WorldWideScience

Sample records for breast cell model

  1. A mathematical model of breast cancer cell motion through a microfluidic device

    Science.gov (United States)

    Barber, Jared

    2017-11-01

    Deaths due to breast cancer are usually caused by metastases at other locations (e.g. bone), not by the primary tumor. Much research has targeted understanding how to lower the metastatic potential of individual breast cancer cells with the end goal being the mitigation of the effects of breast cancer on the 3.5 million people in the US affected by the disease. Experiments show that metastatic potential correlates well with the physical properties of a cell and its surrounding environment. Biology also suggests that mechanotransduction of cellular pathways (e.g. apoptosis, division) can affect metastatic potential. Because of these insights, we are developing a mechanical model of breast cancer cell translocation in microvessels. Our first model is a two-dimensional model with interconnected viscoelastic elements submersed in a surrounding Stokes flow. This model has been used to consider breast cancer cell translocation through a microfluidic device that was designed as a diagnostic tool for assessing the metastatic potential of breast cells. We will present this current model and share results. We believe that further development of this model will allow consideration of metastatic potential in both in vitro and in vivo settings.

  2. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    Science.gov (United States)

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    Science.gov (United States)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  4. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  5. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model.

    Science.gov (United States)

    Liu, Xiaoyi; Hu, Jianxia; Li, Yueyun; Cao, Weihong; Wang, Yu; Ma, Zhongliang; Li, Funian

    2018-05-01

    Development of an improved breast cancer therapy has been an elusive goal of cancer gene therapy for a long period of time. Human mesenchymal stem cells derived from umbilical cord (hUMSCs) genetically modified with the interleukin (IL)-18 gene (hUMSCs/IL-18) were previously demonstrated to be able to suppress the proliferation, migration and invasion of breast cancer cells in vitro . In the present study, the effect of hUMSCs/IL-18 on breast cancer in a mouse model was investigated. A total of 128 mice were divided into 2 studies (the early-effect study and the late-effect study), with 4 groups in each, including the PBS-, hUMSC-, hUMSC/vector- and hUMSC/IL-18-treated groups. All treatments were injected along with 200 µl PBS. Following therapy, the tumor size, histological examination, and expression of lymphocytes, Ki-67, cluster of differentiation 31 and cytokines [interleukin (IL)-18, IL-12, interferon (IFN)-γ and TNF-α] in each group were analyzed. Proliferation of cells (assessed by measuring tumor size and Ki-67 expression) and metastasis, (by determining pulmonary and hepatic metastasis) of breast cancer cells in the hUMSC/IL-18 group were significantly decreased compared with all other groups. hUMSCs/IL-18 suppressed tumor cell proliferation by activating immunocytes and immune cytokines, decreasing the proliferation index of proliferation marker protein Ki-67 of tumor cells and inhibiting tumor angiogenesis. Furthermore, hUMSCs/IL-18 were able to induce a more marked and improved therapeutic effect in the tumor sites, particularly in early tumors. The results of the present study indicate that hUMSCs/IL-18 were able to inhibit the proliferation and metastasis of breast cancer cells in vivo , possibly leading to an approach for a novel antitumor therapy in breast cancer.

  6. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  7. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  8. Monitoring Dynamic Interactions between Breast Cancer Cells and Human Bone Tissue in a Co-Culture Model

    Science.gov (United States)

    Contag, Christopher H.; Lie, Wen-Rong; Bammer, Marie C.; Hardy, Jonathan W.; Schmidt, Tobi L.; Maloney, William J.; King, Bonnie L.

    2015-01-01

    Purpose Bone is a preferential site of breast cancer metastasis and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. Procedures Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell division and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX® immunoassays. Results BLI demonstrated increased MDA-MB-231-fLuc proliferation (pbones, and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc colonization of bone, and MILLIPLEX® profiles of culture supernatants suggested breast/bone crosstalk. Conclusions Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays. PMID:24008275

  9. Immortalization protocols used in cell culture models of human breast morphogenesis

    DEFF Research Database (Denmark)

    Gudjonsson, T; Villadsen, R; Rønnov-Jessen, L

    2004-01-01

    of the tissue of origin. In recent years, we have sought to establish immortalized primary breast cells, which retain crucial characteristics of their original in situ tissue pattern. This review discusses various approaches to immortalization of breast-derived epithelial and stromal cells and the application...

  10. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    International Nuclear Information System (INIS)

    Duursen, Majorie B.M. van; Smeets, Evelien E.J.W.; Rijk, Jeroen C.W.; Nijmeijer, Sandra M.; Berg, Martin van den

    2013-01-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  11. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, Majorie B.M. van, E-mail: M.vanDuursen@uu.nl [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Smeets, Evelien E.J.W. [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Rijk, Jeroen C.W. [RIKILT - Institute for Food Safety, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen (Netherlands); Nijmeijer, Sandra M.; Berg, Martin van den [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands)

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  12. Pharmacologic inhibition of MLK3 kinase activity blocks the in vitro migratory capacity of breast cancer cells but has no effect on breast cancer brain metastasis in a mouse xenograft model.

    Directory of Open Access Journals (Sweden)

    Kun Hyoe Rhoo

    Full Text Available Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3 in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model.

  13. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  14. Selective expression of long non-coding RNAs in a breast cancer cell progression model.

    Science.gov (United States)

    Tracy, Kirsten M; Tye, Coralee E; Page, Natalie A; Fritz, Andrew J; Stein, Janet L; Lian, Jane B; Stein, Gary S

    2018-02-01

    Long non-coding RNAs (lncRNAs) are acknowledged as regulators of cancer biology and pathology. Our goal was to perform a stringent profiling of breast cancer cell lines that represent disease progression. We used the MCF-10 series, which includes the normal-like MCF-10A, HRAS-transformed MCF-10AT1 (pre-malignant), and MCF-10CA1a (malignant) cells, to perform transcriptome wide sequencing. From these data, we have identified 346 lncRNAs with dysregulated expression across the progression series. By comparing lncRNAs from these datasets to those from an additional set of cell lines that represent different disease stages and subtypes, MCF-7 (early stage, luminal), and MDA-MB-231 (late stage, basal), 61 lncRNAs that are associated with breast cancer progression were identified. Querying breast cancer patient data from The Cancer Genome Atlas, we selected a lncRNA, IGF-like family member 2 antisense RNA 1 (IGFL2-AS1), of potential clinical relevance for functional characterization. Among the 61 lncRNAs, IGFL2-AS1 was the most significantly decreased. Our results indicate that this lncRNA plays a role in downregulating its nearest neighbor, IGFL1, and affects migration of breast cancer cells. Furthermore, the lncRNAs we identified provide a valuable resource to mechanistically and clinically understand the contribution of lncRNAs in breast cancer progression. © 2017 Wiley Periodicals, Inc.

  15. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia

    DEFF Research Database (Denmark)

    Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René

    2003-01-01

    The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of kn...

  16. 'A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies'

    International Nuclear Information System (INIS)

    Marsden, Carolyn G; Wright, Mary Jo; Carrier, Latonya; Moroz, Krzysztof; Pochampally, Radhika; Rowan, Brian G

    2012-01-01

    The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis. Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC). Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 10 3 cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples. Tumorspheres isolated under defined culture

  17. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  18. The effect of tomatine on metastasis related matrix metalloproteinase (MMP) activities in breast cancer cell model.

    Science.gov (United States)

    Yelken, Besra Özmen; Balcı, Tuğçe; Süslüer, Sunde Yılmaz; Kayabaşı, Çağla; Avcı, Çığır Biray; Kırmızıbayrak, Petek Ballar; Gündüz, Cumhur

    2017-09-05

    Breast cancer is one of the most common malignancies in women and metastasis is the cause of morbidity and mortality in patients. In the development of metastasis, the matrix metalloproteinase (MMP) family has a very important role in tumor development. MMP-2 and MMP-9 work together for extracellular matrix (ECM) cleavage to increase migration. Tomatine is a secondary metabolite that has a natural defense role against plants, fungi, viruses and bacteria that are synthesized from tomato. In additıon, tomatine is also known that it breaks down the cell membrane and is a strong inhibitor in human cancer cells. In this study, it was aimed to evaluate the effect of tomatine on cytotoxicity, apoptosis and matrix metalloproteinase inhibition in MCF-7 cell lines. Human breast cancer cell line (MCF-7) was used as a cell line. In MCF-7 cells, the IC 50 dose of tomatine was determined to be 7.07μM. According to the control cells, apoptosis increased 3.4 fold in 48thh. Activation of MMP-2, MMP-9 and MMP-9\\NGAL has been shown to decrease significantly in cells treated with tomatine by gelatin zymography compared to the control. As a result, matrix metalloproteinase activity and cell proliferation were suppressed by tomatine and this may provide support in treatment methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cinnamides as selective small-molecule inhibitors of a cellular model of breast cancer stem cells.

    Science.gov (United States)

    Germain, Andrew R; Carmody, Leigh C; Nag, Partha P; Morgan, Barbara; Verplank, Lynn; Fernandez, Cristina; Donckele, Etienne; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito

    2013-03-15

    A high-throughput screen (HTS) was conducted against stably propagated cancer stem cell (CSC)-enriched populations using a library of 300,718 compounds from the National Institutes of Health (NIH) Molecular Libraries Small Molecule Repository (MLSMR). A cinnamide analog displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control cell line (HMLE_sh_eGFP). Herein, we report structure-activity relationships of this class of cinnamides for selective lethality towards CSC-enriched populations. Copyright © 2013. Published by Elsevier Ltd.

  20. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  1. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells.

    Science.gov (United States)

    Gener, Petra; Gouveia, Luis Pleno; Sabat, Guillem Romero; de Sousa Rafael, Diana Fernandes; Fort, Núria Bergadà; Arranja, Alexandra; Fernández, Yolanda; Prieto, Rafael Miñana; Ortega, Joan Sayos; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2015-11-01

    To be able to study the efficacy of targeted nanomedicines in marginal population of highly aggressive cancer stem cells (CSC), we have developed a novel in vitro fluorescent CSC model that allows us to visualize these cells in heterogeneous population and to monitor CSC biological performance after therapy. In this model tdTomato reporter gene is driven by CSC specific (ALDH1A1) promoter and contrary to other similar models, CSC differentiation and un-differentiation processes are not restrained and longitudinal studies are feasible. We used this model for preclinical validation of poly[(d,l-lactide-co-glycolide)-co-PEG] (PLGA-co-PEG) micelles loaded with paclitaxel. Further, active targeting against CD44 and EGFR receptors was validated in breast and colon cancer cell lines. Accordingly, specific active targeting toward surface receptors enhances the performance of nanomedicines and sensitizes CSC to paclitaxel based chemotherapy. Many current cancer therapies fail because of the failure to target cancer stem cells. This surviving population soon proliferates and differentiates into more cancer cells. In this interesting article, the authors designed an in vitro cancer stem cell model to study the effects of active targeting using antibody-labeled micelles containing chemotherapeutic agent. This new model should allow future testing of various drug/carrier platforms before the clinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Evaluation of the Volatile Oil Composition and Antiproliferative Activity of Laurus nobilis L. (Lauraceae on Breast Cancer Cell Line Models

    Directory of Open Access Journals (Sweden)

    Rana Abu-Dahab

    2014-03-01

    Full Text Available Volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae fruits and leaves grown in Jordan were investigated. GC-MS analysis of the essential oil of the fruits resulted in the identification of 45 components representing 99.7 % of the total oil content, while the leaf essential oil yielded 37 compounds representing 93.7% of the total oil content. Oxygenated monoterpene 1,8-cineole was the main component in the fruit and leaf oils. Using sulphorhodamine B assay; the crude ethanol fraction, among other solvent extracts, showed strong antiproliferative activity for both leaves and fruits, nevertheless, the fruits were more potent against both breast cancer cell models (MCF7 and T47D. At IC 50 values ; the mechanism of apoptosis was nevertheless different: where L. nobilis fruit proapoptotic efficacy was not regulated by either p53 or p21, L. nobilis leaf extract components enhanced the p53 levels substantially. In both extracts, apoptosis was not caspase-8 or Fas Ligand and sFas (Fas/APO-1 dependent. Our studies highlight L. nobilis as a potential natural agent for breast cancer therapy. Compared with non induced basal cells, both L. nobilis fruits and leaves induced a significant enrichment in the cytoplasmic mono- and oligonucleosomes after assumed induction of programmed MCF7 cell death.

