 radiologists in a blinded reader study. Differences in image quality scores between the DISCO and SOC images were all less than 0.8 on a 10-point scale, and both methods were assessed as providing diagnostic image quality in all cases. DISCO images with the same high spatial resolution, but 6 times the effective temporal resolution as the SOC MRI scans, were produced, yielding 20 postcontrast time points with DISCO compared with 3 for the SOC MRI, over the same total time interval. DISCO provided comparable image quality compared with the SOC MRI, while also providing 6 times faster effective temporal resolution and the same high spatial resolution.

  2. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing

  3. Augmented reality for breast imaging.

    Science.gov (United States)

    Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio

    2018-02-21

    Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented Breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. The contrast agent used was (CA) gadolinium (Gd) injection (0.1 mmol/kg at 2 ml/s) by a programmable power injector. Dicom formated images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into Augmented reality images. Augmented breast imaging (ABI) demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. Augmented breast imaging (ABI) to the breast can improve clinical outcomes, giving an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.

  4. Breast PET/MR Imaging.

    Science.gov (United States)

    Melsaether, Amy; Moy, Linda

    2017-05-01

    Breast and whole-body PET/MR imaging is being used to detect local and metastatic disease and is being investigated for potential imaging biomarkers, which may eventually help personalize treatments and prognoses. This article provides an overview of breast and whole-body PET/MR exam techniques, summarizes PET and MR breast imaging for lesion detection, outlines investigations into multi-parametric breast PET/MR, looks at breast PET/MR in the setting of neo-adjuvant chemotherapy, and reviews the pros and cons of whole-body PET/MR in the setting of metastatic or suspected metastatic breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Overdiagnosis in breast imaging.

    Science.gov (United States)

    Evans, Andy; Vinnicombe, Sarah

    2017-02-01

    The main harm of overdiagnosis is overtreatment. However a form of overdiagnosis also occurs when foci of cancer are found by imaging in addition to the symptomatic lesion when this leads to additional treatment which does not benefit the patient. Even if overtreatment is avoided, knowledge of the diagnosis can still cause psychological harm. Overdiagnosis is an inevitable effect of mammographic screening as the benefit comes from diagnosing breast cancer prior to clinical detectability. Estimates of the rate of overdiagnosis at screening are around 10%. DCIS represents 20% of cancers detected by screening and is the main focus in the overdiagnosis debate. Detection and treatment of low grade DCIS and invasive tubular cancer would appear to represent overdiagnosis in most cases. Supplementary screening with tomosynthesis or US are both likely to increase overdiagnosis as both modalities detect predominantly low grade invasive cancers. MRI causes overdiagnosis because it is so sensitive that it detects real tumour foci which after radiotherapy and systemic therapy do not, in many cases go on and cause local recurrence if the women had had no MRI and undergone breast conservation and adjuvant therapy with these small foci left in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Breast Hypertrophy, Reduction Mammaplasty, and Body Image.

    Science.gov (United States)

    Fonseca, Cristiane Costa; Veiga, Daniela Francescato; Garcia, Edgard da Silva; Cabral, Isaías Vieira; de Carvalho, Monique Maçais; de Brito, Maria José Azevedo; Ferreira, Lydia Masako

    2018-02-07

    Body image dissatisfaction is one of the major factors that motivate patients to undergo plastic surgery. However, few studies have associated body satisfaction with reduction mammaplasty. The aim of this study was to evaluate the impact of breast hypertrophy and reduction mammaplasty on body image. Breast hypertrophy patients, with reduction mammaplasty already scheduled between June 2013 and December 2015 (mammaplasty group, MG), were prospectively evaluated through the body dysmorphic disorder examination (BDDE), body investment scale (BIS), and breast evaluation questionnaire (BEQ55) tools. Women with normal-sized breasts were also evaluated as study controls (normal-sized breast group, NSBG). All the participants were interviewed at the initial assessment and after six months. Data were analyzed before and after six months. Each group consisted of 103 women. The MG group had a significant improvement in BDDE, BIS, and BEQ55 scores six months postoperatively (P ≤ 0.001 for the three instruments), whereas the NSBG group showed no alteration in results over time (P = 0.876; P = 0.442; and P = 0.184, respectively). In the intergroup comparison it was observed that the MG group began to invest more in the body, similarly to the NSBG group, and surpassed the level of satisfaction and body image that the women of the NSBG group had after the surgery. Reduction mammaplasty promoted improvement in body image of women with breast hypertrophy.

  7. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  8. Breast infection (image)

    Science.gov (United States)

    Most breast infections occur in breastfeeding women when bacteria enters the breast through cracks in the nipple. In severe infections, abscesses may occur. Antibiotics may be indicated for treatment.

  9. Breast MR imaging at 3 T with dual-source radiofrequency transmission offers superior B1 homogeneity: an intraindividual comparison with breast MR imaging at 1.5 T.

    Science.gov (United States)

    Trop, Isabelle; Gilbert, Guillaume; Ivancevic, Marko K; Beaudoin, Gilles

    2013-05-01

    To evaluate and compare B1 homogeneity for breast magnetic resonance (MR) imaging performed at 3 T with dual-source radiofrequency (RF) transmission to 1.5-T MR imaging and 3-T MR imaging with quadrature transmission. This prospective study received institutional review board approval and patients provided informed consent. Women (n = 25; mean age, 53 years; range, 30-68 years) suspected of having breast lesions underwent breast MR imaging examinations on comparable 1.5-T and 3-T clinical systems between February and May 2012. B1 maps were obtained at 1.5 T and at 3 T with quadrature and dual-source RF transmission. Intrabreast differences and differences in mean B1 values between right and left breasts were investigated by using two-sided multivariate analysis of variance with interaction; t tests were used to compare the differences between measured whole-breast mean B1 values and requested B1 values. With quadrature transmission at 1.5 T and 3 T, the mean B1 values showed a statistically significant difference: left-breast measured B1 was -8.9% of requested B1 value at 1.5 T and -13.7% at 3 T (P transmission at 3 T, mean B1 values across the breasts were not statistically different, nor were the measured B1 values compared with requested B1 values (left breast, -0.6%; right breast, -0.7%). At 3 T with dual-source transmission, slight intrabreast local variations in B1 were recorded. MR imaging at 3 T with dual-source RF transmission offered an overall B1 homogeneity for breast imaging that was better than that obtained at 1.5 T and with quadrature transmission. © RSNA, 2013.

  10. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunling; Liu, Zaiyi; Zhang, Jine; He, Hui; Zhang, Shuixing; Liang, Changhong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, GuangZhou (China); Wang, Kun [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Breast Cancer, Cancer Center, GuangZhou (China); Chan, Queenie [Philips Healthcare, 6/F, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Shatin, New Territories, Hong Kong (China)

    2016-11-15

    To compare diagnostic performance for breast lesions by quantitative parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and to explore whether correlations exist between these parameters. IVIM and DCE MRI were performed on a 1.5-T MRI scanner in patients with suspicious breast lesions. Thirty-six breast cancers and 23 benign lesions were included in the study. Quantitative parameters from IVIM (D, f and D*) and DCE MRI (K{sup trans}, K{sub ep}, V{sub e} and V{sub p}) were calculated and compared between malignant and benign lesions. Spearman correlation test was used to evaluate correlations between them. D, f, D* from IVIM and K{sup trans}, K{sub ep}, V{sub p} from DCE MRI were statistically different between breast cancers and benign lesions (p < 0.05, respectively) and D demonstrated the largest area under the receiver-operating characteristic curve (AUC = 0.917) and had the highest specificity (83 %). The f value was moderately statistically correlated with V{sub p} (r = 0.692) and had a poor correlation with K{sup trans} (r = 0.456). IVIM MRI is useful in the differentiation of breast lesions. Significant correlations were found between perfusion-related parameters from IVIM and DCE MRI. IVIM may be a useful adjunctive tool to standard MRI in diagnosing breast cancer. (orig.)

  11. A Comparison of Psychological Response, Body Image, Sexuality, and Quality of Life between Immediate and Delayed Autologous Tissue Breast Reconstruction: A Prospective Long-Term Outcome Study.

    Science.gov (United States)

    Zhong, Toni; Hu, Jiayi; Bagher, Shaghayegh; Vo, Anthony; OʼNeill, Anne C; Butler, Kate; Novak, Christine B; Hofer, Stefan O P; Metcalfe, Kelly A

    2016-10-01

    This is the first study to use generic distress, cancer-specific, and procedure-specific measures to prospectively evaluate psychological responses, body image, sexuality, and health-related quality of life in immediate compared with delayed breast reconstruction. Consecutive patients undergoing autologous immediate and delayed breast reconstruction (June of 2009 to December of 2010) completed the Hospital Anxiety and Depression Scale, Body Image Scale, Sexuality Scale, and BREAST-Q preoperatively and postoperatively (6, 12, and 18 months). Linear mixed-effects analyses between each outcome and time point were performed. One hundred six women underwent mastectomy with immediate (n = 30) and delayed breast reconstruction (n = 76). Before reconstruction, 26 percent of patients had abnormal anxiety scores and 9 percent had abnormal depression scores, with no significant differences between groups. Patients awaiting delayed breast reconstruction had significantly impaired prereconstruction body image (p = 0.01) and sexuality (p = 0.01) and worse satisfaction with breast (p depression, body image, sexuality, and health-related quality of life. This single-center study shows that mastectomy with immediate breast reconstruction may protect breast cancer patients from a period of psychosocial distress, poor body image, and diminished sexual well-being compared with those waiting for delayed breast reconstruction. In patients who are oncologically eligible and strongly interested in breast reconstruction, efforts should be made to provide immediate breast reconstruction to decrease the interval of psychosocial distress, poor body image, and impaired sexuality.

  12. Diffusion-weighted imaging of breast tumours at 3 Tesla and 7 Tesla: a comparison.

    Science.gov (United States)

    Gruber, S; Minarikova, L; Pinker, K; Zaric, O; Chmelik, M; Strasser, B; Baltzer, P; Helbich, T; Trattnig, S; Bogner, W

    2016-05-01

    To compare bilateral diffusion-weighted MR imaging (DWI) at 3 T and 7 T in the same breast tumour patients. Twenty-eight patients were included in this IRB-approved study (mean age 56 ± 16 years). Before contrast-enhanced imaging, bilateral DWI with b = 0 and 850 s/mm(2) was performed in 2:56 min (3 T) and 3:48 min (7 T), using readout-segmented echo planar imaging (rs-EPI) with a 1.4 × 1.4 mm(2) (3 T)/0.9 × 0.9 mm(2) (7 T) in-plane resolution. Apparent diffusion coefficients (ADC), signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were assessed. Twenty-eight lesions were detected (18 malignant, 10 benign). CNR and SNR were comparable at both field strengths (p > 0.3). Mean ADC values at 7 T were 4-22% lower than at 3 T (p ≤ 0.03). An ADC threshold of 1.275 × 10(-3) mm(2)/s resulted in a diagnostic specificity of 90% at both field strengths. The sensitivity was 94% and 100% at 3 T and 7 T, respectively. 7-T DWI of the breast can be performed with 2.4-fold higher spatial resolution than 3 T, without significant differences in SNR if compared to 3 T. • 7 T provides a 2.4-fold higher resolution in breast DWI than 3 T • 7 T DWI has a high diagnostic accuracy comparable to that at 3 T • At 7 T malignant lesions had 22 % lower ADC than at 3 T (p < 0.001).

  13. Contrast media in breast imaging.

    Science.gov (United States)

    Serrano, Luis F; Morrell, Brooke; Mai, Andrew

    2012-11-01

    Although mammography is the standard imaging modality for detection of breast cancer, magnetic resonance (MR) imaging is a valuable adjunct and, in certain cases, is the imaging of choice. Contrast-enhanced breast MR imaging provides a noninvasive means of staging disease, assessing posttreatment response, and screening of high-risk patients with genetic predispositions. Additional indications for MR mammography include lesion characterization, contralateral breast evaluation in patients with proved malignancy, and identifying primary malignancy in patients with axillary nodal disease. There are several competing factors that influence the quality of the study. Finding the right balance is the key to providing high-quality images that can be accurately interpreted. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for Breast MR imaging (DETECT Trial).

    Science.gov (United States)

    Martincich, Laura; Faivre-Pierret, Matthieu; Zechmann, Christian M; Corcione, Stefano; van den Bosch, Harrie C M; Peng, Wei-Jun; Petrillo, Antonella; Siegmann, Katja C; Heverhagen, Johannes T; Panizza, Pietro; Gehl, Hans-Björn; Diekmann, Felix; Pediconi, Federica; Ma, Lin; Gilbert, Fiona J; Sardanelli, Francesco; Belli, Paolo; Salvatore, Marco; Kreitner, Karl-Friedrich; Weiss, Claudia M; Zuiani, Chiara

    2011-02-01

    To intraindividually compare 0.1 mmol/kg doses of gadobenate dimeglumine and gadopentetate dimeglumine for contrast material-enhanced breast magnetic resonance (MR) imaging by using a prospective, multicenter double-blind, randomized protocol. Institutional review board approval and patient informed consent were obtained. One hundred sixty-two women (mean age, 52.8 years ± 12.3 [standard deviation]) enrolled at 17 sites in Europe and China between July 2007 and May 2009 underwent at least one breast MR imaging examination at 1.5 T by using three-dimensional spoiled gradient-echo sequences. Of these, 151 women received both contrast agents in randomized order in otherwise identical examinations separated by more than 2 but less than 7 days. Images, acquired at 2-minute or shorter intervals after contrast agent injection, were evaluated independently by three blinded radiologists unaffiliated with enrollment centers. Histopathologic confirmation was available for all malignant lesions (n = 144), while benign lesions were confirmed either by using histopathologic examination (n = 52) or by at least 12-month diagnostic follow-up (n = 20) with mammography and/or ultrasonography. Determinations of malignant lesion detection rates and diagnostic performance (sensitivity, specificity, accuracy, positive predictive value [PPV], and negative predictive value [NPV]) were performed and compared (McNemar and Wald tests). A full safety assessment was performed. Significant superiority for gadobenate dimeglumine was noted by readers 1, 2, and 3 for malignant lesion detection rate (91.7%, 93.1%, 94.4% vs 79.9%, 80.6%, 83.3%, respectively; P ≤ .0003). Readers 1, 2, and 3 reported significantly superior diagnostic performance (sensitivity, specificity, and accuracy) for breast cancer detection with gadobenate dimeglumine (91.1%, 94.5%, 95.2% vs 81.2%, 82.6%, 84.6%; 99.0%, 98.2%, 96.9% vs 97.8%, 96.9%, 93.8%; 98.2%, 97.8%, 96.7% vs 96.1%, 95.4%, 92.8%, respectively; P ≤ .0094

  15. Comparison of acquisition parameters and breast dose in digital mammography and screen-film mammography in the American College of Radiology Imaging Network digital mammographic imaging screening trial.

    Science.gov (United States)

    Hendrick, R Edward; Pisano, Etta D; Averbukh, Alice; Moran, Catherine; Berns, Eric A; Yaffe, Martin J; Herman, Benjamin; Acharyya, Suddhasatta; Gatsonis, Constantine

    2010-02-01

    The purpose of our study was to compare the technical performance of full-field digital mammography (FFDM) and screen-film mammography. The American College of Radiology Imaging Network Digital Mammographic Imaging Screening Trial enrolled 49,528 women to compare FFDM and screen-film mammography for screening. For quality assurance purposes, technical parameters including breast compression force, compressed breast thickness, mean glandular dose, and the number of additional views needed for complete breast coverage were recorded and analyzed for both FFDM and screen-film mammography on approximately 10% of study subjects at each site. Technical data were compiled on 5,102 study subjects at 33 sites. Clean data were obtained for 4,366 (88%) of those cases. Mean compression force was 10.7 dN for screen-film mammography and 10.1 dN for FFDM (5.5% difference, p film mammography and 5.4 cm for FFDM (1.7% difference, p film mammography and 1.86 mGy for FFDM, 22% lower for digital than screen-film mammography, with sizeable variations among digital manufacturers. Twelve percent of screen-film mammography cases required more than the normal four views, whereas 21% of FFDM cases required more than the four normal views to cover all breast tissue. When extra views were included, mean glandular dose per subject was 4.15 mGy for FFDM and 4.98 mGy for screen-film mammography, 17% lower for FFDM than screen-film mammography. Our results show that differences between screen-film mammography and FFDM in compression force and indicated compressed breast thickness were small. On average, FFDM had 22% lower mean glandular dose than screen-film mammography per acquired view, with sizeable variations in average FFDM doses by manufacturer.

  16. Evaluation of Residual Cellularity and Proliferation on Preoperatively Treated Breast Cancer: A Comparison between Image Analysis and Light Microscopy Analysis

    Directory of Open Access Journals (Sweden)

    Valentina Corletto

    1998-01-01

    Full Text Available Histopathology has been suggested as a reliable method for tumour reduction evaluation of preoperatively treated breast cancer. Immunocytochemistry can be used to enhance the visibility of residual tumour cellularity and in the evaluation of its proliferative activity. We compared Image Analysis (IA with Light Microscopy Analysis (LMA on sections of breast carcinomas treated with preoperative chemo‐ or chemo/radiotherapy in the evaluation of the Neoplastic Cell Density (NCD (69 cases and the Proliferation Index (PI (35 cases. NCD was expressed as the immunoreactive area to cytokeratin over the total original neoplastic area and PI was expressed as the number of immunostained tumoural nuclei with MIB1 MoAb over the total of tumoural nuclei. The intraobserver agreement and that between IA and LMA for both indices were estimated by the common (Kw and the jackknife weighted kappa statistic (K˜w. The extent of agreement of each considered category was also assessed by means of the category‐specific kappa statistics (Kcs. The intraobserver agreement within LMA for NCD and PI and that between IA and LMA for PI were both satisfactory. Upon evaluation of the NCD, the agreement between IA and LMA showed unsatisfactory results, especially when the ratio between the residual tumour cells and the background was critical.

  17. Alternative screening for women with dense breasts: breast-specific gamma imaging (molecular breast imaging).

    Science.gov (United States)

    Holbrook, Anna; Newel, Mary S

    2015-02-01

    OBJECTIVE. Given mammography's limitations in evaluating dense breasts, examination with breast-specific gamma imaging (BSGI)-also called molecular breast imaging (MBI)-has been proposed. We review the literature pertinent to the performance of BSGI in patients with dense breasts. CONCLUSION. Many studies have reported the sensitivity of BSGI in finding cancers even in dense breasts. However, BSGI has not yet been validated as an effective screening tool in large prospective studies. In addition, whole-body dose remains a significant concern.

  18. Assessment of bone metastasis using nuclear medicine imaging in breast cancer: comparison between PET/CT and bone scan

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyoun; Ahn, Byeong Cheol; Kang, Sung Min [Kyungpook National University Medical School, Daegu (Korea, Republic of)] (and others)

    2007-02-15

    Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with {sup 18}F-2-deoxyglucose (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. The study group comprised 157 women patients (range: 28 {approx} 78 years old, mean {+-} SD = 49.5 {+-}8.5) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Six patients (4.4%) showed metastatic bone lesions. Four (66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients (100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion (4.79 {+-} 3.32 vs 1

  19. Magnetic resonance imaging of invasive breast cancer

    African Journals Online (AJOL)

    G5

    graphic findings, and screening for breast cancer in younger women with familial breast cancer. Interpretation of MR images requires a meticulous imaging technique including the use of contrast enhancement and fat suppression MR sequences using a good breast coil. Introduction. The role of MR imaging in the diagno-.

  20. Mechanical imaging of the breast.

    Science.gov (United States)

    Egorov, Vladimir; Sarvazyan, Armen P

    2008-09-01

    In this paper, we analyze the physical basis for elasticity imaging of the breast by measuring breast skin stress patterns that result from a force sensor array pressed against the breast tissue. Temporal and spatial changes in the stress pattern allow detection of internal structures with different elastic properties and assessment of geometrical and mechanical parameters of these structures. The method entitled mechanical imaging is implemented in the breast mechanical imager (BMI), a compact device consisting of a hand held probe equipped with a pressure sensor array, a compact electronic unit, and a touchscreen laptop computer. Data acquired by the BMI allows calculation of size, shape, consistency/hardness, and mobility of detected lesions. The BMI prototype has been validated in laboratory experiments on tissue models and in an ongoing clinical study. The obtained results prove that the BMI has potential to become a screening and diagnostic tool that could largely supplant clinical breast examination through its higher sensitivity, quantitative record storage, ease-of-use, and inherent low cost.

  1. Comparison of Magnetic Resonance Imaging and Computed Tomography for Breast Target Volume Delineation in Prone and Supine Positions

    Energy Technology Data Exchange (ETDEWEB)

    Pogson, Elise M. [Centre for Medical Radiation Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong (Australia); Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); Ingham Institute for Applied Medical Research, Liverpool (Australia); Delaney, Geoff P. [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); Ingham Institute for Applied Medical Research, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); School of Medicine, University of Western Sydney, Sydney (Australia); Ahern, Verity [Crown Princess Mary Cancer Care Centre, Westmead Hospital, Westmead (Australia); Boxer, Miriam M. [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); Chan, Christine [Department of Radiology, Liverpool Hospital, Liverpool (Australia); David, Steven [Peter MacCallum Cancer Centre, Melbourne (Australia); Dimigen, Marion [Department of Radiology, Liverpool Hospital, Liverpool (Australia); Harvey, Jennifer A. [School of Medicine, University of Queensland, Herston (Australia); Princess Alexandra Hospital, Woolloongabba (Australia); Koh, Eng-Siew [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); Ingham Institute for Applied Medical Research, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); Lim, Karen [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); South Western Sydney Clinical School, University of New South Wales, Sydney (Australia); Papadatos, George [Liverpool and Macarthur Cancer Therapy Centres, Liverpool (Australia); and others

    2016-11-15

    Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modality did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.

  2. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    Energy Technology Data Exchange (ETDEWEB)

    Batumalai, Vikneswary, E-mail: vikneswary.batumalai@sswahs.nsw.gov.au [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Quinn, Alexandra; Jameson, Michael [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Delaney, Geoff [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Liverpool, New South Wales (Australia); School of Medicine, University of Western Sydney, New South Wales (Australia); Holloway, Lois [Liverpool Cancer Therapy Centre and Ingham Institute, Liverpool, New South Wales (Australia); South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); School of Physics, University of Sydney, Sydney, New South Wales (Australia)

    2015-03-15

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.

  3. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    Science.gov (United States)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  4. A review of biomechanically informed breast image registration

    Science.gov (United States)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  5. Comparison of Monofractal, Multifractal and gray level Co-occurrence matrix algorithms in analysis of Breast tumor microscopic images for prognosis of distant metastasis risk.

    Science.gov (United States)

    Rajković, Nemanja; Kolarević, Daniela; Kanjer, Ksenija; Milošević, Nebojša T; Nikolić-Vukosavljević, Dragica; Radulovic, Marko

    2016-10-01

    Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66-0.77) then for fractal features (0.60-0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52-55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.

  6. Breast image registration and deformation modeling.

    Science.gov (United States)

    Boehler, Tobias; Zoehrer, Fabian; Harz, Markus; Hahn, Horst Karl

    2012-01-01

    Image-based examination of the breast facilitates the detection of breast diseases, particularly of present benign and malignant lesions. For computer-aided processing of serial and multimodal clinical data, both for visual correlation and quantitative analysis, automated image-registration methods are an indispensable tool. The wide range of modalities and the high variability of breast appearance have led to a large diversity of proposed approaches for tissue deformation modeling and image registration. In this article, we review current developments in breast image registration techniques, and comment on their clinical relevance, individual capabilities, and open challenges.

  7. Breast Imaging after Breast Augmentation with Autologous Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Seo, Bo Kyung; Shim, Eddeum; Song, Sung Eun; Cho, Kyu Ran [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Yoon, Eul Sik [Korea University Ansan Hospital, Ansan (Korea, Republic of); Woo, Ok Hee [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2012-06-15

    The use of autologous tissue transfer for breast augmentation is an alternative to using foreign implant materials. The benefits of this method are the removal of unwanted fat from other body parts, no risk of implant rupture, and the same feel as real breast tissue. However, sometimes there is a dilemma about whether or not to biopsy for calcifications or masses detected after the procedure is completed. The purpose of this study is to illustrate the procedures of breast augmentation with autologous tissues, the imaging features of various complications, and the role of imaging in the diagnosis and management of complications and hidden breast diseases.

  8. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    OpenAIRE

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4...

  9. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images.

    Science.gov (United States)

    Wu, Shandong; Weinstein, Susan P; Conant, Emily F; Schnall, Mitchell D; Kontos, Despina

    2013-04-01

    Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Computerized analysis is increasingly used to quantify breast MRI features in applications such as computer-aided lesion detection and fibroglandular tissue estimation for breast cancer risk assessment. Automated segmentation of the whole-breast as an organ from the other parts imaged is an important step in aiding lesion localization and fibroglandular tissue quantification. For this task, identifying the chest wall line (CWL) is most challenging due to image contrast variations, intensity discontinuity, and bias field. In this work, the authors develop and validate a fully automated image processing algorithm for accurate delineation of the CWL in sagittal breast MRI. The CWL detection is based on an integrated scheme of edge extraction and CWL candidate evaluation. The edge extraction consists of applying edge-enhancing filters and an edge linking algorithm. Increased accuracy is achieved by the synergistic use of multiple image inputs for edge extraction, where multiple CWL candidates are evaluated by the dynamic time warping algorithm coupled with the construction of a CWL reference. Their method is quantitatively validated by a dataset of 60 3D bilateral sagittal breast MRI scans (in total 3360 2D MR slices) that span the full American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) breast density range. Agreement with manual segmentation obtained by an experienced breast imaging radiologist is assessed by both volumetric and boundary-based metrics, including four quantitative measures. In terms of breast volume agreement with manual segmentation, the overlay percentage expressed by the Dice's similarity coefficient is 95.0% and the difference percentage is 10.1%. More specifically, for the segmentation accuracy of the CWL boundary, the CWL overlay percentage is 92.7% and averaged deviation distance is 2.3 mm. Their method

  10. Assessment and Development of Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard

    . This implies that special care must be taken when the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might......, the distribution of the constitutive parameters is updated in each iteration based on a comparison between the measured signals and the signals computed by a full-wave electromagnetic solver for the assumed distribution of parameters. In this work, a study on development and improvement of the imaging algorithm...... used in the microwave tomographic imaging system is presented. Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels...

  11. Breast-Dedicated Radionuclide Imaging Systems.

    Science.gov (United States)

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  13. Breast MR Imaging in Newly Diagnosed Breast Cancer.

    Science.gov (United States)

    Gupta, Dipti; Billadello, Laura

    2017-05-01

    The role of breast MR imaging in preoperative evaluation of disease extent remains controversial. MR imaging increases detection of mammographically occult ipsilateral and contralateral disease, but the clinical impact of these incidental cancers in unknown. There are no randomized trials of recurrence or mortality as the primary end point. This missing evidence is needed before the role of extent of disease MR imaging can be outlined. There are specific clinical scenarios in which breast MR imaging plays a clear role. In most cases, the decision to obtain MR imaging depends on physician practice style and patient preference. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ryan; Storey, Pippa; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda [New York University Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York, NY (United States); Geppert, Christian [Siemens Medical Solutions USA Inc., New York, NY (United States)

    2013-11-15

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 x 1.1 x 1.1-1.6 mm{sup 3}), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P {<=} 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. (orig.)

  15. Comparison of Virtual Touch Tissue Quantification and Virtual Touch Tissue Imaging Quantification for diagnosis of solid breast tumors of different sizes.

    Science.gov (United States)

    Chen, Ying-Pei; Han, Ting; Wu, Rong; Yao, Ming-Hua; Xu, Guang; Zhao, Li-Xia; Liu, Hui; Pu, Huan; Fang, Yan

    2016-11-25

    Acoustic radiation force impulse imaging (ARFI) with Virtual Touch Tissue Quantification (VTQ) or Virtual Touch Tissue Imaging Quantification (VTIQ) measures shear wave velocity (SWV), which is proportional to tissue stiffness, a diagnostic parameter for malignancy. To compare the performance of VTQ and VTIQ in diagnosing solid breast tumors. Conventional ultrasound, VTQ and VTIQ were used to examine 246 solid breast tumors from 230 patients. Tumors were grouped according to size: 20 mm. Pathological diagnoses were via histological examination of biopsies. ROC curves were used to assess diagnostic performance and optimal cut-off points for VTQ and VTIQ. For all sizes, SWVVTQ and SWVVTIQ were higher for malignant versus benign tumors (P breast tumors. Although both methods have higher sensitivities in tumors≥10 mm, their overall diagnostic performance was similar for all sizes.

  16. A pilot study to evaluate assisted freehand ultrasound elasticity imaging in the sizing of early breast cancer: a comparison of B-mode and AFUSON elasticity ultrasound with histopathology measurements

    Science.gov (United States)

    English, R E; Li, J; Parker, A J C; Roskell, D; Adams, R F; Parulekar, V; Baldwin, J; Chi, Y; Noble, J A

    2011-01-01

    Objective This pilot study investigates the role of assisted-freehand ultrasound (AFUSON) elasticity imaging of the breast in assessing the contour, size and area of 23 early breast cancers by making comparison of AFUSON with the equivalent B-mode ultrasound images and gold standard histopathology slides. Methods The B-mode, AFUSON and digitised histopathology slides of three early breast cancers were compared for contour, size and area with histopathology scans. AFUSON features that corresponded to areas of known malignant change on the histopathology slides were regarded as diagnostic. These diagnostic criteria were then applied to the B-mode and AFUSON elasticity images of all 23 breast cancers in the pilot study without having the availability of the histopathology scans for reference. Corresponding diameters were measured and the results were compared with the equivalent measurements on the scans of the histology slides. The results were tabulated in histogram form. Diagnostic confidence levels were evaluated. Results Size dimension accuracy increased from 66% using B-mode alone to 82% using combined B-mode and AFUSON elasticity images. Tumour area accuracy was also increased. A small number of cases had a striking visual similarity of shape on AFUSON elasticity scans and histopathology slides. Conclusion In spite of the shortfalls in this study, AFUSON elasticity imaging was capable of acquiring some high-quality images that showed strong correlation between AFUSON elasticity and scans of histology slides. Further studies will be carried out to refine the technique and determine if it has a role in the diagnosis and management of breast cancer. PMID:21632651

  17. A pilot study to evaluate assisted freehand ultrasound elasticity imaging in the sizing of early breast cancer: a comparison of B-mode and AFUSON elasticity ultrasound with histopathology measurements.

    Science.gov (United States)

    English, R E; Li, J; Parker, A J C; Roskell, D; Adams, R F; Parulekar, V; Baldwin, J; Chi, Y; Noble, J A

    2011-11-01

    This pilot study investigates the role of assisted-freehand ultrasound (AFUSON) elasticity imaging of the breast in assessing the contour, size and area of 23 early breast cancers by making comparison of AFUSON with the equivalent B-mode ultrasound images and gold standard histopathology slides. The B-mode, AFUSON and digitised histopathology slides of three early breast cancers were compared for contour, size and area with histopathology scans. AFUSON features that corresponded to areas of known malignant change on the histopathology slides were regarded as diagnostic. These diagnostic criteria were then applied to the B-mode and AFUSON elasticity images of all 23 breast cancers in the pilot study without having the availability of the histopathology scans for reference. Corresponding diameters were measured and the results were compared with the equivalent measurements on the scans of the histology slides. The results were tabulated in histogram form. Diagnostic confidence levels were evaluated. Size dimension accuracy increased from 66% using B-mode alone to 82% using combined B-mode and AFUSON elasticity images. Tumour area accuracy was also increased. A small number of cases had a striking visual similarity of shape on AFUSON elasticity scans and histopathology slides. In spite of the shortfalls in this study, AFUSON elasticity imaging was capable of acquiring some high-quality images that showed strong correlation between AFUSON elasticity and scans of histology slides. Further studies will be carried out to refine the technique and determine if it has a role in the diagnosis and management of breast cancer.

  18. Comparison of breast percent density estimation from raw versus processed digital mammograms

    Science.gov (United States)

    Li, Diane; Gavenonis, Sara; Conant, Emily; Kontos, Despina

    2011-03-01

    We compared breast percent density (PD%) measures obtained from raw and post-processed digital mammographic (DM) images. Bilateral raw and post-processed medio-lateral oblique (MLO) images from 81 screening studies were retrospectively analyzed. Image acquisition was performed with a GE Healthcare DS full-field DM system. Image post-processing was performed using the PremiumViewTM algorithm (GE Healthcare). Area-based breast PD% was estimated by a radiologist using a semi-automated image thresholding technique (Cumulus, Univ. Toronto). Comparison of breast PD% between raw and post-processed DM images was performed using the Pearson correlation (r), linear regression, and Student's t-test. Intra-reader variability was assessed with a repeat read on the same data-set. Our results show that breast PD% measurements from raw and post-processed DM images have a high correlation (r=0.98, R2=0.95, pclinically significant in breast cancer risk stratification. Therefore, it may be feasible to use post-processed DM images for breast PD% estimation in clinical settings. Since most breast imaging clinics routinely use and store only the post-processed DM images, breast PD% estimation from post-processed data may accelerate the integration of breast density in breast cancer risk assessment models used in clinical practice.

  19. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma.

    Science.gov (United States)

    Jochelson, Maxine S; Dershaw, D David; Sung, Janice S; Heerdt, Alexandra S; Thornton, Cynthia; Moskowitz, Chaya S; Ferrara, Jessica; Morris, Elizabeth A

    2013-03-01

    To determine feasibility of performing bilateral dual-energy (DE) contrast agent-enhanced (CE) digital mammography and to evaluate its performance compared with conventional digital mammography and breast magnetic resonance (MR) imaging in women with known breast cancer. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained. Patient accrual began in March 2010 and ended in August 2011. Mean patient age was 49.6 years (range, 25-74 years). Feasibility was evaluated in 10 women with newly diagnosed breast cancer who were injected with 1.5 mL per kilogram of body weight of iohexol and imaged between 2.5 and 10 minutes after injection. Once feasibility was confirmed, 52 women with newly diagnosed cancer who had undergone breast MR imaging gave consent to undergo DE CE digital mammography. Positive findings were confirmed with pathologic findings. Feasibility was confirmed with no adverse events. Visualization of tumor enhancement was independent of timing after contrast agent injection for up to 10 minutes. MR imaging and DE CE digital mammography both depicted 50 (96%) of 52 index tumors; conventional mammography depicted 42 (81%). Lesions depicted by using DE CE digital mammography ranged from 4 to 67 mm in size (median, 17 mm). DE CE digital mammography depicted 14 (56%) of 25 additional ipsilateral cancers compared with 22 (88%) of 25 for MR imaging. There were two false-positive findings with DE CE digital mammography and 13 false-positive findings with MR imaging. There was one contralateral cancer, which was not evident with either modality. Bilateral DE CE digital mammography was feasible and easily accomplished. It was used to detect known primary tumors at a rate comparable to that of MR imaging and higher than that of conventional digital mammography. DE CE digital mammography had a lower sensitivity for detecting additional ipsilateral cancers than did MR imaging, but the specificity was

  20. Magnetic Resonance Imaging Versus 3-Dimensional Laser Scanning for Breast Volume Assessment After Breast Reconstruction.

    Science.gov (United States)

    Howes, Benjamin H L; Watson, David I; Fosh, Beverley; Yip, Jia Miin; Kleinig, Pakan; Dean, Nicola Ruth

    2017-04-01

    There are several methods available for measuring breast volume in the clinical setting, but the comparability and accuracy of different methods is not well described. The ideal breast volume measurement technique should be low cost, comfortable for the patient, have no ionizing radiation and be non-invasive. Prospective cohort study comparing a 3-dimensional (3D) laser scanner versus noncontrast magnetic resonance imaging (MRI) for breast volume assessment. Subjects were women undergoing breast reconstruction with autologous fat graft. Both types of scan were performed the day before fat grafting and at 6 months postoperatively. Pearson correlations and Bland-Altman tests were performed to compare the assessment methods. Eighteen patients underwent preoperative breast MRI and 3D laser scanning. Eighteen patients also underwent assessment 6 months after surgery. The total number of breasts scanned for comparison was 36, with a total of 72 comparisons for analysis. There was a strong linear association between the 2 methods using a Pearson correlation (r = 0.79; P breast volume. Given the convenience of laser scanning and potential for lower cost compared with MRI, this technique should be considered for quantifying outcomes after complex breast reconstruction when the equipment is available.

  1. Detection of breast cancer by soft-copy reading of digital mammograms: Comparison between a routine image-processing parameter and high-contrast parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Takeshi; Yabuuchi, Hidetake; Soeda, Hiroyasu; Matsuo, Yoshio; Okafuji, Takashi; Setoguchi, Taro; Hatakenaka, Masamitsu; Honda, Hiroshi (Dept. of Clinical Radiology, Graduate School of Medical Sciences, Kyushu Univ., Fukuoka (Japan)), e-mail: kamitani@radiol.med.kyushu-u.ac.jp; Sakai, Shuji (Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu Univ., Fukuoka (Japan)); Ishii, Nobuhide (Fuji Film Medical Co., Ltd., Fukuoka (Japan))

    2010-01-15

    Background: Recent studies have reported the clinical usefulness of the soft-copy reading of mammograms. However, image-processing parameters for soft-copy reading of digital mammograms have not been established. Purpose: To compare observer performance in detecting breast cancer by soft-copy reading of digital mammograms using a routine image-processing parameter versus each of several high-contrast parameters. Material and Methods: The mammograms of 154 breasts, including 48 abnormal breasts with breast cancer and 106 normal breasts, were examined. Cancers were classified into 34 mass-dominant cancers, 11 microcalcification-dominant cancers, two cancers showing only architectural distortion, and one cancer without abnormal findings. All mammograms were performed using a computed radiography (CR) system. Each image was processed using GA (1.2), which was the contrast parameter recommended by the manufacturer for hard-copy film, GA (1.4), GA (1.6), and GA (1.8). These images were displayed on 5-megapixel (M) liquid-crystal display monitors. Five experienced radiologists classified them into BI-RADS category 1-2 or 3-5, and were also asked to rate the images on a scale of 0 to 100 for the likelihood of the presence of masses and microcalcifications in each breast. Results: In mass-dominant cancers of dense breast tissue, the mean sensitivities of GA (1.2), GA (1.4), GA (1.6), and GA (1.8) were 32.7, 38.2, 36.4, and 40.0, and the AZ values were 0.67, 0.73, 0.71, and 0.73, respectively; in microcalcification-dominant cancers, the mean sensitivities were 80.0, 74.5, 80.0, and 78.2, respectively; however, there were no significant differences among them. Conclusion: High-contrast parameters tended to show relatively high sensitivity and AZ values in the detection of masses in dense breast tissue, but relatively low sensitivity for microcalcifications

  2. Imaging Surveillance After Primary Breast Cancer Treatment

    Science.gov (United States)

    Lam, Diana L.; Houssami, Nehmat; Lee, Janie M.

    2017-01-01

    OBJECTIVE Current clinical guidelines are consistent in supporting annual mammography for women after treatment of primary breast cancer. Surveillance imaging beyond standard digital mammography, including digital breast tomosynthesis (DBT), breast ultrasound, and MRI, may improve outcomes. This article reviews the evidence on the performance and effectiveness of breast imaging modalities available for surveillance after treatment of sporadic unilateral primary breast cancer and identifies additional factors to be considered when selecting an imaging surveillance regimen. CONCLUSION Evidence review supports the use of mammography for surveillance after primary breast cancer treatment. Variability exists in guideline recommendations for surveillance initiation, interval, and cessation. DBT offers the most promise as a potential modality to replace standard digital mammography as a front-line surveillance test; a single published study to date has shown a significant decrease in recall rates compared with standard digital mammography alone. Most guidelines do not support the use of whole-breast ultrasound in breast cancer surveillance, and further studies are needed to define the characteristics of women who may benefit from MRI surveillance. The emerging evidence about surveillance imaging outcomes suggests that additional factors, including patient and imaging characteristics, tumor biology and gene expression profile, and choice of treatment, warrant consideration in selecting personalized posttreatment imaging surveillance regimens. PMID:28075622

  3. Which supplementary imaging modality should be used for breast ultrasonography? Comparison of the diagnostic performance of elastography and computer-aided diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si Eun; Moon, Ji Eun Ho; Kim, Eun Kyung; Yoon, Jung Hyun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The aim of this study was to evaluate and compare the diagnostic performance of grayscale ultrasonography (US), US elastography, and US computer-aided diagnosis (US-CAD) in the differential diagnosis of breast masses. A total of 193 breast masses in 175 consecutive women (mean age, 46.4 years) from June to August 2015 were included. US and elastography images were obtained and recorded. A US-CAD system was applied to the grayscale sonograms, which were automatically analyzed and visualized in order to generate a final assessment. The final assessments of breast masses were based on the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) categories, while elasticity scores were assigned using a 5-point scoring system. The diagnostic performance of grayscale US, elastography, and US-CAD was calculated and compared. Of the 193 breast masses, 120 (62.2%) were benign and 73 (37.8%) were malignant. Breast masses had significantly higher rates of malignancy in BI-RADS categories 4c and 5, elastography patterns 4 and 5, and when the US-CAD assessment was possibly malignant (all P<0.001). Elastography had higher specificity (40.8%, P=0.042) than grayscale US. US-CAD showed the highest specificity (67.5%), positive predictive value (PPV) (61.4%), accuracy (74.1%), and area under the curve (AUC) (0.762, all P<0.05) among the three diagnostic tools. US-CAD had higher values for specificity, PPV, accuracy, and AUC than grayscale US or elastography. Computer-based analysis based on the morphologic features of US may be very useful in improving the diagnostic performance of breast US.

