WorldWideScience

Sample records for breast cell model

  1. Mesenchymal stem cells develop tumor tropism but do not accelerate breast cancer tumorigenesis in a somatic mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Lydia Usha

    Full Text Available The role of mesenchymal stem cells (MSCs on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves.

  2. Cell-graph mining for breast tissue modeling and classification.

    Science.gov (United States)

    Bilgin, Cagatay; Demir, Cigdem; Nagi, Chandandeep; Yener, Bulent

    2007-01-01

    We consider the problem of automated cancer diagnosis in the context of breast tissues. We present graph theoretical techniques that identify and compute quantitative metrics for tissue characterization and classification. We segment digital images of histopatological tissue samples using k-means algorithm. For each segmented image we generate different cell-graphs using positional coordinates of cells and surrounding matrix components. These cell-graphs have 500-2000 cells(nodes) with 1000-10000 links depending on the tissue and the type of cell-graph being used. We calculate a set of global metrics from cell-graphs and use them as the feature set for learning. We compare our technique, hierarchical cell graphs, with other techniques based on intensity values of images, Delaunay triangulation of the cells, the previous technique we proposed for brain tissue images and with the hybrid approach that we introduce in this paper. Among the compared techniques, hierarchical-graph approach gives 81.8% accuracy whereas we obtain 61.0%, 54.1% and 75.9% accuracy with intensity-based features, Delaunay triangulation and our previous technique, respectively.

  3. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  4. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats

    Directory of Open Access Journals (Sweden)

    Priyank Ashok Shenoy

    2016-08-01

    Full Text Available The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.

  5. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats.

    Science.gov (United States)

    Shenoy, Priyank A; Kuo, Andy; Vetter, Irina; Smith, Maree T

    2016-01-01

    The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.

  6. Targeting CXCR1 on breast cancer stem cells: signaling pathways and clinical application modelling.

    Science.gov (United States)

    Brandolini, Laura; Cristiano, Loredana; Fidoamore, Alessia; De Pizzol, Maria; Di Giacomo, Erica; Florio, Tiziana Marilena; Confalone, Giuseppina; Galante, Angelo; Cinque, Benedetta; Benedetti, Elisabetta; Ruffini, Pier Adelchi; Cifone, Maria Grazia; Giordano, Antonio; Alecci, Marcello; Allegretti, Marcello; Cimini, Annamaria

    2015-12-22

    In breast cancer it has been proposed that the presence of cancer stem cells may drive tumor initiation, progression and recurrences. IL-8, up-regulated in breast cancer, and associated with poor prognosis, increases CSC self-renewal in cell line models. It signals via two cell surface receptors, CXCR1 and CXCR2. Recently, the IL-8/CXCR1 axis was proposed as an attractive pathway for the design of specific therapies against breast cancer stem cells. Reparixin, a powerful CXCR1 inhibitor, was effective in reducing in vivo the tumour-initiating population in several NOD/SCID mice breast cancer models, showing that the selective targeting of CXCR1 and the combination of reparixin and docetaxel resulted in a concomitant reduction of the bulk tumour mass and CSC population. The available data indicate that IL-8, expressed by tumour cells and induced by chemotherapeutic treatment, is a key regulator of the survival and self-renewal of the population of CXCR1-expressing CSC. Consequently, this investigation on the mechanism of action of the reparixin/paclitaxel combination, was based on the observation that reparixin treatment contained the formation of metastases in several experimental models. However, specific data on the formation of breast cancer brain metastases, which carry remarkable morbidity and mortality to a substantial proportion of advanced breast cancer patients, have not been generated. The obtained data indicate a beneficial use of the drug combination reparixin and paclitaxel to counteract brain tumour metastasis due to CSC, probably due to the combined effects of the two drugs, the pro-apoptotic action of paclitaxel and the cytostatic and anti-migratory effects of reparixin.

  7. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  8. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models.

    Science.gov (United States)

    Suetsugu, Atsushi; Honma, Kimi; Saji, Shigetoyo; Moriwaki, Hisataka; Ochiya, Takahiro; Hoffman, Robert M

    2013-03-01

    Exosomes play an important role in cell-to-cell communication to promote tumor metastasis. In order to image the fate of cancer-cell-derived exosomes in orthotopic nude mouse models of breast cancer, we used green fluorescent protein (GFP)-tagged CD63, which is a general marker of exosomes. Breast cancer cells transferred their own exosomes to other cancer cells and normal lung tissue cells in culture. In orthotopic nude-mouse models, breast cancer cells secreted exosomes into the tumor microenvironment. Tumor-derived exosomes were incorporated into tumor-associated cells as well as circulating in the blood of mice with breast cancer metastases. These results suggest that tumor-derived exosomes may contribute to forming a niche to promote tumor growth and metastasis. Our results demonstrate the usefulness of GFP imaging to investigate the role of exosomes in cancer metastasis.

  9. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

    Science.gov (United States)

    Liu, Huiping; Patel, Manishkumar R.; Prescher, Jennifer A.; Patsialou, Antonia; Qian, Dalong; Lin, Jiahui; Wen, Susanna; Chang, Ya-Fang; Bachmann, Michael H.; Shimono, Yohei; Dalerba, Piero; Adorno, Maddalena; Lobo, Neethan; Bueno, Janet; Dirbas, Frederick M.; Goswami, Sumanta; Somlo, George; Condeelis, John; Contag, Christopher H.; Gambhir, Sanjiv Sam; Clarke, Michael F.

    2010-01-01

    To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy. PMID:20921380

  10. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    Science.gov (United States)

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  11. Effects of exogenous human leptin on heat shock protein 70 expression in MCF-7 breast cancer cells and breast carcinoma of nude mice xenograft model

    Institute of Scientific and Technical Information of China (English)

    XUE Rong-quan; GU Jun-chao; YU Wei; WANG Yu; ZHANG Zhong-tao; MA Xue-mei

    2012-01-01

    Background It is important to identify the multiple sites of leptin activity in obese women with breast cancer.In this study,we examined the effect of exogenous human leptin on heat shock protein 70 (HSP70) expression in MCF-7 human breast cancer cells and in a breast carcinoma xenograft model of nude mice.Methods We cultured MCF-7 human breast cancer cells and established nude mice bearing xenograffs of these cells,and randomly divided them into experimental and control groups.The experimental group was treated with human leptin,while the control group was treated with the same volume of normal saline.A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay was developed to quantify the mRNA expression of HSP70 in the MCF-7 human breast cancer cells and in tumor tissues.Western blotting analysis was applied to quantify the protein expression of HSP70 in the MCF-7 cells.Immunohistochemical staining was done to assess the positive rate of HSP70 expression in the tumor tissues.Results Leptin activated HSP70 in a dose-dependent manner in vitro:leptin upregulated significantly the expression of HSP70 at mRNA and protein levels in MCF-7 human breast cancer cells (P <0.001).There was no significant difference in expression of HSP70 mRNA in the implanted tumors between the leptin-treated group and the control group (P>0.05).Immunohistochemical staining revealed no significant difference in tumor HSP70 expression between the leptin-treated group and the control group (P>0.05).Conclusions A nude mouse xenograft model can be safely and efficiently treated with human leptin by subcutaneous injections around the tumor.HSP70 may be target of leptin in breast cancer.Leptin can significantly upregulate the expression of HSP70 in a dose-dependent manner in vitro.

  12. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, Majorie B.M. van, E-mail: M.vanDuursen@uu.nl [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Smeets, Evelien E.J.W. [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Rijk, Jeroen C.W. [RIKILT - Institute for Food Safety, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen (Netherlands); Nijmeijer, Sandra M.; Berg, Martin van den [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands)

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  13. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  14. Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Gianluca Ascolani

    2015-05-01

    Full Text Available Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET. In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics.

  15. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model.

    Science.gov (United States)

    van Duursen, Majorie B M; Smeets, Evelien E J W; Rijk, Jeroen C W; Nijmeijer, Sandra M; van den Berg, Martin

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided.

  16. Pharmacologic inhibition of MLK3 kinase activity blocks the in vitro migratory capacity of breast cancer cells but has no effect on breast cancer brain metastasis in a mouse xenograft model.

    Directory of Open Access Journals (Sweden)

    Kun Hyoe Rhoo

    Full Text Available Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3 in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model.

  17. Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer.

    Science.gov (United States)

    Miceli, C; Tejada, A; Castaneda, A; Mistry, S J

    2013-05-01

    Stathmin is the founding member of a family of microtubule-destabilizing proteins that have a critical role in the regulation of mitosis. Stathmin is expressed at high levels in breast cancer and its overexpression is linked to disease progression. Although there is a large body of evidence to support a role for stathmin in breast cancer progression, the validity of stathmin as a viable therapeutic target for breast cancer has not been investigated. Here, we used a bicistronic adenoviral vector that co-expresses green fluorescent protein and a ribozyme that targets stathmin messenger RNA in preclinical breast cancer models with different estrogen receptor (ER) status. We examined the effects of anti-stathmin ribozyme on the malignant phenotype of breast cancer cells in vitro and in xenograft models in vivo both as a single agent and in combination with chemotherapeutic agents. Adenovirus-mediated gene transfer of anti-stathmin ribozyme resulted in a dose-dependent inhibition of proliferation and clonogenicity associated with a G2/M arrest and increase in apoptosis in both ER-positive and ER-negative breast cancer cell lines. This inhibition was markedly enhanced when stathmin-inhibited breast cancer cells were exposed to low concentrations of taxol, which resulted in virtually complete loss of the malignant phenotype. Interestingly, breast cancer xenografts treated with low doses of anti-stathmin therapy and taxol showed regression in a majority of tumors, while some tumors stopped growing completely. In contrast, combination of anti-stathmin ribozyme and adriamycin resulted in only a modest inhibition of growth in vitro and in breast cancer xenografts in vivo. Although inhibition of tumor growth was observed in both the combination treatment groups compared with groups treated with single agent alone, combination of anti-stathmin therapy and taxol had a more profound inhibition of tumorigenicity, as both agents target the microtubule pathway. Clinically, these

  18. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer.

    Science.gov (United States)

    Caceres, S; Peña, L; Lacerda, L; Illera, M J; de Andres, P J; Larson, R A; Gao, H; Debeb, B G; Woodward, W A; Reuben, J M; Illera, J C

    2016-05-05

    Inflammatory breast cancer (IBC) is an aggressive type of cancer with poor survival in women. Inflammatory mammary cancer (IMC) in dogs is very similar to human IBC and it has been proposed as a good surrogate model for study the human disease. The aim was to determine if IPC-366 shared characteristics with the IBC cell line SUM149. The comparison was conducted in terms of ability to grow (adherent and nonadherent conditions), stem cell markers expression using flow cytometry, protein production using western blot and tumorigenic capacity. Our results revealed that both are capable of forming long-term mammospheres with a grape-like morphology. Adherent and nonadherent cultures exhibited fast growth in vivo. Stem cell markers expressions showed that IPC-366 and SUM149 in adherent and nonadherent conditions has mesenchymal-like characteristics, E-cadherin and N-cadherin, was higher in adherent than in nonadherent cultures. Therefore, this study determines that both cell lines are similar and IPC-366 is a good model for the human and canine disease.

  19. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  20. Elucidation of epithelial-mesenchymal transition-related pathways in a triple-negative breast cancer cell line model by multi-omics interactome analysis

    DEFF Research Database (Denmark)

    Pauling, Josch K; Christensen, Anne G; Batra, Richa

    2014-01-01

    obtained from a triple-negative breast cancer cell line model, combining data sets of gene and protein expression as well as protein phosphorylation. We focus on alterations associated with the phenotypical differences arising from epithelial-mesenchymal transition in two breast cancer cell lines...

  1. Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Sitti Rahma Abdul Hafid

    Full Text Available Tocotrienol-rich fraction (TRF from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL from 4T1 cells (DC+TL once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF inhibited (p<0.05 tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC-treated 4T1 cells produced higher (p<0.05 levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL assay also showed enhanced tumor-specific killing (p<0.05 by CD8(+ T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.

  2. Immortalization protocols used in cell culture models of human breast morphogenesis

    DEFF Research Database (Denmark)

    Gudjonsson, T; Villadsen, R; Rønnov-Jessen, L;

    2004-01-01

    breast cells in culture and optimizing a relevant microenvironment, which may help to define the niche that regulates breast differentiation and morphogenesis. In contrast to the general property of cancer, normal human cells have a finite lifespan. After a defined number of population doublings, normal...... cells enter an irreversible proliferation-arrested state referred to as replicative senescence. To overcome this obstacle for continuous long-term studies, replicative senescence can be bypassed by treatment of cells with chemical agents such as benzopyrene, by radiation or by transfection with viral...... oncogenes or the gene for human telomerase (human telomerase reverse transcriptase, hTERT). A drawback of some of these protocols is a concurrent introduction of chromosomal changes, which sometimes leads to a transformed phenotype and selection of a subpopulation, which may not be representative...

  3. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats

    OpenAIRE

    Priyank Ashok Shenoy; Andy Kuo; Irina Vetter; Maree Therese Smith

    2016-01-01

    The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century,...

  4. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function.

    Science.gov (United States)

    Wang, Xiuli; Sun, Lin; Maffini, Maricel V; Soto, Ana; Sonnenschein, Carlos; Kaplan, David L

    2010-05-01

    Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.

  5. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  6. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors.

    Science.gov (United States)

    Chiche, A; Moumen, M; Romagnoli, M; Petit, V; Lasla, H; Jézéquel, P; de la Grange, P; Jonkers, J; Deugnier, M-A; Glukhova, M A; Faraldo, M M

    2016-10-24

    Triple-negative breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Triple-negative tumors often display activated Wnt/β-catenin signaling and most have impaired p53 function. We studied the interplay between p53 loss and Wnt/β-catenin signaling in stem cell function and tumorigenesis, by deleting p53 from the mammary epithelium of K5ΔNβcat mice displaying a constitutive activation of Wnt/β-catenin signaling in basal cells. K5ΔNβcat transgenic mice present amplification of the basal stem cell pool and develop triple-negative mammary carcinomas. The loss of p53 in K5ΔNβcat mice led to an early expansion of mammary stem/progenitor cells and accelerated the formation of triple-negative tumors. In particular, p53-deficient tumors expressed high levels of integrins and extracellular matrix components and were enriched in cancer stem cells. They also overexpressed the tyrosine kinase receptor Met, a feature characteristic of human triple-negative breast tumors. The inhibition of Met kinase activity impaired tumorsphere formation, demonstrating the requirement of Met signaling for cancer stem cell growth in this model. Human basal-like breast cancers with predicted mutated p53 status had higher levels of MET expression than tumors with wild-type p53. These results connect p53 loss and β-catenin activation to stem cell regulation and tumorigenesis in triple-negative cancer and highlight the role of Met signaling in maintaining cancer stem cell properties, revealing new cues for targeted therapies.Oncogene advance online publication, 24 October 2016; doi:10.1038/onc.2016.396.

  7. Establishment of Animal Model for Bone Metastasis of Walker 256 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    PANG; Fang-fang; SHEN; Hong-tao; HE; Ming; DONG; Ke-jun; WU; Shao-yong; DOU; Liang; SHI; Yan-jun; ZHANG; Shuang; WANG; Xiao-ming; ZHAO; Qin-zhang; YANG; Xu-ran; XU; Yong-ning; LAN; Xiao-xi; CAI; Li; JIANG; Shan

    2013-01-01

    Bone metastasis is a common complication of cancer.It often occurs in lung,breast and prostate cancer,and may cause osteolytic lesions,or cause few osteoblastic lesions.It has already advanced cancer When cancer metastasis to bone,which usually cannot be cured.It is one of the important factors leading to the death of cancer patients.Studying animal model of bone

  8. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    Institute of Scientific and Technical Information of China (English)

    Ze-Yu Wang; Rong-Yue Cao; Jie Wu; Tai-Ming LI; Jing-Jing Liu; Yun Xing; Bin Liu; Lei Lu; Xiao Huang; Chi-Yu Ge; Wen-Jun Yao; Mao-Lei Xu; Zhen-Qiu Gao

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer.Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL).In this study,diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde,and the constructed cancer cell vaccine was named DT-TCL-M2.Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses,including humoral and cellular immune responses.High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses.The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells.Moreover,the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model.DTTCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model.These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo.Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection.

  9. Data on the recurrence of breast tumors fit a model in which dormant cells are subject to slow attrition but can randomly awaken to become malignant

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas

    2006-01-01

    We successfully modeled the recurrence of tumors in breast cancer patients, assuming that: (i) A breast cancer patient is likely to have some circulating metastatic cells, even after initial surgery. (ii) These metastatic cells are dormant. (iii) The dormant cells are subject to attrition...... by the body's immune system, or by random apoptosis or senescence. (iv) Recurrence suppressor mechanisms exist. (v) When such genes are disabled by random mutations, the dormant metastatic cell is activated, and will develop to a cancer recurrence. The model was also fitted to data on the survival...

  10. Selection of a Relevant In Vitro Blood-Brain Barrier Model to Investigate Pro-Metastatic Features of Human Breast Cancer Cell Lines.

    Science.gov (United States)

    Drolez, Aurore; Vandenhaute, Elodie; Julien, Sylvain; Gosselet, Fabien; Burchell, Joy; Cecchelli, Roméo; Delannoy, Philippe; Dehouck, Marie-Pierre; Mysiorek, Caroline

    2016-01-01

    Around 7-17% of metastatic breast cancer patients will develop brain metastases, associated with a poor prognosis. To reach the brain parenchyma, cancer cells need to cross the highly restrictive endothelium of the Blood-Brain Barrier (BBB). As treatments for brain metastases are mostly inefficient, preventing cancer cells to reach the brain could provide a relevant and important strategy. For that purpose an in vitro approach is required to identify cellular and molecular interaction mechanisms between breast cancer cells and BBB endothelium, notably at the early steps of the interaction. However, while numerous studies are performed with in vitro models, the heterogeneity and the quality of BBB models used is a limitation to the extrapolation of the obtained results to in vivo context, showing that the choice of a model that fulfills the biological BBB characteristics is essential. Therefore, we compared pre-established and currently used in vitro models from different origins (bovine, mice, human) in order to define the most appropriate tool to study interactions between breast cancer cells and the BBB. On each model, the BBB properties and the adhesion capacities of breast cancer cell lines were evaluated. As endothelial cells represent the physical restriction site of the BBB, all the models consisted of endothelial cells from animal or human origins. Among these models, only the in vitro BBB model derived from human stem cells both displayed BBB properties and allowed measurement of meaningful different interaction capacities of the cancer cell lines. Importantly, the measured adhesion and transmigration were found to be in accordance with the cancer cell lines molecular subtypes. In addition, at a molecular level, the inhibition of ganglioside biosynthesis highlights the potential role of glycosylation in breast cancer cells adhesion capacities.

  11. Evaluation of the Volatile Oil Composition and Antiproliferative Activity of Laurus nobilis L. (Lauraceae on Breast Cancer Cell Line Models

    Directory of Open Access Journals (Sweden)

    Rana Abu-Dahab

    2014-03-01

    Full Text Available Volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae fruits and leaves grown in Jordan were investigated. GC-MS analysis of the essential oil of the fruits resulted in the identification of 45 components representing 99.7 % of the total oil content, while the leaf essential oil yielded 37 compounds representing 93.7% of the total oil content. Oxygenated monoterpene 1,8-cineole was the main component in the fruit and leaf oils. Using sulphorhodamine B assay; the crude ethanol fraction, among other solvent extracts, showed strong antiproliferative activity for both leaves and fruits, nevertheless, the fruits were more potent against both breast cancer cell models (MCF7 and T47D. At IC 50 values ; the mechanism of apoptosis was nevertheless different: where L. nobilis fruit proapoptotic efficacy was not regulated by either p53 or p21, L. nobilis leaf extract components enhanced the p53 levels substantially. In both extracts, apoptosis was not caspase-8 or Fas Ligand and sFas (Fas/APO-1 dependent. Our studies highlight L. nobilis as a potential natural agent for breast cancer therapy. Compared with non induced basal cells, both L. nobilis fruits and leaves induced a significant enrichment in the cytoplasmic mono- and oligonucleosomes after assumed induction of programmed MCF7 cell death.

  12. A new exploration on the creation of grafted breast cancer model for MA891 cells in TA2 mice

    Institute of Scientific and Technical Information of China (English)

    GU Jun-chao; YU Wei-bo; ZHANG Zhong-tao; WANG Yu

    2005-01-01

    @@ Animal experimental systems are particularly useful for the study of human breast cancer.1,2 An ideal model should be easy to use, closely mimicking human physiopathology and has a stable tumor morbidity. The cell line MA891 was established from a spontaneous TA2 mouse mammary carcinoma by Cancer Institute of Chinese Academy of Medical Sciences.3 Some researches indicated that MA891 had a very low immunogenecity and maintained a high metastatic potential in vivo. So it has been used as a better grafted mouse tumor model for studying cancer physiopathology and metastasis in human for years. However, about the biological characteristic and the histopathologic feature of this model there has been a lack of investigations.

  13. Biomarkers of residual disease, disseminated tumor cells, and metastases in the MMTV-PyMT breast cancer model.

    Directory of Open Access Journals (Sweden)

    Christian Franci

    Full Text Available Cancer metastases arise in part from disseminated tumor cells originating from the primary tumor and from residual disease persisting after therapy. The identification of biomarkers on micro-metastases, disseminated tumors, and residual disease may yield novel tools for early detection and treatment of these disease states prior to their development into metastases and recurrent tumors. Here we describe the molecular profiling of disseminated tumor cells in lungs, lung metastases, and residual tumor cells in the MMTV-PyMT breast cancer model. MMTV-PyMT mice were bred with actin-GFP mice, and focal hyperplastic lesions from pubertal MMTV-PyMT;actin-GFP mice were orthotopically transplanted into FVB/n mice to track single tumor foci. Tumor-bearing mice were treated with TAC chemotherapy (docetaxel, doxorubicin, cyclophosphamide, and residual and relapsed tumor cells were sorted and profiled by mRNA microarray analysis. Data analysis revealed enrichment of the Jak/Stat pathway, Notch pathway, and epigenetic regulators in residual tumors. Stat1 was significantly up-regulated in a DNA-damage-resistant population of residual tumor cells, and a pre-existing Stat1 sub-population was identified in untreated tumors. Tumor cells from adenomas, carcinomas, lung disseminated tumor cells, and lung metastases were also sorted from MMTV-PyMT transplant mice and profiled by mRNA microarray. Whereas disseminated tumors cells appeared similar to carcinoma cells at the mRNA level, lung metastases were genotypically very different from disseminated cells and primary tumors. Lung metastases were enriched for a number of chromatin-modifying genes and stem cell-associated genes. Histone analysis of H3K4 and H3K9 suggested that lung metastases had been reprogrammed during malignant progression. These data identify novel biomarkers of residual tumor cells and disseminated tumor cells and implicate pathways that may mediate metastasis formation and tumor relapse after

  14. Mutation Screening of 1,237 Cancer Genes across Six Model Cell Lines of Basal-Like Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Eleonor Olsson

    Full Text Available Basal-like breast cancer is an aggressive subtype generally characterized as poor prognosis and lacking the expression of the three most important clinical biomarkers, estrogen receptor, progesterone receptor, and HER2. Cell lines serve as useful model systems to study cancer biology in vitro and in vivo. We performed mutational profiling of six basal-like breast cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and HCC1937 and their matched normal lymphocyte DNA using targeted capture and next-generation sequencing of 1,237 cancer-associated genes, including all exons, UTRs and upstream flanking regions. In total, 658 somatic variants were identified, of which 378 were non-silent (average 63 per cell line, range 37-146 and 315 were novel (not present in the Catalogue of Somatic Mutations in Cancer database; COSMIC. 125 novel mutations were confirmed by Sanger sequencing (59 exonic, 48 3'UTR and 10 5'UTR, 1 splicing, with a validation rate of 94% of high confidence variants. Of 36 mutations previously reported for these cell lines but not detected in our exome data, 36% could not be detected by Sanger sequencing. The base replacements C/G>A/T, C/G>G/C, C/G>T/A and A/T>G/C were significantly more frequent in the coding regions compared to the non-coding regions (OR 3.2, 95% CI 2.0-5.3, P<0.0001; OR 4.3, 95% CI 2.9-6.6, P<0.0001; OR 2.4, 95% CI 1.8-3.1, P<0.0001; OR 1.8, 95% CI 1.2-2.7, P = 0.024, respectively. The single nucleotide variants within the context of T[C]T/A[G]A and T[C]A/T[G]A were more frequent in the coding than in the non-coding regions (OR 3.7, 95% CI 2.2-6.1, P<0.0001; OR 3.8, 95% CI 2.0-7.2, P = 0.001, respectively. Copy number estimations were derived from the targeted regions and correlated well to Affymetrix SNP array copy number data (Pearson correlation 0.82 to 0.96 for all compared cell lines; P<0.0001. These mutation calls across 1,237 cancer-associated genes and identification of novel variants will aid in

  15. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone

    Institute of Scientific and Technical Information of China (English)

    LING Li-jun; WANG Feng; WANG Shui; LIU Xiao-an; SHEN En-chao; DING Qiang; LU Chao; XU Jian; CAO Qin-hong; ZHU Hai-qing

    2008-01-01

    Background A satisfactory animal model of breast cancer metastasizing to bone is unavailable. In this study, we used human breast cancer stem-like cells and human bone to build a novel "human-source" model of human breast cancer skeletal metastasis.Methods Human breast cancer stem-like cells, the CD44+/CD24-/lower subpopulation, was separated and cultured. Before injection with the stem-like cells, mice were implanted with human bone in the right or left dorsal flanks. Animals in Groups A, B, and C were injected with 1x105, 1x106 human breast cancer stem-like cells, and 1x106 parental MDA-MB-231 cells, respectively. A positive control group (D) without implantation of human bone was also injected with 1x106 MDA-MB-231 cells. Immunohistochemistry was performed for determination of CD34, CD105, smooth muscle antibody, CD44, CD24, cytokine, CXC chemokine receptor-4 (CXCR4), and osteopontin (OPN). mRNA levels of CD44, CD24, CXCR4, and OPN in bone metastasis tissues were analyzed by real-time quantitative polymerase chain reaction (PCR). Results Our results demonstrated that cells in implanted human bones of group B, which received 1x106 cancer stem-like cells, stained strongly positive for CD44, CXCR4, and OPN, whereas those of other groups showed no or minimum staining. Moreover, group B had the highest incidence of human bone metastasis (77.8%, P=0.0230) and no accompaniment of other tissue metastasis. The real-time PCR showed an increase of CD44, CXCR4, and OPN mRNA in metastatic bone tissues in group B compared with those of groups C and D, however the expression of CD24 mRNA in group B were the lowest. Conclusions In the novel "human source" model of breast cancer, breast cancer stem-like cells demonstrated a higher human bone-seeking ability. Its mechanism might be related to the higher expressions of CD44, CXCR4, and OPN, and the lower expression of CD24 in breast cancer stem-like cells.

  16. Synergistic effect of therapeutic stem cells expressing cytosine deaminase and interferon-beta via apoptotic pathway in the metastatic mouse model of breast cancer.

    Science.gov (United States)

    Yi, Bo-Rim; Kim, Seung U; Choi, Kyung-Chul

    2016-02-01

    As an approach to improve treatment of breast cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs, HB1.F3 cells) consisting of neural stem cells (NSCs) expressing cytosine deaminase and the interferon-beta genes, HB1.F3.CD and HB1.F3.CD.IFN-β. In this model, MDA-MB-231/Luc breast cancer cells were implanted in the right hemisphere of the mouse brain, while pre-stained GESTECs with redfluorescence were implanted in the contralateral brain. Two days after stem cells injection, 5-fluorocytosine (5-FC) was administrated via intraperitoneal injection. Histological analysis of extracted brain confirmed the therapeutic efficacy of GESTECs in the presence of 5-FC based on reductions in density and aggressive tendency of breast cancer cells, as well as pyknosis, karyorrhexis, and karyolysis relative to a negative control. Additionally, expression of PCNA decreased in the stem cells treated group. Treatment of breast cancer cells with 5-fluorouracil (5-FU) increased the expression of pro-apoptotic and anti-proliferative factor, BAX and p21 protein through phosphorylation of p53 and p38. Moreover, analysis of stem cell migratory ability revealed that MDA-MB-231 cells endogenously secreted VEGF, and stem cells expressed their receptor (VEGFR2). To confirm the role of VEGF/VEGFR2 signaling in tumor tropism of stem cells, samples were treated with the VEGFR2 inhibitor, KRN633. The number of migrated stem cells decreased significantly in response to KRN633 due to Erk1/2 activation and PI3K/Akt inhibition. Taken together, these results indicate that treatment with GESTECs, particularly HB1.F3.CD.IFN-β co-expressing CD.IFN-β, may be a useful strategy for treating breast cancer metastasis to the brain in the presence of a prodrug.

  17. Role of CEACAM1, ECM, and Mesenchymal Stem Cells in an Orthotopic Model of Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sridhar Samineni

    2011-01-01

    Full Text Available Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1 is a morphogen in an in vitro model for lumen formation and plays a similar role in breast epithelial cells implanted in humanized mammary fat pads in NOD-SCID mice. Although extra cellular matrix alone is sufficient to stimulate lumen formation in CEACAM1 transfected MCF-7 cells grown in 3D culture, there is an additional requirement for stromal or mesenchymal cells (MSCs for these cells to form xenografts with glandular structures in an orthotopic site. We demonstrate that optimal in vitro conditions include both Matrigel and MSCs and that the inclusion of collagen I inhibits xenograft differentiation. Additionally, there is no need to remove the nascent murine mammary gland. The previously observed difference in gland development between the long and short cytoplasmic domain isoforms of CEACAM1 is no longer observed in pregnant NOD/SCID mice suggesting that stimulation of the mammary fat pad by pregnancy critically affects xenograft differentiation.

  18. BREAST BIOMECANICAL MODELING FOR COMPRESSION OPTIMIZATION IN DIGITAL BREAST TOMOSYNTHESIS

    OpenAIRE

    Anna, Mîra; Carton, Ann-Katherine; Muller, Serge; Payan, Yohan

    2016-01-01

    International audience; The aim of this work is to develop a biomechanical Finite Element (FE) breast model in order to analyze different breast compression strategies and their impact on image quality. Large breast deformations will be simulated using this FE model. A particular attention will be granted to the computation of the initial stress in the model due to gravity and to boundary conditions imposed by the thorax anatomy. Finally, the model will be validated by comparing the estimated...

  19. Pre-osteoblastic MC3T3-E1 promote breast cancer cell growth in bone in a murine xenograft model

    Science.gov (United States)

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cance...

  20. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  1. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs exhibits similar aggressive phenotype to the human disease

    Directory of Open Access Journals (Sweden)

    Kau Punit

    2012-03-01

    Full Text Available Abstract Background Triple-negative breast cancer (TNBC exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. Methods To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER, progesterone receptor (PgR or the gene for human epidermal growth factor receptor 2 (HER2. As a control, we produced a stable triple-positive breast cancer (TPBC cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. Results We isolated tumor-initiating cells (TICs by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs and TPBC (TPBC-TICs stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs and TPBC (TPBC-TICs were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1 and seventy-two kDa heat shock protein (Hsp72/HspA1A. Conclusions

  2. Transformation of MCF-10A cells by random mutagenesis with frameshift mutagen ICR191: A model for identifying candidate breast-tumor suppressors

    Directory of Open Access Journals (Sweden)

    Matsui Sei-Ichi

    2008-06-01

    Full Text Available Abstract Background Widely accepted somatic mutation theory of carcinogenesis states that mutations in oncogenes and tumor suppressor genes in genomes of somatic cells is the cause of neoplastic transformation. Identifying frequent mutations in cancer cells suggests the involvement of mutant genes in carcinogenesis. Results To develop an in vitro model for the analysis of genetic alterations associated with breast carcinogenesis, we used random mutagenesis and selection of human non-tumorigenic immortalized breast epithelial cells MCF-10A in tissue-culture conditions that mimic tumor environment. Random mutations were generated in MCF-10A cells by cultivating them in a tissue-culture medium containing the frameshift-inducing agent ICR191. The first selective condition we used to transform MCF1-10A cells was cultivation in a medium containing mutagen at a concentration that allowed cell replication despite p53 protein accumulation induced by mutagen treatment. The second step of selection was either cell cultivation in a medium with reduced growth-factor supply or in a medium that mimics a hypoxia condition or growing in soft agar. Using mutagenesis and selection, we have generated several independently derived cultures with various degrees of transformation. Gene Identification by Nonsense-mediated mRNA decay Inhibition (GINI analysis has identified the ICR191-induced frameshift mutations in the TP53, smoothelin, Ras association (RalGDS/AF-6 domain family 6 (RASSF6 and other genes in the transformed MCF-10A cells. The TP53 gene mutations resulting in the loss of protein expression had been found in all independently transformed MCF-10A cultures, which form large progressively growing tumors with sustained angiogenesis in nude mice. Conclusion Identifying genes containing bi-allelic ICR191-induced frameshift mutations in the transformed MCF-10A cells generated by random mutagenesis and selection indicates putative breast-tumor suppressors. This

  3. Comparison of the antiproliferative activity of crude ethanol extracts of nine salvia species grown in Jordan against breast cancer cell line models

    Directory of Open Access Journals (Sweden)

    Rana Abu-Dahab

    2012-01-01

    Full Text Available Background: The antiproliferative activity of Salvia species grown in Jordan has not been fully evaluated yet. The aim of this work was to study the antiproliferative activity of crude ethanol extracts from nine Salvia species grown in Jordan against a panel of breast cancer cell lines. Material and Methods: Cytotoxic activity was evaluated in human tumor models of breast cancer; MCF-7, T47D, ZR-75-1, and BT 474 by the sulforhodamine B assay. In addition, the extracts were evaluated using a non-transformed cell line (Vero and normal fibroblast cells in order to demonstrate their selectivity and safety. Results: From the nice ethanol extracts under investigation, those of S. dominica and S. fruticosa showed an inhibitory concentration of 50% of cells (IC 50 in concentrations less than 30μg/mL against the four cell lines under investigation. S. syriaca and S. hormium showed an IC 50 below 30μg/ml for two out of the four cell lines. S. fruticosa, S. hormium and S. syriaca showed selectivity in their antiproliferative activity against estrogen receptor positive cell lines with minimal toxicity against normal human periodontal fibroblasts. Phytochemical screening using thin layer chromatography indicated the presence of terpenoids, flavonoids and coumarins in all examined extracts. Conclusion: Three of the plant extracts under investigation exhibited antiproliferative activity against breast cancer cells and were shown to be safe and selective. These could be considered as a potential source for novel anticancer therapy.