  3. A simple model for cell type recognition using 2D-correlation analysis of FTIR images from breast cancer tissue

    Science.gov (United States)

    Ali, Mohamed H.; Rakib, Fazle; Al-Saad, Khalid; Al-Saady, Rafif; Lyng, Fiona M.; Goormaghtigh, Erik

    2018-07-01

    Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes.

  4. Anti-metastasis activity of black rice anthocyanins against breast cancer: analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model.

    Science.gov (United States)

    Luo, Li-Ping; Han, Bin; Yu, Xiao-Ping; Chen, Xiang-Yan; Zhou, Jie; Chen, Wei; Zhu, Yan-Feng; Peng, Xiao-Li; Zou, Qiang; Li, Sui-Yan

    2014-01-01

    Increasing evidence from animal, epidemiological and clinical investigations suggest that dietary anthocyanins have potential to prevent chronic diseases, including cancers. It is also noteworthy that human epidermal growth factor receptor 2 (ErbB2) protein overexpression or ErbB2 gene amplification has been included as an indicator for metastasis and higher risk of recurrence for breast cancer. The present experiments investigated the anti-metastasis effects of black rice anthocyanins (BRACs) on ErbB2 positive breast cancer cells in vivo and in vitro. Oral administration of BRACs (150 mg/kg/day) reduced transplanted tumor growth, inhibited pulmonary metastasis, and decreased lung tumor nodules in BALB/c nude mice bearing ErbB2 positive breast cancer cell MDA-MB-453 xenografts. The capacity for migration, adhesion, motility and invasion was also inhibited by BRACs in MDA-MB-453 cells in a concentration dependent manner, accompanied by decreased activity of a transfer promoting factor, urokinase-type plasminogen activator (u-PA). Together, our results indicated that BRACs possess anti-metastasis potential against ErbB2 positive human breast cancer cells in vivo and in vitro through inhibition of metastasis promoting molecules.

  5. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► Cathepsins B and D were markedly enhanced by octylphenol (OP) in MCF-7 cells. ► OP may accelerate breast cancer cell growth and cathepsins via ER-mediated signaling. ► Breast cancer cells exposed with OP to mouse model were more aggressive. ► OP can promote metastasis through the amplification of cathepsins B and D via ER-mediated signaling pathway. -- Abstract: Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48 h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10 −6 M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of

  6. Elucidation of epithelial-mesenchymal transition-related pathways in a triple-negative breast cancer cell line model by multi-omics interactome analysis

    DEFF Research Database (Denmark)

    Pauling, Josch K; Christensen, Anne G; Batra, Richa

    2014-01-01

    exhibiting epithelial-like and mesenchymal-like morphology, respectively. Here we identified altered protein signaling activity in a complex biologically relevant network, related to focal adhesion and migration of breast cancer cells. We found dysregulated functional network modules revealing altered...... obtained from a triple-negative breast cancer cell line model, combining data sets of gene and protein expression as well as protein phosphorylation. We focus on alterations associated with the phenotypical differences arising from epithelial-mesenchymal transition in two breast cancer cell lines...... with generation of biological networks. This allows identification of intrinsic patterns in the data and their linkage to a specific context such as cellular compartments, diseases or functions. Identification of aberrant pathways by traditional approaches is often limited to biological networks based on either...

  7. Role of CEACAM1, ECM, and Mesenchymal Stem Cells in an Ortho topic Model of Human Breast Cancer

    International Nuclear Information System (INIS)

    Samineni, S.; Samineni, S.; Shively, J.E.; Glackin, C.

    2011-01-01

    Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is a morphogens in an in vitro model for lumen formation and plays a similar role in breast epithelial cells implanted in humanized mammary fat pads in NOD-SCID mice. Although extra cellular matrix alone is sufficient to stimulate lumen formation in CEACAM1 transfected MCF-7 cells grown in 3D culture, there is an additional requirement for stromal or mesenchymal cells (MSCs) for these cells to form xenografts with glandular structures in an ortho topic site. We demonstrate that optimal in vitro conditions include both Matrigel and MSCs and that the inclusion of collagen I inhibits xenograft differentiation. Additionally, there is no need to remove the nascent murine mammary gland. The previously observed difference in gland development between the long and short cytoplasmic domain isoforms of CEACAM1 is no longer observed in pregnant NOD/SCID mice suggesting that stimulation of the mammary fat pad by pregnancy critically affects xenograft differentiation.

  8. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    Science.gov (United States)

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  10. Anti-tumor effects of 125I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice

    International Nuclear Information System (INIS)

    Xiao Zhongdi; Liang Chunlin; Zhang Guoli; Jing Yue; Zhang Yucheng; Gai Baodong

    2011-01-01

    Objective: To study the anti-tumor effects of 125 I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice and clarify their anti-tumor mechanisms. Methods 120 nude mice transplantated with human breast cancer cells MCF-7 were randomly divided into 3 groups (n=40): 125 I radioactive particles implanted group, non-radioactive particles implanted group and non-particles implanted group. The articles were implanted into mice according to Pairs system principle. The expressions of Fas mRNA and protein and the activaties of caspase-3 and caspase-8 enzyme were detected by RT-PCR and Western blotting. The changes of cell cycle were detected by flow cytometry. Results: Compared with non-radioactive particles implanted group and non-particles implanted group, the size of cancer tissues in 125 I radioactive particles implanted group was reduced significantly (P 0 /G 1 phase was significantly increased (P 125 I radioactive particles into transplantated tumor model of human breast cancer cells can kill tumor cells, inhibit the growth cycle of tumor cells and induce the apoptosis of tumor cells in nude mice. (authors)

  11. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  12. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening.

    Science.gov (United States)

    Christensen, Anne G; Ehmsen, Sidse; Terp, Mikkel G; Batra, Richa; Alcaraz, Nicolas; Baumbach, Jan; Noer, Julie B; Moreira, José; Leth-Larsen, Rikke; Larsen, Martin R; Ditzel, Henrik J

    2017-08-01

    A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/β-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation

  13. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    OpenAIRE

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell proper...

  14. Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells.

    Science.gov (United States)

    Batran, Rasha Z; Kassem, Asmaa F; Abbas, Eman M H; Elseginy, Samia A; Mounier, Marwa M

    2018-07-23

    A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC 50  = 4.3-21.2 μg/mL) than the reference drug doxorubicin (IC 50  = 26.1 μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC 50  = 25.2 and 28.0 μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC 50  = 11.1, 16.7 and 21.2 μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC 50 values of 9.37, 2.89 and 6.13 μM, respectively, compared to the reference drug colchicine (IC 50  = 6.93 μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100 ps. MD results of compound 3a showed that it reached the stable state

  15. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  16. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  17. The Human Cell Surfaceome of Breast Tumors

    Science.gov (United States)

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  18. Myeloid-derived suppressor cells in breast cancer.

    Science.gov (United States)

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R; Carson, William E

    2013-07-01

    Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.

  19. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  20. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  1. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo; Bifulco, Maurizio

    2006-01-01

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB 1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB 1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB 1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB 1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  2. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  3. Squamous cell carcinoma of the breast: a case report

    Directory of Open Access Journals (Sweden)

    Hofstee Mans

    2008-12-01

    Full Text Available Abstract Background Squamous cells are normally not found inside the breast, so a primary squamous cell carcinoma of the breast is an exceptional phenomenon. There is a possible explanation for these findings. Case presentation A 72-year-old woman presented with a breast abnormality suspected for breast carcinoma. After the operation the pathological examination revealed a primary squamous cell carcinoma of the breast. Conclusion The presentation of squamous cell carcinoma could be similar to that of an adenocarcinoma. However, a squamous cell carcinoma of the breast could also develop from a complicated breast cyst or abscess. Therefore, pathological examination of these apparent benign abnormalities is mandatory.

  4. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Anna Curry

    Full Text Available Cell-surface CD200 expression by mouse EMT6 breast tumor cells increased primary tumor growth and metastasis to the draining lymph nodes (DLN in normal (WT BALB/c female recipients, while lack of CD200R1 expression in a CD200R1-/- host negated this effect. Silencing CD200 expression in EMT6siCD200 tumor cells also reduced their ability to grow and metastasize in WT animals. The cellular mechanisms responsible for these effects have not been studied in detail. We report characterization of tumor infiltrating (TILs and draining lymph node (DLN cells in WT and CD200-/- BALB/c mice, receiving WT tumor cells, or EMT6 lacking CD200 expression (EMT6siCD200 cells. Our data show an important correlation with augmented CD8+ cytotoxic T cells and resistance to tumor growth in mice lacking exposure (on either host cells or tumor to the immunoregulatory molecule CD200. Confirmation of the importance of such CD8+ cells came from monitoring tumor growth and characterization of the TILs and DLN cells in WT mice challenged with EMT6 and EMT6siCD200 tumors and treated with CD8 and CD4 depleting antibodies. Finally, we have assessed the mechanisms(s whereby addition of metformin as an augmenting chemotherapeutic agent in CD200-/- animals given EMT6 tumors and treated with a previously established immunotherapy regime can increase host resistance. Our data support the hypothesis that increased autophagy in the presence of metformin increases CD8+ responses and tumor resistance, an effect attenuated by the autophagy inhibitor verteporfin.

  5. Hpm of Estrogen Model on the Dynamics of Breast Cancer

    Science.gov (United States)

    Govindarajan, A.; Balamuralitharan, S.; Sundaresan, T.

    2018-04-01

    We enhance a deterministic mathematical model involving universal dynamics on breast cancer with immune response. This is population model so includes Normal cells class, Tumor cells, Immune cells and Estrogen. The eects regarding Estrogen are below incorporated in the model. The effects show to that amount the arrival of greater Estrogen increases the danger over growing breast cancer. Furthermore, approximate solution regarding nonlinear differential equations is arrived by Homotopy Perturbation Method (HPM). Hes HPM is good and correct technique after solve nonlinear differential equation directly. Approximate solution learnt with the support of that method is suitable same as like the actual results in accordance with this models.