  4. Which supplementary imaging modality should be used for breast ultrasonography? Comparison of the diagnostic performance of elastography and computer-aided diagnosis

    Directory of Open Access Journals (Sweden)

    Si Eun Lee

    2017-04-01

    Full Text Available Purpose The aim of this study was to evaluate and compare the diagnostic performance of grayscale ultrasonography (US, US elastography, and US computer-aided diagnosis (US-CAD in the differential diagnosis of breast masses. Methods A total of 193 breast masses in 175 consecutive women (mean age, 46.4 years from June to August 2015 were included. US and elastography images were obtained and recorded. A US-CAD system was applied to the grayscale sonograms, which were automatically analyzed and visualized in order to generate a final assessment. The final assessments of breast masses were based on the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS categories, while elasticity scores were assigned using a 5-point scoring system. The diagnostic performance of grayscale US, elastography, and US-CAD was calculated and compared. Results Of the 193 breast masses, 120 (62.2% were benign and 73 (37.8% were malignant. Breast masses had significantly higher rates of malignancy in BI-RADS categories 4c and 5, elastography patterns 4 and 5, and when the US-CAD assessment was possibly malignant (all P<0.001. Elastography had higher specificity (40.8%, P=0.042 than grayscale US. US-CAD showed the highest specificity (67.5%, positive predictive value (PPV (61.4%, accuracy (74.1%, and area under the curve (AUC (0.762, all P<0.05 among the three diagnostic tools. Conclusion US-CAD had higher values for specificity, PPV, accuracy, and AUC than grayscale US or elastography. Computer-based analysis based on the morphologic features of US may be very useful in improving the diagnostic performance of breast US.

  5. Digital Breast Imaging Warehouse for Research and Clinical Decision Support

    National Research Council Canada - National Science Library

    Zhang, Hong

    2001-01-01

    Breast imaging is used intensively for breast cancer detection. As routine screening examination becomes more popular for women over 40, tremendous amount of breast imaging data has been accumulated...

  6. Computerized image analysis: estimation of breast density on mammograms.

    Science.gov (United States)

    Zhou, C; Chan, H P; Petrick, N; Helvie, M A; Goodsitt, M M; Sahiner, B; Hadjiiski, L M

    2001-06-01

    An automated image analysis tool is being developed for the estimation of mammographic breast density. This tool may be useful for risk estimation or for monitoring breast density change in prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms from 65 patients was used to evaluate our approach. Breast density analysis was performed on the digitized mammograms in three stages. First, the breast region was segmented from the surrounding background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic range compression technique was applied to the breast image to reduce the range of the gray level distribution in the low frequency background and to enhance the differences in the characteristic features of the gray level histogram for breasts of different densities. Third, rule-based classification was used to classify the breast images into four classes according to the characteristic features of their gray level histogram. For each image, a gray level threshold was automatically determined to segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage of the breast area was then estimated. To evaluate the performance of the algorithm, the computer segmentation results were compared to manual segmentation with interactive thresholding by five radiologists. A "true" percent dense area for each mammogram was obtained by averaging the manually segmented areas of the radiologists. We found that the histograms of 6% (8 CC and 8 MLO views) of the breast regions were misclassified by the computer, resulting in poor segmentation of the dense region. For the images with correct classification, the correlation between the computer-estimated percent dense area and the "truth" was 0.94 and 0.91, respectively, for CC and MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists' visual estimates for the same images ranged from 0.1% to 11%. The

  7. Imaging Breast Density: Established and Emerging Modalities

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2015-12-01

    Full Text Available Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature.

  8. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...... and conductivity in the breast. In this paper two nonlinear tomographic algorithms are compared – one is a single-frequency algorithm and the other is a time-domain algorithm....

  9. Body Image and Body Type Preferences in St. Kitts, Caribbean: A Cross-Cultural Comparison with U.S. Samples regarding Attitudes towards Muscularity, Body Fat, and Breast Size

    Directory of Open Access Journals (Sweden)

    Peter B. Gray

    2012-07-01

    Full Text Available We investigated body image in St. Kitts, a Caribbean island where tourism, international media, and relatively high levels of body fat are common. Participants were men and women recruited from St. Kitts (n = 39 and, for comparison, U.S. samples from universities (n = 618 and the Internet (n = 438. Participants were shown computer generated images varying in apparent body fat level and muscularity or breast size and they indicated their body type preferences and attitudes. Overall, there were only modest differences in body type preferences between St. Kitts and the Internet sample, with the St. Kitts participants being somewhat more likely to value heavier women. Notably, however, men and women from St. Kitts were more likely to idealize smaller breasts than participants in the U.S. samples. Attitudes regarding muscularity were generally similar across samples. This study provides one of the few investigations of body preferences in the Caribbean.

  10. Clinical Photoacoustic Breast Imaging: The Twente experience

    NARCIS (Netherlands)

    Heijblom, M.; Steenbergen, Wiendelt; Manohar, Srirang

    2015-01-01

    Globally, breast cancer is the most frequently occurring malignancy in women and the leading cause of cancer deaths, with up to half a million women dying of the disease in 2008. Early detection and accurate diagnosis of breast cancer is crucial for optimizing survival chances, with imaging

  11. OPTIMIZATION OF DIAGNOSTIC IMAGING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Velichko

    2015-01-01

    Full Text Available The paper presents the results of breast imaging for 47200 women. Breast cancer was detected in 862 (1.9% patients, fibroadenoma in 1267 (2.7% patients and isolated breast cysts in 1162 (2.4% patients. Different types of fibrocystic breast disease (adenosis, diffuse fibrocystic changes, local fibrosis and others were observed in 60.1% of women. Problems of breast cancer visualization during mammography, characterized by the appearance of fibrocystic mastopathy (sclerosing adenosis, fibrous bands along the ducts have been analyzed. Data on the development of diagnostic algorithms including the modern techniques for ultrasound and interventional radiology aimed at detecting early breast cancer have been presented.  

  12. Silicone breast phantoms for elastographic imaging evaluation.

    Science.gov (United States)

    Kashif, Amer S; Lotz, Thomas F; McGarry, Matthew D; Pattison, Adam J; Chase, James G

    2013-06-01

    Breast cancer is a major public health issue for women, and early detection significantly increases survival rate. Currently, there is increased research interest in elastographic soft-tissue imaging techniques based on the correlation between pathology and mechanical stiffness. Anthropomorphic breast phantoms are critical for ex vivo validation of emerging elastographic technologies. This research develops heterogeneous breast phantoms for use in testing elastographic imaging modalities. Mechanical property estimation of eight different elastomers is performed to determine storage moduli (E') and damping ratios (ζ) using a dynamic mechanical analyzer. Dynamic compression testing was carried out isothermally at room temperature over a range of 4-50 Hz. Silicone compositions with physiologically realistic storage modulus were chosen for mimicking skin adipose, cancerous tumors, and pectoral muscles and 13 anthropomorphic breast phantoms were constructed for ex vivo trials of digital image elastotomography (DIET) breast cancer screening system. A simpler fabrication was used to assess the possibility of multiple tumor detection using magnetic resonance elastography (MRE). Silicone materials with ranges of storage moduli (E') from 2 to 570 kPa and damping ratios (ζ) from 0.03 to 0.56 were identified. The resulting phantoms were tested in two different elastographic breast cancer diagnostic modalities. A significant contrast was successfully identified between healthy tissues and cancerous tumors both in MRE and DIET. The phantoms presented promise aid to researchers in elastographic imaging modalities for breast cancer detection and provide a foundation for silicone based phantom materials for mimicking soft tissues of other human organs.

  13. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    Science.gov (United States)

    Jung, Haijo; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4 scintillator screen, a CCD (Charge Coupled Device) camera coupled to optical magnification lenses, and a personal computer. In preliminary studies, a spatial resolution test pattern and glass capillary filled with air bubbles were imaged to evaluate the resOolution characteristics and coherence-based contrast enhancement. Both the spatial resolution and image quality of the proposed system were compared with those of a conventional mammography system in order to establish the characteristic advantages of this approach. The images obtained with the proposed system showed a resolution of at least 25 µm on the test pattern with much better contrast, while the images of the capillary filled with air bubbles revealed coherence-based edge enhancement. This result shows that the coherence-based contrast imaging system, which emphasizes the refraction effect from the edge of materials of different refractive indexes, is applicable to imaging studies in fundamental medicine and biology, although further research works will be required before it can be used for clinical applications. PMID:15744811

  14. Comparison of unmonochromatized synchrotron radiation and conventional X-rays in the imaging of mammographic phantom and human breast specimens: a preliminary result.

    Science.gov (United States)

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-02-28

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4 scintillator screen, a CCD (Charge Coupled Device) camera coupled to optical magnification lenses, and a personal computer. In preliminary studies, a spatial resolution test pattern and glass capillary filled with air bubbles were imaged to evaluate the resOolution characteristics and coherence-based contrast enhancement. Both the spatial resolution and image quality of the proposed system were compared with those of a conventional mammography system in order to establish the characteristic advantages of this approach. The images obtained with the proposed system showed a resolution of at least 25 microm on the test pattern with much better contrast, while the images of the capillary filled with air bubbles revealed coherence-based edge enhancement. This result shows that the coherence-based contrast imaging system, which emphasizes the refraction effect from the edge of materials of different refractive indexes, is applicable to imaging studies in fundamental medicine and biology, although further research works will be required before it can be used for clinical applications.

  15. Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusion-weighted and T2-weighted MR imaging: comparison with mammography and dynamic contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Hidetake; Matsuo, Yoshio; Sunami, Shunya; Kamitani, Takeshi; Kawanami, Satoshi; Setoguchi, Taro; Hatakenaka, Masamitsu; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Sakai, Shuji [Kyushu University, Department of Health Sciences, Graduate School of Medical Sciences, Fukuoka (Japan); Kubo, Makoto [Kyushu University, Department of Clinical Oncology and Surgery, Graduate School of Medical Sciences, Fukuoka (Japan); Tokunaga, Eriko [Kyushu University, Department of Surgery and Science, Graduate School of Medical Sciences, Fukuoka (Japan); Yamamoto, Hidetaka [Kyushu University, Department of Anatomic Pathology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2011-01-15

    To compare the detectability of non-palpable breast cancer in asymptomatic women by using mammography (MMG), dynamic contrast-enhanced MR imaging (DCE-MRI) and unenhanced MR imaging with combined diffusion-weighted and T2-weighted images (DWI + T2WI). Forty-two lesions in 42 patients with non-palpable breast cancer in asymptomatic women were enrolled. For the reading test, we prepared a control including 13 normal and 8 benign cases. Each imaging set included biplane MMG, DCE-MRI and DWI + T2WI. Five readers were asked to rate the images on a scale of 0 to 100 for the likelihood of the presence of cancer and the BI-RADS category. Confidence level results were used to construct receiver operating characteristic analysis. Sensitivity and specificity were calculated for each technique. DWI + T2WI showed higher observer performances (area under the curve, AUC, 0.73) and sensitivity (50%) for the detection of non-palpable breast cancer than MMG alone (AUC 0.64; sensitivity 40%) but lower than those of DCE-MRI (AUC 0.93; sensitivity 86%). A combination of MMG and DWI + T2WI exhibited higher sensitivity (69%) compared with that of MMG alone (40%). DWI + T2WI could be useful in screening breast cancer for patients who cannot receive contrast medium and could be used as a new screening technique for breast cancer. (orig.)

  16. Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusion-weighted and T2-weighted MR imaging: comparison with mammography and dynamic contrast-enhanced MR imaging.

    Science.gov (United States)

    Yabuuchi, Hidetake; Matsuo, Yoshio; Sunami, Shunya; Kamitani, Takeshi; Kawanami, Satoshi; Setoguchi, Taro; Sakai, Shuji; Hatakenaka, Masamitsu; Kubo, Makoto; Tokunaga, Eriko; Yamamoto, Hidetaka; Honda, Hiroshi

    2011-01-01

    To compare the detectability of non-palpable breast cancer in asymptomatic women by using mammography (MMG), dynamic contrast-enhanced MR imaging (DCE-MRI) and unenhanced MR imaging with combined diffusion-weighted and T2-weighted images (DWI+T2WI). Forty-two lesions in 42 patients with non-palpable breast cancer in asymptomatic women were enrolled. For the reading test, we prepared a control including 13 normal and 8 benign cases. Each imaging set included biplane MMG, DCE-MRI and DWI+T2WI. Five readers were asked to rate the images on a scale of 0 to 100 for the likelihood of the presence of cancer and the BI-RADS category. Confidence level results were used to construct receiver operating characteristic analysis. Sensitivity and specificity were calculated for each technique. DWI+T2WI showed higher observer performances (area under the curve, AUC, 0.73) and sensitivity (50%) for the detection of non-palpable breast cancer than MMG alone (AUC 0.64; sensitivity 40%) but lower than those of DCE-MRI (AUC 0.93; sensitivity 86%). A combination of MMG and DWI+T2WI exhibited higher sensitivity (69%) compared with that of MMG alone (40%). DWI+T2WI could be useful in screening breast cancer for patients who cannot receive contrast medium and could be used as a new screening technique for breast cancer.

  17. Comparison of readout segmented echo planar imaging (EPI) and EPI with reduced field‐of‐VIew diffusion‐weighted imaging at 3t in patients with breast cancer

    National Research Council Canada - National Science Library

    Park, Jin Young; Shin, Hee Jung; Shin, Ki Chang; Sung, Yu Sub; Choi, Woo Jung; Chae, Eun Young; Cha, Joo Hee; Kim, Hak Hee

    2015-01-01

    ...‐planar imaging (ss‐EPI), which is prone to susceptibility artifacts such as geometric distortion, signal dropout, and image blurring from gradient nonlinearity and eddy currents. Because the distortions in conventional ss‐EPI are mainly due to slow traversal through k ‐space along the phase‐encoding direction, it can be improved by accelerating k ‐space...

  18. Breast Microcalcification Detection Using Super-Resolution Ultrasound Image Reconstruction

    Science.gov (United States)

    2010-09-01

    imag- ing for breast microcalcification detection. Breast microcalcifications can be seen in malignant cancerous masses. We construct a numerical... cancers detected by mam- mography, and approximately 95% of all DCIS is diagnosed because of mammographically detected microcalcifications . Breast ...detection using numerical breast phantoms. Microcalcifications can be found in different breast tissues, such as cancerous masses or cysts. We build two

  19. Phase contrast imaging of breast tumours with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: aolivo@medphys.ucl.ac.uk; Rigon, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Area Science Park, Padriciano 99, 34012 Trieste (Italy)], E-mail: rigon@ts.infn.it; Vinnicombe, S.J. [Department of Radiology, St. Bartholomews Hospital, Barts and the London NHS Trust, West Smithfield, London EC1A 7BE (United Kingdom)], E-mail: s.j.vinnicombe@qmul.ac.uk; Cheung, K.C. [STFC Daresbury Laboratory, Keckwick Lane, Warrington, Cheshire WA4 4AD (United Kingdom)], E-mail: k.c.cheung@dl.ac.uk; Ibison, M. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)], E-mail: m.ibison@dl.ac.uk; Speller, R.D. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: rspeller@medphys.ucl.ac.uk

    2009-06-15

    Even though the potential of phase contrast (PC) imaging has been demonstrated in a number of biological tissue samples, the availability of free-space propagation phase contrast images of real breast tumours is still limited. The aim of this study was to obtain phase contrast images of two different pathological breast specimens containing tumours of differing morphological type at two synchrotron radiation (SR) facilities, and to assess any qualitative improvements in the evaluation and characterisation of the masses through the use of phase contrast imaging. A second aim was to assess the effects of parameters such as detector resolution, beam energy and sample-to-detector distance on image quality using the same breast specimens, as to date these effects have been modelled and discussed only for geometric phantoms. At each synchrotron radiation facility a range of images was acquired with different detectors and by varying the above parameters. Images of the same samples were also acquired with the absorption-based approach to allow a direct comparison and estimation of the advantages specifically ascribable to the PC technique.

  20. Review of optical breast imaging and spectroscopy

    Science.gov (United States)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  1. Review of optical breast imaging and spectroscopy.

    Science.gov (United States)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  2. Breast ultrasound image segmentation: a survey.

    Science.gov (United States)

    Huang, Qinghua; Luo, Yaozhong; Zhang, Qiangzhi

    2017-03-01

    Breast cancer is the most common form of cancer among women worldwide. Ultrasound imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities of the breast. Recently, computer-aided diagnosis (CAD) systems using ultrasound images have been developed to help radiologists to increase diagnosis accuracy. However, accurate ultrasound image segmentation remains a challenging problem due to various ultrasound artifacts. In this paper, we investigate approaches developed for breast ultrasound (BUS) image segmentation. In this paper, we reviewed the literature on the segmentation of BUS images according to the techniques adopted, especially over the past 10 years. By dividing into seven classes (i.e., thresholding-based, clustering-based, watershed-based, graph-based, active contour model, Markov random field and neural network), we have introduced corresponding techniques and representative papers accordingly. We have summarized and compared many techniques on BUS image segmentation and found that all these techniques have their own pros and cons. However, BUS image segmentation is still an open and challenging problem due to various ultrasound artifacts introduced in the process of imaging, including high speckle noise, low contrast, blurry boundaries, low signal-to-noise ratio and intensity inhomogeneity CONCLUSIONS: To the best of our knowledge, this is the first comprehensive review of the approaches developed for segmentation of BUS images. With most techniques involved, this paper will be useful and helpful for researchers working on segmentation of ultrasound images, and for BUS CAD system developers.

  3. Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers.

    Science.gov (United States)

    Milankovic, Ivan L; Mijailovic, Nikola V; Filipovic, Nenad D; Peulic, Aleksandar S

    2017-01-01

    Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.

  4. Molecular Breast Imaging Using Emission Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gopan, O. [University of Florida; Gilland, D. [University of Florida; Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Welch, Benjamin L. [Dilon Technologies

    2013-06-01

    Purpose: Tour objective is to design a novel SPECT system for molecular breast imaging (MBI) and evaluate its performance. The limited angle SPECT system, or emission tomosynthesis, is designed to achieve 3D images of the breast with high spatial resolution/sensitivity. The system uses a simplified detector motion and is conducive to on-board biopsy and mult-modal imaging with mammography. Methods: The novel feature of the proposed gamma camera is a variable-angle, slant-hole (VASH) collimator, which is well suited for limited angle SPECT of a mildly compressed breast. The collimator holes change slant angle while the camera surface remains flush against the compression paddle. This allows the camera to vary the angular view ({+-}30{degrees}, {+-}45{degrees}) for tomographic imaging while keeping the camera close to the object for high spatial resolution and/or sensitivity. Theoretical analysis and Monte Carlo simulations were performed assuming a point source and isolated breast phantom. Spatial resolution, sensitivity, contrast and SNR were measured. Results were compared to single-view, planar images and conventional SPECT. For both conventional SPECT and VASH, data were reconstructed using iterative algorithms. Finally, a proof-of-concept VASH collimator was constructed for experimental evaluation. Results: Measured spatial resolution/sensitivity with VASH showed good agreement with theory including depth-of-interaction (DOI) effects. The DOI effect diminished the depth resolution by approximately 2 mm. Increasing the slant angle range from {+-}30{degrees} to {+-}45{degrees} resulted in an approximately 1 mm improvement in the depth resolution. In the breast phantom images, VASH showed improved contrast and SNR over conventional SPECT and improved contrast over planar scintimmammography. Reconstructed images from the proof-of-concept VASH collimator demonstrated reasonable depth resolution capabilities using limited angle projection data. Conclusion: We

  5. Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast.

    Science.gov (United States)

    Baneva, Yanka; Bliznakova, Kristina; Cockmartin, Lesley; Marinov, Stoyko; Buliev, Ivan; Mettivier, Giovanni; Bosmans, Hilde; Russo, Paolo; Marshall, Nicholas; Bliznakov, Zhivko

    2017-09-01

    In X-ray imaging, test objects reproducing breast anatomy characteristics are realized to optimize issues such as image processing or reconstruction, lesion detection performance, image quality and radiation induced detriment. Recently, a physical phantom with a structured background has been introduced for both 2D mammography and breast tomosynthesis. A software version of this phantom and a few related versions are now available and a comparison between these 3D software phantoms and the physical phantom will be presented. The software breast phantom simulates a semi-cylindrical container filled with spherical beads of different diameters. Four computational breast phantoms were generated with a dedicated software application and for two of these, physical phantoms are also available and they are used for the side by side comparison. Planar projections in mammography and tomosynthesis were simulated under identical incident air kerma conditions. Tomosynthesis slices were reconstructed with an in-house developed reconstruction software. In addition to a visual comparison, parameters like fractal dimension, power law exponent β and second order statistics (skewness, kurtosis) of planar projections and tomosynthesis reconstructed images were compared. Visually, an excellent agreement between simulated and real planar and tomosynthesis images is observed. The comparison shows also an overall very good agreement between parameters evaluated from simulated and experimental images. The computational breast phantoms showed a close match with their physical versions. The detailed mathematical analysis of the images confirms the agreement between real and simulated 2D mammography and tomosynthesis images. The software phantom is ready for optimization purpose and extrapolation of the phantom to other breast imaging techniques. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Accuracy of Tumor Sizing in Breast Cancer: A Comparison of Strain Elastography, 3-D Ultrasound and Conventional B-Mode Ultrasound with and without Compound Imaging.

    Science.gov (United States)

    Stachs, Angrit; Pandjaitan, Alexander; Martin, Annett; Stubert, Johannes; Hartmann, Steffi; Gerber, Bernd; Glass, Änne

    2016-12-01

    The objective of this study was to compare the accuracy of strain elastography (SE), 3-D ultrasound (US), B-mode US with compound imaging (CI) and B-mode US without compound imaging for lesion sizing in breast cancer. The prospective study included 93 patients with invasive breast cancer. The largest tumor diameters measured by B-mode US, B-mode US with CI, SE and 3-D US were compared in Bland-Altman plots versus pathology as reference. A general linear model repeated measures (GLM Rep) was applied to investigate factors influencing tumor sizing. All methods underestimated pathologic size, with SE (-0.08 ± 7.7 mm) and 3-D US (-1.4 ± 6.5 mm) having the smallest mean differences from pathology. Bland-Altman plots revealed that B-mode US, B-mode US with CI and 3-D US systematically underestimated large tumor sizes, and only SE was technically comparable to pathology. The study indicates that sonographic underestimation of tumor size occurs mainly in tumors >20 mm; in this subgroup, SE is superior to other ultrasound methods. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Imaging Neoadjuvant Therapy Response in Breast Cancer.

    Science.gov (United States)

    Fowler, Amy M; Mankoff, David A; Joe, Bonnie N

    2017-11-01

    The use of neoadjuvant systemic therapy in the treatment of breast cancer patients is increasing beyond the scope of locally advanced disease. Imaging provides important information in assessing response to therapy as a complement to conventional tumor measurements via physical examination. The purpose of this article is to discuss the advantages and limitations of current assessment methods, as well as review functional and molecular imaging approaches being investigated as emerging techniques for evaluating neoadjuvant therapy response for patients with primary breast cancer. (©) RSNA, 2017.

  8. Accuracy of Breast Density Estimation from Mammographic Images

    OpenAIRE

    Geeraert, N.; Klaus, R.; Bloch, Isabelle; Muller, S.; Bosmans, H

    2013-01-01

    International audience; Breast density has been defined as an important risk factor for the development of breast cancer but the mechanisms of the impact on breast cancer development remain unsolved. One of the main discussions is the definition of breast density. Traditionally breast density is derived by dividing the area of the fibroglandular tissue in the image by the area of the total breast. From a physics point of view the ratio of volumes is a much more representative measure of the d...

  9. Parametric diffusion tensor imaging of the breast.

    Science.gov (United States)

    Eyal, Erez; Shapiro-Feinberg, Myra; Furman-Haran, Edna; Grobgeld, Dov; Golan, Talia; Itzchak, Yacov; Catane, Raphael; Papa, Moshe; Degani, Hadassa

    2012-05-01

    To investigate the ability of parametric diffusion tensor imaging (DTI), applied at 3 Tesla, to dissect breast tissue architecture and evaluate breast lesions. All protocols were approved and a signed informed consent was obtained from all subjects. The study included 21 healthy women, 26 women with 33 malignant lesions, and 14 women with 20 benign lesions. Images were recorded at 3 Tesla with a protocol optimized for breast DTI at a spatial resolution of 1.9 × 1.9 × (2-2.5) mm3. Image processing algorithms and software, applied at pixel resolution, yielded vector maps of prime diffusion direction and parametric maps of the 3 orthogonal diffusion coefficients and of the fractional anisotropy and maximal anisotropy. The DTI-derived vector maps and parametric maps revealed the architecture of the entire mammary fibroglandular tissue and allowed a reliable detection of malignant lesions. Cancer lesions exhibited significantly lower values of the orthogonal diffusion coefficients, λ1, λ2, λ3, and of the maximal anisotropy index λ1-λ3 as compared with normal breast tissue (P architecture. Parametric maps of λ1 and λ1-λ3 facilitate the detection and diagnosis of breast cancer.

  10. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  11. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hee; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, In Ae [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Han, Wonshik; Noh, Dong-Young [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of)

    2012-01-15

    To compare the use of diffusion-weighted MR imaging (DWI) and {sup 18}F-FDG PET/CT to predict pathological complete response (pCR) in breast cancer patients receiving neoadjuvant chemotherapy. Thirty-four women with 34 invasive breast cancers underwent DWI and PET/CT before and after chemotherapy and before surgery. The percentage changes in the apparent diffusion coefficient (ADC) and the standardised uptake value (SUV) were calculated, and the diagnostic performances for predicting pCR were evaluated using receiver operating characteristic (ROC) curve analysis. After surgery, 7/34 patients (20.6%) were found to have pCR. A{sub z} values for DWI, PET/CT and the combined use of DWI and PET/CT were 0.910, 0.873 and 0.944, respectively. The best cut-offs for differentiating pCR from non-pCR were a 54.9% increase in the ADC and a 63.9% decrease in the SUV. DWI showed 100% (7/7) sensitivity and 70.4% (19/27) specificity and PET/CT showed 100% sensitivity and 77.8% (21/27) specificity. When DWI and PET/CT were combined, there was a trend towards improved specificity compared with DWI. DWI and FDG PET/CT show similar diagnostic accuracy for predicting pCR to neoadjuvant chemotherapy in breast cancer patients. The combined use of DWI and FDG PET/CT has the potential to improve specificity in predicting pCR. (orig.)

  12. Update on imaging of the postsurgical breast.

    Science.gov (United States)

    Margolis, Nathaniel E; Morley, Christopher; Lotfi, Philip; Shaylor, Sara D; Palestrant, Sarah; Moy, Linda; Melsaether, Amy N

    2014-01-01

    Oncologic, reconstructive, and cosmetic breast surgery has evolved in the last 20 years. Familiarity with cutting-edge surgical techniques and their imaging characteristics is essential for radiologic interpretation and may help avert false-positive imaging findings. Novel surgical techniques include skin- and nipple-sparing mastectomies, autologous free flaps, autologous fat grafting, and nipple-areola-complex breast reconstruction. These techniques are illustrated and compared with conventional surgical techniques, including modified radical mastectomy and autologous pedicled flaps. The role of magnetic resonance (MR) imaging in surgical planning, evaluation for complications, and postsurgical cancer detection is described. Breast reconstruction and augmentation using silicone gel-filled implants is discussed in light of the Food and Drug Administration's recommendation for MR imaging screening for "silent" implant rupture 3 years after implantation and every 2 years thereafter. Recent developments in skin incision techniques for reduction mammoplasty are presented. The effects of postsurgical changes on the detection of breast cancer are discussed by type of surgery. RSNA, 2014

  13. Magnetic resonance imaging of breast prostheses

    African Journals Online (AJOL)

    G5

    ... these two signs,. 7. SA JOURNAL OF RADIOLOGY • October 2005. REVIEW ARTICLE. Magnetic resonance imaging of breast prostheses. P Corr. FFRad (D) SA. P Seolall. Nat Dip Rad (D). H Booth. Nat Dip Rad (D). Department of Radiology. Nelson Mandela School of Medicine and Inkosi Albert Luthuli Hospital. Durban ...

  14. Breast magnetic resonance imaging guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Bo La; Kim, Sun Mi; Jang, Mi Jung [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Cho, Nariya; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hak Hee [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Despite the high sensitivity of breast magnetic resonance imaging (MRI), pathologic confirmation by biopsy is essential because of limited specificity. MRI-guided biopsy is required in patients with lesions only seen on MRI. We review preprocedural considerations and the technique of MRI-guided biopsy, challenging situations and trouble-shooting, and correlation of radiologic and pathologic findings.

  15. Ultrasound Imaging Methods for Breast Cancer Detection

    NARCIS (Netherlands)

    Ozmen, N.

    2014-01-01

    The main focus of this thesis is on modeling acoustic wavefield propagation and implementing imaging algorithms for breast cancer detection using ultrasound. As a starting point, we use an integral equation formulation, which can be used to solve both the forward and inverse problems. This thesis

  16. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    Science.gov (United States)

    2013-09-01

    for breast cancer specimens that involve microcalcifications or nonpalpable masses and does not occur for palpable breast masses (Cabioglu et al...John V Frangioni. 2008. “Detection of Breast Cancer Microcalcifications Using a Dual-modality SPECT/NIR Fluorescent Probe.” Journal of the American...Enabled Optical Molecular Imaging of Breast Cancer PRINCIPAL INVESTIGATOR: Rebekah Drezek, Ph.D

  17. Diffusion magnetic resonance imaging of breast lesions: Initial ...

    African Journals Online (AJOL)

    Hebatallah Hassan Mamdouh Hassan

    2013-03-31

    Mar 31, 2013 ... Conclusion: DWI shows potential for improving the PPV of breast MRI for detection of malig- nant breast lesions. Recommendation: ... Radiologists who practice breast imaging have long known that the field provides ... detection of breast cancer using digital mammography, with special reflection on the ...

  18. Ultrasonic Imaging Techniques for Breast Cancer Detection

    Science.gov (United States)

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.

    2008-02-01

    Improving the resolution and specificity of current ultrasonic imaging technology is needed to enhance its relevance to breast cancer detection. A novel ultrasonic imaging reconstruction method is described that exploits classical straight-ray migration. This novel method improves signal processing for better image resolution and uses novel staging hardware options using a pulse-echo approach. A breast phantom with various inclusions is imaged using the classical migration method and is compared to standard computed tomography (CT) scans. These innovative ultrasonic methods incorporate ultrasound data acquisition, beam profile characterization, and image reconstruction. For an ultrasonic frequency of 2.25 MHz, imaged inclusions of approximately 1 cm are resolved and identified. Better resolution is expected with minor modifications. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors thus reducing the number of biopsies performed, increasing treatment options, and lowering remission percentages. Using these new techniques the inclusions in the phantom are resolved and compared to the results of standard methods. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also discussed.

  19. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality.

    Science.gov (United States)

    O'Connell, Avice; Conover, David L; Zhang, Yan; Seifert, Posy; Logan-Young, Wende; Lin, Chuen-Fu Linda; Sahler, Lawrence; Ning, Ruola

    2010-08-01

    The primary objectives of this pilot study were to evaluate the radiation dose, breast coverage, and image quality of cone-beam breast CT compared with a conventional mammographic examination. Image quality analysis was focused on the concordance of cone-beam breast CT with conventional mammography in terms of mammographic findings. This prospective study was performed from July 2006 through August 2008. Twenty-three women were enrolled who met the inclusion criteria, which were age 40 years or older with final BI-RADS assessment category 1 or 2 lesions on conventional mammograms within the previous 6 months. The breasts were imaged with a flat-panel detector-based cone-beam CT system, and the images were reviewed with a 3D visualization system. Cone-beam breast CT image data sets and the corresponding mammograms were reviewed by three qualified mammographers. The parameters assessed and compared in this pilot study were radiation dose, breast tissue coverage, and image quality, including detectability of masses and calcifications. The mammograms and cone-beam breast CT images were independently reviewed side by side, and the reviewers were not blinded to the other technique. The observed agreement and Cohen's kappa were used to evaluate agreement between the mammographic and cone-beam breast CT findings and interobserver agreement. Each subject responded to a questionnaire on multiple parameters, including comfort of the cone-beam breast CT examination compared with mammography. For a conventional mammographic examination, the average glandular radiation dose ranged from 2.2 to 15 mGy (mean, 6.5 [SD, 2.9] mGy). For cone-beam breast CT, the average glandular dose ranged from 4 to 12.8 mGy (mean, 8.2 [SD, 1.4] mGy). The average glandular dose from cone-beam breast CT was generally within the range of that from conventional mammography. For heterogeneously dense and extremely dense breasts, the difference between the mean dose of conventional mammography and that of

  20. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    Science.gov (United States)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  1. Diffraction enhanced breast imaging through Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, D.M. [Departamento de Fisica e Matematica, FFCLRP, 14040-901 Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil); Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil); Tomal, A. [Departamento de Fisica e Matematica, FFCLRP, 14040-901 Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, FFCLRP, 14040-901 Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil)

    2011-10-01

    In this work, the potential use of diffraction effects from elastic scattering for breast imaging through Monte Carlo (MC) simulations was studied. The geometrical model of the compressed breast consisted of a semi-infinite layer, composed of a mixture of adipose and glandular tissue, with five spherical objects within it, simulating different tissue compositions. A pencil beam scanned the breast surface, impinging normally on it. Two receptors were placed under the breast: the first one detected primary photons, while the other detected the scattered photons. Two images of the breast were then obtained, a primary and a scatter image. Results showed that the scatter image provided values of contrast greater than that of primary image, with the possibility to enhance the contribution of a specific breast tissue to image formation. Nevertheless, scatter images also show considerably higher noise. The results obtained indicate that elastic scattering has a great potential to aid in the enhancement of the mammographic image.

  2. A minimum spanning forest based classification method for dedicated breast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Robert [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States); Fei, Baowei, E-mail: bfei@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States); Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322 (United States); Winship Cancer Institute of Emory University, Atlanta, Georgia 30322 (United States)

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  3. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    NARCIS (Netherlands)

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    ABSTRACT: BACKGROUND: Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers

  4. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  5. Optical tomographic imaging for breast cancer detection

    Science.gov (United States)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  6. Imaging Management of Breast Density, a Controversial Risk Factor for Breast Cancer.

    Science.gov (United States)

    Falcon, Shannon; Williams, Angela; Weinfurtner, Jared; Drukteinis, Jennifer S

    2017-04-01

    Breast density is well recognized as an independent risk factor for the development of breast cancer. However, the magnitude of risk is controversial. As the public becomes increasingly aware of breast density as a risk factor, legislation and notification laws in relation to breast density have become common throughout the United States. Awareness of breast density as a risk factor for breast cancer presents new challenges for the clinician in the approach to the management and screening of women with dense breasts. The evidence and controversy surrounding breast density as a risk factor for the development of breast cancer are discussed. Common supplemental screening modalities for breast cancer are also discussed, including tomosynthesis, ultrasonography, and magnetic resonance imaging. A management strategy for screening women with dense breasts is also presented. The American College of Radiology recognizes breast density as a controversial risk factor for breast cancer, whereas the American Congress of Obstetricians and Gynecologists recognizes breast density as a modest risk factor. Neither organization recommends the routine use of supplemental screening in women with dense breasts without considering additional patient-related risk factors. Breast density is a poorly understood and controversial risk factor for the development of breast cancer. Mammography is a screening modality proven to reduce breast cancer-related mortality rates and is the single most appropriate tool for population-based screening. Use of supplemental screening modalities should be tailored to individual risk assessment.

  7. Breast magnetic resonance imaging for the interventionalist: magnetic resonance imaging-guided vacuum-assisted breast biopsy.

    Science.gov (United States)

    Brennan, Sandra B

    2014-03-01

    Magnetic resonance Imaging-guided breast biopsy is an essential component of breast imaging practices offering breast magnetic resonance imaging. Careful planning and preparation allow for an efficient and successful biopsy. Deliberate positioning and controlled compression are keys to a comfortable and cooperative patient. The biopsy is only complete once imaging-histologic correlation has been made by the radiologist. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Geomatics for precise 3D breast imaging.

    Science.gov (United States)

    Alto, Hilary

    2005-02-01

    Canadian women have a one in nine chance of developing breast cancer during their lifetime. Mammography is the most common imaging technology used for breast cancer detection in its earliest stages through screening programs. Clusters of microcalcifications are primary indicators of breast cancer; the shape, size and number may be used to determine whether they are malignant or benign. However, overlapping images of calcifications on a mammogram hinder the classification of the shape and size of each calcification and a misdiagnosis may occur resulting in either an unnecessary biopsy being performed or a necessary biopsy not being performed. The introduction of 3D imaging techniques such as standard photogrammetry may increase the confidence of the radiologist when making his/her diagnosis. In this paper, traditional analytical photogrammetric techniques for the 3D mathematical reconstruction of microcalcifications are presented. The techniques are applied to a specially designed and constructed x-ray transparent Plexiglas phantom (control object). The phantom was embedded with 1.0 mm x-ray opaque lead pellets configured to represent overlapping microcalcifications. Control points on the phantom were determined by standard survey methods and hand measurements. X-ray films were obtained using a LORAD M-III mammography machine. The photogrammetric techniques of relative and absolute orientation were applied to the 2D mammographic films to analytically generate a 3D depth map with an overall accuracy of 0.6 mm. A Bundle Adjustment and the Direct Linear Transform were used to confirm the results.

  9. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  10. Imaging of tuberculous disease involving breast

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K.K.; Kim, J.H. [Department of Diagnostic Radiology, Yonsei University College of Medicine (Korea, Republic of); Kook, S.H. [Department of Diagnostic Radiology, Samsung Medical Foundation, Seoul (Korea, Republic of)

    1998-10-01

    The aim of our study was to evaluate radiologic findings of the tuberculosis involving breast. We evaluated the radiologic features of 17 patients (18 lesions) with tuberculous disease involving the breast. The radiologic examinations, including mammography (16 patients), ultrasonography (12 patients), and Gd-DTPA-enhanced dynamic MRI (6 patients), were analyzed. Mammographic findings included mass (12 of 17 lesions), calcification (3 of 17 lesions), asymmetric density with spiculated margin (5 of 17 lesions), and axillary lymph node enlargement (8 of 17 lesions). On ultrasonography, a smooth bordered mass (7 of 13 lesions) with thin boundary (7 of 13 lesions) and heterogeneous, intermediate internal echoes (9 of 13 lesions) were most commonly demonstrated. On Gd-DTPA-enhanced dynamic MRI, 3 lesions showed significant enhancement at the first minute after injection (3 of 7 lesions). The maximun enhancing amount was greater than 500 normalized units, and the enhancing pattern was smooth or irregular ring appearance. Breast involvement with tuberculosis is rare but should be considered in the differential diagnosis of a woman living in an endemic area or when extramammary foci of tuberculosis are present. A multimodality imaging approach with clinical evaluation will help to establish the diagnosis of tuberculosis involving breast. (orig.) (orig.) With 3 figs., 3 tabs., 28 refs.

  11. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Sennett, Charlene A.; Giger, Maryellen L. [Department of Radiology, MC2026, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  12. Toward simultaneous PET/MR breast imaging: systematic evaluation and integration of a radiofrequency breast coil.

    Science.gov (United States)

    Aklan, Bassim; Paulus, Daniel H; Wenkel, Evelyn; Braun, Harald; Navalpakkam, Bharath K; Ziegler, Susanne; Geppert, Christian; Sigmund, Eric E; Melsaether, Amy; Quick, Harald H

    2013-02-01

    With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance (PET/MR) scanners, simultaneous PET/MR breast imaging appears to be a potentially attractive new clinical application. In this study, the technical groundwork toward performing simultaneous PET/MR breast imaging was developed and systematically evaluated in phantom experiments and breast cancer patient hybrid imaging. Measurements were performed on a state-of-the-art whole-body simultaneous PET/MR system (Biograph mMR, Siemens AG, Erlangen, Germany). The PET signal attenuating effects of a MR-only four-channel radiofrequency (RF) breast coil that is present in the PET field-of-view (FoV) during a simultaneous PET/MR data acquisition has been investigated and quantified. For this purpose, a dedicated PET/MR visible breast phantom featuring four modular inserts with various structures (no insert, MR insert, PET insert, and PET/MR insert) was developed. In addition to a systematic evaluation of MR-only image quality, the following phantom scans were performed using (18)F radio tracer: (1) PET emission scan with only the homogeneous breast phantom; (2) PET emission scan additionally with the RF breast coil in the PET FoV. Attenuation correction (AC) of PET data was performed with CT-based three-dimensional (3D) hardware attenuation maps (μ-maps) of the RF coil and breast phantom. Finally, a simultaneous PET/MR breast imaging was performed in two breast cancer patients. The modular breast phantom allowed for systematic evaluation of various MR, PET, and PET/MR image quality parameters. The RF breast coil provided MR images of good image quality, unaffected by PET imaging. The global attenuation of the RF breast coil on the PET emission data was approximately 11%. This hardware attributed PET signal attenuation was successfully corrected by using an appropriate CT-based 3D μ-map of the RF breast coil. Imaging of two breast cancer patients confirmed the

  13. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  14. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  15. Imaging features of breast cancers on digital breast tomosynthesis according to molecular subtype: association with breast cancer detection.