  4. Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling.

    Directory of Open Access Journals (Sweden)

    Fatma M Youniss

    Full Text Available The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR, a lipophilic near infrared fluorescent dye that labels the cell membrane. Assays for viability, proliferation, and function of labeled T-lymphocytes showed that they were unaffected by DiR labeling. The DiR labeled cells were injected via tail vein in mice bearing 4T1 tumors in the flank. In some cases labeled 4T1 specific T-lymphocytes were injected a week before 4T1 tumor cell implantation. Multi-spectral in vivo fluorescence imaging was done to subtract the autofluorescence and isolate the near infrared signal carried by the T-lymphocytes. In recipient mice with established 4T1 tumors, labeled 4T1 specific T-lymphocytes showed marked tumor retention, which peaked 6 days post infusion and persisted at the tumor site for up to 3 weeks. When 4T1 tumor cells were implanted 1-week post-infusion of labeled T-lymphocytes, T-lymphocytes responded to the immunologic challenge and accumulated at the site of 4T1 cell implantation within two hours and the signal persisted for 2 more weeks. Tumor accumulation of labeled 4T1 specific T-lymphocytes was absent in mice bearing Meth A sarcoma tumors. When lysate of 4T1 specific labeled T-lymphocytes was injected into 4T1 tumor bearing mice the near infrared signal was not detected at the tumor site. In conclusion, our validated results confirm that the near infrared signal detected at the tumor site represents the DiR labeled 4T1 specific viable T-lymphocytes and their response to immunologic challenge

  5. Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model.

    Directory of Open Access Journals (Sweden)

    Cornelia Braicu

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive phenotype that is resistant to standard therapy. Thus, the development of alternative therapeutic strategies for TNBC is essential. The purpose of our in vitro study was to evaluate the impact of p53 gene silencing in conjunction with the administration of a natural compound, epigallocatechingallate (EGCG. RT2Profiler PCR Array technology was used to evaluate the impact of dual treatment on the main genes involved in apoptosis in the Hs578T cell culture model of TNBC. Gene expression analysis revealed 28 genes were significantly altered (16 upregulated and 12 downregulated in response to combined p53 siRNA and EGCG treatment. Further analysis revealed that p53 siRNA and EGCG dual therapy leads to the activation of pro-apoptotic genes and the inhibition of pro-survival genes, autophagy, and cell network formation. These results indicate that this dual therapy targets both the apoptotic and angiogenic pathways, which may improve treatment effectiveness for tumors resistant to conventional treatment.

  6. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  7. Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model

    Institute of Scientific and Technical Information of China (English)

    Thomas M. Bodenstine; Benjamin H. Beck; Xuemei Cao; Leah M. Cook; Aimen Ismai; J. Kent Powers; Andrea M. Mastro; Danny R. Welch

    2011-01-01

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cancer cells induce apoptosis in osteoblasts, which further exacerbates bone loss. However, in early stages, breast cancer cells induce osteoblasts to secrete inflammatory cytokines purported to drive tumor progression. To more thoroughly evaluate the role of osteoblasts in early stages of breast cancer metastasis to the bones, we used green fluorescent protein-labeled human breast cancer cell lines MDA-MB-231 and MDA-MB-435, which both induce osteolysis after intra-femoral injection in athymic mice, and the murine pre-osteoblastic cell line MC3T3-E1 to modulate osteoblast populations at the sites of breast cancer metastasis. Breast cancer cells were injected directly into the femur with or without equal numbers of MC3T3-E1 cells. Tumors grew significantly larger when co-injected with breast cancer cells and MC3T3-E1 cells than injected with breast cancer cells alone. Osteolysis was induced in both groups, indicating that MC3T3-E1 cells did not block the ability of breast cancer cells to cause bone destruction. MC3T3-E1 cells promoted tumor growth out of the bone into the extraosseous stroma. These data suggest that breast cancer cells and osteoblasts communicate during early stages of bone metastasis and promote tumor growth.

  8. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  9. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia

    DEFF Research Database (Denmark)

    Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René;

    2003-01-01

    epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell...... cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90...

  10. Breast cancer stem cells: current advances and clinical implications.

    Science.gov (United States)

    Luo, Ming; Clouthier, Shawn G; Deol, Yadwinder; Liu, Suling; Nagrath, Sunitha; Azizi, Ebrahim; Wicha, Max S

    2015-01-01

    There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.

  11. Numerical modelling of biopotential field for detection of breast tumour.

    Science.gov (United States)

    Ng, E Y K; Ng, W K; Sim, L S J; Rajendra Acharya, U

    2007-08-01

    Breast cancer is a disease characterised by the uncontrolled growth of abnormal cells. These cancer cells can travel through the body by way of blood or lymph nodes. Previous studies have indicated that, changes in the electrical properties of abnormal breast are more significant compared to the breast normal tissues. In the present study, a simple 2D models of breast (close to realistic), with and without artificially inserted malignant cancer were simulated, based upon electrical activity within the breast. We developed an inhomogeneous female breast model, closer to the actual, by considering a breast as a hemisphere with various layers of unequal thickness in supine condition. In order to determine the potential distribution developed due to a dipole source, isotropic homogeneous conductivity was assigned to each of these compartments and the volume conductor problem was solved using finite element method. Significant changes in the potential distribution were recoded in the malignant and normal breast regions. The surface potential decreases about 0.5%, for the small malignant region of surface area 13 mm(2) (spherical diameter=2mm). And it (surface potential) decreases about 16.4% for large malignant surface area of 615 mm(2) (spherical diameter=14 mm). Hence, the results show that, the sizes of tumours result in the reduction of surface potential and follows a fourth order polynomial equation. Thus, biofield analysis yields promising results in the detection of the breast cancer of various sizes.

  12. Elucidation of epithelial-mesenchymal transition-related pathways in a triple-negative breast cancer cell line model by multi-omics interactome analysis.

    Science.gov (United States)

    Pauling, Josch K; Christensen, Anne G; Batra, Richa; Alcaraz, Nicolas; Barbosa, Eudes; Larsen, Martin R; Beck, Hans C; Leth-Larsen, Rikke; Azevedo, Vasco; Ditzel, Henrik J; Baumbach, Jan

    2014-11-01

    In life sciences, and particularly biomedical research, linking aberrant pathways exhibiting phenotype-specific alterations to the underlying physical condition or disease is an ongoing challenge. Computationally, a key approach for pathway identification is data enrichment, combined with generation of biological networks. This allows identification of intrinsic patterns in the data and their linkage to a specific context such as cellular compartments, diseases or functions. Identification of aberrant pathways by traditional approaches is often limited to biological networks based on either gene expression, protein expression or post-translational modifications. To overcome single omics analysis, we developed a set of computational methods that allow a combined analysis of data collections from multiple omics fields utilizing hybrid interactome networks. We apply these methods to data obtained from a triple-negative breast cancer cell line model, combining data sets of gene and protein expression as well as protein phosphorylation. We focus on alterations associated with the phenotypical differences arising from epithelial-mesenchymal transition in two breast cancer cell lines exhibiting epithelial-like and mesenchymal-like morphology, respectively. Here we identified altered protein signaling activity in a complex biologically relevant network, related to focal adhesion and migration of breast cancer cells. We found dysregulated functional network modules revealing altered phosphorylation-dependent activity in concordance with the phenotypic traits and migrating potential of the tested model. In addition, we identified Ser267 on zyxin, a protein coupled to actin filament polymerization, as a potential in vivo phosphorylation target of cyclin-dependent kinase 1.

  13. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  14. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models

    Science.gov (United States)

    Toscani, Andrés Martín; Sampayo, Rocío G.; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina

    2017-01-01

    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells. PMID:28306722

  15. Is there a role for mammary stem cells in inflammatory breast carcinoma?: a review of evidence from cell line, animal model, and human tissue sample experiments.

    Science.gov (United States)

    Van Laere, Steven; Limame, Ridha; Van Marck, Eric A; Vermeulen, Peter B; Dirix, Luc Y

    2010-06-01

    Stem cells are pluripotent cells, with a large replicative potential, which perform normal physiological functions such as tissue renewal and damage repair. However, because of their long lifespan and high replicative potential, stem cells are ideal targets to accumulate multiple mutations. Therefore, they can be regarded as being responsible for the initiation of tumor formation. In the past, numerous studies have shown that the presence of an elaborate stem cell compartment within a tumor is associated with aggressive tumor cell behavior, frequent formation of metastases, resistance to therapy, and poor patient survival. From this perspective, tumors from patients with inflammatory breast cancer (IBC), an aggressive breast cancer subtype with a dismal clinical course, are most likely to be associated with stem cell biology. To date, this hypothesis is corroborated by evidence resulting from in vitro and in vivo experiments. Both gene and microRNA expression profiles highlighted several stem cell-specific signal transduction pathways that are hyperactivated in IBC. Also, these stem cell-specific signal transduction pathways seem to converge in the activation of nuclear factor-kappa B, a molecular hallmark of IBC, and induction of epithelial-to-mesenchymal transition. Recently, the latter mechanism was identified as a prerequisite for the induction of stem cell characteristics in breast cancer cells.

  16. Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Cesar F Ortega-Cava

    2011-01-01

    Full Text Available Background: Well over a quarter of human breast cancers are ErbB2-driven and constitute a distinct subtype with substantially poorer prognosis. Yet, there are substantial gaps in our understanding of how ErbB2 tyrosine kinase activity unleashes a coordinated program of cellular and extracellular alterations that culminate in aggressive breast cancers. Cellular models that exhibit ErbB2 kinase dependency and can induce metastatic breast cancer in immune competent hosts are likely to help bridge this gap. Materials and Methods: Here, we derived and characterized a cell line model obtained from a transgenic ErbB2/Neu-driven mouse mammary adenocarcinoma. Results: The MPPS1 cell line produces metastatic breast cancers when implanted in the mammary fat pads of immune-compromised as well as syngeneic immune-competent hosts. MPPS1 cells maintain high ErbB2 overexpression when propagated in DFCI-1 or related media, and their growth is ErbB2-dependent, as demonstrated by concentration-dependent inhibition of proliferation with the ErbB kinase inhibitor Lapatinib. When grown in 3-dimensional (3-D culture on Matrigel, MPPS1 cells predominantly form large irregular cystic and solid structures. Remarkably, low concentrations of Lapatinib led to a switch to regular acinar growth on Matrigel. Immunofluorescence staining of control vs. Lapatinib-treated acini for markers of epithelial polarity revealed that inhibition of ErbB2 signaling led to rapid resumption of normal mammary epithelium-like cell polarity. Conclusions: The strict dependence of the MPPS1 cell system on ErbB2 signals for proliferation and alterations in cell polarity should allow its use to dissect ErbB2 kinase-dependent signaling pathways that promote loss of cell polarity, a key component of the epithelial mesenchymal transition and aggressiveness of ErbB2-driven breast cancers.

  17. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  18. Breast metastasis from small cell lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shi-ping LUH; Chih KUO; Thomas Chang-yao TSAO

    2008-01-01

    Breast metastases from extramammary neoplasms are very rare. We presented a 66 year-old female with metastasis of small cell lung carcinoma to the breast. She presented with consolidation over the left upper lobe of her lung undetermined after endobronchial or video-assisted thoracoscopic surgery (VATS) biopsy, and this was treated effectively after antibiotic therapy at initial stage. The left breast lumps were noted 4 months later, and she underwent a modified radical mastectomy under the impression of primary breast carcinoma. However, the subsequent chest imaging revealed re-growing mass over the left mediastinum and hilum, and cells with the same morphological and staining features were found from specimens of transbronchial brushing and biopsy. An accurate diagnosis to distinguish a primary breast carcinoma from metastatic one is very important because the therapeutic planning and the outcome between them are different.

  19. Development of Liposomal Formulation for Delivering Anticancer Drug to Breast Cancer Stem-Cell-Like Cells and its Pharmacokinetics in an Animal Model.

    Science.gov (United States)

    Ahmad, Ajaz; Mondal, Sujan Kumar; Mukhopadhyay, Debabrata; Banerjee, Rajkumar; Alkharfy, Khalid M

    2016-03-07

    The objective of the present study is to develop a liposomal formulation for delivering anticancer drug to breast cancer stem-cell-like cells, ANV-1, and evaluate its pharmacokinetics in an animal model. The anticancer drug ESC8 was used in dexamethasone (Dex)-associated liposome (DX) to form ESC8-entrapped liposome named DXE. ANV-1 cells showed high-level expression of NRP-1. To enhance tumor regression, we additionally adapted to codeliver the NRP-1 shRNA-encoded plasmid using the established DXE liposome. In vivo efficacy of DXE-NRP-1 was carried out in mice bearing ANV-1 cells as xenograft tumors and the extent of tumor growth inhibition was evaluated by tumor-size measurement. A significant difference in tumor volume started to reveal between DXE-NRP-1 group and DXE-Control group. DXE-NRP-1 group showed ∼4 folds and ∼2.5 folds smaller tumor volume than exhibited by untreated and DXE-Control-treated groups, respectively. DXE disposition was evaluated in Sprague-Dawley rats following an intraperitoneal dose (3.67 mg/kg of ESC8 in DXE). The plasma concentrations of ESC8 in the DXE formulation were measured by liquid chromatography mass spectrometry and pharmacokinetic parameters were determined using a noncompartmental analysis. ESC8 had a half-life of 11.01 ± 0.29 h, clearance of 2.10 ± 3.63 L/kg/h, and volume of distribution of 33.42 ± 0.83 L/kg. This suggests that the DXE liposome formulation could be administered once or twice daily for therapeutic efficacy. In overall, we developed a potent liposomal formulation with favorable pharmacokinetic and tumor regressing profile that could sensitize and kill highly aggressive and drug-resistive cancer stem-cell-like cells.

  20. Benzyl Isothiocyanate Inhibits Epithelial-Mesenchymal Transition in Cultured and Xenografted Human Breast Cancer Cells

    OpenAIRE

    Sehrawat, Anuradha; Singh, Shivendra V.

    2011-01-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells, and suppresses mammary cancer development in a transgenic mouse model. We now demonstrate, for the first time, that BITC inhibits epithelial-to-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell ...

  1. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts.

    Science.gov (United States)

    Feng, Ming-Xuan; Hong, Jian-Xin; Wang, Qiang; Fan, Yong-Yong; Yuan, Chi-Ting; Lei, Xin-Huan; Zhu, Min; Qin, An; Chen, Hai-Xiao; Hong, Dun

    2016-01-08

    Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.

  2. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  3. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    Science.gov (United States)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  4. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    Science.gov (United States)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-01-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade. PMID:27767185

  5. Local administration of liposomal adriamycin inhibited proliferation of metastatic cells in axillary lymph nodes in rabbit breast cancer model

    Institute of Scientific and Technical Information of China (English)

    Li Xiaojun; Qin Hong; Yao Jia; Wang Jiansheng; Xian Yinsheng; Zhang Yunfeng; Ren Hong

    2009-01-01

    Objective: To assess the inhibitory effects of liposomal adriamycin (LADR) locally injected into mammary glands of VX2 tumor-bearing rabbits on proliferation of lymph nodal metastatic cells. Methods: Twenty-one VX2 tumor-bearing rabbits were randomly and equally divided into 3 groups. Rabbits were randomized to receive sham treatment (Group I), subcutaneous LADR around tumor (Group II) and intravenous free adriamycin (Group III), respectively. Breast tumor and axillary lymph nodes were harvested after 3 repeated treatment. Nodal sizes of both pre- and post-treatment were measured. Proliferating cell nuclear antigen (PCNA) mRNA in both tumor and lymph nodes were determined by RT-PCR. Results: The mean size of axillary lymph nodes in Group I, II and III increased by 3.70%, 1.55% and 2.89%, respectively, with significant difference between Group III and I (P=0.004) and between Group II and III (P=0.002). Relative expression values of PCNA mRNA in breast tumors of Group I, II and III were 0.486, 0.513 and 0.396, respectively. For Group III, PCNA mRNA was significantly less expressed than that in Group I (P=0.023) and II (P=0.005). Relative expression values of PCNA mRNA in axillary lymph nodes of Group I, II and III were 0.541, 0.329 and 0.450, respectively. Compared with Group I, Group III showed a markedly decreased expression of PCNA (P=0.021). The least level of PCNA mRNA was found in Group II, with a significant difference from that in Group HI (P=0.004). Conclusion: Local injection of LADR was an effective therapeutic regimen for lymphatic metastases from breast cancer, regardless of its little effect on primary tumor.

  6. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  7. Reductions in Myeloid-Derived Suppressor Cells and Lung Metastases using AZD4547 Treatment of a Metastatic Murine Breast Tumor Model

    Directory of Open Access Journals (Sweden)

    Li Liu

    2014-03-01

    Full Text Available Background: AZD4547, a small-molecule inhibitor targeting the tyrosine kinase of Fibroblast Growth Factor Receptors (FGFRs, is currently under phase II clinical study for human subjects having breast cancer, while the underlying mechanism remains elusive. The aim of this study is to explore the potential mechanism by which AZD4547 inhibits breast tumor lung metastases at the level of the tumor microenvironment. Methods: First, through in vitro experiments, we investigated the efficacy of the FGFRs inhibitor AZD4547 on 4T1 tumor cells for their proliferation, apoptosis, migration, and invasion. Second, by in vivo animal experiments, we evaluated the effects of AZD4547 on tumor growth and lung metastases in 4T1 tumor-bearing mice. Finally, we examined the impact of AZD4547 on the infiltration of myeloid-derived suppressor cells (MDSCs in lung, spleens, peripheral blood and tumor. Results: Through this study we found that AZD4547 could efficiently suppress tumor 4T1 cells through restraining their proliferation, blocking migration and invasion, and inducing apoptosis in vitro. In animal model we also demonstrated that AZD4547 was able to inhibit tumor growth and lung metastases, consistent with the decreased MDSCs accumulation in the tumor and lung tissues, respectively. Moreover, the reduced number of MDSCs in peripheral blood and spleens were also observed in the AZD4547-treated mice. Importantly, through the AZD4547 treatment, the CD4+ and CD8+ T-cells were significantly increased in tumor and spleens. Conclusion: Our studies showed that AZD4547 can inhibit breast cancer cell proliferation, induce its apoptosis and block migration and invasion in vitro and suppress tumor growth and lung metastases by modulating the tumor immunologic microenvironment in vivo.

  8. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling.

    Science.gov (United States)

    Masuda, Tetsuro; Endo, Motoyoshi; Yamamoto, Yutaka; Odagiri, Haruki; Kadomatsu, Tsuyoshi; Nakamura, Takayuki; Tanoue, Hironori; Ito, Hitoshi; Yugami, Masaki; Miyata, Keishi; Morinaga, Jun; Horiguchi, Haruki; Motokawa, Ikuyo; Terada, Kazutoyo; Morioka, Masaki Suimye; Manabe, Ichiro; Iwase, Hirotaka; Mizuta, Hiroshi; Oike, Yuichi

    2015-03-16

    Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer.

  9. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  10. GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast.

    Science.gov (United States)

    Scaling, Allison L; Prossnitz, Eric R; Hathaway, Helen J

    2014-06-01

    17β-Estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized nontumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane-bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  11. Cell Polarity Proteins in Breast Cancer Progression.

    Science.gov (United States)

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  12. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model

    Science.gov (United States)

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-11-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress

  13. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  14. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    Science.gov (United States)

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case.

  15. FGFR2 promotes breast tumorigenicity through maintenance of breast tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Sungeun Kim

    Full Text Available Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.

  16. Sox2 expression in breast tumours and activation in breast cancer stem cells.

    Science.gov (United States)

    Leis, O; Eguiara, A; Lopez-Arribillaga, E; Alberdi, M J; Hernandez-Garcia, S; Elorriaga, K; Pandiella, A; Rezola, R; Martin, A G

    2012-03-15

    The cancer stem cell (CSC) model does not imply that tumours are generated from transformed tissue stem cells. The target of transformation could be a tissue stem cell, a progenitor cell, or a differentiated cell that acquires self-renewal ability. The observation that induced pluripotency reprogramming and cancer are related has lead to the speculation that CSCs may arise through a reprogramming-like mechanism. Expression of pluripotency genes (Oct4, Nanog and Sox2) was tested in breast tumours by immunohistochemistry and it was found that Sox2 is expressed in early stage breast tumours. However, expression of Oct4 or Nanog was not found. Mammosphere formation in culture was used to reveal stem cell properties, where expression of Sox2, but not Oct4 or Nanog, was induced. Over-expression of Sox2 increased mammosphere formation, effect dependent on continuous Sox2 expression; furthermore, Sox2 knockdown prevented mammosphere formation and delayed tumour formation in xenograft tumour initiation models. Induction of Sox2 expression was achieved through activation of the distal enhancer of Sox2 promoter upon sphere formation, the same element that controls Sox2 transcription in pluripotent stem cells. These findings suggest that reactivation of Sox2 represents an early step in breast tumour initiation, explaining tumour heterogeneity by placing the tumour-initiating event in any cell along the axis of mammary differentiation.

  17. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Directory of Open Access Journals (Sweden)

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  18. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    NARCIS (Netherlands)

    Duursen, van M.B.M.; Smeets, E.E.J.W.; Rijk, J.C.W.; Nijmeijer, S.M.; Berg, M.

    2013-01-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, li

  19. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  20. Elimination of Tumor Cells Using Folate Receptor Targeting by Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles in a Murine Breast Cancer Model

    Directory of Open Access Journals (Sweden)

    Evan S. Krystofiak

    2012-01-01

    Full Text Available Background. The chemotherapeutic treatment of cancer suffers from poor specificity for targeting the tumor cells and often results in adverse effects such as systemic toxicity, damage to nontarget tissues, and development of drug-resistant tumors in patients. Increasingly, drug nanocarriers have been explored as a way of lessening or overcoming these problems. In this study, antibody-conjugated Au-coated magnetite nanoparticles, in conjunction with inductive heating produced by exposure to an oscillating magnetic field (OMF, were evaluated for their effects on the viability of tumor cells in a murine model of breast cancer. Treatment effects were evaluated by light microscopy and SEM. Results. 4T1 mammary epithelial carcinoma cells overexpressing the folate receptor were targeted with an anti-folate receptor primary antibody, followed by labeling with secondary antibody-conjugated Au-coated magnetite nanoparticles. In the absence of OMF exposure, nanoparticle labeling had no effect on 4T1 cell viability. However, following OMF treatment, many of the labeled 4T1 cells showed extensive membrane damage by SEM analysis, and dramatically reduced viability as assessed using a live/dead staining assay. Conclusions. These results demonstrate that Au-coated magnetite targeted to tumor cells through binding to an overexpressed surface receptor, in the presence of an OMF, can lead to tumor cell death.

  1. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  2. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar;

    2011-01-01

    hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...... synthesis, and growth of these cells in vivo induced a >200-fold increase in ADAM12 expression. Our observation that ADAM12 expression is significantly higher in the terminal duct lobular units (TDLUs) adjacent to human breast carcinoma compared with TDLUs found in normal breast tissue supports our......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...

  3. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  4. Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma

    Institute of Scientific and Technical Information of China (English)

    Qian xu; Shou-jie CHAI; Ying-ying QIAN; Min ZHANG; Kai WANG

    2012-01-01

    Aim: To determine the roles of breast regression protein-39 (BRP-39) in regulating dendritic cell maturation and in pathology of acute asthma.Methods: Mouse bone marrow-derived dendritic cells (BMDCs) were prepared,and infected with adenovirus over-expressing BRP-39.Ovalbumin (OVA)-induced murine model of acute asthma was made in female BALB/c mice by sensitizing and challenging with chicken OVA and Imject Alum.The transfected BMDCs were adoptively transferred into OVA-treated mice via intravenous injection.Airway hyperresponsiveness (AHR),inflammation and pulmonary histopathology were characterized.Results: The expression of BRP-39 mRNA and protein was significantly increased in lung tissues of OVA-treated mice.The BMDCs infected with adenovirus BRP-39 exhibited greater maturation and higher activity in vitro.Adoptive transfer of the cells into OVA-treated mice significantly augmented OVA-induced AHR and eosinophilic inflammation.Meanwhile,BRP-39 further enhanced the production of OVA-induced Th2 cytokines IL-4,IL-5,and IL-13,but significantly attenuated OVA-induced IFN-γ production in bronchoalveolar lavage fluid.Conclusion: In OVA-induced murine model of acute asthma,BRP-39 is over-expressed in lung tissue and augments Th2 inflammatory response and AHR.BRP-39 promotes dendritic cell maturation in vitro.Therefore,BRP-39 may be a potential therapeutic target of asthma.

  5. Breast Cancer Cells May Change When They Spread to Brain

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162415.html Breast Cancer Cells May Change When They Spread to Brain: ... 2016 WEDNESDAY, Dec. 7, 2016 (HealthDay News) -- When breast cancer spreads to the brain, important molecular changes may ...

  6. HIPK2 downregulates vimentin and inhibits breast cancer cell invasion.

    Science.gov (United States)

    Nodale, Cristina; Sheffer, Michal; Jacob-Hirsch, Jasmine; Folgiero, Valentina; Falcioni, Rita; Aiello, Aurora; Garufi, Alessia; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2012-02-15

    Vimentin, a mesenchymal marker, is frequently overexpressed in epithelial carcinomas undergoing epithelial to mesenchymal transition (EMT), a condition correlated with invasiveness and poor prognosis. Therefore, vimentin is a potential molecular target for anticancer therapy. Emerging studies in experimental models underscore the functions of homeodomain-interacting protein kinase 2 (HIPK2) as potential oncosuppressor by acting as transcriptional corepressor or catalytic activator of molecules involved in apoptosis and response to antitumor drugs. However, an involvement of HIPK2 in limiting tumor invasion remains to be elucidated. This study, by starting with a microarray analysis, demonstrates that HIPK2 downregulates vimentin expression in invasive, vimentin-positive, MDA-MB-231 breast cancer cells and in the non-invasive MCF7 breast cancer cells subjected to chemical hypoxia, a drive for mesenchymal shift and tumor invasion. At functional level, vimentin downregulation by HIPK2 correlates with inhibition of breast tumor cell invasion. Together, these data show that vimentin is a novel target for HIPK2 repressor function and that HIPK2-mediated vimentin downregulation can contribute to inhibition of breast cancer cells invasion that might be applied in clinical therapy.

  7. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  8. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad . Breast cancer originates from subversions of...luminal epithelial cells embedded in a complex stromal matrix (‘mammary fat pad ’) comprised predominantly of fibroblasts, adipocytes and macrophages (Fig. 1...report, we showed that limited exposure (i.e., in utero and lactational only) of female rat offspring to a maternal diet containing soy protein isolate

  9. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  10. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Science.gov (United States)

    Harris, Dinari A; Patel, Sajni H; Gucek, Marjan; Hendrix, An; Westbroek, Wendy; Taraska, Justin W

    2015-01-01

    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  11. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines.

    Science.gov (United States)

    Willmann, Lucas; Schlimpert, Manuel; Halbach, Sebastian; Erbes, Thalia; Stickeler, Elmar; Kammerer, Bernd

    2015-09-01

    Although the concept of aerobic glycolysis in cancer was already reported in the 1930s by Otto Warburg, the understanding of metabolic pathways remains challenging especially due to the heterogeneity of cancer. In consideration of four different time points (1, 2, 4, and 7 days of incubation), GC-MS profiling of metabolites was performed on cell extracts and supernatants of breast cancer cell lines (MDA-MB-231, -453, BT-474) with different sub classification and the breast epithelial cell line MCF-10A. To the exclusion of trypsinization, direct methanolic extraction, cell scraping and cell disruption was executed to obtain central metabolites. Major differences in biochemical pathways have been observed in the breast cancer cell lines compared to the breast epithelial cell line, as well as between the breast cancer cell lines themselves. Characteristics of breast cancer subtypes could be correlated to their individual metabolic profiles. PLS-DA revealed the discrimination of breast cancer cell lines from MCF-10A based on elevated amino acid levels. The observed metabolic signatures have great potential as biomarker for breast cancer as well as an improved understanding of subtype specific phenomenons of breast cancer.

  12. Mammary stem cells and breast cancer--role of Notch signalling.

    Science.gov (United States)

    Farnie, Gillian; Clarke, Robert B

    2007-06-01

    Adult stem cells are found in numerous tissues of the body and play a role in tissue development, replacement and repair. Evidence shows that breast stem cells are multipotent and can self renew, which are key characteristics of stem cells, and a single cell enriched with cell surface markers has the ability to grow a fully functional mammary gland in vivo. Many groups have extrapolated the cancer stem cell hypothesis from the haematopoietic system to solid cancers, where using in vitro culture techniques and in vivo transplant models have established evidence of cancer stem cells in colon, pancreas, prostate, brain and breast cancers. In the report we describe the evidence for breast cancer stem cells; studies consistently show that stem cell like and breast cancer initiating populations can be enriched using cell surface makers CD44+/CD24- and have upregulated genes which include Notch. Notch signalling has been highlighted as a pathway involved in the development of the breast and is frequently dysregulated in invasive breast cancer. We have investigated the role of Notch in a pre-invasive breast lesion, ductal carcinoma in situ (DCIS), and have found that aberrant activation of Notch signalling is an early event in breast cancer. High expression of Notch 1 intracellular domain (NICD) in DCIS also predicted a reduced time to recurrence 5 years after surgery. Using a non-adherent sphere culture technique we have grown DCIS mammospheres from primary DCIS tissue, where self-renewal capacity, measured by the number of mammosphere initiating cells, were increased from normal breast tissue. A gamma-secretase inhibitor, DAPT, which inhibits all four Notch receptors and a Notch 4 neutralising antibody were shown to reduce DCIS mammosphere formation, indicating that Notch signalling and other stem cell self-renewal pathways may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.

  13. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  14. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  15. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  16. Breast milk cell components and its beneficial effects on neonates: need for breast milk cell banking

    Directory of Open Access Journals (Sweden)

    Pankaj Kaingade

    2017-01-01

    Full Text Available Universal breastfeeding has been a stated policy of the American Academy of Pediatrics, the World Health Organization as well as UNICEF. Human milk is considered as the gold standard for infants owing to its colossal nutritional values. However, the presence of various cellular components of breast milk have been gaining more attention in recent years since the first discovery of mammary stem cells in 2007, thereby providing a ray of hope not only for growth and immunity of the neonate but also an insight into its regenerative applicability. In this relation, this article summarizes the cell components of breast milk that have been identified to date. It highlights the beneficial effects of these cells for term and preterm delivered infants along with the need for breast milk and its cell banking.

  17. Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential.

    Directory of Open Access Journals (Sweden)

    Goar Mosoyan

    Full Text Available BACKGROUND: Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient's breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT treatment. METHODS: Five breast cancer cell lines were derived from a single patient's primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER, CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC. In addition, a Fluorescent In Situ Hybridization (FISH assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. RESULTS: We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. CONCLUSIONS: All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to

  18. The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model.

    Science.gov (United States)

    Yin, B; Ma, Z Y; Zhou, Z W; Gao, W C; Du, Z G; Zhao, Z H; Li, Q Q

    2015-02-01

    Cancer stem cells (CSCs) are believed to have a crucial role in triple-negative breast cancer (TNBC) recurrence. However, the exact mechanisms that are functionally critical in CSCs-mediated recurrence remain unclear. Here, we showed that CSCs derived from recurrent TNBCs are endowed with increased self-renewal capacity as compared with those from the matched primary lesions. Using patient-derived specimens, we demonstrated the existence of paracrine brain-derived neurotrophic factor (BDNF) signaling between differentiated recurrent TNBC cells and CSCs characterized by the expression of TrkB, the receptor of BDNF. We showed that paclitaxel induced BDNF expression and apoptosis simultaneously in a cell cycle-dependent manner. BDNF promotes the self-renewal potential of the TrkB+CSCs through induction of KLF4. The TrkB+CSCs represent a particular subset indispensable for TNBC relapse. In line with this, TrkB is proved to be a superior predictor for TNBC recurrence. Using a genetically engineered mouse model of TNBC, we observed that ablation of the TrkB+CSCs potentially prevents relapse of malignant tumors. Further preclinical investigation of this promising approach may lead to development of a novel therapeutic strategy to improve the devastating prognosis of TNBC patients.

  19. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    DEFF Research Database (Denmark)

    Lin, Xue; Li, Jian; Yin, Guangliang

    2013-01-01

    Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal...

  20. A role for ADAM12 in breast tumor progression and stromal cell apoptosis

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Frohlich, Camilla; Albrechtsen, Reidar;

    2005-01-01

    of stromal fibroblasts in tumor initiation and progression has been elucidated. Here, we show that stromal cell apoptosis occurs in human breast carcinoma but is only rarely seen in nonmalignant breast lesions. Furthermore, we show that ADAM12, a disintegrin and metalloprotease up-regulated in human breast...... cancer, accelerates tumor progression in a mouse breast cancer model. ADAM12 does not influence tumor cell proliferation but rather confers both decreased tumor cell apoptosis and increased stromal cell apoptosis. This dual role of ADAM12 in governing cell survival is underscored by the finding that ADAM......12 increases the apoptotic sensitivity of nonneoplastic cells in vitro while rendering tumor cells more resistant to apoptosis. Together, these results show that the ability of ADAM12 to influence apoptosis may contribute to tumor progression....

  1. Breast cancer stem cells and radiation

    Science.gov (United States)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  2. Mechanisms driving local breast cancer recurrence in a model of breast-conserving surgery.

    LENUS (Irish Health Repository)

    Smith, Myles J

    2012-02-03

    OBJECTIVE: We aimed to identify mechanisms driving local recurrence in a model of breast-conserving surgery (BCS) for breast cancer. BACKGROUND: Breast cancer recurrence after BCS remains a clinically significant, but poorly understood problem. We have previously reported that recurrent colorectal tumours demonstrate altered growth dynamics, increased metastatic burden and resistance to apoptosis, mediated by upregulation of phosphoinositide-3-kinase\\/Akt (PI3K\\/Akt). We investigated whether similar characteristics were evident in a model of locally recurrent breast cancer. METHODS: Tumours were generated by orthotopic inoculation of 4T1 cells in two groups of female Balb\\/c mice and cytoreductive surgery performed when mean tumour size was above 150 mm(3). Local recurrence was observed and gene expression was examined using Affymetrix GeneChips in primary and recurrent tumours. Differential expression was confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Phosphorylation of Akt was assessed using Western immunoblotting. An ex vivo heat shock protein (HSP)-loaded dendritic cell vaccine was administered in the perioperative period. RESULTS: We observed a significant difference in the recurrent 4T1 tumour volume and growth rate (p < 0.05). Gene expression studies suggested roles for the PI3K\\/Akt system and local immunosuppression driving the altered growth kinetics. We demonstrated that perioperative vaccination with an ex vivo HSP-loaded dendritic cell vaccine abrogated recurrent tumour growth in vivo (p = 0.003 at day 15). CONCLUSION: Investigating therapies which target tumour survival pathways such as PI3K\\/Akt and boost immune surveillance in the perioperative period may be useful adjuncts to contemporary breast cancer treatment.