  6. The normal breast microenvironment of premenopausal women differentially influences the behavior of breast cancer cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ginsburg Erika

    2010-05-01

    Full Text Available Abstract Background Breast cancer studies frequently focus on the role of the tumor microenvironment in the promotion of cancer; however, the influence of the normal breast microenvironment on cancer cells remains relatively unknown. To investigate the role of the normal breast microenvironment on breast cancer cell tumorigenicity, we examined whether extracellular matrix molecules (ECM derived from premenopausal African-American (AA or Caucasian-American (CAU breast tissue would affect the tumorigenicity of cancer cells in vitro and in vivo. We chose these two populations because of the well documented predisposition of AA women to develop aggressive, highly metastatic breast cancer compared to CAU women. Methods The effects of primary breast fibroblasts on tumorigenicity were analyzed via real-time PCR arrays and mouse xenograft models. Whole breast ECM was isolated, analyzed via zymography, and its effects on breast cancer cell aggressiveness were tested in vitro via soft agar and invasion assays, and in vivo via xenograft models. Breast ECM and hormone metabolites were analyzed via mass spectrometry. Results Mouse mammary glands humanized with premenopausal CAU fibroblasts and injected with primary breast cancer cells developed significantly larger tumors compared to AA humanized glands. Examination of 164 ECM molecules and cytokines from CAU-derived fibroblasts demonstrated a differentially regulated set of ECM proteins and increased cytokine expression. Whole breast ECM was isolated; invasion and soft agar assays demonstrated that estrogen receptor (ER-, progesterone receptor (PR/PR- cells were significantly more aggressive when in contact with AA ECM, as were ER+/PR+ cells with CAU ECM. Using zymography, protease activity was comparatively upregulated in CAU ECM. In xenograft models, CAU ECM significantly increased the tumorigenicity of ER+/PR+ cells and enhanced metastases. Mass spectrometry analysis of ECM proteins showed that only 1

  7. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  8. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  9. Squamous cell carcinoma of the breast : a case report

    NARCIS (Netherlands)

    Flikweert, Elvira R.; Hofstee, Mans; Liem, Mike S. L.

    2008-01-01

    Background: Squamous cells are normally not found inside the breast, so a primary squamous cell carcinoma of the breast is an exceptional phenomenon. There is a possible explanation for these findings. Case presentation: A 72-year-old woman presented with a breast abnormality suspected for breast

  10. Revealing the Functions of Tenascin-C in 3-D Breast Cancer Models Using Cell Biological and in Silico Approaches

    National Research Council Canada - National Science Library

    Tarasevicuite, Agne

    2008-01-01

    The extracellular matrix (ECM) glycoprotein tenascin-C (TN-C) is induced in the breast stroma, where it is associated with both breast cancer development and progression, yet its role in this disease remains obscure...

  11. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D......492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close...

  12. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  13. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Directory of Open Access Journals (Sweden)

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  14. In vivo cell kinetics in breast carcinogenesis

    International Nuclear Information System (INIS)

    Bai, Maria; Agnantis, Niki J; Kamina, Sevasti; Demou, Asimina; Zagorianakou, Panayiota; Katsaraki, Aphroditi; Kanavaros, Panayiotis

    2001-01-01

    Disruption of the balance between apoptosis and proliferation is considered to be an important factor in the development and progression of tumours. In the present study we determined the in vivo cell kinetics along the spectrum of apparently normal epithelium, hyperplasia, preinvasive lesions and invasive carcinoma, in breast tissues affected by fibrocystic changes in which preinvasive and/or invasive lesions developed, as a model of breast carcinogenesis. A total of 32 areas of apparently normal epithelium and 135 ductal proliferative and neoplastic lesions were studied. More than one epithelial lesion per case were analyzed. The apoptotic index (AI) and the proliferative index (PI) were expressed as the percentage of TdT-mediated dUTP-nick end-labelling (TUNEL) and Ki-67-positive cells, respectively. The PI/AI (P/A index) was calculated for each case. The AIs and PIs were significantly higher in hyperplasia than in apparently normal epithelium (P = 0.04 and P = 0.0005, respectively), in atypical hyperplasia than in hyperplasia (P = 0.01 and P = 0.04, respectively) and in invasive carcinoma than in in situ carcinoma (P < 0.001 and P < 0.001, respectively). The two indices were similar in atypical hyperplasia and in in situ carcinoma. The P/A index increased significantly from normal epithelium to hyperplasia (P = 0.01) and from preinvasive lesions to invasive carcinoma (P = 0.04) whereas it was decreased (non-significantly) from hyperplasia to preinvasive lesions. A strong positive correlation between the AIs and the PIs was found (r = 0.83, P < 0.001). These findings suggest accelerating cell turnover along the continuum of breast carcinogenesis. Atypical hyperplasias and in situ carcinomas might be kinetically similar lesions. In the transition from normal epithelium to hyperplasia and from preinvasive lesions to invasive carcinoma the net growth of epithelial cells results from a growth imbalance in favour of proliferation. In the transition from hyperplasia

  15. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2007-05-01

    165-72. 60. Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Tumer Z, Tommerup N, et al. Hedgehog signaling in small-cell lung cancer : frequent......NUMBER Chemo Resistance of Breast Cancer Stem Cells 5b. GRANT NUMBER W81XWH-04-1-0471 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  16. FGFR2 promotes breast tumorigenicity through maintenance of breast tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Sungeun Kim

    Full Text Available Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.

  17. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    Science.gov (United States)

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  18. AFM indentation study of breast cancer cells

    International Nuclear Information System (INIS)

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-01-01

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis

  19. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  20. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  1. Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma.

    Science.gov (United States)

    Xu, Qian; Chai, Shou-jie; Qian, Ying-ying; Zhang, Min; Wang, Kai

    2012-12-01

    To determine the roles of breast regression protein-39 (BRP-39) in regulating dendritic cell maturation and in pathology of acute asthma. Mouse bone marrow-derived dendritic cells (BMDCs) were prepared, and infected with adenovirus over-expressing BRP-39. Ovalbumin (OVA)-induced murine model of acute asthma was made in female BALB/c mice by sensitizing and challenging with chicken OVA and Imject Alum. The transfected BMDCs were adoptively transferred into OVA-treated mice via intravenous injection. Airway hyperresponsiveness (AHR), inflammation and pulmonary histopathology were characterized. The expression of BRP-39 mRNA and protein was significantly increased in lung tissues of OVA-treated mice. The BMDCs infected with adenovirus BRP-39 exhibited greater maturation and higher activity in vitro. Adoptive transfer of the cells into OVA-treated mice significantly augmented OVA-induced AHR and eosinophilic inflammation. Meanwhile, BRP-39 further enhanced the production of OVA-induced Th2 cytokines IL-4, IL-5 and IL-13, but significantly attenuated OVA-induced IFN-γ production in bronchoalveolar lavage fluid. In OVA-induced murine model of acute asthma, BRP-39 is over-expressed in lung tissue and augments Th2 inflammatory response and AHR. BRP-39 promotes dendritic cell maturation in vitro. Therefore, BRP-39 may be a potential therapeutic target of asthma.

  2. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  3. Epigenomic analysis in a cell-based model reveals the roles of H3K9me3 in breast cancer transformation.

    Science.gov (United States)

    Li, Qing-Lan; Lei, Pin-Ji; Zhao, Quan-Yi; Li, Lianyun; Wei, Gang; Wu, Min

    2017-08-01

    Epigenetic marks are critical regulators of chromatin and gene activity. Their roles in normal physiology and disease states, including cancer development, still remain elusive. Herein, the epigenomic change of H3K9me3, as well as its potential impacts on gene activity and genome stability, was investigated in an in vitro breast cancer transformation model. The global H3K9me3 level was studied with western blotting. The distribution of H3K9me3 on chromatin and gene expression was studied with ChIP-Seq and RNA-Seq, respectively. The global H3K9me3 level decreases during transformation and its distribution on chromatin is reprogrammed. By combining with TCGA data, we identified 67 candidate oncogenes, among which five genes are totally novel. Our analysis further links H3K9me3 with transposon activity, and suggests H3K9me3 reduction increases the cell's sensitivity to DNA damage reagents. H3K9me3 reduction is possibly related with breast cancer transformation by regulating gene expression and chromatin stability during transformation.

  4. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  5. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    .003) and cytokines. Yet, these systemic adaptations had no effect on breast cancer cell viability in vitro. During 2 h of acute exercise, increases in serum lactate (6-fold, p ... no impact. Our data question the prevailing dogma that training-dependent baseline reductions in risk factors mediate the protective effect of exercise on breast cancer. Instead, we propose that the cancer protection is driven by accumulative effects of repeated acute exercise responses.......Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses...

  6. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    National Research Council Canada - National Science Library

    Mule, James

    1998-01-01

    The major objective of this project is to establish a new modality for the treatment of breast cancer that employs the combination of chemokine gene-modified fibroblasts with breast tumor-pulsed dendritic cells (DC...

  7. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    National Research Council Canada - National Science Library

    Mule, James

    1997-01-01

    The major objective of this project is to establish a new modality for the treatment of breast cancer that employs the combination of chemokine gene modified fibroblasts with breast tumor pulsed dendritic cells (DC...

  8. Generation of Breast Cancer Stem Cells by the EMT

    Science.gov (United States)

    2009-10-01

    shift in the type of human breast cancer cells. We began to use experimentally immortalized HMLE cells that were then transformed through...Generation of Breast Cancer Stem Cells by the EMT PRINCIPAL INVESTIGATOR: Robert A. Weinberg, Ph.D. CONTRACTING...Generation of Breast Cancer Stem Cells by the EMT 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0464 5c. PROGRAM ELEMENT NUMBER 6

  9. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    DEFF Research Database (Denmark)

    Lin, Xue; Li, Jian; Yin, Guangliang

    2013-01-01

    Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for es...

  10. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  11. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment.

    Science.gov (United States)

    Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A

    2017-11-23

    The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.

  12. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    pepper [39], flavonoids such as hesperetin and naringenin in citrus fruits and tomatoes [40], isoflavones (e.g., GEN, daidzein) from legumes and red...Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 1996;26:167–81. [41...38], capsaicin from chili pepper [39], flavonoids such as hesperetin and naringenin in citrus fruits and tomatoes [40], isoflavones (e.g., GEN

  13. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  14. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Agasthya, G.A.; Sechopoulos, I.

    2017-01-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along

  15. SRT1720 induces lysosomal-dependent cell death of breast cancer cells.

    Science.gov (United States)

    Lahusen, Tyler J; Deng, Chu-Xia

    2015-01-01

    SRT1720 is an activator of SIRT1, a NAD(+)-dependent protein and histone deacetylase that plays an important role in numerous biologic processes. Several studies have illustrated that SRT1720 treatment could improve metabolic conditions in mouse models and in a study in cancer SRT1720 caused increased apoptosis of myeloma cells. However, the effect of SRT1720 on cancer may be complex, as some recent studies have demonstrated that SRT1720 may not directly activate SIRT1 and another study showed that SRT1720 treatment could promote lung metastasis. To further investigate the role of SRT1720 in breast cancer, we treated SIRT1 knockdown and control breast cancer cell lines with SRT1720 both in vitro and in vivo. We showed that SRT1720 more effectively decreased the viability of basal-type MDA-MB-231 and BT20 cells as compared with luminal-type MCF-7 breast cancer cells or nontumorigenic MCF-10A cells. We demonstrated that SRT1720 induced lysosomal membrane permeabilization and necrosis, which could be blocked by lysosomal inhibitors. In contrast, SRT1720-induced cell death occurred in vitro irrespective of SIRT1 status, whereas in nude mice, SRT1720 exhibited a more profound effect in inhibiting the growth of allograft tumors of SIRT1 proficient cells as compared with tumors of SIRT1-deficient cells. Thus, SRT1720 causes lysosomal-dependent necrosis and may be used as a therapeutic agent for breast cancer treatment. ©2014 American Association for Cancer Research.

  16. Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis

    Science.gov (United States)

    2015-11-01

    1 AD_________________ Award Number: W81XWH-11-1-0593 TITLE: Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis PRINCIPAL...3. DATES COVERED (From - To) 09/15/2011 - 08/14/2015 4. TITLE AND SUBTITLE Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis 5a...4 Title of the Grant: Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis Award number: W81XWH-11-1-0593 Principal Investigator

  17. Localization of thymosin ß10 in breast cancer cells

    DEFF Research Database (Denmark)

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...... show that thymosin ß10 is expressed in all three-cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-231) studied. No or little staining was detected in confluent cells, whereas strong staining occurred in semiconfluent cells and in cells populating monolayer wounds. Importantly, the distribution of staining...... for thymosin ß10 was inverse of staining for F-actin. These data support a physiological role for thymosin ß10 in sequestration of G-actin as well as in cancer cell motility....