    Science.gov (United States)

    Lee, Su Hyun; Chang, Jung Min; Shin, Sung Ui; Chu, A Jung; Yi, Ann; Cho, Nariya; Moon, Woo Kyung

    2017-12-01

    To evaluate imaging features of breast cancers on digital breast tomosynthesis (DBT) according to molecular subtype and to determine whether the molecular subtype affects breast cancer detection on DBT. This was an institutional review board--approved study with a waiver of informed consent. DBT findings of 288 invasive breast cancers were reviewed according to Breast Imaging Reporting and Data System lexicon. Detectability of breast cancer was quantified by the number of readers (0-3) who correctly detected the cancer in an independent blinded review. DBT features and the cancer detectability score according to molecular subtype were compared using Fisher's exact test and analysis of variance. Of 288 invasive cancers, 194 were hormone receptor (HR)-positive, 48 were human epidermal growth factor receptor 2 (HER2) positive and 46 were triple negative breast cancers. The most common DBT findings were irregular spiculated masses for HR-positive cancer, fine pleomorphic or linear branching calcifications for HER2 positive cancer and irregular masses with circumscribed margins for triple negative breast cancers (p Cancer detectability on DBT was not significantly different according to molecular subtype (p = 0.213) but rather affected by tumour size, breast density and presence of mass or calcifications. Breast cancers showed different imaging features according to molecular subtype; however, it did not affect the cancer detectability on DBT. Advances in knowledge: DBT showed characteristic imaging features of breast cancers according to molecular subtype. However, cancer detectability on DBT was not affected by molecular subtype of breast cancers.

  16. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  17. Optical Imaging of the Breast: Basic Principles and Clinical Applications.

    Science.gov (United States)

    Di Leo, Giovanni; Trimboli, Rubina Manuela; Sella, Tamar; Sardanelli, Francesco

    2017-07-01

    The objective of this article is to summarize the physical principles, technology features, and first clinical applications of optical imaging techniques to the breast. Light-breast tissue interaction is expressed as absorption and scattering coefficients, allowing image reconstruction based on endogenous or exogenous contrast. Diffuse optical spectroscopy and imaging, fluorescence molecular tomography, photoacoustic imaging, and multiparametric infrared imaging show potential for clinical application, especially for lesion characterization, estimation of cancer probability, and monitoring the effect of neoadjuvant therapy.

  18. Breast imaging using waveform attenuation tomography

    Science.gov (United States)

    Li, Cuiping; Sandhu, Gursharan Y.; Boone, Michael; Duric, Neb

    2017-03-01

    Ex vivo studies using our ultrasound waveform attenuation algorithm have shown promising results for detection and characterization of lesions of different types. Our preliminary in vivo study shows that the waveform attenuation image has much higher resolution and can better delineate breast lesions boundaries than the corresponding ray-based attenuation image. In this study, we preprocessed our time domain waveforms acquired with a ring array and explored the directional transducer beam pattern to better match calculated wave fields with respect to the acquired wave fields. We have applied waveform attenuation to in vivo data and compared the resulting waveform attenuation images with the ray-based counterparts to assess the resolution and accuracy of the waveform attenuation reconstruction.

  19. X-Ray Phase Imaging for Breast Cancer Detection

    Science.gov (United States)

    2012-09-01

    a contrast -detail phantom, an acrylic step- edge, and a breast tissue-equivalent phantom. As current breast imaging ( mammography and breast... contrast enhancement of x-ray mam- mography: A design study,” Phys. Med. Biol. 44, 2853–2866 (1999). 6F. Arfelli et al., “ Mammography with synchrotron...breast tissue produces very low attenuation contrast [5–7], which presents a considerable challenge for cancer detection in mammography . Unfortunately

  20. Evaluation of scatter effects on image quality for breast tomosynthesis

    OpenAIRE

    Wu, Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2009-01-01

    Digital breast tomosynthesis uses a limited number (typically 10–20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution...

  1. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  2. A pictorial essay of breast implant imaging and implant complications.

    Science.gov (United States)

    Arslan, Gozde; Celik, Levent; Cubuk, Rahmi

    2016-01-01

    Nowadays as more breast conserving surgeries and mastectomies are being performed, more breast implants are being used. Follow-up of these patients is as important as treatment. We, radiologists should be aware of normal imaging appearance of implants during follow ups. We should also be aware of complications which we may encounter during controls. In our essay, we aim to show the normal and pathological appearence of implants by sharing ultrasound, mammography and MR images from our clinic. Breast, Implants, MRI, Rupture.

  3. Magnetic resonance imaging of breast prostheses | Corr | SA ...

    African Journals Online (AJOL)

    Breast MR imaging is the most accurate imaging investigation to detect breast prosthesis rupture. Rupture is common in older prostheses (> 10 years post implantation) and is often asymptomatic. The radiological signs of rupture are due to collapse of the elastomer shell which is eneveloped by silicone gel and when the ...

  4. Imaging Spectrums of the Male Breast Diseases: A Pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye Jeong; Choi, Seon Hyeong; Ahn, Hye Kyung; Chung, Soo Young [Dept. of Radiology, Kangnam Scred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Yang Ik [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of); Jung, Ah young [Dept. of Pathology, Kangnam Scred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    Most described male breast lesions, such as gynecomastia, are benign. The overall incidence of male breast cancer is less than 3%. Like women, common presentations of male breast diseases are palpable lumps or tenderness. Physical examination, mammography and ultrasound are generally used for work-up of breast diseases in both women and men. However, men do not undergo screening mammograms; all male patients are examined in symptomatic cases only. Therefore, all male breast examinations are diagnostic, whereas the majority of the examinations for women are for screening purpose. The differentiation between benign and malignant breast lesions is important, especially for men, because the reported prognosis of male breast cancer is poor due to delayed diagnosis. In this article, we review the spectrum of male breast diseases, from benign to malignant, and illustrate their ultrasonographic and mammographic imaging features.

  5. Breast cancer imaging: A perspective for the next decade

    Energy Technology Data Exchange (ETDEWEB)

    Karellas, Andrew; Vedantham, Srinivasan [Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2008-11-15

    Breast imaging is largely indicated for detection, diagnosis, and clinical management of breast cancer and for evaluation of the integrity of breast implants. In this work, a prospective view of techniques for breast cancer detection and diagnosis is provided based on an assessment of current trends. The potential role of emerging techniques that are under various stages of research and development is also addressed. It appears that the primary imaging tool for breast cancer screening in the next decade will be high-resolution, high-contrast, anatomical x-ray imaging with or without depth information. MRI and ultrasonography will have an increasingly important adjunctive role for imaging high-risk patients and women with dense breasts. Pilot studies with dedicated breast CT have demonstrated high-resolution three-dimensional imaging capabilities, but several technological barriers must be overcome before clinical adoption. Radionuclide based imaging techniques and x-ray imaging with intravenously injected contrast offer substantial potential as a diagnostic tools and for evaluation of suspicious lesions. Developing optical and electromagnetic imaging techniques hold significant potential for physiologic information and they are likely to be of most value when integrated with or adjunctively used with techniques that provide anatomic information. Experimental studies with breast specimens suggest that phase-sensitive x-ray imaging techniques can provide edge enhancement and contrast improvement but more research is needed to evaluate their potential role in clinical breast imaging. From the technological perspective, in addition to improvements within each modality, there is likely to be a trend towards multi-modality systems that combine anatomic with physiologic information. We are also likely to transition from a standardized screening, where all women undergo the same imaging exam (mammography), to selection of a screening modality or modalities based an

  6. Comparison between automated breast volume scanner (ABVS) versus hand-held ultrasound as a second look procedure after magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Girometti, Rossano; Zanotel, Martina; Londero, Viviana; Bazzocchi, Massimo; Zuiani, Chiara [University of Udine, Azienda Ospedaliero-Universitaria, ' S. Maria della Misericordia' , Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy)

    2017-09-15

    To evaluate the agreement between automated breast volume scanner (ABVS) and conventional ultrasound (US) as a second-look (SL) tool for assessing additional findings found on MRI. Over a 7-month period, we prospectively assigned to SL-US and SL-ABVS all patients undergoing 1.5 T breast MRI in whom additional findings were found. Five experienced breast radiologists independently interpreted SL-US and SL-ABVS in blinded sessions to evaluate the detection rate of MRI findings and assign them to BI-RADS categories. We calculated the agreement between the two methods in assessing MRI findings as significant (BI-RADS 3-5) versus not significant (BI-RADS 1-2), as well as their cancer detection rate. In a population of 131 patients, SL-ABVS and SL-US showed a comparable detection rate of MRI findings (69.3 vs. 71.5%) (p > 0.05; McNemar test), with an almost perfect agreement in assessing them as significant or not (k = 0.94). This translated into a comparably high cancer detection rate (83.8% for SL-ABVS vs. 87.0% for SL-US). Only 1/31 cancers was missed by SL-ABVS. SL-ABVS and SL-US are nearly equivalent in assessing the significance of MRI findings, leading to a comparable cancer detection rate. SL-ABVS has the potential to replace SL-US in the SL scenario. (orig.)

  7. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    Science.gov (United States)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  8. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee, E-mail: symolloi@uci.edu [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-12-15

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field

  9. Imaging Breast Density: Established and Emerging Modalities1

    Science.gov (United States)

    Chen, Jeon-Hor; Gulsen, Gultekin; Su, Min-Ying

    2015-01-01

    Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature. PMID:26692524

  10. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  11. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    OpenAIRE

    Camerin Hahn; Sima Noghanian

    2012-01-01

    As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectri...

  12. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  13. The use of imaging in patients post breast reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Y.T. [Department of Radiology, Glasgow Royal Infirmary, Glasgow (United Kingdom); Litherland, J.C., E-mail: Janet.Litherland@ggc.scot.nhs.uk [Department of Radiology, Glasgow Royal Infirmary, Glasgow (United Kingdom)

    2012-02-15

    Aim: To evaluate the usefulness of mammographic surveillance for asymptomatic patients and as a problem-solving tool in symptomatic patients with reconstructed breasts. Materials and methods: The imaging records over 4 years identified 227 patients with a history of breast reconstruction post-mastectomy due to cancer. Clinical and imaging records were reviewed to evaluate the use of imaging in the follow-up management of these patients. Results: Records showed that 116 (51%) of the patients identified underwent surveillance mammography of the reconstructed breast, in which one recurrent cancer was detected in an autologous tissue flap reconstruction (0.86% detection rate of non-palpable recurrent cancer), with a recall rate of 4%. One other patient had interval recurrence diagnosed following presentation with pain. Mammography of the contralateral breast only was performed in 111 patients. Fifty-four patients (24%) presented on 78 occasions with symptoms relating to the breast reconstructions, most commonly lump or swelling. Half of these patient episodes subsequently found no significant abnormality, and a further 29% had fat necrosis revealed on imaging. Four recurrent cancers were diagnosed. Conclusion: There is insufficient evidence for recommending routine surveillance mammography for non-palpable recurrent cancer in the reconstructed breasts. Ultrasound and mammography are useful imaging techniques in the assessment of reconstructed breasts in the symptomatic setting. Fat necrosis is the most common benign finding on mammograms of reconstructed breasts, both in the surveillance and symptomatic groups.

  14. Ultrasound imaging of the lactating breast: methodology and application

    Directory of Open Access Journals (Sweden)

    Geddes Donna T

    2009-04-01

    Full Text Available Abstract Ultrasound imaging has been used extensively to detect abnormalities of the non-lactating breast. In contrast, the use of ultrasound for the investigation of pathology of the lactating breast is limited. Recent studies have re-examined the anatomy of the lactating breast highlighting features unique to this phase of breast development. These features should be taken into consideration along with knowledge of common lactation pathologies in order to make an accurate diagnosis when examining the lactating breast. Scanning techniques and ultrasound appearances of the normal lactating breast will be contrasted to those of the non-lactating breast. In addition ultrasound characteristics of common pathologies encountered during lactation will be described.

  15. Optimal laser wavelength for photoacoustic imaging of breast microcalcifications

    Science.gov (United States)

    Kang, Jeeun; Kim, Eun-Kyung; Young Kwak, Jin; Yoo, Yangmo; Song, Tai-Kyong; Ho Chang, Jin

    2011-10-01

    This paper presents photoacoustic imaging (PAI) for real-time detection of micro-scale calcifications (e.g., breast, which are an indicator of the cancer occurrence. Optimal wavelength of incident laser for the microcalcification imaging was ascertained through ex vivo experiments with seven breast specimens of volunteers. In the ex vivo experiments, the maximum amplitude of photoacoustic signals from the microcalcifications occurred when the laser wavelength ranged from 690 to 700 nm. This result demonstrated that PAI can serve as a real-time imaging and guidance tool for diagnosis and biopsy of the breast microcalcifications.

  16. Development of breast phantom for quality assessment of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata, E-mail: jenifferarvelos00@gmail.com [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Centro de Engenharia Biomedica; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Universidad Complutense de Madrid (UCM), Madrid (Spain). Faculdad de Medicina. Departmento de Radiologia

    2017-11-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  17. Comparison between breast MRI and contrast-enhanced spectral mammography.

    Science.gov (United States)

    Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy

    2015-05-12

    The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1-5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI.

  18. Breast metastases from extramammary malignancies: multimodality imaging aspects.

    Science.gov (United States)

    Bitencourt, Almir G V; Gama, Roberta R M; Graziano, Luciana; Negrão, Erika M S; Sabino, Silvia M P S; Watanabe, Anapaula H U; Guatelli, Camila S; Souza, Juliana A; Mauad, Edmundo C; Marques, Elvira F

    2017-08-01

    Breast metastases from extramammary cancers are rare and usually related to poor prognosis. The extramammary tumours most frequently exhibiting breast metastases are melanoma, lymphomas, ovarian cancer, lung and neuroendocrine tumours, and sarcomas. Owing to the lack of reliable and specific clinical or radiological signs for the diagnosis of breast metastases, a combination of techniques is needed to differentiate these lesions from primary breast carcinoma or even benign breast lesions. Multiple imaging methods may be used to evaluate these patients, including mammography, ultrasound, MRI, CT and positron emission tomography CT. Clinical and imaging manifestations are varied, depend on the form of dissemination of the disease and may mimic primary benign and malignant breast lesions. Haematologically disseminated metastases often develop as a circumscribed mass, whereas lymphatic dissemination often presents as diffuse breast oedema and skin thickening. Unlike primary carcinomas, breast metastases generally do not have spiculated margins, skin or nipple retraction. Microlobulated or indistinct margins may be present in some cases. Although calcifications are not frequently present in metastatic lesions, they occur more commonly in patients with ovarian cancer. Although rare, secondary malignant neoplasms should be considered in the differential diagnosis of breast lesions, in the appropriate clinical setting. Knowledge of the most common imaging features can help to provide the correct diagnosis and adequate therapeutic planning.

  19. Imaging Features of AlloDerm® Used in Postmastectomy Breast Reconstructions

    Directory of Open Access Journals (Sweden)

    Christine U Lee

    2014-01-01

    Full Text Available The purpose of this pictorial essay is to demonstrate the imaging features (ultrasound, mammogram, and magnetic resonance imaging (MRI of AlloDerm® (LifeCell Corp.; Branchburg, NJ, an acellular dermal matrix sometimes used in both primary and reconstructive breast surgeries. AlloDerm® is derived from cadaveric dermis and provides an immunologically inert scaffold in tissue reconstruction. Since there is little literature on the imaging of this substance, radiologists may be unfamiliar with its appearance in breast imaging. For this manuscript, ex vivo and in vivo images of AlloDerm® in postmastectomy patients were evaluated using different imaging modalities. The appearance of AlloDerm® can vary based on length of time postsurgery and incorporation into the host. AlloDerm® appears as an isodense to glandular tissue on a mammogram and isoechoic to glandular tissue on ultrasound imaging. On MRI, in comparison with normal breast parenchyma, AlloDerm® is hyperintense on T2-weighted imaging and isointense on T1-weighted imaging and demonstrates mild enhancement. To the best of the authors′ knowledge, this is the first multimodality imaging description of AlloDerm® used in postmastectomy patients. The conformation of AlloDerm® at surgical placement and the degree of host cell migration and neoangiogenesis are factors to take into consideration when performing diagnostic evaluations; and, familiarity with the various imaging appearances of AlloDerm® can be helpful to exclude residual or recurrent disease.

  20. MR imaging characteristics of breast cancer diagnosed during lactation.

    Science.gov (United States)

    Oh, Seung Won; Lim, Hyo Soon; Moon, Sung Min; Kim, Jin Woong; Shin, Sang Soo; Heo, Suk Hee; Lee, Ji Shin; Park, Min Ho

    2017-10-01

    To describe the MR imaging characteristics of breast cancer diagnosed during lactation and evaluate the usefulness of MR imaging. The MR images of nine patients (age range, 29-37 years) with pathologically confirmed breast carcinoma during lactation were evaluated retrospectively. Background parenchymal enhancement of the lactating mammary tissue was determined. The images were reviewed for evaluation of lesion detection, enhancement type (mass/non-mass), shape, margin, contrast enhancement and time-intensity curve pattern in the dynamic study. The breast MR images after neoadjuvant chemotherapy were also reviewed. Although the breasts showed marked (n = 7) or moderate (n = 2) background parenchymal enhancement, MR imaging depicted breast cancer in all patients. All nine tumours were visible as masses. The most common shape and margin of the masses were an irregular mass (n = 5) with an irregular margin (n = 9). Contrast enhancement was heterogeneous or rim enhancement. The predominant kinetic pattern was rapid increase (n = 9) in the initial phase and washout (n = 5) in the delayed phase. Additional sites of cancer other than the index lesion were detected with MR imaging in three patients (33.3%). MR imaging demonstrated partial response in five of six patients who were evaluated for response to chemotherapy. All breast cancers in lactating females in this study were observed on breast MR imaging despite the moderate-to-marked background parenchymal enhancement of lactating mammary tissue. Advances in knowledge: MR imaging can be used in the evaluation of disease extent and assessment of therapeutic response after neoadjuvant chemotherapy of breast cancer diagnosed during lactation.

  1. Diffusion magnetic resonance imaging of breast lesions: Initial ...

    African Journals Online (AJOL)

    Objective: The purpose of our study was to investigate whether adding diffusion weighted imaging (DWI) to dynamic contrast-enhanced MRI (DCE-MRI) could improve specificity and the positive predictive value (PPV) of breast MRI in differentiating benign and malignant focal breast mass lesions. Materials and methods: ...

  2. Zr-89- Bevacizumab PET Imaging in Primary Breast Cancer

    NARCIS (Netherlands)

    Gaykema, Sietske B. M.; Brouwers, Adrienne H.; Lub-de Hooge, Marjolijn N.; Pleijhuis, Rick G.; Timmer-Bosscha, Hetty; Pot, Linda; van Dam, Gooitzen M.; van der Meulen, Sibylle B.; de Jong, Johan R.; Bart, Joost; de Vries, Jakob; Jansen, Liesbeth; de Vries, Elisabeth G. E.; Schroder, Carolien P.

    2013-01-01

    Vascular endothelial growth factor (VEGF)-A is overexpressed in most malignant and premalignant breast lesions. VEGF-A can be visualized noninvasively with PET imaging and using the tracer Zr-89-labeled bevacizumab. In this clinical feasibility study, we assessed whether VEGF-A in primary breast

  3. A 3-D Level Set Method for Microwave Breast Imaging.

    Science.gov (United States)

    Colgan, Timothy J; Hagness, Susan C; Van Veen, Barry D

    2015-10-01

    Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2-D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive, and thus, impractical in 3-D. In this paper, we present a computationally tractable 3-D microwave imaging algorithm based on level sets. We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3-D imaging using simulated array measurements from 3-D numerical breast phantoms. We evaluate performance by comparing full 3-D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Our reconstructions of 3-D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of the conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Our level set method leads to a feasible level of computational complexity for full 3-D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. 3-D microwave breast imaging using a level set method is a promising low-cost, nonionizing alternative to current breast imaging techniques.

  4. Breast Imaging: How We Manage Diagnostic Technology at a Multidisciplinary Breast Center

    Directory of Open Access Journals (Sweden)

    Alejandro Tejerina Bernal

    2012-01-01

    Full Text Available This paper discusses the most important aspects and problems related to the management of breast cancer imaging, at a center specialized in breast pathology. We review the established and emerging diagnostic techniques, their indications, and peculiarities: digital mammography, CAD systems, and the recent digital breast tomosynthesis, ultrasound and complementary elastography, molecular imaging techniques, magnetic resonance imaging, advanced sequences (diffusion, and positron emission mammography (PEM. The adequate integration and rational management of these techniques is essential, but this is not always easy, in order to achieve a successful diagnosis.

  5. Magnetic resonance imaging of breast prostheses

    African Journals Online (AJOL)

    G5

    by silicone gel and when the silicone gel separates the elastomer shell from the sur- rounding fibrous breast capsule. Introduction. Breast implantation using prostheses is becoming a common plastic surgical proce- dure in this country. In the USA between 1 and 2 million women have had breast implantation procedures.1.

  6. A Selective Ensemble Classification Method Combining Mammography Images with Ultrasound Images for Breast Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Jinyu Cong

    2017-01-01

    Full Text Available Breast cancer has been one of the main diseases that threatens women’s life. Early detection and diagnosis of breast cancer play an important role in reducing mortality of breast cancer. In this paper, we propose a selective ensemble method integrated with the KNN, SVM, and Naive Bayes to diagnose the breast cancer combining ultrasound images with mammography images. Our experimental results have shown that the selective classification method with an accuracy of 88.73% and sensitivity of 97.06% is efficient for breast cancer diagnosis. And indicator R presents a new way to choose the base classifier for ensemble learning.

  7. Bilateral Contrast-enhanced Dual-Energy Digital Mammography: Feasibility and Comparison with Conventional Digital Mammography and MR Imaging in Women with Known Breast Carcinoma

    OpenAIRE

    Jochelson, Maxine S.; Dershaw, D. David; Sung, Janice S.; Heerdt, Alexandra S.; Thornton, Cynthia; Moskowitz, Chaya S.; Ferrara, Jessica; Morris, Elizabeth A.

    2013-01-01

    Bilateral dual-energy contrast-enhanced digital mammography was feasible, easily accomplished, and depicted known primary tumors at a rate comparable to that of MR imaging and higher than that of conventional digital mammography.

  8. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  9. Multifractal analysis of dynamic infrared imaging of breast cancer

    Science.gov (United States)

    Gerasimova, E.; Audit, B.; Roux, S. G.; Khalil, A.; Argoul, F.; Naimark, O.; Arneodo, A.

    2013-12-01

    The wavelet transform modulus maxima (WTMM) method was used in a multifractal analysis of skin breast temperature time-series recorded using dynamic infrared (IR) thermography. Multifractal scaling was found for healthy breasts as the signature of a continuous change in the shape of the probability density function (pdf) of temperature fluctuations across time scales from \\sim0.3 to 3 s. In contrast, temperature time-series from breasts with malignant tumors showed homogeneous monofractal temperature fluctuations statistics. These results highlight dynamic IR imaging as a very valuable non-invasive technique for preliminary screening in asymptomatic women to identify those with risk of breast cancer.

  10. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruey-Feng [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan and Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hou, Yu-Ling [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (China); Lo, Chung-Ming [Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chiun-Sheng [Department of Surgery, National Taiwan University Hospital, Taipei 10617, Taiwan (China); Chen, Jeon-Hor [Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan and Tu and Yuen Center for Functional Onco-Imaging and Department of Radiological Science, University of California, Irvine, California 92697 (United States); Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-08-15

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future.

  11. Imaging breast tumor vascularization for detection and diagnosis of breast cancer

    NARCIS (Netherlands)

    Heijblom, M.; Klaase, J.M.; van den Engh, F.M.; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2011-01-01

    Breast cancer is one of the major causes of morbidity and mortality in western women. Current screening and diagnostic imaging modalities, like x-ray mammography and ultrasonography, focus on morphological changes of breast tissue. However, these techniques still miss some cancers and often falsely

  12. Classification of breast cancer histology images using Convolutional Neural Networks

    National Research Council Canada - National Science Library

    Teresa Araújo; Guilherme Aresta; Eduardo Castro; José Rouco; Paulo Aguiar; Catarina Eloy; António Polónia; Aurélio Campilho

    2017-01-01

    Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy tissue with hematoxylin and eosin stained images is non-trivial and specialists often disagree on the final diagnosis...

  13. Non-Gaussian statistical properties of breast images

    Science.gov (United States)

    Abbey, Craig K.; Nosratieh, Anita; Sohl-Dickstein, Jascha; Yang, Kai; Boone, John M.

    2012-01-01

    Purpose: Several studies have shown that the power spectrum of x-ray breast images is well described by a power-law at lower frequencies where anatomical variability dominates. However, an image generated from a Gaussian process with this spectrum is easily distinguished from an image of actual breast tissue by eye. This demonstrates that higher order non-Gaussian statistical properties of mammograms are readily accessible to the visual system. The authors’ purpose is to quantify and characterize non-Gaussian statistical properties of breast images as influenced by processing of a digital mammogram, different imaging modalities, and breast density. Methods: To quantify non-Gaussian statistical properties, the authors consider histograms of filter responses from the interior of a breast image that have similar properties to receptive fields in the early visual system. They quantify departure from a Gaussian distribution by the relative entropy of the histogram compared to a best-fit Gaussian distribution. This entropy is normalized by the relative entropy of a best-fit Laplacian distribution into a measure they refer to as Laplacian fractional entropy (LFE). They test the LFE on a set of 26 patients recalled at screening for which they have available full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT (bCT) images as well as breast density scores and biopsy results. Results: A study of LFE in FFDM comparing the raw “for-processing” transmission data from the device to log-converted density estimates and the processed “for-display” data shows that processing mammographic image data enhances the non-Gaussian content of the image. A check of the methodology using a Gaussian process with a power-law power spectrum shows relatively little bias from the finite extent of the region of interests used. A second study comparing LFE across FFDM, DBT, and bCT modalities shows that each maximized the non-Gaussian content

  14. New developments in medical imaging to detect breast cancer

    African Journals Online (AJOL)

    medical imaging modalities are used to detect breast cancer, the most common being X-rays (mammography), ultrasound, magnetic resonance imaging (MRI) and various radionuclide techniques.2. The purpose of this article is to review these and other novel medical imaging modalities. The American College of Radiology ...

  15. Dosimetric comparison of (192)Ir high-dose-rate brachytherapy vs. 50 kV x-rays as techniques for breast intraoperative radiation therapy: conceptual development of image-guided intraoperative brachytherapy using a multilumen balloon applicator and in-room CT imaging.

    Science.gov (United States)

    Jones, Ryan; Libby, Bruce; Showalter, Shayna L; Brenin, David R; Wilson, David D; Schroen, Anneke; Morris, Monica; Reardon, Kelli A; Morrison, John; Showalter, Timothy N

    2014-01-01

    At our institution, the availability of a shielded procedure room with in-room CT-on-rails imaging allows for the exploration of a high-dose-rate (HDR) brachytherapy approach for breast intraoperative radiation therapy (IORT). We hypothesize that HDR brachytherapy will permit a higher prescription dose without increasing toxicity. In this study, we compare the dosimetry of intraoperative HDR brachytherapy, using multilumen balloon applicator, to IORT with a 50 kV source and then select a prescription dose for a subsequent clinical trial. The CT scans of 14 patients who had previously received multilumen balloon-based breast brachytherapy were replanned to a standard prescription to the target volume. The same 14 cases were planned to the specifications of a 50 kV x-ray system. Uniform volume optimization and prescription doses were used to permit direct comparisons. All plans were evaluated for the dose homogeneity index, tumor coverage, and dose to normal tissues, including skin, ribs, and heart (for left breast plans). The HDR brachytherapy plans were superior to 50 kV superficial photon plans for IORT in all dosimetric parameters except for the heart and rib dosimetric parameters. Prescription dose of 12.5 Gy to the planning target volume for evaluation yielded a dose to 95 percent of the balloon surface of 19.7 Gy. Image-guided HDR intraoperative brachytherapy with a multilumen balloon applicator provides superior target volume coverage compared with 50 kV photons, while maintaining doses within tolerance limits for normal tissues. An ongoing prospective clinical trial will evaluate the safety and feasibility of this technique. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of scatter effects on image quality for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J. [Imaging Research, Sunnybrook Health Sciences Centre, S-657, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, X-ray Imaging Laboratory, U. C. Davis Medical Center, 4701 X Street, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616 (United States); Imaging Research, Sunnybrook Health Sciences Centre, S-657, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada)

    2009-10-15

    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  17. Evaluation of scatter effects on image quality for breast tomosynthesis.

    Science.gov (United States)

    Wu, Gang; Mainprize, James G; Boone, John M; Yaffe, Martin J

    2009-10-01

    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  18. Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Ingvar; Zackrisson, Sophia [Malmoe University Hospital, Diagnostic Centre of Imaging and Functional Medicine, Malmoe (Sweden); Ikeda, Debra M. [Stanford University, Stanford Advanced Medicine Center, Department of Radiology, Stanford, CA (United States); Ruschin, Mark [Lund University, Malmoe University Hospital, Department of Medical Radiation Physics, Malmoe (Sweden); University Health Network/Princess Margaret Hospital, Department of Radiation Physics, Toronto, ON (Canada); Svahn, Tony; Timberg, Pontus; Tingberg, Anders [Lund University, Malmoe University Hospital, Department of Medical Radiation Physics, Malmoe (Sweden)

    2008-12-15

    The main purpose was to compare breast cancer visibility in one-view breast tomosynthesis (BT) to cancer visibility in one- or two-view digital mammography (DM). Thirty-six patients were selected on the basis of subtle signs of breast cancer on DM. One-view BT was performed with the same compression angle as the DM image in which the finding was least/not visible. On BT, 25 projections images were acquired over an angular range of 50 degrees, with double the dose of one-view DM. Two expert breast imagers classified one- and two-view DM, and BT findings for cancer visibility and BIRADS cancer probability in a non-blinded consensus study. Forty breast cancers were found in 37 breasts. The cancers were rated more visible on BT compared to one-view and two-view DM in 22 and 11 cases, respectively, (p<0.01 for both comparisons). Comparing one-view DM to one-view BT, 21 patients were upgraded on BIRADS classification (p<0.01). Comparing two-view DM to one-view BT, 12 patients were upgraded on BIRADS classification (p<0.01). The results indicate that the cancer visibility on BT is superior to DM, which suggests that BT may have a higher sensitivity for breast cancer detection. (orig.)

  19. Speckle reduction approach for breast ultrasound image and its application to breast cancer diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Su Yanxin; Wang Hong; Wang Ying [Ultrasound Department, Second Affiliated Hospital, Key Laboratory of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, 148 Baojian Road, Harbin 150086, Heilongjiang (China); Guo Yanhui; Cheng Hengda; Zhang Yingtao [School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Tian Jiawei, E-mail: jwtian2004@yahoo.com.c [Ultrasound Department, Second Affiliated Hospital, Key Laboratory of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, 148 Baojian Road, Harbin 150086, Heilongjiang (China)

    2010-07-15

    Objectives: To retrospectively evaluate the effects of a speckle reduction algorithm on radiologists' diagnosis of malignant and benign breast lesions on ultrasound (US) images. Methods: Using a database of 603 breast (US) images of 211 cases (109 benign lesions and 102 malignant ones), the original and speckle-reduced images were assessed by five radiologists and final assessment categories were assigned to indicate the probability of malignancy according to BI-RADS-US. The diagnostic sensitivity and specificity were investigated by the areas (Az) under the receiver operating characteristic (ROC) curves. Results: The sensitivity and specificity of breast lesions on Ultrasound images improved from 88.7% to 94.3%, from 68.6% to 75.2%, respectively, and the area (Az) under ROC curve of diagnosis also increased from 0.843 to 0.939, Z = 4.969, there were significant differences in the Az between the original breast lesions and speckle-reduced ones on Ultrasound images (P < 0.001). The diagnostic accuracy of breast lesions had been highly improved from 78.67% to 92.73% after employing this algorithm. Conclusions: The results demonstrate the promising performance of the proposed speckle reduction algorithm in distinguishing malignant from benign breast lesions which will be useful for breast cancer diagnosis.

  20. Magnetic resonance imaging of benign phyllodes tumors of the breast.

    Science.gov (United States)

    Kinoshita, Takayuki; Fukutomi, Takashi; Kubochi, Kiyoshi

    2004-01-01

    Magnetic resonance imaging (MRI) has the potential to become a useful adjunct in breast imaging. Contrast-enhanced breast MRI has demonstrated a high sensitivity in the detection of benign and malignant breast disease. Our study aimed to correlate the dynamic contrast-enhanced MRI appearance of benign phyllodes tumor of the breast with histopathologic findings. We retrospectively reviewed the MRI findings in eight patients with benign phyllodes tumor of the breast to describe the image characteristics of this disease. The architectural features and enhancement patterns of this tumor were assessed and compared with other breast diseases. MRIs demonstrated some characteristics for large benign phyllodes tumors (more than 3 cm in size). On T(2)-weighted images, they were imaged as spotted tumors in high to iso signal intensity with cystic components or septations inside. In the time-signal intensity curve for the eight patients in our study who underwent dynamic MRI, we demonstrated two patterns of their curve: rapidly and gradually enhanced. In conclusion, MRI findings in benign phyllodes tumor include dynamic curves of gradually and rapidly enhancing types, and a low and inhomogeneous signal intensity on T(2)-weighted images compared with fibroadenoma. These findings appear to be useful for diagnosis.

  1. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images

    Science.gov (United States)

    Shih, Tzu-Ching; Chen, Jeon-Hor; Liu, Dongxu; Nie, Ke; Sun, Lizhi; Lin, Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying

    2010-07-01

    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo® 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc® software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under different compression

  2. In vivo breast sound-speed imaging with ultrasound tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTITUTE; Duric, Neb [KARMANOS CANCER INSTITUTE; Littrup, Peter [KARMONOS CANCER INSTITUTE

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided pbreast density (, and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor clinical response of breast cancer patients to neo-adjuvant chemotherapy.

  3. A minimum spanning forest based classification method for dedicated breast CT images

    NARCIS (Netherlands)

    Pike, R.; Sechopoulos, I.; Fei, B.

    2015-01-01

    PURPOSE: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. METHODS: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale

  4. Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Londero, Viviana; Bazzocchi, Massimo; Del Frate, Chiara; Francescutti, Giuliana; Zuiani, Chiara [Institute of Radiology, University of Udine, via Colugna 50, 33100, Udine (Italy); Puglisi, Fabio [Department of Oncology, University of Udine, via Colugna 50, 33100, Udine (Italy); Di Loreto, Carla [Institute of Pathology, University of Udine, via Colugna 50, 33100, Udine (Italy)

    2004-08-01

    The accuracy of mammography, sonography and magnetic resonance imaging (MRI) in identifying residual disease after neoadjuvant chemotherapy is evaluated and imaging findings are correlated with pathologic findings. Fifteen patients enrolled in an experimental protocol of preoperative neoadjuvant chemotherapy underwent clinical examination, mammography, sonography and dynamic MRI, performed in this order, before and respectively after 2 and 4 cycles of neoadjuvant chemotherapy. Four radiologists, two for mammography, one for sonography and one for MR, examined the images, blinded to the results of the other examinations. All patients underwent radical or conservative surgery, and imaging findings were compared with pathologic findings. MRI identified 2/15 (13.3.%) clinically complete response (CR), 9/15 (60%) partial response (PR), 3/15 (20%) stable disease (SD) and 1/15 (6.7%) progressive disease. Mammography identified 1/15 (6.7%) clinically CR, 8/15 (53.3%) PR and 4/15 (27%) SD, and was not able to evaluate the disease in 2/15 (13%) cases. Sonography presented the same results as MRI. Therefore, MRI and sonography compared to mammography correctly identified residual disease in 100 vs. 86%. MRI resulted in two false-negative results because of the presence of microfoci of in situ ductal carcinoma (DCIS) and invasive lobular carcinoma (LCI). MRI was superior to mammography in cases of multifocal or multicentric disease (83 vs. 33%). Sonography performed after MRI improves the accuracy in evaluation of uncertain foci of multifocal disease seen on MR images with an increase of diagnostic accuracy from 73 to 84.5%. MRI assesses response to neoadjuvant chemotherapy better than traditional methods of physical examination and mammography. (orig.)

  5. Replacing single-view mediolateral oblique (MLO) digital mammography (DM) with synthesized mammography (SM) with digital breast tomosynthesis (DBT) images: Comparison of the diagnostic performance and radiation dose with two-view DM with or without MLO-DBT.

    Science.gov (United States)

    Kang, Hyo-Jin; Chang, Jung Min; Lee, Joongyub; Song, Sung Eun; Shin, Sung Ui; Kim, Won Hwa; Bae, Min Sun; Moon, Woo Kyung

    2016-11-01

    To evaluate the diagnostic performance and radiation dose of single view cranio-caudal (CC) digital mammography (DM) plus mediolateral oblique (MLO) digital breast tomosynthesis (DBT) combined with synthesized mammography (SM) in comparison with two-view DM with or without DBT. This study was approved by our institutional review board, and informed consent was obtained from 130 women. Paired two-view DM and single MLO-DBT with SM images were acquired, and four independent retrospective reading sessions of different combinations of DM, SM and DBT were performed for the presence of malignant tumors using jackknife alternative free-response receiver operator curve (JAFROC) methods. The diagnostic performances and average glandular dose (AGD) were compared between different combinations of DM, SM and DBT. Of 159 lesions in 130 patients, 27 were malignant. When using MLO-DBT with SM instead of MLO-DM, a significantly higher sensitivity (P=0.016) and specificity (P=0.012) were noted than with two-view DM, and comparable figure of merit (FOM), sensitivity, and specificity to two-view DM with DBT were noted. The mean AGD of CC-DM plus MLO-DBT with SM was 5.78mGy±1.06 per patient, which was significantly lower than that with two-view DM with MLO-DBT (8.45mGy±1.32; P MLO-DBT with SM showed higher sensitivity and specificity to two-view DM with a smaller AGD increment and comparable diagnostic performance to that of two-view DM with MLO-DBT with a significantly lower mean AGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Imaging breast lesions using the Twente Photoacoustic Mammoscope: ongoing clinical experience

    NARCIS (Netherlands)

    Heijblom, M.; Piras, D.; Xia, W.; van Hespen, Johannes C.G.; Klaase, J.M.; van den Engh, F.M.; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang

    2012-01-01

    Current imaging modalities are often not able to detect early stages of breast cancer with high imaging contrast. Visualizing malignancy-associated increased hemoglobin concentrations might improve breast cancer diagnosis. Photoacoustic imaging can visualize hemoglobin in tissue with optical

  7. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images.

    Science.gov (United States)

    Gupta, Suneet; Porwal, Rabins

    2016-01-01

    Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  8. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  9. Targeted Silver Nanoparticles for Dual-Energy Breast X-Ray Imaging

    Science.gov (United States)

    2013-03-01

    the applicability of AgNP as contrast agents for use in DE-CE digital breast tomosynthesis and digital mammography . Three objectives have been...silver (Ag) nanoparticle (NP) contrast agent optimized for dual- energy (DE) contrast -enhanced (CE) breast x-ray imaging. CE digital breast imaging...provides an accurate method for decomposition of images into distinct breast tissue and contrast agent signals. At present, DE-CE breast imaging is

  10. Comparison of gadobenate dimeglumine-enhanced breast MRI and gadopentetate dimeglumine-enhanced breast MRI with mammography and ultrasound for the detection of breast cancer.