  3. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Directory of Open Access Journals (Sweden)

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  4. Combined effects of lapatinib and bortezomib in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and activity of bortezomib against lapatinib-resistant breast cancer cells.

    Science.gov (United States)

    Ma, Chuandong; Niu, Xiuqing; Luo, Jianmin; Shao, Zhimin; Shen, Kunwei

    2010-10-01

    Lapatinib and bortezomib are highly active against breast cancer cells. Breast cancer patients who initially respond to lapatinib may eventually manifest acquired resistance to this treatment. Thus, the identification of novel agents that may prevent or delay the development of acquired resistance to lapatinib is critical. In the current study, we show that the combination of lapatinib and bortezomib results in a synergistic growth inhibition in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and that the combination enhances apoptosis of SK-BR-3 cells. Importantly, we found that the combination of lapatinib plus bortezomib more effectively blocked activation of the HER2 pathway in SK-BR-3 cells, compared with monotherapy. In addition, we established a model of acquired resistance to lapatinib by chronically challenging SK-BR-3 breast cancer cells with increasing concentrations of lapatinib. Here, we showed that bortezomib notably induced apoptosis of lapatinib-resistant SK-BR-3 pools and further inhibited HER2 signaling in the resistant cells. Taken together, the current data indicate a synergistic interaction between lapatinib and bortezomib in HER2-overexpressing breast cancer cells and provide the rationale for the clinical evaluation of these two noncross-resistant targeted therapies. The combination of lapatinib and bortezomib may be a potentially novel approach to prevent or delay the onset of acquired resistance to lapatinib in HER2-overxpressing/estrogen receptor (ER)-negative breast cancers.

  5. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression.

    Science.gov (United States)

    Christenson, Jessica L; Butterfield, Kiel T; Spoelstra, Nicole S; Norris, John D; Josan, Jatinder S; Pollock, Julie A; McDonnell, Donald P; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Richer, Jennifer K

    2017-04-01

    Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.

  6. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy.

  7. Differential effects of bisphosphonates on breast cancer cell lines

    NARCIS (Netherlands)

    Verdijk, R.; Franke, H.R.; Wolbers, F.; Vermes, I.

    2007-01-01

    Bisphosphonates may induce direct anti-tumor effects in breast cancers cells in virtro. In this study, six bisphosphonates were administered to three breast caner cell lines. Cell proliferation was measured by quantification of th expressio of Cyclin D1 mRNA. Apoptosis was determined by flow cytome

  8. Localization of thymosin ß10 in breast cancer cells

    DEFF Research Database (Denmark)

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...... show that thymosin ß10 is expressed in all three-cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-231) studied. No or little staining was detected in confluent cells, whereas strong staining occurred in semiconfluent cells and in cells populating monolayer wounds. Importantly, the distribution of staining...... for thymosin ß10 was inverse of staining for F-actin. These data support a physiological role for thymosin ß10 in sequestration of G-actin as well as in cancer cell motility....

  9. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida

    2016-01-01

    Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...... resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired...

  10. The nude mouse as an in vivo model for human breast cancer invasion and metastasis

    DEFF Research Database (Denmark)

    Brünner, N; Boysen, B; Rømer, J;

    1993-01-01

    Human breast cancer xenografts only rarely invade and metastasize in nude mice, and have therefore only had limited use as a model for studying mechanisms involved in breast cancer spreading. However, recent reports describe differences not only between various cell lines but also between strains...

  11. Increased promoter methylation in exfoliated breast epithelial cells in women with a previous breast biopsy.

    Science.gov (United States)

    Browne, Eva P; Punska, Elizabeth C; Lenington, Sarah; Otis, Christopher N; Anderton, Douglas L; Arcaro, Kathleen F

    2011-12-01

    Accurately identifying women at increased risk of developing breast cancer will provide greater opportunity for early detection and prevention. DNA promoter methylation is a promising biomarker for assessing breast cancer risk. Breast milk contains large numbers of exfoliated epithelial cells that are ideal for methylation analyses. Exfoliated epithelial cells were isolated from the milk obtained from each breast of 134 women with a history of a non-proliferative benign breast biopsy (Biopsy Group). Promoter methylation of three tumor suppressor genes, RASSF1, SFRP1 and GSTP1, was assessed by pyrosequencing of bisulfite-modified DNA. Methylation scores from the milk of the 134 women in the Biopsy Group were compared to scores from 102 women for whom a breast biopsy was not a recruitment requirement (Reference Group). Mean methylation scores for RASSF1 and GSTP1 were significantly higher in the Biopsy than in the Reference Group. For all three genes the percentage of outlier scores was greater in the Biopsy than in the Reference Group but reached statistical significance only for GSTP1. A comparison between the biopsied and non-biopsied breasts of the Biopsy Group revealed higher mean methylation and a greater number of outlier scores in the biopsied breast for both SFRP1 and RASSF1, but not for GSTP1. This is the first evidence of CpG island methylation in tumor suppressor genes of women who may be at increased risk of developing breast cancer based on having had a prior breast biopsy.

  12. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic channel was designed and fabricated for the investigation of behaviors of normal and cancer cells in a narrow channel. A specific question addressed in this study was whether it is possible to distinguish normal versus cancer cells by detecting their stationary and passing behaviors through a narrow channel. We hypothesized that due to higher deformability, softer cancer cells will pass through the channel further and quicker than normal cells. Two cell lines, employed herein, were non-tumor breast epithelial cells (MCF-10A; 11.2  ±  2.4 µm in diameter) and triple negative breast cancer cells (MDA-MB-231; 12.4  ±  2.1 µm in diameter). The microfluidic channel was 300 µm long and linearly tapered with a width of 30 µm at an inlet to 5 µm at an outlet. The result revealed that MDA-MB-231 cells entered and stuck further toward the outlet than MCF-10A cells in response to a slow flow (2 µl min‑1). Further, in response to a fast flow (5 µl min‑1), the passage time (mean  ±  s.d.) was 26.6  ±  43.9 s for normal cells (N  =  158), and 1.9  ±  1.4 s for cancer cells (N  =  128). The measurement of stiffness by atomic force microscopy as well as model-based predictions pointed out that MDA-MB-231 cells are significantly softer than MCF-10A cells. Collectively, the result in this study suggests that analysis of an individual cell’s behavior through a narrow channel can characterize deformable cancer cells from normal ones, supporting the possibility of enriching circulating tumor cells using novel microfluidics-based analysis.

  13. Targeting IL-8 signalling to inhibit breast cancer stem cell activity.

    Science.gov (United States)

    Singh, Jagdeep K; Simões, Bruno M; Clarke, Robert B; Bundred, Nigel J

    2013-11-01

    Although survival from breast cancer has improved significantly over the past 20 years, disease recurrence remains a significant clinical problem. The concept of stem-like cells in cancer has been gaining currency over the last decade or so, since evidence for stem cell activity in human leukaemia and solid tumours, including breast cancer, was first published. Evidence indicates that this sub-population of cells, known as cancer stem-like cells (CSCs), is responsible for driving tumour formation and disease progression. In breast cancer, there is good evidence that CSCs are intrinsically resistant to conventional chemo-, radio- and endocrine therapies. By evading the effects of these treatments, CSCs are held culpable for disease recurrence. Hence, in order to improve treatment there is a need to develop CSC-targeted therapies. Interleukin-8 (IL-8), an inflammatory cytokine, is upregulated in breast cancer and associated with poor prognostic factors. Accumulating evidence demonstrates that IL-8, through its receptors CXCR1/2, is an important regulator of breast CSC activity. Inhibiting CXCR1/2 signalling has proved efficacious in pre-clinical models of breast cancer providing a good rationale for targeting CXCR1/2 clinically. Here, we discuss the role of IL-8 in breast CSC regulation and development of novel therapies to target CXCR1/2 signalling in breast cancer.

  14. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    Science.gov (United States)

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  15. Toward a stem cell gene therapy for breast cancer.

    Science.gov (United States)

    Li, ZongYi; Liu, Ying; Tuve, Sebastian; Xun, Ye; Fan, Xiaolong; Min, Liang; Feng, Qinghua; Kiviat, Nancy; Kiem, Hans-Peter; Disis, Mary Leonora; Lieber, André

    2009-05-28

    Current approaches for treatment of late-stage breast cancer rarely result in a long-term cure. In part this is due to tumor stroma that prevents access of systemically or intratumorally applied therapeutics. We propose a stem cell gene therapy approach for controlled tumor stroma degradation that uses the pathophysiologic process of recruitment of inflammatory cells into the tumor. This approach involves genetic modification of hematopoietic stem cells (HSCs) and their subsequent transplantation into tumor-bearing mice. We show that inducible, intratumoral expression of relaxin (Rlx) either by transplanting tumor cells that contained the Rlx gene or by transplantation of mouse HSCs transduced with an Rlx-expressing lentivirus vector delays tumor growth in a mouse model of breast cancer. The antitumor effect of Rlx was mediated through degradation of tumor stroma, which provided increased access of infiltrating antitumor immune cells to their target tumor cells. Furthermore, we have shown in a human/mouse chimeric model that genetically modified HSCs expressing a transgene can access the tumor site. Our findings are relevant for cancer gene therapy and immunotherapy.

  16. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  17. Breast Cancer Risk Assessment SAS Macro (Gail Model)

    Science.gov (United States)

    A SAS macro (commonly referred to as the Gail Model) that projects absolute risk of invasive breast cancer according to NCI’s Breast Cancer Risk Assessment Tool (BCRAT) algorithm for specified race/ethnic groups and age intervals.

  18. Glycogen-rich clear cell carcinoma of the breast

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Paulsen, S M

    1987-01-01

    The light microscopic, immunohistochemical and ultrastructural features of a clear cell carcinoma of the breast have been studied. Both intraductal and invasive components were found. Histochemistry showed large amounts of intracytoplasmic glycogen and sparse neutral mucin in the tumour. The tumour...... was classified as a mucin-containing variant of glycogen-rich, clear cell carcinoma of the breast....

  19. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  20. Biological characteristics of breast carcinomas with neuroendocrine cell differentiation

    Institute of Scientific and Technical Information of China (English)

    姚根有; 周吉林; 赵仲生; 阮俊

    2004-01-01

    Background The aim of this study was to investigate DNA content and expression of c-erbB-2, PS2, and prostate-specific antigen (PSA) proteins in breast carcinomas with neuroendocrine (NE) cell differentiation.Methods Chromogranin, c-erbB-2, PS2, and PSA in 131 samples of breast cancer were detected immunohistochemically. Classic Feulgen staining image analysis techniques were used to quantify DNA content in 81 of the breast cancer samples.Results The c-erbB-2 positive rate in breast carcinoma samples containing neuroendocrine cells was 37.5% and the rate of high expression of c-erbB-2 (++ or +++) was 33.3%, both significantly lower than that in breast carcinomas without neuroendocrine cells (62.6% and 68.7%, respectively, P 5c aneuploidy cells, and rate of aneuploidy among cells were all lower than that in NE (-) breast carcinomas (P<0.01). In NE (+) grade I or II breast carcinomas, these indices were also all lower than that in the NE (-) breast carcinoma samples (P<0.01).Conclusion Breast carcinomas with neuroendocrine differentiation have a lower rate of malignancy. Neuroendocrine differentiation could serve as a prognostic marker in clinical practice.

  1. Stem cells in normal mammary gland and breast cancer.

    Science.gov (United States)

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  2. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells.

    Science.gov (United States)

    Li, Ruo-Jing; Ying, Xue; Zhang, Yan; Ju, Rui-Jun; Wang, Xiao-Xing; Yao, Hong-Juan; Men, Ying; Tian, Wei; Yu, Yang; Zhang, Liang; Huang, Ren-Jie; Lu, Wan-Liang

    2011-02-10

    The relapse of cancer is mostly due to the proliferation of cancer stem cells which could not be eliminated by a standard chemotherapy. A new kind of all-trans retinoic acid stealth liposomes was developed for preventing the relapse of breast cancer and for treating the cancer in combination with a cytotoxic agent, vinorelbine stealth liposomes. In vitro studies were performed on the human breast cancer MCF-7 and MDA-MB-231 cells. In vivo evaluations were performed on the newly established relapse model with breast cancer stem cells. Results showed that the particle size of all-trans retinoic acid stealth liposomes was approximately 80nm, and the encapsulation efficiency was >90%. Breast cancer stem cells were identified with the CD44(+)/CD24(-) phenotype and characterized with properties: resistant to cytotoxic agent, stronger capability of proliferation, and stronger capability of differentiation. Inhibitory effect of all-trans retinoic acid stealth liposomes was more potent in cancer stem cells than in cancer cells. The mechanisms were defined to be two aspects: arresting breast cancer stem cells at the G(0)/G(1) phase in mitosis, and inducing the differentiation of breast cancer stem cells. The cancer relapse model was successfully established by xenografting breast cancer stem cells into NOD/SCID mice, and the formation and growth of the xenografted tumors were significantly inhibited by all-trans retinoic acid stealth liposomes. The combination therapy of all-trans retinoic acid stealth liposomes with vinorelbine stealth liposomes produced the strongest inhibitory effect to the relapse tumor model. It could be concluded that all-trans retinoic acid stealth liposomes could be used for preventing the relapse of breast cancer by differentiating cancer stem cells and arresting the cell-cycle, and for treating breast cancer as a co-therapy, thus providing a novel strategy for treating breast cancer and preventing relapse derived from breast cancer stem cells.

  3. Exometabolom analysis of breast cancer cell lines: Metabolic signature.

    Science.gov (United States)

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-08-21

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach.

  4. GRANULAR CELL TUMOR OF BREAST (CYTOLOGICAL DIAGNOSIS CONFIRMED BY HISTOPATHOLOGY

    Directory of Open Access Journals (Sweden)

    Divvya

    2014-10-01

    Full Text Available Granular cell tumor is a tumor derived from Schwann cells of peripheral nerves and it can occur throughout the body. About 5% of granular cell tumors occur in breast and are mostly benign in nature. We report a case of 30 year old female who presented with a swelling in right breast which on histo pathological examination revealed features consistent with granular cell tumor. This case is highlighted to reveal the importance of histopathology in differentiating granular cell tumor from carcinoma breast which is difficult based on clinical, radiological and cytological examination alone.

  5. Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice.

    Science.gov (United States)

    Wu, Min; Jung, Lina; Cooper, Adrian B; Fleet, Christina; Chen, Lihao; Breault, Lyne; Clark, Kimberly; Cai, Zuhua; Vincent, Sylvie; Bottega, Steve; Shen, Qiong; Richardson, Andrea; Bosenburg, Marcus; Naber, Stephen P; DePinho, Ronald A; Kuperwasser, Charlotte; Robinson, Murray O

    2009-04-28

    Breast cancer development is a complex pathobiological process involving sequential genetic alterations in normal epithelial cells that results in uncontrolled growth in a permissive microenvironment. Accordingly, physiologically relevant models of human breast cancer that recapitulate these events are needed to study cancer biology and evaluate therapeutic agents. Here, we report the generation and utilization of the human breast cancer in mouse (HIM) model, which is composed of genetically engineered primary human breast epithelial organoids and activated human breast stromal cells. By using this approach, we have defined key genetic events required to drive the development of human preneoplastic lesions as well as invasive adenocarcinomas that are histologically similar to those in patients. Tumor development in the HIM model proceeds through defined histological stages of hyperplasia, DCIS to invasive carcinoma. Moreover, HIM tumors display characteristic responses to targeted therapies, such as HER2 inhibitors, further validating the utility of these models in preclinical compound testing. The HIM model is an experimentally tractable human in vivo system that holds great potential for advancing our basic understanding of cancer biology and for the discovery and testing of targeted therapies.

  6. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida;

    2016-01-01

    highly prioritized by the applied network-based gene ranking approach. At higher docetaxel concentration MCF-7 subclones exhibited a copy number loss in E2F4, and the gene encoding this important transcription factor was down-regulated in MCF-7 resistant cells. Conclusions: Our study of the evolution......Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...

  7. Determination of HER2 amplification status in breast cancer cells using Raman spectroscopy

    Science.gov (United States)

    Bi, Xiaohong; Rexer, Brent; Arteaga, Carlos L.; Guo, Mingsheng; Li, Ming; Mahadevan-Jansen, Anita

    2010-02-01

    The overexpression of HER2 (human epidermal growth factor receptor 2) in breast cancer is associated with increased disease recurrence and worse prognosis. Current diagnosis of HER2 positive breast cancer is time consuming with an estimated 20% inaccuracy. Raman spectroscopy is a proven method for pathological diagnosis based on the molecular composition of tissues. This study aimed to determine the feasibility of Raman spectroscopy to differentially identify the amplification of HER2 in cells. Three cell lines including BT474 (HER2 overexpressing breast cancer cell), MCF-10A (human breast epithelial cell), and MCF-10A with overexpressing HER2, were investigated using a bench top confocal Raman system. A diagnostic algorithm based on generalized linear model (GLM) with elastic-net penalties was established to discriminate 318 spectra collected from the cells, and to identify the spectra regions that differentiate the cell lines. The algorithm was able to differentially identify BT474 breast cancer cells with an overall sensitivity of 100% and specificity of 99%. The results demonstrate the capability of Raman spectroscopy to determine HER2 status in cells. Raman spectroscopy shows promise for application in the diagnosis of HER2 positive breast cancer in clinical practice.

  8. Diversity of cell-mediated adhesions in breast cancer spheroids.

    Science.gov (United States)

    Ivascu, Andrea; Kubbies, Manfred

    2007-12-01

    Due to their three dimensional (3D) architecture, multicellular tumor spheroids mimic avascular tumor areas comprising the establishment of diffusion gradients, reduced proliferation rates and increased drug resistance. We have shown recently that the spontaneous formation of spheroids is restricted to a limited number of cell lines whereas the majority grow only as aggregates of cells with loose cell-cell contacts when cultured in 3D. However, by the addition of reconstituted basement membrane (rBM, Matrigel), aggregates can be transformed into spheroids with diffusion barriers and development of quiescent therapy-resistant cells. In this report, we investigated adhesion molecules responsible for rBM-driven versus spontaneous spheroid formation in a diverse population of eight breast tumor cell lines relevant for in vitro and in vivo antitumor drug testing. Inhibition of spheroid formation was monitored in the presence of adhesion molecule functional blocking antibodies and after siRNA-mediated down-regulation of E- and N-cadherin and integrin beta1 adhesion receptors. We identified that E-cadherin mediates the spontaneous formation of spheroids in MCF7, BT-474, T-47D and MDA-MB-361 cells, whereas N-cadherin is responsible for tight packing of MDA-MB-435S cells. In contrast, the matrix protein-induced transformation of 3D aggregates into spheroids in MDA-MB-231 and SK-BR-3 cells is mediated primarily by the collagen I/integrin beta1 interaction with no cadherin involvement. A combination of both, homophilic E-cadherin and integrin beta1/collagen I interaction establishes spheroids in MDA-MB-468 cells. These findings indicate that an evolutionary diverse and complex pattern of interacting cell surface proteins exists in breast cancer cells that determines the 3D growth characteristic in vitro, thereby influencing small molecule or antibody permeation in preclinical in vitro and in vivo tumor models.

  9. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  10. Malignant Clear Cell Hidradenoma of the Breast

    Science.gov (United States)

    Rahal, Ahmad K.; Reddy, Pavan S; Kallail, K. James

    2017-01-01

    A 58-year-old female had a mass in the right breast palpable beneath the areola. A mammogram revealed a 1.5-centimeter soft tissue density that was confirmed with a subsequent ultrasound. The patient underwent a core needle biopsy which was initially reported as a moderately differentiated invasive ductal carcinoma. Immunohistochemical analysis revealed negative staining for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2), mammaglobin, and gross cystic disease fluid protein 15 (GCDFP-15). A wide local excision of the mass was performed. The pathology report stated the tumor had an infiltrative growth pattern with a desmoplastic stromal response with enhanced epithelial atypia consistent with malignant transformation of a nodular clear cell hidradenoma. Clear cell hidradenoma is a very rare tumor originating from the sweat gland and has a propensity for the face and extremities. The malignant variant of this tumor is extremely rare and has been reported to originate from the breast in few cases. This case represents the difficulty in diagnosing this tumor along with the radiographic and histologic features that can distinguish this malignancy from other entities.

  11. Lentivirus-mediated RNA interference targeting the ObR gene in human breast cancer MCF-7 cells in a nude mouse xenograft model

    Institute of Scientific and Technical Information of China (English)

    XUE Rong-quan; GU Jun-chao; DU Song-tao; YU Wei; WANG Yu; ZHANG Zhong-tao; BAI Zhi-gang; MA Xue-mei

    2012-01-01

    Background There is a significant association between obesity and breast cancer,which is possibly due to the expression of leptin.Therefore,it is important to clarify the role of leptin/ObR (leptin receptor) signaling during the progression of human breast cancer.Methods Nude mice with xenografts of MCF-7 human breast cancer cells were administered recombinant human leptin subcutaneous via injection around the tumor site.Mice in the experimental group were intratumorally injected with ObR-RNAi-lentivirus,while negative control group mice were injected with the same dose of negative-lentivirus.Tumor size was blindly measured every other day,and mRNA and protein expression levels of ObR,estrogen receptor α(ERα),and vascular endothelial growth factor (VEGF) for each group were determined.Results Knockdown of ObR-treated xenografted nude mice with a high leptin microenvironment was successfully established.Local injection of ObR-RNAi-lentivirus significantly suppressed the established tumor growth in nude mice.ObR level was significantly lower in the experimental group than in the negative control group,while the amounts of ERα and VEGF expression were significantly lower in the leptin group than in the control group (P <0.01 for all).Conclusions Inhibition of leptin/ObR signaling is essential to breast cancer proliferation and possible crosstalk between ObR and ERα,and VEGF,and may lead to novel therapeutic treatments aiming at targeting ObR in breast cancers.

  12. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...

  13. Setup of IN VIVO Breast Cancer Models for Nanodrug Testing

    DEFF Research Database (Denmark)

    Schifter, Søren

    for detection of the primary tumor and metastasis and the efficacy of siRNA delivery is measured by reporter gene-targeting siRNAs and in vivo imaging. The use of a uniform siRNA not affecting cellular processes would allow for standardized assessment of siRNA delivery to cancer cells without interferences via......RNA/aptamer conjugates, or carriers such as liposome/chitosan/micelle spheres. As a first step towards testing of the efficacy of siRNA delivery in vivo via different conjugates and complexes, we aimed at developing a standardized breast cancer model system in mice. In this conception, a reporter gene is used...... differential knockdown efficacies and the readout can directly be performed by quantitative imaging using a Caliper IVIS system. In one line of experiments, we engineered non-metastatic MCF-7 breast cancer cells to express the luminescent reporter firefly luciferase (Luc2) along with a pro-metastatic micro...

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Breast spindle cell tumours: about eight cases

    Directory of Open Access Journals (Sweden)

    Abd El All Howayda S

    2006-07-01

    Full Text Available Abstract Background Breast spindle cell tumours (BSCTs, although rare, represent a heterogeneous group with different treatment modalities. This work was undertaken to evaluate the utility of fine needle aspiration cytology (FNAC, histopathology and immunohistochemistry (IHC in differentiating BSCTs. Methods FNAC of eight breast masses diagnosed cytologically as BSCTs was followed by wide excision biopsy. IHC using a panel of antibodies against vimentin, pan-cytokeratin, s100, desmin, smooth muscle actin, CD34, and CD10 was evaluated to define their nature. Results FNAC defined the tumors as benign (n = 4, suspicious (n = 2 and malignant (n = 3, based on the cytopathological criteria of malignancy. Following wide excision biopsy, the tumors were reclassified into benign (n = 5 and malignant (n = 3. In the benign group, the diagnosis was raised histologically and confirmed by IHC for 3 cases (one spindle cell lipoma, one myofibroblastoma and one leiomyoma. For the remaining two cases, the diagnosis was set up after IHC (one fibromatosis and one spindle cell variant of adenomyoepithelioma. In the malignant group, a leiomyosarcoma was diagnosed histologically, while IHC was crucial to set up the diagnosis of one case of spindle cell carcinoma and one malignant myoepithelioma. Conclusion FNAC in BSCTs is an insufficient tool and should be followed by wide excision biopsy. The latter technique differentiate benign from malignant BSCTs and is able in 50% of the cases to set up the definite diagnosis. IHC is of value to define the nature of different benign lesions and is mandatory in the malignant ones for optimal treatment. Awareness of the different types of BSCTs prevents unnecessary extensive therapeutic regimes.

  17. Inhibition of MMP-2-mediated cellular invasion by NF-κB inhibitor DHMEQ in 3D culture of breast carcinoma MDA-MB-231 cells: A model for early phase of metastasis.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Okada, Shoshiro; Umezawa, Kazuo

    2017-02-08

    The three-dimensional (3D) culture of cancer cells provides an environmental condition closely related to the condition in vivo. It would especially be an ideal model for the early phase of metastasis, including the detachment and invasion of cancer cells from the primary tumor. In one hand, dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, is known to inhibit cancer progression and late phase metastasis in animal experiments. In the present research, we studied the inhibitory activity on the 3D invasion of breast carcinoma cells. Breast carcinoma MDA-MB-231 cells showed the most active invasion from spheroid among the cell lines tested. DHMEQ inhibited the 3D invasion of cells at the 3D-nontoxic concentrations. The PCR array analysis using RNA isolated from the 3D on-top cultured cells indicated that matrix metalloproteinase (MMP)-2 expression is lowered by DHMEQ. Knockdown of MMP-2 and an MMP inhibitor, GM6001, both inhibited the invasion. DHMEQ was shown to inhibit the promoter activity of MMP-2 in the reporter assay. Thus, DHMEQ was shown to inhibit NF-κB/MMP-2-dependent cellular invasion in 3D-cultured MDA-MB-231 cells, suggesting that DHMEQ would inhibit the early phase of metastasis.

  18. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Elad Katz

    Full Text Available The epithelial to mesenchymal transition (EMT is a developmental program in which epithelial cells down-regulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In human breast cancer, invasion into surrounding tissue is the first step in metastatic progression. Here, we devised an in vitro model using selected cell lines, which recapitulates many features of EMT as observed in human breast cancer. By comparing the gene expression profiles of claudin-low breast cancers with the experimental model, we identified a 9-gene signature characteristic of EMT. This signature was found to distinguish a series of breast cancer cell lines that have demonstrable, classical EMT hallmarks, including loss of E-cadherin protein and acquisition of N-cadherin and vimentin expression. We subsequently developed a three-dimensional model to recapitulate the process of EMT with these cell lines. The cells maintain epithelial morphology when encapsulated in a reconstituted basement membrane, but undergo spontaneous EMT and invade into surrounding collagen in the absence of exogenous cues. Collectively, this model of EMT in vitro reveals the behaviour of breast cancer cells beyond the basement membrane breach and recapitulates the in vivo context for further investigation into EMT and drugs that may interfere with it.

  19. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  20. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Smita Nair

    Full Text Available The forkhead transcription factor FOXP3 is necessary for induction of regulatory T lymphocytes (Tregs and their immunosuppressive function. We have previously demonstrated that targeting Tregs by vaccination of mice with murine FOXP3 mRNA-transfected dendritic cells (DCs elicits FOXP3-specific T cell responses and enhances tumor immunity. It is clear that FOXP3 expression is not restricted to T-cell lineage and herein, using RT-PCR, flow cytometry, and western immunoblot we demonstrate for the first time that FOXP3 is expressed in inflammatory breast cancer (IBC cells, SUM149 (triple negative, ErbB1-activated and SUM190 (ErbB2-overexpressing. Importantly, FOXP3-specific T cells generated in vitro using human FOXP3 RNA-transfected DCs as stimulators efficiently lyse SUM149 cells. Interestingly, an isogenic model (rSUM149 derived from SUM149 with an enhanced anti-apoptotic phenotype was resistant to FOXP3-specific T cell mediated lysis. The MHC class I cellular processing mechanism was intact in both cell lines at the protein and transcription levels suggesting that the resistance to cytolysis by rSUM149 cells was not related to MHC class I expression or to the MHC class I antigen processing machinery in these cells. Our data suggest that FOXP3 may be an effective tumor target in IBC cells however increased anti-apoptotic signaling can lead to immune evasion.

  1. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vadhavkar, Nikhil [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pham, Christopher [University of Texas, Houston, TX (United States). MD Anderson Cancer Center; Georgescu, Walter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Deschamps, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Heuskin, Anne-Catherine [Univ. of Namur (Belgium). Namur Research inst. for Life Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR); Tang, Jonathan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Costes, Sylvain V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model

  2. Noninvasive Optical Tracking of Red Fluorescent Protein-Expressing Cancer Cells in a Model of Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paul T. Winnard, Jr.

    2006-10-01

    Full Text Available We have evaluated the use of the Xenogen IVIS 200 imaging system for real-time fluorescence protein- based optical imaging of metastatic progression in live animals. We found that green fluorescent protein- expressing cells (100 × 106 were not detectable in a mouse cadaver phantom experiment. However, a 10-fold lower number of tdTomato-expressing cells were easily detected. Mammary fat pad xenografts of stable MDA-MB-231-tdTomato cells were generated for the imaging of metastatic progression. At 2 weeks postinjection, barely palpable tumor burdens were easily detected at the sites of injection. At 8 weeks, a small contralateral mammary fat pad metastasis was imaged and, by 13 weeks, metastases to lymph nodes were detectable. Metastases with nodular composition were detectable within the rib cage region at 15 weeks. 3-D image reconstructions indicated that the detection of fluorescence extended to approximately 1 cm below the surface. A combination of intense tdTomato fluorescence, imaging at ≥ 620 nm (where autofluorescence is minimized, the sensitivity of the Xenogen imager made this possible. This study demonstrates the utility of the noninvasive optical tracking of cancer cells during metastatic progression with endogenously expressed fluorescence protein reporters using detection wavelengths of ≥ 620 nm.

  3. Revealing the Functions of Tenascin-C in 3-D Breast Cancer Models Using Cell Biological and In Silico Approaches

    Science.gov (United States)

    2007-03-01

    the malignant phenotype. Cancer Cell 2005;8(3):241-54. 25. Ferguson JE, Schor AM, Howell A, Ferguson MW. Tenascin distribution in the normal human...Sci U S A 2005;102(12):4324-9. 78. Soriano JV, Pepper MS, Nakamura T, Orci L, Montesano R. Hepatocyte growth factor stimulates extensive development

  4. Mammary development and breast cancer: the role of stem cells.

    Science.gov (United States)

    Ercan, C; van Diest, P J; Vooijs, M

    2011-06-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.

  5. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    Science.gov (United States)

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.

  6. Dissection of a stem cell hierarchy in the human breast

    DEFF Research Database (Denmark)

    Rubner Fridriksdottir, Agla Jael

    and apoptosis during each menstrual cycle. These changes are most prominent during pregnancy, lactation and involution after breast feeding. These highly dynamic changes are thought to rely on the presence of a breast epithelial stem cell population (reviewed in (Fridriksdottir et al. 2005)). Nevertheless......, cellular pathways that contribute to adult human breast gland architecture and cell lineages have not been described. Here, I identify a candidate stem cell niche in ducts, and zones containing progenitor cells in lobules (Villadsen and Fridriksdottir et al. 2007). Putative stem cells residing in ducts......-rich extracellular matrix gel. Staining for the epithelial lineage markers, cytokeratins K14 and K19, further reveals multipotent cells in the stem cell zone and three lineage- restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  7. What Is Breast Cancer?

    Science.gov (United States)

    ... Research? Breast Cancer About Breast Cancer What Is Breast Cancer? Breast cancer starts when cells in the breast ... spread, see our section on Cancer Basics . Where breast cancer starts Breast cancers can start from different parts ...

  8. File list: DNS.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.10.AllAg.Breast_cancer_cells.bed ...

  9. File list: His.Brs.05.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Breast_cells hg19 Histone Breast Breast cells SRX396577,SRX036547,...SRX396576,SRX036550,SRX036549,SRX036546,SRX036552,SRX036556,SRX036554,SRX036558 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.05.AllAg.Breast_cells.bed ...

  10. File list: His.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Breast_cells hg19 Histone Breast Breast cells SRX396577,SRX396576,...SRX036547,SRX036550,SRX036554,SRX036552,SRX036549,SRX036546,SRX036556,SRX036558 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.AllAg.Breast_cells.bed ...

  11. File list: DNS.Brs.50.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.50.AllAg.Breast_cells.bed ...

  12. File list: Unc.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Breast_cells hg19 Unclassified Breast Breast cells SRX265449,SRX26...5450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.Breast_cells.bed ...

  13. File list: DNS.Brs.20.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.20.AllAg.Breast_cells.bed ...

  14. File list: Unc.Brs.50.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Breast_cells hg19 Unclassified Breast Breast cells SRX265449,SRX26...5450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.Breast_cells.bed ...

  15. File list: Oth.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155767,SRX155769,SRX155766,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.Breast_cancer_cells.bed ...

  16. File list: Oth.Brs.05.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Breast_cells hg19 TFs and others Breast Breast cells SRX396569,SRX...396568,SRX396570,SRX396572,SRX396573 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.Breast_cells.bed ...

  17. File list: Oth.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155769,SRX155770,SRX155767 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.Breast_cancer_cells.bed ...

  18. File list: Oth.Brs.50.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Breast_cells hg19 TFs and others Breast Breast cells SRX396568,SRX...396569,SRX396570,SRX396572,SRX396573 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.Breast_cells.bed ...

  19. File list: His.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.05.AllAg.Breast_cancer_cells.bed ...

  20. File list: His.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.50.AllAg.Breast_cancer_cells.bed ...

  1. File list: Unc.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.Breast_cancer_cells.bed ...

  2. File list: Unc.Brs.20.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Breast_cells hg19 Unclassified Breast Breast cells SRX265449,SRX26...5450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.Breast_cells.bed ...

  3. File list: Oth.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Breast_cells hg19 TFs and others Breast Breast cells SRX396569,SRX...396568,SRX396570,SRX396572,SRX396573 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.Breast_cells.bed ...

  4. File list: ALL.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...71,SRX155768,ERX210206,ERX210207,SRX155770,SRX155769 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.Breast_cancer_cells.bed ...

  5. File list: Oth.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155769,SRX155766,SRX155767,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.Breast_cancer_cells.bed ...