  18. Circulating tumor cells in breast cancer.

    Science.gov (United States)

    Bidard, Francois-Clement; Proudhon, Charlotte; Pierga, Jean-Yves

    2016-03-01

    Over the past decade, technically reliable circulating tumor cell (CTC) detection methods allowed the collection of large datasets of CTC counts in cancer patients. These data can be used either as a dynamic prognostic biomarker or as tumor material for "liquid biopsy". Breast cancer appears to be the cancer type in which CTC have been the most extensively studied so far, with level-of-evidence-1 studies supporting the clinical validity of CTC count in both early and metastatic stage. This review summarizes and discusses the clinical results obtained in breast cancer patients, the issues faced by the molecular characterization of CTC and the biological findings about cancer biology and metastasis that were obtained from CTC. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Revealing the Functions of Tenascin-C in 3-D Breast Cancer Models Using Cell Biological and In Silico Approaches

    National Research Council Canada - National Science Library

    Taraseviciute, Agne; Jones, Peter L

    2007-01-01

    ...) organotypic cultures of human mammary epithelial cells by focusing on cell-cell junctions, adherens junctions in particular, as well as activation of receptor tyrosine kinases, namely EGFR and c-met...

  20. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  1. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida

    2016-01-01

    Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...... resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired...

  2. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    Science.gov (United States)

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  3. Breast cancer subtypes: two decades of journey from cell culture to patients.

    Science.gov (United States)

    Zhao, Xiangshan; Gurumurthy, Channabasavaiah Basavaraju; Malhotra, Gautam; Mirza, Sameer; Mohibi, Shakur; Bele, Aditya; Quinn, Meghan G; Band, Hamid; Band, Vimla

    2011-01-01

    Recent molecular profiling has identified six major subtypes of breast cancers that exhibit different survival outcomes for patients. To address the origin of different subtypes of breast cancers, we have now identified, isolated, and immortalized (using hTERT) mammary stem/progenitor cells which maintain their stem/progenitor properties even after immortalization. Our decade long research has shown that these stem/progenitor cells are highly susceptible to oncogenesis. Given the emerging evidence that stem/progenitor cells are precursors of cancers and that distinct subtypes of breast cancer have different survival outcome, these cellular models provide novel tools to understand the oncogenic process leading to various subtypes of breast cancers and for future development of novel therapeutic strategies to treat different subtypes of breast cancers.

  4. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  5. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  6. Mechanisms driving local breast cancer recurrence in a model of breast-conserving surgery.

    LENUS (Irish Health Repository)

    Smith, Myles J

    2012-02-03

    OBJECTIVE: We aimed to identify mechanisms driving local recurrence in a model of breast-conserving surgery (BCS) for breast cancer. BACKGROUND: Breast cancer recurrence after BCS remains a clinically significant, but poorly understood problem. We have previously reported that recurrent colorectal tumours demonstrate altered growth dynamics, increased metastatic burden and resistance to apoptosis, mediated by upregulation of phosphoinositide-3-kinase\\/Akt (PI3K\\/Akt). We investigated whether similar characteristics were evident in a model of locally recurrent breast cancer. METHODS: Tumours were generated by orthotopic inoculation of 4T1 cells in two groups of female Balb\\/c mice and cytoreductive surgery performed when mean tumour size was above 150 mm(3). Local recurrence was observed and gene expression was examined using Affymetrix GeneChips in primary and recurrent tumours. Differential expression was confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Phosphorylation of Akt was assessed using Western immunoblotting. An ex vivo heat shock protein (HSP)-loaded dendritic cell vaccine was administered in the perioperative period. RESULTS: We observed a significant difference in the recurrent 4T1 tumour volume and growth rate (p < 0.05). Gene expression studies suggested roles for the PI3K\\/Akt system and local immunosuppression driving the altered growth kinetics. We demonstrated that perioperative vaccination with an ex vivo HSP-loaded dendritic cell vaccine abrogated recurrent tumour growth in vivo (p = 0.003 at day 15). CONCLUSION: Investigating therapies which target tumour survival pathways such as PI3K\\/Akt and boost immune surveillance in the perioperative period may be useful adjuncts to contemporary breast cancer treatment.

  7. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  8. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  9. Deciphering the Correlation between Breast Tumor Samples and Cell Lines by Integrating Copy Number Changes and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2015-01-01

    Full Text Available Breast cancer is one of the most common cancers with high incident rate and high mortality rate worldwide. Although different breast cancer cell lines were widely used in laboratory investigations, accumulated evidences have indicated that genomic differences exist between cancer cell lines and tissue samples in the past decades. The abundant molecular profiles of cancer cell lines and tumor samples deposited in the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas now allow a systematical comparison of the breast cancer cell lines with breast tumors. We depicted the genomic characteristics of breast primary tumors based on the copy number variation and gene expression profiles and the breast cancer cell lines were compared to different subgroups of breast tumors. We identified that some of the breast cancer cell lines show high correlation with the tumor group that agrees with previous knowledge, while a big part of them do not, including the most used MCF7, MDA-MB-231, and T-47D. We presented a computational framework to identify cell lines that mostly resemble a certain tumor group for the breast tumor study. Our investigation presents a useful guide to bridge the gap between cell lines and tumors and helps to select the most suitable cell line models for personalized cancer studies.

  10. Nerve Invasion by Epithelial Cells in Benign Breast Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Jan Chan

    2009-03-01

    Full Text Available Nerve invasion by glandular epithelial cells in a lesion is usually regarded as invasive carcinoma. However, some benign conditions in the pancreas, prostate, breast and other organs may show involvement of nerve bundles by benign epithelial cells. We report an 18-year-old female with nerve invasion in benign breast disease. The lesion in her right breast revealed fibrocystic changes with ductal hyperplasia and stromal sclerosis. Perineural and intraneural involvement by bland-looking small ducts lined by 2 layers of cells including an outer layer of myoepithelial cells were found, suggestive of benign nerve invasion. There was no evidence of malignant cells in any of the sections. The patient remains well after 31 months of follow-up. About 44 cases of nerve invasion in benign breast diseases have been reported in the literature. It is necessary to carefully evaluate nerve involvement in breast lesions to avoid over-diagnosis and inappropriate operation.

  11. Brachytherapy model with sodium pertechnetate-"9"9"mTc balloon (Na"9"9"mTcO_4"-) for breast cancer: evaluation of dosimetry and cell response

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de

    2016-01-01

    Breast cancer is the most common type of cancer that affects more women worldwide. Among various treatment options, radiotherapy which is often used as a treatment for locoregional recurrences control or to decrease tumor size. In patients with breast cancer at an early stage, a booster dose (boost) in the primary tumor area can be applied after conventional radiation therapy. There are several drawbacks to applying this technique. In this work we aimed to perform a dosimetric analysis in a breast model, where it put a balloon filled with sodium pertechnetate-"9"9"mTc (Na"9"9"mTcO_4"-) which in future could be used in preference to other possible therapies. The methodology involved the development of dosimetry in water based on radiochromic films and in a computational voxel thorax model. Calibration protocol achieved a mathematical relation between absorbed dose versus optical density (OD) measured at a set of radiochromic sample films placed at the surface of the balloon plus 1 cm up to 10 cm far, in which theoretical dose values were provided by MCNP modeling, reproducing the water equivalent physical simulator. A voxel model of a female thorax, developed at the SISCODES/MCNP codes, received a filled balloon inside. Spatial dose distribution was generated, illustrating the dose received in the chest wall, glandular tissue, breast skin and lung. The dosimetric findings contribute to present the Na"9"9"mTcO_4"- balloon modality which provides a suitable spatial dose distribution in the tumor bed preserving adjacent health tissues. We also studied the radiobiological response radio resistant mammary adenocarcinoma cells (MDAMB231) by exposure of these cells to Na"9"9"mTcO_4"- balloon. The findings include the presence of apoptotic cells in the balloon around point out a favorable response. In conclusion, the balloon may represent a viable option in the supplementary therapy of breast cancer in patients who have appropriate indication. Irradiation with Na"9"9"mTcO_4

  12. Cell-Cell Adhesion and Breast Cancer.

    Science.gov (United States)

    1998-01-01

    Lodish, H., Baltimore, D., Berk, A., Zipurski, S. L, Matsudaira, P., and J. Darnell. (1995). Molecular Cell Biology. Scientific American Books , New...Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996) Nature 382, 638-642 6. Molenaar , M., van de Wetering, M., Oosterwegel, M., Peterson

  13. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vadhavkar, Nikhil [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pham, Christopher [University of Texas, Houston, TX (United States). MD Anderson Cancer Center; Georgescu, Walter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Deschamps, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Heuskin, Anne-Catherine [Univ. of Namur (Belgium). Namur Research inst. for Life Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR); Tang, Jonathan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Costes, Sylvain V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model

  14. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death

    International Nuclear Information System (INIS)

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna M; Mackinnon, A Craig Jr; Joseph, Joy; Dwinell, Michael B; Kalyanaraman, Balaraman

    2013-01-01

    Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect

  15. Mechanisms of Bone Metastasis from Breast Cancer Using a Clinically Relevant Model

    National Research Council Canada - National Science Library

    Anderson, Robin

    2001-01-01

    .... We have developed a murine model of breast cancer that actively mimics the human disease. After implantation of tumor cells into the mammary gland, a primary tumour develops and subsequently metastasises to the lymph nodes, lung and bone...

  16. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  17. Breast spindle cell tumours: about eight cases

    Directory of Open Access Journals (Sweden)

    Abd El All Howayda S

    2006-07-01

    Full Text Available Abstract Background Breast spindle cell tumours (BSCTs, although rare, represent a heterogeneous group with different treatment modalities. This work was undertaken to evaluate the utility of fine needle aspiration cytology (FNAC, histopathology and immunohistochemistry (IHC in differentiating BSCTs. Methods FNAC of eight breast masses diagnosed cytologically as BSCTs was followed by wide excision biopsy. IHC using a panel of antibodies against vimentin, pan-cytokeratin, s100, desmin, smooth muscle actin, CD34, and CD10 was evaluated to define their nature. Results FNAC defined the tumors as benign (n = 4, suspicious (n = 2 and malignant (n = 3, based on the cytopathological criteria of malignancy. Following wide excision biopsy, the tumors were reclassified into benign (n = 5 and malignant (n = 3. In the benign group, the diagnosis was raised histologically and confirmed by IHC for 3 cases (one spindle cell lipoma, one myofibroblastoma and one leiomyoma. For the remaining two cases, the diagnosis was set up after IHC (one fibromatosis and one spindle cell variant of adenomyoepithelioma. In the malignant group, a leiomyosarcoma was diagnosed histologically, while IHC was crucial to set up the diagnosis of one case of spindle cell carcinoma and one malignant myoepithelioma. Conclusion FNAC in BSCTs is an insufficient tool and should be followed by wide excision biopsy. The latter technique differentiate benign from malignant BSCTs and is able in 50% of the cases to set up the definite diagnosis. IHC is of value to define the nature of different benign lesions and is mandatory in the malignant ones for optimal treatment. Awareness of the different types of BSCTs prevents unnecessary extensive therapeutic regimes.

  18. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...