    Science.gov (United States)

    Gilbert, Fiona J; van den Bosch, Harrie C M; Petrillo, Antonella; Siegmann, Katja; Heverhagen, Johannes T; Panizza, Pietro; Gehl, Hans-Björn; Pediconi, Federica; Diekmann, Felix; Peng, Wei-Jun; Ma, Lin; Sardanelli, Francesco; Belli, Paolo; Corcione, Stefano; Zechmann, Christian M; Faivre-Pierret, Matthieu; Martincich, Laura

    2014-05-01

    To compare gadobenate dimeglumine-enhanced magnetic resonance imaging (MRI) with gadopentetate dimeglumine-enhanced MRI, mammography, and ultrasound for breast cancer detection across different malignant lesion types and across different densities of breast tissue. In all, 153 women with Breast Imaging Reporting and Data System (BI-RADS) 3–5 findings on mammography and/or ultrasound underwent identical breast MRI exams at 1.5T with gadobenate dimeglumine and gadopentetate dimeglumine. Images were evaluated by three independent blinded radiologists. Mammography, ultrasound, and combined mammography and/or ultrasound findings were available for 108, 109, and 131 women. Imaging findings were matched with histology data by a fourth, independent, blinded radiologist. Malignant lesion detection rates and diagnostic performance were compared. In all, 120, 120, and 140 confirmed malignant lesions were present in patients undergoing MRI+mammography, MRI+ultrasound, and MRI+mammography and/or ultrasound, respectively. Significantly greater cancer detection rates were noted by all three readers for comparisons of gadobenate dimeglumine-enhanced MRI with mammography (Δ15.8–17.5%; P gadopentetate dimeglumine-enhanced MRI with conventional techniques (P > 0.05). The false-positive detection rates were lower on gadobenate dimeglumine-enhanced MRI than on conventional imaging (4.0–5.5% vs. 11.1% at mammography; 6.3–8.4% vs. 15.5% at ultrasound). Significantly improved cancer detection on MRI was noted in heterogeneously dense breast (91.2–97.3% on gadobenate dimeglumine-enhanced MRI vs. 77.2–84.9% on gadopentetate dimeglumine-enhanced MRI vs. 71.9-84.9% with conventional techniques) and for invasive cancers (93.2–96.2% for invasive ductal carcinoma [IDC] on gadobenate dimeglumine-enhanced MRI vs. 79.7–88.5% on gadopentetate dimeglumine-enhanced MRI vs. 77.0–84.4% with conventional techniques). Overall diagnostic performance for the detection of cancer was

  11. Image quality and breast dose of 24 screen-film combinations for mammography.

    Science.gov (United States)

    Dimakopoulou, A D; Tsalafoutas, I A; Georgiou, E K; Yakoumakis, E N

    2006-02-01

    In this study the effect of different mammographic screen-film combinations on image quality and breast dose, and the correlation between the various image quality parameters, breast dose and the sensitometric parameters of a film were investigated. Three Agfa (MR5-II, HDR, HT), two Kodak (Min-R M, Min-R 2000), one Fuji (AD-M), one Konica (CM-H) and one Ferrania (HM plus) single emulsion mammographic films were combined with three intensifying screens (Agfa HDS, Kodak Min-R 2190 and Fuji AD-MA). The film characteristics were determined by sensitometry, while the image quality and the dose to the breast of the resulting 24 screen-film combinations were assessed using a mammography quality control phantom. For each combination, three images of the phantom were acquired with optical density within three different ranges. Two observers assessed the quality of the 72 phantom images obtained, while the breast dose was calculated from the exposure data required for each image. Large differences among screen-film combinations in terms of image quality and breast dose were identified however, that, could not be correlated with the film's sensitometric characteristics. All films presented the best resolution when combined with the HDS screen at the expense of speed, and the largest speed when combined with the AD-MA screen, without degradation of the overall image quality. However, an ideal screen-film combination presenting the best image quality with the least dose was not identified. It is also worth mentioning that the best performance for a film was not necessarily obtained when this was combined with the screen provided by the same manufacturer. The results of this study clearly demonstrate that comparison of films based on their sensitometric characteristics are of limited value for clinical practice, as their performance is strongly affected by the screens with which they are combined.

  12. Breast image pre-processing for mammographic tissue segmentation.

    Science.gov (United States)

    He, Wenda; Hogg, Peter; Juette, Arne; Denton, Erika R E; Zwiggelaar, Reyer

    2015-12-01

    During mammographic image acquisition, a compression paddle is used to even the breast thickness in order to obtain optimal image quality. Clinical observation has indicated that some mammograms may exhibit abrupt intensity change and low visibility of tissue structures in the breast peripheral areas. Such appearance discrepancies can affect image interpretation and may not be desirable for computer aided mammography, leading to incorrect diagnosis and/or detection which can have a negative impact on sensitivity and specificity of screening mammography. This paper describes a novel mammographic image pre-processing method to improve image quality for analysis. An image selection process is incorporated to better target problematic images. The processed images show improved mammographic appearances not only in the breast periphery but also across the mammograms. Mammographic segmentation and risk/density classification were performed to facilitate a quantitative and qualitative evaluation. When using the processed images, the results indicated more anatomically correct segmentation in tissue specific areas, and subsequently better classification accuracies were achieved. Visual assessments were conducted in a clinical environment to determine the quality of the processed images and the resultant segmentation. The developed method has shown promising results. It is expected to be useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer.

    Science.gov (United States)

    Zheng, Feng-Yang; Lu, Qing; Huang, Bei-Jian; Xia, Han-Sheng; Yan, Li-Xia; Wang, Xi; Yuan, Wei; Wang, Wen-Ping

    2017-01-01

    To investigate the correlation between the imaging features obtained by an automated breast volume scanner (ABVS) and molecular subtypes of breast cancer. We examined 303 malignant breast tumours by ABVS for specific imaging features and by immunohistochemical analysis to determine the molecular subtype. ABVS imaging features, including retraction phenomenon, shape, margins, echogenicity, post-acoustic features, echogenic halo, and calcifications were analysed by univariate and multivariate logistic regression analyses to determine the significant predictive factors of the molecular subtypes. By univariate logistic regression analysis, the predictive factors of the Luminal-A subtype (n=128) were retraction phenomenon (odds ratio [OR]=10.188), post-acoustic shadowing (OR=5.112), and echogenic halo (OR=3.263, Pimaging features, especially retraction phenomenon, have a strong correlation with the molecular subtypes, expanding the scope of ultrasound in identifying breast cancer subtypes with confidence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Clinicopathological comparison of triple negative breast cancers ...

    African Journals Online (AJOL)

    Key words: Basal subtype, estrogen receptor, hormone receptors, human epidermal growth factor receptor‑2/neu, progesterone receptor, triple negative. Date of Acceptance: 10‑Nov‑2014. Introduction. Breast cancer is by far the most frequent cancer among women worldwide with an estimated 1.38 million new cases of ...

  15. Women’s experiences and preferences regarding breast imaging after completing breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Brandzel S

    2017-02-01

    Full Text Available Susan Brandzel,1 Dori E Rosenberg,1 Dianne Johnson,1 Mary Bush,1 Karla Kerlikowske,2–5 Tracy Onega,6,7 Louise Henderson,8 Larissa Nekhlyudov,9,10 Wendy DeMartini,11 Karen J Wernli1 1Group Health Research Institute, Group Health Cooperative, Seattle, WA, 2Department of Medicine, 3Department of Epidemiology, 4Department of Biostatistics, 5Department of Veterans Affairs, University of California, San Francisco, San Francisco, CA, 6Department of Biomedical Data Science, 7Department of Epidemiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 8Department of Radiology, University of North Carolina, Chapel Hill, NC, 9Department of Population Medicine, Harvard Medical School, 10Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 11Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA Background: After treatment for breast cancer, most women receive an annual surveillance mammography to look for subsequent breast cancers. Supplemental breast MRI is sometimes used in addition to mammography despite the lack of clinical evidence for it. Breast imaging after cancer treatment is an emotionally charged experience, an important part of survivorship care, and a topic about which limited patient information exists. We assessed women’s experiences and preferences about breast cancer surveillance imaging with the goal of determining where gaps in care and knowledge could be filled. Participants and methods: We conducted six focus groups with a convenience sample of 41 women in California, North Carolina, and New Hampshire (USA. Participants were aged 38–75 years, had experienced stage 0–III breast cancer within the previous 5 years, and had completed initial treatment. We used inductive thematic analysis to identify key themes from verbatim transcripts. Results: Women reported various types and frequencies of surveillance imaging and a range of surveillance imaging

  16. Development of a dynamic 4D anthropomorphic breast phantom for contrast-based breast imaging

    Science.gov (United States)

    Kiarashi, Nooshin; Lin, Yuan; Segars, William P.; Ghate, Sujata V.; Ikejimba, Lynda; Chen, Baiyu; Lo, Joseph Y.; Dobbins, James T., III; Nolte, Loren W.; Samei, Ehsan

    2012-03-01

    Mammography is currently the most widely accepted tool for detection and diagnosis of breast cancer. However, the sensitivity of mammography is reduced in women with dense breast tissue due to tissue overlap, which may obscure lesions. Digital breast tomosynthesis with contrast enhancement reduces tissue overlap and provides additional functional information about lesions (i.e. morphology and kinetics), which in turn may improve lesion characterization. The performance of such techniques is highly dependent on the structural composition of the breast, which varies significantly across patients. Therefore, optimization of breast imaging systems should be done with respect to this patient versatility. Furthermore, imaging techniques that employ contrast require the inclusion of a temporally varying breast composition with respect to the contrast agent kinetics to enable the optimization of the system. To these ends, we have developed a dynamic 4D anthropomorphic breast phantom, which can be used for optimizing a breast imaging system by incorporating material characteristics. The presented dynamic phantom is based on two recently developed anthropomorphic breast phantoms, which can be representative of a whole population through their randomized anatomical feature generation and various compression levels. The 4D dynamic phantom is incorporated with the kinetics of contrast agent uptake in different tissues and can realistically model benign and malignant lesions. To demonstrate the utility of the proposed dynamic phantom, contrast-enhanced digital mammography and breast tomosynthesis were simulated where a ray-tracing algorithm emulated the projections, a filtered back projection algorithm was used for reconstruction, and dual-energy and temporal subtractions were performed and compared.

  17. Magnetic Resonance Imaging-Guided Breast Interventions: Role in Biopsy Targeting and Lumpectomies.

    Science.gov (United States)

    Gombos, Eva C; Jagadeesan, Jayender; Richman, Danielle M; Kacher, Daniel F

    2015-11-01

    Contrast-enhanced breast MR imaging is increasingly being used to diagnose breast cancer and to perform biopsy procedures. The American Cancer Society has advised women at high risk for breast cancer to have breast MR imaging screening as an adjunct to screening mammography. This article places special emphasis on biopsy and operative planning involving MR imaging and reviews use of breast MR imaging in monitoring response to neoadjuvant chemotherapy. Described are peer-reviewed data on currently accepted MR imaging-guided procedures for addressing benign and malignant breast diseases, including intraoperative imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

    Directory of Open Access Journals (Sweden)

    Jeroen F Vermeulen

    Full Text Available INTRODUCTION: Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. METHODS: Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. RESULTS: Growth factor receptors were variably expressed in 4.5% (MET up to 38.5% (IGF1-R of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. CONCLUSIONS: Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of

  19. Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

    Science.gov (United States)

    Vermeulen, Jeroen F; Kornegoor, Robert; van der Wall, Elsken; van der Groep, Petra; van Diest, Paul J

    2013-01-01

    Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. Growth factor receptors were variably expressed in 4.5% (MET) up to 38.5% (IGF1-R) of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII) were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of molecular tracers for male breast cancer.

  20. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  1. Integrated imaging of breast hamartoma: two case reports.

    Science.gov (United States)

    Cucci, Eleonora; Santoro, Angela; Di Gesú, Cinzia; Ciuffreda, Matteo; Maselli, Giuseppina; Pierro, Antonio; Sallustio, Giuseppina

    2015-01-01

    Hamartoma of the breast is an uncommon, benign, slow-growing mass usually diagnosed in women in the fourth and fifth decade of life undergoing mammography (MX). Here we report two cases of hamartoma of the breast assessed by integrated MX, ultrasonography and magnetic resonance imaging (MRI) examination. Case 1 was an asymptomatic 47-year-old woman who had never been screened previously. A 90 mm mass was found in her left breast on MX. Case 2 was a 35-year-old woman with pain in her right breast where a 50 mm mass was found on MX. Both patients underwent MRI examination. Breast MRI is an adjunct to MX that can confirm hamartoma diagnosis and exclude rare malignant transformation.

  2. Quantification of background enhancement in breast magnetic resonance imaging

    Science.gov (United States)

    Klifa, C; Suzuki, S; Aliu, S; Singer, L; Wilmes, L; Newitt, D; Joe, B; Hylton, N

    2011-01-01

    Purpose To present a novel technique for measuring tissue enhancement in breast fibroglandular tissue regions on contrast-enhanced breast MR images aimed at quantifying the enhancement of breast parenchyma, also known as “background enhancement”. Materials and Methods Our quantitative method for measuring breast MRI background enhancement was evaluated in a population of 16 healthy volunteers. We also demonstrate the use of our new technique in the case study of one subject classified as high risk for developing breast cancer who underwent 3 months of tamoxifen therapy. Results We obtained quantitative measures of background enhancement in all cases. The high-risk patient exhibited a 37% mean reduction in background enhancement with treatment. Conclusion Our quantitative method is a robust and promising tool that may allow investigators to quantify and document the potential adverse effect of background enhancement on diagnostic accuracy in larger populations. PMID:21509883

  3. [Influence of projection data correction on digital breast tomosynthesis imaging].

    Science.gov (United States)

    Zhang, Xin-Yu; Zhang, Hua; Bian, Zhao-Ying; Zeng, Dong; He, Ji; Tian, Xiu-Mei; Ma, Jian-Hua; Huang, Jing

    2017-03-20

    To investigate the effect of detector performance during digital breast tomography (DBT) projection data acquisition on reconstructed image quality. With reference to the traditional detector data correction method and the specific data acquisition pattern in DBT imaging, we utilized dark field correction, light field and its gain correction for processing the projection data collected by the detector. The reconstructed images were evaluated using iterative reconstruction method based on total generalized variation (TGV). In physical breast phantom experiment, the proposed method resulted in a reduced Heel effect caused by nonuniform photon number. The reconstructed DBT images after correction showed obviously improved image quality especially in the details with a low contrast. The dark field correction, light field and its gain correction process for DBT image reconstruction can improve the image quality.

  4. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system, the...

  5. Percutaneous Image-Guided Ablation of Breast Tumors: An Overview

    OpenAIRE

    Sag, Alan A.; Maybody, Majid; Comstock, Christopher; Solomon, Stephen B.

    2014-01-01

    Percutaneous non-surgical image-guided ablation is emerging as an adjunct or alternative to surgery in the management of benign and malignant breast tumors. This review covers the current state of the literature regarding percutaneous image-guided ablation modalities, clinical factors regarding patient selection, and future directions for research.

  6. Percutaneous image-guided ablation of breast tumors: an overview.

    Science.gov (United States)

    Sag, Alan A; Maybody, Majid; Comstock, Christopher; Solomon, Stephen B

    2014-06-01

    Percutaneous non-surgical image-guided ablation is emerging as an adjunct or alternative to surgery in the management of benign and malignant breast tumors. This review covers the current state of the literature regarding percutaneous image-guided ablation modalities, clinical factors regarding patient selection, and future directions for research.

  7. Body image dissatisfaction in patients undergoing breast reconstruction: Examining the roles of breast symmetry and appearance investment.

    Science.gov (United States)

    Teo, Irene; Reece, Gregory P; Huang, Sheng-Cheng; Mahajan, Kanika; Andon, Johnny; Khanal, Pujjal; Sun, Clement; Nicklaus, Krista; Merchant, Fatima; Markey, Mia K; Fingeret, Michelle Cororve

    2017-11-19

    Reconstruction as part of treatment for breast cancer is aimed at mitigating body image concerns after mastectomy. Although algorithms have been developed to objectively assess breast reconstruction outcomes, associations between objectively quantified breast aesthetic appearance and patient-reported body image outcomes have not been examined. Further, the role of appearance investment in explaining a patient's body image is not well understood. We investigated the extent to which objectively quantified breast symmetry and patient-reported appearance investment were associated with body image dissatisfaction in patients undergoing cancer-related breast reconstruction. Breast cancer patients in different stages of reconstruction (n = 190) completed self-report measures of appearance investment and body image dissatisfaction. Vertical extent and horizontal extent symmetry values, which are indicators of breast symmetry, were calculated from clinical photographs. Associations among breast symmetry, appearance investment, body image dissatisfaction, and patient clinical factors were examined. Multi-variable regression was used to evaluate the extent to which symmetry and appearance investment were associated with body image dissatisfaction. Vertical extent symmetry, but not horizontal extent symmetry, was associated with body image dissatisfaction. Decreased vertical extent symmetry (β = -.19, P < .05) and increased appearance investment (β = .45, P < .001) were significantly associated with greater body image dissatisfaction while controlling for clinical factors. Breast symmetry and patient appearance investment both significantly contribute to an understanding of patient-reported body image satisfaction during breast reconstruction treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  8. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B. [University of Virginia (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  9. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    OpenAIRE

    Vermeulen, J.F.; Brussel, A.S. van; Groep, P. van der; Morsink, F.H.; Bult, P.; Wall, E. van der; Diest, P.J. van

    2012-01-01

    Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow...

  10. Optical Imaging in Breast Cancer Diagnosis: The Next Evolution

    Directory of Open Access Journals (Sweden)

    Michel Herranz

    2012-01-01

    Full Text Available Breast cancer is one of the most common cancers among the population of the Western world. Diagnostic methods include mammography, ultrasound, and magnetic resonance; meanwhile, nuclear medicine techniques have a secondary role, being useful in regional assessment and therapy followup. Optical imaging is a very promising imaging technique that uses near-infrared light to assess optical properties of tissues and is expected to play an important role in breast cancer detection. Optical breast imaging can be performed by intrinsic breast tissue contrast alone (hemoglobin, water, and lipid content or with the use of exogenous fluorescent probes that target specific molecules for breast cancer. Major advantages of optical imaging are that it does not use any radioactive components, very high sensitivity, relatively inexpensive, easily accessible, and the potential to be combined in a multimodal approach with other technologies such as mammography, ultrasound, MRI, and positron emission tomography. Moreover, optical imaging agents could, potentially, be used as “theranostics,” combining the process of diagnosis and therapy.

  11. Comparison of Whole-Body (18)F FDG PET/MR Imaging and Whole-Body (18)F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer.

    Science.gov (United States)

    Melsaether, Amy N; Raad, Roy A; Pujara, Akshat C; Ponzo, Fabio D; Pysarenko, Kristine M; Jhaveri, Komal; Babb, James S; Sigmund, Eric E; Kim, Sungheon G; Moy, Linda A

    2016-10-01

    Purpose To compare fluorine 18 ((18)F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with (18)F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board-approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32-76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material-enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that

  12. Comparison of Whole-Body 18F FDG PET/MR Imaging and Whole-Body 18F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer

    Science.gov (United States)

    Melsaether, Amy N.; Raad, Roy A.; Pujara, Akshat C.; Ponzo, Fabio D.; Pysarenko, Kristine M.; Jhaveri, Komal; Babb, James S.; Sigmund, Eric E.; Kim, Sungheon G.; Moy, Linda A.

    2016-01-01

    Purpose To compare fluorine 18 (18F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with 18F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board–approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32–76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material–enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that

  13. Online advertising by three commercial breast imaging services: message takeout and effectiveness.

    Science.gov (United States)

    Johnson, Rebecca; Jalleh, Geoffrey; Pratt, Iain S; Donovan, Robert J; Lin, Chad; Saunders, Christobel; Slevin, Terry

    2013-10-01

    Mammography is widely acknowledged to be the most cost-effective technique for population screening for breast cancer. Recently in Australia, imaging modalities other than mammography, including thermography, electrical impedance, and computerised breast imaging, have been increasingly promoted as alternative methods of breast cancer screening. This study assessed the impact of three commercial breast imaging companies' promotional material upon consumers' beliefs about the effectiveness of the companies' technology in detecting breast cancer, and consumers' intentions to seek more information or consider having their breasts imaged by these modalities. Results showed 90% of respondents agreed that the companies' promotional material promoted the message that the advertised breast imaging method was effective in detecting breast cancer, and 80% agreed that the material promoted the message that the imaging method was equally or more effective than a mammogram. These findings have implications for women's preference for and uptake of alternative breast imaging services over mammography. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pathologic Findings of Breast Lesions Detected on Magnetic Resonance Imaging.

    Science.gov (United States)

    Jabbar, Seema B; Lynch, Beverly; Seiler, Stephen; Hwang, Helena; Sahoo, Sunati

    2017-11-01

    - Breast magnetic resonance imaging (MRI) is now used routinely for high-risk screening and in the evaluation of the extent of disease in newly diagnosed breast cancer patients. Morphologic characteristics and the kinetic pattern largely determine how suspicious a breast lesion is on MRI. Because of its high sensitivity, MRI identifies a large number of suspicious lesions. However, the low to moderate specificity and the additional cost have raised questions regarding its frequent use. - To identify the pathologic entities that frequently present as suspicious enhancing lesions and to identify specific MRI characteristics that may be predictive of malignancy. - One hundred seventy-seven MRI-guided biopsies from 152 patients were included in the study. The indication for MRI, MRI features, pathologic findings, and patient demographics were recorded. The MRI findings and the pathology slides were reviewed by a dedicated breast radiologist and breast pathologists. - Seventy-one percent (126 of 177) of MRI-guided breast biopsies were benign, 11% (20 of 177) showed epithelial atypia, and 18% (31 of 177) showed malignancy. The vast majority (84%; 62 of 74) of MRI lesions with persistent kinetics were benign. However, 57% (17 of 30) of lesions with washout kinetics and 65% (62 of 95) of mass lesions were also benign. - Magnetic resonance imaging detects malignancies undetected by other imaging modalities but also detects a wide variety of benign lesions. Benign and malignant lesions identified by MRI share similar morphologic and kinetic features, necessitating biopsy for histologic confirmation.

  15. Automatic breast tissue density estimation scheme in digital mammography images

    Science.gov (United States)

    Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero

    2017-03-01

    Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.

  16. Automated breast segmentation in ultrasound computer tomography SAFT images

    Science.gov (United States)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  17. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets.

    Science.gov (United States)

    Antropova, Natalia; Huynh, Benjamin Q; Giger, Maryellen L

    2017-10-01

    Deep learning methods for radiomics/computer-aided diagnosis (CADx) are often prohibited by small datasets, long computation time, and the need for extensive image preprocessing. We aim to develop a breast CADx methodology that addresses the aforementioned issues by exploiting the efficiency of pre-trained convolutional neural networks (CNNs) and using pre-existing handcrafted CADx features. We present a methodology that extracts and pools low- to mid-level features using a pretrained CNN and fuses them with handcrafted radiomic features computed using conventional CADx methods. Our methodology is tested on three different clinical imaging modalities (dynamic contrast enhanced-MRI [690 cases], full-field digital mammography [245 cases], and ultrasound [1125 cases]). From ROC analysis, our fusion-based method demonstrates, on all three imaging modalities, statistically significant improvements in terms of AUC as compared to previous breast cancer CADx methods in the task of distinguishing between malignant and benign lesions. (DCE-MRI [AUC = 0.89 (se = 0.01)], FFDM [AUC = 0.86 (se = 0.01)], and ultrasound [AUC = 0.90 (se = 0.01)]). We proposed a novel breast CADx methodology that can be used to more effectively characterize breast lesions in comparison to existing methods. Furthermore, our proposed methodology is computationally efficient and circumvents the need for image preprocessing. © 2017 American Association of Physicists in Medicine.

  18. Improving Breast Ultrasound Interpretation in Uganda Using a Condensed Breast Imaging Reporting and Data System.

    Science.gov (United States)

    Scheel, John R; Peacock, Sue; Orem, Jackson; Bugeza, Samuel; Muyinda, Zeridah; Porter, Peggy L; Wood, William C; Comis, Robert L; Lehman, Constance D

    2016-10-01

    This study aimed to determine whether a 2-day educational course using a condensed Breast Imaging Reporting and Data System (condensed BI-RADS) improved the accuracy of Ugandan healthcare workers interpreting breast ultrasound. The target audience of this intervention was Ugandan healthcare workers involved in performing, interpreting, or acting on the results of breast ultrasound. The educational course consisted of a pretest knowledge assessment, a series of lectures on breast imaging interpretation and standardized reporting using a condensed BI-RADS, and a posttest knowledge assessment. Participants interpreted 53 different ultrasound test cases by selecting the finding type, descriptors for masses, and recommendations. We compared the percent correct on the pretest and posttest based on occupation and training level. Sixty-one Ugandan healthcare workers participated in this study, including 13 radiologists, 13 other physicians, 12 technologists, and 23 midlevel providers. Most groups improved in identifying the finding type (P breast ultrasound education using a condensed BI-RADS improved the interpretive performance of healthcare workers and was particularly successful in reducing the frequency of unnecessary biopsies for normal and benign findings. Multimodal educational efforts to improve accuracy and management of breast ultrasound findings may augment breast cancer early detection efforts in resource-limited settings. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  19. The relationship of obesity, mammographic breast density, and magnetic resonance imaging in patients with breast cancer.

    Science.gov (United States)

    Gillman, Jennifer; Chun, Jennifer; Schwartz, Shira; Schnabel, Freya; Moy, Linda

    The purpose was to evaluate the relationship between body mass index (BMI), mammographic breast density, magnetic resonance (MR) background parenchymal enhancement (BPE), and MR fibroglandular tissue (FGT) in women with breast cancer. Our institutional database was queried for patients with preoperative mammography and breast MR imaging. There were 573 women eligible for analysis. Elevated BMI was associated with advanced stage of disease (P=.01), lower mammographic density (Pbreast density and FGT. Higher BMI was also associated with advanced stage disease and nonpalpable tumors on clinical exam. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis

    Science.gov (United States)

    Zimmermann, Bernhard B.; Deng, Bin; Singh, Bhawana; Martino, Mark; Selb, Juliette; Fang, Qianqian; Sajjadi, Amir Y.; Cormier, Jayne; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.; Saksena, Mansi A.; Carp, Stefan A.

    2017-04-01

    Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.

  1. Accuracy of diffusion kurtosis imaging in characterization of breast lesions.

    Science.gov (United States)

    Christou, Alexandra; Ghiatas, Abraham; Priovolos, Dimitrios; Veliou, Konstantia; Bougias, Haralambos

    2017-05-01

    The aim of this study was to evaluate the accuracy of diffusion kurtosis in the characterization and differentiation of breast lesions. 49 females with 53 breast lesions underwent breast MRI. The MRI magnetic field is 1.5 T, and the protocol is standard MRI sequences, dynamic sequences pre- and post-contrast agent administration and diffusion images. Diffusion kurtosis imaging (DKI) was applied as part of our standard breast MRΙ protocol. Two experienced radiologists on breast MRI, blinded to the final diagnosis, reviewed the parametric maps and placed a volume of interest on all slices including each lesion. Kurtosis [K apparent (Kapp)] and corrected apparent diffusion coefficient [D apparent (Dapp)] median values were then calculated from the whole-lesion histogram analysis. Receiver-operating characteristic analysis was used to determine the most effective cut-off values for the differentiation between benign and malignant pathologies. Histological analysis of the breast lesions was performed, and further comparative analysis of the results was performed to investigate the accuracy of the method. Benign (n = 19) and malignant lesions (n = 34) had mean diameters of 20.8 mm (10.1-31.5 mm) and 26.4 mm (10.5-42.3 mm), respectively. The lowest and the highest kurtosis values (Kapp) of malignant lesions were significantly higher than those of benign lesions. A cut-off of 0.71 provided specificity of 93.7% and sensitivity 97.1%, and the area under the curve (AUC) was 0.976 (p breast lesions with high Kapp and Dapp sensitivity and specificity rates. Advances in knowledge: DKI is able to distinguish benign from malignant breast pathologies. DKI increases the specificity of breast MRI.

  2. Nuclear Breast Imaging: Clinical Results and Future Directions.

    Science.gov (United States)

    Berg, Wendie A

    2016-02-01

    Interest in nuclear breast imaging is increasing because of technical improvements in dedicated devices that allow the use of relatively low doses of radiotracers with high sensitivity for even small breast cancers. For women with newly diagnosed cancer, primary chemotherapy is often recommended, and improved methods of assessing treatment response are of interest. With widespread breast density notification, functional rather than anatomic methods of screening are of increasing interest as well. For a cancer imaging technology to be adopted, several criteria must be met that will be discussed: evidence of clinical benefit with minimal harm, standardized interpretive criteria, direct biopsy guidance, and acceptable cost-effectiveness. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Characterization of Image Quality for 3D Scatter Corrected Breast CT Images.

    Science.gov (United States)

    Pachon, Jan H; Shah, Jainil; Tornai, Martin P

    2011-03-16

    The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

  4. Evaluation of scatter effects on image quality for breast tomosynthesis

    Science.gov (United States)

    Wu, Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2007-03-01

    Digital breast tomosynthesis uses a limited number of low-dose x-ray projections to produce a three-dimensional (3D) tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scatter radiation on image quality for breast tomosynthesis. Generated by a Monte Carlo simulation method, scatter point spread functions (PSF) were convolved over the field of view (FOV) to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrated that in the absence of scatter reduction techniques, the scatter-to-primary ratio (SPR) levels for the average breast are quite high (~0.4 at the centre of mass), and increased with increased breast thickness and with larger FOV. Associated with such levels of x-ray scatter are cupping artifacts, as well as reduced accuracy in reconstruction values. The effect of x-ray scatter on the contrast, noise, and signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of tumour size. For example, the contrast in the reconstructed central slice of a tumour-like mass (14 mm in diameter) was degraded by 30% while the inaccuracy of the voxel value was 28%, and the reduction of SDNR was 60%. We have quantified the degree to which scatter degrades the image quality over a wide range of parameters, including x-ray beam energy, breast thickness, breast diameter, and breast composition. However, even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice is higher than that of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  5. Two-layer heterogeneous breast phantom for photoacoustic imaging

    Science.gov (United States)

    Jia, Congxian; Vogt, William C.; Wear, Keith A.; Pfefer, T. Joshua; Garra, Brian S.

    2017-10-01

    Photoacoustic tomography (PAT) is emerging as a potentially important aid for breast cancer detection. Well-validated tissue-simulating phantoms are needed for objective, quantitative, and physically realistic testing for system development. Prior reported PAT phantoms with homogenous structures do not incorporate the irregular layered structure of breast tissue. To assess the impact of this simplification, we design and construct two-layer breast phantoms incorporating vessel-simulating inclusions and realistic undulations at the fat/fibroglandular tissue interface. The phantoms are composed of custom poly(vinyl chloride) plastisol formulations mimicking the acoustic properties of two breast tissue types and tissue-relevant similar optical properties. Resulting PAT images demonstrate that in tissue with acoustic heterogeneity, lateral size of imaging targets is sensitive to the choice of sound speed in image reconstruction. The undulating boundary can further degrade a target's lateral size due to sound speed variation in tissue and refraction of sound waves at the interface. The extent of this degradation is also influenced by the geometric relationship between an absorber and the boundary. Results indicate that homogeneous phantom matrixes may underestimate the degradation of PAT image quality in breast tissue, whereas heterogeneous phantoms can provide more realistic testing through improved reproduction of spatial variations in physical properties.

  6. TU-EF-207-00: Advances in Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  7. WAVELET BASED SEGMENTATION USING OPTIMAL STATISTICAL FEATURES ON BREAST IMAGES

    Directory of Open Access Journals (Sweden)

    A. Sindhuja

    2014-05-01

    Full Text Available Elastography is the emerging imaging modality that analyzes the stiffness of the tissue for detecting and classifying breast tumors. Computer-aided detection speeds up the diagnostic process of breast cancer improving the survival rate. A multiresolution approach using Discrete wavelet transform is employed on real time images, using the low-low (LL, low-high (LH, high-low (HL, and high-high (HH sub-bands of Daubechies family. Features are extracted, selected and then finally segmented by K-means clustering algorithm. The proposed work can be extended to Classification of the tumors.

  8. The challenge of imaging dense breast parenchyma: is magnetic resonance mammography the technique of choice? A comparative study with x-ray mammography and whole-breast ultrasound.

    Science.gov (United States)

    Pediconi, Federica; Catalano, Carlo; Roselli, Antonella; Dominelli, Valeria; Cagioli, Sabrina; Karatasiou, Angeliki; Pronio, AnnaMaria; Kirchin, Miles A; Passariello, Roberto

    2009-07-01

    To establish the value of magnetic resonance imaging (MRI) of the breast in comparison to x-ray mammography and ultrasound for breast cancer evaluation in women with dense breast parenchyma. Two hundred thirty-eight women with dense breast parenchyma who were suspicious for breast cancer or inconclusive for the presence of breast lesions based on clinical examination, ultrasound or x-ray mammography, and who underwent breast MRI at 1.5 T before and after administration of 0.1 mmol/kg gadobenate dimeglumine were evaluated. Lesions considered malignant (Breast Imaging Reporting and Data System (BI-RADS) 4 or 5) on x-ray mammography and/or ultrasound and as BI-RADS 3, 4, or 5 on MRI were evaluated histologically. Other lesions were followed up at 6 and/or 18 months. The diagnostic performance (sensitivity, specificity, accuracy, and positive and negative predictive values) of each technique was determined and compared using a general linear mixed model with appropriate correction for multiplicity. At final diagnosis 121 of 238 (50.8%) women had one or more confirmed malignant lesions, whereas 117 (49.2%) had benign lesions or no lesions. Among 97 women who underwent all 3 techniques more lesions (malignant and benign) were detected with breast MRI (n = 135) than with x-ray mammography (n = 85) or ultrasound (n = 107) and diagnostic confidence was greater. In terms of patient-based diagnostic accuracy breast MRI was significantly (P[r] ultrasound (96.9% accuracy for MRI vs. 60.8% for mammography and 66.0% for US). Malignant lesions were histologically confirmed in 55 of 97 women who underwent all 3 techniques. Breast MRI detected more cases of multifocal, multicentric, and contralateral disease and fewer misdiagnoses occurred. Overall, breast MRI led to a modification of the surgical approach for 28 (23.1%) of the 121 women with diagnosed malignant disease. Breast MRI should be considered for routine breast cancer evaluation in women with dense breast parenchyma.

  9. Two-dimensional breast dosimetry improved using three-dimensional breast image data.

    Science.gov (United States)

    Boone, John M; Hernandez, Andrew M; Seibert, J Anthony

    2017-06-01

    Conventional mammographic dosimetry has been developed over the past 40 years. Prior to the availability of high-resolution three-dimensional breast images, certain assumptions about breast anatomy were required. These assumptions were based on the information evident on two-dimensional mammograms; they included assumptions of thick skin, a uniform mixture of glandular and adipose tissue, and a median breast density of 50%. Recently, the availability of high-resolution breast CT studies has provided more accurate data about breast anatomy, and this, in turn, has provided the opportunity to update mammographic dosimetry. Based on hundreds of data sets on breast CT volume, a number of studies were performed and reported which have shed light on the basic breast anatomy specific to dosimetry in mammography. It was shown that the average skin thickness of the breast was approximately 1.5 mm, instead of the 4 or 5 mm in the past. In another study, 3-D breast CT data sets were used for validation of the 2-D algorithm developed at the University of Toronto, leading to data suggesting that the overall average breast density is of the order of 16-20%, rather than the previously assumed 50%. Both of these assumptions led to normalized glandular dose (DgN) coefficients which are higher than those of the past. However, a comprehensive study on hundreds of breast CT data sets confirmed the findings of other investigators that there is a more centralized average location of glandular tissue within the breast. Combined with Monte Carlo studies for dosimetry, when accurate models of the distribution of glandular tissue were used, a 30% reduction in the radiation dose (as determined by the DgN coefficient) was found as an average across typical molybdenum and tungsten spectra used clinically. The 30% average reduction was found even when the thinner skin and the lower average breast density were considered. The article reviews three specific anatomic observations made possible

  10. 3D frequency-domain ultrasound waveform tomography breast imaging

    Science.gov (United States)

    Sandhu, Gursharan Yash; West, Erik; Li, Cuiping; Roy, Olivier; Duric, Neb

    2017-03-01

    Frequency-domain ultrasound waveform tomography is a promising method for the visualization and characterization of breast disease. It has previously been shown to accurately reconstruct the sound speed distributions of breasts of varying densities. The reconstructed images show detailed morphological and quantitative information that can help differentiate different types of breast disease including benign and malignant lesions. The attenuation properties of an ex vivo phantom have also been assessed. However, the reconstruction algorithms assumed a 2D geometry while the actual data acquisition process was not. Although clinically useful sound speed images can be reconstructed assuming this mismatched geometry, artifacts from the reconstruction process exist within the reconstructed images. This is especially true for registration across different modalities and when the 2D assumption is violated. For example, this happens when a patient's breast is rapidly sloping. It is also true for attenuation imaging where energy lost or gained out of the plane gets transformed into artifacts within the image space. In this paper, we will briefly review ultrasound waveform tomography techniques, give motivation for pursuing the 3D method, discuss the 3D reconstruction algorithm, present the results of 3D forward modeling, show the mismatch that is induced by the violation of 3D modeling via numerical simulations, and present a 3D inversion of a numerical phantom.

  11. Contrast enhanced imaging with a stationary digital breast tomosynthesis system

    Science.gov (United States)

    Puett, Connor; Calliste, Jabari; Wu, Gongting; Inscoe, Christina R.; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2017-03-01

    Digital breast tomosynthesis (DBT) captures some depth information and thereby improves the conspicuity of breast lesions, compared to standard mammography. Using contrast during DBT may also help distinguish malignant from benign sites. However, adequate visualization of the low iodine signal requires a subtraction step to remove background signal and increase lesion contrast. Additionally, attention to factors that limit contrast, including scatter, noise, and artifact, are important during the image acquisition and post-acquisition processing steps. Stationary DBT (sDBT) is an emerging technology that offers a higher spatial and temporal resolution than conventional DBT. This phantom-based study explored contrast-enhanced sDBT (CE sDBT) across a range of clinically-appropriate iodine concentrations, lesion sizes, and breast thicknesses. The protocol included an effective scatter correction method and an iterative reconstruction technique that is unique to the sDBT system. The study demonstrated the ability of this CE sDBT system to collect projection images adequate for both temporal subtraction (TS) and dual-energy subtraction (DES). Additionally, the reconstruction approach preserved the improved contrast-to-noise ratio (CNR) achieved in the subtraction step. Finally, scatter correction increased the iodine signal and CNR of iodine-containing regions in projection views and reconstructed image slices during both TS and DES. These findings support the ongoing study of sDBT as a potentially useful tool for contrast-enhanced breast imaging and also highlight the significant effect that scatter has on image quality during DBT.

  12. Quantitative mitochondrial redox imaging of breast cancer metastatic potential

    Science.gov (United States)

    Xu, He N.; Nioka, Shoko; Glickson, Jerry D.; Chance, Britton; Li, Lin Z.

    2010-05-01

    Predicting tumor metastatic potential remains a challenge in cancer research and clinical practice. Our goal was to identify novel biomarkers for differentiating human breast tumors with different metastatic potentials by imaging the in vivo mitochondrial redox states of tumor tissues. The more metastatic (aggressive) MDA-MB-231 and less metastatic (indolent) MCF-7 human breast cancer mouse xenografts were imaged with the low-temperature redox scanner to obtain multi-slice fluorescence images of reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp). The nominal concentrations of NADH and Fp in tissue were measured using reference standards and used to calculate the Fp redox ratio, Fp/(NADH+Fp). We observed significant core-rim differences, with the core being more oxidized than the rim in all aggressive tumors but not in the indolent tumors. These results are consistent with our previous observations on human melanoma mouse xenografts, indicating that mitochondrial redox imaging potentially provides sensitive markers for distinguishing aggressive from indolent breast tumor xenografts. Mitochondrial redox imaging can be clinically implemented utilizing cryogenic biopsy specimens and is useful for drug development and for clinical diagnosis of breast cancer.

  13. Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications.

    Science.gov (United States)

    Partridge, Savannah C; McDonald, Elizabeth S

    2013-08-01

    Diffusion-weighted magnetic resonance (MR) imaging (DWI) has shown promise for improving the positive predictive value of breast MR imaging for detection of breast cancer, evaluating tumor response to neoadjuvant chemotherapy, and as a noncontrast alternative to MR imaging in screening for breast cancer. However, data quality varies widely. Before implementing DWI into clinical practice, one must understand the pertinent technical considerations and current evidence regarding clinical applications of breast DWI. This article provides an overview of basic principles of DWI, optimization of breast DWI protocols, imaging features of benign and malignant breast lesions, promising clinical applications, and potential future directions. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. From Bombs to Breast Cancer Imaging: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Rebecca M [Los Alamos National Laboratory

    2012-07-26

    . Currently, there is fierce debate surrounding the age at which breast cancer screening should begin, and once begun, how often it should occur. The American Cancer Society recommends yearly mammograms starting at age 40. On the other hand, the U.S. Preventive Services Task Force recommends against routine so early. Rather, the Task Force recommends biennial mammography screening for women aged 50 to 74 years. The ten-year discrepancy in the onset of screening results from recent data suggesting that the frequent use of X-ray radiation during screenings could potentially increase the likelihood of developing cancer. This danger is increased by the low sensitivity and accuracy of mammograms, which sometimes require multiple screenings to yield results. Furthermore, mammograms are often not only inaccurate, but average appalling misdiagnoses rates: about 80% false positives and 15% false negatives. These misdiagnoses lead to unwarranted biopsies at an estimated health care cost of $2 billion per year, while at the same time, resulting in excessive cases of undetected cancer. As such, the National Cancer Institute recommends more studies on the advantages of types and frequency of screenings, as well as alternative screening options. The UST technology developed at LANL could be an alternative option to greatly improve the specificity and sensitivity of breast cancer screening without using ionizing radiation. LANL is developing high-resolution ultrasound tomography algorithms and a clinical ultrasound tomography scanner to conduct patient studies at the UNM Hospital. During UST scanning, the patient lies face-down while her breast, immersed in a tank of warm water, is scanned by phased-transducer arrays. UST uses recorded ultrasound signals to reconstruct a high-resolution three-dimensional image of the breast, showing the spatial distribution of mechanical properties within the breast. Breast cancers are detected by higher values of mechanical properties compared to

  15. Stereotactic Image-Guided Navigation During Breast Reconstruction in Patients With Breast Cancer

    Science.gov (United States)

    2017-04-12

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  16. Comparison of Locoregional Recurrence with Mastectomy vs. Breast Conserving Surgery in Pregnancy Associated Breast Cancer (PABC

    Directory of Open Access Journals (Sweden)

    Paniti Sukumvanich

    2009-12-01

    Full Text Available We have compared outcomes, including the locoregional recurrence, between mastectomy and breast conserving therapy in PABC. Patients were divided into those who were treated with mastectomies (group 1 and those with breast conserving surgery (group 2. The groups were comparable except for lower mean age in group 2 and more patients with stage III disease and higher number of nodes positive in the group 1. Five-year actuarial LRR, distant metastases free survival and overall survival in group 1 vs. 2 were 10% vs. 37%, 73% vs. 81% and 57% vs. 59% respectively. The patients with PABC treated with breast conserving therapy, despite having lower stage disease, have a higher risk of local regional recurrence in comparison with those treated with mastectomy.