  6. File list: Oth.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155767,SRX155770,SRX155769 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.Breast_cancer_cells.bed ...

  7. File list: Unc.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.Breast_cancer_cells.bed ...

  8. File list: DNS.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.50.AllAg.Breast_cancer_cells.bed ...

  9. File list: ALL.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...68,SRX155769,SRX155766,SRX155770,ERX210212,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.Breast_cancer_cells.bed ...

  10. File list: His.Brs.20.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Breast_cells hg19 Histone Breast Breast cells SRX396577,SRX396576,...SRX036554,SRX036547,SRX036550,SRX036556,SRX036558,SRX036549,SRX036552,SRX036546 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.AllAg.Breast_cells.bed ...

  11. File list: His.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.AllAg.Breast_cancer_cells.bed ...

  12. File list: Pol.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.50.AllAg.Breast_cancer_cells.bed ...

  13. File list: His.Brs.50.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Breast_cells hg19 Histone Breast Breast cells SRX396577,SRX396576,...SRX036556,SRX036558,SRX036550,SRX036554,SRX036547,SRX036549,SRX036552,SRX036546 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.50.AllAg.Breast_cells.bed ...

  14. File list: Unc.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.Breast_cancer_cells.bed ...

  15. File list: His.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.AllAg.Breast_cancer_cells.bed ...

  16. File list: Unc.Brs.05.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Breast_cells hg19 Unclassified Breast Breast cells SRX265449,SRX26...5450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.05.AllAg.Breast_cells.bed ...

  17. File list: ALL.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...69,SRX155770,SRX155767,ERX210207,SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.Breast_cancer_cells.bed ...

  18. File list: Pol.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.05.AllAg.Breast_cancer_cells.bed ...

  19. File list: DNS.Brs.05.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.05.AllAg.Breast_cells.bed ...

  20. File list: DNS.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Breast_cancer_cells hg19 DNase-seq Breast Breast cancer cells http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.05.AllAg.Breast_cancer_cells.bed ...

  1. File list: Pol.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.20.AllAg.Breast_cancer_cells.bed ...

  2. File list: Oth.Brs.20.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Breast_cells hg19 TFs and others Breast Breast cells SRX396568,SRX...396569,SRX396570,SRX396572,SRX396573 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.Breast_cells.bed ...

  3. File list: Pol.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Breast_cancer_cells hg19 RNA polymerase Breast Breast cancer cells... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.10.AllAg.Breast_cancer_cells.bed ...

  4. File list: DNS.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081374,SRX08137...3,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.10.AllAg.Breast_cells.bed ...

  5. File list: ALL.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Breast_cancer_cells hg19 All antigens Breast Breast cancer cells S...66,SRX155767,SRX155770,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.Breast_cancer_cells.bed ...

  6. Apoptotic effect of noscapine in breast cancer cell lines.

    Science.gov (United States)

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  7. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pan Zhongzong

    2009-01-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors. Methods Colocalization of ERα with Ki-67 in ERα-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1 was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERα was determined by co-immunofluorescent staining of ERα and the major cyclins (D, E, A, B, and by flow cytometry analysis of ERαhigh cells. To further confirm the autocrine action of ERα, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERα and cell cycle progression. Results Colocalization of ERα with Ki-67 was present in all three ERα-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERα is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERα and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERα. Conclusion Our data indicate

  8. [Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics].

    Science.gov (United States)

    Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao

    2014-03-01

    The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t < 0.05) were identified to be biomarkers. Eleven metabolites such as butanedioic acid, phosphoric acid, L-leucine and isoleucine which had a significant contribution to classification were selected and preliminarily identified due to the accurate mass. Cell cycle assay was analyzed by FACSCalibur. Since the cells in the phase of G1 were increased significantly after the treatment of lupeol, we speculated that lupeol has a blocking effect on the generation of succinyl-CoA and the reaction of substrate phosphorylation of tricarboxylic acid cycle of MCF-7 cells. This study provided a novel approach to the mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics.

  9. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.

    Science.gov (United States)

    Boecker, Werner; Buerger, Horst

    2003-10-01

    Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth.

  10. NFkB signaling is important for growth of antiestrogen resistant breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Emdal, Kristina Bennet; Guerra, Barbara;

    2012-01-01

    resistant cell growth and a potential target for re-sensitizing resistant cells to endocrine therapy. We used an MCF-7-derived cell model for antiestrogen resistant breast cancer to investigate dependence on NF¿B signaling for antiestrogen resistant cell growth. We found that targeting NF¿B preferentially...... inhibited resistant cell growth. Antiestrogen resistant cells expressed increased p50 and RelB, and displayed increased phosphorylation of p65 at Ser529 and Ser536. Moreover, transcriptional activity of NF¿B after stimulation with tumor necrosis factor a was enhanced in antiestrogen resistant cell lines...... resistant cells increased sensitivity to tamoxifen treatment. Our data provide evidence that NF¿B signaling is enhanced in antiestrogen resistant breast cancer cells and plays an important role for antiestrogen resistant cell growth and for sensitivity to tamoxifen treatment in resistant cells. Our results...

  11. Ets-1 controls breast cancer cell balance between invasion and growth.

    Science.gov (United States)

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models.

  12. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  13. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  14. Alterations of the exo- and endometabolite profiles in breast cancer cell lines: A mass spectrometry-based metabolomics approach.

    Science.gov (United States)

    Willmann, Lucas; Schlimpert, Manuel; Hirschfeld, Marc; Erbes, Thalia; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2016-06-21

    In recent years, knowledge about metabolite changes which are characteristic for the physiologic state of cancer cells has been acquired by liquid chromatography coupled to mass spectrometry. Distinct molecularly characterized breast cancer cell lines provide an unbiased and standardized in vitro tumor model reflecting the heterogeneity of the disease. Tandem mass spectrometry is a widely applied analytical platform and highly sensitive technique for analysis of complex biological samples. Endo- and exometabolite analysis of the breast cancer cell lines MDA-MB-231, -453 and BT-474 as well as the breast epithelial cell line MCF-10A has been performed using two different analytical platforms: UPLC-ESI-Q-TOF based on a scheduled precursor list has been applied for highlighting of significant differences between cell lines and HPLC-ESI-QqQ using multiple reaction monitoring has been utilized for a targeted approach focusing on RNA metabolism and interconnected pathways, respectively. Statistical analysis enabled a clear discrimination of the breast epithelial from the breast cancer cell lines. As an effect of oxidative stress, a decreased GSH/GSSG ratio has been detected in breast cancer cell lines. The triple negative breast cancer cell line MDA-MB-231 showed an elevation in nicotinamide, 1-ribosyl-nicotinamide and NAD+ reflecting the increased energy demand in triple negative breast cancer, which has a more aggressive clinical course than other forms of breast cancer. Obtained distinct metabolite pattern could be correlated with distinct molecular characteristics of breast cancer cells. Results and methodology of this preliminary in vitro study could be transferred to in vivo studies with breast cancer patients.

  15. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  16. Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1.

    Science.gov (United States)

    Fini, Mehdi A; Monks, Jenifer; Farabaugh, Susan M; Wright, Richard M

    2011-09-01

    Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.

  17. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  18. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  19. Markers of tumor-initiating cells predict chemoresistance in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chang Gong

    Full Text Available PURPOSE: Evidence is lacking whether the number of breast tumor-initiating cells (BT-ICs directly correlates with the sensitivity of breast tumors to chemotherapy. Here, we evaluated the association between proportion of BT-ICs and chemoresistance of the tumors. METHODS: Immunohistochemical staining(IHC was used to examine the expression of aldehyde dehydrogenase 1 (ALDH1 and proliferating cell nuclear antigen, and TUNEL was used to detect the apoptosis index. The significance of various variables in patient survival was analyzed using a Cox proportional hazards model. The percentage of BT-ICs in breast cancer cell lines and primary breast tumors was determined by ALDH1 enzymatic assay, CD44(+/CD24(- phenotype and mammosphere formation assay. RESULTS: ALDH1 expression determined by IHC in primary breast cancers was associated with poor clinical response to neoadjuvant chemotherapy and reduced survival in breast cancer patients. Breast tumors that contained higher proportion of BT-ICs with CD44(+/CD24(- phenotype, ALDH1 enzymatic activity and sphere forming capacity were more resistant to neoadjuvant chemotherapy. Chemoresistant cell lines AdrR/MCF-7 and SK-3rd, had increased number of cells with sphere forming capacity, CD44(+/CD24(- phenotype and side-population. Regardless the proportion of T-ICs, FACS-sorted CD44(+/CD24(- cells that derived from primary tumors or breast cancer lines were about 10-60 fold more resistant to chemotherapy relative to the non- CD44(+/CD24(- cells and their parental cells. Furthermore, our data demonstrated that MDR1 (multidrug resistance 1 and ABCG2 (ATP-binding cassette sub-family G member 2 were upregulated in CD44(+/CD24(- cells. Treatment with lapatinib or salinomycin reduced the proportion of BT-ICs by nearly 50 fold, and thus enhanced the sensitivity of breast cancer cells to chemotherapy by around 30 fold. CONCLUSIONS: These data suggest that the proportion of BT-ICs is associated with chemotherapeutic

  20. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  1. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.

    Science.gov (United States)

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-12-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  2. Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systems.

    Science.gov (United States)

    Ruotolo, Roberta; Calani, Luca; Brighenti, Furio; Crozier, Alan; Ottonello, Simone; Del Rio, Daniele

    2014-10-01

    Several plant-derived molecules, referred to as phytoestrogens, are thought to mimic the actions of endogenous estrogens. Among these, quercetin, one of the most widespread flavonoids in the plant kingdom, has been reported as estrogenic in some occasions. However, quercetin occurs in substantial amounts as glycosides such as quercetin-3-O-glucoside (isoquercitrin) and quercetin-3-O-rutinoside (rutin) in dietary sources. It is now well established that quercetin undergoes substantial phase II metabolism after ingestion by humans, with plasma metabolites after a normal dietary intake rarely exceeding nmol/L concentrations. Therefore, attributing phytoestrogenic activity to flavonoids without taking into account the fact that it is their phase II metabolites that enter the circulatory system, will almost certainly lead to misleading conclusions. With the aim of clarifying the above issue, the goal of the present study was to determine if plant-associated quercetin glycosides and human phase II quercetin metabolites, actually found in human biological fluids after intake of quercetin containing foods, are capable of interacting with the estrogen receptors (ER). To this end, we used a yeast-based two-hybrid system and an estrogen response element-luciferase reporter assay in an ER-positive human cell line (MCF-7) to probe the ER interaction capacities of quercetin and its derivatives. Our results show that quercetin-3-O-glucuronide, one of the main human phase II metabolites produced after intake of dietary quercetin, displays ERα- and ERβ-dependent estrogenic activity, the functional consequences of which might be related to the protective activity of diets rich in quercetin glycosides.

  3. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    Directory of Open Access Journals (Sweden)

    Soto Ana M

    2010-06-01

    Full Text Available Abstract Background Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. Methods The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks, the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Results Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Conclusions Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to

  4. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase.

    Science.gov (United States)

    Bateman, Nicholas W; Sun, Mai; Hood, Brian L; Flint, Melanie S; Conrads, Thomas P

    2010-10-01

    Breast cancer is a highly heterogeneous disease, an observation that underscores the importance of elucidating conserved molecular characteristics, such as gene and protein expression, across breast cancer cell types toward providing a greater understanding of context-specific features central to this disease. Motivated by the goal of defining central biological themes across breast cancer cell subtypes, we conducted a global proteomic analysis of three breast cancer cell lines, MCF7, SK-BR-3, and MDA-MB-231, and compared these to a model of nontransformed mammary cells (MCF10A). Our results demonstrate modulation of proteins localized to the extracellular matrix, plasma membrane, and nucleus, along with coordinate decreases in proteins that regulate "cell spreading," a cellular event previously shown to be dysregulated in transformed cells. Protein interaction network analysis revealed the clustering of focal adhesion kinase (FAK), a fundamental regulator of cell spreading, with several proteins identified as mutually, differentially abundant across breast cancer cell lines that impact expression and activity of FAK, such as neprilysin and keratin 19. These analyses provide insights into conservation of protein expression across breast cancer cell subtypes, a subset of which warrants further investigation for their roles in the regulation of cell spreading and FAK in breast cancer.

  5. The T61 human breast cancer xenograft: an experimental model of estrogen therapy of breast cancer

    DEFF Research Database (Denmark)

    Brunner, N; Spang-Thomsen, M; Cullen, K

    1996-01-01

    Endocrine therapy is one of the principal treatment modalities of breast cancer, both in an adjuvant setting and in advanced disease. The T61 breast cancer xenograft described here provides an experimental model of the effects of estrogen treatment at a molecular level. T61 is an estrogen recepto...

  6. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  7. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  8. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    Science.gov (United States)

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi

    2014-06-01

    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.

  9. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model

    NARCIS (Netherlands)

    Amoury, Manal; Kolberg, Katharina; Pham, Anh-Tuan; Hristodorov, Dmitrij; Mladenov, Radoslav; Di Fiore, Stefano; Helfrich, Wijnand; Kiessling, Fabian; Fischer, Rainer; Pardo, Alessa; Thepen, Theophilus; Hussain, Ahmad F.; Nachreiner, Thomas; Barth, Stefan

    2016-01-01

    Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates

  10. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2007-05-01

    Moreover, Pece et al, showed that inhibition of the Notch pathway in breast tumors with increased Notch activity can reduce the tumor growth (152... Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, et al. Loss of negative regulation by Numb over Notch is relevant to human breast

  11. Periprosthetic breast capsules and immunophenotypes of inflammatory cells.

    Science.gov (United States)

    Meza Britez, Maria Elsa; Caballero Llano, Carmelo; Chaux, Alcides

    2012-09-01

    BACKGROUND: Silicone gel-containing breast implants have been widely used for aesthetic and reconstructive mammoplasty. The development of a periprosthetic capsule is considered a local reparative process against the breast implant in which a variety of inflammatory cells may appear. Nevertheless, only few reports have evaluated the immunophenotypes of those inflammatory cells. Herein, we aim to provide more information in this regard evaluating 40 patients with breast implants. METHODS: We studied the immunophenotype of the inflammatory cells of capsular implants using antibodies against lymphocytes (CD3, CD4, CD8, CD20, CD45, and CD30) and histiocytes (CD68). Percentages of CD3 and CD20 positive cells were compared using the unpaired Student's t test. Fisher's test was also used to compare Baker grades by implant type, implant profile, and location and the presence of inflammatory cells by implant type. RESULTS: The associations between Baker grades and implant type and location were statistically nonsignificant (p = 0.42 in both cases). However, the use of low profile implants was significantly associated (p = 0.002) with a higher proportion of Baker grades 3 and 4. We found evidence of inflammation in 92.5 % of all implant capsules, with a statistically significant (p = 0.036) higher proportion in textured breast implants. T cells predominated over B cells. Textured implants elicited a more marked response to T cells than smooth implants, with a similar proportion of helper and cytotoxic T cells. Textured implants showed statistically significant higher percentages of CD3 positive cells than smooth implants. Percentages of CD20 positive cells were similar in textured and smooth implants. CONCLUSIONS: These results suggest that textured breast implants might induce a stronger local T cell immune response. Our findings could shed some light to understand the association of silicone breast implants and some cases of anaplastic large cell lymphomas

  12. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...... with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...

  13. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor

    OpenAIRE

    Harrison, Hannah; Farnie, Gillian; Howell, Sacha J.; Rock, Rebecca E; Stylianou, Spyros; Brennan, Keith R.; Bundred, Nigel J; Clarke, Robert B.

    2010-01-01

    Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA+/CD44+/CD24low. Using these breast cancer stem cell populations, we compared the activation status of Notch...

  14. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    Directory of Open Access Journals (Sweden)

    Kayla F Goliwas

    2016-07-01

    Full Text Available Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.

  15. Gasdermin-B promotes invasion and metastasis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Marta Hergueta-Redondo

    Full Text Available Gasdermin B (GSDMB belongs to the Gasdermin protein family that comprises four members (GSDMA-D. Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its over-expression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases. We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2 the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2. The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer.

  16. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women

    OpenAIRE

    Wong, Chung M; Anderton, Douglas L.; Smith-Schneider, Sallie; Wing, Megan A; Greven, Melissa C; Arcaro, Kathleen F.

    2010-01-01

    Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle and reproductive history questionnaires were collected fro...

  17. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer. Addendum

    Science.gov (United States)

    2009-07-01

    Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer PRINCIPAL INVESTIGATOR: Donald W. Kufe, M.D...COVERED 1 Jul 2008 – 30 Jun 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the...David Avigan, MD, Beth Israel Deaconess Medical Center, Boston, MA, in Support of Proposal, "Fusions of Breast Carcinoma and Dendritic Cells as a

  18. Clear Cell Carcinoma of the Breast: A Rare Breast Cancer Subtype - Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Vilma Ratti

    2015-11-01

    Full Text Available Background: Glycogen-rich clear cell breast carcinoma is a rare histological breast cancer subtype. Its prognosis may vary depending on specific clinical and pathological characteristics such as low grade, strong positivity of estrogen receptor (ER expression and early diagnosis. Case Presentation: We present the case of a 53-year-old woman with a bleeding 10-cm-diameter mass in the left breast. The histological examination showed a poorly differentiated tumor with malignant cells characterized by abundant clear cytoplasm. The diagnosis of clear cell carcinoma was based on the histological characteristics of the tumor, and a nonmammary origin was initially ruled out. The tumor was triple negative [i.e. ER, progesterone receptor (PR and HER2 negative]. Four months after the initial locoregional treatment, the patient developed lung and distant lymph node metastases. Conclusions: Glycogen-rich clear cell carcinoma of the breast is a rare tumor. Early diagnosis, absence of lymph node metastases and ER/PR positivity are associated with a better prognosis, as in other common breast cancer subtypes.

  19. Building a Better Model: A Personalized Breast Cancer Risk Model Incorporating Breast Density to Stratify Risk and Improve Application of Resources

    Science.gov (United States)

    2015-12-01

    women with a diagnosis of breast cancer from 2003 to 2012 and enrolled in a larger study on MD were evaluated. Operative and pathology reports were...AD______________ AWARD NUMBER: W81XWH-11-1-0545 TITLE: Building a Better Model: A Personalized Breast Cancer Risk Model Incorporating Breast ...Better Model: A Personalized Breast Cancer Risk Model Incorporating Breast Density to Stratify Risk and Improve Application of Resources 5a. CONTRACT

  20. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  1. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor α and EGF receptor signaling pathways.

    Science.gov (United States)

    Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong

    2012-06-01

    Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.

  2. The fractional viscoelastic response of human breast tissue cells

    Science.gov (United States)

    Carmichael, B.; Babahosseini, H.; Mahmoodi, S. N.; Agah, M.

    2015-07-01

    The mechanical response of a living cell is notoriously complicated. The complex, heterogeneous characteristics of cellular structure introduce difficulties that simple linear models of viscoelasticity cannot overcome, particularly at deep indentation depths. Herein, a nano-scale stress-relaxation analysis performed with an atomic force microscope reveals that isolated human breast cells do not exhibit simple exponential relaxation capable of being modeled by the standard linear solid (SLS) model. Therefore, this work proposes the application of the fractional Zener (FZ) model of viscoelasticity to extract mechanical parameters from the entire relaxation response, improving upon existing physical techniques to probe isolated cells. The FZ model introduces a new parameter that describes the fractional time-derivative dependence of the response. The results show an exceptional increase in conformance to the experimental data compared to that predicted by the SLS model, and the order of the fractional derivative (α) is remarkably homogeneous across the populations, with a median value of 0.48 ± 0.06 for the malignant population and 0.51 ± 0.07 for the benign. The cells’ responses exhibit power-law behavior and complexity not associated with simple relaxation (SLS, α = 1) that supports the application of a fractional model. The distributions of some of the FZ parameters also preserve the distinction between the malignant and benign sample populations seen from the linear model and previous results while including the contribution of fast-relaxation behavior. The resulting viscosity, measured by a composite relaxation time, exhibits considerably less dispersion due to residual error than the distribution generated by the linear model and therefore serves as a more powerful marker for cell differentiation.

  3. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  4. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity.

    Science.gov (United States)

    Giordano, Cinzia; Chemi, Francesca; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Cordella, Angela; Campana, Antonella; Hashim, Adnan; Rizza, Pietro; Leggio, Antonella; Győrffy, Balázs; Simões, Bruno M; Clarke, Robert B; Weisz, Alessandro; Catalano, Stefania; Andò, Sebastiano

    2016-01-12

    Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.

  5. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7

    Science.gov (United States)

    Qian, Airong; Zhang, Wei; Xie, Li; Weng, Yuanyuan; Yang, Pengfei; Wang, Zhe; Hu, Lifang; Xu, Huiyun; Tian, Zongcheng; Shang, Peng

    The aim of this study is to investigate the effects of the clinostat-simulated microgravity on MCF-7 cells (a breast cancer cell line) biological characteristics. MCF-7 cells were incubated for 24 h in an incubator and then rotated in a clinostat as a model of simulated microgravity for 24, 48 and 72 h, respectively. The effects of the clinostat-simulated microgravity on MCF-7 cells proliferation, invasion, migration, gelatinase production, adhesion, cell cycle, apoptosis and vinculin expression were detected. The results showed that the clinostat-simulated microgravity affected breast cancer cell invasion, migration, adhesion, cell cycle, cell apoptosis and vinculin expression. These results may explore a new field of vision to study tumor metastasis in future.

  6. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  7. Role of nuclear receptors in breast cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  8. HER2高表达的人乳腺癌原代细胞模型的建立%Establishment of primary Her-2 overexpression human breast cancer cell model

    Institute of Scientific and Technical Information of China (English)

    王丽娟; 赵悦; 肖华卫; 白娥; 董超; 杨韬; 杨安钢; 朱青

    2011-01-01

    AIM: Through isolation and purification primary HER2 overexpression human breast cancer cells from malignant pleural effusion and identification the HER2 expression level of the cells to establish the primary HER2 overexpression human breast cancer cell model. METHODS: Malignant pleural effusion of HER2 overexpression . Breast cancer patient was collected. The primary cells were extracted from malignant pleural effusion by Lymphocyte separation medium and the method of density gradient cen-trifugation. When the primary cells were cultured and sprea-ded to the 5th generation, the HER2 expression level of the primary cells were detected by the methods of Q-PCR, Western blot and flow cytometry (FCM). Ability of tumor-bearing was detected by tumor-bearing nude mice assay. RESULTS: The primary HER2 overexpression human breast cancer cells were extracted and identified by the methods of Q-PCR, Western blot and tumor-bearing nude mice assay, even though the FCM showed Negative results. CONCLUSION: The primary HER2 overexpression human breast cancer cell model was established; Identification of primary cells need to be confirmed by different methods.%目的:探讨人乳腺癌恶性胸水肿瘤细胞的分离、纯化、培养与肿瘤细胞的鉴定,为HER2阳性的人乳腺癌的研究提供肿瘤原代细胞模型.方法:利用淋巴细胞分离液及密度梯度离心法分离、纯化恶性胸水肿瘤细胞,分离得到的细胞培养并传至第5代,通过流式细胞仪分选肿瘤细胞、Q-PCR技术、Western blot技术验证细胞HER2分子的表达水平、通过裸鼠荷瘤实验检测细胞的成瘤能力.结果:淋巴细胞分离液及密度梯度离心法分离得到乳腺癌原代细胞;流式细胞分选结果显示未分选出HER2高表达的肿瘤细胞;Q-PCR及Western blot检测发现分离得到的细胞在mRNA及蛋白水平HER2的表达水平高于乳腺癌MCF-7细胞;裸鼠荷瘤实验结果显示分离得到的细胞可以成功荷瘤.结论

  9. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    Science.gov (United States)

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC.

  10. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    Directory of Open Access Journals (Sweden)

    Özel Cem

    2012-04-01

    Full Text Available Abstract Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a

  11. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  12. MicroRNA Regulation of Human Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Shimono

    2015-12-01

    Full Text Available MicroRNAs (miRNAs are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.

  13. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  14. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. Conclusion: Cell surface proteoglycans, notably...

  15. Targeting Breast Cancer Stem Cells In Triple Negative Breast Cancer

    Science.gov (United States)

    2014-10-01

    tumorigenesis (tumorsphere formation) and BCSC, which are linked to increase development of chemotherapeutic resistance and relapse. Effective inhibition of...and& mouse&BC&cells&[5,&29]& Lep7n&&induces&protein&expression&and&ac7va7on&of& Notch1 ,&G3&and&4&in&human&BC&& ER+&and&ERG&&and&mouse&E0771&ER+&cells&[29...mouse&BC&cells&[5,&29]& Lep7n&&induces&protein&expression&and&ac7va7on&of& Notch1 ,&G3&and&4&in&human&BC&& ER+&and&ERG&&and&mouse&E0771&ER+&cells&[29

  16. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  17. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Science.gov (United States)

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  18. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Mian Wang

    Full Text Available Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa cells and bone marrow derived human mesenchymal stem cells (MSCs were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  19. Evaluation of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24- subpopulations of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available BACKGROUND: STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH(+, or cell surface molecule CD44-positive (CD44(+ but CD24-negative (CD24(- breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH(+ and ALDH(+/CD44(+/CD24(- subpopulations of breast cancer cells is unknown. METHODS AND RESULTS: We examined STAT3 activation in ALDH(+ and ALDH(+/CD44(+/CD24(- subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH(+ cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH(- cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH(+ subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH(+ subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH(+ subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH(+ breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH(+ cells were further selected for the stem cell markers CD44(+ and CD24(-. CONCLUSION: These studies demonstrate an important role for STAT3 signaling in ALDH(+ and ALDH(+/CD44(+/CD24(- subpopulations of breast cancer cells which may have cancer stem

  20. Do myoepithelial cells hold the key for breast tumorprogression?

    Energy Technology Data Exchange (ETDEWEB)

    Polyak, Kornelia; Hu, Min

    2005-11-18

    Mammary myoepithelial cells have been the foster child of breast cancer biology and have been largely ignored since they were considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge in stem cell biology and the cellular microenvironment has been increasing myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis if myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and if myoepithelial cells are part of the mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for cell cycle arrest, establishing epithelial cell polarity, and inhibiting migration and invasion. Based on these functions normal mammary myoepithelial cells have been called ''natural tumor suppressors''. However, during tumor progression myoepithelial cells seem to loose these properties and eventually they themselves diminish as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.

  1. Expression of matrix metalloproteinases (MMPs in primary human breast cancer and breast cancer cell lines: New findings and review of the literature

    Directory of Open Access Journals (Sweden)

    Dietl Johannes

    2009-06-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found. Methods To fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2 and ten grade 3 (G3 breast cancer tissues. As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1 commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry. Results In summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28 with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein

  2. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines.

    Directory of Open Access Journals (Sweden)

    Guillaume Vares

    Full Text Available Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs. In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression, which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.

  3. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin.

    Science.gov (United States)

    Kai, Masaya; Kanaya, Noriko; Wu, Shang V; Mendez, Carlos; Nguyen, Duc; Luu, Thehang; Chen, Shiuan

    2015-06-01

    The aim of this study is to investigate the efficacy of combining a histone deacetylase inhibitor (LBH589) and a breast cancer stem cells (BCSC)-targeting agent (salinomycin) as a novel combination therapy for triple-negative breast cancer (TNBC). We performed in vitro studies using the TNBC cell lines to examine the combined effect. We used the mammosphere and ALDEFLUOR assays to estimate BCSC self-renewal capacity and distribution of BCSCs, respectively. Synergistic analysis was performed using CalcuSyn software. For in vivo studies, aldehyde dehydrogenase 1 ALDH1-positive cells were injected into non-obese diabetic/severe combined immunodeficiency gamma (NSG) mice. After tumor formation, mice were treated with LBH589, salinomycin, or in combination. In a second mouse model, HCC1937 cells were first treated with each treatment and then injected into NSG mice. For mechanistic analysis, immunohistochemistry and Western blot analysis were performed using cell and tumor samples. HCC1937 cells displayed BCSC properties including self-renewal capacity, an ALDH1-positive cell population, and the ability to form tumors. Treatment of HCC1937 cells with LBH589 and salinomycin had a potent synergistic effect inhibiting TNBC cell proliferation, ALDH1-positive cells, and mammosphere growth. In xenograft mouse models treated with LBH589 and salinomycin, the drug combination effectively and synergistically inhibited tumor growth of ALDH1-positive cells. The drug combination exerted its effects by inducing apoptosis, arresting the cell cycle, and regulating epithelial-mesenchymal transition (EMT). Combination of LBH589 and salinomycin has a synergistic inhibitory effect on TNBC BCSCs by inducing apoptosis, arresting the cell cycle, and regulating EMT; with no apparent associated severe toxicity. This drug combination could therefore offer a new targeted therapeutic strategy for TNBC and warrants further clinical study in patients with TNBC.

  4. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    Science.gov (United States)

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-04

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.

  5. Breast Cancer Anti-Estrogen Resistance 4 (BCAR4 Drives Proliferation of IPH-926 lobular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Ton van Agthoven

    Full Text Available Most breast cancers depend on estrogenic growth stimulation. Functional genetic screenings in in vitro cell models have identified genes, which override growth suppression induced by anti-estrogenic drugs like tamoxifen. Using that approach, we have previously identified Breast Cancer Anti-Estrogen Resistance 4 (BCAR4 as a mediator of cell proliferation and tamoxifen-resistance. Here, we show high level of expression and function of BCAR4 in human breast cancer.BCAR4 mRNA expression was evaluated by (qRT-PCR in a panel of human normal tissues, primary breast cancers and cell lines. A new antibody raised against C78-I97 of the putative BCAR4 protein and used for western blot and immunoprecipitation assays. Furthermore, siRNA-mediated gene silencing was implemented to study the function of BCAR4 and its downstream targets ERBB2/3.Except for placenta, all human normal tissues tested were BCAR4-negative. In primary breast cancers, BCAR4 expression was comparatively rare (10%, but associated with enhanced proliferation. Relative high BCAR4 mRNA expression was identified in IPH-926, a cell line derived from an endocrine-resistant lobular breast cancer. Moderate BCAR4 expression was evident in MDA-MB-134 and MDA-MB-453 breast cancer cells. BCAR4 protein was detected in breast cancer cells with ectopic (ZR-75-1-BCAR4 and endogenous (IPH-926, MDA-MB-453 BCAR4 mRNA expression. Knockdown of BCAR4 inhibited cell proliferation. A similar effect was observed upon knockdown of ERBB2/3 and exposure to lapatinib, implying that BCAR4 acts in an ERBB2/3-dependent manner.BCAR4 encodes a functional protein, which drives proliferation of endocrine-resistant breast cancer cells. Lapatinib, a clinically approved EGFR/ERBB2 inhibitor, counteracts BCAR4-driven tumor cell growth, a clinical relevant observation.

  6. Establishment of novel rat models for premalignant breast disease

    Institute of Scientific and Technical Information of China (English)

    Wang Feng; Ma Zhongbing; Wang Fei; Fu Qinye; Fang Yunzhi; Zhang Qiang; Gao Dezong

    2014-01-01

    Background Breast cancer has become one of the most common malignant tumors among females over the past several years.Breast carcinogenesis is a continuous process,which is featured by the normal epithelium progressing to premalignant lesions and then to invasive breast cancer (IBC).Targeting premalignant lesions is an effective strategy to prevent breast cancer.The establishment of animal models is critical to study the mechanisms of breast carcinogenesis,which will facilitate research on breast cancer prevention and drug behaviors.In this study,we established a feasible chemically-induced rat model of premalignant breast cancer.Methods Following the administration of the drugs (carcinogen,estrogen,and progestogen) to Sprague-Dawley (SD) rats,tumors or suspicious tumors were identified by palpation or ultrasound imaging,and were surgically excised for pathological evaluation.A series of four consecutive steps were carried out in order to determine the carcinogen:7,12-dimethylbenzaanthracene (DMBA) or 1-methyl-1-nitrosourea,the route of carcinogen administration,the administration period of estrogen and progestogen,and the DMBA dosage.Results Stable premalignant lesions can be induced in SD rats on administration of DMBA (15 mg/kg,administered three times) followed by administration of female hormones 5-day cycle.Results were confirmed by ultrasound and palpation.Conclusion Under the premise of drug dose and cycle,DMBA combined with estrogen and progestogen can be used as a SD rat model for breast premalignant lesions.

  7. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  8. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    Science.gov (United States)

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-03-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.

  9. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  10. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    Science.gov (United States)

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  11. MUC1 glycoforms in breast cancer--cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation.

    Science.gov (United States)

    Hanisch, F G; Stadie, T R; Deutzmann, F; Peter-Katalinic, J

    1996-02-15

    A highly immunogenic peptide motif within the tandem repeat domain of MUC1 mucin is assumed to be exposed during development of breast cancer due to altered O-glycosylation. To elucidate the structural aspects of these changes, we have isolated and analysed the integrated or secretory MUC1 glycoforms from carcinoma cell lines or solid tumors and from human milk. The buoyant densities measured in CsCl gradients for MUC1 glycoforms from cancer cells revealed heterogeneity of the physicochemical species and a significant reduction of their carbohydrate contents compared to MUC1 from skim milk. Immunoreactivity patterns of MUC1 glycoforms from tumor or T47D cells exhibited a lack of fucosylated Lewis blood-group-related antigens and the appearance of core-type antigen sialyl(NeuGl)-TF, Gal beta 1-3(NeuGl alpha 2-6)GalNAc. Structural chemistry of MUC1 oligosaccharides demonstrated that the cancer-associated glycoforms carry mainly sialylated trisaccharides NeuAc alpha 2-3Gal Beta 1-3GalNAc or NeuAc alpha 2-6(Gal beta l-3)GalNAc, exhibit a concomitant decrease in the ratio of GlcNAc/GalNAc, a reduction or disappearance of L-fucose, and a partial substitution of N-acetylneuraminic acid by the N-glycolylated variant. On comparison to the secretory MUC1 in human milk, the glycoforms on human milk fat globule membranes showed apparently identical patterns of O-linked oligosaccharides with a preponderance of neutral polylactosamino-glycans. During serum-free cultivation of T47D cells over 4 weeks, the expression of secretory MUC1 glycoforms was inconsistent based on the decreasing contents of sialic acid and on the concomitant increase of immunodetectable TF antigen.