  19. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  20. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Smita Nair

    Full Text Available The forkhead transcription factor FOXP3 is necessary for induction of regulatory T lymphocytes (Tregs and their immunosuppressive function. We have previously demonstrated that targeting Tregs by vaccination of mice with murine FOXP3 mRNA-transfected dendritic cells (DCs elicits FOXP3-specific T cell responses and enhances tumor immunity. It is clear that FOXP3 expression is not restricted to T-cell lineage and herein, using RT-PCR, flow cytometry, and western immunoblot we demonstrate for the first time that FOXP3 is expressed in inflammatory breast cancer (IBC cells, SUM149 (triple negative, ErbB1-activated and SUM190 (ErbB2-overexpressing. Importantly, FOXP3-specific T cells generated in vitro using human FOXP3 RNA-transfected DCs as stimulators efficiently lyse SUM149 cells. Interestingly, an isogenic model (rSUM149 derived from SUM149 with an enhanced anti-apoptotic phenotype was resistant to FOXP3-specific T cell mediated lysis. The MHC class I cellular processing mechanism was intact in both cell lines at the protein and transcription levels suggesting that the resistance to cytolysis by rSUM149 cells was not related to MHC class I expression or to the MHC class I antigen processing machinery in these cells. Our data suggest that FOXP3 may be an effective tumor target in IBC cells however increased anti-apoptotic signaling can lead to immune evasion.

  1. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior.

    Directory of Open Access Journals (Sweden)

    Denise K Reaves

    Full Text Available The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.

  2. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts.

    Science.gov (United States)

    Liu, Ying; Geng, Yue-Hang; Yang, Hui; Yang, Han; Zhou, Yan-Ting; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2018-05-04

    Our previous work has demonstrated that extracellular ATP is an important pro-invasive factor, and in this study, we tapped into a possible mechanism involved. We discovered that ATP could upregulate both the intracellular expression and secretion of S100A4 in breast cancer cells and fibroblasts. Apart from stimulating breast cancer cell motility via intracellular S100A4, ATP enhanced the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblast (CAF)-like cells, which in turn secreted S100A4 to further promote cancer cell motility. Both apyrase and niclosamide treatments could inhibit metastasis of inoculated tumors to lung, liver and kidney in mice model, and CAFs from these treated tumors exhibited weakened migration-stimulating capacity for breast cancer cells. Collectively, our data indicate that extracellular ATP promotes the interactions between breast cancer cells and fibroblasts, which work collaboratively via production of S100A4 to exacerbate breast cancer metastasis. Copyright © 2018. Published by Elsevier B.V.

  3. Alterations in the Immune Cell Composition in Premalignant Breast Tissue that Precede Breast Cancer Development.

    Science.gov (United States)

    Degnim, Amy C; Hoskin, Tanya L; Arshad, Muhammad; Frost, Marlene H; Winham, Stacey J; Brahmbhatt, Rushin A; Pena, Alvaro; Carter, Jodi M; Stallings-Mann, Melody L; Murphy, Linda M; Miller, Erin E; Denison, Lori A; Vachon, Celine M; Knutson, Keith L; Radisky, Derek C; Visscher, Daniel W

    2017-07-15

    Purpose: Little is known about the role of the immune system in the earliest stages of breast carcinogenesis. We studied quantitative differences in immune cell types between breast tissues from normal donors and those from women with benign breast disease (BBD). Experimental Design: A breast tissue matched case-control study was created from donors to the Susan G. Komen for the Cure Tissue Bank (KTB) and from women diagnosed with BBD at Mayo Clinic (Rochester, MN) who either subsequently developed cancer (BBD cases) or remained cancer-free (BBD controls). Serial tissue sections underwent immunostaining and digital quantification of cell number per mm 2 for CD4 + T cells, CD8 + T cells, CD20 + B cells, and CD68 + macrophages and quantification of positive pixel measure for CD11c (dendritic cells). Results: In 94 age-matched triplets, BBD lobules showed greater densities of CD8 + T cells, CD11c + dendritic cells, CD20 + B cells, and CD68 + macrophages compared with KTB normals. Relative to BBD controls, BBD cases had lower CD20 + cell density ( P = 0.04). Nearly 42% of BBD cases had no CD20 + B cells in evaluated lobules compared with 28% of BBD controls ( P = 0.02). The absence of CD20 + cells versus the presence in all lobules showed an adjusted OR of 5.7 (95% confidence interval, 1.4-23.1) for subsequent breast cancer risk. Conclusions: Elevated infiltration of both innate and adaptive immune effectors in BBD tissues suggests an immunogenic microenvironment. The reduced B-cell infiltration in women with later breast cancer suggests a role for B cells in preventing disease progression and as a possible biomarker for breast cancer risk. Clin Cancer Res; 23(14); 3945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  5. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  6. Data on the recurrence of breast tumors fit a model in which dormant cells are subject to slow attrition but can randomly awaken to become malignant

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas

    2006-01-01

    appears to be a random event. Inasmuch as the kinetics of cancer recurrence in published data sets closely follows the model found for the appearance of sporadic retinoblastoma, tumor recurrence could be triggered by mutations in awakening- suppressor mechanisms. The retinoblastoma tumor suppressor gene...... was identified by tracing its occurrence in familial retinoblastoma pedigrees. Will it be possible to track the postulated cancer recurrence, awakening suppressor gene(s) in early recurrence breast cancer patients?...

  7. Rhein Induces Apoptosis in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ching-Yao Chang

    2012-01-01

    Full Text Available Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2 and control vector MCF-7 (MCF-7/VEC cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-κB- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells.

  8. Mast cells and eosinophils in invasive breast carcinoma

    International Nuclear Information System (INIS)

    Amini, Rose-Marie; Aaltonen, Kirsimari; Nevanlinna, Heli; Carvalho, Ricardo; Salonen, Laura; Heikkilä, Päivi; Blomqvist, Carl

    2007-01-01

    Inflammatory cells in the tumour stroma has gained increasing interest recently. Thus, we aimed to study the frequency and prognostic impact of stromal mast cells and tumour infiltrating eosinophils in invasive breast carcinomas. Tissue microarrays containing 234 cases of invasive breast cancer were prepared and analysed for the presence of stromal mast cells and eosinophils. Tumour infiltrating eosinophils were counted on hematoxylin-eosin slides. Immunostaining for tryptase was done and the total number of mast cells were counted and correlated to the proliferation marker Ki 67, positivity for estrogen and progesterone receptors, clinical parameters and clinical outcome. Stromal mast cells were found to correlate to low grade tumours and estrogen receptor positivity. There was a total lack of eosinophils in breast cancer tumours. A high number of mast cells in the tumours correlated to low-grade tumours and estrogen receptor positivity. Eosinophils are not tumour infiltrating in breast cancers

  9. Molecular characterization of breast cancer cell lines through multiple omic approaches.

    Science.gov (United States)

    Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H

    2017-06-05

    Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated

  10. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    Science.gov (United States)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  11. Selective Inhibition of T Cell Tolerance as a Means of Enhancing Tumor Vaccines in a Mouse Model of Breast Cancer

    National Research Council Canada - National Science Library

    Powell, Jonathan D

    2005-01-01

    ...). In this model not only does the overexpression of neu lead to tumorogenesis but the neu protein is the target of both humoral and cellular immunity which prevent tumor-induced death in the non-transgenic mice (1, 4...

  12. Dissection of a stem cell hierarchy in the human breast

    DEFF Research Database (Denmark)

    Rubner Fridriksdottir, Agla Jael

    and apoptosis during each menstrual cycle. These changes are most prominent during pregnancy, lactation and involution after breast feeding. These highly dynamic changes are thought to rely on the presence of a breast epithelial stem cell population (reviewed in (Fridriksdottir et al. 2005)). Nevertheless......, cellular pathways that contribute to adult human breast gland architecture and cell lineages have not been described. Here, I identify a candidate stem cell niche in ducts, and zones containing progenitor cells in lobules (Villadsen and Fridriksdottir et al. 2007). Putative stem cells residing in ducts......-rich extracellular matrix gel. Staining for the epithelial lineage markers, cytokeratins K14 and K19, further reveals multipotent cells in the stem cell zone and three lineage- restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  13. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  14. Bioengineering Embryonic Stem Cell Microenvironments for the Study of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yubing Xie

    2011-11-01

    Full Text Available Breast cancer is the most prevalent disease amongst women worldwide and metastasis is the main cause of death due to breast cancer. Metastatic breast cancer cells and embryonic stem (ES cells display similar characteristics. However, unlike metastatic breast cancer cells, ES cells are nonmalignant. Furthermore, embryonic microenvironments have the potential to convert metastatic breast cancer cells into a less invasive phenotype. The creation of in vitro embryonic microenvironments will enable better understanding of ES cell-breast cancer cell interactions, help elucidate tumorigenesis, and lead to the restriction of breast cancer metastasis. In this article, we will present the characteristics of breast cancer cells and ES cells as well as their microenvironments, importance of embryonic microenvironments in inhibiting tumorigenesis, convergence of tumorigenic and embryonic signaling pathways, and state of the art in bioengineering embryonic microenvironments for breast cancer research. Additionally, the potential application of bioengineered embryonic microenvironments for the prevention and treatment of invasive breast cancer will be discussed.

  15. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  16. File list: DNS.Brs.50.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.50.AllAg.Breast_cells.bed ...

  17. File list: Unc.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Breast_cells hg19 Unclassified Breast Breast cells SRX265449,SRX26...5450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.Breast_cells.bed ...

  18. File list: DNS.Brs.20.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.20.AllAg.Breast_cells.bed ...

  19. File list: Oth.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155767,SRX155769,SRX155766,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.Breast_cancer_cells.bed ...

  20. File list: Oth.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155769,SRX155766,SRX155767,SRX155770 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.Breast_cancer_cells.bed ...

  1. File list: Oth.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Breast_cancer_cells hg19 TFs and others Breast Breast cancer cells... SRX155766,SRX155769,SRX155770,SRX155767 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.Breast_cancer_cells.bed ...

  2. File list: His.Brs.05.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.05.AllAg.Breast_cancer_cells.bed ...

  3. File list: Unc.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Breast_cancer_cells hg19 Unclassified Breast Breast cancer cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.Breast_cancer_cells.bed ...

  4. File list: His.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.AllAg.Breast_cancer_cells.bed ...

  5. File list: His.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Breast_cancer_cells hg19 Histone Breast Breast cancer cells SRX102...3529,SRX1023530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.10.AllAg.Breast_cancer_cells.bed ...

  6. File list: DNS.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081374,SRX08137...3,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.10.AllAg.Breast_cells.bed ...

  7. File list: DNS.Brs.05.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.05.AllAg.Breast_cells.bed ...

  8. Trafficking of Metastatic Breast Cancer Cells in Bone

    National Research Council Canada - National Science Library

    Mastro, Andrea M

    2004-01-01

    ... metaphyses. Human breast cancer cells that express green fluorescent protein (GFP-MDA-MB 231) will be inoculated into athymic mice by intracardiac injection and femurs harvested at various times from 1 hour to 6 weeks later...

  9. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S.; Rouchka, Eric C.; Hill, Bradford G.; Klinge, Carolyn M.

    2016-01-01

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  10. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  11. Breast Metastasis from Renal Cell Carcinoma: A Case Report

    International Nuclear Information System (INIS)

    Kim, Seon Jeong; Kim, Ji Young; Jeong, Myeong Ja; Kim, Jae Hyung; Kim, Soung Hee; Kim, Soo Hyun; Jun, Woo Sun; Kim, Hyun Jung; Han, Se Hwan

    2010-01-01

    Metastatic breast cancer from renal cell carcinoma is extremely rare and has non-specific findings that include a well circumscribed lesion without calcification on mammography and a well circumscribed hypoechoic lesion without posterior acoustic shadowing on sonography. We report a case of metastatic breast cancer from renal cell carcinoma and describe the radiologic findings in a 63-year-old woman who has no history of primary neoplasm

  12. Breast Metastasis from Renal Cell Carcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jeong; Kim, Ji Young; Jeong, Myeong Ja; Kim, Jae Hyung; Kim, Soung Hee; Kim, Soo Hyun; Jun, Woo Sun; Kim, Hyun Jung; Han, Se Hwan [Sanggye Paik Hospital, Seoul (Korea, Republic of)

    2010-01-15

    Metastatic breast cancer from renal cell carcinoma is extremely rare and has non-specific findings that include a well circumscribed lesion without calcification on mammography and a well circumscribed hypoechoic lesion without posterior acoustic shadowing on sonography. We report a case of metastatic breast cancer from renal cell carcinoma and describe the radiologic findings in a 63-year-old woman who has no history of primary neoplasm.