  17. A Partnership Training Program in Breast Cancer Diagnosis: Concept Development of the Next Generation Diagnostic Breast Imaging Using Digital Image Library and Networking Techniques

    National Research Council Canada - National Science Library

    Chouikha, Mohamed F

    2004-01-01

    ...); and Georgetown University (Image Science and Information Systems, ISIS). In this partnership training program, we will train faculty and students in breast cancer imaging, digital image database library techniques and network communication strategy...

  18. Imaging diagnostics of breast metastases from extramammary tumors; Bildgebende Diagnostik bei Brustmetastasen extramammaerer Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Wienbeck, S.; Lotz, J. [Georg-August-Universitaet Goettingen, Institut fuer Diagnostische und Interventionelle Radiologie, Goettingen (Germany); Nemat, S. [Universitaet Homburg/Saar, Institut fuer Diagnostische und Interventionelle Radiologie, Homburg/Saar (Germany); Surov, A. [Universitaet Leipzig, Institut fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany)

    2017-06-15

    Breast metastases of solid extramammary tumors are very rare in comparison to primary malignancies of the breast and account for only 0.33-6.3% of all malignant neoplasms of the breast. The most common primary tumors are malignant melanoma, distant sarcomas, lung cancer, ovarian cancer, renal cell cancer and thyroid cancer in decreasing order of frequency. This review article summarizes the clinical features and the different imaging findings of breast metastases from different extramammary solid tumors. Breast metastases are often incidental findings in computed tomography (CT) or positron emission tomography CT (PET-CT) imaging. Mammography shows two different imaging patterns, namely focal lesions and diffuse architectural distortion with skin thickening. Breast metastases presenting as focal masses usually occur as solitary and more rarely as multiple round lesions with a smooth edge boundary. Associated calcifications are rare findings. Diffuse architectural distortion with skin thickening is more common in breast metastases from most gastric tumors, ovarian cancer and rhabdomyosarcoma. Using ultrasound most lesions are hypoechoic, oval or round with smooth boundaries and posterior acoustic enhancement. The magnetic resonance imaging (MRI) criteria of breast metastases show an inconstant signal behavior that cannot be safely classified as benign or malignant. In summary, in patients with known malignancies the presence of breast metastases should be considered even with imposing clinically and radiologically benign findings. (orig.) [German] Brustmetastasen solider extramammaerer Tumoren sind im Vergleich zu primaeren Malignomen der Brust mit einer Praevalenz von 0,33-6,3 % aller boesartigen Neubildungen in der Brust sehr selten. Die haeufigsten Primaertumoren sind dabei das maligne Melanom, ferner Sarkome, Bronchial-, Ovarial-, Nierenzell- und Schilddruesenkarzinome mit einer absteigenden Haeufigkeit ihres Auftretens. In dieser Uebersichtsarbeit werden die

  19. Local breast density assessment using reacquired mammographic images.

    Science.gov (United States)

    García, Eloy; Diaz, Oliver; Martí, Robert; Diez, Yago; Gubern-Mérida, Albert; Sentís, Melcior; Martí, Joan; Oliver, Arnau

    2017-08-01

    The aim of this paper is to evaluate the spatial glandular volumetric tissue distribution as well as the density measures provided by Volpara™ using a dataset composed of repeated pairs of mammograms, where each pair was acquired in a short time frame and in a slightly changed position of the breast. We conducted a retrospective analysis of 99 pairs of repeatedly acquired full-field digital mammograms from 99 different patients. The commercial software Volpara™ Density Maps (Volpara Solutions, Wellington, New Zealand) is used to estimate both the global and the local glandular tissue distribution in each image. The global measures provided by Volpara™, such as breast volume, volume of glandular tissue, and volumetric breast density are compared between the two acquisitions. The evaluation of the local glandular information is performed using histogram similarity metrics, such as intersection and correlation, and local measures, such as statistics from the difference image and local gradient correlation measures. Global measures showed a high correlation (breast volume R=0.99, volume of glandular tissue R=0.94, and volumetric breast density R=0.96) regardless the anode/filter material. Similarly, histogram intersection and correlation metric showed that, for each pair, the images share a high degree of information. Regarding the local distribution of glandular tissue, small changes in the angle of view do not yield significant differences in the glandular pattern, whilst changes in the breast thickness between both acquisition affect the spatial parenchymal distribution. This study indicates that Volpara™ Density Maps is reliable in estimating the local glandular tissue distribution and can be used for its assessment and follow-up. Volpara™ Density Maps is robust to small variations of the acquisition angle and to the beam energy, although divergences arise due to different breast compression conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Efficient iterative image reconstruction algorithm for dedicated breast CT

    Science.gov (United States)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  1. Multimodality imaging of TGFβ signaling in breast cancer metastases

    Science.gov (United States)

    Serganova, Inna; Moroz, Ekaterina; Vider, Jelena; Gogiberidze, George; Moroz, Maxim; Pillarsetty, Nagavarakishore; Doubrovin, Michael; Minn, Andy; Thaler, Howard T.; Massague, Joan; Gelovani, Juri; Blasberg, Ronald

    2009-01-01

    The skeleton is a preferred site for breast cancer metastasis. We have developed a multimodality imaging approach to monitor the transforming growth factor β (TGFβ) signaling pathway in bone metastases, sequentially over time in the same animal. As model systems, two MDA-MB-231 breast cancer cells lines with different metastatic tropisms, SCP2 and SCP3, were transduced with constitutive and TGFβ-inducible reporter genes and were tested in vitro and in living animals. The sites and expansion of metastases were visualized by bioluminescence imaging using a constitutive firefly luciferase reporter, while TGFβ signaling in metastases was monitored by microPET imaging of HSV1-TK/GFP expression with [18F]FEAU and by a more sensitive and cost-effective bioluminescence reporter, based on nonsecreted Gaussia luciferase. Concurrent and sequential imaging of metastases in the same animals provided insight into the location and progression of metastases, and the timing and course of TGFβ signaling. The anticipated and newly observed differences in the imaging of tumors from two related cell lines have demonstrated that TGFβ signal transduction pathway activity can be noninvasively imaged with high sensitivity and reproducibility, thereby providing the opportunity for an assessment of novel treatments that target TGFβ signaling.—Serganova, I., Moroz, E., Vider, J., Gogiberidze, G., Moroz, M., Pillarsetty, N., Doubrovin, M., Minn, A., Thaler, H. T., Massague, J., Gelovani, J., Blasberg, R. Multimodality imaging of TGFβ signaling in breast cancer metastases. PMID:19325038

  2. Assessing Inaccuracies in Automated Information Extraction of Breast Imaging Findings.

    Science.gov (United States)

    Lacson, Ronilda; Goodrich, Martha E; Harris, Kimberly; Brawarsky, Phyllis; Haas, Jennifer S

    2017-04-01

    We previously identified breast imaging findings from radiology reports using an expert-based information extraction algorithm as part of the National Cancer Institute's Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) initiative. We validate this algorithm and assess inaccuracies in a different institutional setting. Mammography, ultrasound (US), and breast magnetic resonance imaging (MRI) reports of patients at an academic health system between 4/2013 and 6/2013 were included for analysis. Accuracy of automatically extracting imaging findings using an algorithm developed at a different institution compared to manual gold standard review is reported. Extraction errors are further categorized based on manual review. Precision and recall for extracting BI-RADS categories remain between 0.9 and 1.0, except for MRI (0.7). F measures for extracting other findings are 0.9 for non-mass enhancement (in MRI) and 0.8-0.9 for cysts (in MRI and US). Extracting breast imaging findings resulted in lowest accuracy for findings of calcification (range 0.4-0.6 in mammography) and asymmetric density (0.5-0.7 in mammography). Majority of errors for extracting imaging findings were due to qualifier-based errors, descriptors which indicate absence of findings, missed by automated extraction (e.g., "benign" calcifications). Our information extraction algorithm provides an effective approach to extracting some breast imaging findings for populating a breast screening registry. However, errors in information extraction when utilizing methods in new settings demonstrate that further work is necessary to extract information content from unstructured multi-institutional radiology reports.

  3. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.

    Science.gov (United States)

    Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan

    2017-11-07

    Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fat-based registration of breast dynamic contrast enhanced water images.

    Science.gov (United States)

    Srinivasan, Subashini; Hargreaves, Brian A; Daniel, Bruce L

    2018-04-01

    In this study, a 3D fat-based deformable registration algorithm was developed for registering dynamic contrast-enhanced breast images. The mutual information similarity measure with free-form deformation motion correction in rapidly enhancing lesions can introduce motion. However, in Dixon-based fat-water separated acquisitions, the nonenhancing fat signal can directly be used to estimate deformable motion, which can be later used to deform the water images. Qualitative comparison of the fat-based registration method to a water-based registration method, and to the unregistered images, was performed by two experienced readers. Quantitative analysis of the registration was evaluated by estimating the mean-squared signal difference on the fat images. Using a scale of 0 (no motion) to 2 ( > 4 voxels of motion), the average image quality score of the fat-based registered images was 0.5 ± 0.6, water-based registration was 0.8 ± 0.8, and the unregistered dataset was 1.6 ± 0.6. The mean-squared-signal-difference metric on the fat images was significantly lower for fat-based registered images compared with both water-based registered and unregistered images. Fat-based registration of breast dynamic contrast-enhanced images is a promising technique for performing deformable motion correction of breast without introducing new motion. Magn Reson Med 79:2408-2414, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D; Liu, Y [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes. The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.

  7. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  8. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Science.gov (United States)

    Hahn, Camerin; Noghanian, Sima

    2012-01-01

    As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007). However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed. PMID:22550473

  9. 89Zr-bevacizumab PET imaging in primary breast cancer

    NARCIS (Netherlands)

    Gaykema, Sietske B M; Brouwers, Adrienne H; Lub-de Hooge, Marjolijn N; Pleijhuis, Rick G; Timmer-Bosscha, Hetty; Pot, Linda; van Dam, Gooitzen M; van der Meulen, Sibylle B; de Jong, Johan R; Bart, Joost; de Vries, Jakob; Jansen, Liesbeth; de Vries, Elisabeth G. E.; Schröder, Carolien P; de Vries, J

    UNLABELLED: Vascular endothelial growth factor (VEGF)-A is overexpressed in most malignant and premalignant breast lesions. VEGF-A can be visualized noninvasively with PET imaging and using the tracer (89)Zr-labeled bevacizumab. In this clinical feasibility study, we assessed whether VEGF-A in

  10. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Document Server

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  11. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    OpenAIRE

    Helvie, Mark A.

    2010-01-01

    This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are con...

  12. Dosimetry in x-ray-based breast imaging

    NARCIS (Netherlands)

    Dance, D.R.; Sechopoulos, I.

    2016-01-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for

  13. Comparing different ultrasound imaging methods for breast cancer detection

    NARCIS (Netherlands)

    Ozmen, N.; Dapp, R.; Zapf, M.; Gemmeke, H.; Ruiter, N.V.; Van Dongen, K.W.A.

    2015-01-01

    Ultrasound is frequently used to evaluate suspicious masses in breasts. These evaluations could be improved by taking advantage of advanced imaging algorithms, which become feasible for low frequencies if accurate knowledge about the phase and amplitude of the wave field illuminating the volume of

  14. Imaging Appearance and Clinical Impact of Preoperative Breast MRI in Pregnancy-Associated Breast Cancer.

    Science.gov (United States)

    Myers, Kelly S; Green, Lauren A; Lebron, Lizza; Morris, Elizabeth A

    2017-09-01

    The purpose of this study is to describe the imaging features of pregnancy-associated breast cancer (PABC) on breast MRI and to consider the impact of preoperative MRI on patient management. A retrospective review of medical records from January 1994 to May 2014 identified 183 women who presented with a new diagnosis of breast cancer during pregnancy or within 1 year postpartum. MR images were available for 53 of these patients, all of whom were included in the study. Clinical history and available breast images were reviewed. The clinical impact of preoperative breast MRI was also recorded. Of the 53 women, nine (17%) presented during pregnancy and 44 (83%) presented during the first year postpartum. The sensitivity of MRI was 98% (52/53). Among the 53 patients, the most common findings of PABC on MRI included a solitary mass (29 patients [55%]), nonmass enhancement (12 patients [23%]), and multiple masses (eight patients [15%]). For 12 patients (23%), MRI showed a pathologically proven larger tumor size or greater extent of disease than did mammography or ultrasound, with an additional eight patients (15%) having findings suspicious for greater extent of disease but having unavailable pathologic data. Breast MRI changed surgical management for 15 patients (28%), with four patients (8%) requiring a larger lumpectomy, seven (13%) no longer being considered candidates for lumpectomy, two (4%) having contralateral disease, and two (4%) having unsuspected metastasis. Breast MRI had a high sensitivity for PABC in our study population. MRI may play an important role in PABC because it changed the surgical management of 28% of patients.

  15. A fuzzy approach for contrast enhancement of mammography breast images.

    Science.gov (United States)

    Sahba, Farhang; Venetsanopoulos, Anastasios

    2010-01-01

    This chapter presents a fuzzy-based method for contrast enhancement of mammography images. The selection of appropriate parameters for the required transformations is performed based on image-specific characteristics. The extraction of the breast border is the first step in this method. Images are then transformed to the fuzzy domain using a specific function. Next, an algorithm is applied for intensity adaptation where based on the amount of ambiguity, the proposed technique identifies the suitable form of modifications to enhance the image. Experimental results prove our method to be effective and hence of potential for use in computer-aided diagnosis systems.

  16. An investigation of image guidance dose for breast radiotherapy.

    Science.gov (United States)

    Alvarado, Rosemerie; Booth, Jeremy T; Bromley, Regina M; Gustafsson, Helen B

    2013-05-06

    Cone-beam computed tomography (CBCT) is used for external-beam radiation therapy setup and target localization. As with all medical applications of ionizing radiation, radiation exposure should be managed safely and optimized to achieve the necessary image quality using the lowest possible dose. The present study investigates doses from standard kilovoltage kV radiographic and CBCT imaging protocol, and proposes two novel reduced dose CBCT protocols for the setup of breast cancer patients undergoing external beam radiotherapy. The standard thorax kV and low-dose thorax CBCT protocols available on Varian's On-Board Imaging system was chosen as the reference technique for breast imaging. Two new CBCT protocols were created by modifying the low-dose thorax protocol, one with a reduced gantry rotation range ("Under breast" protocol) and the other with a reduced tube current-time product setting ("Low dose thorax 10ms" protocol). The absorbed doses to lungs, heart, breasts, and skin were measured using XRQA2 radiochromic film in an anthropomorphic female phantom. The absorbed doses to lungs, heart, and breasts were also calculated using the PCXMC Monte Carlo simulation software. The effective dose was calculated using the measured doses to the included organs and the ICRP 103 tissue weighting factors. The deviation between measured and simulated organ doses was between 3% and 24%. Reducing the protocol exposure time to half of its original value resulted in a reduction in the absorbed doses of the organs of 50%, while the reduced rotation range resulted in a dose reduction of at least 60%. Absorbed doses obtained from "Low dose thorax 10ms" protocol were higher than the doses from our departments orthogonal kV-kV imaging protocol. Doses acquired from "Under breast" protocol were comparable to the doses measured from the orthogonal kV-kV imaging protocol. The effective dose per fraction using the CBCT for standard low-dose thorax protocol was 5.00 ± 0.30 mSv; for the

  17. Morphological breast imaging: tomography and digital mammography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Renata E-mail: renata.longo@ts.infn.it; Pani, Silvia; Arfelli, Fulvia; Dreossi, Diego; Olivo, Alessandro; Poropat, Paolo; Quaia, Emilio; Rigon, Luigi; Zanconati, Fabrizio; Palma, Ludovico Dalla; Castelli, Edoardo

    2003-01-21

    A synchrotron radiation-based X-ray source offers a powerful tool for mammography due to the energy spectrum properties and the peculiar laminar beam geometry. Significant improvements in image quality have been achieved by the SYRMEP (SYnchrotron Radiation for MEdical Physics) collaboration, which has designed and built a beamline devoted to medical physics at the SR facility Elettra in Trieste (Italy). The detection system developed for digital mammography consists of a silicon pixel detector with 200x300 {mu}m{sup 2} pixel size and high conversion efficiency. The detector is equipped with a low noise read-out electronics working in single photon counting mode. Mammographic phantoms and in vitro full breast samples have been investigated: the digital images show higher contrast resolution and lower absorbed dose than the images of the same samples obtained at the clinical mammographic unit.The SYRMEP collaboration is carrying out a breast tomography feasibility study to evaluate the image quality and the delivered dose. The SYRMEP beam is an ideal tool for tomography due to the laminar and monochromatic beam with negligible divergence. The experimental set-up and the acquisition protocol have been studied and the tomographic images of full breast samples acquired in the energy range 20-28 keV indicate that good quality images can be obtained with delivered doses comparable to conventional mammography.

  18. A non-rigid registration algorithm for dynamic breast MR images

    OpenAIRE

    Hayton, Paul M.; Brady, Michael; Smith, Stephen M.; Moore, Niall

    1999-01-01

    Magnetic resonance image analysis is a promising technique for diagnosing breast cancer, particularly in women for whom X-ray mammography is ineffective. If breast motion is not corrected for, diagnostic accuracy is significantly reduced. In this paper, we analyse the kinds of motion that arise during image formation and we describe a model based non-rigid registration algorithm to estimate and correct for breast motion. Registration of breast MR images is complicated by the use of a contrast...

  19. Diagnostic Performance of and Breast Tissue Changes at Early Breast MR Imaging Surveillance in Women after Breast Conservation Therapy.

    Science.gov (United States)

    Kim, Eun Jeong; Kang, Bong Joo; Kim, Sung Hun; Youn, In Kyung; Baek, Ji Eun; Lee, Hyun Sil

    2017-09-01

    Purpose To investigate the diagnostic performance and tissue changes in early (1 year or less) breast magnetic resonance (MR) imaging surveillance in women who underwent breast conservation therapy for breast cancer. Materials and Methods This prospective study was approved by the institutional review board, and written informed consent was obtained. Between April 2014 and June 2016, 414 women (mean age, 51.5 years; range, 21-81 years) who underwent 422 early surveillance breast MR imaging examinations (median, 6.0 months; range, 2-12 months) after breast conservation therapy were studied. The cancer detection rate, positive predictive value of biopsy, sensitivity, specificity, accuracy, and area under the curve of surveillance MR imaging, mammography, and ultrasonography (US) were assessed. Follow-up was also obtained in 95 women by using positron emission tomography (PET)/computed tomography (CT). Background parenchymal enhancement (BPE) changes in the contralateral breast were assessed according to adjuvant therapy by using the McNemar test. Results Of 11 detected cancers, six were seen at MR imaging only, one was seen at MR imaging and mammography, two were seen at MR imaging and US, one was seen at mammography only, and one was seen at PET/CT only. Three MR imaging-depicted cancers were observed at the original tumor bed, and two MR imaging-depicted cancers were observed adjacent to the original tumor. Among two false-negative MR imaging diagnoses (two cases of ductal carcinoma in situ), one cancer had manifested as calcifications at mammography without differentiated enhancement at MR imaging, and the other cancer was detected at PET/CT, but MR imaging results were negative because of marked BPE, which resulted in focal lesion masking. The positive predictive value of biopsy and the sensitivity, specificity, accuracy, and area under the curve for MR imaging were 32.1% (nine of 28), 81.8% (nine of 11), 95.1% (391 of 411), 94.7% (400 of 422), and 0

  20. Optimization of Tomosynthesis Imaging for Improved Mass and Microcalcification Detection in the Breast

    Science.gov (United States)

    2009-04-01

    for Improved Mass and Microcalcification Detection in the Breast PRINCIPAL INVESTIGATOR: Dan Xia CONTRACTING ORGANIZATION...AND SUBTITLE 5a. CONTRACT NUMBER Optimization of Tomosynthesis Imaging for Improved Mass and Microcalcification Detection in the Breast 5b...detec- tion of breast cancer [2,3,4]. Although considerable progress has been made, improvements to several areas of breast tomosynthesis technology are

  1. Magnetic resonance imaging texture analysis classification of primary breast cancer.

    Science.gov (United States)

    Waugh, S A; Purdie, C A; Jordan, L B; Vinnicombe, S; Lerski, R A; Martin, P; Thompson, A M

    2016-02-01

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75%, AUROC = 0.816; test: 72.5%, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. • MR-derived entropy features, representing heterogeneity, provide important information on tissue composition. • Entropy features can differentiate between histological and immunohistochemical subtypes of breast cancer. • Differing entropy features between breast cancer subtypes implies differences in lesion heterogeneity. • Texture analysis of breast cancer potentially provides added information for decision making.

  2. Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

    Science.gov (United States)

    Vermeulen, Jeroen F; van Brussel, Aram S A; van der Groep, Petra; Morsink, Folkert H M; Bult, Peter; van der Wall, Elsken; van Diest, Paul J

    2012-06-13

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  3. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  4. Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi zadeh

    2013-03-01

    Full Text Available Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and its sensitivity and precision in cancer diagnosis is improved by utilizing genetic algorithm and artificial neural network. Materials and Methods In this research, the necessary information is obtained from thermal imaging of 200 people, and 8 diagnostic parameters are extracted from these images by the research team. Then these 8 parameters are used as input of our proposed combinatorial model which is formed using artificial neural network and genetic algorithm. Results Our results have revealed that comparison of the breast areas; thermal pattern and kurtosis are the most important parameters in breast cancer diagnosis from proposed medical infrared imaging. The proposed combinatorial model with a 50% sensitivity, 75% specificity and, 70% accuracy shows good precision in cancer diagnosis. Conclusion The main goal of this article is to describe the capability of infrared imaging in preliminary diagnosis of breast cancer. This method is beneficial to patients with and without symptoms. The results indicate that the proposed combinatorial model produces optimum and efficacious parameters in comparison to other parameters and can improve the capability and power of globalizing the artificial neural network. This will help physicians in more accurate diagnosis of this type of cancer.

  5. Performance Benchmarks for Screening Breast MR Imaging in Community Practice.

    Science.gov (United States)

    Lee, Janie M; Ichikawa, Laura; Valencia, Elizabeth; Miglioretti, Diana L; Wernli, Karen; Buist, Diana S M; Kerlikowske, Karla; Henderson, Louise M; Sprague, Brian L; Onega, Tracy; Rauscher, Garth H; Lehman, Constance D

    2017-10-01

    Purpose To compare screening magnetic resonance (MR) imaging performance in the Breast Cancer Surveillance Consortium (BCSC) with Breast Imaging Reporting and Data System (BI-RADS) benchmarks. Materials and Methods This study was approved by the institutional review board and compliant with HIPAA and included BCSC screening MR examinations collected between 2005 and 2013 from 5343 women (8387 MR examinations) linked to regional Surveillance, Epidemiology, and End Results program registries, state tumor registries, and pathologic information databases that identified breast cancer cases and tumor characteristics. Clinical, demographic, and imaging characteristics were assessed. Performance measures were calculated according to BI-RADS fifth edition and included cancer detection rate (CDR), positive predictive value of biopsy recommendation (PPV2), sensitivity, and specificity. Results The median patient age was 52 years; 52% of MR examinations were performed in women with a first-degree family history of breast cancer, 46% in women with a personal history of breast cancer, and 15% in women with both risk factors. Screening MR imaging depicted 146 cancers, and 35 interval cancers were identified (181 total-54 in situ, 125 invasive, and two status unknown). The CDR was 17 per 1000 screening examinations (95% confidence interval [CI]: 15, 20 per 1000 screening examinations; BI-RADS benchmark, 20-30 per 1000 screening examinations). PPV2 was 19% (95% CI: 16%, 22%; benchmark, 15%). Sensitivity was 81% (95% CI: 75%, 86%; benchmark, >80%), and specificity was 83% (95% CI: 82%, 84%; benchmark, 85%-90%). The median tumor size of invasive cancers was 10 mm; 88% were node negative. Conclusion The interpretative performance of screening MR imaging in the BCSC meets most BI-RADS benchmarks and approaches benchmark levels for remaining measures. Clinical practice performance data can inform ongoing benchmark development and help identify areas for quality improvement. (©) RSNA

  6. Spatial registration of temporally separated whole breast 3D ultrasound images.

    Science.gov (United States)

    Narayanasamy, Ganesh; LeCarpentier, Gerald L; Roubidoux, Marilyn; Fowlkes, J Brian; Schott, Anne F; Carson, Paul L

    2009-09-01

    patients with suspicious masses and three undergoing chemotherapy. Spatial alignment of the 3D blood vessel data from the Doppler studies provided independent measures for the validation of registration. In 15 Doppler image volume pairs scanned with differing breast compression, the mean centerline separation value was 1.5 +/- 0.6 mm, while MRE based on a few identifiable structural points common to the two grayscale image volumes was 1.1 +/- 0.6 mm. Another measure, the overlap ratio of blood vessels, was shown to increase from 0.32 to 0.59 (+84%) with IVBaR for pairs at various compression levels. These results show that successful registration of ABU scans may be accomplished for comparison and integration of information.

  7. Breast-Specific γ-Imaging for the Detection of Mammographically Occult Breast Cancer in Women at Increased Risk.

    Science.gov (United States)

    Brem, Rachel F; Ruda, Rachel C; Yang, Jialu L; Coffey, Caitrín M; Rapelyea, Jocelyn A

    2016-05-01

    Breast-specific γ-imaging (BSGI) is a physiologic imaging modality that can detect subcentimeter and mammographically occult breast cancer, with a sensitivity and specificity comparable to MRI. The purpose of this study was to determine the incremental increase in breast cancer detection when BSGI is used as an adjunct to mammography in women at increased risk for breast cancer. All patients undergoing BSGI from April 2010 through January 2014 were retrospectively reviewed. Eligible patients were identified as women at increased risk for breast cancer and whose most recent mammogram was benign. Examinations exhibiting focally increased radiotracer uptake were considered positive. Incremental increase in cancer detection was calculated as the percentage of mammographically occult BSGI-detected breast cancer and the number of mammographically occult breast cancers detected per 1,000 women screened. Included in this study were 849 patients in whom 14 BSGI examinations detected mammographically occult breast cancer. Patients ranged in age from 26 to 83 y, with a mean age of 57 y. Eleven of 14 cancers were detected in women with dense breasts. The addition of BSGI to the annual breast screen of asymptomatic women at increased risk for breast cancer yields 16.5 cancers per 1,000 women screened. When high-risk lesions and cancers were combined, BSGI detected 33.0 high-risk lesions and cancers per 1,000 women screened. BSGI is a reliable adjunct modality to screening mammography that increases breast cancer detection by 1.7% (14/849) in women at increased risk for breast cancer, comparable to results reported for breast MRI. BSGI is beneficial in breast cancer detection in women at increased risk, particularly in those with dense breasts. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Mueller matrix polarimetry imaging for breast cancer analysis (Conference Presentation)

    Science.gov (United States)

    Gribble, Adam; Vitkin, Alex

    2017-02-01

    Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its biological composition, both structural and functional. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. However, determination of the Mueller matrix requires tissue analysis under many different states of polarized light; a time consuming and measurement intensive process. Here we address this limitation with a new rapid polarimetry system, and use this polarimetry platform to investigate a variety of tissue changes associated with breast cancer. We have recently developed a rapid polarimetry imaging platform based on four photoelastic modulators (PEMs). The PEMs generate fast polarization modulations that allow the complete sample Mueller matrix to be imaged over a large field of view, with no moving parts. This polarimetry system is then demonstrated to be sensitive to a variety of tissue changes that are relevant to breast cancer. Specifically, we show that changes in depolarization can reveal tumor margins, and can differentiate between viable and necrotic breast cancer metastasized to the lymph nodes. Furthermore, the polarimetric property of linear retardance (related to birefringence) is dependent on collagen organization in the extracellular matrix. These findings indicate that our polarimetry platform may have future applications in fields such as breast cancer diagnosis, improving the speed and efficacy of intraoperative pathology, and providing prognostic information that may be beneficial for guiding treatment.

  9. Wavelength optimization for quantitative spectral imaging of breast tumor margins.

    Directory of Open Access Journals (Sweden)

    Justin Y Lo

    Full Text Available A wavelength selection method that combines an inverse Monte Carlo model of reflectance and a genetic algorithm for global optimization was developed for the application of spectral imaging of breast tumor margins. The selection of wavelengths impacts system design in cost, size, and accuracy of tissue quantitation. The minimum number of wavelengths required for the accurate quantitation of tissue optical properties is 8, with diminishing gains for additional wavelengths. The resulting wavelength choices for the specific probe geometry used for the breast tumor margin spectral imaging application were tested in an independent pathology-confirmed ex vivo breast tissue data set and in tissue-mimicking phantoms. In breast tissue, the optical endpoints (hemoglobin, β-carotene, and scattering that provide the contrast between normal and malignant tissue specimens are extracted with the optimized 8-wavelength set with <9% error compared to the full spectrum (450-600 nm. A multi-absorber liquid phantom study was also performed to show the improved extraction accuracy with optimization and without optimization. This technique for selecting wavelengths can be used for designing spectral imaging systems for other clinical applications.

  10. Fully automatic classification of breast cancer microarray images

    Directory of Open Access Journals (Sweden)

    Nastaran Dehghan Khalilabad

    2016-09-01

    Full Text Available A microarray image is used as an accurate method for diagnosis of cancerous diseases. The aim of this research is to provide an approach for detection of breast cancer type. First, raw data is extracted from microarray images. Determining the exact location of each gene is carried out using image processing techniques. Then, by the sum of the pixels associated with each gene, the amount of “genes expression” is extracted as raw data. To identify more effective genes, information gain method on the set of raw data is used. Finally, the type of cancer can be recognized via analyzing the obtained data using a decision tree. The proposed approach has an accuracy of 95.23% in diagnosing the breast cancer types.

  11. Breast Cancer Heterogeneity: MR Imaging Texture Analysis and Survival Outcomes.

    Science.gov (United States)

    Kim, Jae-Hun; Ko, Eun Sook; Lim, Yaeji; Lee, Kyung Soo; Han, Boo-Kyung; Ko, Eun Young; Hahn, Soo Yeon; Nam, Seok Jin

    2017-03-01

    Purpose To determine the relationship between tumor heterogeneity assessed by means of magnetic resonance (MR) imaging texture analysis and survival outcomes in patients with primary breast cancer. Materials and Methods Between January and August 2010, texture analysis of the entire primary breast tumor in 203 patients was performed with T2-weighted and contrast material-enhanced T1-weighted subtraction MR imaging for preoperative staging. Histogram-based uniformity and entropy were calculated. To dichotomize texture parameters for survival analysis, the 10-fold cross-validation method was used to determine cutoff points in the receiver operating characteristic curve analysis. The Cox proportional hazards model and Kaplan-Meier analysis were used to determine the association of texture parameters and morphologic or volumetric information obtained at MR imaging or clinical-pathologic variables with recurrence-free survival (RFS). Results There were 26 events, including 22 recurrences (10 local-regional and 12 distant) and four deaths, with a mean follow-up time of 56.2 months. In multivariate analysis, a higher N stage (RFS hazard ratio, 11.15 [N3 stage]; P = .002, Bonferroni-adjusted α = .0167), triple-negative subtype (RFS hazard ratio, 16.91; P breast cancers that appeared more heterogeneous on T2-weighted images (higher entropy) and those that appeared less heterogeneous on contrast-enhanced T1-weighted subtraction images (lower entropy) exhibited poorer RFS. © RSNA, 2016 Online supplemental material is available for this article.

  12. Breast imaging findings in women with BRCA1- and BRCA2-associated breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.J.; Evans, A.J. E-mail: aevans@ncht.trent.nhs.uk; Wilson, A.R.M.; Scott, N.; Cornford, E.J.; Pinder, S.E.; Khan, H.N.; Macmillan, R.D

    2004-10-01

    AIM: To document the breast imaging findings of women with BRCA1 and BRCA2-associated breast carcinoma. MATERIALS AND METHODS: Family history clinic records identified 18 BRCA1 and 10 BRCA2 cases who collectively were diagnosed with 27 invasive breast carcinomas and four ductal carcinoma in situ (DCIS) lesions. All underwent pre-operative imaging (29 mammogram and 22 ultrasound examinations). All invasive BRCA-associated breast carcinoma cases were compared with age-matched cases of sporadic breast carcinoma. RESULTS: Within the BRCA cases the age range was 26-62 years, mean 36 years. Two mammograms were normal and 27 (93%) abnormal. The most common mammographic features were defined mass (63%) and microcalcifications (37%). Thirty-four percent of women had a dense mammographic pattern, 59% mixed and 7% fatty. Ultrasound was performed in 22 patients and in 21 (95%) indicated a mass. This was classified as benign in 24%, indeterminate in 29% and malignant in 48%. Mammograms of BRCA1-associated carcinomas more frequently showed a defined mass compared with BRCA2-associated carcinomas, 72 versus 36% (73% control group) whilst mammograms of BRCA2-associated carcinomas more frequently showed microcalcification, 73 versus 12% (8% control group; p<0.001). Thirty-six percent of the BRCA2-associated carcinomas were pure DCIS while none of the BRCA1 associated carcinomas were pure DCIS (p=0.004). Of those patients undergoing regular mammographic screening, 100% of BRCA2-associated carcinomas were detected compared with 75% of BRCA1-associated carcinomas. CONCLUSION: These data suggest that the imaging findings of BRCA1 and BRCA2-associated carcinomas differ from each other and from age-matched cases of sporadic breast carcinoma.

  13. Impact of image acquisition timing on image quality for dual energy contrast-enhanced breast tomosynthesis

    Science.gov (United States)

    Hill, Melissa L.; Mainprize, James G.; Puong, Sylvie; Carton, Ann-Katherine; Iordache, Razvan; Muller, Serge; Yaffe, Martin J.

    2012-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) image quality is affected by a large parameter space including the tomosynthesis acquisition geometry, imaging technique factors, the choice of reconstruction algorithm, and the subject breast characteristics. The influence of most of these factors on reconstructed image quality is well understood for DBT. However, due to the contrast agent uptake kinetics in CE imaging, the subject breast characteristics change over time, presenting a challenge for optimization . In this work we experimentally evaluate the sensitivity of the reconstructed image quality to timing of the low-energy and high-energy images and changes in iodine concentration during image acquisition. For four contrast uptake patterns, a variety of acquisition protocols were tested with different timing and geometry. The influence of the choice of reconstruction algorithm (SART or FBP) was also assessed. Image quality was evaluated in terms of the lesion signal-difference-to-noise ratio (LSDNR) in the central slice of DE CE-DBT reconstructions. Results suggest that for maximum image quality, the low- and high-energy image acquisitions should be made within one x-ray tube sweep, as separate low- and high-energy tube sweeps can degrade LSDNR. In terms of LSDNR per square-root dose, the image quality is nearly equal between SART reconstructions with 9 and 15 angular views, but using fewer angular views can result in a significant improvement in the quantitative accuracy of the reconstructions due to the shorter imaging time interval.

  14. Breast image feature learning with adaptive deconvolutional networks

    Science.gov (United States)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  15. CT guided diffuse optical tomography for breast cancer imaging

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  16. Molecular breast imaging. An update; Molekulare Brustbildgebung. Ein Update

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K.; Helbich, T.H.; Magometschnigg, H.; Baltzer, P. [Medizinische Universitaet Wien, Abteilung fuer Molekulare Bildgebung, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Fueger, B. [Medizinische Universitaet Wien, Abteilung fuer Molekulare Bildgebung, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria); Medizinische Universitaet Wien, Abteilung fuer Nuklearmedizin, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Wien (Austria)

    2014-03-15

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ({sup 1}H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ({sup 23}Na-MRI), phosphorus spectroscopy ({sup 31}P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible. (orig.) [German] Die molekulare Bildgebung zielt auf die Darstellung, Beschreibung und Quantifizierung biologischer, physiologischer und pathologischer Prozesse auf zellulaerer und molekularer Ebene ab. In den letzten Jahren hat sich die molekulare Bildgebung mit ihren verschiedenen Modalitaeten in der Brustdiagnostik etabliert. Die molekularen Brustbildgebung umfasst derzeit die multiparametrische(MP)-MRT mit funktioneller und morphologischer kontrastmittelverstaerkter MRT (KM-MRT), molekularer diffusionsgewichteter Bildgebung (''diffusion-weighted imaging'', DWI) und metabolischer Protonenspektroskopie ({sup 1}H-MRSI) sowie nuklearmedizinische Verfahren (brustspezifische Gammakamerabildgebung [BSGI], Positronenemissionstomographie [PET], PET

  17. Impact of Different Analytic Approaches on the Analysis of the Breast Fibroglandular Tissue Using Diffusion Weighted Imaging.

    Science.gov (United States)

    Choi, Yoon Jung; Chen, Jeon-Hor; Yu, Hon J; Li, Yifan; Su, Min-Ying

    2017-01-01

    Purpose. This study investigated the impact of the different region of interest (ROI) approaches on measurement of apparent diffusion coefficient (ADC) values in the breast firbroglandular tissue (FT). Methods. Breast MR images of 38 women diagnosed with unilateral breast cancer were studied. Percent density (PD) and ADC were measured from the contralateral normal breast. Four different ROIs were used for ADC measurement. The measured PD and ADC were correlated. Results. Among the four ROIs, the manually placed small ROI on FT gave the highest mean ADC (ADC = 1839 ± 343 [×10(-6) mm(2)/s]), while measurement from the whole breast gave the lowest mean ADC (ADC = 933 ± 383 [×10(-6) mm(2)/s]). The ADC measured from the whole breast was highly correlated with PD with r = 0.95. In slice-to-slice comparison, the central slices with more FT had higher ADC values than the peripheral slices did, presumably due to less partial volume effect from fat. Conclusions. Our results indicated that the measured ADC heavily depends on the composition of breast tissue contained in the ROI used for the ADC measurements. Women with low breast density showing lower ADC values were most likely due to the partial volume effect of fatty tissues.

  18. Impact of Different Analytic Approaches on the Analysis of the Breast Fibroglandular Tissue Using Diffusion Weighted Imaging

    Directory of Open Access Journals (Sweden)

    Yoon Jung Choi

    2017-01-01

    Full Text Available Purpose. This study investigated the impact of the different region of interest (ROI approaches on measurement of apparent diffusion coefficient (ADC values in the breast firbroglandular tissue (FT. Methods. Breast MR images of 38 women diagnosed with unilateral breast cancer were studied. Percent density (PD and ADC were measured from the contralateral normal breast. Four different ROIs were used for ADC measurement. The measured PD and ADC were correlated. Results. Among the four ROIs, the manually placed small ROI on FT gave the highest mean ADC (ADC = 1839 ± 343 [×10−6 mm2/s], while measurement from the whole breast gave the lowest mean ADC (ADC = 933 ± 383 [×10−6 mm2/s]. The ADC measured from the whole breast was highly correlated with PD with r=0.95. In slice-to-slice comparison, the central slices with more FT had higher ADC values than the peripheral slices did, presumably due to less partial volume effect from fat. Conclusions. Our results indicated that the measured ADC heavily depends on the composition of breast tissue contained in the ROI used for the ADC measurements. Women with low breast density showing lower ADC values were most likely due to the partial volume effect of fatty tissues.

  19. Objective breast symmetry evaluation using 3-D surface imaging.

    Science.gov (United States)

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise.In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in breast cancer management.

  1. Spatial frequency domain imaging for monitoring palpable breast lesions

    Science.gov (United States)

    Robbins, Constance M.; Antaki, James F.; Kainerstorfer, Jana M.

    2017-02-01

    We describe a novel approach for monitoring breast lesions, utilizing spatial frequency domain imaging, a diffuse optical imaging method to detect hemoglobin contrast, in combination with mechanical compression of the tissue. The project is motivated by the growing rate of unnecessary breast biopsies, caused by uncertainty in X-ray mammographic diagnoses. We believe there is a need for an alternate means of tracking the progression palpable lesions exhibiting probably benign features, that can be performed non-invasively and hence frequently: at home or in the clinic. The proposed approach capitalizes on two distinguishing properties of cancerous lesions, namely the relative stiffness with respect to surrounding tissue and the optical absorption due to the greater vascularization, hence hemoglobin concentration. The current research project is a pilot study to evaluate the principle on soft, breast tissue-mimicking phantoms containing stiffer, more highly absorbing inclusions. Spatial frequency domain imaging was performed by projecting onto the phantom a series of wide-field patterns at multiple spatial frequencies. Image analysis then was performed to map absorption and scattering properties. The results of the study demonstrate that compression significantly increases the optical contrast observed for inclusions located 10 and 15 mm beneath the surface. In the latter case, the inclusion was not detectable without compression.