  12. A novel 3-D mineralized tumor model to study breast cancer bone metastasis.

    Directory of Open Access Journals (Sweden)

    Siddharth P Pathi

    Full Text Available BACKGROUND: Metastatic bone disease is a frequent cause of morbidity in patients with advanced breast cancer, but the role of the bone mineral hydroxyapatite (HA in this process remains unclear. We have developed a novel mineralized 3-D tumor model and have employed this culture system to systematically investigate the pro-metastatic role of HA under physiologically relevant conditions in vitro. METHODOLOGY/PRINCIPAL FINDINGS: MDA-MB231 breast cancer cells were cultured within non-mineralized or mineralized polymeric scaffolds fabricated by a gas foaming-particulate leaching technique. Tumor cell adhesion, proliferation, and secretion of pro-osteoclastic interleukin-8 (IL-8 was increased in mineralized tumor models as compared to non-mineralized tumor models, and IL-8 secretion was more pronounced for bone-specific MDA-MB231 subpopulations relative to lung-specific breast cancer cells. These differences were pathologically significant as conditioned media collected from mineralized tumor models promoted osteoclastogenesis in an IL-8 dependent manner. Finally, drug testing and signaling studies with transforming growth factor beta (TGFbeta confirmed the clinical relevance of our culture system and revealed that breast cancer cell behavior is broadly affected by HA. CONCLUSIONS/SIGNIFICANCE: Our results indicate that HA promotes features associated with the neoplastic and metastatic growth of breast carcinoma cells in bone and that IL-8 may play an important role in this process. The developed mineralized tumor models may help to reveal the underlying cellular and molecular mechanisms that may ultimately enable more efficacious therapy of patients with advanced breast cancer.

  13. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    Directory of Open Access Journals (Sweden)

    Fleming Jodie M

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its

  14. Characterization of the estrogen receptor transfected MCF10A breast cell line 139B6.

    Science.gov (United States)

    Pilat, M J; Christman, J K; Brooks, S C

    1996-01-01

    There has been increasing evidence which suggests that abnormal expression of the estrogen receptor (ER) protein in nonmalignant breast tissue may be important in the carcinogenic process. To examine the effects of ER expression in immortalized nonmalignant mammary epithelial cells, an expression vector containing human ER cDNA was transfected into the ER negative human breast cells, MCF10A. Characterization of a clone stably expressing ER, 139B6, provided evidence for the regulated synthesis of a functional ER capable of binding estradiol-17 beta (E2) and undergoing processing. Expression of the ER gene did not enable E2 to stimulate endogenous genes [progesterone receptor (PgR), pS2, cathepsin D and TGF alpha] which normally respond to estrogens in breast cancer cells. The ER in 139B6 cells was, however, capable of inducing expression of an ERE-regulated reporter gene, indicating its ability to interact with transcriptional machinery. Furthermore, cultures in log growth displayed a slight increase in doubling time in the presence of E2. These results indicate that ER expression alone is not sufficient to induce a transformed phenotype. Thus, the 139B6 cell line should provide a new model for determining what additional changes lead to increased growth potential in response to E2 and for exploring how E2 itself may help bring about changes leading to progression of preneoplastic breast epithelial cells.

  15. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells

    DEFF Research Database (Denmark)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B;

    2013-01-01

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles...... of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced...... significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest...

  16. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jing [The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Zhang, Jun-ying [Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Yin, Li [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Wu, Jian-zhong [Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Guo, Wen-jie; Wu, Jian-feng [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Chen, Meng; Xia, You-you [The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Tang, Jin-hai [Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Ma, Yong-chao [Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); He, Xia, E-mail: hexiadoctor@163.com [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China)

    2015-01-02

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.

  17. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  18. Aurora kinase B is important for antiestrogen resistant cell growth and a potential biomarker for tamoxifen resistant breast cancer

    DEFF Research Database (Denmark)

    Larsen, Sarah L; Yde, Christina W; Laenkholm, Anne-Vibeke

    2015-01-01

    treatment targets. METHODS: Antiestrogen sensitive and resistant T47D breast cancer cell lines were used as model systems. Parental and fulvestrant resistant cell lines were subjected to a kinase inhibitor library. Kinase inhibitors preferentially targeting growth of fulvestrant resistant cells were...... for endocrine resistance, immunohistochemistry was performed on archival primary tumor tissue from breast cancer patients who have received adjuvant endocrine treatment with tamoxifen. RESULTS: The selective Aurora kinase B inhibitor barasertib was identified to preferentially inhibit growth of fulvestrant...... resistant T47D breast cancer cell lines. Compared with parental cells, phosphorylation of Aurora kinase B was higher in the fulvestrant resistant T47D cells. Barasertib induced degradation of Aurora kinase B, caused mitotic errors, and induced apoptotic cell death as measured by accumulation of SubG1 cells...

  19. Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells.

    Science.gov (United States)

    Debeb, Bisrat G; Cohen, Evan N; Boley, Kimberly; Freiter, Erik M; Li, Li; Robertson, Fredika M; Reuben, James M; Cristofanilli, Massimo; Buchholz, Thomas A; Woodward, Wendy A

    2012-07-01

    Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.

  20. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  1. Integrin Signaling in Mammary Epithelial Cells and Breast Cancer

    OpenAIRE

    Lambert, Arthur W.; Sait Ozturk; Sam Thiagalingam

    2012-01-01

    Cells sense and respond to the extracellular matrix (ECM) by way of integrin receptors, which facilitate cell adhesion and intracellular signaling. Advances in understanding the mammary epithelial cell hierarchy are converging with new developments that reveal how integrins regulate the normal mammary gland. But in breast cancer, integrin signaling contributes to the development and progression of tumors. This paper highlights recent studies which examine the role of integrin signaling in mam...

  2. Fusion of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metastatic Breast Cancer. Addendum

    Science.gov (United States)

    2011-08-01

    patients. This brief report details the characterization of tumor cells and dendritic cells generated from patient BV01 with metastatic breast cancer following isolation from pleural effusions and leukapheresis, respectively.

  3. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  4. Breast Cancer Exosome-like Microvesicles and Salivary Gland Cells Interplay Alters Salivary Gland Cell-Derived Exosome-like Microvesicles In Vitro

    OpenAIRE

    Lau, Chang S.; Wong, David T. W.

    2012-01-01

    Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles enca...

  5. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  6. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells

    Science.gov (United States)

    Cook, Matthew T; Liang, Yayun; Besch-Williford, Cynthia; Hyder, Salman M

    2017-01-01

    Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC. PMID:28096694

  7. Mangiferin blocks proliferation and induces apoptosis of breast cancer cells via suppression of the mevalonate pathway and by proteasome inhibition.

    Science.gov (United States)

    Cuccioloni, M; Bonfili, L; Mozzicafreddo, M; Cecarini, V; Scuri, S; Cocchioni, M; Nabissi, M; Santoni, G; Eleuteri, A M; Angeletti, M

    2016-10-12

    Mangiferin is a natural xanthone glycoside with therapeutic potential. Herein, its cytotoxic properties were explored in a human cell model of breast adenocarcinoma. The results supported the multi-target nature of mangiferin action, as the inhibition of three enzymatic systems, namely HMG-CoA reductase, the proteasome and plasmin, respectively in charge of regulating cholesterol homeostasis, protein turnover and cell adhesion, was documented for the first time. Globally, mangiferin was able to selectively block breast cancer cell growth by inducing apoptosis and by arresting cell proliferation through a combined action on cholesterol and proteasome pathways, as well as to inhibit plasmin-mediated mechanisms of cell migration.

  8. Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer

    Science.gov (United States)

    2012-07-01

    Dendritic Cells as a Vaccine for the Treatment of Metatastic Breast Cancer PRINCIPAL INVESTIGATOR: Donald Kufe, M.D...COVERED 1 July 2011 – 30 June 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fusions of Breast Carcinoma and Dendritic Cells as a Vaccine for...have been enrolled thus far. We reported in detail the characterization of the tumor cells, the generated dendritic cells and the DC/tumor fusions

  9. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

    Science.gov (United States)

    Prat, Aleix; Karginova, Olga; Parker, Joel S; Fan, Cheng; He, Xiaping; Bixby, Lisa; Harrell, J Chuck; Roman, Erick; Adamo, Barbara; Troester, Melissa; Perou, Charles M

    2013-11-01

    Five molecular subtypes (luminal A, luminal B, HER2-enriched, basal-like, and claudin-low) with clinical implications exist in breast cancer. Here, we evaluated the molecular and phenotypic relationships of (1) a large in vitro panel of human breast cancer cell lines (BCCLs), human mammary fibroblasts (HMFs), and human mammary epithelial cells (HMECs); (2) in vivo breast tumors; (3) normal breast cell subpopulations; (4) human embryonic stem cells (hESCs); and (5) bone marrow-derived mesenchymal stem cells (hMSC). First, by integrating genomic data of 337 breast tumor samples with 93 cell lines we were able to identify all the intrinsic tumor subtypes in the cell lines, except for luminal A. Secondly, we observed that the cell lines recapitulate the differentiation hierarchy detected in the normal mammary gland, with claudin-low BCCLs and HMFs cells showing a stromal phenotype, HMECs showing a mammary stem cell/bipotent progenitor phenotype, basal-like cells showing a luminal progenitor phenotype, and luminal B cell lines showing a mature luminal phenotype. Thirdly, we identified basal-like and highly migratory claudin-low subpopulations of cells within a subset of triple-negative BCCLs (SUM149PT, HCC1143, and HCC38). Interestingly, both subpopulations within SUM149PT were enriched for tumor-initiating cells, but the basal-like subpopulation grew tumors faster than the claudin-low subpopulation. Finally, claudin-low BCCLs resembled the phenotype of hMSCs, whereas hESCs cells showed an epithelial phenotype without basal or luminal differentiation. The results presented here help to improve our understanding of the wide range of breast cancer cell line models through the appropriate pairing of cell lines with relevant in vivo tumor and normal cell counterparts.

  10. The Role of Breast Cancer Stem Cells in Metastasis and Therapeutic Implications

    OpenAIRE

    2011-01-01

    Cancer stem cells (CSCs) possess the capacity to self-renew and to generate heterogeneous lineages of cancer cells that comprise tumors. A substantial body of evidence supports a model in which CSCs play a major role in the initiation, maintenance, and clinical outcome of cancers. In contrast, analysis of the role of CSCs in metastasis has been mainly conceptual and speculative. This review summarizes recent data that support the theory of CSCs as the source of metastatic lesions in breast ca...

  11. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    Directory of Open Access Journals (Sweden)

    Lenora Ann Pluchino

    Full Text Available Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and benzo[a]pyrene (B[a]P, and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  12. Multi-Walled Carbon Nanotubes Inhibit Breast Cancer Cell Migration.

    Science.gov (United States)

    Graham, Elizabeth G; Wailes, Elizabeth M; Levi-Polyachenko, Nicole H

    2016-02-01

    According to the American Cancer Society, breast cancer is the second leading cause of cancer death in the US. Cancerous cells may have inadequate adhesions to the extracellular matrix and adjacent cells. Previous work has suggested that restoring these contacts may negate the cancer phenotype. This work aims to restore those contacts using multi-walled carbon nanotubes (MWNTs). Varying concentrations of carboxylated MWNTs in water, with or without type I collagen, were dried to create a thin film upon which one of three breast cell lines were seeded: cancerous and metastatic MDA- MB-231 cells, cancerous but non-metastatic MCF7 cells, or non-cancerous MCF10A cells. Proliferation, adhesion, scratch and autophagy assays, western blots, and immunochemical staining were used to assess adhesion and E-cadherin expression. Breast cancer cells grown on a MWNT-collagen coated surface displayed increased adhesion and decreased migration which correlated with an increase in E-cadherin. This work suggests an alternative approach to cancer treatment by physically mediating the cells' microenvironment.

  13. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagadec, Chann [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  14. Cell-Based Memory of DNA Damage in Breast Cancer

    Science.gov (United States)

    2009-09-01

    yeast [ Ajo -Franklin et al., 2007]. A set of transcriptional activators was constructed and stably transformed into U2OS cells. In the resting state...therapeutic action within breast tumors. References: Ajo -Franklin CM, Drubin DA, Esking JA, Gee EP, Landgraf D, Phillips I and Silver PA. Rational

  15. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  16. ALK1-Negative Anaplastic Large Cell Lymphoma of the Breast from a Nonprosthesis Cyst

    Directory of Open Access Journals (Sweden)

    Christopher Mulligan, MBBS

    2014-10-01

    Full Text Available Summary: Anaplastic large cell lymphoma of the breast is a rare malignancy associated with prosthetic breast implants. We present a case of a woman with no prior history of breast implants who developed anaplastic lymphoma kinase-1 negative anaplastic large cell lymphoma on a background of a previous benign cyst aspiration.

  17. Oncogene-Induced Changes in Mammary Cell Fate and EMT in Breast Tumorigenesis

    Science.gov (United States)

    2015-04-01

    Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Basal-like/ triple negative breast cancers (TNBCs) are characterized by...24 4 1. INTRODUCTION: Basal-like/ triple negative breast cancers (TNBCs) are characterized by distinctive morphologic, genetic, and clinical features...with tumor initiation and cell fate markers. 2. KEYWORDS: IGF1R, triple - negative breast cancer, luminal, myoepithelial, cell fate 3. ACCOMPLISHMENTS

  18. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells.

    Science.gov (United States)

    Mills, Shirley C; Goh, Poh Hui; Kudatsih, Jossie; Ncube, Sithembile; Gurung, Renu; Maxwell, Will; Mueller, Anja

    2016-04-01

    Chemotaxis or directed cell migration is mediated by signalling events initiated by binding of chemokines to their cognate receptors and the activation of a complex signalling cascade. The molecular signalling pathways involved in cell migration are important to understand cancer cell metastasis. Therefore, we investigated the molecular mechanisms of CXCL12 induced cell migration and the importance of different signalling cascades that become activated by CXCR4 in leukemic cells versus breast cancer cells. We identified Src kinase as being essential for cell migration in both cancer types, with strong involvement of the Raf/MEK/ERK1/2 pathway. We did not detect any involvement of Ras or JAK2/STAT3 in CXCL12 induced migration in Jurkat cells. Preventing PKC activation with inhibitors does not affect migration in Jurkat cells at all, unlike in the adherent breast cancer cell line MCF-7 cells. However, in both cell lines, knock down of PKCα prevents migration towards CXCL12, whereas the expression of PKCζ is less crucial for migration. PI3K activation is essential in both cell types, however LY294002 usage in MCF-7 cells does not block migration significantly. These results highlight the importance of verifying specific signalling pathways in different cell settings and with different approaches.

  19. Tissue modeling schemes in low energy breast brachytherapy.

    Science.gov (United States)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-21

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D(90) metric is used for the analysis and is based on the dose to water (D(90(w,m))). D(90(m,m)) is also reported for comparison to D(90(w,m)). The two-month post-implant D(90(w,m)) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D(90(w,m)) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this

  20. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    Directory of Open Access Journals (Sweden)

    Chiara Arrigoni

    2016-08-01

    Full Text Available Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.

  1. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    Science.gov (United States)

    Arrigoni, Chiara; Bersini, Simone; Gilardi, Mara; Moretti, Matteo

    2016-01-01

    Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps. PMID:27571063

  2. Contour Detection-Based Realistic Finite-Difference-Time- Domain Models for Microwave Breast Cancer Detection

    Institute of Scientific and Technical Information of China (English)

    王梁; 肖夏; 宋航; 路红; 刘佩芳

    2016-01-01

    In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radio-graphic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the indi-vidual difference between patients’ breasts.

  3. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    Science.gov (United States)

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  4. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    Science.gov (United States)

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  5. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells.

    Science.gov (United States)

    Pandiri, Indira; Chen, Yingqing; Joe, Yeonsoo; Kim, Hyo Jeong; Park, Jeongmin; Chung, Hun Taeg; Park, Jeong Woo

    2016-02-01

    Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against TTP to inhibit TTP expression or c-Myc and, after metformin treatment, analyzed for cell proliferation by MTS assay. Metformin induces the expression of tristetraprolin (TTP) in breast cancer cells in a p53-independent manner. Importantly, inhibition of TTP abrogated the anti-proliferation effect of metformin. We observed that metformin decreased c-Myc levels, and ectopic expression of c-Myc blocked the effect of metformin on TTP expression and cell proliferation. Our data indicate that metformin induces TTP expression by reducing the expression of c-Myc, suggesting a new model whereby TTP acts as a mediator of metformin's anti-proliferative activity in cancer cells.

  6. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    Directory of Open Access Journals (Sweden)

    Valentina Pileczki

    2012-12-01

    Full Text Available Tumor necrosis factor alpha (TNF-α is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death.

  7. Suppression of cell growth and invasion by miR-205 in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Hailong Wu; Shoumin Zhu; Yin-Yuan Mo

    2009-01-01

    MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB-231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR-205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR-205 is a tumor suppressor in breast cancer.

  8. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?

    Science.gov (United States)

    Shima, Hidetaka; Ishikawa, Takashi; Endo, Itaru

    2017-01-01

    Despite the dramatic advances in breast cancer treatment over the past two decades, it is still the most common malignancies in women. One of the reasons patients succumb to breast cancer is treatment resistance leading to metastasis and recurrence. Recently, cancer stem cells (CSCs) have been suggested as a cause of metastasis and recurrence in several cancers because of their unique characteristics, including self-renewal, pluripotency, and high proliferative ability. Increasing evidence has implicated breast cancer stem cells (BCSCs) as essential for tumor development, progression, recurrence, and treatment resistance. BCSCs exhibit resistance to treatment owing to several inter-related factors, including overexpression of ATP-binding cassette (ABC) transporters and increased aldehyde dehydrogenase (ALDH) activity, DNA repair, and reactive oxygen species (ROS) scavenging. In addition, the Notch, Hedgehog, and Wnt signaling pathways have been suggested as the major pathways involved in the self-renewal and differentiation of BCSCs. Despite growing evidence suggesting the importance of BCSCs in progression and metastasis, clear criteria for the identification of BCSCs in clinical practice have yet to be established. Several potential markers have been suggested, including CD44+/CD24−/low, ALDH1, EpCAM/ESA, and nestin; however, there is no standard method to detect BCSCs. Triple-negative breast cancer, which shows initial chemosensitivity, demonstrates worsened prognosis due to therapy resistance, which might be related to the presence of BCSCs. Several clinical trials aimed at the identification of BCSCs or the development of BCSC-targeted therapy are in progress. Determining the clinical relevance of BCSCs may provide clues for overcoming therapy resistance in breast cancer. PMID:28210556

  9. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens.

    Science.gov (United States)

    Rathore, Kusum; Wang, Hwa-Chain Robert

    2012-03-01

    Sporadic breast cancers are mainly attributable to long-term exposure to environmental factors, via a multi-year, multi-step, and multi-path process of tumorigenesis involving cumulative genetic and epigenetic alterations in the chronic carcinogenesis of breast cells from a non-cancerous stage to precancerous and cancerous stages. Epidemiologic and experimental studies have suggested that green tea components may be used as preventive agents for breast cancer control. In our research, we have developed a cellular model that mimics breast cell carcinogenesis chronically induced by cumulative exposures to low doses of environmental carcinogens. In this study, we used our chronic carcinogenesis model as a target system to investigate the activity of green tea catechin extract (GTC) at non-cytotoxic levels in intervention of cellular carcinogenesis induced by cumulative exposures to pico-molar 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P). We identified that GTC, at a non-cytotoxic, physiologically achievable concentration of 2.5 µg/mL, was effective in suppressing NNK- and B[a]P-induced cellular carcinogenesis, as measured by reduction of the acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth, increased cell mobility, and acinar-conformational disruption. We also detected that intervention of carcinogen-induced elevation of reactive oxygen species (ROS), increase of cell proliferation, activation of the ERK pathway, DNA damage, and changes in gene expression may account for the mechanisms of GTC's preventive activity. Thus, GTC may be used in dietary and chemoprevention of breast cell carcinogenesis associated with long-term exposure to low doses of environmental carcinogens.

  10. Increased Levels of Erythropoietin in Nipple Aspirate Fluid and in Ductal Cells from Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ferdinando Mannello

    2008-01-01

    Full Text Available Background: Erythropoietin (Epo is an important regulator of erythropoiesis, and controls proliferation and differentiation of both erythroid and non-erythroid tissues. Epo is actively synthesized by breast cells during lactation, and also plays a role in breast tissues promoting hypoxia-induced cancer initiation. Our aims are to perform an exploratory investigation on the Epo accumulation in breast secretions from healthy and cancer patients and its localization in breast cancer cells.

  11. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  12. Neoplastic transformation of breast epithelial cells by genotoxic stress

    Directory of Open Access Journals (Sweden)

    Raman Venu

    2010-06-01

    Full Text Available Abstract Background Exposure to genotoxic stresses such as radiation and tobacco smoke can cause increased cancer incidence rate as reflected in an in depth meta-analysis of data for women and breast cancer incidence. Published reports have indicated that exposures to low dose radiation and tobacco smoke are factors that contribute to the development of breast cancer. However, there is a scarcity of information on the combinatorial effects of low dose radiation and tobacco smoke on formation and progression of breast cancer. The combination of these two genotoxic insults can induce significant damage to the genetic material of the cells resulting in neoplastic transformation. Methods To study the effects of low dose ionizing radiation and tobacco smoke on breast cells, MCF 10A cells were treated either with radiation (Rad - 0.1 Gray or cigarette smoke condensate (Csc - 10 microgram/ml of medium or a combination of Rad + Csc. Following treatments, cells were analyzed for cell cycle distribution patterns and the ability to extrude the Hoechst 33342 dye. In addition, in vitro invasion and migration as well as mammosphere formation assays were performed. Finally, differential gene expression profiles were generated from the individual and combination treatment. Results Exposure of MCF 10A cells to the combination of radiation plus cigarette smoke condensate generated a neoplastic phenotype. The transformed phenotype promoted increased mammosphere numbers, altered cell cycle phases with a doubling of the population in S phase, and increased invasion and motility. Also, exclusion of Hoechst 33342 dye, a surrogate marker for increased ABC transporters, was observed, which indicates a possible increase in drug resistance. In addition, changes in gene expression include the up regulation of genes encoding proteins involved in metabolic pathways and inflammation. Conclusions The results indicate that when normal breast cells are exposed to low dose

  13. Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway.

    Directory of Open Access Journals (Sweden)

    Laura W Bowers

    Full Text Available Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB: ≥30 kg/m2; normal weight (N: 18.5-24.9 kg/m2. Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231 and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease.

  14. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  15. Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools

    Directory of Open Access Journals (Sweden)

    Nina Akrap

    2016-01-01

    Full Text Available The identification of breast cancer cell subpopulations featuring truly malignant stem cell qualities is a challenge due to the complexity of the disease and lack of general markers. By combining extensive single-cell gene expression profiling with three functional strategies for cancer stem cell enrichment including anchorage-independent culture, hypoxia, and analyses of low-proliferative, label-retaining cells derived from mammospheres, we identified distinct stem cell clusters in breast cancer. Estrogen receptor (ERα+ tumors featured a clear hierarchical organization with switch-like and gradual transitions between different clusters, illustrating how breast cancer cells transfer between discrete differentiation states in a sequential manner. ERα− breast cancer showed less prominent clustering but shared a quiescent cancer stem cell pool with ERα+ cancer. The cellular organization model was supported by single-cell data from primary tumors. The findings allow us to understand the organization of breast cancers at the single-cell level, thereby permitting better identification and targeting of cancer stem cells.

  16. Micheliolide overcomes KLF4-mediated cisplatin resistance in breast cancer cells by downregulating glutathione

    Directory of Open Access Journals (Sweden)

    Jia Y

    2015-08-01

    Full Text Available Yongsheng Jia,1,* Chunze Zhang,2,* Liyan Zhou,1,* Huijun Xu,3 Yehui Shi,1 Zhongsheng Tong1 1Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Colorectal Surgery, Tianjin Union Medicine Center, Tianjin, People’s Republic of China; 3Department of Oncology, Anhui Provincial Tumor Hospital, Hefei, People’s Republic of China *These authors contributed equally to this work Abstract: Micheliolide (MCL is a promising novel compound with broad-spectrum anticancer activity. However, little is known regarding its action and mechanism in breast cancer. To explore the potential therapeutic application of MCL as a chemosensitivity modulator, this study investigated the effects of MCL on cisplatin sensitivity in breast cancer and the underlying mechanisms. In the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide cytotoxicity assay and a xenograft tumor model, MCL enhanced the cisplatin sensitivity of the breast cancer cell line MCF-7 both in vitro and in vivo. Treatment of MCF-7 cells with low-dose cisplatin (10 µM was sufficient to enrich the proportion of ALDH+ cells and upregulate Krüppel-like factor 4 (KLF4 expression. The results obtained from knockdown and overexpression experiments demonstrate that KLF4 is both necessary and sufficient to induce a cisplatin resistance phenotype in breast cancer cells. Furthermore, the glutathione (GSH content was elevated in MCF-7 cells after overexpression of KLF4. KLF4-mediated resistance to cisplatin was found to be abrogated by treatment with buthionine sulfoximine, an inhibitor of GSH synthesis. MCL induced GSH depletion and severe cell death in KLF4-overexpressing MCF-7 cells following exposure to cisplatin

  17. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity.

    Science.gov (United States)

    D'Angelo, Rosemarie C; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A; Senbabaoglu, Yasin; Conley, Sarah J; Clouthier, Shawn G; Hassan, Khaled A; Wicha, Max S; Korkaya, Hasan

    2015-03-01

    Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

  18. Dynamics of genomic clones in breast cancer patient xenografts at single cell resolution

    Science.gov (United States)

    Eirew, Peter; Steif, Adi; Khattra, Jaswinder; Ha, Gavin; Yap, Damian; Farahani, Hossein; Gelmon, Karen; Chia, Stephen; Mar, Colin; Wan, Adrian; Laks, Emma; Biele, Justina; Shumansky, Karey; Rosner, Jamie; McPherson, Andrew; Nielsen, Cydney; Roth, Andrew J. L.; Lefebvre, Calvin; Bashashati, Ali; de Souza, Camila; Siu, Celia; Aniba, Radhouane; Brimhall, Jazmine; Oloumi, Arusha; Osako, Tomo; Bruna, Alejandra; Sandoval, Jose; Algara, Teresa; Greenwood, Wendy; Leung, Kaston; Cheng, Hongwei; Xue, Hui; Wang, Yuzhuo; Lin, Dong; Mungall, Andrew J.; Moore, Richard; Zhao, Yongjun; Lorette, Julie; Nguyen, Long; Huntsman, David; Eaves, Connie J.; Hansen, Carl; Marra, Marco A.; Caldas, Carlos; Shah, Sohrab P.; Aparicio, Samuel

    2016-01-01

    Human cancers, including breast cancers, are comprised of clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution1,2, underpinning important emergent features such as drug resistance and metastasis3–7. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours8–10. However the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours has not been systematically examined at single cell resolution. Here we show by both deep genome and single cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies utilizing patient-derived breast cancer xenoengraftment. PMID:25470049

  19. SURVIVIN as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis.

    Science.gov (United States)

    Siddharth, Sumit; Das, Sarita; Nayak, Anmada; Kundu, Chanakya Nath

    2016-10-01

    Cancer stem cells drive the metastatic cascade by undergoing epithelial to mesenchymal transition (EMT) and again mesenchymal to epithelial transition (MET). Using multiple breast cancer cell lines including cigarette smoke induced breast cancer cells and tumor derived primary cells from patient sample; we developed a breast cancer metastasis model and reported the existence of an adherent, distinct pre-metastatic phase, quiescent-breast cancer stem cells (Q-BCSCs) prior to attaining an EMT. SURVIVIN was found to be expressed in Q-BCSCs. Time dependant biphasic expression of SURVIVIN in Q-BCSCs reveals that Q-BCSCs is a pre-metastatic phase distinct from both epithelial and mesenchymal counterparts. SURVIVIN favours metastasis and up-regulates WNT/β-CATENIN pathway in a PI3 K/AKT-dependant manner for self-renewal. Knockdown of SURVIVIN in Q-BCSCs lost the metastatic property of cells by inhibiting invasion, EMT-MET, PI3 K/AKT/WNT cascade, and induced apoptosis. Thus, our data suggest the existence of a novel pre-metastatic phase (Q-BCSCs) before EMT and SURVIVIN acts as a marker for Quiescent-BCSCs.

  20. File list: InP.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155768,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.50.AllAg.Breast_cancer_cells.bed ...

  1. File list: InP.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155768,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.20.AllAg.Breast_cancer_cells.bed ...

  2. File list: NoD.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.20.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210209,ERX210205,ERX210213,ERX210215,ERX210206,ERX210208,ERX210207,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.20.AllAg.Breast_cancer_cells.bed ...

  3. File list: NoD.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.05.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210208,ERX210209,ERX210215,ERX210213,ERX210206,ERX210212,ERX210205,ERX210207 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.05.AllAg.Breast_cancer_cells.bed ...

  4. File list: InP.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.05.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.05.AllAg.Breast_cancer_cells.bed ...

  5. File list: InP.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.10.AllAg.Breast_cancer_cells.bed ...

  6. File list: NoD.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.10.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210209,ERX210215,ERX210208,ERX210213,ERX210212,ERX210205,ERX210206,ERX210207 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.10.AllAg.Breast_cancer_cells.bed ...

  7. File list: NoD.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.50.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210215,ERX210213,ERX210206,ERX210205,ERX210207,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.50.AllAg.Breast_cancer_cells.bed ...

  8. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  9. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Science.gov (United States)

    Pulito, Claudio; Terrenato, Irene; Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  10. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  11. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  12. Reaching rural women: breast cancer prevention information seeking behaviors and interest in Internet, cell phone, and text use.

    Science.gov (United States)

    Kratzke, Cynthia; Wilson, Susan; Vilchis, Hugo

    2013-02-01

    The purpose of this study was to examine the breast cancer prevention information seeking behaviors among rural women, the prevalence of Internet, cell, and text use, and interest to receive breast cancer prevention information cell and text messages. While growing literature for breast cancer information sources supports the use of the Internet, little is known about breast cancer prevention information seeking behaviors among rural women and mobile technology. Using a cross-sectional study design, data were collected using a survey. McGuire's Input-Ouput Model was used as the framework. Self-reported data were obtained from a convenience sample of 157 women with a mean age of 60 (SD = 12.12) at a rural New Mexico imaging center. Common interpersonal information sources were doctors, nurses, and friends and common channel information sources were television, magazines, and Internet. Overall, 87% used cell phones, 20% had an interest to receive cell phone breast cancer prevention messages, 47% used text messaging, 36% had an interest to receive text breast cancer prevention messages, and 37% had an interest to receive mammogram reminder text messages. Bivariate analysis revealed significant differences between age, income, and race/ethnicity and use of cell phones or text messaging. There were no differences between age and receiving text messages or text mammogram reminders. Assessment of health information seeking behaviors is important for community health educators to target populations for program development. Future research may identify additional socio-cultural differences.

  13. Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo.

    Directory of Open Access Journals (Sweden)

    Tiejun Zhao

    Full Text Available Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1 as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.

  14. Doxorubicin in combination with a small TGFbeta inhibitor: a potential novel therapy for metastatic breast cancer in mouse models.

    Directory of Open Access Journals (Sweden)

    Abhik Bandyopadhyay

    Full Text Available BACKGROUND: Recent studies suggested that induction of epithelial-mesenchymal transition (EMT might confer both metastatic and self-renewal properties to breast tumor cells resulting in drug resistance and tumor recurrence. TGFbeta is a potent inducer of EMT and has been shown to promote tumor progression in various breast cancer cell and animal models. PRINCIPAL FINDINGS: We report that chemotherapeutic drug doxorubicin activates TGFbeta signaling in human and murine breast cancer cells. Doxorubicin induced EMT, promoted invasion and enhanced generation of cells with stem cell phenotype in murine 4T1 breast cancer cells in vitro, which were significantly inhibited by a TGFbeta type I receptor kinase inhibitor (TbetaRI-KI. We investigated the potential synergistic anti-tumor activity of TbetaR1-KI in combination with doxorubicin in animal models of metastatic breast cancer. Combination of Doxorubicin and TbetaRI-KI enhanced the efficacy of doxorubicin in reducing tumor growth and lung metastasis in the 4T1 orthotopic xenograft model in comparison to single treatments. Doxorubicin treatment alone enhanced metastasis to lung in the human breast cancer MDA-MB-231 orthotopic xenograft model and metastasis to bone in the 4T1 orthotopic xenograft model, which was significantly blocked when TbetaR1-KI was administered in combination with doxorubicin. CONCLUSIONS: These observations suggest that the adverse activation of TGFbeta pathway by chemotherapeutics in the cancer cells together with elevated TGFbeta levels in tumor microenvironment may lead to EMT and generation of cancer stem cells resulting in the resistance to the chemotherapy. Our results indicate that the combination treatment of doxorubicin with a TGFbeta inhibitor has the potential to reduce the dose and consequently the toxic side-effects of doxorubicin, and improve its efficacy in the inhibition of breast cancer growth and metastasis.

  15. Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system.

    Directory of Open Access Journals (Sweden)

    Nicholas C D'Amato

    Full Text Available Breast cancers with a basal-like gene signature are primarily triple-negative, frequently metastatic, and carry a poor prognosis. Basal-like breast cancers are enriched for markers of breast cancer stem cells as well as markers of epithelial-mesenchymal transition (EMT. While EMT is generally thought to be important in the process of metastasis, in vivo evidence of EMT in human disease remains rare. Here we report a novel model of human triple-negative breast cancer, the DKAT cell line, which was isolated from an aggressive, treatment-resistant triple-negative breast cancer that demonstrated morphological and biochemical evidence suggestive of phenotypic plasticity in the patient. The DKAT cell line displays a basal-like phenotype in vitro when cultured in serum-free media, and undergoes phenotypic changes consistent with EMT/MET in response to serum-containing media, a unique property among the breast cancer cell lines we tested. This EMT is marked by increased expression of the transcription factor Zeb1, and Zeb1 is required for the enhanced migratory ability of DKAT cells in the mesenchymal state. DKAT cells also express progenitor-cell markers, and single DKAT cells are able to generate tumorspheres containing both epithelial and mesenchymal cell types. In vivo, as few as ten DKAT cells are capable of forming xenograft tumors which display a range of epithelial and mesenchymal phenotypes. The DKAT model provides a novel model to study the molecular mechanisms regulating phenotypic plasticity and the aggressive biology of triple-negative breast cancers.