  13. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  14. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  15. [Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics].

    Science.gov (United States)

    Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao

    2014-03-01

    The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t metabonomics.

  16. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    International Nuclear Information System (INIS)

    Krause, Silva; Maffini, Maricel V; Soto, Ana M; Sonnenschein, Carlos

    2010-01-01

    Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D) in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks), the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to induce near-complete tumor phenotype reversion. These human

  17. Chemo Resistance of Breast Cancer Stem Cells

    National Research Council Canada - National Science Library

    Wicha, Max S

    2006-01-01

    .... Development of this new tool will greatly facilitate future studies. Preliminary results both in xenograft models as well as in neoadjuvant trial are providing strong support for our hypothesis for resistance of cancer cells to chemotherapy...

  18. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  19. Prolactin promotes breast cancer cell migration through actin cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Priscilla Ludovico da Silva

    2015-12-01

    Full Text Available The role of prolactin on breast cancer development and progression is debated. Breast cancer progression largely depends on cell movement and on the ability to remodel the actin cytoskeleton. In this process, actin-binding proteins are requested to achieve fibrillar actin de-polymerization and relocation at the cell membrane. Kinases such as focal adhesion kinase (FAK are later required to form actin/vinculin-enriched structures called focal adhesion complexes, which mediate firm adhesion to the extracellular matrix. These controllers are regulated by c-Src, which forms multiprotein signaling complexes with membrane receptors and is regulated by a number of hormones, including prolactin. We here show that breast cancer cells exposed to prolactin display an elevated c-Src expression and phosphorylation. In parallel, increased moesin and FAK expression and phosphorylation are found. These molecular changes are associated to relocation to the plasma membrane of cytoskeletal actin fibers and to increased horizontal cell movement. In conclusion, prolactin regulates actin remodeling and enhances breast cancer cell movement. This finding broadens the understanding of prolactin actions on breast cancer cells, highlighting new pathways that may be relevant to on breast cancer progression.

  20. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  1. Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate

    National Research Council Canada - National Science Library

    Lee, William M; Roysam, Badrinath

    2008-01-01

    .... We are developing a novel platform for immunohistological study of breast cancer specimens that will retrieve multiplex quantitative molecular information about tumor cells at a cytologic level...

  2. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  3. Mathematical Models of Breast and Ovarian Cancers

    Science.gov (United States)

    Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron

    2016-01-01

    Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061

  4. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  5. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype

    DEFF Research Database (Denmark)

    Hopkinson, Branden Michael; Klitgaard, Marie Christine; Petersen, Ole William

    2017-01-01

    Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-...

  6. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  7. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model

    NARCIS (Netherlands)

    Amoury, Manal; Kolberg, Katharina; Pham, Anh-Tuan; Hristodorov, Dmitrij; Mladenov, Radoslav; Di Fiore, Stefano; Helfrich, Wijnand; Kiessling, Fabian; Fischer, Rainer; Pardo, Alessa; Thepen, Theophilus; Hussain, Ahmad F.; Nachreiner, Thomas; Barth, Stefan

    2016-01-01

    Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates

  8. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  9. Do early premalignant changes in normal breast epithelial cells predict cancer development?

    International Nuclear Information System (INIS)

    Clarke, Robert B; Bundred, Nigel J

    2005-01-01

    A recent report suggests that, in an in vitro model of premalignant breast cells (vHMECs), silencing of INK4A gene is accompanied by over-expression of cyclo-oxygenase (COX)-2. This suggests that COX-2 over-expression may be an early event in breast cancer aetiology permitting clones within the normal epithelium to evade apoptosis, to increase their numbers and perhaps acquire further changes that promote the formation of hyperplasias, and eventually carcinomas. While COX-2 expression in normal breast epithelium in vivo has not been proven to be linked to an increased risk of breast cancer, its over-expression in the premalignant model in vitro does provide preliminary evidence that COX-2 inhibition may be a useful chemoprevention strategy

  10. Setup of IN VIVO Breast Cancer Models for Nanodrug Testing

    DEFF Research Database (Denmark)

    Schifter, Søren

    2013-01-01

    RNA/aptamer conjugates, or carriers such as liposome/chitosan/micelle spheres. As a first step towards testing of the efficacy of siRNA delivery in vivo via different conjugates and complexes, we aimed at developing a standardized breast cancer model system in mice. In this conception, a reporter gene is used...... differential knockdown efficacies and the readout can directly be performed by quantitative imaging using a Caliper IVIS system. In one line of experiments, we engineered non-metastatic MCF-7 breast cancer cells to express the luminescent reporter firefly luciferase (Luc2) along with a pro-metastatic micro......Synthetic lethality is a promising concept for future cancer treatment and using siRNAs as the synthetic lethal drug component allows for also covering the space considered as non-druggable by conventional small molecule drugs. Systemic administration of naked siRNA, however, does not result...

  11. Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer.

    Science.gov (United States)

    Calaf, Gloria M; Ponce-Cusi, Richard; Abarca-Quinones, Jorge

    2018-04-20

    Human breast cell lines are often characterized based on the expression of the cell surface markers CD44 and CD24. CD44 is a type I transmembrane glycoprotein that regulates cell adhesion and cell-cell, as well as cell-extracellular matrix interactions. CD24 is expressed in benign and malignant solid tumors and is also involved in cell adhesion and metastasis. The aim of the present study was to investigate the effects of curcumin on the surface expression of CD44 and CD24 in breast epithelial cell lines. An established breast cancer model derived from the MCF-10F cell line was used. The results revealed that curcumin decreased CD44 and CD24 gene and protein expression levels in MCF-10F (normal), Alpha5 (premalignant) and Tumor2 (malignant) cell lines compared with the levels in their counterpart control cells. Flow cytometry revealed that the CD44+/CD24+ cell subpopulation was greater than the CD44+/CD24- subpopulation in these three cell lines. Curcumin increased CD44+/CD24+ to a greater extent and decreased CD44+/CD24- subpopulations in the normal MCF-10F and the pre-tumorigenic Alpha5 cells, but had no significant effect on Tumor2 cells compared with the corresponding control cells. Conversely, curcumin increased CD44 and decreased CD24 gene expression in MCF-7 breast cancer cells, and decreased CD44 gene expression in MDA-MB-231 cell line, while CD24 was not present in these cells. Curcumin did not alter the CD44+/CD24+ or CD44+/CD24- subpopulations in the MCF-7 cell line. However, it increased CD44+/CD24+ and decreased CD44+/CD24- subpopulations in MDA-MB-231 cells. In breast cancer specimens from patients, normal tissues were negative for CD44 and CD24 expression, while benign lesions were positive for both markers, and malignant tissues were found to be negative for CD44 and positive for CD24 in most cases. In conclusion, these results indicated that curcumin may be used to improve the proportion of CD44+/CD24+ cells and decrease the proportion of CD44

  12. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  13. The Controversial Clinicobiological Role of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Claudia Casarsa

    2008-01-01

    Full Text Available Breast cancer remains a leading cause of morbidity and mortality in women mainly because of the propensity of primary breast tumors to metastasize. Growing experimental evidence suggests that cancer stem cells (CSCs may contribute to tumor progression and metastasis spread. However, despite the tremendous clinical potential of such cells and their possible therapeutic management, the real nature of CSCs remains to be elucidated. Starting from what is currently known about normal mammary stem/progenitor cells, to better define the cell that originates a tumor or is responsible for metastatic spread, this review will discuss experimental evidence of breast cancer stem cells and speculate about the clinical importance and implications of their evaluation.

  14. Differential effect of EGFR inhibitors on tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Oh, Soo Jin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    Although tamoxifen is the most common and effective therapy for treatment of estrogen receptor-α (ER-α) breast cancer patients, resistance of endocrine therapy occurs, either de novo or acquired during therapy. Here, we investigated the clinical value of epidermal growth factor receptor (EGFR) in tamoxifen-resistant (TamR) patients and the differential effect of EGFR inhibitors, neratinib and gefitinib, on TamR breast cancer cell model. The morphology of TamR MCF7 cells showed mesenchymal phenotypes and did not induce cell death by tamoxifen treatment compared with tamoxifen‑sensitive (TamS) MCF7 cells. In addition, mesenchymal marker proteins, including N-cadherin (N-cad), fibronectin (FN), and Slug, significantly increased in TamR cells. In contrast, ER-α and E-cadherin (E-cad) were greatly decreased. We also found that the levels of EGFR and HER2 expression were increased in TamR cells. Furthermore, we observed that EGFR expression was directly involved with poor prognosis of tamoxifen-treated breast cancer patients using the GSE1378 date set. Thus, we treated TamR and TamS cells with EGFR inhibitors, neratinib and gefitinib, respectively. Interestingly, neratinib induced apoptotic cell death of TamR but not gefitinib. Cleaved PARP-1 expression was also increased by neratinib treatment in TamR cells. Therefore, we suggest that neratinib may be a potential therapeutic drug for treating TamR breast cancer.

  15. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume

    2005-01-01

    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  16. Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture

    Directory of Open Access Journals (Sweden)

    Marc Rabionet

    2017-08-01

    Full Text Available In vitro cell culture is traditionally performed within two-dimensional (2D environments, providing a quick and cheap way to study cell properties in a laboratory. However, 2D systems differ from the in vivo environment and may not mimic the physiological cell behavior realistically. For instance, 2D culture models are thought to induce cancer stem cells (CSCs differentiation, a rare cancer cell subpopulation responsible for tumor initiation and relapse. This fact hinders the development of therapeutic strategies for tumors with a high relapse percentage, such as triple negative breast cancer (TNBC. Thus, three-dimensional (3D scaffolds have emerged as an attractive alternative to monolayer culture, simulating the extracellular matrix structure and maintaining the differentiation state of cells. In this work, scaffolds were fabricated through electrospinning different poly(ε-caprolactone-acetone solutions. Poly(ε-caprolactone (PCL meshes were seeded with triple negative breast cancer (TNBC cells and 15% PCL scaffolds displayed significantly (p < 0.05 higher cell proliferation and elongation than the other culture systems. Moreover, cells cultured on PCL scaffolds exhibited higher mammosphere forming capacity and aldehyde dehydrogenase activity than 2D-cultured cells, indicating a breast CSCs enrichment. These results prove the powerful capability of electrospinning technology in terms of poly(ε-caprolactone nanofibers fabrication. In addition, this study has demonstrated that electrospun 15% PCL scaffolds are suitable tools to culture breast cancer cells in a more physiological way and to expand the niche of breast CSCs. In conclusion, three-dimensional cell culture using PCL scaffolds could be useful to study cancer stem cell behavior and may also trigger the development of new specific targets against such malignant subpopulation.