  2. Higher-order scene statistics of breast images

    Science.gov (United States)

    Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.

    2009-02-01

    Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.

  3. Molecular Imaging of Breast Cancer: Present and future directions

    Directory of Open Access Journals (Sweden)

    David eAlcantara

    2014-12-01

    Full Text Available Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases and biological processes (e.g. apoptosis, angiogenesis, and metastasis that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  4. Detection of Breast Microcalcifications Under Ultrasound Using Power Doppler and Acoustic Resonance Imaging

    National Research Council Canada - National Science Library

    Weinstein, Susan

    2003-01-01

    .... Our goal with our current project was to utilize breast sonography coupled with the technique of acoustic resonance to image and evaluate the breast micorcalcifications in patients prior to biopsy...

  5. Magnetic resonance imaging texture analysis classification of primary breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, S.A.; Lerski, R.A. [Ninewells Hospital and Medical School, Department of Medical Physics, Dundee (United Kingdom); Purdie, C.A.; Jordan, L.B. [Ninewells Hospital and Medical School, Department of Pathology, Dundee (United Kingdom); Vinnicombe, S. [University of Dundee, Division of Imaging and Technology, Ninewells Hospital and Medical School, Dundee (United Kingdom); Martin, P. [Ninewells Hospital and Medical School, Department of Clinical Radiology, Dundee (United Kingdom); Thompson, A.M. [University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Houston, TX (United States)

    2016-02-15

    Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification. Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values. Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model. Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response. (orig.)

  6. Optical molecular imaging of hypoxic breast cancer - From prospect to preclinical practice

    OpenAIRE

    van Brussel, A.S.A.

    2013-01-01

    Current imaging modalities for breast cancer diagnosis and therapy monitoring either lack sensitivity, specificity, make use of radiation and/or give images of limited resolution. Optical molecular imaging is a novel technique that detects light emitted by (breast)cancer-specific probes with a sensitive camera. As hypoxia is a common condition in solid tumors, proteins upregulated in hypoxic cells are of special interest as target for molecular imaging of breast cancer. In this thesis we revi...

  7. Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity Among Minority Populations

    Science.gov (United States)

    2014-03-01

    visibility of microcalcification (MCs) in clinical images is of critical importance for breast imaging, as MCs can be the only sign of early cancer . To...AD_________________ Award Number: W81XWH-09-1-0062 TITLE: Image Based Biomarker of Breast Cancer ...Report 3. DATES COVERED (From - To) – 14 1212 4. TITLE AND SUBTITLE Image Based Biomarker of Breast Cancer Risk: 5a. CONTRACT

  8. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    Science.gov (United States)

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Pilot study demonstrating potential association between breast cancer image-based risk phenotypes and genomic biomarkers

    Science.gov (United States)

    Li, Hui; Giger, Maryellen L.; Sun, Chang; Ponsukcharoen, Umnouy; Huo, Dezheng; Lan, Li; Olopade, Olufunmilayo I.; Jamieson, Andrew R.; Brown, Jeremy Bancroft; Rienzo, Anna Di

    2014-01-01

    Purpose: In this pilot study, the authors examined associations between image-based phenotypes and genomic biomarkers. The potential genetic contribution of UGT2B genes to interindividual variation in breast density and mammographic parenchymal patterns is demonstrated by performing an association study between image-based phenotypes and genomic biomarkers [single-nucleotide polymorphism (SNP) genotypes]. Methods: This candidate-gene approach study included 179 subjects for whom both mammograms and blood DNA samples had been obtained. The full-field digital mammograms were acquired using a GE Senographe 2000D FFDM system (12-bit; 0.1 mm-pixel size). Regions-of-interest, 256 × 256 pixels in size, selected from the central breast region behind the nipple underwent computerized image analysis to yield image-based phenotypes of mammographic density and parenchymal texture patterns. SNP genotyping was performed using a Sequenom MassArray System. One hundred twenty three SNPs with minor allele frequency above 5% were genotyped for the UGT2B gene clusters, and used in the study. The association between the image-based phenotypes and genomic biomarkers was assessed with the Pearson correlation coefficient via the PLINK software, and included permutation and correction for multiple SNP comparisons. Results: From the phenotype-genotype association analysis, a parenchyma texture coarseness feature was found to be correlated with SNP rs451632 after multiple test correction for the multiple SNPs (p = 0.022). The power law β, which is used to characterize the frequency component of texture patterns, was found to be correlated with SNP rs4148298 (p = 0.035). Conclusions: The authors’ results indicate that UGT2B gene variation may contribute to interindividual variation in mammographic parenchymal patterns and breast density. Understanding the relationship between image-based phenotypes and genomic biomarkers may help understand the biologic mechanism for image

  10. Glandular breast tissue volume by magnetic resonance imaging in 100 healthy peripubertal girls

    DEFF Research Database (Denmark)

    Fugl, Louise; Hagen, Casper P; Mieritz, Mikkel G

    2016-01-01

    , and endometrial thickness were assessed by TAUS. RESULTS: Glandular breast tissue volume was positively associated with Tanner stages (r = 0.858, P ...BACKGROUND: Appearance of glandular breast tissue may be difficult to distinguish from fat tissue by palpation, especially in obese girls. To our knowledge, validation of the clinical assessment of pubertal breast stages by magnetic resonance imaging (MRI) has never been performed. Our objective...... was to report normative data of glandular breast tissue volume and validate the clinical evaluation of pubertal breast staging by MRI of breast tissue and to evaluate circulating reproductive hormone levels and estrogen-dependent transabdominal ultrasound (TAUS) parameters as markers of glandular breast tissue...

  11. Diagnosis of breast cancer biopsies using quantitative phase imaging

    Science.gov (United States)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  12. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.

    Science.gov (United States)

    Moon, Woo Kyung; Chang, Jie-Fan; Lo, Chung-Ming; Chang, Jung Min; Lee, Su Hyun; Shin, Sung Ui; Huang, Chiun-Sheng; Chang, Ruey-Feng

    2018-02-01

    Breast density at mammography has been used as markers of breast cancer risk. However, newly introduced tomosynthesis and computer-aided quantitative method could provide more reliable breast density evaluation. In the experiment, 98 tomosynthesis image volumes were obtained from 98 women. For each case, an automatic skin removal was used and followed by a fuzzy c-mean (FCM) classifier which separated the fibroglandular tissues from other tissues in breast area. Finally, percent of breast density and breast volume were calculated and the results were compared with MRI. In addition, the percent of breast density and breast area of digital mammography calculated using the software Cumulus (University of Toronto, Toronto, ON, Canada.) were also compared with 3-D modalities. Percent of breast density and breast volume, which were computed from tomosynthesis, MRI and digital mammography were 17.37% ± 4.39% and 607.12 cm 3  ± 323.01 cm 3 , 20.3% ± 8.6% and 537.59 cm 3  ± 287.74 cm 3 , and 12.03% ± 4.08%, respectively. There were significant correlations on breast density as well as volume between tomosynthesis and MRI (R = 0.482 and R = 0.805), tomosynthesis and breast density with breast area of digital mammography (R = 0.789 and R = 0.877), and MRI and breast density with breast area of digital mammography (R = 0.482 and R = 0.857) (all P values density and breast volume evaluated from tomosynthesis, MRI and breast density and breast area of digital mammographic images have significant correlations and indicate that tomosynthesis could provide useful 3-D information on breast density through proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Crosscultural comparison on nursing image.

    Science.gov (United States)

    Austin, J K; Champion, V L; Tzeng, O C

    1985-01-01

    Conceptual ratings for 'Nurse' and 'Feminine' were investigated across 30 language/culture communities. Data were from Osgood's Atlas of Affective Meanings, which contains ratings of 1200 males from each culture on 620 concepts, using Semantic Differentials. The study provides important information regarding the image of nurses crossculturally and the close link between nursing and femininity. In general, both 'Nurse' and Feminine' were perceived to be good and active, yet weak. A crosscultural view of the nurse as impotent may limit nursing's ability to deliver health care.

  14. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  15. Convergence of iterative image reconstruction algorithms for Digital Breast Tomosynthesis

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    solutions can aid in iterative image reconstruction algorithm design. This issue is particularly acute for iterative image reconstruction in Digital Breast Tomosynthesis (DBT), where the corresponding data model IS particularly poorly conditioned. The impact of this poor conditioning is that iterative......Most iterative image reconstruction algorithms are based on some form of optimization, such as minimization of a data-fidelity term plus an image regularizing penalty term. While achieving the solution of these optimization problems may not directly be clinically relevant, accurate optimization...... algorithms applied to this system can be slow to converge. Recent developments in first-order algorithms are now beginning to allow for accurate solutions to optimization problems of interest to tomographic imaging in general. In particular, we investigate an algorithm developed by Chambolle and Pock (2011 J...

  16. Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wengert, G.J.; Helbich, T.H.; Woitek, R.; Kapetas, P.; Clauser, P.; Baltzer, P.A. [Medical University of Vienna/ Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); Vogl, W.D. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Wien (Austria); Weber, M. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Wien (Austria); Meyer-Baese, A. [State University of Florida, Department of Scientific Computing in Medicine, Tallahassee, FL (United States); Pinker, Katja [Medical University of Vienna/ Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna (Austria); State University of Florida, Department of Scientific Computing in Medicine, Tallahassee, FL (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, Molecular Imaging and Therapy Services, New York City, NY (United States)

    2016-11-15

    To evaluate the inter-/intra-observer agreement of BI-RADS-based subjective visual estimation of the amount of fibroglandular tissue (FGT) with magnetic resonance imaging (MRI), and to investigate whether FGT assessment benefits from an automated, observer-independent, quantitative MRI measurement by comparing both approaches. Eighty women with no imaging abnormalities (BI-RADS 1 and 2) were included in this institutional review board (IRB)-approved prospective study. All women underwent un-enhanced breast MRI. Four radiologists independently assessed FGT with MRI by subjective visual estimation according to BI-RADS. Automated observer-independent quantitative measurement of FGT with MRI was performed using a previously described measurement system. Inter-/intra-observer agreements of qualitative and quantitative FGT measurements were assessed using Cohen's kappa (k). Inexperienced readers achieved moderate inter-/intra-observer agreement and experienced readers a substantial inter- and perfect intra-observer agreement for subjective visual estimation of FGT. Practice and experience reduced observer-dependency. Automated observer-independent quantitative measurement of FGT was successfully performed and revealed only fair to moderate agreement (k = 0.209-0.497) with subjective visual estimations of FGT. Subjective visual estimation of FGT with MRI shows moderate intra-/inter-observer agreement, which can be improved by practice and experience. Automated observer-independent quantitative measurements of FGT are necessary to allow a standardized risk evaluation. (orig.)

  17. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    Science.gov (United States)

    Helvie, Mark A.

    2011-01-01

    Synopsis This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are confirmed by clinical trials. PMID:20868894

  18. Dosimetric comparison of 3DCRT versus IMRT in whole breast irradiation of early stage breast cancer

    Directory of Open Access Journals (Sweden)

    Mudasir Ashraf

    2014-08-01

    .......................................................Cite this article as:Ashraf M, Janardhan N, Bhavani P, Shivakumar R, Ibrahim S, Reddy PY, Surrendharen J, Sarangnathan B, Johnson B, Madhuri B, Dar RA. Dosimetric comparison of 3DCRT versus IMRT in whole breast irradiation of early stage breast cancer. Int J Cancer Ther Oncol 2014; 2(3:020318. DOI: 10.14319/ijcto.0203.18

  19. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis.

    Science.gov (United States)

    Ikejimba, Lynda C; Kiarashi, Nooshin; Ghate, Sujata V; Samei, Ehsan; Lo, Joseph Y

    2014-06-01

    The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d', while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d' values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and improved signal difference in the lesion.

  20. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ikejimba, Lynda C., E-mail: lci@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-06-15

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ′}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ′} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ′}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ′} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of

  1. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review.

    Science.gov (United States)

    Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan

    2017-03-01

    With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.

  2. Diffusion-weighted imaging in assessing pathological response of tumor in breast cancer subtype to neoadjuvant chemotherapy.

    Science.gov (United States)

    Liu, Shangang; Ren, Ruimei; Chen, Zhaoqiu; Wang, Yongsheng; Fan, Tingyong; Li, Chengli; Zhang, Pinliang

    2015-09-01

    To investigate the efficacy of diffusion-weighted imaging (DWI) for reflecting and predicting pathological tumor response in breast cancer subtype to neoadjuvant chemotherapy (NAC). The retrospective study included 176 patients with breast cancer who underwent magnetic resonance imaging (MRI) examinations before and after NAC prior to surgery. The pre- and post-NAC apparent diffusion coefficient (ADC) values of tumor were measured respectively on DWI. The pathological response was classified into either a complete response (pCR) or as a noncomplete response (pNCR) to NAC with the Miller & Payne system. The relationship between the ADC value and the pathological response was assessed according to intrinsic subtypes (Luminal A, Luminal B, HER2-enriched, and triple negative) defined by immunohistochemical features. Multiple comparisons respectively showed that pre-NAC and post-NAC ADC were significantly different among four subtypes (P breast cancer subtypes. © 2015 Wiley Periodicals, Inc.

  3. Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.

    Science.gov (United States)

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu

    2017-07-01

    In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content-based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate, and fast retrieval method for a breast histopathological image. Specifically, the method presents a local statistical feature of nuclei for morphology and distribution of nuclei, and employs the Gabor feature to describe the texture information. The latent Dirichlet allocation model is utilized for high-level semantic mining. Locality-sensitive hashing is used to speed up the search. Experiments on a WSI database with more than 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, and WSI archiving and management.

  4. A Dataset for Breast Cancer Histopathological Image Classification.

    Science.gov (United States)

    Spanhol, Fabio A; Oliveira, Luiz S; Petitjean, Caroline; Heutte, Laurent

    2016-07-01

    Today, medical image analysis papers require solid experiments to prove the usefulness of proposed methods. However, experiments are often performed on data selected by the researchers, which may come from different institutions, scanners, and populations. Different evaluation measures may be used, making it difficult to compare the methods. In this paper, we introduce a dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.inf.ufpr.br/vri/breast-cancer-database. The dataset includes both benign and malignant images. The task associated with this dataset is the automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician. In order to assess the difficulty of this task, we show some preliminary results obtained with state-of-the-art image classification systems. The accuracy ranges from 80% to 85%, showing room for improvement is left. By providing this dataset and a standardized evaluation protocol to the scientific community, we hope to gather researchers in both the medical and the machine learning field to advance toward this clinical application.

  5. Imaging of common breast implants and implant-related complications: A pictorial essay

    Directory of Open Access Journals (Sweden)

    Amisha T Shah

    2016-01-01

    Full Text Available The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  6. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  7. Imaging of common breast implants and implant-related complications: A pictorial essay

    Science.gov (United States)

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269

  8. Breast lump

    Science.gov (United States)

    ... removed with surgery. Breast infections are treated with antibiotics. If you are diagnosed with breast cancer , you will discuss your options carefully and thoroughly with your provider. Alternative Names Breast mass Images Female breast Breast lumps ...

  9. Development and application of a suite of 4-D virtual breast phantoms for optimization and evaluation of breast imaging systems.

    Science.gov (United States)

    Kiarashi, Nooshin; Lo, Joseph Y; Lin, Yuan; Ikejimba, Lynda C; Ghate, Sujata V; Nolte, Loren W; Dobbins, James T; Segars, William P; Samei, Ehsan

    2014-07-01

    Mammography is currently the most widely utilized tool for detection and diagnosis of breast cancer. However, in women with dense breast tissue, tissue overlap may obscure lesions. Digital breast tomosynthesis can reduce tissue overlap. Furthermore, imaging with contrast enhancement can provide additional functional information about lesions, such as morphology and kinetics, which in turn may improve lesion identification and characterization. The performance of these imaging techniques is strongly dependent on the structural composition of the breast, which varies significantly among patients. Therefore, imaging system and imaging technique optimization should take patient variability into consideration. Furthermore, optimization of imaging techniques that employ contrast agents should include the temporally varying breast composition with respect to the contrast agent uptake kinetics. To these ends, we have developed a suite of 4-D virtual breast phantoms, which are incorporated with the kinetics of contrast agent propagation in different tissues and can realistically model normal breast parenchyma as well as benign and malignant lesions. This development presents a new approach in performing simulation studies using truly anthropomorphic models. To demonstrate the utility of the proposed 4-D phantoms, we present a simplified example study to compare the performance of 14 imaging paradigms qualitatively and quantitatively.

  10. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise. In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in beast cancer management.

  11. Photoacoustic imaging of breast microcalcifications: a preliminary study with 8-gauge core-biopsied breast specimens.

    Directory of Open Access Journals (Sweden)

    Ga Ram Kim

    Full Text Available We presented the photoacoustic imaging (PAI tool and to evaluate whether microcalcifications in breast tissue can be detected on photoacoustic (PA images.We collected 21 cores containing microcalcifications (n = 11, microcalcification group and none (n = 10, control group in stereotactic or ultrasound (US guided 8-gauge vacuum-assisted biopsies. Photoacoustic (PA images were acquired through ex vivo experiments by transmitting laser pulses with two different wavelengths (700 nm and 800 nm. The presence of microcalcifications in PA images were blindly assessed by two radiologists and compared with specimen mammography. A ratio of the signal amplitude occurring at 700 nm to that occurring at 800 nm was calculated for each PA focus and was called the PAI ratio.Based on the change of PA signal amplitude between 700 nm and 800 nm, 10 out of 11 specimens containing microcalcifications and 8 out of 10 specimens without calcifications were correctly identified on blind review; the sensitivity, specificity, accuracy, positive predictive and negative predictive values of our blind review were 90.91%, 80.0%, 85.71%, 83.33% and 88.89%. The PAI ratio in the microcalcification group was significantly higher than that in the control group (the median PAI ratio, 2.46 versus 1.11, respectively, P =  .001. On subgroup analysis in the microcalcification group, neither malignant diagnosis nor the number or size of calcification-foci was proven to contribute to PAI ratios.Breast microcalcifications generated distinguishable PA signals unlike breast tissue without calcifications. So, PAI, a non-ionizing and non-invasive hybrid imaging technique, can be an alternative in overcoming the limitations of conventional US imaging.

  12. Breast cancer neoplastic seeding in the setting of image-guided needle biopsies of the breast.

    Science.gov (United States)

    Santiago, Lumarie; Adrada, Beatriz E; Huang, Monica L; Wei, Wei; Candelaria, Rosalind P

    2017-11-01

    To identify clinicopathologic, technical, and imaging features associated with neoplastic seeding (NS) following image-guided needle breast biopsy. We performed an institutional review board-approved retrospective review of patients presenting with a new diagnosis of breast cancer or suspicious breast findings requiring biopsy with subsequent diagnosis of NS. The time from biopsy to NS diagnosis was calculated. Histology, grade, estrogen receptor (ER) status, progesterone receptor (PR) status, HER2 status, T category, and N category were recorded. Biopsy guidance method, needle gauge, and number of passes were reviewed in addition to the mammographic and sonographic features of the primary tumors and the NS. Eight cases of NS were identified in 4010 patients. The mean time from biopsy to NS diagnosis was 60.8 days. The most frequent histology was invasive ductal carcinoma (7/8). Six cases were grade 3 (75.0%). Five primary breast cancers were ER, PR, and HER2 negative (62.5%). Seven patients underwent biopsy with ultrasound guidance. Multiple-insertion, non-coaxial ultrasound-guided core-needle biopsy was done in 6 cases. Mammographic presentation of NS was focal asymmetry (3/7 cases), mass (1/7), calcifications only (1/7), or occult (2/7). Sonographic presentation of NS was most often a mass (7/8) with irregular shape (5/7) and without circumscribed margins (6/7) and was occult in 1 case (1/8). NS distribution was subdermal and intradermal. High-grade, triple-negative breast cancers and multiple-insertion, non-coaxial biopsies may be risk factors for NS. NS should be suspected on the basis of the superficial and linear pattern of disease progression in these patients.

  13. The rationale, technique, and feasibility of partial breast irradiation using noninvasive image-guided breast brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Hiatt, Jessica R; Sha, Sandra; Leonard, Kara L; Graves, Theresa A; Wiggins, Doreen L; Mastras, Dean; Pittier, Ann; Wazer, David E

    2014-01-01

    Noninvasive image-guided breast brachytherapy (NIBB) is a novel approach to deliver accelerated partial breast irradiation (APBI). NIBB is noninvasive, yet maintains a high degree of precision by using breast immobilization and image guidance. This makes NIBB an attractive alternative to existing APBI techniques. Forty patients were enrolled to an institutional review board-approved prospective clinical trial evaluating APBI using NIBB. The NIBB technique is described in detail. Briefly, patients were treated with the breast compressed and immobilized sequentially in two orthogonal axes for each fraction. Radiation was delivered using collimated emissions from a high-dose-rate iridium-192 source via specialized applicators. The prescribed dose was 34.0 Gy in 10 fractions. Feasibility and tolerability of treatment were assessed. All patients completed protocol treatment. The median age was 68 years. Sixty-three percent of patients had invasive carcinoma, and 37% had ductal carcinoma in situ. All were node negative. Ninety-three percent of patients were postmenopausal. Mean tumor size, tumor bed volume, and breast volume were 1.1 cm, 22.4 cc, and 1591 cc, respectively. NIBB treatment was well tolerated. Median patient-reported discomfort was 1 on a 10-point pain scale. Treatment delivery times were reasonable. The average treatment time per axis was 14 min (5-20 min), and the average time from start of first treatment axis to completion of orthogonal axis was 43 min (30-63 min). Acute skin toxicity was Grade 0, 1, and 2 in 20%, 53%, and 28% of patients, respectively. There were no Grade 3 or greater acute toxicities observed. NIBB holds promise as an alternative method to deliver APBI. NIBB is feasible and well tolerated by patients. Further investigation of NIBB to deliver APBI is warranted. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. A novel high resolution and high efficiency dual head detector for molecular breast imaging: New results from clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, F., E-mail: franco.garibaldi@iss.infn.i [ISS and INFN Roma, gr. Sanita, Rome (Italy); Cisbani, E.; Colilli, S.; Cusanno, F.; Fratoni, R.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M.L.; Santavenere, F.; Torrioli, S. [ISS and INFN Roma, gr. Sanita, Rome (Italy); Musico, P. [INFN Genova, Genova (Italy); Argentieri, A. [INFN Bari, Bari (Italy); Cossu, E.; Padovano, F.; Simonetti, G. [ISS and INFN Roma, gr. Sanita, Rome (Italy); Schillaci, O. [University of Tor Vergata, Rome (Italy); Majewski, S. [West Virginia University, Morgantown, West Virginia (United States)

    2010-05-21

    Detecting small breast tumors is a challenging task. Molecular Breast Imaging with radionuclides has a central role to play in this respect. Our group has recently designed and implemented a dual detector setup that allows spot compression and improves significantly the performance of the system. The single head detector has been successfully used for clinical trials with 10 patients in comparison with a commercial high resolution detector. Then the dual head system has been showed to have significant advantages for the detection of small tumors.

  15. Identification of breast calcification using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi-Ardekani, Ali; Boylan, Colm; Noseworthy, Michael D. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada) and Imaging Research Centre, Brain-Body Institute, St. Joseph' s Healthcare, Hamilton, Ontario L8N 4A6 (Canada); Diagnostic Imaging, St. Joseph' s Healthcare, Hamilton, Ontario L8N 4A6 (Canada) and Department of Radiology, McMaster University, Hamilton, Ontario L8N 3Z5 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Imaging Research Centre, Brain-Body Institute, St. Joseph' s Healthcare, Hamilton, Ontario L8N 4A6 (Canada); Diagnostic Imaging, St. Joseph' s Healthcare, Hamilton, Ontario L8N 4A6 (Canada); Department of Radiology, McMaster University, Hamilton, Ontario L8N 3Z5 (Canada) and Electrical and Computer Engineering, and School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4K1 (Canada)

    2009-12-15

    MRI phase and magnitude images provide information about local magnetic field variation ({Delta}B{sub 0}), which can consequently be used to understand tissue properties. Often, phase information is discarded. However, corrected phase images are able to produce contrast as a result of magnetic susceptibility differences and local field inhomogeneities due to the presence of diamagnetic and paramagnetic substances. Three-dimensional (3D) susceptibility weighted imaging (SWI) can be used to probe changes in MRI phase evolution and, subsequently, result in an alternate form of contrast between tissues. For example, SWI has been useful in the assessment of negative phase induced {Delta}B{sub 0} modulation due to the presence of paramagnetic substances such as iron. Very little, however, has been done to assess positive phase induced contrast changes resulting from the presence of diamagnetic substances such as precipitated calcium. As ductal carcinoma in situ, which is the precursor of invasive ductal cancer, is often associated with breast microcalcification, the authors proposed using SWI as a possible visualization technique. In this study, breast phantoms containing calcifications (0.4-1.5 mm) were imaged using mammography, computed tomography (CT), and SWI. Corrected phase and magnitude images acquired using SWI allowed identification and correlation of all calcifications seen on CT. As the approach is a 3D technique, it could potentially allow for more accurate localization and biopsy and maybe even reduce the use of gadolinium contrast. Furthermore, the approach may be beneficial to women with dense breast tissue where the ability to detect microcalcification with mammography is reduced.

  16. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    Science.gov (United States)

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  17. Optical molecular imaging of hypoxic breast cancer - From prospect to preclinical practice

    NARCIS (Netherlands)

    van Brussel, A.S.A.

    2013-01-01

    Current imaging modalities for breast cancer diagnosis and therapy monitoring either lack sensitivity, specificity, make use of radiation and/or give images of limited resolution. Optical molecular imaging is a novel technique that detects light emitted by (breast)cancer-specific probes with a

  18. Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients.

    Science.gov (United States)

    Thakran, Snekha; Chatterjee, Subhajit; Singhal, Meenakshi; Gupta, Rakesh Kumar; Singh, Anup

    2018-01-01

    The objectives of the study were to develop a framework for automatic outer and inner breast tissue segmentation using multi-parametric MRI images of the breast tumor patients; and to perform breast density and tumor tissue analysis. MRI of the breast was performed on 30 patients at 3T-MRI. T1, T2 and PD-weighted(W) images, with and without fat saturation(WWFS), and dynamic-contrast-enhanced(DCE)-MRI data were acquired. The proposed automatic segmentation approach was performed in two steps. In step-1, outer segmentation of breast tissue from rest of body parts was performed on structural images (T2-W/T1-W/PD-W without fat saturation images) using automatic landmarks detection technique based on operations like profile screening, Otsu thresholding, morphological operations and empirical observation. In step-2, inner segmentation of breast tissue into fibro-glandular(FG), fatty and tumor tissue was performed. For validation of breast tissue segmentation, manual segmentation was carried out by two radiologists and similarity coefficients(Dice and Jaccard) were computed for outer as well as inner tissues. FG density and tumor volume were also computed and analyzed. The proposed outer and inner segmentation approach worked well for all the subjects and was validated by two radiologists. The average Dice and Jaccard coefficients value for outer segmentation using T2-W images, obtained by two radiologists, were 0.977 and 0.951 respectively. These coefficient values for FG tissue were 0.915 and 0.875 respectively whereas for tumor tissue, values were 0.968 and 0.95 respectively. The volume of segmented tumor ranged over 2.1 cm3-7.08 cm3. The proposed approach provided automatic outer and inner breast tissue segmentation, which enables automatic calculations of breast tissue density and tumor volume. This is a complete framework for outer and inner breast segmentation method for all structural images.

  19. Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients.

    Directory of Open Access Journals (Sweden)

    Snekha Thakran

    Full Text Available The objectives of the study were to develop a framework for automatic outer and inner breast tissue segmentation using multi-parametric MRI images of the breast tumor patients; and to perform breast density and tumor tissue analysis. MRI of the breast was performed on 30 patients at 3T-MRI. T1, T2 and PD-weighted(W images, with and without fat saturation(WWFS, and dynamic-contrast-enhanced(DCE-MRI data were acquired. The proposed automatic segmentation approach was performed in two steps. In step-1, outer segmentation of breast tissue from rest of body parts was performed on structural images (T2-W/T1-W/PD-W without fat saturation images using automatic landmarks detection technique based on operations like profile screening, Otsu thresholding, morphological operations and empirical observation. In step-2, inner segmentation of breast tissue into fibro-glandular(FG, fatty and tumor tissue was performed. For validation of breast tissue segmentation, manual segmentation was carried out by two radiologists and similarity coefficients(Dice and Jaccard were computed for outer as well as inner tissues. FG density and tumor volume were also computed and analyzed. The proposed outer and inner segmentation approach worked well for all the subjects and was validated by two radiologists. The average Dice and Jaccard coefficients value for outer segmentation using T2-W images, obtained by two radiologists, were 0.977 and 0.951 respectively. These coefficient values for FG tissue were 0.915 and 0.875 respectively whereas for tumor tissue, values were 0.968 and 0.95 respectively. The volume of segmented tumor ranged over 2.1 cm3-7.08 cm3. The proposed approach provided automatic outer and inner breast tissue segmentation, which enables automatic calculations of breast tissue density and tumor volume. This is a complete framework for outer and inner breast segmentation method for all structural images.

  20. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neoadjuvant chemotherapy for breast cancer: correlation between the baseline MR imaging findings and responses to therapy

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Takayoshi; Yuen, Sachiko [Shizuoka Cancer Center Hospital, Breast Imaging and Breast Intervention Section, Naga-izumi, Shizuoka (Japan); Kasami, Masako [Shizuoka Cancer Center Hospital, Department of Pathology, Naga-izumi, Shizuoka (Japan)

    2010-10-15

    To retrospectively evaluate the magnetic resonance (MR) imaging findings of breast cancer before neoadjuvant chemotherapy (NAC) and to compare findings of chemosensitive breast cancer with those of chemoresistant breast cancer. The MR imaging findings before NAC in 120 women undergoing NAC were reviewed. The MR imaging findings were compared with the pathological findings and responses. A complete response (pCR) and marked response were achieved in 12 and 35% of 120 breast cancers in 120 women respectively. Breast cancers with a pCR or marked response were classified as chemosensitive breast cancer. The remaining 64 breast cancers (53%) were classified as chemoresistant breast cancer. Large tumour size, a lesion without mass effect, and very high intratumoural signal intensity on T2-weighted MR images were significantly associated with chemoresistant breast cancer. Lesions with mass effect and washout enhancement pattern were significantly associated with chemosensitive breast cancer. Areas with very high intratumoural signal intensity on T2-weighted images corresponded pathologically to areas of intratumoural necrosis. Several MR imaging features of breast cancer before NAC can help predict the efficacy of NAC. (orig.)

  2. Molecular markers in breast cancer: new tools in imaging and prognosis

    OpenAIRE

    Vermeulen, J.F.

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared fluorescent labeled (NIRF) tracers for detection of breast cancer. Thus far, only a few molecular imaging tracers have been taken to the clinic of which most are suitable for PET. My thesis describes the e...

  3. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  4. MR imaging of medullary carcinoma of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, Junya [Department of Radiology, Tohoku Rohsai Hospital, 21-3-4 Dainohara Aoba-ku, Sendai 981-8563 (Japan)], E-mail: jrtomi@jf6.so-net.ne.jp; Hama, Hikaru [Department of Radiology, Tohoku Rohsai Hospital, 21-3-4 Dainohara Aoba-ku, Sendai 981-8563 (Japan); Kimura, Noriko [Department of Pathology, Japan National Hospital Organization, Hakodate Hospital, 16-18 Kawahara-cho Hakodate, Hokkaido 041-8512 (Japan); Takahashi, Shoki [Department of Diagnostic Radiology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan)

    2009-06-15

    Purpose: To examine the magnetic resonance imaging (MRI) findings of medullary carcinoma of the breast and to correlate them with histopathologic features. Materials and methods: Eight patients were retrospectively evaluated with pathologically confirmed medullary carcinoma of the breast. T1-weighted fat-saturated, T2-weighted fast spine echo, and gadolinium-enhanced fat-saturated fast spoiled gradient-echo images were obtained. Interpretation of the MRI findings was based on evaluation of the configuration, internal signal intensity, contrast enhancement, and type of the time-intensity curve. Results: Medullary carcinoma showed a lobular shape and a smooth margin, either homogenous or heterogeneous enhancement and delayed peripheral enhancement in the late phase on contrast-enhanced MRI, and either a plateau or washout type with rapid initial rise on the time-intensity curve of the dynamic study. Conclusion: Although the MRI findings showed a close relationship with histopathologic features of medullary carcinoma, it was difficult to differentiate medullary carcinoma from other histologic types of invasive breast carcinomas.

  5. Comparison of breast density measurements made using ultrasound tomography and mammography

    Science.gov (United States)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Krycia, Mark; Sherman, Mark E.; Boyd, Norman; Gierach, Gretchen L.

    2015-03-01

    Women with elevated mammographic percent density, defined as the ratio of fibroglandular tissue area to total breast area on a mammogram are at an increased risk of developing breast cancer. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of a patient's breast, which can then be used to measure breast density. These sound speed images are useful because physical tissue density is directly proportional to sound speed. The work presented here updates previous results that compared mammographic breast density measurements with UST breast density measurements within an ongoing study. The current analysis has been expanded to include 158 women with negative digital mammographic screens who then underwent a breast UST scan. Breast density was measured for both imaging modalities and preliminary analysis demonstrated strong and positive correlations (Spearman correlation coefficient rs = 0.703). Additional mammographic and UST related imaging characteristics were also analyzed and used to compare the behavior of both imaging modalities. Results suggest that UST can be used among women with negative mammographic screens as a quantitative marker of breast density that may avert shortcomings of mammography.

  6. Multiparametric spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse model

    National Research Council Canada - National Science Library

    Wilson, Katheryne E; Bachawal, Sunitha V; Tian, Lu; Willmann, Jürgen K

    2014-01-01

    To evaluate the potential of multiparametric spectroscopic photoacoustic imaging using oxygen saturation, total hemoglobin, and lipid content to differentiate among four different breast histologies...

  7. Breast Tumor Classification Based on a Computerized Breast Imaging Reporting and Data System Feature System.

    Science.gov (United States)

    Qiao, Mengyun; Hu, Yuzhou; Guo, Yi; Wang, Yuanyuan; Yu, Jinhua

    2017-08-14

    This work focused on extracting novel and validated digital high-throughput features to present a detailed and comprehensive description of the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) with the goal of improving the accuracy of ultrasound breast cancer diagnosis. First, the phase congruency approach was used to segment the tumors automatically. Second, high-throughput features were designed and extracted on the basis of each BI-RADS category. Then features were selected based on the basis of a Student t test and genetic algorithm. Finally, the AdaBoost classifier was used to differentiate benign tumors from malignant ones. Experiments were conducted on a database of 138 pathologically proven breast tumors. The system was compared with 6 state-of-art BI-RADS feature extraction methods. By using leave-one-out cross-validation, our system achieved a highest overall accuracy of 93.48%, a sensitivity of 94.20%, a specificity of 92.75%, and an area under the receiver operating characteristic curve of 95.67%, respectively, which were superior to those of other methods. The experiments demonstrated that our computerized BI-RADS feature system was capable of helping radiologists detect breast cancers more accurately and provided more guidance for final decisions. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Processed images in human perception: A case study in ultrasound breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Moi Hoon [Department of Computer Science, Loughborough University, FH09, Ergonomics and Safety Research Institute, Holywell Park (United Kingdom)], E-mail: M.H.Yap@lboro.ac.uk; Edirisinghe, Eran [Department of Computer Science, Loughborough University, FJ.05, Garendon Wing, Holywell Park, Loughborough LE11 3TU (United Kingdom); Bez, Helmut [Department of Computer Science, Loughborough University, Room N.2.26, Haslegrave Building, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  9. Classification of breast cancer histology images using Convolutional Neural Networks.

    Directory of Open Access Journals (Sweden)

    Teresa Araújo

    Full Text Available Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy tissue with hematoxylin and eosin stained images is non-trivial and specialists often disagree on the final diagnosis. Computer-aided Diagnosis systems contribute to reduce the cost and increase the efficiency of this process. Conventional classification approaches rely on feature extraction methods designed for a specific problem based on field-knowledge. To overcome the many difficulties of the feature-based approaches, deep learning methods are becoming important alternatives. A method for the classification of hematoxylin and eosin stained breast biopsy images using Convolutional Neural Networks (CNNs is proposed. Images are classified in four classes, normal tissue, benign lesion, in situ carcinoma and invasive carcinoma, and in two classes, carcinoma and non-carcinoma. The architecture of the network is designed to retrieve information at different scales, including both nuclei and overall tissue organization. This design allows the extension of the proposed system to whole-slide histology images. The features extracted by the CNN are also used for training a Support Vector Machine classifier. Accuracies of 77.8% for four class and 83.3% for carcinoma/non-carcinoma are achieved. The sensitivity of our method for cancer cases is 95.6%.

  10. Associations between gene expression profiles of invasive breast cancer and Breast Imaging Reporting and Data System MRI lexicon.

    Science.gov (United States)

    Kim, Ga Ram; Ku, You Jin; Cho, Soon Gu; Kim, Sei Joong; Min, Byung Soh

    2017-07-01

    To evaluate whether the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon could reflect the genomic information of breast cancers and to suggest intuitive imaging features as biomarkers. Matched breast MRI data from The Cancer Imaging Archive and gene expression profile from The Cancer Genome Atlas of 70 invasive breast cancers were analyzed. Magnetic resonance images were reviewed according to the BI-RADS MRI lexicon of mass morphology. The cancers were divided into 2 groups of gene clustering by gene set enrichment an alysis. Clinicopathologic and imaging characteristics were compared between the 2 groups. The luminal subtype was predominant in the group 1 gene set and the triple-negative subtype was predominant in the group 2 gene set (55 of 56, 98.2% vs. 9 of 14, 64.3%). Internal enhancement descriptors were different between the 2 groups; heterogeneity was most frequent in group 1 (27 of 56, 48.2%) and rim enhancement was dominant in group 2 (10 of 14, 71.4%). In group 1, the gene sets related to mammary gland development were overexpressed whereas the gene sets related to mitotic cell division were overexpressed in group 2. We identified intuitive imaging features of breast MRI associated with distinct gene expression profiles using the standard imaging variables of BI-RADS. The internal enhancement pattern on MRI might reflect specific gene expression profiles of breast cancers, which can be recognized by visual distinction.

  11. Heterogeneous Anthropomorphic Phantoms with Realistic Dielectric Properties for Microwave Breast Imaging Experiments

    OpenAIRE

    Mashal, Alireza; Gao, Fuqiang; Hagness, Susan C.

    2011-01-01

    We present a technique for fabricating realistic breast phantoms for microwave imaging experiments. Using oil-in-gelatin dispersions that mimic breast tissue dielectric properties at microwave frequencies, we constructed four heterogeneous phantoms spanning the full range of volumetric breast densities. We performed CT scans and dielectric properties measurements to characterize each phantom.

  12. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pengel, Kenneth E., E-mail: k.pengel@nki.nl [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Loo, Claudette E. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Wesseling, Jelle [Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Pijnappel, Ruud M. [Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rutgers, Emiel J.Th. [Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Gilhuijs, Kenneth G.A. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2014-02-15

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted.

  13. Invasive micropapillary carcinoma of the breast: MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyo Soon; Jeong, Seo In; Choi, You Ri; Kim, Jin Woong; Lee, Ji Shin; Park, Min Ho [Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina, Chapel Hill (Korea, Republic of)

    2013-08-15

    To analyze the magnetic resonance (MR) imaging findings of invasive micropapillary carcinoma of the breast. MR images were retrospectively evaluated in 14 patients (age range: 37-67, mean age: 49 years) with pathologically confirmed invasive micropapillary carcinoma of the breast. The enhancement type (mass/non-mass), shape, margin, contrast enhancement, and time-intensity curve pattern on the dynamic study were correlated with the histopathologic features. Associated findings, such as edema, nipple change, skin change and enlarged axillary lymph nodes were also studied. The most common features of the masses were irregular shape (12 of 14 patients, 85.8%) and irregular or spiculated margin (11 of 14 patients, 78.7%). The contrast enhancement was heterogeneous in 11 patients (78.7%), rim enhancement in 2 cases (14.2%), and homogeneous in one patient (7.1%). The predominant kinetic pattern was rapid increase (14 of 14, 100%) in the initial phase and washout (11 of 14, 78.7%) in the delayed phase. Associated non-mass like enhancement was shown in 4 patients, representing ductal carcinoma in situ. MR imaging helped detect additional sites of cancer other than the index lesion in 3 patients (21.4%). Enlarged axillary lymphadenopathy was identified in 7 of the 14 patients (50%). Invasive micropapillary carcinoma appears as a mass with an irregular shape, irregular or spiculated margin and heterogeneous enhancement on MR imaging. Though these findings are not specific and are also observed with other breast malignancies, invasive micropapillary carcinoma frequently showed multiple lesions, accompanying non-mass enhancement and axillary lymph node enlargement.

  14. Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization.