  16. Modeling vitamin D actions in triple negative/basal-like breast cancer.

    Science.gov (United States)

    LaPorta, Erika; Welsh, JoEllen

    2014-10-01

    Breast cancer is a heterogeneous disease with six molecularly defined subtypes, the most aggressive of which are triple negative breast cancers that lack expression of estrogen receptor (ER) and progesterone receptor (PR) and do not exhibit amplification of the growth factor receptor HER2. Triple negative breast cancers often exhibit basal-like gene signatures and are enriched for CD44+ cancer stem cells. In this report we have characterized the molecular actions of the VDR in a model of triple negative breast cancer. Estrogen independent, invasive mammary tumor cell lines established from wild-type (WT) and VDR knockout (VDRKO) mice were used to demonstrate that VDR is necessary for 1,25-dihydroxyvitamin D3 (1,25D) mediated anti-cancer actions in vitro and to identify novel targets of this receptor. Western blotting confirmed differential VDR expression and demonstrated the lack of ER, PR and Her2 in these cell lines. Re-introduction of human VDR (hVDR) into VDRKO cells restored the anti-proliferative actions of 1,25D. Genomic profiling demonstrated that 1,25D failed to alter gene expression in KO240 cells whereas major changes were observed in WT145 cells and in KO clones stably expressing hVDR (KO(hVDR) cells). With a 2-fold cutoff, 117 transcripts in WT145 cells and 197 transcripts in the KO(hVDR) clones were significantly altered by 1,25D. Thirty-five genes were found to be commonly regulated by 1,25D in all VDR-positive cell lines. Of these, we identified a cohort of four genes (Plau, Hbegf, Postn, Has2) that are known to drive breast cancer invasion and metastasis whose expression was markedly down regulated by 1,25D. These data support a model whereby 1,25D coordinately suppresses multiple proteins that are required for survival of triple-negative/basal-like breast cancer cells. Since studies have demonstrated a high prevalence of vitamin D deficiency in women with basal-like breast cancer, correction of vitamin D deficiency in these women represents a

  17. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity

    OpenAIRE

    D’Angelo, Rosemarie C.; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M.; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A.; Senbabaoglu, Yasin; Conley, Sarah J; Shawn G Clouthier; Hassan, Khaled A.; Wicha, Max S; Korkaya, Hasan

    2015-01-01

    Developmental pathways such as Notch play a pivotal role in tissue specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch+) or reduced activity (Notch-) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays we investigated the role of Notch ...

  18. Screening and analysis of breast cancer genes regulated by the human mammary microenvironment in a humanized mouse model

    Science.gov (United States)

    Zheng, Mingjie; Wang, Jue; Ling, Lijun; Xue, Dandan; Wang, Shui; Zhao, Yi

    2016-01-01

    Tumor microenvironments play critical regulatory roles in tumor growth. Although mouse cancer models have contributed to the understanding of human tumor biology, the effectiveness of mouse cancer models is limited by the inability of the models to accurately present humanized tumor microenvironments. Previously, a humanized breast cancer model in severe combined immunodeficiency mice was established, in which human breast cancer tissue was implanted subcutaneously, followed by injection of human breast cancer cells. It was demonstrated that breast cancer cells showed improved growth in the human mammary microenvironment compared with a conventional subcutaneous mouse model. In the present study, the novel mouse model and microarray technology was used to analyze changes in the expression of genes in breast cancer cells that are regulated by the human mammary microenvironment. Humanized breast and conventional subcutaneous mouse models were established, and orthotopic tumor cells were obtained from orthotopic tumor masses by primary culture. An expression microarray using Illumina HumanHT-12 v4 Expression BeadChip and database analyses were performed to investigate changes in gene expression between tumors from each microenvironment. A total of 94 genes were differentially expressed between the primary cells cultured from the humanized and conventional mouse models. Significant upregulation of genes that promote cell proliferation and metastasis or inhibit apoptosis, such as SH3-domain binding protein 5 (BTK-associated), sodium/chloride cotransporter 3 and periostin, osteoblast specific factor, and genes that promote angiogenesis, such as KIAA1618, was also noted. Other genes that restrain cell proliferation and accelerate cell apoptosis, including tripartite motif containing TRIM36 and NES1, were downregulated. The present results revealed differences in various aspects of tumor growth and metabolism between the two model groups and indicated the functional

  19. Activation of VCAM-1 and Its Associated Molecule CD44 Leads to Increased Malignant Potential of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chen Wang

    2014-02-01

    Full Text Available VCAM-1 (CD106, a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1. In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.

  20. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  1. RhoC impacts the metastatic potential and abundance of breast cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Devin T Rosenthal

    Full Text Available Cancer stem cells (CSCs have been shown to promote tumorigenesis of many tumor types, including breast, although their relevance to cancer metastasis remains unclear. While subpopulations of CSCs required for metastasis have been identified, to date there are no known molecular regulators of breast CSC (BCSC metastasis. Here we identify RhoC GTPase as an important regulator of BCSC metastasis, and present evidence suggesting that RhoC also modulates the frequency of BCSCs within a population. Using an orthotopic xenograft model of spontaneous metastasis we discover that RhoC is both necessary and sufficient to promote SUM149 and MCF-10A BCSC metastasis--often independent from primary tumor formation--and can even induce metastasis of non-BCSCs within these cell lines. The relationship between RhoC and BCSCs persists in breast cancer patients, as expression of RhoC and the BCSC marker ALDH1 are highly correlated in clinical specimens. These results suggest new avenues to combating the deadliest cells driving the most lethal stage of breast cancer progression.

  2. Correlation between Twist expression and multidrug resistance of breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yue-Xi Wang; Xiao-Mei Chen; Jun Yan; Zhi-Ping Li

    2016-01-01

    Objective:To study the correlation between Twist expression and multidrug resistance of breast cancer cell lines. Methods:Human breast cancer cell lines MCF-7, cisplatin-resistant human breast cancer cell lines MCF-7/DDP, doxorubicin-resistant human breast cancer cell lines MCF-7/Adr and taxol-resistant human breast cancer cell lines MCF/PTX were cultured, Twist in human breast cancer cell lines MCF-7 was overexpressed and treated with doxorubicin, and then cell viability and expression levels of EMT marker molecules and related signaling pathway molecules were detected. Results:mRNA contents and protein contents of Twist in drug-resistant breast cancer cell lines MCF-7/DDP, MCF-7/Adr and MCF/PTX were higher than those in MCF-7 cell lines;after doxorubicin treatment, inhibitory rates of cell viability in MCF-7 cell lines were higher than those in MCF-7/Adr and MCF-7/Twist cell lines;E-cadherin expression levels in MCF-7/Adr cell lines and MCF-7/Twist cell lines were lower than those in MCF-7 cell lines, and mRNA contents and protein contents of N-cadherin, Vimentin, TGF-β, Smad, Wnt,β-catenin, TNF-αand NF-kB were higher than those in MCF-7 cell lines. Conclusion:Increased expression of Twist is associated with the occurrence of drug resistance in breast cancer cells.

  3. Progress towards understanding heterotypic interactions in multi-culture models of breast cancer.

    Science.gov (United States)

    Regier, Mary C; Alarid, Elaine T; Beebe, David J

    2016-06-13

    Microenvironments in primary tumors and metastases include multiple cell types whose dynamic and reciprocal interactions are central to progression of the disease. However, the literature involving breast cancer studied in vitro is dominated by cancer cells in mono-culture or co-cultured with one other cell type. For in vitro studies of breast cancer the inclusion of multiple cell types has led to models that are more representative of in vivo behaviors and functions as compared to more traditional monoculture. Here, we review foundational co-culture techniques and their adaptation to multi-culture (including three or more cell types). Additionally, while macroscale methods involving conditioned media, direct contact, and indirect interactions have been informative, we examined many advances that have been made more recently using microscale systems with increased control over cellular and structural complexity. Throughout this discussion we consider the benefits and limitations of current multi-culture methods and the significant results they have produced.

  4. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  5. In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    Science.gov (United States)

    Alfonso, J. C. L.; Schaadt, N. S.; Schönmeyer, R.; Brieu, N.; Forestier, G.; Wemmert, C.; Feuerhake, F.; Hatzikirou, H.

    2016-09-01

    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches.

  6. Estrogen receptors and cell proliferation in breast cancer.

    Science.gov (United States)

    Ciocca, D R; Fanelli, M A

    1997-10-01

    Most of the actions of estrogens on the normal and abnormal mammary cells are mediated via estrogen receptors (ERs), including control of cell proliferation; however, there are also alternative pathways of estrogen action not involving ERs. Estrogens control several genes and proteins that induce the cells to enter the cell cycle (protooncogenes, growth factors); estrogens also act on proteins directly involved in the control of the cell cycle (cyclins), and moreover, estrogens stimulate the response of negative cell cycle regulators (p53, BRCA1). The next challenge for researchers is elucidating the integration of the interrelationships of the complex pathways involved in the control of cell proliferation. This brief review focuses on the mechanisms of estrogen action to control cell proliferation and the clinical implications in breast cancer. (Trends Endocrinol Metab 1997;8:313-321). (c) 1997, Elsevier Science Inc.

  7. The molecular mechanism of different sensitivity of breast cancer cell lines to TRAIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jindan; LIU Yanxin; LIU Shilian; ZHENG Dexian

    2004-01-01

    Although Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of various cancer cells, some caner cell lines are resistant to TRAIL-induced cell death. To investigate the molecular mechanisms underlying TRAIL-resistance, two human breast cancer cell lines, MCF-7 (resistant to TRAIL) and MDA-MB-231 (sensitive to TRAIL), were used as a model system to analyze the different sensitivities to TRAIL cytotoxicity. PKCδ inhibitor rottlerin, but not MEK and ERK1/2 inhibitor U0126 nor PI3K inhibitor LY294002, was shown to enhance TRAIL-induced apoptosis in MCF-7 cells significantly, suggesting that PKCδ might play an important role in the resistance of MCF-7 cells to TRAIL. In contrast, rottlerin, U0126, and Ly294002 had no effect on MDA-MB-231 apoptosis induced by TRAIL under the same conditions. Further experiment showed that the combination of rottlerin and TRAIL cleaved PARP in the MCF-7 cells synergistically, but not in the MDA-MB-231 cells. The role of PKCδ in TRAIL-resistant MCF-7 cells was confirmed by knocking down the endogenous PKCδ expression using RNAi technology. Furthermore, caspase-3 reconstitution in MCF-7 cells was unable to alter PKCδ expression, suggesting that innate caspase-3 deficient in the cells does not cause PKCδ high expression. These data provide evidence for the first time that PKCδ plays a critical role in breast cancer cell lines to TRAIL cytotoxicity.

  8. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    Science.gov (United States)

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.

  9. Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1.

    Science.gov (United States)

    Singh, Manisha; Ramos, Ilyssa; Asafu-Adjei, Denise; Quispe-Tintaya, Wilber; Chandra, Dinesh; Jahangir, Arthee; Zang, Xingxing; Aggarwal, Bharat B; Gravekamp, Claudia

    2013-08-01

    Success of cancer vaccination is strongly hampered by immune suppression in the tumor microenvironment (TME). Interleukin (IL)-6 is particularly and highly produced by triple-negative breast cancer (TNBC) cells, and has been considered as an important contributor to immune suppression in the TME. Therefore, we hypothesized that IL-6 reduction may improve efficacy of vaccination against TNBC cancer through improved T-cell responses. To prove this hypothesis, we investigated the effect of curcumin, an inhibitor of IL-6 production, on vaccination of a highly attenuated Listeria monocytogenes (Listeria(at)), encoding tumor-associated antigens (TAA) Mage-b in a TNBC model 4T1. Two therapeutic vaccination strategies with Listeria(at)-Mage-b and curcumin were tested. The first immunization strategy involved all Listeria(at)-Mage-b vaccinations and curcumin after tumor development. As curcumin has been consumed all over the world, the second immunization strategy involved curcumin before and all therapeutic vaccinations with Listeria(at)-Mage-b after tumor development. Here, we demonstrate that curcumin significantly improves therapeutic efficacy of Listeria(at)-Mage-b with both immunization strategies particularly against metastases in a TNBC model (4T1). The combination therapy was slightly but significantly more effective against the metastases when curcumin was administered before compared to after tumor development. With curcumin before tumor development in the combination therapy, the production of IL-6 was significantly decreased and IL-12 increased by myeloid-derived suppressor cells (MDSC), in correlation with improved CD4 and CD8 T-cell responses in blood. Our study suggests that curcumin improves the efficacy of Listeria(at)-Mage-b vaccine against metastases in TNBC model 4T1 through reversal of tumor-induced immune suppression.

  10. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration.

    Science.gov (United States)

    Luga, Valbona; Zhang, Liang; Viloria-Petit, Alicia M; Ogunjimi, Abiodun A; Inanlou, Mohammad R; Chiu, Elaine; Buchanan, Marguerite; Hosein, Abdel Nasser; Basik, Mark; Wrana, Jeffrey L

    2012-12-21

    Stroma in the tumor microenvironment plays a critical role in cancer progression, but how it promotes metastasis is poorly understood. Exosomes are small vesicles secreted by many cell types and enable a potent mode of intercellular communication. Here, we report that fibroblast-secreted exosomes promote breast cancer cell (BCC) protrusive activity and motility via Wnt-planar cell polarity (PCP) signaling. We show that exosome-stimulated BCC protrusions display mutually exclusive localization of the core PCP complexes, Fzd-Dvl and Vangl-Pk. In orthotopic mouse models of breast cancer, coinjection of BCCs with fibroblasts dramatically enhances metastasis that is dependent on PCP signaling in BCCs and the exosome component, Cd81 in fibroblasts. Moreover, we demonstrate that trafficking in BCCs promotes tethering of autocrine Wnt11 to fibroblast-derived exosomes. This work reveals an intercellular communication pathway whereby fibroblast exosomes mobilize autocrine Wnt-PCP signaling to drive BCC invasive behavior.

  11. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wangstella5@163.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Yang, Qifeng, E-mail: qifengy@gmail.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, UMDNJ-Robert Wood Johnson School of Medicine, Cancer Institute of New Jersey, NB (United States); Li, Xiaoyan, E-mail: xiaoyanli1219@gmail.com [Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Moran, Meena S., E-mail: meena.moran@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  12. Siah1 proteins enhance radiosensitivity of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Engenhart-Cabillic Rita

    2010-08-01

    Full Text Available Abstract Background Siah proteins play an important role in cancer progression. We evaluated the effect of Siah1, its splice variants Siah1L and the Siah1 mutant with the RING finger deleted (Siah1ΔR on radiosensitization of human breast cancer cells. Methods The status of Siah1 and Siah1L was analysed in five breast cancer cell lines. To establish stable cells, SKBR3 cells were transfected with Siah1, Siah-1L and Siah1ΔR. Siah1 function was suppressed by siRNA in MCF-7 cells. The impact of Siah1 overexpression and silencing on apoptosis, proliferation, survival, invasion ability and DNA repair was assessed in SKBR3 and MCF-7 cells, also in regards to radiation. Results Siah1 and Siah1L mRNA expression was absent in four of five breast cancer cells lines analysed. Overexpression of Siah1 and Siah1L enhanced radiation-induced apoptosis in stable transfected SKBR3 cells, while Siah1ΔR failed to show this effect. In addition, Siah1 and Siah1L significantly reduced cell clonogenic survival and proliferation. Siah1L sensitization enhancement ratio values were over 1.5 and 4.0 for clonogenic survival and proliferation, respectively, pointing to a highly cooperative and potentially synergistic fashion with radiation. Siah1 or Siah1L significantly reduced invasion ability of SKBR3 and suppressed Tcf/Lef factor activity. Importantly, Siah1 siRNA demonstrated opposite effects in MCF-7 cells. Siah1 and Siah1L overexpression resulted in inhibition of DNA repair as inferred by increased levels of DNA double-strand breaks in irradiated SKBR3 cells. Conclusion Our results reveal for the first time how overexpression of Siah1L and Siah1 can determine radiosensitivity of breast cancer cells. These findings suggest that development of drugs augmenting Siah1 and Siah1L activity could be a novel approach in improving tumor cell kill.

  13. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  14. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Evan N Cohen

    Full Text Available Inflammatory breast cancer (IBC is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1, a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction.

  15. Breast Cancer Overview

    Science.gov (United States)

    ... Cancer > Breast Cancer > Breast Cancer: Overview Request Permissions Breast Cancer: Overview Approved by the Cancer.Net Editorial Board , ... bean-shaped organs that help fight infection. About breast cancer Cancer begins when healthy cells in the breast ...

  16. Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Liu, Wensheng; Swetzig, Wendy M; Medisetty, Rajesh; Das, Gokul M

    2011-01-01

    Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA) to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP) assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0)/G(1)-phase and significantly delayed the G(1)-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

  17. Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wensheng Liu

    Full Text Available Noxa is a Bcl-2-homology domain (BH3-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2 induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0/G(1-phase and significantly delayed the G(1-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

  18. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Qi, S; Pajonk, F; McCloskey, S; Low, D; Kupelian, P; Steinberg, M; Sheng, K [UCLA, Los Angeles, CA (United States)

    2014-06-15

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate the number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy{sup −1}, β-TC= 0.08 ±0.14Gy{sup −2}, α-CSC=0.04±0.07Gy{sup −1}, β-CSC =0.02±0.3Gy{sup −2}; for the SUM159PT, α-TC=0.08±0.25 Gy{sup −1}, β-TC=0.02±0.02Gy{sup −2}, α-CSC=0.04±0.18Gy{sup −1}, β-CSC =0.004±0.24Gy{sup −2}. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This observation

  19. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

    DEFF Research Database (Denmark)

    Law, M E; Corsino, P E; Jahn, S C

    2013-01-01

    cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent...... of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular...

  20. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  1. The transtheoretical model, health belief model, and breast cancer screening among Iranian women with a family history of breast cancer

    Directory of Open Access Journals (Sweden)

    Ziba Farajzadegan

    2016-01-01

    Full Text Available Background: Participation of Iranian women with a family history of breast cancer in breast cancer screening programs is low. This study evaluates the compliance of women having a family history of breast cancer with clinical breast exam (CBE according to the stage of transtheoretical model (TTM and health belief model (HBM. Materials and Methods: In this cross-sectional study, we used Persian version of champion's HBM scale to collect factors associated with TTM stages applied to screening from women over 20 years and older. The obtained data were analyzed by SPSS, using descriptive statistics, Chi-square test, independent t-test, and analysis of covariance. Results: Final sample size was 162 women. Thirty-three percent were in action/maintenance stage. Older women, family history of breast cancer in first-degree relatives, personal history of breast disease, insurance coverage, and a history of breast self-examination were associated with action/maintenance stage. Furthermore, women in action/maintenance stages had significantly fewer perceived barriers in terms of CBE in comparison to women in other stages (P < 0.05. There was no significant difference in other HBM subscales scores between various stages of CBE screening behavior (P < 0.05. Conclusion: The finding indicates that the rate of women in action/maintenance stage of CBE is low. Moreover, results show a strong association between perceived barriers and having a regular CBE. These clarify the necessity of promoting national target programs for breast cancer screening, which should be considered as the first preference for reducing CBE barriers.

  2. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2006-05-01

    cell self-renewal pathways generates tumors driven by cells that maintain stem cell character- istics. Materials and Methods Dissociation of mammary...of America Q12) was placed s.c. on the back of the neck of the mouse by using a trocar , and 400 mammospheres were mixed with 2.5 105 normal human

  3. Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Maria Grazia Daidone

    2011-03-01

    Full Text Available There is accumulating evidence that breast cancer may arise from mutated mammary stem/progenitor cells which have been termed breast cancer-initiating cells (BCIC. BCIC identified in clinical specimens based on membrane phenotype (CD44+/CD24−/low and/or CD133+ expression or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1+, have been demonstrated to have stem/progenitor cell properties, and are tumorigenic when injected in immunocompromized mice at very low concentrations. BCIC have also been isolated and in vitro propagated as non-adherent spheres of undifferentiated cells, and stem cell patterns have been recognized even in cancer cell lines. Recent findings indicate that aberrant regulation of self renewal is central to cancer stem cell biology. Alterations in genes involved in self-renewal pathways, such as Wnt, Notch, sonic hedgehog, PTEN and BMI, proved to play a role in breast cancer progression. Hence, targeting key elements mediating the self renewal of BCIC represents an attractive option, with a solid rationale, clearly identifiable molecular targets, and adequate knowledge of the involved pathways. Possible concerns are related to the poor knowledge of tolerance and efficacy of inhibiting self-renewal mechanisms, because the latter are key pathways for a variety of biological functions and it is unknown whether their interference would kill BCIC or simply temporarily stop them. Thus, efforts to develop BCIC-targeted therapies should not only be focused on interfering on self-renewal, but could seek to identify additional molecular targets, like those involved in regulating EMT-related pathways, in reversing the MDR phenotype, in inducing differentiation and controlling cell survival pathways.

  4. Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Guido; Binda, Mara; Zaffaroni, Nadia; Daidone, Maria Grazia, E-mail: mariagrazia.daidone@istitutotumori.mi.it [Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS-Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133 (Italy)

    2011-03-16

    There is accumulating evidence that breast cancer may arise from mutated mammary stem/progenitor cells which have been termed breast cancer-initiating cells (BCIC). BCIC identified in clinical specimens based on membrane phenotype (CD44{sup +}/CD24{sup −/low} and/or CD133{sup +} expression) or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1{sup +}), have been demonstrated to have stem/progenitor cell properties, and are tumorigenic when injected in immunocompromized mice at very low concentrations. BCIC have also been isolated and in vitro propagated as non-adherent spheres of undifferentiated cells, and stem cell patterns have been recognized even in cancer cell lines. Recent findings indicate that aberrant regulation of self renewal is central to cancer stem cell biology. Alterations in genes involved in self-renewal pathways, such as Wnt, Notch, sonic hedgehog, PTEN and BMI, proved to play a role in breast cancer progression. Hence, targeting key elements mediating the self renewal of BCIC represents an attractive option, with a solid rationale, clearly identifiable molecular targets, and adequate knowledge of the involved pathways. Possible concerns are related to the poor knowledge of tolerance and efficacy of inhibiting self-renewal mechanisms, because the latter are key pathways for a variety of biological functions and it is unknown whether their interference would kill BCIC or simply temporarily stop them. Thus, efforts to develop BCIC-targeted therapies should not only be focused on interfering on self-renewal, but could seek to identify additional molecular targets, like those involved in regulating EMT-related pathways, in reversing the MDR phenotype, in inducing differentiation and controlling cell survival pathways.

  5. Regulation of Breast Cancer Stem Cell by Tissue Rigidity

    Science.gov (United States)

    2015-06-01

    Gilman Drive, La Jolla, California 92093-0819, USA. 7Present address: Department of Immunology , The University of Texas MD Anderson Cancer Center, 7455...AD_________________ Award Number: W81XWH-13-1-0132 TITLE: Regulation of Breast Cancer Stem Cell by Tissue Rigidity PRINCIPAL INVESTIGATOR: Jing...for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

  6. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics.

    Directory of Open Access Journals (Sweden)

    Joaquin Chapa

    Full Text Available The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM. The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+ tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to

  7. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics.

    Science.gov (United States)

    Chapa, Joaquin; Bourgo, Ryan J; Greene, Geoffrey L; Kulkarni, Swati; An, Gary

    2013-01-01

    The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the

  8. An anatomically oriented breast model for MRI

    Science.gov (United States)

    Kutra, Dominik; Bergtholdt, Martin; Sabczynski, Jörg; Dössel, Olaf; Buelow, Thomas

    2015-03-01

    Breast cancer is the most common cancer in women in the western world. In the breast cancer care-cycle, MRIis e.g. employed in lesion characterization and therapy assessment. Reading of a single three dimensional image or comparing a multitude of such images in a time series is a time consuming task. Radiological reporting is done manually by translating the spatial position of a finding in an image to a generic representation in the form of a breast diagram, outlining quadrants or clock positions. Currently, registration algorithms are employed to aid with the reading and interpretation of longitudinal studies by providing positional correspondence. To aid with the reporting of findings, knowledge about the breast anatomy has to be introduced to translate from patient specific positions to a generic representation. In our approach we fit a geometric primitive, the semi-super-ellipsoid to patient data. Anatomical knowledge is incorporated by fixing the tip of the super-ellipsoid to the mammilla position and constraining its center-point to a reference plane defined by landmarks on the sternum. A coordinate system is then constructed by linearly scaling the fitted super-ellipsoid, defining a unique set of parameters to each point in the image volume. By fitting such a coordinate system to a different image of the same patient, positional correspondence can be generated. We have validated our method on eight pairs of baseline and follow-up scans (16 breasts) that were acquired for the assessment of neo-adjuvant chemotherapy. On average, the location predicted and the actual location of manually set landmarks are within a distance of 5.6 mm. Our proposed method allows for automatic reporting simply by uniformly dividing the super-ellipsoid around its main axis.

  9. Aging, Breast Cancer and the Mouse Model

    Science.gov (United States)

    2005-05-01

    Presenescent or senescent hBF (1.2 or 18x×10 4/well, respectively) [M, Stampfer , P. Yaswen, Lawrence Berkeley National Laboratory wdre suspended in 60 l cold...2.8 1 2.8 Inducing a human-like senescent phenotype in mouse fibroblasts Jean-Philihoo Copp , Simona Parrinello, Ana Krtolica, Christopher K. Patil...MAMMARY EPITHELIAL CELL PROLIFERATION AND TUMORIGENESIS: A MOUSE MODEL FOR HUMAN AGING. Jean-Philippe Coppe, Simona Parrinello, Ana Krtolica, Christopher

  10. Expression of Uncoupling Protein 2 in Breast Cancer Tissue and Drug-resistant Cells

    Institute of Scientific and Technical Information of China (English)

    Sun Yan; Yuan Yuan; Zhang Lili; Zhu Hong; Hu Sainan

    2013-01-01

    Objective:To explore the expression of uncoupling protein-2 (UCP2) in clinical breast cancer tissue and drug-resistant cells. Methods:The expression of UCP2 in breast cancer tissue and normal tissue adjacent to carcinoma as well as breast cancer cell MCF-7 and paclitaxel-resistant cell MX-1/T were respectively detected by immunohistochemistry and Western blot. Results:The expression of UCP2 in breast cancer tissue was signiifcantly higher than in normal tissue adjacent to carcinoma, and that in paclitaxel-resistant cell MX-1/T obviously higher than in breast cancer cell MCF-7. Conclusion:UCP2 is highly expressed in breast cancer tissue and drug-resistant cells.

  11. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  12. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  13. Hypoxic enhancement of exosome release by breast cancer cells

    Directory of Open Access Journals (Sweden)

    King Hamish W

    2012-09-01

    Full Text Available Abstract Background Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Methods Breast cancer cell lines were cultured under either moderate (1% O2 or severe (0.1% O2 hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of  Results Exposure of three different breast cancer cell lines to moderate (1% O2 and severe (0.1% O2 hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. Conclusions These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic

  14. ST6GALNAC5 Expression Decreases the Interactions between Breast Cancer Cells and the Human Blood-Brain Barrier

    Science.gov (United States)

    Drolez, Aurore; Vandenhaute, Elodie; Delannoy, Clément Philippe; Dewald, Justine Hélène; Gosselet, Fabien; Cecchelli, Romeo; Julien, Sylvain; Dehouck, Marie-Pierre; Delannoy, Philippe; Mysiorek, Caroline

    2016-01-01

    The ST6GALNAC5 gene that encodes an α2,6-sialyltransferase involved in the biosynthesis of α-series gangliosides, was previously identified as one of the genes that mediate breast cancer metastasis to the brain. We have shown that the expression of ST6GALNAC5 in MDA-MB-231 breast cancer cells resulted in the expression of GD1α ganglioside at the cell surface. By using a human blood-brain barrier in vitro model recently developed, consisting in CD34+ derived endothelial cells co-cultivated with pericytes, we show that ST6GALNAC5 expression decreased the interactions between the breast cancer cells and the human blood-brain barrier. PMID:27529215

  15. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  16. Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells.

    Science.gov (United States)

    Li, Ying; Shi, Li; Han, Chun; Wang, Yishang; Yang, Junlan; Cao, Cheng; Jiao, Shunchang

    2012-10-01

    The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27(Kip1), and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p SK-BR-3 cells and JIMT-1 cells, while it promoted p27(Kip1) and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.

  17. Mechanisms of Chemoresistance in Breast Cancer Cells

    Science.gov (United States)

    2005-05-01

    effect on ji-acn f. ........ :.. expression levels of P3-actin. Whether chemical lowering of MDRI expression affects cellular RT-PCR Wester blot ...AdrR/asGCS cells compared with MCF-7-AdrR cells. We confirmed this by Western blot . Whereas, MCF-7-AdrR cells contained characteristically elevated...Research P-glycoprotein expression can be down-regulated by GCS antisense nitrocellulose blot was blocked with 5% fat-free milk powder in PBS

  18. Automated volumetric breast density derived by shape and appearance modeling

    Science.gov (United States)

    Malkov, Serghei; Kerlikowske, Karla; Shepherd, John

    2014-03-01

    The image shape and texture (appearance) estimation designed for facial recognition is a novel and promising approach for application in breast imaging. The purpose of this study was to apply a shape and appearance model to automatically estimate percent breast fibroglandular volume (%FGV) using digital mammograms. We built a shape and appearance model using 2000 full-field digital mammograms from the San Francisco Mammography Registry with known %FGV measured by single energy absorptiometry method. An affine transformation was used to remove rotation, translation and scale. Principal Component Analysis (PCA) was applied to extract significant and uncorrelated components of %FGV. To build an appearance model, we transformed the breast images into the mean texture image by piecewise linear image transformation. Using PCA the image pixels grey-scale values were converted into a reduced set of the shape and texture features. The stepwise regression with forward selection and backward elimination was used to estimate the outcome %FGV with shape and appearance features and other system parameters. The shape and appearance scores were found to correlate moderately to breast %FGV, dense tissue volume and actual breast volume, body mass index (BMI) and age. The highest Pearson correlation coefficient was equal 0.77 for the first shape PCA component and actual breast volume. The stepwise regression method with ten-fold cross-validation to predict %FGV from shape and appearance variables and other system outcome parameters generated a model with a correlation of r2 = 0.8. In conclusion, a shape and appearance model demonstrated excellent feasibility to extract variables useful for automatic %FGV estimation. Further exploring and testing of this approach is warranted.

  19. The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer.

    Science.gov (United States)

    Cotter, Kristina; Liberman, Rachel; Sun-Wada, GeHong; Wada, Yoh; Sgroi, Dennis; Naber, Stephen; Brown, Dennis; Breton, Sylvie; Forgac, Michael

    2016-07-19

    The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer.

  20. Loss of cadherin-based cell adhesion and the progression of Invasive Lobular Breast Cancer

    NARCIS (Netherlands)

    Vlug, E.J.

    2015-01-01

    Lobular breast cancer is a type of breast cancer that is histologically characterized by a noncohesive growth pattern of small regular cells, where single cells infiltrate as one-layered strands of cells. This noncohesive growth pattern is due to inactivation of the E-cadherin complex and a subseque

  1. International study on inter-reader variability for circulating tumor cells in breast cancer

    NARCIS (Netherlands)

    M. Ignatiadis (Michael); S. Riethdorf (Sabine); F.-C. Bidard (François-Clement); I. Vaucher (Isabelle); M. Khazour (Mustapha); F. Rothé (Françoise); J. Metallo (Jessica); G. Rouas (Ghizlane); R.E. Payne (Rachel); R.C. Coombes (Raoul); I. Teufel (Ingrid); U. Andergassen (Ulrich); M. Apostolaki (Maria); E. Politaki (Eleni); D. Mavroudis (Dimitris); E. Bessi (Elena); M. Pestrin (Marta); A. Di Leo (Angelo); D. Campion (Dominique); M. Reinholz (Monica); E. Perez (Edith); M.J. Piccart (Martine); E. Borgen (Elin); B. Naume (Bjorn); J. Jimenez (Jose); C.M. Aura (Claudia); L. Zorzino (Laura); M.C. Cassatella (Maria); M.T. Sandri (Maria); B. Mostert (Bianca); S. Sleijfer (Stefan); J. Kraan (Jaco); W. Janni (Wolfgang); T. Fehm (Tanja); B. Rack (Brigitte); L.W.M.M. Terstappen (Leon); M. Repollet (Madeline); J.Y. Pierga (Jean Yves); C. Miller (Craig); C. Sotiriou (Christos); S. Michiels (Stefan); K. Pantel (Klaus)

    2014-01-01

    textabstractIntroduction: Circulating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement.Methods: CellSearch® images (N = 272) of either CTCs or white bloo

  2. Kinomic and phospho-proteomic analysis of breast cancer stem-like cells

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Christensen, Anne Geske Lindhard; Ehmsen, Sidse

    /CD24-/low compartment of human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. From a triple-negative breast cancer cell line we isolated and cloned CD44hi single-cells that exhibited functional heterogeneity...

  3. Breast carcinoma with osteoclast-like giant cells

    DEFF Research Database (Denmark)

    Gjerdrum, L M; Lauridsen, M C; Sørensen, Flemming Brandt

    2001-01-01

    Primary carcinoma with osteoclast-like giant cells is a very rare tumour of the female breast. The clinical course, histological, immunohistochemical and ultrastructural features of 61 cases of invasive duct carcinoma with osteoclast-like multinucleated giant cells (OMGCs) are reviewed and a new...... in the literature have shown that 86% of patients with these tumours are still alive after 5 years. Histologically, these tumours are invasive ductal carcinomas with OMGCs next to the neoplastic glands and within their lumen. Signs of recent and past haemorrhage are ubiquitously present in the highly vascularized...

  4. Breast cancer cells stimulate osteoprotegerin (OPG production by endothelial cells through direct cell contact

    Directory of Open Access Journals (Sweden)

    Holen Ingunn

    2009-07-01

    Full Text Available Abstract Background Angiogenesis, the sprouting of capillaries from existing blood vessels, is central to tumour growth and progression, however the molecular regulation of this process remains to be fully elucidated. The secreted glycoprotein osteoprotegerin (OPG is one potential pro-angiogenic factor, and clinical studies have demonstrated endothelial cells within a number of tumour types to express high levels of OPG compared to those in normal tissue. Additionally, OPG can increase endothelial cell survival, proliferation and migration, as well as induce endothelial cell tube formation in vitro. This study aims to elucidate the processes involved in the pro-angiogenic effects of OPG in vitro, and also how OPG levels may be regulated within the tumour microenvironment. Results It has previously been demonstrated that OPG can induce tube formation on growth factor reduced matrigel. In this study, we demonstrate that OPG enhances the pro-angiogenic effects of VEGF and that OPG does not stimulate endothelial cell tube formation through activation of the VEGFR2 receptor. We also show that cell contact between HuDMECs and the T47D breast cancer cell line increases endothelial cell OPG mRNA and protein secretion levels in in vitro co-cultures. These increases in endothelial cell OPG secretion were dependent on ανβ3 ligation and NFκB activation. In contrast, the pro-angiogenic factors VEGF, bFGF and TGFβ had no effect on HuDMEC OPG levels. Conclusion These findings suggest that the VEGF signalling pathway is not involved in mediating the pro-angiogenic effects of OPG on endothelial cells in vitro. Additionally, we show that breast cancer cells cause increased levels of OPG expression by endothelial cells, and that direct contact between endothelial cells and tumour cells is required in order to increase endothelial OPG expression and secretion. Stimulation of OPG secretion was shown to involve ανβ3 ligation and NFκB activation.