  17. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  18. Breast Cancer Mimic: Cutaneous B-Cell Lymphoma Presenting as an Isolated Breast Mass

    Directory of Open Access Journals (Sweden)

    Margaret Taghavi

    2014-10-01

    Full Text Available Background: Primary cutaneous B-cell lymphoma typically localizes to the skin, and dissemination to internal organs is rare. Lymphomatous involvement of the breasts is also rare. We describe the clinical and radiological findings of an unusual case of primary cutaneous B-cell lymphoma presenting as an isolated breast mass without associated skin changes. Case Presentation: The patient was a 55-year-old Caucasian female who initially presented with cutaneous B-cell lymphoma around her eyes and forehead with recurrence involving the skin between her breasts. Three years after terminating treatment due to a lack of symptoms, she presented for an annual screening mammogram that found a new mass in her upper inner right breast without imaging signs of cutaneous extension. On physical examination, there were no corresponding skin findings. Due to the suspicious imaging features of the mass that caused concern for primary breast malignancy, she underwent a core biopsy which revealed cutaneous B-cell lymphoma. Conclusion: When evaluating patients with a systemic disease who present with findings atypical for that process, it is important to still consider the systemic disease as a potential etiology, particularly with lymphoma given its reputation as a great mimicker.

  19. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    Directory of Open Access Journals (Sweden)

    Kayla F Goliwas

    2016-07-01

    Full Text Available Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.

  20. Role of nuclear receptors in breast cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  1. Modeling familial clustered breast cancer using published data

    NARCIS (Netherlands)

    Jonker, MA; Jacobi, CE; Hoogendoorn, WE; Nagelkerke, NJD; de Bock, GH; van Houwelingen, JC

    2003-01-01

    The purpose of this research was to model the familial clustering of breast cancer and to provide an accurate risk estimate for individuals from the general population, based on their family history of breast and ovarian cancer. We constructed a genetic model as an extension of a model by Claus et

  2. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  3. Integrated analysis of breast cancer cell lines reveals unique signaling pathways.

    Science.gov (United States)

    Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T

    2009-01-01

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  4. Do myoepithelial cells hold the key for breast tumorprogression?

    Energy Technology Data Exchange (ETDEWEB)

    Polyak, Kornelia; Hu, Min

    2005-11-18

    Mammary myoepithelial cells have been the foster child of breast cancer biology and have been largely ignored since they were considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge in stem cell biology and the cellular microenvironment has been increasing myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis if myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and if myoepithelial cells are part of the mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for cell cycle arrest, establishing epithelial cell polarity, and inhibiting migration and invasion. Based on these functions normal mammary myoepithelial cells have been called ''natural tumor suppressors''. However, during tumor progression myoepithelial cells seem to loose these properties and eventually they themselves diminish as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.

  5. ERβ inhibits proliferation and invasion of breast cancer cells

    Science.gov (United States)

    Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise

    2001-01-01

    Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191

  6. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    International Nuclear Information System (INIS)

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-01-01

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ERα signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ERα was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ERα-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ERα-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  7. Correlation of breast image alignment using biomechanical modelling

    Science.gov (United States)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  8. Sensitivity of breast cancer cell lines to recombinant thiaminase I.

    Science.gov (United States)

    Liu, Shuqian; Monks, Noel R; Hanes, Jeremiah W; Begley, Tadhg P; Yu, Hui; Moscow, Jeffrey A

    2010-05-01

    We have previously shown that the expression of the thiamine transporter THTR2 is decreased sevenfold in breast cancer, which may leave breast cancer cells vulnerable to acute thiamine starvation. This concept was supported by the observation that MDA231 breast cancer xenografts demonstrated growth inhibition in mice fed a thiamine-free diet. We purified recombinant Bacillus thiaminolyticus thiaminase I enzyme, which digests thiamine, to study acute thiamine starvation in breast cancer. Thiaminase I enzyme was cytotoxic in six breast cancer cell lines with IC(50)s ranging from 0.012 to 0.022 U/ml. The growth inhibitory effects of the combination of thiaminase I with either doxorubicin or paclitaxel were also examined. Over a wide range of drug concentrations, thiaminase 1 was consistently synergistic or additive with doxorubicin and paclitaxel in MCF-7, ZR75, HS578T and T47D cell lines, with most combinations having a calculated combination index (CI) of less than 0.8, indicating synergy. Although thiaminase I exposure did not stimulate the energy-sensing signaling kinases AKT, AMPK and GSK-3beta in MCF-7, ZR75, HS578T and T47D cell lines, thiaminase I exposure did stimulate expression of the ER stress response protein GRP78. In summary, thiaminase I is cytotoxic in breast cancer cell lines and triggers the unfolded protein response. These findings suggest that THTR2 down-regulation in breast tumors may present a nutritional vulnerability that could be exploited by thiaminase I enzyme therapy.

  9. Induction of apoptosis by eugenol in human breast cancer cells

    International Nuclear Information System (INIS)

    Vidhya, N.; Niranjali Devaraj, S.

    2011-01-01

    In the present study, potential anticancer effect of eugenol on inhibition of cell proliferation and induction of apoptosis in human MCF-7 breast cancer cells was investigated. Induction of cell death by eugenol was evaluated following MTT assay and monitoring lactate dehydrogenase released into the culture medium for cell viability and cytotoxicity, giemsa staining for morphological alterations, fluorescence microscopy analysis of cells using ethidium bromide and acridine orange and quantitation of DNA fragments for induction of apoptosis. Effect of eugenol on intracellular redox status of the human breast cancer cells was assessed by determining the level of glutathione and lipid peroxidation products (TBARS). Eugenol treatment inhibited the growth and proliferation of human MCF-7 breast cancer cells through induction of cell death, which was dose and time dependent. Microscopic examination of eugenol treated cells showed cell shrinkage, membrane blebbing and apoptotic body formation. Further, eugenol treatment also depleted the level of intracellular glutathione and increased the level of lipid peroxidation. The dose dependent increase in the percentage of apoptotic cells and DNA fragments suggested that apoptosis was involved in eugenol induced cell death and apoptosis might have played a role in the chemopreventive action of eugenol. (author)

  10. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Feng, S.S.J.; Zelst, J.C.M. van; Vreemann, S.; Mann, J.R.; D'Orsi, C.J.; Sechopoulos, I.

    2017-01-01

    PURPOSE: To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and

  11. Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3’diindolylmethane (DIM)

    Science.gov (United States)

    2006-08-01

    therapies. However, further in-depth investigations are needed to establish the cause and effect relationship of survivin gene regulation and 3,3V...Basu GD, Pathangey LB, Tinder TL, et al. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous

  12. Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3’-Diindolylmethane (DIM)

    Science.gov (United States)

    2007-08-01

    therapies. However, further in-depth investigations are needed to establish the cause and effect relationship of survivin gene regulation and 3,3V...GD, Pathangey LB, Tinder TL, et al. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic

  13. Production of prostate-specific antigen by a breast cancer cell line, Sk-Br-3

    International Nuclear Information System (INIS)

    Kamali Sarvestani, E.; Ghaderi, A.

    2002-01-01

    Prostate-specific antigen is a 33-KDa serine protease that is produced predominantly by prostate epithelium. However, it has been shown that about 30-40% of female breast tumors produce prostate-specific antigen and its production is associated with the presence of estrogen and progesterone receptors. We have now developed a new tissue culture system to study prostate-specific antigen production in breast cancer and its association with prognostic factors such as progesterone receptor and c-erbB-2. For this purpose we investigated the ability of prostate-specific antigen production in five different cell lines, including two breast cancer cell lines, Sk-Br-3 and MDA-MB-453. The prostate-specific antigen in tissue culture supernatant and cytoplasm of the Sk-Br-3 cell line was detected by western blotting and immunoperoxidase, respectively. Furthermore, we found lower expression of c-erbB-2 in Sk-Br-3 than non-prostate-specific antigen producer breast cancer cell line, MDA-MB-453. Progesterone receptor was expressed by both prostate-specific antigen-positive and -negative cell lines and only the intensity of staining and the number of positive cells in Sk-Br-3 population was higher than MDA-MB-453. According to our findings prostate-specific antigen can be considered as a good prognostic factor in breast cancer and we suggest that these two cell lines are a good in vitro model to study the relationship of different breast cancer prognostic factors and their regulations

  14. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  15. Breast Cancer with Synchronous Renal Cell Carcinoma: A Rare Presentation.

    Science.gov (United States)

    Arjunan, Ravi; Kumar, Durgesh; Kumar, K V Veerendra; Premlatha, C S

    2016-10-01

    Primary cancer arising from multiple organs is a well known fact. Synchronous tumours have been most commonly associated with kidney cancer. Bladder, prostate, colorectal and lung cancer are the most common synchronous primaries with Renal Cell Carcinoma (RCC) identified till date. We found metachronous tumours of breast with RCC in literature search which included both metastatic tumours as well second primaries. Overall, 25 cases of metastatic breast tumours and eight cases of second primary in previously treated RCC have been reported in the literature. Here, we are reporting a case of synchronous presentation of carcinoma breast with RCC which is very rare because most of the multiple malignancies reported in the literature are metastatic tumours or metachronous breast malignancy with RCC.

  16. Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells.

    Science.gov (United States)

    Chaves, Natalia L; Estrela-Lopis, Irina; Böttner, Julia; Lopes, Cláudio Ap; Guido, Bruna C; de Sousa, Aparecido R; Báo, Sônia N

    2017-01-01

    Nanocarriers have the potential to improve the therapeutic index of currently available drugs by improving their efficacy and achieving therapeutic steady-state levels over an extended period. The association of maghemite-rhodium citrate (MRC) nanoparticles (NPs) has the potential to increase specificity of the cytotoxic action. However, the interaction of these NPs with cells, their uptake mechanism, and subcellular localization need to be elucidated. This work evaluates the uptake mechanism of MRC NPs in metastatic and nonmetastatic breast cancer-cell models, comparing them to a nontumor cell line. MRC NPs uptake in breast cancer cells was more effective than in normal cells, with regard to both the amount of internalized material and the achievement of more strategic intracellular distribution. Moreover, this process occurred through a clathrin-dependent endocytosis pathway with different basal expression levels of this protein in the cell lines tested.

  17. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  18. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-01

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity

  19. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  20. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  1. Cytotoxic effects of ultra-diluted remedies on breast cancer cells.

    Science.gov (United States)

    Frenkel, Moshe; Mishra, Bal Mukund; Sen, Subrata; Yang, Peiying; Pawlus, Alison; Vence, Luis; Leblanc, Aimee; Cohen, Lorenzo; Banerji, Pratip; Banerji, Prasanta

    2010-02-01

    The use of ultra-diluted natural products in the management of disease and treatment of cancer has generated a lot of interest and controversy. We conducted an in vitro study to determine if products prescribed by a clinic in India have any effect on breast cancer cell lines. We studied four ultra-diluted remedies (Carcinosin, Phytolacca, Conium and Thuja) against two human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) and a cell line derived from immortalized normal human mammary epithelial cells (HMLE). The remedies exerted preferential cytotoxic effects against the two breast cancer cell lines, causing cell cycle delay/arrest and apoptosis. These effects were accompanied by altered expression of the cell cycle regulatory proteins, including downregulation of phosphorylated Rb and upregulation of the CDK inhibitor p27, which were likely responsible for the cell cycle delay/arrest as well as induction of the apoptotic cascade that manifested in the activation of caspase 7 and cleavage of PARP in the treated cells. The findings demonstrate biological activity of these natural products when presented at ultra-diluted doses. Further in-depth studies with additional cell lines and animal models are warranted to explore the clinical applicability of these agents.

  2. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer.

    Science.gov (United States)

    Aponte-López, Angélica; Fuentes-Pananá, Ezequiel M; Cortes-Muñoz, Daniel; Muñoz-Cruz, Samira

    2018-01-01

    Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.