    Science.gov (United States)

    Sato, Y; Nakamoto, M; Tamaki, Y; Sasama, T; Sakita, I; Nakajima, Y; Monden, M; Tamura, S

    1998-10-01

    This paper describes augmented reality visualization for the guidance of breast-conservative cancer surgery using ultrasonic images acquired in the operating room just before surgical resection. By combining an optical three-dimensional (3-D) position sensor, the position and orientation of each ultrasonic cross section are precisely measured to reconstruct geometrically accurate 3-D tumor models from the acquired ultrasonic images. Similarly, the 3-D position and orientation of a video camera are obtained to integrate video and ultrasonic images in a geometrically accurate manner. Superimposing the 3-D tumor models onto live video images of the patient's breast enables the surgeon to perceive the exact 3-D position of the tumor, including irregular cancer invasions which cannot be perceived by touch, as if it were visible through the breast skin. Using the resultant visualization, the surgeon can determine the region for surgical resection in a more objective and accurate manner, thereby minimizing the risk of a relapse and maximizing breast conservation. The system was shown to be effective in experiments using phantom and clinical data.

  15. Imaging Findings of Malignant Fibrous Histiocytoma of the Breast: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Na; Kook, Shin Ho; Kwag, Hyoun Joo; Choi, Yoon Jung; Sohn, Jin Hee; Park, Yong Lai [Kangbuk Samsung Hospital, Seoul (Korea, Republic of); Kim, Jin Hyo [You and Me Surgery, Jeonju (Korea, Republic of)

    2010-03-15

    A malignant fibrous histiocytoma (MFH) is the most common soft tissue sarcoma encountered during adulthood, but the breast is not a common site of involvement for MFH. Several investigators have reported the histopathological and biological features of a MFH involving the breast, but only a few reports have focused on the imaging findings of breast MFHs. To emphasize the importance of arriving at a preoperative diagnosis for the treatment implications, we report here the imaging findings, including the mammography, US and MRI findings, for a MFH of the breast of a 53-year-old woman who presented with a rapid growing huge mass in the right breast.

  16. Screen-detected versus interval cancers: Effect of imaging modality and breast density in the Flemish Breast Cancer Screening Programme

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, Lore; Bacher, Klaus; Thierens, Hubert [Ghent University, Department of Basic Medical Sciences, QCC-Gent, Ghent (Belgium); Bleyen, Luc; Herck, Koen van [Ghent University, Centrum voor Preventie en Vroegtijdige Opsporing van Kanker, Ghent (Belgium); Lemmens, Kim; Ongeval, Chantal van; Steen, Andre van [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Martens, Patrick [Centrum voor Kankeropsporing, Bruges (Belgium); Brabander, Isabel de [Belgian Cancer Registry, Brussels (Belgium); Goossens, Mathieu [UZ Brussel, Dienst Kankerpreventie, Brussels (Belgium)

    2017-09-15

    To investigate if direct radiography (DR) performs better than screen-film mammography (SF) and computed radiography (CR) in dense breasts in a decentralized organised Breast Cancer Screening Programme. To this end, screen-detected versus interval cancers were studied in different BI-RADS density classes for these imaging modalities. The study cohort consisted of 351,532 women who participated in the Flemish Breast Cancer Screening Programme in 2009 and 2010. Information on screen-detected and interval cancers, breast density scores of radiologist second readers, and imaging modality was obtained by linkage of the databases of the Centre of Cancer Detection and the Belgian Cancer Registry. Overall, 67% of occurring breast cancers are screen detected and 33% are interval cancers, with DR performing better than SF and CR. The interval cancer rate increases gradually with breast density, regardless of modality. In the high-density class, the interval cancer rate exceeds the cancer detection rate for SF and CR, but not for DR. DR is superior to SF and CR with respect to cancer detection rates for high-density breasts. To reduce the high interval cancer rate in dense breasts, use of an additional imaging technique in screening can be taken into consideration. (orig.)

  17. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    Science.gov (United States)

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  18. Sensitivity of imaging for multifocal-multicentric breast carcinoma

    Directory of Open Access Journals (Sweden)

    Viale Giuseppe

    2008-09-01

    Full Text Available Abstract Background This retrospective study aims to determine: 1 the sensitivity of preoperative mammography (Mx and ultrasound (US, and re-reviewed Mx to detect multifocal multicentric breast carcinoma (MMBC, defined by pathology on surgical specimens, and 2 to analyze the characteristics of both detected and undetected foci on Mx and US. Methods Three experienced breast radiologists re-reviewed, independently, digital mammography of 97 women with MMBC pathologically diagnosed on surgical specimens. The radiologists were informed of all neoplastic foci, and blinded to the original mammograms and US reports. With regards to Mx, they considered the breast density, number of foci, the Mx characteristics of the lesions and their BI-RADS classification. For US, they considered size of the lesions, BI-RADS classification and US pattern and lesion characteristics. According to the histological size, the lesions were classified as: index cancer, 2nd lesion, 3rd lesion, and 4th lesion. Any pathologically identified malignant foci not previously described in the original imaging reports, were defined as undetected or missed lesions. Sensitivity was calculated for Mx, US and re-reviewed Mx for detecting the presence of the index cancer as well as additional satellite lesions. Results Pathological examination revealed 13 multifocal and 84 multicentric cancers with a total of 303 malignant foci (282 invasive and 21 non invasive. Original Mx and US reports had an overall sensitivity of 45.5% and 52.9%, respectively. Mx detected 83/97 index cancers with a sensitivity of 85.6%. The number of lesions undetected by original Mx was 165/303. The Mx pattern of breasts with undetected lesions were: fatty in 3 (1.8%; scattered fibroglandular density in 40 (24.3%, heterogeneously dense in 91 (55.1% and dense in 31 (18.8% cases. In breasts with an almost entirely fatty pattern, Mx sensitivity was 100%, while in fibroglandular or dense pattern it was reduced to 45

  19. Improved MR Images of Breast Lesions with Fast Spectroscopic Imaging

    National Research Council Canada - National Science Library

    Karczmar, Gregory

    2002-01-01

    .... The results demonstrate that HiSS provides improved fat-suppression, contrast and edge delineation compared to conventional imaging. The funded work resulted in several publications listed in this report. We are continuing to optimize this method and are applying for additional funding so that it can be tested in a larger group of women.

  20. Mammographic Image Analysis of Breast Using Neural Network

    Directory of Open Access Journals (Sweden)

    Lesa MAMBWE

    2015-07-01

    Full Text Available This paper discusses the various stages of detecting tumours of the breast mammogram images. A Neural Network algorithm is applied for obtaining the complete classification of the tumour into normal or abnormal. The most important procedure or technique for obtaining the classification is the feature extraction, by extracting a few of discriminative features, first-order statistical intensities and gradients. The Image Pre-processing technique is essential prior to Image Segmentation in order to obtain accurate segmentation. Thus mass detection can be carried out. The processes involved in achieving the three techniques mentioned above include global equalization transformation, denoising, binarization, breast orientation determination and the pectoral muscle suppression. The presented feature difference matrices could be created by five features extracted from a suspicious region of interest (ROI. Grey Level Co-occurrence Matrix (GLCM aids the obtaining of statistical features such as correlation, energy, entropy and homogeneity. The other statistical to features to obtain are area, moment, variance, entropy, standard deviation and moment. The Neural network technique yields results of abnormal mammograms.

  1. [Impact of preoperative breast magnetic resonance imaging on surgical management: experience of two university hospitals].

    Science.gov (United States)

    Lafaye-Carré, S; Collinet, P; Vinatier, D; Bendavid, S; Place, V; Pruvo, J-P; Faye, N; Barranger, E

    2014-10-01

    Breast magnetic resonance imaging (MRI) has attained a solid position in the diagnosis of breast cancer but its benefit is still to be confirmed in the preoperative staging. The authors assessed the impact of preoperative breast MRI on surgical management of breast cancer in two university hospitals. This retrospective review was realized in two university hospitals and concerned all patients with breast carcinoma who had a surgical first therapy. We selected 89 patients who underwent preoperative breast MRI in the period between January 2008 and December 2009. The sensitivity of breast MRI for detecting breast tumor was 95%. Fourteen percent of patients had a multifocal disease, 10% a multicentric disease and 2% a synchronous bilateral cancer. The correlation of radiological tumor size with histopathological size was r=0.68 in IRM compared to r=0.45 in conventional imaging (P<0.001). Nineteen additional biopsies were performed and 9.9% of false-positive findings were detected. Retrospectively, planned surgical management was altered in 9% of patients, resulted from use of breast MRI. Six patients had conversion of planned breast conservation to mastectomy and two patients underwent contralateral lumpectomy after discover synchronous bilateral cancer. Breast MRI was very sensitive for the detection of breast carcinoma and improved local staging in almost 9% of patients. But, low specificity of this imaging requires a systematically validation of additional lesions by biopsy before surgical planning. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Usefulness of breast MRI for diagnosing an extensive intraductal component of breast cancer: comparison with mammography and ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hee; Kang, Doo Kyung; Jung, Yong Sik; Yim, Hyun Ee [Ajou University College of Medicine, Suwon (Korea, Republic of)

    2006-06-15

    An extensive intraductal component of breast cancer is a principal risk factor for local recurrence, and this is difficult to diagnose with performing only mammography. We investigated the usefulness of breast MRI for evaluating an extensive intraductal component of breast cancer, and we compared this modality with mammography and ultrasonography (US). From March 2003 to July 2004, 90 patients underwent breast MRI among all the patients who were suffering with breast cancer and for whom and EIC was ultimately revealed to be present or not. A total 83 patients with stage I and II breast cancer were finally included in this study. EIC positivity was defined according to the imaging data as follows: 1) microcalcifications beyond the tumor shadow or malignant microcalcifications without a tumor mass on mammography, 2) tubular hypoechoic structures adjacent to the tumor or architectural distortion with calcifications beyond the tumor on US, and 3) linear or ductal enhancement, segmental or regional clumped enhancement, and spotty nodular or reticular enhancement adjacent to the tumor on MRI. EIC was present in 41 patients and this finding was negative in 42 patients. The results were then compared those results from mammography and US. The sensitivities of detecting EIC by mammography, US and MRI were 48.6%, 67.5% and 80.5%, respectively, and the corresponding specificities were 92.3%, 73.2% and 69.0%, respectively. In the cases that were suspected to be EIC positive on more than two imaging modality, the positive predictive value (PPV) was 78.1%. In cases that were suspected of being EIC positive on just one imaging modality, the negative predictive value (NPV) was 75.0%. Breast MRI provides good information about an EIC of breast cancer and it is a more sensitive study than mammography and US, yet the specificity for the detection of EIC is highest on mammography. A combined evaluation by mammography, US and MRI is the most accurate way to diagnose an EIC of breast

  3. A review of breast tomosynthesis. Part I. The image acquisition process

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-01-15

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  4. A review of breast tomosynthesis. Part I. The image acquisition process.

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  5. Impact of fibroglandular tissue and background parenchymal enhancement on diffusion weighted imaging of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Iacconi, Chiara, E-mail: chiara.iacconi@tin.it [Breast Unit, USL1 Massa-Carrara, Piazza Monzoni 2, Carrara 54033 (Italy); Thakur, Sunitha B., E-mail: thakurs@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, NY 1275 York Avenue, New York, NY 10065 (United States); Dershaw, David D., E-mail: dershawd@mskcc.org [Department of Radiology – Breast Imaging Center, Memorial Sloan-Kettering Cancer Center, NY 1275 York Avenue, New York, NY 10065 (United States); Brooks, Jennifer, E-mail: brooksj@mskcc.org [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 307 East 63rd Street, New York, NY 10065 (United States); Fry, Charles W., E-mail: charles_fry@nymc.edu [Memorial Sloan-Kettering Cancer Center, NY 1275 York Avenue, New York, NY 10065 (United States); Morris, Elizabeth A., E-mail: morrise@mskcc.org [Department of Radiology – Breast Imaging Center, Memorial Sloan-Kettering Cancer Center, NY 1275 York Avenue, New York, NY 10065 (United States)

    2014-12-15

    Highlights: • Aim of the paper is to evaluate if the amount of fibroglandular breast tissue (FGT) and the background enhancement(BPE) influence the detection of lesions and their quantitative analysis in diffusion weighted imaging(DWI) • The structure of the breast, including both FGT and BPE, as well as the menopausal status of the patient are not a relevant factor for lesion identification in DWI. • Quantitative analysis of normal breast is not uniform and is influenced by the amount of fibroglandular tissue,while there is no influence of background parenchymal enhancement. - Abstract: Purpose: To evaluate the influence of the amount of fibroglandular breast tissue (FGT) and background-parenchymal enhancement (BPE) on lesion detection, quantitative analysis of normal breast tissue and of breast lesions on DWI. Materials and methods: IRB approved this retrospective study on focal findings at contrast-enhanced (CE) breast MR and DWI performed during July–December 2011. Patients with cysts, previous irradiation, silicone implants and current chemotherapy were excluded. DWI with fat suppression was acquired before dynamic acquisition (b factors: 0.1000 s/mm{sup 2}) using 1.5 and 3 T scanners. Using correlation with dynamic and T2 images, ROIs were drawn free-hand within the borders of any visible lesion and in contralateral normal breast. Fisher's exact test to evaluate visibility and Wilcoxon-rank-sum test for comparison of ADC values were used. The amount of FGT and BPE was visually assessed by concurrent MRI. Analysis was stratified by menopausal status. Results: 25/127 (20%) lesions were excluded for technical reasons. 65/102 (64%) lesions were visible on DWI (median diameter: 1.85 cm). Mass lesions (M) were more visible (43/60 = 72%) than non-mass enhancement (NME) (22/42 = 52%) and malignant lesions were more visible (55/72 = 76%) than benign (10/30 = 33%). BPE and FGT did not influence visibility of M (p = 0.35 and p = 0.57 respectively) as well

  6. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  7. Malignancy rates of non-masslike enhancement on breast magnetic resonance imaging using American College of Radiology Breast Imaging Reporting and Data System descriptors.

    Science.gov (United States)

    Wilhelm, Annamaria; McDonough, Michelle D; DePeri, Elizabeth R

    2012-01-01

    The purpose of this study was to evaluate the malignancy rates for non-masslike enhancement on breast magnetic resonance imaging by American College of Radiology Breast Imaging Reporting and Data System descriptors. We retrospectively reviewed breast magnetic resonance imaging reports with non-masslike enhancement performed at Mayo Clinic Florida from April 1, 2003, through March 14, 2007. Each descriptor of non-masslike enhancement as per the American College of Radiology Breast Imaging Reporting and Data System magnetic resonance lexicon was correlated with percutaneous biopsy pathologic results and/or surgical pathologic results and follow-up imaging. Positive predictive values were obtained for each Breast Imaging Reporting and Data System descriptor. We identified 578 incidents of non-masslike enhancement in 378 patients. Of 343 non-masslike enhancements that could be correlated with pathology results, 141 (41.1%) were malignant. Of the malignant lesions, 53% were found to be ductal carcinoma in situ at percutaneous biopsy. Clumped pattern of enhancement and segmental distribution of non-masslike enhancement had the highest sensitivities of 40.5% and 23.5%, respectively. Asymmetric pattern and segmental distribution had the highest positive predictive values of 75.0% and 57.4%, respectively. We concluded that the moderate positive predictive values make it difficult to establish guidelines for management of non-masslike enhancement and reveal the current limitations of breast magnetic resonance imaging. © 2012 Wiley Periodicals, Inc.

  8. Use of magnetic resonance imaging in detection of breast cancer recurrence: a systematic review.

    LENUS (Irish Health Repository)

    Quinn, Edel Marie

    2012-09-01

    Diagnosis of breast cancer recurrence can be difficult as a result of the presence of scar tissue in the breast. Magnetic resonance imaging (MRI) may be superior to traditional imaging in diagnosis of recurrence because of its ability to differentiate malignancy from scarring. Current guidelines on investigation of suspected breast cancer recurrence recommend MRI when other investigations have equivocal findings. We performed the first systematic review on this topic.

  9. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques

    Science.gov (United States)

    2007-07-01

    tiny calcium deposits that 82 indicate changes within the breast possibly point- 83 ing to cancer . Microcalcifications especially are 84 usually...NUMBER A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques 5b. GRANT NUMBER W81XWH-05-1-0291 5c. PROGRAM...assistant were further trained in molecular imaging of breast cancer through seminars and workshops, and are currently conducting two research projects

  10. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  11. Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of breast cancer

    Science.gov (United States)

    Ntziachristos, Vasilis

    2000-12-01

    Diffuse Optical Tomography (DOT) in the Near Infrared NIR offers the potential to perform non-invasive three- dimensional quantified imaging of large-organs in vivo. The technique targets tissue intrinsic chromophores such as oxy- and deoxy-hemoglobin and the uptake of optical contrast agents. This work considers the DOT application in studying the vascularization, hemoglobin saturation and Indocyanine Green (ICG) uptake of breast tumors in-vivo as measures of angiogenesis, blood vessel permeability and oxygen delivery and consumption. To realize this work an optical tomographer based on the single-photon-counting time- correlated technique was coupled to a Magnetic Resonance Imaging (MRI) scanner. All patients entered the study were also scheduled for biopsy; hence histopathological information was also available as the ``Gold Standard'' for the diagnostic performance. The feasibility of Diffuse Optical Tomography to image tissue in-vivo is demonstrated by direct comparison of contrast-enhanced MRI and DOT images obtained from the same breast under identical geometrical and physiological conditions. Additionally, the effect of tissue optical background heterogeneity on the imaging performance is studied using simulations. We also present optimization schemes that yield superior reconstruction and spectroscopic capacity when probing the intrinsic and extrinsic contrast of highly heterogeneous optical media. The simultaneous examination also pioneers a hybrid diagnostic modality where MRI and image-guided localized diffuse optical spectroscopy (DOS) information are concurrently available. The approach employs the MR structural and functional information as a-priori knowledge and thus improves the quantification ability of the optical method. We have employed DOS and localized DOS to quantify optical properties of tissue in two and three wavelengths and obtain functional properties of malignant, benign and normal breast lesions. Generally, cancers exhibited higher

  12. Computer-aided diagnosis of breast DCE-MRI images using bilateral asymmetry of contrast enhancement between two breasts.

    Science.gov (United States)

    Yang, Qian; Li, Lihua; Zhang, Juan; Shao, Guoliang; Zhang, Chengjie; Zheng, Bin

    2014-02-01

    Dynamic contrast material-enhanced magnetic resonance imaging (DCE-MRI) of breasts is an important imaging modality in breast cancer diagnosis with higher sensitivity but relatively lower specificity. The objective of this study is to investigate a new approach to help improve diagnostic performance of DCE-MRI examinations based on the automated detection and analysis of bilateral asymmetry of characteristic kinetic features between the left and right breast. An image dataset involving 130 DCE-MRI examinations was assembled and used in which 80 were biopsy-proved malignant and 50 were benign. A computer-aided diagnosis (CAD) scheme was developed to segment breast areas depicted on each MR image, register images acquired from the sequential MR image scan series, compute average contrast enhancement of all pixels in one breast, and a set of kinetic features related to the difference of contrast enhancement between the left and right breast, and then use a multi-feature based Bayesian belief network to classify between malignant and benign cases. A leave-one-case-out validation method was applied to test CAD performance. The computed area under a receiver operating characteristic (ROC) curve is 0.78 ± 0.04. The positive and negative predictive values are 0.77 and 0.64, respectively. The study indicates that bilateral asymmetry of kinetic features between the left and right breasts is a potentially useful image biomarker to enhance the detection of angiogenesis associated with malignancy. It also demonstrates the feasibility of applying a simple CAD approach to classify between malignant and benign DCE-MRI examinations based on this new image biomarker.

  13. Adaptation of the Body Image after Breast Cancer Questionnaire in the Polish context: factorial structure and validity of the scale

    Directory of Open Access Journals (Sweden)

    Romuald Derbis

    2016-01-01

    Full Text Available Background Valid assessment of body image is salient in therapy and rehabilitation of women suffering from breast cancer. Adequate instruments are still lacking in this domain. To overcome this limitation two aims were formulated in the study. First, we tested the factorial structure of the Body Image after Breast Cancer Questionnaire (BIBCQ developed by Baxter (1998 in Canada, in the Polish context. Then, we tested the construct validity of the scale. The scale is based on a multidimensional concept of the body image of chronically ill individuals proposed by Vamos (1993. Participants and procedure A group of 270 women at the mean age of 55 (range of 23-81 with breast cancer who underwent conservation, mastectomy, or lumpectomy surgery was sampled in the Amazonki community. Results Confirmatory factor analysis was used to test the factorial structure of the instrument. To test the convergent validity, scales assessing body self, body image, self-esteem, and depression were used. Divergent validity was analyzed in the context of the social desirability construct. Discriminant validity was based on comparisons between women who had undergone lumpectomy or mastectomy surgery. The results showed that within two out of six subscales proposed by Baxter, two additional subscales had to be distinguished. However, some differences in comparisons with previous validation studies were also found. Conclusions The BIBCQ scale was found to be a valid multidimensional tool of body image assessment in the Polish context. The results are discussed in terms of cross-cultural differences in body image perception in breast cancer patients and guidelines for the scale’s implementation in the Polish context.

  14. Body image and its predictors in breast cancer patients receiving surgery.

    Science.gov (United States)

    Chen, Chun-Lan; Liao, Mei-Nan; Chen, Shu-Ching; Chan, Pei-Ling; Chen, Shin-Cheh

    2012-01-01

    Negative body image may reduce patients' ability to cope with breast cancer after surgery. The purposes of this study were to (1) assess breast cancer patients' perceived level of symptom distress, anxiety, depression, disease impact, and body image and (2) evaluate factors associated with body image in breast cancer patients during the postoperative period. A cross-sectional and correlational design was used to collect data for this study, conducted in northern Taiwan. A set of questionnaires was used to measure body image, symptom distress, anxiety, depression, psychological impact of disease, and demographic and disease-related information. Stepwise regression was conducted to determine significant factors related to body image. Surgical procedure and age were found to be important factors related to body image concerns. Patient receipt of mastectomy and younger age were associated with greater body image concerns. The average age of breast cancer patients is declining in Taiwan, and body image problems in these patients are growing. Several factors are significantly related to body image distress among these patients. By understanding variables associated with breast cancer patients' body image, health professionals can coordinate interventions to improve these women's body image. Among women with breast cancer, those who have received mastectomy and those who are younger are particularly vulnerable to body image concerns. Nursing assessment of body image indicators and implementation of strategies to increase self-confidence and self-acceptance are needed for high-risk women.

  15. Automated Characterization of Breast Lesions Imaged with an Ultrafast DCE-MR Protocol

    NARCIS (Netherlands)

    Platel, B.; Mus, R.D.; Welte, T.; Karssemeijer, N.; Mann, R.

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast has become an invaluable tool in the clinical work-up of patients suspected of having breast carcinoma. The purpose of this study is to introduce novel features extracted from the kinetics of contrast agent uptake imaged by

  16. Molecular markers in breast cancer: new tools in imaging and prognosis

    NARCIS (Netherlands)

    Vermeulen, J.F.|info:eu-repo/dai/nl/338877169

    2012-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Although breast cancer is mainly diagnosed by mammography, other imaging modalities (e.g. MRI, PET) are increasingly used. The most recent developments in the field of molecular imaging comprise the application of near-infrared

  17. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...

  18. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kowalchik, Kristin V. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Vallow, Laura A., E-mail: vallow.laura@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); McDonough, Michelle [Department of Radiology, Mayo Clinic, Jacksonville, Florida (United States); Thomas, Colleen S.; Heckman, Michael G. [Section of Biostatistics, Mayo Clinic, Jacksonville, Florida (United States); Peterson, Jennifer L. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Adkisson, Cameron D. [Department of General Surgery, Mayo Clinic, Jacksonville, Florida (United States); Serago, Christopher [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); McLaughlin, Sarah A. [Department of General Surgery, Mayo Clinic, Jacksonville, Florida (United States)

    2013-09-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  19. Incremental cancer detection using breast ultrasonography versus breast magnetic resonance imaging in the evaluation of newly diagnosed breast cancer patients.

    Science.gov (United States)

    He, Hongying; Plaxco, Jeri S; Wei, Wei; Huo, Lei; Candelaria, Rosalind P; Kuerer, Henry M; Yang, Wei T

    2016-09-01

    To compare the incremental cancer detection rate (ICDR) using bilateral whole-breast ultrasonography (BWBUS) vs dynamic contrast-enhanced MRI in patients with primary breast cancer. A retrospective database search in a single institution identified 259 patients with breast cancer diagnosed from January 2011 to August 2014 who underwent mammography, BWBUS and MRI before surgery. Patient characteristics, tumour characteristics and lesions seen on each imaging modality were recorded. The sensitivity, specificity and accuracy for each modality were calculated. ICDRs according to index tumour histology and receptor status were also evaluated. The effect of additional cancer detection on surgical planning was obtained from the medical records. A total of 266 additional lesions beyond 273 index malignancies were seen on at least 1 modality, of which 121 (45%) lesions were malignant and 145 (55%) lesions were benign. MRI was significantly more sensitive than BWBUS (p = 0.01), while BWBUS was significantly more accurate and specific than MRI (p < 0.0001). Compared with mammography, the ICDRs using BWBUS and MRI were significantly higher for oestrogen receptor-positive and triple-negative cancers, but not for human epidermal growth factor receptor 2-positive cancers. 22 additional malignant lesions in 18 patients were seen on MRI only. Surgical planning remained unchanged in 8 (44%) of those 18 patients. MRI was more sensitive than BWBUS, while BWBUS was more accurate and specific than MRI. MRI-detected additional malignant lesions did not change surgical planning in almost half of these patients. BWBUS may be a cost-effective and practical tool in breast cancer staging.

  20. Comparison of male breast carcinoma in the Ibos of West-Africa and ...

    African Journals Online (AJOL)

    Comparison of male breast carcinoma in the Ibos of West-Africa and in their ethnologically linked Hebrews of the Middle East. ... Open Access DOWNLOAD FULL TEXT Subscription or ... The literature was searched for such data in Hebrews.

  1. Association between Parenchymal Enhancement of the Contralateral Breast in Dynamic Contrast-enhanced MR Imaging and Outcome of Patients with Unilateral Invasive Breast Cancer

    NARCIS (Netherlands)

    van der Velden, Bas; Dmitriev, Ivan; Loo, C.E.; Pijnappel, Ruud; Gilhuijs, Kenneth

    2015-01-01

    Purpose To retrospectively investigate whether parenchymal enhancement in dynamic contrast material–enhanced magnetic resonance (MR) imaging of the contralateral breast in patients with unilateral invasive breast cancer is associated with therapy outcome. Materials and Methods After obtaining

  2. Deep learning and three-compartment breast imaging in breast cancer diagnosis

    Science.gov (United States)

    Drukker, Karen; Huynh, Benjamin Q.; Giger, Maryellen L.; Malkov, Serghei; Avila, Jesus I.; Fan, Bo; Joe, Bonnie; Kerlikowske, Karla; Drukteinis, Jennifer S.; Kazemi, Leila; Pereira, Malesa M.; Shepherd, John

    2017-03-01

    We investigated whether deep learning has potential to aid in the diagnosis of breast cancer when applied to mammograms and biologic tissue composition images derived from three-compartment (3CB) imaging. The dataset contained diagnostic mammograms and 3CB images (water, lipid, and protein content) of biopsy-sampled BIRADS 4 and 5 lesions in 195 patients. In 58 patients, the lesion manifested as a mass (13 malignant vs. 45 benign), in 87 as microcalcifications (19 vs. 68), and in 56 as (focal) asymmetry or architectural distortion (11 vs. 45). Six patients had both a mass and calcifications. For each mammogram and corresponding 3CB images, a 128x128 region of interest containing the lesion was selected by an expert radiologist and used directly as input to a deep learning method pretrained on a very large independent set of non-medical images. We used a nested leave-one-out-by-case (patient) model selection and classification protocol. The area under the ROC curve (AUC) for the task of distinguishing between benign and malignant lesions was used as performance metric. For the cases with mammographic masses, the AUC increased from 0.83 (mammograms alone) to 0.89 (mammograms+3CB, p=.162). For the microcalcification and asymmetry/architectural distortion cases the AUC increased from 0.84 to 0.91 (p=.116) and from 0.61 to 0.87 (p=.006), respectively. Our results indicate great potential for the application of deep learning methods in the diagnosis of breast cancer and additional knowledge of the biologic tissue composition appeared to improve performance, especially for lesions mammographically manifesting as asymmetries or architectural distortions.

  3. Molecular subtypes and imaging phenotypes of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nariya [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-08-15

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics.

  4. Molecular subtypes and imaging phenotypes of breast cancer

    Directory of Open Access Journals (Sweden)

    Nariya Cho

    2016-10-01

    Full Text Available During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2, and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics.

  5. Review: Receptor Targeted Nuclear Imaging of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Simone U. Dalm

    2017-01-01

    Full Text Available Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER, progesterone receptor (PR, human epidermal growth factor receptor 2 (HER2, somatostatin receptor (SSTR, and the gastrin releasing peptide receptor (GRPR are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully.

  6. Task-based optimization of image reconstruction in breast CT

    Science.gov (United States)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  7. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  8. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images

    Science.gov (United States)

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-01-01

    Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675

  9. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    Directory of Open Access Journals (Sweden)

    Koichi Tomita, MD, PhD

    2015-03-01

    Full Text Available Summary: Recent advances in 3-dimensional (3D surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP flaps (5 immediate, 6 delayed using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast.

  10. SU-F-I-14: 3D Breast Digital Phantom for XACT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S; Laaroussi, R; Chen, J; Samant, P; Xiang, L [University of Oklahoma, Norman, OK (United States); Chen, Y; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Yang, K [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The X-ray induced acoustic computed tomography (XACT) is a new imaging modality which combines X-ray contrast and high ultrasonic resolution in a single modality. Using XACT in breast imaging, a 3D breast volume can be imaged by only one pulsed X-ray radiation, which could dramatically reduce the imaging dose for patients undergoing breast cancer screening and diagnosis. A 3D digital phantom that contains both X-ray properties and acoustic properties of different tissue types is indeed needed for developing and optimizing the XACT system. The purpose of this study is to offer a realistic breast digital phantom as a valuable tool for improving breast XACT imaging techniques and potentially leading to better diagnostic outcomes. Methods: A series of breast CT images along the coronal plane from a patient who has breast calcifications are used as the source images. A HU value based segmentation algorithm is employed to identify breast tissues in five categories, namely the skin tissue, fat tissue, glandular tissue, chest bone and calcifications. For each pixel, the dose related parameters, such as material components and density, and acoustic related parameters, such as frequency-dependent acoustic attenuation coefficient and bandwidth, are assigned based on tissue types. Meanwhile, other parameters which are used in sound propagation, including the sound speed, thermal expansion coefficient, and heat capacity are also assigned to each tissue. Results: A series of 2D tissue type image is acquired first and the 3D digital breast phantom is obtained by using commercial 3D reconstruction software. When giving specific settings including dose depositions and ultrasound center frequency, the X-ray induced initial pressure rise can be calculated accordingly. Conclusion: The proposed 3D breast digital phantom represents a realistic breast anatomic structure and provides a valuable tool for developing and evaluating the system performance for XACT.

  11. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  12. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density.

    Science.gov (United States)

    Riedl, Christopher C; Luft, Nikolaus; Bernhart, Clemens; Weber, Michael; Bernathova, Maria; Tea, Muy-Kheng M; Rudas, Margaretha; Singer, Christian F; Helbich, Thomas H

    2015-04-01

    To evaluate the breast cancer screening efficacy of mammography, ultrasound, and magnetic resonance imaging (MRI) in a high-risk population and in various population subgroups. In a single-center, prospective, nonrandomized comparison study, BRCA mutation carriers and women with a high familial risk (> 20% lifetime risk) for breast cancer were offered screening with mammography, ultrasound, and MRI every 12 months. Diagnostic performance was compared between individual modalities and their combinations. Further comparisons were based on subpopulations dichotomized by screening rounds, mutation status, age, and breast density. There were 559 women with 1,365 complete imaging rounds included in this study. The sensitivity of MRI (90.0%) was significantly higher (P cancers, 18 (45.0%) were detected by MRI alone. Two cancers were found by mammography alone (a ductal carcinoma in situ [DCIS] with microinvasion and a DCIS with cancers were detected by ultrasound alone. Similarly, of 14 DCISs, all were detected by MRI, whereas mammography and ultrasound each detected five DCISs (35.7%). Age, mutation status, and breast density had no influence on the sensitivity of MRI and did not affect the superiority of MRI over mammography and ultrasound. MRI allows early detection of familial breast cancer regardless of patient age, breast density, or risk status. The added value of mammography is limited, and there is no added value of ultrasound in women undergoing MRI for screening. © 2015 by American Society of Clinical Oncology.

  13. Using X-Ray Mammograms to Assist in Microwave Breast Image Interpretation

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    Full Text Available Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  14. Contrast-enhanced dual-energy mammography: a promising new imaging tool in breast cancer detection.

    Science.gov (United States)

    Lalji, Ulrich; Lobbes, Marc

    2014-05-01

    Contrast-enhanced dual-energy mammography (CEDM) is a promising new breast imaging tool for breast cancer detection. In CEDM, an iodine-based contrast agent is intravenously administered and subsequently, dual-energy mammography is performed. This results in a set of images containing both a regular mammogram and an image that contains contrast enhancement information. Preliminary studies have indicated that CEDM is superior to conventional mammography and might even match the diagnostic performance of breast MRI. In this review, the imaging technique, protocol and patient handling of CEDM is presented. Furthermore, an overview of current results on CEDM and potential future indications are outlined.

  15. TH-A-18A-01: Innovation in Clinical Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B [Massachusetts General Hospital, Boston, MA (United States); Yang, K [University of Oklahoma, Oklahomoa City, OK (United States); Yaffe, M [University Toronto, Toronto, ON (Canada); Chen, J [GE/U-Systems, Sunnyvale, CA (United States)

    2014-06-15

    Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists. In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging.

  16. Extended hidden Markov model for optimized segmentation of breast thermography images

    Science.gov (United States)

    Mahmoudzadeh, E.; Montazeri, M. A.; Zekri, M.; Sadri, S.

    2015-09-01

    Breast cancer is the most commonly diagnosed form of cancer in women. Thermography has been shown to provide an efficient screening modality for detecting breast cancer as it is able to detect small tumors and hence can lead to earlier diagnosis. This paper presents a novel extended hidden Markov model (EHMM), for optimized segmentation of breast thermogram for more effective image interpretation and easier analysis of Infrared (IR) thermal patterns. Competitive advantage of EHMM method refers to handling random sampling of the breast IR images with re-estimation of the model parameters. The performance of the algorithm is illustrated by applying EHMM segmentation method on the images of IUT_OPTIC database and compared with previously related methods. Simulation results indicate the remarkable capabilities of the proposed approach. It is worth noting that the presented algorithm is able to map semi hot regions into distinct areas and extract the regions of breast thermal images significantly, while the execution time is reduced.

  17. Positive predictive value of additional synchronous breast lesions in whole-breast ultrasonography at the diagnosis of breast cancer: clinical and imaging factors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ah Hyun; Kim, Min Jung; Kim, Eun Kyung; Moon, Hee Jung [Dept. of Radiology, Research Institute of Radiological Science, Seoul (Korea, Republic of); Park, Hee Jung [Dept. of Surgery, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-10-15

    To evaluate the positive predictive value (PPV) of bilateral whole-breast ultrasonography (BWBU) for detection of synchronous breast lesions on initial diagnosis of breast cancer and evaluate factors affecting the PPV of BWBU according to varying clinicoimaging factors. A total of 75 patients who had synchronous lesions with pathologic confirmation at the initial diagnosis of breast cancer during January 2007 and December 2007 were included. The clinical factors of the patients were evaluated. One observer retrospectively reviewed the imaging studies of the index breast cancer lesion and the synchronous lesion. The PPV for additional biopsy was calculated for BWBU and various clinical and imaging factors affecting the PPV for BWBU were evaluated. The overall PPV for additional biopsy was 25.7% (18 of 70). The PPV for synchronous lesions detected both on mammography and BWBU, and detected only on BWBU, was 76.9% (10 of 13) and 14.3% (7 of 49), respectively. There was no clinical factor affecting the PPV for BWBU. Among the imaging factors, ipsilateral location of the synchronous lesion to the index lesion (P=0.06) showed a marginal statistically significant correlation with malignancy in the synchronous breast lesion. A mass with calcification on mammography presentation (P<0.01), presence of calcification among the ultrasonography findings (P<0.01), and high Breast Imaging Reporting and Data System final assessment (P<0.01) were imaging factors that were associated with malignancy in the additional synchronous lesion. BWBU can detect additional synchronous malignancy at the diagnosis of breast cancer with a relatively high PPV, especially when mammography findings are correlated with ultrasonographic findings.

  18. Analysis of percent density estimates from digital breast tomosynthesis projection images

    Science.gov (United States)

    Bakic, Predrag R.; Kontos, Despina; Zhang, Cuiping; Yaffe, Martin J.; Maidment, Andrew D. A.

    2007-03-01

    Women with dense breasts have an increased risk of breast cancer. Breast density is typically measured as the percent density (PD), the percentage of non-fatty (i.e., dense) tissue in breast images. Mammographic PD estimates vary, in part, due to the projective nature of mammograms. Digital breast tomosynthesis (DBT) is a novel radiographic method in which 3D images of the breast are reconstructed from a small number of projection (source) images, acquired at different positions of the x-ray focus. DBT provides superior visualization of breast tissue and has improved sensitivity and specificity as compared to mammography. Our long-term goal is to test the hypothesis that PD obtained from DBT is superior in estimating cancer risk compared with other modalities. As a first step, we have analyzed the PD estimates from DBT source projections since the results would be independent of the reconstruction method. We estimated PD from MLO mammograms (PD M) and from individual DBT projections (PD T). We observed good agreement between PD M and PD T from the central projection images of 40 women. This suggests that variations in breast positioning, dose, and scatter between mammography and DBT do not negatively affect PD estimation. The PD T estimated from individual DBT projections of nine women varied with the angle between the projections. This variation is caused by the 3D arrangement of the breast dense tissue and the acquisition geometry.

  19. Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms.

    Science.gov (United States)

    Pleijhuis, R G; Langhout, G C; Helfrich, W; Themelis, G; Sarantopoulos, A; Crane, L M A; Harlaar, N J; de Jong, J S; Ntziachristos, V; van Dam, G M

    2011-01-01

    Breast-conserving surgery (BCS) results in tumour-positive surgical margins in up to 40% of the patients. Therefore, new imaging techniques are needed that support the surgeon with real-time feedback on tumour location and margin status. In this study, the potential of near-infrared fluorescence (NIRF) imaging in BCS for pre- and intraoperative tumour localization, margin status assessment and detection of residual disease was assessed in tissue-simulating breast phantoms. Breast-shaped phantoms were produced with optical properties that closely match those of normal breast tissue. Fluorescent tumour-like inclusions containing indocyanine green (ICG) were positioned at predefined locations in the phantoms to allow for simulation of (i) preoperative tumour localization, (ii) real-time NIRF-guided tumour resection, and (iii) intraoperative margin assessment. Optical imaging was performed using a custom-made clinical prototype NIRF intraoperative camera. Tumour-like inclusions in breast phantoms could be detected up to a depth of 21 mm using a NIRF intraoperative camera system. Real-time NIRF-guided resection of tumour-like inclusions proved feasible. Moreover, intraoperative NIRF imaging reliably detected residual disease in case of inadequate resection. We evaluated the potential of NIRF imaging applications for BCS. The clinical setting was simulated by exploiting tissue-like breast phantoms with fluorescent tumour-like agarose inclusions. From this evaluation, we conclude that intraoperative NIRF imaging is feasible and may improve BCS by providing the surgeon with imaging information on tumour location, margin status, and presence of residual disease in real-time. Clinical studies are needed to further validate these results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    OpenAIRE

    Smriti Hari; Swati Kumari; Anurag Srivastava; Sanjay Thulkar; Sandeep Mathur; Prasad Thotton Veedu

    2016-01-01

    Background & objectives: Biopsy of palpable breast masses can be performed manually by palpation guidance or under imaging guidance. Based on retrospective studies, image guided biopsy is considered more accurate than palpation guided breast biopsy; however, these techniques have not been compared prospectively. We conducted this prospective study to verify the superiority and determine the size of beneficial effect of image guided biopsy over palpation guided biopsy. Methods: Over a period o...

  1. Radiation exposure of the heart, lung and skin by radiation therapy for breast cancer: a dosimetric comparison between partial breast irradiation using multicatheter brachytherapy and whole breast teletherapy.