  5. Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells

    Science.gov (United States)

    Fernandez-Gallardo, Miriam; González-Ramírez, Ricardo; Sandoval, Alejandro; Monjaraz, Eduardo

    2016-01-01

    Emerging evidence suggests that the adenosine (Ado) receptors may play crucial roles in tumor progression. Here, we show that Ado increases proliferation and migration in a triple negative breast cancer model, the MDA-MB 231 cell line. The use of specific agonists and antagonists evidenced that these effects depend on the activation of the A2B receptor, which then triggers an intracellular response mediated by the adenylate cyclase/PKA/cAMP signaling pathway. Ado also increases the expression of NaV1.5 channels, a potential biomarker in breast cancer. Together, these data suggest important roles of the A2B receptors and NaV1.5 channels in the Ado-induced increase in proliferation and migration of the MDA-MB 231 cells. PMID:27911956

  6. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Ling

    2011-09-01

    Full Text Available Abstract Background Tumor-associated macrophages (TAMs are alternatively activated cells induced by interleukin-4 (IL-4-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. Results We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. Conclusions We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.

  7. Human embryonic stem cell-derived endothelial cells as cellular delivery vehicles for treatment of metastatic breast cancer.

    Science.gov (United States)

    Su, Weijun; Wang, Lina; Zhou, Manqian; Liu, Ze; Hu, Shijun; Tong, Lingling; Liu, Yanhua; Fan, Yan; Kong, Deling; Zheng, Yizhou; Han, Zhongchao; Wu, Joseph C; Xiang, Rong; Li, Zongjin

    2013-01-01

    Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.

  8. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    Energy Technology Data Exchange (ETDEWEB)

    Scherbakov, Alexander M., E-mail: alex.scherbakov@gmail.com [Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Berstein, Lev M. [Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758 (Russian Federation); Krasil’nikov, Mikhail A. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation)

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  9. In Vivo Selection of Phage Sequences and Characterization of Peptide-specific Binding to Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Ruifang Niu; Lin Zhang; Hongkai Zhang; Xiyin Wei; Yi Yang; Shiwu Zhang; Jing Wu; Min Wu; Youjia Cao

    2008-01-01

    OBJECTIVE To screen specific polypeptide target binding to breast cancer xenografts in vivo from a phage-displayed peptide library in order to provide peptide sequences for breast cancer tumor-targeting diagnosis and therapy.METHODS A mouse model for carrying breast cancer xenografts was established using Tientsin Albinao Ⅱ mice (TAII). A 12-peptide library was biopanned through 4 rounds.Phages were recovered and titrated from tumor xenografts and control tissue (liver). The distribution of phages was detected by immunohistochemical staining.RESULTS Phage homing to breast cancer was enriched through 4 rounds of biopanning, being 14-fold of that recovered from liver tissue. A peptide sequence, ASANPFPTKALL was characterized by randomly picked-up clones which appeared most frequently.Immunohistochemical staining revealed phage localization in cancer xenografts 40 min after injection of the enriched phages.When a specific phage was tested individually, the phage reclaimed from breast cancer xenografts was 14 times as those from control tissues.CONCLUSION Tumor-specific homing peptides may provide an effective tool for breast cancer target therapy. The in vivo phage display selection technique employed in this study was feasible and applicable to screening peptides that home to.breast cells.

  10. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Science.gov (United States)

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  11. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Directory of Open Access Journals (Sweden)

    Nicole K Nickerson

    Full Text Available Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231, and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01, reduced osteolytic lesion tumor volume (p<0.01, increased survivorship in vivo (p<0.001, and resulted in decreased MDA-231 growth in the fat pad (p<0.01. Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1 and matrix metalloproteinase 9 (MMP9, both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  12. Concomitant Small Cell Neuroendocrine Carcinoma of Gallbladder and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paolo Aiello

    2014-01-01

    Full Text Available The neuroendocrine carcinoma is defined as a high-grade malignant neuroendocrine neoplasm arising from enterochromaffin cells, usually disposed in the mucosa of gastric and respiratory tracts. The localization in the gallbladder is rare. Knowledge of these gallbladder tumors is limited and based on isolated case reports. We describe a case of an incidental finding of small cell neuroendocrine carcinoma of the gallbladder, observed after cholecystectomy for cholelithiasis, in a 55-year-old female, who already underwent quadrantectomy and sentinel lymph-node biopsy for breast cancer. The patient underwent radiotherapy for breast cancer and six cycles of chemotherapy with cisplatin and etoposide. Eighteen months after surgery, the patient was free from disease. Small cell neuroendocrine carcinoma of the gallbladder has poor prognosis. Because of the rarity of the reported cases, specific prognostic factors have not been identified. The coexistence of small cell neuroendocrine carcinoma of the gallbladder with another malignancy has been reported only once. The contemporary presence of the two neoplasms could reflect that bioactive agents secreted by carcinoid can promote phenotypic changes in susceptible cells and induce neoplastic transformation.

  13. Epithelial cell identity in hyperplastic precursors of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Patrizia Boracchi; Saro Oriana; Elia Biganzoli; Federico Ambrogi

    2015-01-01

    Introduction:In the adult human breast, hyperplastic enlarged lobular unit (HELU) and atypical ductal hyperplasia (ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ (DCIS). For this reason, they have been proposed as the early steps in a biological continuum toward breast cancer. Methods:We investigated in silico the expression of 369 genes experimentally recognized as involved in establishing and maintaining epithelial cell identity and mammary gland remodeling, in HELUs or ADHs with respect to the corresponding patient-matched normal tissue. Results:Despite the common luminal origin, HELUs and ADHs proved to be characterized by distinct gene profiles that overlap for 5 genes only. While HELUs were associated with the overexpression of progesterone receptor (PGR), ADHs were characterized by the overexpression of estrogen receptor 1 (ESR1) coupled with the overexpression of some proliferation-associated genes. Conclusions:This unexpected finding contradicts the notion that in differentiated luminal cells the expression of estrogen receptor (ER) is dissociated from cell proliferation and suggests that the establishing of an ER-dependent signaling is able to sustain cell proliferation in an autocrine manner as an early event in tumor initiation. Although clinical evidence indicates that only a fraction of HELUs and ADHs evolve to invasive cancer, present findings warn that exposure to synthetic progestins, frequently administered as hormone-replacement therapy, and estrogens, when abnormally produced by adipose cells and persistently present in the stroma surrounding the mammary gland, may cause these hyperplastic lesions.

  14. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  15. Multicolor immunofluorescence reveals that p63- and/or K5-positive progenitor cells contribute to normal breast epithelium and usual ductal hyperplasia but not to low-grade intraepithelial neoplasia of the breast.

    Science.gov (United States)

    Boecker, Werner; Stenman, Göran; Schroeder, Tina; Schumacher, Udo; Loening, Thomas; Stahnke, Lisa; Löhnert, Catharina; Siering, Robert Michael; Kuper, Arthur; Samoilova, Vera; Tiemann, Markus; Korsching, Eberhard; Buchwalow, Igor

    2017-03-16

    We contend that knowledge about the cellular composition of normal breast epithelium is a prerequisite for understanding proliferative breast disease. Against this background, we used multicolor immunofluorescence to study normal breast epithelium and two types of intraepithelial proliferative breast lesion for expression of the p63, basal keratin K5, glandular keratin K8/18, SMA, ER-alpha, and Ki67. We studied eight normal breast epithelium samples, 12 cases of usual ductal hyperplasia, and 33 cases of low-grade intraepithelial neoplasia (9 flat epithelial atypia, 14 low-grade ductal carcinoma in situ and 10 cases of lobular neoplasia). Usual ductal hyperplasia showed striking similarity to normal luminal breast epithelium including p63+ and/or K5+ luminal progenitor cells and the full spectrum of luminal progeny cells. In normal breast epithelium and usual ductal hyperplasia, expression of ER-alpha was associated with lack of expression of the proliferation antigen Ki67. In contrast, we found in both types of low-grade intraepithelial neoplasia robust expression of keratin K8/18 and a positive association between ER-alpha and Ki67 expression. However, these lesions were consistently negative for p63 and/or K5. Our observational study supports the view that usual ductal hyperplasia and low-grade intraepithelial neoplasia are different entities rather than part of a spectrum of the same disease. We propose a new operational model of cell differentiation that may serve to better understand correlations between normal breast epithelium and proliferative breast diseases. From our data we conclude that p63+ and/or K5+ progenitor cells contribute to maintenance of normal epithelium and usual ductal hyperplasia, but not to low-grade intraepithelial neoplasia of the breast.

  16. SU-E-T-320: The Effect of Survivin Perturbation On the Radiation Response of Breast Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D; Debeb, B; Woodward, W [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Survivin is the smallest member of the inhibitor of apoptosis protein family and is well-known for its universal over-expression in human cancers. Due to its role in apoptosis and cellular proliferation, survivin is implicated in the radiation response in several cancer types, and antisurvivin treatments have had success as a radiation sensitizer in many preclinical cancer models. As no studies to date have reported survivin as a factor affecting radiation resistance in breast cancer models, we sought to evaluate the synergistic relationship between survivin function and irradiation in breast cancer cell lines. Methods: Information regarding survivin protein expression in breast cancer was retrieved from three public databases: Oncomine, Kaplan-Meier Plotter, and GOBO. For the in vitro studies, survivin function was compromised by transducing a non-functional mutant form (survivin-DN) into two breast cancer cell lines, the estrogen receptor-positive MCF7 and the triple-negative, inflammatory SUM149. Cell growth was compared in the survivin-DN and control populations with colony-formation assays. To assess how survivin affects radiation response, clonogenic assays were performed by irradiating the cell lines up to 6 Gy. Results: From the public databases, survivin is more highly expressed in triple-negative breast cancer compared to all other subtypes, and is prognostic of poor survival in all breast cancer patients. In MCF7, the survivin-DN population had decreased colony-formation potential; the opposite was true in SUM149. In the clonogenic assays, abrogation of survivin function radio-protected MCF7 cells in monolayer and 3D growth conditions, while SUM149 survivin-DN cells were radiosensitized in monolayer conditions. Conclusion: We observed synergy between survivin function and radiation, although the results between the two cell lines were disparate. Further investigation is required to identify the mechanism of this discrepancy, including evaluation

  17. TPD52 represents a survival factor in ERBB2-amplified breast cancer cells.

    Science.gov (United States)

    Roslan, Nuruliza; Bièche, Ivan; Bright, Robert K; Lidereau, Rosette; Chen, Yuyan; Byrne, Jennifer A

    2014-10-01

    TPD52 and ERBB2 co-expression has been persistently reported in human breast cancer and animal models of this disease, but the significance of this is unknown. We identified significant positive associations between relative TPD52 and ERBB2 transcript levels in human diagnostic breast cancer samples, and maximal TPD52 expression in the hormone receptor (HR)- and ERBB2-positive sub-group. High-level TPD52 expression was associated with significantly reduced metastasis-free survival, within the overall cohort (log rank test, P = 8.6 × 10(-4), n = 375) where this was an independent predictor of metastasis-free survival (hazard ratio, 2.69, 95% confidence interval 1.59-4.54, P = 2.2 × 10(-4), n = 359), and the HR- and ERBB2-positive sub-group (log rank test, P = 0.035, n = 47). Transient TPD52 knock-down in the ERBB2-amplified breast cancer cell lines SK-BR-3 and BT-474 produced significant apoptosis, both singly and in combination with transient ERBB2 knock-down. Unlike ERBB2 knock-down, transient TPD52 knock-down produced no reduction in pAKT levels in SK-BR-3 or BT-474 cells. We then derived multiple SK-BR-3 cell lines in which TPD52 levels were stably reduced, and measured significant inverse correlations between pERBB2 and TPD52 levels in viable TPD52-depleted and control cell lines, all of which showed similar proliferative capacities. Our results therefore identify TPD52 as a survival factor in ERBB2-amplified breast cancer cells, and suggest complementary cellular functions for TPD52 and ERBB2.

  18. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells.

    Science.gov (United States)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B; Lobaton, Marlin; Handa, Kazuko; Hakomori, Sen-itiroh

    2013-03-26

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced through epithelial-mesenchymal transition, using mass spectrometry, TLC immunostaining, and cell staining. We found that (i) Fuc-(n)Lc4Cer and Gb3Cer were drastically reduced in CSCs, whereas GD2, GD3, GM2, and GD1a were greatly increased in CSCs; (ii) among various glycosyltransferases tested, mRNA levels for ST3GAL5, B4GALNT1, ST8SIA1, and ST3GAL2 were increased in CSCs, which could explain the increased expression of GD3, GD2, GM2, and GD1a in CSCs; (iii) the majority of GD2+ cells and GD3+ cells were detected in the CD44(hi)/CD24(lo) cell population; and (iv) knockdown of ST8SIA1 and B4GALNT1 significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest a possible novel approach in targeting human breast CSCs to interfere with cancer recurrence.

  19. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  20. Acetylation Enhances the Promoting Role of AIB1 in Breast Cancer Cell Proliferation

    Science.gov (United States)

    You, Dingyun; Zhao, Hongbo; Wang, Yan; Jiao, Yang; Lu, Minnan; Yan, Shan

    2016-01-01

    The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator, which is overexpressed in various types of human cancers, including breast cancer. However, the molecular mechanisms regulating AIB1 function remain largely unknown. In this study, we present evidence demonstrating that AIB1 is acetylated by MOF in human breast cancer cells. Moreover, we also found that the acetylation of AIB1 enhances its function in promoting breast cancer cell proliferation. We further showed that the acetylation of AIB1 is required for its recruitment to E2F1 target genes by E2F1. More importantly, we found that the acetylation levels of AIB1 are greatly elevated in human breast cancer cells compared with that in non-cancerous cells. Collectively, our results shed light on the molecular mechanisms that regulate AIB1 function in breast cancer. PMID:27665502

  1. Breast schwannoma in a patient with diffuse large B-cell lymphoma: a case report

    Directory of Open Access Journals (Sweden)

    Salihoglu Ayse

    2012-12-01

    Full Text Available Abstract Introduction Schwannomas are mostly benign tumors arising from Schwann cells of the nerve sheaths. Breast schwannomas are very rare and account for only 2.6% of cases. As far as we know this is the first reported case of breast schwannoma discovered in a patient with diffuse large B-cell lymphoma. The breast schwannoma was evaluated with positron emission tomography and it exhibited moderate 18F-fluorodeoxyglucose uptake. Case presentation We present the case of a breast schwannoma in a 63-year-old Caucasian woman who was diagnosed with diffuse large B-cell lymphoma. Conclusion Imaging modalities including positron emission tomography-computed tomography failed to distinguish breast schwannoma from diffuse large B-cell lymphoma involvement of the breast.

  2. Curcumin Induces Cell Death and Restores Tamoxifen Sensitivity in the Antiestrogen-Resistant Breast Cancer Cell Lines MCF-7/LCC2 and MCF-7/LCC9

    Directory of Open Access Journals (Sweden)

    Min Jiang

    2013-01-01

    Full Text Available Curcumin, a principal component of turmeric (Curcuma longa, has potential therapeutic activities against breast cancer through multiple signaling pathways. Increasing evidence indicates that curcumin reverses chemo-resistance and sensitizes cancer cells to chemotherapy and targeted therapy in breast cancer. To date, few studies have explored its potential antiproliferation effects and resistance reversal in antiestrogen-resistant breast cancer. In this study, we therefore investigated the efficacy of curcumin alone and in combination with tamoxifen in the established antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. We discovered that curcumin treatment displayed anti-proliferative and pro-apoptotic activities and induced cell cycle arrest at G2/M phase. Of note, the combination of curcumin and tamoxifen resulted in a synergistic survival inhibition in MCF-7/LCC2 and MCF-7/LCC9 cells. Moreover, we found that curcumin targeted multiple signals involved in growth maintenance and resistance acquisition in endocrine resistant cells. In our cell models, curcumin could suppress expression of pro-growth and anti-apoptosis molecules, induce inactivation of NF-κB, Src and Akt/mTOR pathways and downregulate the key epigenetic modifier EZH2. The above findings suggested that curcumin alone and combinations of curcumin with endocrine therapy may be of therapeutic benefit for endocrine-resistant breast cancer.

  3. Disulfiram Treatment Facilitates Phosphoinositide 3-Kinase Inhibition in Human Breast Cancer Cells In vitro and In vivo

    Science.gov (United States)

    Zhang, Haijun; Chen, Di; Ringler, Jonathan; Chen, Wei; Cui, Qiuzhi Cindy; Ethier, Stephen P.; Dou, Q. Ping; Wu, Guojun

    2013-01-01

    Frequent genetic alterations of the components in the phosphoinositide 3-kinase (PI3K)/PTEN/AKT signaling pathway contribute greatly to breast cancer initiation and progression, which makes targeting this signaling pathway a promising therapeutic strategy for breast cancer treatment. In this study, we showed that in the presence of copper (Cu), disulfiram (DSF), a clinically used antialcoholism drug, could potently inhibit breast cancer cell growth regardless of the PIK3CA status. Surprisingly, the treatment with a mixture of DSF and copper (DSF-Cu) led to the decreased expression of PTEN protein and the activation of AKT in a dose- and time-dependent manner in different cell lines with or without PIK3CA mutations. Treatment of breast cancer cell lines with a combination of DSF-Cu and LY294002, a pan-PI3K inhibitor, resulted in the significant inhibition of cell growth when compared with either drug alone. In addition, the combined treatment of DSF and LY294002 significantly inhibited the growth of the breast tumor xenograft in nude mice induced by MDA-MB-231 cells expressing mutant PIK3CA-H1047R and PIK3CA-E545K, whereas neither DSF nor LY294002 alone could significantly retard tumor growth. Finally, the observed in vivo inhibitory effects are found associated with aberrant signaling alterations and apoptosis-inducing activities in tumor samples. Thus, our finding shows for the first time that treatment of breast cancer with DSF results in a novel feedback mechanism that activates AKT signaling. Our study also suggests that the combination of DSF and a PI3K inhibitor may offer a new combinational treatment model for breast cancer, particularly for those with PIK3CA mutations. PMID:20424113

  4. Serum uPAR as Biomarker in Breast Cancer Recurrence: A Mathematical Model.

    Science.gov (United States)

    Hao, Wenrui; Friedman, Avner

    2016-01-01

    There are currently over 2.5 million breast cancer survivors in the United States and, according to the American Cancer Society, 10 to 20 percent of these women will develop recurrent breast cancer. Early detection of recurrence can avoid unnecessary radical treatment. However, self-examination or mammography screening may not discover a recurring cancer if the number of surviving cancer cells is small, while biopsy is too invasive and cannot be frequently repeated. It is therefore important to identify non-invasive biomarkers that can detect early recurrence. The present paper develops a mathematical model of cancer recurrence. The model, based on a system of partial differential equations, focuses on tissue biomarkers that include the plasminogen system. Among them, only uPAR is known to have significant correlation to its concentration in serum and could therefore be a good candidate for serum biomarker. The model includes uPAR and other associated cytokines and cells. It is assumed that the residual cancer cells that survived primary cancer therapy are concentrated in the same location within a region with a very small diameter. Model simulations establish a quantitative relation between the diameter of the growing cancer and the total uPAR mass in the cancer. This relation is used to identify uPAR as a potential serum biomarker for breast cancer recurrence.

  5. Isolation, identification, and spheroids formation of breast cancer stem cells, therapeutics implications

    Directory of Open Access Journals (Sweden)

    Maytham Abbas Abboodi

    2014-01-01

    Full Text Available Aims: Cancer stem cells (CSCs are population of cells present in tumors, which can undergo self-renewal and differentiation. Three-dimensional (3D in vitro models mimic features of the in vivo environment and provide unique perspectives on the behavior of stem cells. Materials and Methods: In this study, MDA-MB 231 cells were grown in two-dimensional (2D monolayers and 3D spheroid formats and CSCs were isolated and grown as spheroids. The isolated CSCs were subjected to molecular studies for detection of CD44, CD24, MMP1, ABCG2, ALDH1, and GAPDH markers. Results: The monolayer of CSCs grown as spheroids showed better growth rate than the MDA-MB 231 cells, which shows the efficacy of 3D spheroid format of growing CSCs. CD44 show increased expression in spheroids compared to 2D culture of MDA-MB 231. ALDH1 a key marker of breast stem cells was highly expressed in BCSCs and MDA-MB 231 grown in 3D, while being absent in CSCs and MDA-MB 231 cells grown in 2D. Conclusions: The CSCs grown as spheroids showed better growth rate, which showed the efficacy of 3D spheroid format for CSCs culture. Since the association between BCSCs prevalence and clinical outcome and the evidence presented in this study support key roles of CSCs in breast cancer metastasis and drug resistance, it has been proposed that new therapies must target these cells.

  6. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Davie James R

    2007-09-01

    Full Text Available Abstract Background The sex hormone estrogen (E2 is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+ve breast cancer cells during E2 deprivation. Methods Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO, enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. Results In all GO terms, biological process (BP, molecular function (MF, and cellular component (CC, MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1 and glucose metabolism (MCF-7. A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis and expression (ribosome in both cells, there was an overall similarity of ZR75-1 with ER(-ve cell lines and ER(+ve/ER(-ve breast tumors. Conclusion This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A in representative ER(+ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+ve breast tumors.

  7. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  8. Norgestrel and gestodene stimulate breast cancer cell growth through an oestrogen receptor mediated mechanism.

    OpenAIRE

    Catherino, W. H.; Jeng, M. H.; Jordan, V.C.

    1993-01-01

    There is great concern over the long-term influence of oral contraceptives on the development of breast cancer in women. Oestrogens are known to stimulate the growth of human breast cancer cells, and this laboratory has previously reported (Jeng & Jordan, 1991) that the 19-norprogestin norethindrone could stimulate the proliferation of MCF-7 human breast cancer cells. We studied the influence of the 19-norprogestins norgestrel and gestodene compared to a 'non' 19-norprogestin medroxyprogester...

  9. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  10. Isoform-specific function of calpains in cell adhesion disruption: studies in postlactational mammary gland and breast cancer.

    Science.gov (United States)

    Rodríguez-Fernández, Lucía; Ferrer-Vicens, Iván; García, Concha; Oltra, Sara S; Zaragozá, Rosa; Viña, Juan R; García-Trevijano, Elena R

    2016-09-15

    Cleavage of adhesion proteins is the first step for physiological clearance of undesired cells during postlactational regression of the mammary gland, but also for cell migration in pathological states such as breast cancer. The intracellular Ca(2+)-dependent proteases, calpains (CAPNs), are known to cleave adhesion proteins. The isoform-specific function of CAPN1 and CAPN2 was explored and compared in two models of cell adhesion disruption: mice mammary gland during weaning-induced involution and breast cancer cell lines according to tumor subtype classification. In both models, E-cadherin, β-catenin, p-120, and talin-1 were cleaved as assessed by western blot analysis. Both CAPNs were able to cleave adhesion proteins from lactating mammary gland in vitro Nevertheless, CAPN2 was the only isoform found to co-localize with E-cadherin in cell junctions at the peak of lactation. CAPN2/E-cadherin in vivo interaction, analyzed by proximity ligation assay, was dramatically increased during involution. Calpain inhibitor administration prevented the cytosolic accumulation of truncated E-cadherin cleaved by CAPN2. Conversely, in breast cancer cells, CAPN2 was restricted to the nuclear compartment. The isoform-specific expression of CAPNs and CAPN activity was dependent on the breast cancer subtype. However, CAPN1 and CAPN2 knockdown cells showed that cleavage of adhesion proteins and cell migration was mediated by CAPN1, independently of the breast cancer cell line used. Data presented here suggest that the subcellular distribution of CAPN1 and CAPN2 is a major issue in target-substrate recognition; therefore, it determines the isoform-specific role of CAPNs during disruption of cell adhesion in either a physiological or a pathological context.

  11. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy.

    Science.gov (United States)

    Leng, Liang; Wang, Yuebing; He, Ningning; Wang, Di; Zhao, Qianjie; Feng, Guowei; Su, Weijun; Xu, Yang; Han, Zhongchao; Kong, Deling; Cheng, Zhen; Xiang, Rong; Li, Zongjin

    2014-06-01

    The tumor tropism of mesenchymal stem cells (MSCs) makes them an excellent delivery vehicle used in anticancer therapy. However, the exact mechanisms of MSCs involved in tumor microenvironment are still not well defined. Molecular imaging technologies with the versatility in monitoring the therapeutic effects, as well as basic molecular and cellular processes in real time, offer tangible options to better guide MSCs mediated cancer therapy. In this study, an in situ breast cancer model was developed with MDA-MB-231 cells carrying a reporter system encoding a double fusion (DF) reporter gene consisting of firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP). In mice breast cancer model, we injected human umbilical cord-derived MSCs (hUC-MSCs) armed with a triple fusion (TF) gene containing the herpes simplex virus truncated thymidine kinase (HSV-ttk), renilla luciferase (Rluc) and red fluorescent protein (RFP) into tumor on day 13, 18, 23 after MDA-MB-231 cells injection. Bioluminescence imaging of Fluc and Rluc provided the real time monitor of tumor cells and hUC-MSCs simultaneously. We found that tumors were significantly inhibited by hUC-MSCs administration, and this effect was enhanced by ganciclovir (GCV) application. To further demonstrate the effect of hUC-MSCs on tumor cells in vivo, we employed the near infrared (NIR) imaging and the results showed that hUC-MSCs could inhibit tumor angiogenesis and increased apoptosis to a certain degree. In conclusion, hUC-MSCs can inhibit breast cancer progression by inducing tumor cell death and suppressing angiogenesis. Moreover, molecular imaging is an invaluable tool in tracking cell delivery and tumor response to hUC-MSCs therapies as well as cellular and molecular processes in tumor.

  12. Molecule-Specific Imaging Analysis of Carcinogens in Breast Cancer Cells Using Time-of-Flight Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Quong, J N; Knize, M G; Kulp, K S; Wu, K J

    2003-08-19

    Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to study the localization of heterocyclic amines in MCF7 line of human breast cancer cells. The detection sensitivities of a model rodent mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were determined. Following an established criteria for the determination of status of freeze-fracture cells, the distribution of PhIP in the MCF7 cells are reported.

  13. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells

    Directory of Open Access Journals (Sweden)

    Fay BL

    2015-11-01

    Full Text Available Brittany L Fay, Jilian R Melamed, Emily S Day Biomedical Engineering, University of Delaware, Newark, DE, USA Abstract: Nanoshell-mediated photothermal therapy (PTT is currently being investigated as a standalone therapy for the treatment of cancer. The cellular effects of PTT include loss of membrane integrity, so we hypothesized that nanoshell-mediated PTT could potentiate the cytotoxicity of chemotherapy by improving drug accumulation in cancer cells. In this work, we validated our hypothesis using doxorubicin as a model drug and SUM149 inflammatory breast cancer cells as a model cancer subtype. In initial studies, SUM149 cells were exposed to nanoshells and near-infrared light and then stained with ethidium homodimer-1, which is excluded from cells with an intact plasma membrane. The results confirmed that nanoshell-mediated PTT could increase membrane permeability in SUM149 cells. In complementary experiments, SUM149 cells treated with nanoshells, near-infrared light, or a combination of the two to yield low-dose PTT were exposed to fluorescent rhodamine 123. Analyzing rhodamine 123 fluorescence in cells via flow cytometry confirmed that increased membrane permeability caused by PTT could enhance drug accumulation in cells. This was validated using fluorescence microscopy to assess intracellular distribution of doxorubicin. In succeeding experiments, SUM149 cells were exposed to subtherapeutic levels of doxorubicin, low-dose PTT, or a combination of the two treatments to determine whether the additional drug uptake induced by PTT is sufficient to enhance cell death. Analysis revealed minimal loss of viability relative to controls in cells exposed to subtherapeutic levels of doxorubicin, 15% loss of viability in cells exposed to low-dose PTT, and 35% loss of viability in cells exposed to combination therapy. These data indicate that nanoshell-mediated PTT is a viable strategy to potentiate the effects of chemotherapy and warrant further

  14. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-11-01

    Full Text Available C-phycocyanin, a natural blue-colored pigment-protein complex was explored as a novel photosensitizer for use in low-level laser therapy under 625-nm laser illumination. C-phycocyanin produced singlet oxygen radicals and the level of reactive oxygen species (ROS were raised in extended time of treatment. It did not exhibit any visible toxic effect in the absence of light. Under 625-nm laser irradiation, c-phycocyanin generated cytotoxic stress through ROS induction, which killed MDA-MB-231 breast cancer cells depending on concentrations. Different fluorescent staining of laser-treated cells explored apoptotic cell death characteristics like the shrinking of cells, cytoplasmic condensation, nuclei cleavage, and the formation of apoptotic bodies. In conclusion, phycocyanin is a non-toxic fluorescent pigment that can be used in low-level light therapy.

  15. Galectin-3 coats the membrane of breast cells and makes a signature of tumours

    KAUST Repository

    Simone, Giuseppina

    2014-01-01

    Galectin-3, β-galactoside-binding lectin, coats the membrane of most cancer cells and is involved in metastasis and endothelium recognition as well as in evading immune surveillance through killing of activated T cells. To flag galectin as a biomarker of tumours and metastasis, it is pivotal to understand the role of this protein in different tumours and at different stages. Breast tumours have an anomalous behaviour of the galectin-3 compared to other tumour cells. Herein, FACS sorting and galactoside based assays were used to investigate the role of galectin-3 in metastasis and metastatisation of breast cancer cells. Breast galectin fingerprint at the FACS displayed a higher amount in healthy cells, compared to metastatic cells. The microfluidic assay was able to isolate tumour and metastatic cells more than healthy breast cells. Investigation was performed on samples from patients with breast tumours at stage I and stage III whilst MCF7 and EPH-4 cells were used to perform preliminary investigations. The readout of the conditioned medium (from culturing of stage I cells) fingerprint by FACS evidenced high expression of free galectin. Analysis of the results established that the galectin coating the membrane, by galactoside recognition of the breast cells, and engaged by the cells to form protein-carbohydrate complexes inside the microfluidic assay, resembled the tumour signature of tumours in breast cells whilst the galectin free is independent of those mechanisms. © 2014 The Royal Society of Chemistry.

  16. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Science.gov (United States)

    Khan, Junaid A; Bellance, Catherine; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2012-01-01

    Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  17. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Directory of Open Access Journals (Sweden)

    Junaid A Khan

    Full Text Available Progesterone receptor isoforms (PRA and PRB are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  18. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    Science.gov (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications.

  19. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes.

    Science.gov (United States)

    Tabariès, Sébastien; Dupuy, Fanny; Dong, Zhifeng; Monast, Anie; Annis, Matthew G; Spicer, Jonathan; Ferri, Lorenzo E; Omeroglu, Atilla; Basik, Mark; Amir, Eitan; Clemons, Mark; Siegel, Peter M

    2012-08-01

    We previously identified claudin-2 as a functional mediator of breast cancer liver metastasis. We now confirm that claudin-2 levels are elevated in liver metastases, but not in skin metastases, compared to levels in their matched primary tumors in patients with breast cancer. Moreover, claudin-2 is specifically expressed in liver-metastatic breast cancer cells compared to populations derived from bone or lung metastases. The increased liver tropism exhibited by claudin-2-expressing breast cancer cells requires claudin-2-mediated interactions between breast cancer cells and primary hepatocytes. Furthermore, the reduction of the claudin-2 expression level, either in cancer cells or in primary hepatocytes, diminishes these heterotypic cell-cell interactions. Finally, we demonstrate that the first claudin-2 extracellular loop is essential for mediating tumor cell-hepatocyte interactions and the ability of breast cancer cells to form liver metastases in vivo. Thus, during breast cancer liver metastasis, claudin-2 shifts from acting within tight-junctional complexes to functioning as an adhesion molecule between breast cancer cells and hepatocytes.

  20. Cadmium effects on p38/MAPK isoforms in MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Casano, Caterina; Agnello, Maria; Sirchia, Rosalia; Luparello, Claudio

    2010-02-01

    Emerging evidence seems to indicate that the heavy metal cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity in normal and pathological eukaryotic cells, also affecting intracellular signalization events. Human p38 is a family of mitogen-activated protein kinases consisting of four isoforms (alpha, beta, gamma and delta) which mediate signal transduction cascades controlling several aspects of cell physiology. In this study we examined whether exposure of MDA-MB231 tumor cells from the human breast to Cd may exert some effect on p38 isoform expression and accumulation, as well as on p38 activation. Employing a combination of proliferation tests, conventional and semiquantitative multiplex (SM)-polymerase chain reaction (PCR) and Western blot assays, we report that the treatment of breast cancer cells with 5 microM CdCl(2) induces a diversified modulation of the transcription patterns of p38 isoform genes and of the accumulation of the related protein products, which are, on the other hand, also affected by alpha and beta isoform functional inactivation induced by SB203580. Our findings suggest the existence of so far unexplored mechanisms of gene regulation in our model system and validate that MDA-MB231 cell line is a suitable in vitro model for further and more detailed studies on the intracellular mechanisms underlying the control of p38 expression, synthesis and activation in mammary tumor cells exposed to different stresses.