    Science.gov (United States)

    Lettmaier, Sebastian; Kreppner, Stephan; Lotter, Michael; Walser, Marc; Ott, Oliver J; Fietkau, Rainer; Strnad, Vratislav

    2011-08-01

    Accelerated partial breast irradiation by means of multicatheter brachytherapy shows great promise in the modern treatment of early breast cancer combining high efficacy in preventing tumour recurrence with low levels of toxicity. The present work attempts a dosimetric comparison between this treatment modality and conventional whole breast external beam radiotherapy by looking at differences in risk organ exposure to radiation. The planning CT data sets of 16 consecutive patients with left-sided breast cancer who received external beam radiotherapy to the whole breast followed by a boost to the tumour bed using multicatheter interstitial brachytherapy after breast conserving surgery were used to create two independent physical treatment plans - one for an external radiotherapy, one for sole partial breast brachytherapy in each case assuming a total reference dose of 50Gy for each patient. Dose-volume parameters D(0.1cc), D(0.5cc), D(1cc,)D(2cc), D(5cc,)D(10cc), D(25cc), D(50cc), V(100), V(90), V(50), V(10), V(5) for the ipsilateral lung, the heart and the adjacent skin were calculated and compared between the two treatment modalities. All organs at risk showed a substantially lower radiation exposure in the brachytherapy plan. This was most pronounced for the heart with values differing by a factor of four. Although somewhat less marked this was also true for the ipsilateral lung and the adjacent skin with exposure ratios of three and two, respectively. With the use of multicatheter interstitial brachytherapy substantial reductions in the radiation exposure of risk organs can be achieved in comparison to whole breast external beam radiotherapy. These are likely to translate into profound clinical benefits. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  3. Overuse of imaging the male breast-findings in 557 patients.

    Science.gov (United States)

    Lapid, Oren; Siebenga, Pieter; Zonderland, Harmien M

    2015-01-01

    Gynecomastia is the most common abnormality of the male breast. However, breast cancer may occur, albeit with a significantly lower incidence than in females. Imaging is often used as part of the diagnosis. The aim of this study was to assess the utilization and outcome of imaging with mammography or ultrasound of the male breast in a university hospital's department of radiology. A retrospective study assessing the imaging of the male breast in 557 patients over a 10-year period. Referral was done mainly by general surgeons and general practitioners. The most common indication was enlargement of the breast, described as gynecomastia or swelling in 74% of patients, followed by pain in 24% and "lumps" in 10%. The modalities used were mammography in 65%, ultrasound in 51% and both in 26%. Most examinations, 519, were BI-RADS 1 or 2, and 38 were BI-RADS 3 or higher. Altogether 160 patients had additional fine-needle aspiration or biopsy. Malignancies were diagnosed in five patients (0.89%). Imaging had a sensitivity of 80% and a specificity of 99%. The positive predictive value was 44% and the negative predictive value 99.8%. Malignancies are rare in the male breast. The probability of finding cancer when performing imaging of clinically benign findings in the male breast is negligible. Imaging is not warranted unless there are suspicious abnormalities. Routine imaging of gynecomastia should be discouraged. © 2015 Wiley Periodicals, Inc.

  4. Imaging of metastases from breast cancer to uncommon sites: a pictorial review.

    Science.gov (United States)

    Toguchi, Masafumi; Matsuki, Mitsuru; Numoto, Isao; Tsurusaki, Masakatsu; Imaoka, Izumi; Ishii, Kazunari; Yamashita, Rikiya; Inada, Yuki; Monzawa, Shuichi; Kobayashi, Hisato; Murakami, Takamichi

    2016-06-01

    There are three types of breast cancer recurrence which can occur after initial treatment: local, regional, and distant. Distant metastases are more frequent than local and regional recurrences. It usually occurs several years after the primary breast cancer, although it is sometimes diagnosed at the same time as the primary breast cancer. Although the common distant metastases are bone, lung and liver, breast cancer has the potential to metastasize to almost any region of the body. Early detection and treatment of distant metastases improves the prognosis, therefore radiologists and clinicians should recognize the possibility of metastasis from breast cancer and grasp the imaging characteristics. In this report, we demonstrate the imaging characteristics of metastases from breast cancer to uncommon sites.

  5. Magnetic resonance imaging of the breast: current practice and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Muldoon, J. [St. Michael' s Hospital, Toronto, Ontario (Canada)

    2005-01-01

    Over the past decade, there has been a dramatic increase in the use of magnetic resonance imaging (MRI) of the breast. MRI has proven to be a key tool in the detection and diagnosis of breast cancer and it plays a very important role in the evaluation of response to therapy. Breast MRI is highly sensitive and is able to detect lesions, which are occult on mammography and ultrasound. With the introduction of contrast agents, advances in surface coil technology and focused work in optimal scan protocols, breast MRI has continued to evolve as a valuable adjunctive breast-imaging tool. This review will give a summary of current criteria and techniques that may be used in the detection, diagnosis and excision of breast lesions. (author)

  6. SOUND-SPEED AND ATTENUATION IMAGING OF BREAST TISSUE USING WAVEFORM TOMOGRAPHY OF TRANSMISSION ULTRASOUND DATA

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; PRATT, R. GERHARD [Los Alamos National Laboratory; DURIC, NEB [Los Alamos National Laboratory; LITTRUP, PETER [Los Alamos National Laboratory

    2007-01-25

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  7. Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Soo; Ko, Seong Jin; Kang, Se Sik; Kim, Jung Hoon; Choi, Seok Yoon; Kim, Chang Soo [Dept. of Radiological Science, Catholic University of Pusan, Pusan (Korea, Republic of); Park, Hyung Hu [Dept. of Health Science, Graduate School of Kosin University, Pusan (Korea, Republic of)

    2012-09-15

    Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70-98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

  8. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging.

    Science.gov (United States)

    Lou, Yang; Zhou, Weimin; Matthews, Thomas P; Appleton, Catherine M; Anastasio, Mark A

    2017-04-01

    Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.

  9. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging

    Science.gov (United States)

    Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.

    2017-04-01

    Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.

  10. Elastography of the Breast: Imaging Techniques and Pitfalls in Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Woo Kyung; Chang, Jung Min; Cho, Nariya [Seoul National University Hospital, Seoul (Korea, Republic of)

    2011-12-15

    Ultrasound (US) elastography is a tool that indicates the hardness of a lesion. Recent studies using elastography with freehand compression have shown similar diagnostic performance to conventional US in differentiating benign lesions from malignant breast masses. On the other hand, the acquired information is not quantitative, and the reliability of the imaging technique to correctly compress the tissue depends on the skill of the operator, resulting in substantial interobserver variability during data acquisition and interpretation. To overcome this, shear wave elastography was developed to provide quantitative information on the tissue elasticity. The system works by remotely inducing mechanical vibrations through the acoustic radiation force created by a focused US beam. This review discusses the principles and examination techniques of the two types of elastography systems and provides practical points to reduce the interobserver variability or errors during data acquisition and interpretation

  11. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    Science.gov (United States)

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The body image drawing analysis in women with breast disease and breast cancer: anxiety, colour and depression categories.

    Science.gov (United States)

    Eskelinen, Matti; Ollonen, Paula

    2010-02-01

    Wirsching et al. introduced a psychosocial risk scale (PRS) for psychological identification of breast cancer patients before biopsy and found that women with cancer had a tendency to draw bigger drawings than the women with a benign tumour. To our knowledge, the associations between the body image drawing analysis and the risk of breast cancer are rarely considered together in a prospective study. This study is an extension of the Kuopio Breast Cancer Study. Women with breast symptoms were referred by physicians to the Kuopio University Hospital (Finland) and were asked to participate in this study. These women (n=115) were interviewed, and all study variables were obtained before any diagnostic procedures were carried out, so neither the investigator nor the participants knew the final diagnosis of breast symptoms at the time of the interview. The research method used was the semistructured in-depth interview method. The investigator used the Montgomery-Asberg depression rating scale (MADRS) to evaluate the depression of the study participants. All participants were also asked to complete standardized questionnaires (Beck depression inventory and Spielberger trait inventory). The overall content of the Body Image Drawing was estimated using a 3-point scale: symbolistic, partly symbolistic, or humanlike. Two raters scored the body image drawings independently and the final scores were formed by comparing the separate scores of the two raters. The raters evaluated the difficulty of giving a score in a 5-point scale during scoring. The clinical examination and biopsy showed breast cancer (BC) in 34 patients, benign breast disease (BBD) in 53 patients, and 28 individuals were shown to be healthy (HSS). The results indicated that the breast cancer patients tended to use the colours with blue and the tones of brown and black in the body image drawings than the BBD and HSS groups. The HSS group used the colours with yellow more often than did the other groups. The

  13. Three Dimensional Breast Cancer Models for X-Ray Imaging Research

    OpenAIRE

    Bliznakov, Zhivko; Chernogorova, Yanita; Bliznakova, Kristina

    2016-01-01

    Nowadays, the development of realistic 3D physical and computational models of breast tumours with irregular shapes is an urgent requirement. The availability of such models is a powerful tool for the development of new technologies for precise definition of the boundaries of these cancers. Biomedical engineering unit at the Technical University of Varna (TUV) is present in this area both at modelling and simulation of computational breast phantoms and x-ray breast imaging techniques. To adva...

  14. Magnetic resonance imaging of the breasts: Clinical practice and further development

    OpenAIRE

    Milošević Zorica; Spasić Nenad

    2004-01-01

    Magnetic resonance imaging (MRI) of the breasts was introduced in clinical practice over 10 years ago. The method is based on visualization of morphology of the lesion and pathophysiology of their vascularization. It is useful complementary method to mammography and breasts ultrasound, with potential to detect clinically or mammography occult lesions. Compared to the conventional visualization methods, MRI of the breasts is more sensitive, although specificity of the method is lower than sens...

  15. Differential Expression of Growth Factor Receptors and Membrane-Bound Tumor Markers for Imaging in Male and Female Breast Cancer

    OpenAIRE

    Vermeulen, Jeroen F.; Kornegoor, Robert; van der Wall, Elsken; van der Groep, Petra; van Diest, Paul J.

    2013-01-01

    INTRODUCTION: Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with femal...

  16. Computer-based automated estimation of breast vascularity and correlation with breast cancer in DCE-MRI images.

    Science.gov (United States)

    Kostopoulos, Spiros A; Vassiou, Katerina G; Lavdas, Eleftherios N; Cavouras, Dionisis A; Kalatzis, Ioannis K; Asvestas, Pantelis A; Arvanitis, Dimitrios L; Fezoulidis, Ioannis V; Glotsos, Dimitris T

    2017-01-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) with gadolinium constitutes one of the most promising protocols for boosting up the sensitivity in breast cancer detection. The aim of this study was twofold: first to design an image processing methodology to estimate the vascularity of the breast region in DCE-MRI images and second to investigate whether the differences in the composition/texture and vascularity of normal, benign and malignant breasts may serve as potential indicators regarding the presence of the disease. Clinical material comprised thirty nine cases examined on a 3.0-T MRI system (SIGNA HDx; GE Healthcare). Vessel segmentation was performed using a custom made modification of the Seeded Region Growing algorithm that was designed in order to identify pixels belonging to the breast vascular network. Two families of features were extracted: first, morphological and textural features from segmented images in order to quantify the extent and the properties of the vascular network; second, textural features from the whole breast region in order to investigate whether the nature of the disease causes statistically important changes in the texture of affected breasts. Results have indicated that: (a) the texture of vessels presents statistically significant differences (pbreast region for malignant and non-malignant breasts, produced statistically significant differences (pbreasts may be used for the discrimination of non-malignant from malignant patients, and (d) an area under the receiver operating characteristic curve of 0.908 (AUC) was found when features were combined in a logistic regression prediction rule according to ROC analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use

    Science.gov (United States)

    Hruska, Carrie B.; O'Connor, Michael K.

    2013-01-01

    Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed. PMID:23635248

  18. Imaging of breast cancer with mid- and long-wave infrared camera.

    Science.gov (United States)

    Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R

    2008-01-01

    In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory.

  19. 3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging.

    Science.gov (United States)

    Mertzanidou, Thomy; Hipwell, John H; Reis, Sara; Hawkes, David J; Ehteshami Bejnordi, Babak; Dalmis, Mehmet; Vreemann, Suzan; Platel, Bram; van der Laak, Jeroen; Karssemeijer, Nico; Hermsen, Meyke; Bult, Peter; Mann, Ritse

    2017-03-01

    In breast imaging, radiological in vivo images, such as x-ray mammography and magnetic resonance imaging (MRI), are used for tumor detection, diagnosis, and size determination. After excision, the specimen is typically sliced into slabs and a small subset is sampled. Histopathological imaging of the stained samples is used as the gold standard for characterization of the tumor microenvironment. A 3D volume reconstruction of the whole specimen from the 2D slabs could facilitate bridging the gap between histology and in vivo radiological imaging. This task is challenging, however, due to the large deformation that the breast tissue undergoes after surgery and the significant undersampling of the specimen obtained in histology. In this work, we present a method to reconstruct a coherent 3D volume from 2D digital radiographs of the specimen slabs. To reconstruct a 3D breast specimen volume, we propose the use of multiple target neighboring slices, when deforming each 2D slab radiograph in the volume, rather than performing pairwise registrations. The algorithm combines neighborhood slice information with free-form deformations, which enables a flexible, nonlinear deformation to be computed subject to the constraint that a coherent 3D volume is obtained. The neighborhood information provides adequate constraints, without the need for any additional regularization terms. The volume reconstruction algorithm is validated on clinical mastectomy samples using a quantitative assessment of the volume reconstruction smoothness and a comparison with a whole specimen 3D image acquired for validation before slicing. Additionally, a target registration error of 5 mm (comparable to the specimen slab thickness of 4 mm) was obtained for five cases. The error was computed using manual annotations from four observers as gold standard, with interobserver variability of 3.4 mm. Finally, we illustrate how the reconstructed volumes can be used to map histology images to a 3D specimen

  20. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    Directory of Open Access Journals (Sweden)

    Zhang Zewei

    2014-01-01

    Full Text Available In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  1. Segmentation of the pectoral muscle in breast MR images using structure tensor and deformable model

    Science.gov (United States)

    Lee, Myungeun; Kim, Jong Hyo

    2012-02-01

    Recently, breast MR images have been used in wider clinical area including diagnosis, treatment planning, and treatment response evaluation, which requests quantitative analysis and breast tissue segmentation. Although several methods have been proposed for segmenting MR images, segmenting out breast tissues robustly from surrounding structures in a wide range of anatomical diversity still remains challenging. Therefore, in this paper, we propose a practical and general-purpose approach for segmenting the pectoral muscle boundary based on the structure tensor and deformable model. The segmentation work flow comprises four key steps: preprocessing, detection of the region of interest (ROI) within the breast region, segmenting the pectoral muscle and finally extracting and refining the pectoral muscle boundary. From experimental results we show that the proposed method can segment the pectoral muscle robustly in diverse patient cases. In addition, the proposed method will allow the application of the quantification research for various breast images.

  2. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  3. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals

    Science.gov (United States)

    Sarcinelli, Michelle Alvares; Albernaz, Marta de Souza; Szwed, Marzena; Iscaife, Alexandre; Leite, Kátia Ramos Moreira; Junqueira, Mara de Souza; Bernardes, Emerson Soares; da Silva, Emerson Oliveira; Tavares, Maria Ines Bruno; Santos-Oliveira, Ralph

    2016-01-01

    Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose) administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA)/polyvinyl alcohol (PVA)/montmorillonite (MMT)/trastuzumab nanoparticles labeled with technetium-99m (99mTc) for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200–500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta potential of −14,6 mV. The cytotoxicity results demonstrated that the nanoparticles were capable of reaching breast cancer cells. The biodistribution data demonstrated that the PLA/PVA/MMT/trastuzumab nanoparticles labeled with 99mTc have great renal clearance and also a high uptake by the lesion, as ~45% of the PLA/PVA/MMT/trastuzumab nanoparticles injected were taken up by the lesion. The data support PLA/PVA/MMT/trastuzumab labeled with 99mTc nanoparticles as nanoradiopharmaceuticals for breast cancer imaging. PMID:27713638

  4. Involvement of Machine Learning for Breast Cancer Image Classification: A Survey

    Directory of Open Access Journals (Sweden)

    Abdullah-Al Nahid

    2017-01-01

    Full Text Available Breast cancer is one of the largest causes of women’s death in the world today. Advance engineering of natural image classification techniques and Artificial Intelligence methods has largely been used for the breast-image classification task. The involvement of digital image classification allows the doctor and the physicians a second opinion, and it saves the doctors’ and physicians’ time. Despite the various publications on breast image classification, very few review papers are available which provide a detailed description of breast cancer image classification techniques, feature extraction and selection procedures, classification measuring parameterizations, and image classification findings. We have put a special emphasis on the Convolutional Neural Network (CNN method for breast image classification. Along with the CNN method we have also described the involvement of the conventional Neural Network (NN, Logic Based classifiers such as the Random Forest (RF algorithm, Support Vector Machines (SVM, Bayesian methods, and a few of the semisupervised and unsupervised methods which have been used for breast image classification.

  5. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  6. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  7. Study of the reduced field-of-view diffusion-weighted imaging of the breast.

    Science.gov (United States)

    Dong, Haibo; Li, Yadi; Li, Hui; Wang, Bo; Hu, Bin

    2014-08-01

    This study aimed to compare the imaging quality, apparent diffusion coefficient (ADC) values, and application values between reduced field-of-view diffusion-weighted imaging (rFOV DWI) and single-shot echo-planar-imaging diffusion-weighted imaging (SS-EPI DWI) of breast tissue. For 87 cases (75 with normal breast tissue, 12 with mammary cancer), breasts were scanned with SS-EPI DWI and rFOV DWI (b values, 800 s/mm(2)). Image quality and ADC values of breast tissue images were compared between SS-EPI DWI and rFOV DWI. The average image quality score for the 87 cases was 4.73 in rFOV DWI and 3.62 in SS-EPI DWI. The difference was statistically significant (P breast tissue was 1.696 × 10(-3) mm(2)/s by rFOV DWI and 1.832 × 10(-3) mm(2)/s by SS-EPI DWI, and the difference was statistically significant (P breast cancer was 1.065 × 10(-3) mm(2)/s by rFOV DWI and 1.192 × 10(-3) mm(2)/s by SS-EPI DWI, which was a statistically significant difference (P images with higher resolution and less distortion than SS-EPI DWI, and this difference may be helpful in disease diagnosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2000-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O- methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  9. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2001-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O-methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  10. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2002-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O-methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  11. Detection and Evaluation of Early Breast Cancer via Magnetic Resonance Imaging: Studies of Mouse Models and Clinical Implementation

    Science.gov (United States)

    2008-03-01

    lesion in sagittal view. Mean sag - ittal-view lesion size was 29 mm 18 (standard deviation). BREAST IMAGING: MR Characteristics of Pure Ductal...AD_________________ Award Number: W81XWH-06-1-0329 TITLE: Detection and Evaluation of Early Breast ...CONTRACT NUMBER Detection and Evaluation of Early Breast Cancer via Magnetic Resonance Imaging: Studies of Mouse Models and Clinical Implementation

  12. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study.

    Science.gov (United States)

    Ou, J J; Ong, R E; Yankeelov, T E; Miga, M I

    2008-01-07

    This paper reports on the development and preliminary testing of a three-dimensional implementation of an inverse problem technique for extracting soft-tissue elasticity information via non-rigid model-based image registration. The modality-independent elastography (MIE) algorithm adjusts the elastic properties of a biomechanical model to achieve maximal similarity between images acquired under different states of static loading. A series of simulation experiments with clinical image sets of human breasts were performed to test the ability of the method to identify and characterize a radiographically occult stiff lesion. Because boundary conditions are a critical input to the algorithm, a comparison of three methods for semi-automated surface point correspondence was conducted in the context of systematic and randomized noise processes. The results illustrate that 3D MIE was able to successfully reconstruct elasticity images using data obtained from both magnetic resonance and x-ray computed tomography systems. The lesion was localized correctly in all cases and its relative elasticity found to be reasonably close to the true values (3.5% with the use of spatial priors and 11.6% without). In addition, the inaccuracies of surface registration performed with thin-plate spline interpolation did not exceed empiric thresholds of unacceptable boundary condition error.

  13. Breast imaging using the Twente photoacoustic mammoscope (PAM): new clinical measurements

    NARCIS (Netherlands)

    Heijblom, Michelle; Piras, D.; ten Tije, Ellen; Xia, W.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang; Klaase, Joost; van den Engh, Frank; van Leeuwen, Ton

    2011-01-01

    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast

  14. Influence of Body Image in Women Undergoing Treatment for Breast Cancer.

    Science.gov (United States)

    Prates, Ana Carolina Lagos; Freitas-Junior, Ruffo; Prates, Mariana Ferreira Oliveira; Veloso, Márcia de Faria; Barros, Norami de Moura

    2017-04-01

    Objective The objective of this study was to investigate the self-esteem of women with and without breast cancer regarding their body image. Methods A quantitative, case-control study in which 90 women with breast cancer were evaluated in the case group, and 77 women without breast cancer in the control group. For data collection, the body satisfaction scale (BSS), a scale adapted and validated in Brazil, and the Rosenberg self-esteem questionnaire were used. For the statistical analysis of the data, the Statistical Package for the Social Sciences software (IBM-SPSS, Chicago, Il, US), version 16.0 was used. Results Compared with the women without breast cancer, those with breast cancer were more dissatisfied with body image related to appearance. Women undergoing neoadjuvant chemotherapy were more dissatisfied with their appearance compared with those with cancer who were not undergoing this treatment. Mastectomy also accounted for more dissatisfaction concerning appearance among women who underwent the procedure compared with the women who were submitted to breast-conserving therapy. Conclusion Women with breast cancer were more dissatisfied with their body image compared with those without breast cancer, particularly following mastectomy or during chemotherapy. The self-esteem was found to be negatively affected in patients who were dissatisfied with their body image. Thieme-Revinter Publicações Ltda Rio de Janeiro, Brazil.

  15. Electronic portal images (EPIs) based position verification for the breast simultaneous integrated boost (SIB) technique

    NARCIS (Netherlands)

    Sijtsema, Nanna M; van Dijk-Peters, Femke B J; Langendijk, Johannes a; Maduro, John H; van 't Veld, Aart a

    Background and purpose: To develop a method based on electronic portal images (EPIs) for the position verification of breast cancer patients that are treated with a simultaneous integrated boost (SIB) technique. Method: 3D setup errors of the breast outline and the thoracic wall were determined from

  16. Breast imaging using the Twente Photoacoustic Mammoscope (PAM): new clinical measurements

    NARCIS (Netherlands)

    Heijblom, M.; Piras, D.; ten Tije, E.M.; Xia, W.; van Hespen, Johannes C.G.; Klaase, J.M.; van den Engh, F.M.; van Leeuwen, Ton; Steenbergen, Wiendelt; Manohar, Srirang; Ramanujam, Nirmala; Popp, Jurgen

    2011-01-01

    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast

  17. Body image concerns during pregnancy are associated with a shorter breast feeding duration.

    Science.gov (United States)

    Brown, Amy; Rance, J; Warren, L

    2015-01-01

    breast feeding is affected by numerous psycho-social factors. Antenatal concerns such as embarrassment regarding public feeding and the impact of breast feeding upon breast shape are known to lead to artificial milk use. However, although work has explored the relationship between maternal weight and infant feeding, wider body image concerns have not been examined. The aim of the current study was to explore the association between maternal body image concerns during pregnancy upon intended and actual breast feeding duration. a two stage self report questionnaire completed during pregnancy and at six months post partum. mothers were recruited from local mother and infant groups, nurseries and online mother and infant forums. 128 pregnant women completed both stages. phase one: completion of a questionnaire exploring body image during pregnancy (concerns about stretch marks, weight gain and appearance) and planned breast feeding duration during the second/third trimester of pregnancy (body image, weight, intended duration) followed by a second questionnaire measuring actual breast feeding duration and breast feeding experiences. factor analysis revealed three primary body image concerns: pregnancy body image, prospective postnatal body image and dieting during pregnancy. Higher concerns on all three factors were associated with both intended and actual shorter breast feeding duration. Amongst mothers who stopped breast feeding before six months, those with higher body image concerns were more likely to report stopping due to embarrassment or the perceived impact upon their breast shape. The relationship was not explained by maternal weight, although a higher residual weight gain at six months was associated with a shorter breast feeding duration. mothers who are affected negatively by changes to their body during pregnancy may be less likely to plan to or initiate breast feeding potentially due to underlying issues such as embarrassment or perceived impact of

  18. Cowden Syndrome Presenting as Breast Cancer: Imaging and Clinical Features

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae [Dept. of Radiology, Graduate School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Cho, Nariya; Moon, Hyeong Gon [Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Ahn, Hye Shin [Dept. of Radiology, Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    Cowden syndrome is an uncommon, autosomal dominant disease which is characterized by multiple hamartomas of the skin, mucous membrane, brain, breast, thyroid, and gastrointestinal tract. The diagnosis of Cowden syndrome implicates an increased risk of developing breast cancer. We report a case of a 22-year-old woman with Cowden syndrome that presented as breast cancer with concomitant bilateral exuberant benign masses in both breasts.

  19. A stepwedge-based method for measuring breast density: observer variability and comparison with human reading

    Science.gov (United States)

    Diffey, Jenny; Berks, Michael; Hufton, Alan; Chung, Camilla; Verow, Rosanne; Morrison, Joanna; Wilson, Mary; Boggis, Caroline; Morris, Julie; Maxwell, Anthony; Astley, Susan

    2010-04-01

    Breast density is positively linked to the risk of developing breast cancer. We have developed a semi-automated, stepwedge-based method that has been applied to the mammograms of 1,289 women in the UK breast screening programme to measure breast density by volume and area. 116 images were analysed by three independent operators to assess inter-observer variability; 24 of these were analysed on 10 separate occasions by the same operator to determine intra-observer variability. 168 separate images were analysed using the stepwedge method and by two radiologists who independently estimated percentage breast density by area. There was little intra-observer variability in the stepwedge method (average coefficients of variation 3.49% - 5.73%). There were significant differences in the volumes of glandular tissue obtained by the three operators. This was attributed to variations in the operators' definition of the breast edge. For fatty and dense breasts, there was good correlation between breast density assessed by the stepwedge method and the radiologists. This was also observed between radiologists, despite significant inter-observer variation. Based on analysis of thresholds used in the stepwedge method, radiologists' definition of a dense pixel is one in which the percentage of glandular tissue is between 10 and 20% of the total thickness of tissue.

  20. The National Ballistics Imaging Comparison (NBIC) project.

    Science.gov (United States)

    Song, J; Vorburger, T V; Ballou, S; Thompson, R M; Yen, J; Renegar, T B; Zheng, A; Silver, R M; Ols, M

    2012-03-10

    In response to the guidelines issued by the American Society of Crime Laboratory Directors/Laboratory Accreditation Board (ASCLD/LAB-International) to establish traceability and quality assurance in U.S. crime laboratories, a NIST/ATF joint project entitled National Ballistics Imaging Comparison (NBIC) was initialized in 2008. The NBIC project aims to establish a National Traceability and Quality System for ballistics identifications in crime laboratories within the National Integrated Ballistics Information Network (NIBIN) of the U.S. NIST Standard Reference Material (SRM) 2460 bullets and 2461 cartridge cases are used as reference standards. 19 ballistics examiners from 13 U.S. crime laboratories participated in this project. They each performed 24 periodic image acquisitions and correlations of the SRM bullets and cartridge cases over the course of a year, but one examiner only participated in Phase 1 tests of SRM cartridge case. The correlation scores were collected by NIST for statistical analyses, from which control charts and control limits were developed for the proposed Quality System and for promoting future assessments and accreditations for firearm evidence in U.S. forensic laboratories in accordance with the ISO 17025 Standard. Published by Elsevier Ireland Ltd.

  1. Diffusion magnetic resonance imaging of breast lesions: Initial ...

    African Journals Online (AJOL)

    Hebatallah Hassan Mamdouh Hassan

    2013-03-31

    Mar 31, 2013 ... detection of breast cancer using digital mammography, with special reflection on the ... and characterization of breast cancer.2 Additional lesions seen by MRI that are not ..... A 42 years old female with family history of breast cancer and microcalcification on follow-up (high risk) developed right axillary lump ...

  2. PLSA-based pathological image retrieval for breast cancer with color deconvolution

    Science.gov (United States)

    Ma, Yibing; Shi, Jun; Jiang, Zhiguo; Feng, Hao

    2013-10-01

    Digital pathological image retrieval plays an important role in computer-aided diagnosis for breast cancer. The retrieval results of an unknown pathological image, which are generally previous cases with diagnostic information, can provide doctors with assistance and reference. In this paper, we develop a novel pathological image retrieval method for breast cancer, which is based on stain component and probabilistic latent semantic analysis (pLSA) model. Specifically, the method firstly utilizes color deconvolution to gain the representation of different stain components for cell nuclei and cytoplasm, and then block Gabor features are conducted on cell nuclei, which is used to construct the codebook. Furthermore, the connection between the words of the codebook and the latent topics among images are modeled by pLSA. Therefore, each image can be represented by the topics and also the high-level semantic concepts of image can be described. Experiments on the pathological image database for breast cancer demonstrate the effectiveness of our method.

  3. Pilot study of quantitative analysis of background enhancement on breast MR images: association with menstrual cycle and mammographic breast density.

    Science.gov (United States)

    Scaranelo, Anabel M; Carrillo, Maria Claudia; Fleming, Rachel; Jacks, Lindsay M; Kulkarni, Supriya R; Crystal, Pavel

    2013-06-01

    To perform semiautomated quantitative analysis of the background enhancement (BE) in a cohort of patients with newly diagnosed breast cancer and to correlate it with mammographic breast density and menstrual cycle. Informed consent was waived after the research ethics board approved this study. Results of 177 consecutive preoperative breast magnetic resonance (MR) examinations performed from February to December 2009 were reviewed; 147 female patients (median age, 48 years; range, 26-86 years) were included. Ordinal values of BE and breast density were described by two independent readers by using the Breast Imaging Reporting and Data System lexicon. The BE coefficient (BEC) was calculated thus: (SI2 · 100/SI1) - 100, where SI is signal intensity, SI2 is the SI enhancement measured in the largest anteroposterior dimension in the axial plane 1 minute after the contrast agent injection, and SI1is the SI before contrast agent injection. BEC was used for the quantitative analysis of BE. Menstrual cycle status was based on the last menstrual period. The Wilcoxon rank-sum or Kruskal-Wallis test was used to compare quantitative assessment groups. Cohen weighted κ was used to evaluate agreement. Of 147 patients, 68 (46%) were premenopausal and 79 (54%) were postmenopausal. The quantitative BEC was associated with the menstrual status (BEC in premenopausal women, 31.48 ± 20.68 [standard deviation]; BEC in postmenopausal women, 25.65 ± 16.74; P = .02). The percentage of overall BE was higher when the MR imaging was performed in women in the inadequate phase of the cycle (breast density groups. Premenopausal women with breast cancer, and specifically women in the inadequate phase of the cycle, presented with higher quantitative BE than postmenopausal women. No association was found between BE and breast density.

  4. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia [Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Department of Medical Physics, University of Patras School of Health Sciences, 26500 Rio-Patras (Greece); Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 and Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States)

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that

  5. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G. [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  6. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuehr, Marietta, E-mail: marietta.kuehr@ukb.uni-bonn.de [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Wolfgarten, Matthias; Stoelzle, Marco [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Leutner, Claudia [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Hoeller, Tobias [Department of Medical Statistics and Epidemiology, University of Bonn, Bonn (Germany); Schrading, Simone; Kuhl, Christiane; Schild, Hans [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Kuhn, Walther; Braun, Michael [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany)

    2011-11-15

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size {<=}3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget's disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  7. Breast histopathology image segmentation using spatio-colour-texture based graph partition method.

    Science.gov (United States)

    Belsare, A D; Mushrif, M M; Pangarkar, M A; Meshram, N

    2016-06-01

    This paper proposes a novel integrated spatio-colour-texture based graph partitioning method for segmentation of nuclear arrangement in tubules with a lumen or in solid islands without a lumen from digitized Hematoxylin-Eosin stained breast histology images, in order to automate the process of histology breast image analysis to assist the pathologists. We propose a new similarity based super pixel generation method and integrate it with texton representation to form spatio-colour-texture map of Breast Histology Image. Then a new weighted distance based similarity measure is used for generation of graph and final segmentation using normalized cuts method is obtained. The extensive experiments carried shows that the proposed algorithm can segment nuclear arrangement in normal as well as malignant duct in breast histology tissue image. For evaluation of the proposed method the ground-truth image database of 100 malignant and nonmalignant breast histology images is created with the help of two expert pathologists and the quantitative evaluation of proposed breast histology image segmentation has been performed. It shows that the proposed method outperforms over other methods. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer

    Science.gov (United States)

    Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

    2011-03-01

    A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

  9. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    Science.gov (United States)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  10. Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy

    Science.gov (United States)

    2013-01-01

    Introduction In addition to being a risk factor for breast cancer, breast density has been hypothesized to be a surrogate biomarker for predicting response to endocrine-based chemotherapies. The purpose of this study was to evaluate whether a noninvasive bedside scanner based on diffuse optical spectroscopic imaging (DOSI) provides quantitative metrics to measure and track changes in breast tissue composition and density. To access a broad range of densities in a limited patient population, we performed optical measurements on the contralateral normal breast of patients before and during neoadjuvant chemotherapy (NAC). In this work, DOSI parameters, including tissue hemoglobin, water, and lipid concentrations, were obtained and correlated with magnetic resonance imaging (MRI)-measured fibroglandular tissue density. We evaluated how DOSI could be used to assess breast density while gaining new insight into the impact of chemotherapy on breast tissue. Methods This was a retrospective study of 28 volunteers undergoing NAC treatment for breast cancer. Both 3.0-T MRI and broadband DOSI (650 to 1,000 nm) were obtained from the contralateral normal breast before and during NAC. Longitudinal DOSI measurements were used to calculate breast tissue concentrations of oxygenated and deoxygenated hemoglobin, water, and lipid. These values were compared with MRI-measured fibroglandular density before and during therapy. Results Water (r = 0.843; P < 0.001), deoxyhemoglobin (r = 0.785; P = 0.003), and lipid (r = -0.707; P = 0.010) concentration measured with DOSI correlated strongly with MRI-measured density before therapy. Mean DOSI parameters differed significantly between pre- and postmenopausal subjects at baseline (water, P < 0.001; deoxyhemoglobin, P = 0.024; lipid, P = 0.006). During NAC treatment measured at about 90 days, significant reductions were observed in oxyhemoglobin for pre- (-20.0%; 95% confidence interval (CI), -32.7 to -7.4) and postmenopausal subjects (-20

  11. Extra-mammary findings detected on breast magnetic resonance imaging: A pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Hee Jung; Choi, Ji Soo; Ko, Kyung Ran [National Cancer Center, Goyang (Korea, Republic of)

    2014-08-15

    Magnetic resonance imaging (MRI) of the breast is used for various indications. Contrary to computed tomography as a staging tool, breast MRI focuses on the breast parenchyma and axilla. In spite of narrow field of view, many structures such as the anterior portion of the lungs, mediastinum, bony structures and the liver are included which should not be neglected because the abnormalities detected on the above structures may influence the staging and provide a clue to systemic metastasis, which results in the change of treatment strategy. The purpose of this pictorial essay was to review the unexpected extra-mammary findings seen on the preoperative breast MRI.

  12. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    Directory of Open Access Journals (Sweden)

    Smriti Hari

    2016-01-01

    Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates.

  13. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    National Research Council Canada - National Science Library

    Li, Christina M

    2007-01-01

    .... The purpose of this project is to determine the feasibility of using temporal subtraction on DBT phantom images to allow for easier and earlier detection of breast cancer than with either technique alone...

  14. Optimization of Tomosynthesis Imaging for Improved Mass and Microcalcification Detection in the Breast

    National Research Council Canada - National Science Library

    Xia, Dan

    2008-01-01

    The goal of this research is to obtain systematic understandings of the effects of various physical factors that are important in breast tomosynthesis imaging and to develop techniques for effectively...

  15. Preclinical and clinical applications of specific molecular imaging for HER2-positive breast cancer.

    Science.gov (United States)

    Chen, Wei; Li, Xiaofeng; Zhu, Lei; Liu, Jianjing; Xu, Wengui; Wang, Ping

    2017-08-01

    Precision medicine and personalized therapy are receiving increased attention, and molecular-subtype classification has become crucial in planning therapeutic schedules in clinical practice for patients with breast cancer. Human epidermal growth factor receptor 2 (HER2) is associated with high-grade breast tumors, high rates of lymph-node involvement, high risk of recurrence, and high resistance to general chemotherapy. Analysis of HER2 expression is highly important for doctors to identify patients who can benefit from trastuzumab therapy and monitor the response and efficacy of treatment. In recent years, significant efforts have been devoted to achieving specific and noninvasive HER2-positive breast cancer imaging in vivo. In this work, we reviewed existing literature on HER2 imaging in the past decade and summarized the studies from different points of view, such as imaging modalities and HER2-specific probes. We aimed to improve the understanding on the translational process in molecular imaging for HER2 breast cancer.

  16. Objective Comparison of Commercially Available Breast Implant Devices.

    Science.gov (United States)

    Henderson, Peter W; Nash, David; Laskowski, Marta; Grant, Robert T

    2015-10-01

    Breast implants are frequently used for both cosmetic breast augmentation and breast reconstruction after mastectomy. Three companies currently offer FDA-approved breast implants (Allergan, Mentor, and Sientra), but their product offerings-including permanent breast implants, breast tissue expanders, sizers, and post-operative warranty-can be difficult to compare because of brand names and company-specific jargon. The ability to have a brand-agnostic understanding of all available options is important for both the surgical trainee as well as the surgeon in clinical practice. After a brief review of the history of breast implant devices, this review utilizes a unique conceptual framework based on variables such as fill material, shape, relative dimensions, and surface coating to facilitate a better understanding of the similarities and differences between the different company's offerings. Specifically, we identify which types of devices are offered by all three companies, those that are offered by only one company, those that have very limited product offerings, and those combinations that are not available at all. Finally, clinical implications are drawn from this framework that can be used by both cosmetic and reconstructive surgeons to counsel patients about all available options. Importantly, this project is entirely independent of any company's funding, support, or input. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  17. Features of undiagnosed breast cancers at screening breast MR imaging and potential utility of computer-aided evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae; Cho, Nariya; Bea, Min Sun; Koo, Hye Ryoung; Kim, Won Hwa; Lee, Su Hyun; Chu, A Jung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-02-15

    To retrospectively evaluate the features of undiagnosed breast cancers on prior screening breast magnetic resonance (MR) images in patients who were subsequently diagnosed with breast cancer, as well as the potential utility of MR-computer-aided evaluation (CAE). Between March 2004 and May 2013, of the 72 consecutive pairs of prior negative MR images and subsequent MR images with diagnosed cancers (median interval, 32.8 months; range, 5.4-104.6 months), 36 (50%) had visible findings (mean size, 1.0 cm; range, 0.3-5.2 cm). The visible findings were divided into either actionable or under threshold groups by the blinded review by 5 radiologists. MR imaging features, reasons for missed cancer, and MR-CAE features according to actionability were evaluated. Of the 36 visible findings on prior MR images, 33.3% (12 of 36) of the lesions were determined to be actionable and 66.7% (24 of 36) were underthreshold; 85.7% (6 of 7) of masses and 31.6% (6 of 19) of non-mass enhancements were classified as actionable lesions. Mimicking physiologic enhancements (27.8%, 10 of 36) and small lesion size (27.8%, 10 of 36) were the most common reasons for missed cancer. Actionable findings tended to show more washout or plateau kinetic patterns on MR-CAE than underthreshold findings, as the 100% of actionable findings and 46.7% of underthreshold findings showed washout or plateau (p = 0.008). MR-CAE has the potential for reducing the number of undiagnosed breast cancers on screening breast MR images, the majority of which are caused by mimicking physiologic enhancements or small lesion size.

  18. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography.

    Science.gov (United States)

    Bickelhaupt, Sebastian; Steudle, Franziska; Paech, Daniel; Mlynarska, Anna; Kuder, Tristan Anselm; Lederer, Wolfgang; Daniel, Heidi; Freitag, Martin; Delorme, Stefan; Schlemmer, Heinz-Peter; Laun, Frederik Bernd

    2017-01-01

    To evaluate a fractional order calculus (FROC) model in diffusion weighted imaging to differentiate between malignant and benign breast lesions in breast cancer screening work-up using recently introduced parameters (βFROC, DFROC and μFROC). This retrospective analysis within a prospective IRB-approved study included 51 participants (mean 58.4 years) after written informed consent. All patients had suspicious screening mammograms and indication for biopsy. Prior to biopsy, full diagnostic contrast-enhanced MRI examination was acquired including diffusion-weighted-imaging (DWI, b = 0,100,750,1500 s/mm2). Conventional apparent diffusion coefficient Dapp and FROC parameters (βFROC, DFROC and μFROC) as suggested further indicators of diffusivity components were measured in benign and malignant lesions. Receiver operating characteristics (ROC) were calculated to evaluate the diagnostic performance of the parameters. 29/51 patients histopathologically revealed malignant lesions. The analysis revealed an AUC for Dapp of 0.89 (95% CI 0.80-0.98). For FROC derived parameters, AUC was 0.75 (0.60-0.89) for DFROC, 0.59 (0.43-0.75) for βFROC and 0.59 (0.42-0.77) for μFROC. Comparison of the AUC curves revealed a significantly higher AUC of Dapp compared to the FROC parameters DFROC (p = 0.009), βFROC (p = 0.003) and μFROC (p = 0.001). In contrast to recent description in brain tumors, the apparent diffusion coefficient