  1. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  2. Targeting Breast Cancer Cells for Destruction

    Science.gov (United States)

    2006-07-01

    specificity for some homeodomains in correlation with base pair 4 of the binding site, especially when the residue is phenylalanine or arginine (13, 14...Lysyl Hydroxylase (PLOD) Gene Expres- sion: Implications for the Pathology of Rieger Syndrome, J. Cell Biol. 152, 545-552. 29. Espinoza, H. M., Cox, C...requirement for phenylalanine in position 20 is well demonstrated by its conservation across the homeodomain family and its presence in the conserved

  3. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  4. Breast cancer anti-estrogen resistance 4 (BCAR4) drives proliferation of IPH-926 lobular carcinoma cells

    NARCIS (Netherlands)

    T.L.A. van Agthoven (Thecla); L.C.J. Dorssers (Lambert); U. Lehmann (Ulrich); H. Kreipe (Hans); L.H.J. Looijenga (Leendert); M. Christgen (Matthias)

    2015-01-01

    textabstractBackground: Most breast cancers depend on estrogenic growth stimulation. Functional genetic screenings in in vitro cell models have identified genes, which override growth suppression induced by anti-estrogenic drugs like tamoxifen. Using that approach, we have previously identified Brea

  5. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nora D Mineva

    Full Text Available Inflammatory Breast Cancer (IBC is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration

  6. Developing a workplace breast feeding support model for employed lactating mothers.

    Science.gov (United States)

    Yimyam, Susanha; Hanpa, Wasana

    2014-06-01

    Resuming work is often considered an obstacle for continued breast feeding. The objectives of this participatory action research study were to develop a breast feeding support model in the workplace and to compare breast feeding rates before and after implementation of the breast feeding support campaign. Twenty-four women participated before the implementation of the breast feeding support campaign, whereas 31 women participated after the campaign. Data were collected by interviewing employed women about their breast feeding practices within six months post partum. Additional data were collected through interviews with the workplace administrator and head of work sections as well as observation of the breast feeding support campaigns. Qualitative data were analysed using thematic analysis, whereas quantitative data were analysed using descriptive statistics and χ(2) test. The workplace breast feeding support model was developed based on the concept of Mother-Friendly Workplace Initiatives by the World Alliance for Breastfeeding Action (WABA) and the Thai government׳s promotion of a workplace breast feeding corner. Within this model, a committee for breast feeding support was created for working with the research team to develop breast feeding activities and media for breast feeding education and breast feeding support campaigns in the workplace. Breast feeding rates at six months after implementation of the breast feeding support campaign were significantly higher than rates before, both for exclusive breast feeding and any breast feeding at levels .004 and .033, respectively. These results suggest that breast feeding should be encouraged in every workplace depending on context. Individual advice and help for employed mothers should be provided from pregnancy through weaning in the postpartum period.

  7. Triethylenetetramine Synergizes with Pharmacologic Ascorbic Acid in Hydrogen Peroxide Mediated Selective Toxicity to Breast Cancer Cell

    Science.gov (United States)

    Wang, Lianlian; Luo, Xiaofang; Li, Cong; Huang, Yubing; Xu, Ping; Lloyd-Davies, Laetitia H.; Delplancke, Thibaut; Peng, Chuan; Qi, Hongbo; Baker, Philip

    2017-01-01

    Breast cancer is characterized by overexpression of superoxide dismutase (SOD) and downregulation of catalase and more resistance to hydrogen peroxide (H2O2) than normal cells. Thus, relatively high H2O2 promotes breast cancer cell growth and proliferation. However, excessive intracellular H2O2 leads to death of breast cancer cells. In cancer cells, high level ascorbic acid (Asc) is able to be autoxidized and thus provides an electron to oxygen to generate H2O2. In the present study, we demonstrated that triethylenetetramine (TETA) enhances Asc autoxidation and thus elevates H2O2 production in MCF-7 cells. Furthermore, Asc/TETA combination significantly impaired cancer cell viability, while having much milder effects on normal cells, indicating Asc/TETA could be a promising therapy for breast cancer. Moreover, SOD1 and N-acetyl-L-cysteine failed to improve MCF-7 cells viability in the presence of Asc/TETA, while catalase significantly inhibited the cytotoxicity of Asc/TETA to breast cancer cells, strongly suggesting that the selective cytotoxicity of Asc/TETA to cancer cells is H2O2-dependent. In addition, Asc/TETA induces RAS/ERK downregulation in breast cancer cells. Animal studies confirmed that Asc/TETA effectively suppressed tumor growth in vivo. In conclusion, TETA synergizes pharmacologic Asc autoxidation and H2O2 overproduction in breast cancer cells, which suppresses RAS/ERK pathway and results in apoptosis.

  8. Wls promotes the proliferation of breast cancer cells via Wnt signaling.

    Science.gov (United States)

    Lu, Dong; Li, Ying; Liu, Qing-Ru; Wu, Qi; Zhang, Hao; Xie, Peng; Wang, Qingling

    2015-05-01

    The Wnt secretion protein Wntless (Wls)/GPR177 has been reported to be involved in the development of several human cancers. However, the biological significance of Wls in breast cancer progression has not been clarified. In this study, we show for the first time that Wls is an important molecule related to breast cancer. We find that Wls expression is markedly increased in clinical breast tumors compared with adjacent noncancerous tissues. Downregulation of Wls by short-hairpin RNA severely suppressed the proliferation of breast cancer cells. Wls is a core Wnt signaling component, and we show that knockdown of Wls is sufficient to inhibit Wnt secretion and its downstream signaling. Taken together, these results indicate that Wls contributes to the proliferation of breast cancer cells by regulating Wnt signaling. Therefore, Wls could be a novel therapeutic target for inhibiting cell growth in breast cancer.

  9. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer

    OpenAIRE

    2016-01-01

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133hi/ERlo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133hi/ERlo/IL6hi cancer stem cells (CSCs). HT initially abrogates...

  10. Withaferin A Inhibits Experimental Epithelial-Mesenchymal Transition in MCF-10A Cells and Suppresses Vimentin Protein Level in Vivo in Breast Tumors

    OpenAIRE

    Lee, Joomin; Hahm, Eun-Ryeong; Marcus, Adam I.; Singh, Shivendra V.

    2013-01-01

    We have shown previously that withaferin A (WA), a bioactive component of the medicinal plant Withania somnifera, inhibits growth of cultured and xenografted human breast cancer cells and prevents breast cancer development and pulmonary metastasis incidence in a transgenic mouse model. The present study was undertaken to determine if the anticancer effect of WA involved inhibition of epithelial-mesenchymal transition (EMT). Experimental EMT induced by exposure of MCF-10A cells to tumor necros...

  11. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses?

    Science.gov (United States)

    Harmes, David C; DiRenzo, James

    2009-03-01

    Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.

  12. Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models.

    Science.gov (United States)

    Bockhorn, Jessica; Prat, Aleix; Chang, Ya-Fang; Liu, Xia; Huang, Simo; Shang, Meng; Nwachukwu, Chika; Gomez-Vega, Maria J; Harrell, J Chuck; Olopade, Olufunmilayo I; Perou, Charles M; Liu, Huiping

    2014-12-15

    Patient-derived human-in-mouse xenograft models of breast cancer (PDX models) that exhibit spontaneous lung metastases offer a potentially powerful model of cancer metastasis. In this study, we evaluated the malignant character of lung micrometastases that emerge in such models after orthotopic implantation of human breast tumor cells into the mouse mammary fat pad. Interestingly, relative to the parental primary breast tumors, the lung metastasis (met)-derived mammary tumors exhibited a slower growth rate and a reduced metastatic potential with a more differentiated epithelial status. Epigenetic correlates were determined by gene array analyses. Lung met-derived tumors displayed differential expression of negative regulators of cell proliferation and metabolism and positive regulators of mammary epithelial differentiation. Clinically, this signature correlated with breast tumor subtypes. We identified hsa-miR-138 (miR-138) as a novel regulator of invasion and epithelial-mesenchymal transition in breast cancer cells, acting by directly targeting the polycomb epigenetic regulator EZH2. Mechanistic investigations showed that GATA3 transcriptionally controlled miR-138 levels in lung metastases. Notably, the miR-138 activity signature served as a novel independent prognostic marker for patient survival beyond traditional pathologic variables, intrinsic subtypes, or a proliferation gene signature. Our results highlight the loss of malignant character in some lung micrometastatic lesions and the epigenetic regulation of this phenotype.

  13. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy.

    Science.gov (United States)

    Burke, Andrew R; Singh, Ravi N; Carroll, David L; Wood, James C S; D'Agostino, Ralph B; Ajayan, Pulickel M; Torti, Frank M; Torti, Suzy V

    2012-04-01

    Breast tumors contain a small population of tumor initiating stem-like cells, termed breast cancer stem cells (BCSCs). These cells, which are refractory to chemotherapy and radiotherapy, are thought to persist following treatment and drive tumor recurrence. We examined whether BCSCs are similarly resistant to hyperthermic therapy, and whether nanoparticles could be used to overcome this resistance. Using a model of triple-negative breast cancer stem cells, we show that BCSCs are markedly resistant to traditional hyperthermia and become enriched in the surviving cell population following treatment. In contrast, BCSCs are sensitive to nanotube-mediated thermal treatment and lose their long-term proliferative capacity after nanotube-mediated thermal therapy. Moreover, use of this therapy in vivo promotes complete tumor regression and long-term survival of mice bearing cancer stem cell-driven breast tumors. Mechanistically, nanotube thermal therapy promotes rapid membrane permeabilization and necrosis of BCSCs. These data suggest that nanotube-mediated thermal treatment can simultaneously eliminate both the differentiated cells that constitute the bulk of a tumor and the BCSCs that drive tumor growth and recurrence.

  14. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Brett A. Morris

    2016-11-01

    Full Text Available Increased breast density attributed to collagen I deposition is associated with a 4–6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  15. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.

    Science.gov (United States)

    Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguire-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J

    2016-11-01

    Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  16. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases.

    Science.gov (United States)

    Chen, Xilin; Han, Jianfeng; Chu, Jianhong; Zhang, Lingling; Zhang, Jianying; Chen, Charlie; Chen, Luxi; Wang, Youwei; Wang, Hongwei; Yi, Long; Elder, J Bradley; Wang, Qi-En; He, Xiaoming; Kaur, Balveen; Chiocca, E Antonio; Yu, Jianhua

    2016-05-10

    Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs.

  17. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  18. Columnar cell lesions of the breast: clinical significance and molecular background

    NARCIS (Netherlands)

    Verschuur-Maes, A.H.J.

    2012-01-01

    Columnar cell lesions (CCLs) of the breast have since long been regarded as possible precursor lesions of breast cancer. CCLs are cystically dilated ducts lined by columnar cell epithelium, with or without atypia. Intraluminal secretions and microcalcifications are frequently seen and the microcalci

  19. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer

    DEFF Research Database (Denmark)

    Tvedskov, Tove F; Jensen, Maj-Britt; Kroman, Niels;

    2012-01-01

    Isolated tumor cells (ITC) are more common in the sentinel node (SN) after needle biopsy of a breast cancer, indicating iatrogenic displacement of tumor cells. We here investigate whether similar iatrogenic displacement occurs after surgical excision of a breast tumor. We compared the incidence...

  20. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.

  1. Effects of Recombinant Erythropoietin on Breast Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Tiffany M. Phillips

    2007-12-01

    Full Text Available BACKGROUND: Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs. In breast cancer, CICs can be identified by phenotypic markers and their fate is controlled by the Notch pathway. METHODS: In this study, we investigated the effect of erythropoietin on CICs in breast cancer cell lines. Levels of erythropoietin receptor (EpoR, CD24, CD44, Jagged-1 expression, activation of Notch-1 were assessed by flow cytometry. Self-renewing capacity of CICs was investigated in sphere formation assays. RESULTS: EpoR expression was found on the surface of CICs. Recombinant human Epo (rhEpo increased the numbers of CICs and self-renewing capacity in a Notch-dependent fashion by induction of Jagged-1. Inhibitors of the Notch pathway and P13-kinase blocked both effects. CONCLUSIONS: Erythropoietin functionally affects CICs directly. Our observation may explain the negative impact of recombinant Epo on local control and survival of cancer patients with EpoR-positive tumors.

  2. Segmentation of breast cancer cells positive 1+ and 3+ immunohistochemistry

    Science.gov (United States)

    Labellapansa, Ause; Muhimmah, Izzati; Indrayanti

    2016-03-01

    Breast cancer is a disease occurs as a result of uncontrolled cells growth. One examination method of breast cancer cells is using Immunohistochemistry (IHC) to determine status of Human Epidermal Growth Factor Receptor2 (HER2) protein. This study helps anatomic pathologist to determine HER2 scores using image processing techniques to obtain HER2 overexpression positive area percentages of 1+ and 3+ scores. This is done because the score of 0 is HER2 negative cells and 2+ scores have equivocal results, which means it could not be determined whether it is necessary to give targeted therapy or not. HER2 overexpression positive area percentage is done by dividing the area with a HER2 positive tumor area. To obtain better tumor area, repair is done by eliminating lymphocytes area which is not tumor area using morphological opening. Results of 10 images IHC scores of 1+ and 3+ and 10 IHC images testing without losing lymphocytes area in tumor area, has proven that the system has been able to provide an overall correct classification in accordance with the experts analysis. However by doing operation to remove non-tumor areas, classification can be done correctly 100% for scores of 3+ and 65% for scores of 1+.

  3. Prospective dual role of mesenchymal stem cells in breast tumor microenvironment.

    Science.gov (United States)

    Senst, Christiane; Nazari-Shafti, Timo; Kruger, Stefan; Höner Zu Bentrup, Kirstin; Dupin, Charles L; Chaffin, Abigail E; Srivastav, Sudesh K; Wörner, Philipp M; Abdel-Mageed, Asim B; Alt, Eckhard U; Izadpanah, Reza

    2013-01-01

    Breast cancer tissue is a heterogeneous cellular milieu comprising cancer and host cells. The interaction between breast malignant and non-malignant cells takes place in breast tumor microenvironment (TM), and has a crucial role in breast cancer progression. In addition to cellular component of TM, it mainly consists of cytokines released by tumor cells. The tumor-tropic capacity of mesenchymal stem cells (MSCs) and their interaction with breast TM is an active area of investigation. In the present communication, the interplay between the breast resident adipose tissue-derived MSCs (B-ASCs) and breast TM was studied. It was found that a distinct subset of B-ASCs display a strong affinity for conditioned media (CM) from two breast cancer cell lines, MDA-MB 231 (MDA-CM) and MCF-7 (MCF-CM). The expressions of several cytokines including angiogenin, GM-CSF, IL-6, GRO-α and IL-8 in MDA-CM and MCF-CM have been identified. Upon functional analysis a crucial role for GRO-α and IL-8 in B-ASCs migration was detected. The B-ASC migration was found to be via negative regulation of RECK and enhanced expression of MMPs. Furthermore, transcriptome analysis showed that migratory subpopulation express both pro- and anti-tumorigenic genes and microRNAs (miRNA). Importantly, we observed that the migratory cells exhibit similar gene and miRNA attributes as those seen in B-ASCs of breast cancer patients. These findings are novel and suggest that in breast cancer, B-ASCs migrate to the proximity of tumor foci. Characterization of the molecular mechanisms involved in the interplay between B-ASCs and breast TM will help in understanding the probable role of B-ASCs in breast cancer development, and could pave way for anticancer therapies.

  4. An atypical cause of rapidly progressing breast lump with abscess formation: Pure squamous cell carcinoma of the breast.

    Science.gov (United States)

    Cilekar, Murat; Erkasap, Serdar; Oner, Ulku; Akici, Murat; Ciftci, Evrim; Dizen, Hayrettin; Turel, Serkan; Kavak, Ozgu I; Yilmaz, Sezgin

    2015-01-01

    Squamous cell carcinoma (SCC) is a rare type of breast malignancy and little is known about long-term outcome. In the present report, the clinical features, histopathologic findings and postoperative course of a patient with squamous cell carcinoma are described. We have treated a 47-years-old woman who admitted for right breast mass without any discharge, bleeding and pain. The tumor was, 3 × 2 × 1.5 cm in size with central abscess formation. The result of surgical biopsy revealed large cell keratinizing type of SCC. The metastatic work-up studies ruled out any other probable sources of primary tumor. The patient was performed modified radical mastectomy and axillary dissection and received two cycles of chemotherapy. Squamous cell carcinoma of the breast (SCCB) is a rare entity and should be considered in patients with rapidly progressing breast mass. It should also be considered in breast lesions with abscess formation. The initial therapeutic approach should be surgical excision after histopathological diagnosis.

  5. Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model.

    Science.gov (United States)

    Ray, Tanusree; Chakrabarti, Monoj Kumar; Pal, Amit

    2016-02-01

    Conventional anticancer therapies are effective but have side effects, so alternative targets are being developed. Bacterial toxins that can kill cells or alter the cellular processes like proliferation, apoptosis and differentiation have been reported for cancer treatment. In this study we have shown antitumor activity of hemagglutinin protease (HAP) secreted by Vibrio cholerae. One µg of HAP showed potent antitumor activity when injected into Ehrlich ascites carcinoma (EAC) tumors in Swiss albino mice. Weekly administration of this dose is able to significantly diminish a large tumor volume within 3 weeks and increases the survival rates of cancerous mice. HAP showed apoptotic activity on EAC and other malignant cells. Increased level of pro-apoptotic p53 with increased ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 signify that HAP induced apoptogenic signals lead to death of the tumor cells. In vivo and ex vivo studies suggest that mitochondrial dependent intrinsic pathway is responsible for this apoptosis. The level of ROS in malignant cells is reported to be higher than the normal healthy cells. HAP induces oxidative stress and increases the level of ROS in malignant cells which is significantly higher than the normal healthy cells. As a result the malignant cells cross the threshold level of ROS for cell survival faster than normal healthy cells. This mechanism causes HAP mediated apoptosis in malignant cells, but normal cells remain unaltered in the same environment. Our study suggests that HAP may be used as a new candidate drug for cancer therapy.

  6. YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation.

    Directory of Open Access Journals (Sweden)

    Qinghe Song

    Full Text Available The Yes-associated protein (YAP, a transcriptional coactivator inactivated by the Hippo tumor suppressor pathway, functions as an oncoprotein in a variety of cancers. However, its contribution to breast cancer remains controversial. This study investigated the role of YAP in breast cancer cells under nutrient deprivation (ND. Here, we show that YAP knockdown sensitized MCF7 breast cancer cells to nutrient deprivation-induced apoptosis. Furthermore, in response to ND, YAP increased the autolysosome degradation, thereby enhancing the cellular autophagic flux in breast cancer cells. Of note, autophagy is crucial for YAP to protect MCF7 cells from apoptosis under ND conditions. In addition, the TEA domain (TEAD family of growth-promoting transcription factors was indispensable for YAP-mediated regulation of autophagy. Collectively, our data reveal a role for YAP in promoting breast cancer cell survival upon ND stress and uncover an unappreciated function of YAP/TEAD in the regulation of autophagy.

  7. Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells.

    Science.gov (United States)

    Sehrawat, Anuradha; Singh, Shivendra V

    2011-07-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells and suppresses mammary cancer development in a transgenic mouse model. We now show, for the first time, that BITC inhibits epithelial-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell line (PL-45) to BITC resulted in upregulation of epithelial markers (e.g., E-cadherin and/or occludin) with a concomitant decrease in protein levels of mesenchymal markers, including vimentin, fibronectin, snail, and/or c-Met. The BITC-mediated induction of E-cadherin protein was accompanied by an increase in its transcription, whereas BITC-treated MDA-MB-231 cells exhibited suppression of vimentin, snail, and slug mRNA levels. Experimental EMT induced by exposure to TGFβ and TNFα or Rb knockdown in a spontaneously immortalized nontumorigenic human mammary epithelial cell line (MCF-10A) was also partially reversed by BITC treatment. The TGFβ-/TNFα-induced migration of MCF-10A cells was inhibited in the presence of BITC, which was partially attenuated by RNA interference of E-cadherin. Inhibition of MDA-MB-231 xenograft growth in vivo in female athymic mice by BITC administration was associated with an increase in protein level of E-cadherin and suppression of vimentin and fibronectin protein expression. In conclusion, this study reports a novel anticancer effect of BITC involving inhibition of EMT, a process triggered during progression of cancer to invasive state.

  8. Upregulated WDR26 serves as a scaffold to coordinate PI3K/ AKT pathway-driven breast cancer cell growth, migration, and invasion.

    Science.gov (United States)

    Ye, Yuanchao; Tang, Xiaoyun; Sun, Zhizeng; Chen, Songhai

    2016-04-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT pathway transmits signals downstream of receptor tyrosine kinases and G protein-coupled receptors (GPCRs), and is one of the most dysregulated pathways in breast cancer. PI3Ks and AKTs consist of multiple isoforms that play distinct and even opposite roles in breast cancer cell growth and metastasis. However, it remains unknown how the activities of various PI3K and AKT isoforms are coordinated during breast cancer progression. Previously, we showed WDR26 is a novel WD40 protein that binds Gβγ and promotes Gβγ signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and that WDR26 overexpression correlates with shortened survival of breast cancer patients. In highly malignant cell lines (MDA-MB231, DU4475 and BT549), downregulation of WDR26 expression selectively alleviated GPCR- but not EGF receptor-stimulated PI3K/AKT signaling and tumor cell growth, migration and invasion. In contrast, in a less malignant cell line (MCF7), WDR26 overexpression had the opposite effect. Additional studies indicate that downstream of GPCR stimulation, WDR26 serves as a scaffold that fosters assembly of a specific signaling complex consisting of Gβγ, PI3Kβ and AKT2. In an orthotopic xenograft mouse model of breast cancer, disrupting formation of this complex, by overexpressing WDR26 mutants in MDA-MB231 cells, abrogated PI3K/AKT activation and tumor cell growth and metastasis. Together, our results identify a novel mechanism regulating GPCR-dependent activation of the PI3K/AKT signaling axis in breast tumor cells, and pinpoint WDR26 as a potential therapeutic target for breast cancer.

  9. IL-33 facilitates endocrine resistance of breast cancer by inducing cancer stem cell properties.

    Science.gov (United States)

    Hu, Haiyan; Sun, Jiaxing; Wang, Chunhong; Bu, Xiangmao; Liu, Xiangping; Mao, Yan; Wang, Haibo

    2017-02-16

    Breast cancers with estrogen receptor (ER) expressions account for the majority of all clinical cases. Due to hormone therapy with tamoxifen, prognoses of patients with ER-positive breast cancer are significantly improved. However, endocrine resistance to tamoxifen is common and inevitable, leading to compromised efficacy of hormone therapy. Herein, we identify a crucial role of IL-33 in inducing endocrine resistance of breast cancer. IL-33 overexpression in breast cancer cells results in resistance to tamoxifen-induced tumor growth inhibition, while IL-33 knockdown corrects this problem. Mechanistically, IL-33 induces breast cancer stem cell properties evidenced by mammosphere formation and xenograft tumorigenesis, as well as expression of cancer stem cell genes including ALDH1A3, OCT4, NANOG and SOX2. In breast cancer patients, higher serum IL-33 levels portend advanced clinical stages, poorly differentiated cancer cells and tumor recurrence. IL-33 expression levels in patients' freshly isolated breast cancer cells predicts tamoxifen resistance and cancer stem cell features in individual patient. Collectively, IL-33 induces endocrine resistance of breast cancer by promoting cancer stem cell properties. These findings provide novel mechanisms connecting IL-33 with cancer pathogenesis and pinpoint IL-33 as a promising target for optimizing hormone therapy in clinical practice.

  10. Breast tissue characterization using FARMA modeling of ultrasonic RF echo.

    Science.gov (United States)

    Alacam, Burak; Yazici, Birsen; Bilgutay, Nihat; Forsberg, Flemming; Piccoli, Catherine

    2004-10-01

    A number of empirical and analytical studies demonstrated that the ultrasound RF echo reflected from tissue exhibits 1/f characteristics. In this paper, we propose to model 1/f characteristics of the ultrasonic RF echo by a novel parsimonious model, namely the fractional differencing auto regressive moving average (FARMA) process, and evaluated diagnostic value of model parameters for breast cancer malignancy differentiation. FARMA model captures the fractal and long term correlated nature of the backscattered speckle texture and facilitates robust efficient estimation of fractal parameters. In our study, in addition to the computer generated FARMA model parameters, we included patient age and radiologist's prebiopsy level of suspicion (LOS) as potential indicators of malignant and benign masses. We evaluated the performance of the proposed set of features using various classifiers and training methods using 120 in vivo breast images. Our study shows that the area under the receiver operating characteristics (ROC) curve of FARMA model parameters alone is superior to the area under the ROC curve of the radiologist's prebiopsy LOS. The area under the ROC curve of the three sets of features yields a value of 0.87, with a confidence interval of [0.85, 0.89], at a significance level of 0.05. Our results suggest that the proposed method of ultrasound RF echo model leads to parameters that can differentiate breast tumors with a relatively high precision. This set of RF echo features can be incorporated into a comprehensive computer-aided diagnostic system to aid physicians in breast cancer diagnosis.

  11. Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1.

    Science.gov (United States)

    Rhodes, L V; Tate, C R; Hoang, V T; Burks, H E; Gilliam, D; Martin, E C; Elliott, S; Miller, D B; Buechlein, A; Rusch, D; Tang, H; Nephew, K P; Burow, M E; Collins-Burow, B M

    2015-10-05

    Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), has been identified as a tumor suppressor in many cancers including breast. Low LKB1 expression has been associated with poor prognosis of breast cancer patients, and we report here a significant association between loss of LKB1 expression and reduced patient survival specifically in the basal subtype of breast cancer. Owing to the aggressive nature of the basal subtype as evidenced by high incidences of metastasis, the purpose of this study was to determine if LKB1 expression could regulate the invasive and metastatic properties of this specific breast cancer subtype. Induction of LKB1 expression in basal-like breast cancer (BLBC)/triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, inhibited invasiveness in vitro and lung metastatic burden in an orthotopic xenograft model. Further analysis of BLBC cells overexpressing LKB1 by unbiased whole transcriptomics (RNA-sequencing) revealed striking regulation of metastasis-associated pathways, including cell adhesion, extracellular matrix remodeling, and epithelial-to-mesenchymal transition (EMT). In addition, LKB1 overexpression inhibited EMT-associated genes (CDH2, Vimentin, Twist) and induced the epithelial cell marker CDH1, indicating reversal of the EMT phenotype in the MDA-MB-231 cells. We further demonstrated marked inhibition of matrix metalloproteinase 1 expression and activity via regulation of c-Jun through inhibition of p38 signaling in LKB1-expressing cells. Taken together, these data support future development of LKB1 inducing therapeutics for the suppression of invasion and metastasis of BLBC.

  12. An Improved Syngeneic Orthotopic Murine Model of Human Breast Cancer Progression

    Science.gov (United States)

    Rashid, Omar M.; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P.; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-01-01

    Purpose Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Methods Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous injection in the area of the nipple (OP), or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. Results ODV produced less variable sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. Conclusions ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development. PMID:25200444

  13. Inhibition of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-11-21

    Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.

  14. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation

    Directory of Open Access Journals (Sweden)

    Frithiof H

    2016-11-01

    Full Text Available Henrik Frithiof,1 Kristina Aaltonen,1 Lisa Rydén2,3 1Division of Oncology and Pathology, 2Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, 3Department of Surgery, Skåne University Hospital, Malmö, Sweden Introduction: Amplification of the HER-2/neu (HER-2 proto-oncogene occurs in 10%–15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Methods: Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line, an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. Results: A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients

  15. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  16. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    Science.gov (United States)

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.

  17. Premenopausal Obesity and Breast Cancer Growth Rates in a Rodent Model.

    Science.gov (United States)

    Matthews, Shawna B; McGinley, John N; Neil, Elizabeth S; Thompson, Henry J

    2016-04-11

    Obese premenopausal women with breast cancer have poorer prognosis for long term survival, in part because their tumors are larger at the time of diagnosis than are found in normal weight women. Whether larger tumor mass is due to obesity-related barriers to detection or to effects on tumor biology is not known. This study used polygenic models for obesity and breast cancer to deconstruct this question with the objective of determining whether cell autonomous mechanisms contribute to the link between obesity and breast cancer burden. Assessment of the growth rates of 259 chemically induced mammary carcinomas from rats sensitive to dietary induced obesity (DS) and of 143 carcinomas from rats resistant (DR) to dietary induced obesity revealed that tumors in DS rats grew 1.8 times faster than in DR rats. This difference may be attributed to alterations in cell cycle machinery that permit more rapid tumor cell accumulation. DS tumors displayed protein expression patterns consistent with reduced G1/S checkpoint inhibition and a higher threshold of factors required for execution of the apoptotic cell death pathway. These mechanistic insights identify regulatory targets for life style modifications or pharmacological interventions designed to disrupt the linkage between obesity and tumor burden.

  18. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi, E-mail: gargi@umich.edu

    2014-11-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds.

  19. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages.

    Science.gov (United States)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-09-20

    Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared "staged tumorigenesis-mimicking matrices" which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  20. The role of miR-100 in regulating apoptosis of breast cancer cells.

    Science.gov (United States)

    Gong, Yi; He, Tianliang; Yang, Lu; Yang, Geng; Chen, Yulei; Zhang, Xiaobo

    2015-07-01

    Breast cancer is a serious health problem worldwide. Inhibition of apoptosis plays a major role in breast cancer tumorigenesis. MicroRNAs (miRNAs) play crucial roles in the regulation of apoptosis. However, the regulation of breast cancer apoptosis by miRNAs has not been intensively investigated. To address this issue, the effect of miR-100 on the cell proliferation of different breast cancer cells was characterized in the present study. The results showed that miR-100 was significantly upregulated in SK-BR-3 cells compared with other human breast cancer cells (MCF7, MDA-MB-453, T47D, HCC1954 and SUM149). Silencing miR-100 expression with anti-miRNA-100 oligonucleotide (AMO-miR-100) initiated apoptosis of SK-BR-3 cells in vitro and in vivo. However, the overexpression of miR-100 led to the proliferation inhibition of the miR-100-downregulated breast cancer cells. Antagonism of miR-100 in SK-BR-3 cells increased the expression of MTMR3, a target gene of miR-100, which resulted in the activation of p27 and eventually led to G2/M cell-cycle arrest and apoptosis. The downregulation of miR-100 sensitized SK-BR-3 cells to chemotherapy. Therefore, our finding highlights a novel aspect of the miR-100-MTMR3-p27 pathway in the molecular etiology of breast cancer.

  1. Frankincense derived heavy terpene cocktail boosting breast cancer cell(MDA-MB-231) death in vitro简

    Institute of Scientific and Technical Information of China (English)

    Faruck; Lukmanul; Hakkim; Mohammed; Al-Buloshi; Jamal; Al-Sabahi

    2015-01-01

    Objective: To investigate the anti-cancer effect of frankincense derived heavy oil obtained by Soxhlet extraction method on breast cancer cells(MDA-MB-231), and to study its chemical profile using gas chromatography mass spectrometry analysis.Methods: Hexane was used to extract heavy oil from frankincense resin. Chemical profiling of heavy oil was done using Perkin Elmer Clarus GC system with mass spectrometer. MDA-MB-231 cells were treated with different dilutions(1:1 000, 1:1 500,1:1 750, 1:2 000, 1:2 250, 1:2 500, 1:2 750, 1:3 000, 1:3 250) of heavy oil for 24 h. The cells were observed by using light microscopy. Cell viability was measured by MTT assay.Results: Gas chromatography mass spectrometry chemical profiling of frankincense derived heavy oil revealed the presence of terpenes such as a-pinene(61.56%), a-amyrin(20.6%), b-amyrin(8.1%), b-phellandrene(1.47%) and camphene(1.04%). Heavy terpene cocktail induced significant MDA-MB-231 cell death at each concentration tested. Noticeably, very low concentration of Soxhlet derived heavy terpenes elicits considerable cytotoxicity on MDA-MB-231 cells compared to hydro distillated essential oil derived from frankincense resin.Conclusions: Extracting anti-cancer active principle cocktail by simple Soxhlet method is cost effective and less time consuming. Our in vitro anti-cancer data forms the rationale for us to test heavy terpene complex in breast cancer xenograft model in vivo. Furthermore, fractionation and developing frankincense heavy terpene based breast cancer drug is the major goal of our laboratory.

  2. Roles of micro RNA-140 in stem cell-associated early stage breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2014-01-01

    An increasing body of evidence supports a stepwise model for progression of breast cancer from ductal carcinoma in situ(DCIS) to invasive ductal carcinoma(IDC). Due to the high level of DCIS heterogeneity, we cannot currently predict which patients are at highest risk for disease recurrence or progression. The mechanisms of progression are still largely unknown, however cancer stem cell populations in DCIS lesions may serve as malignant precursor cells intimately involved in progression. While genetic and epigenetic alterations found in DCIS are often shared by IDC, m RNA and mi RNA expression profiles are significantly altered. Therapeutic targeting of cancer stem cell pathways and differentially expressed mi RNA could have significant clinical benefit. As tumor grade increases, mi RNA-140 is progressively downregulated. mi R-140 plays an important tumor suppressive role in the Wnt, SOX2 and SOX9 stem cell regulator pathways. Downregulation of mi R-140 removes inhibition of these pathways, leading to higher cancer stem cell populations and breast cancer progression. mi R-140 downregulation is mediated through both an estrogen response element in the mi R-140 promoter region and differential methylation of Cp G islands. These mechanisms are novel targets for epigenetic therapy to activate tumor suppressor signaling via mi R-140. Additionally, we briefly explored the emerging role of exosomes in mediating intercellular mi R-140 signaling. The purpose of this review is to examine the cancer stem cell signaling pathways involved in breast cancer progression, and the role of dysregulation of mi R-140 in regulating DCIS to IDC transition.

  3. Acute and chronic cadmium exposure promotes E-cadherin degradation in MCF7 breast cancer cells.

    Science.gov (United States)

    Ponce, Esmeralda; Louie, Maggie C; Sevigny, Mary B

    2015-10-01

    Cadmium is an environmental carcinogen that usually enters the body at minute concentrations through diet or cigarette smoke and bioaccumulates in soft tissues. In past studies, cadmium has been shown to contribute to the development of more aggressive cancer phenotypes including increased cell migration and invasion. This study aims to determine if cadmium exposure-both acute and chronic-contributes to breast cancer progression by interfering with the normal functional relationship between E-cadherin and β-catenin. An MCF7 breast cancer cell line (MCF7-Cd) chronically exposed to 10(-7)  M CdCl2 was previously developed and used as a model system to study chronic exposures, whereas parental MCF7 cells exposed to 10(-6)  M CdCl2 for short periods of time were used to study acute exposures. Cadmium exposure of MCF7 cells led to the degradation of the E-cadherin protein via the ubiquitination pathway. This resulted in fewer E-cadherin/β-catenin complexes and the relocation of active β-catenin to the nucleus, where it interacted with transcription factor TCF-4 to modulate gene expression. Interestingly, only cells chronically exposed to cadmium showed a significant decrease in the localization of β-catenin to the plasma membrane and an increased distance between cells. Our data suggest that cadmium exposure promotes breast cancer progression by (1) down-regulating E-cadherin, thus decreasing the number of E-cadherin/β-catenin adhesion complexes, and (2) enhancing the nuclear translocation of β-catenin to increase expression of cancer-promoting proteins (i.e., c-Jun and cyclin D1).

  4. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state.

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-09-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells.

  5. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-01-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells. PMID:22908280

  6. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    Science.gov (United States)

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  7. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer

    Directory of Open Access Journals (Sweden)

    Richardson Andrea L

    2011-10-01

    Full Text Available Abstract Background Na+/I- symporter (NIS-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Methods Published oligonucleotide microarray data within the National Center for Biotechnology Information Ge