  3. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature

    International Nuclear Information System (INIS)

    Köhrmann, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Anacker, Jelena

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found. To fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2) and ten grade 3 (G3) breast cancer tissues). As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1) commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry. In summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28) with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein expression for most of the MMPs analyzed. MMP-1, -2

  4. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    Hendrix, Mary JC; Seftor, Elisabeth A; Kirschmann, Dawn A; Seftor, Richard EB

    2000-01-01

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  5. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  6. Anaplastic large cell lymphoma associated with breast implants

    Directory of Open Access Journals (Sweden)

    Vid Bajuk

    2017-02-01

    Full Text Available An increasing number of women worldwide decide for esthetic correction of breasts with silicone implants and post-cancer breast reconstruction with tissue expanders and silicone breast implants. It is estimated that more than 10 million women around the globe have them. Tere are approximately 200 known cases of patients with anaplastic large cell lymphoma (ALCL linked with silicone breast implants reported in medical literature. ALCL is a rare disease with an annual incidence of 0.1–0.3/100 000 women with breast silicone implants. In the presence of clinical signs, physician should also consider this rare form of ALCL in differential diagnosis. Patients are on average 50 years old. Long afer implantation surgery, the patient may experience breast swelling, pain and/or asymmetry. In diagnostics, ultrasound and cytological examination are required. During ultrasound examination fluid formation (seroma or solid tumor mass can be detected. Treatment is individualized. Due to tumor nature, implant resection and total capsulectomy are usually indicated; also, chemo- and radiotherapy might rarely be required. Five-year survival rate depends on tumor form and correlates well with clinical fndings of seroma or solid mass. In the more frequent form, seroma, fve-year survival rate is 100 %, while in the case of solid tumor mass fve-year survival rate is 75 %. The rarity of this disease makes it difficult to diagnose, but nevertheless, early detection and treatment are important for better recovery.

  7. The response of breast cancer cells to mesenchymal stem cells: a possible role of inflammation by breast implants.

    Science.gov (United States)

    Orciani, Monia; Lazzarini, Raffaella; Scartozzi, Mario; Bolletta, Elisa; Mattioli-Belmonte, Monica; Scalise, Alessandro; Di Benedetto, Giovanni; Di Primio, Roberto

    2013-12-01

    Breast implants are widely used and at times might cause inflammation as a foreign body, followed by fibrous capsule formation around the implant. In cancer, the inflamed stroma is essential for preservation of the tumor. Mesenchymal stem cells can be recruited to sites of inflammation, and their role in cancer development is debated. The authors assessed the effects of inflammation caused by breast implants' effects on tumor. Mesenchymal stem cells were isolated from the fibrous capsules of women who underwent a second operation after 1 year (presenting inflammation) or after 20 years (not presenting inflammation) since initial surgery. After characterization, cells were co-cultured with MCF7, a breast cancer cell line. The expression of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition was investigated, followed by Western blot analyses. After co-culture with mesenchymal stem cells from the inflamed capsule, MCF7 induced a dose- and time-dependent increase in proliferation. Polymerase chain reaction analyses revealed a dysregulation of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition. The subsequent evaluation by Western blot did not confirm these results, showing only a modest decrease in the expression of E-cadherin after co-culture with mesenchymal stem cells (both derived from inflamed or control capsules). These data indicate that inflammation caused by breast implants partially affects proliferation of MCF7 but does not influence key mechanisms of tumor development.

  8. Using Clinical Factors and Mammographic Breast Density to Estimate Breast Cancer Risk: Development and Validation of a New Predictive Model

    Science.gov (United States)

    Tice, Jeffrey A.; Cummings, Steven R.; Smith-Bindman, Rebecca; Ichikawa, Laura; Barlow, William E.; Kerlikowske, Karla

    2009-01-01

    Background Current models for assessing breast cancer risk are complex and do not include breast density, a strong risk factor for breast cancer that is routinely reported with mammography. Objective To develop and validate an easy-to-use breast cancer risk prediction model that includes breast density. Design Empirical model based on Surveillance, Epidemiology, and End Results incidence, and relative hazards from a prospective cohort. Setting Screening mammography sites participating in the Breast Cancer Surveillance Consortium. Patients 1 095 484 women undergoing mammography who had no previous diagnosis of breast cancer. Measurements Self-reported age, race or ethnicity, family history of breast cancer, and history of breast biopsy. Community radiologists rated breast density by using 4 Breast Imaging Reporting and Data System categories. Results During 5.3 years of follow-up, invasive breast cancer was diagnosed in 14 766 women. The breast density model was well calibrated overall (expected–observed ratio, 1.03 [95% CI, 0.99 to 1.06]) and in racial and ethnic subgroups. It had modest discriminatory accuracy (concordance index, 0.66 [CI, 0.65 to 0.67]). Women with low-density mammograms had 5-year risks less than 1.67% unless they had a family history of breast cancer and were older than age 65 years. Limitation The model has only modest ability to discriminate between women who will develop breast cancer and those who will not. Conclusion A breast cancer prediction model that incorporates routinely reported measures of breast density can estimate 5-year risk for invasive breast cancer. Its accuracy needs to be further evaluated in independent populations before it can be recommended for clinical use. PMID:18316752

  9. Reprogramming tumor-infiltrating dendritic cells for CD103+CD8+ mucosal T cell differentiation and breast cancer rejection

    Science.gov (United States)

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G. Jackson; O’Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-01-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory T helper 2 (iTh2) cells and protumor inflammation. Here we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells, and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DC via the ligation of dectin-1, enabling the DC to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL12p70, and to favor the generation of T helper 1 (Th1) cells. DC activated via dectin-1, but not those activated with TLR-7/8 ligand or poly IC, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+CD8+ mucosal T cells accumulate in the tumors thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+CD8+ mucosal T cells elicited by reprogrammed DC can reject established cancer. Thus, reprogramming tumor-infiltrating DC represents a new strategy for cancer rejection. PMID:24795361

  10. Estrogen regulation of TRPM8 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Chodon, Dechen; Guilbert, Arnaud; Dhennin-Duthille, Isabelle; Gautier, Mathieu; Telliez, Marie-Sophie; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2010-01-01

    The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer. RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E 2 , 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca 2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER + ) status of the tumours. Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha

  11. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  12. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    International Nuclear Information System (INIS)

    Fleming, Jodie M; Ginsburg, Erika; Oliver, Shannon D; Goldsmith, Paul; Vonderhaar, Barbara K

    2012-01-01

    Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca 2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H 2 O 2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Our data opens new possibilities for hornerin and its proteolytic fragments in the control of mammary cell function and breast

  13. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    Directory of Open Access Journals (Sweden)

    Fleming Jodie M

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its

  14. Squamous cell carcinoma of the breast in the United States: incidence, demographics, tumor characteristics, and survival.

    Science.gov (United States)

    Yadav, Siddhartha; Yadav, Dhiraj; Zakalik, Dana

    2017-07-01

    Squamous cell carcinoma of breast accounts for less than 0.1% of all breast cancers. The purpose of this study is to describe the epidemiology and survival of this rare malignancy. Data were extracted from the National Cancer Institute's Surveillance, Epidemiology and End Results Registry to identify women diagnosed with squamous cell carcinoma of breast between 1998 and 2013. SEER*Stat 8.3.1 was used to calculate age-adjusted incidence, age-wise distribution, and annual percentage change in incidence. Kaplan-Meier curves were plotted for survival analysis. Univariate and multivariate Cox proportional hazard regression model was used to determine predictors of survival. A total of 445 cases of squamous cell carcinoma of breast were diagnosed during the study period. The median age of diagnosis was 67 years. The overall age-adjusted incidence between 1998 and 2013 was 0.62 per 1,000,000 per year, and the incidence has been on a decline. Approximately half of the tumors were poorly differentiated. Stage II was the most common stage at presentation. Majority of the cases were negative for expression of estrogen and progesterone receptor. One-third of the cases underwent breast conservation surgery while more than half of the cases underwent mastectomy (unilateral or bilateral). Approximately one-third of cases received radiation treatment. The 1-year and 5-year cause-specific survival was 81.6 and 63.5%, respectively. Excluding patient with metastasis or unknown stage at presentation, in multivariate Cox proportional hazard model, older age at diagnosis and higher tumor stage (T3 or T4) or nodal stage at presentation were significant predictors of poor survival. Our study describes the unique characteristics of squamous cell carcinoma of breast and demonstrates that it is an aggressive tumor with a poor survival. Older age and higher tumor or nodal stages at presentation were independent predictors of poor survival for loco-regional stages.

  15. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  16. Mental models of women with breast implants : local complications

    NARCIS (Netherlands)

    Byram, S.; Fischhoff, B.; Embrey, M.; Bruine de Bruin, W.J.A.; Thorne, S.

    2001-01-01

    Twenty-five women with breast implants participated in semistructured interviews designed to reveal their "mental models" of the processes potentially causing local (ie, nonsystemic) problems. The authors analyzed their responses in terms of an "expert model," circumscribing scientifically relevant

  17. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    Science.gov (United States)

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Objective models of compressed breast shapes undergoing mammography

    Science.gov (United States)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  19. Objective models of compressed breast shapes undergoing mammography

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Steve Si Jia [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University and Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Patel, Bhavika [Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sechopoulos, Ioannis [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-03-15

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  20. Objective models of compressed breast shapes undergoing mammography

    International Nuclear Information System (INIS)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  1. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis

    International Nuclear Information System (INIS)

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-01-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells

  2. Breast cancer stem cell-like cells generated during TGFβ-induced EMT are radioresistant.

    Science.gov (United States)

    Konge, Julie; Leteurtre, François; Goislard, Maud; Biard, Denis; Morel-Altmeyer, Sandrine; Vaurijoux, Aurélie; Gruel, Gaetan; Chevillard, Sylvie; Lebeau, Jérôme

    2018-05-04

    Failure of conventional antitumor therapy is commonly associated with cancer stem cells (CSCs), which are often defined as inherently resistant to radiation and chemotherapeutic agents. However, controversy about the mechanisms involved in the radiation response remains and the inherent intrinsic radioresistance of CSCs has also been questioned. These discrepancies observed in the literature are strongly associated with the cell models used. In order to clarify these contradictory observations, we studied the radiosensitivity of breast CSCs using purified CD24 -/low /CD44 + CSCs and their corresponding CD24 + /CD44 low non-stem cells. These cells were generated after induction of the epithelial-mesenchymal transition (EMT) by transforming growth factor β (TGFβ) in immortalized human mammary epithelial cells (HMLE). Consequently, these 2 cellular subpopulations have an identical genetic background, their differences being related exclusively to TGFβ-induced cell reprogramming. We showed that mesenchymal CD24 -/low /CD44 + CSCs are more resistant to radiation compared with CD24 + /CD44 low parental cells. Cell cycle distribution and free radical scavengers, but not DNA repair efficiency, appeared to be intrinsic determinants of cellular radiosensitivity. Finally, for the first time, we showed that reduced radiation-induced activation of the death receptor pathways (FasL, TRAIL and TNF-α) at the transcriptional level was a key causal event in the radioresistance of CD24 -/low / CD44+ cells acquired during EMT.

  3. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    International Nuclear Information System (INIS)

    Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.

    2012-01-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation

  4. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, Prabhjot, E-mail: Prabhjot.Juneja@icr.ac.uk [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Harris, Emma J. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Kirby, Anna M. [Department of Academic Radiotherapy, Royal Marsden National Health Service Foundation Trust, Sutton (United Kingdom); Evans, Philip M. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom)

    2012-11-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue

  5. Expression profiling of circulating tumor cells in metastatic breast cancer

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Scott, J.H.; Wolf, D.M.; Novák, Petr; Punj, V.; Magbanua, M.J.M.; Zhu, W.Z.; Mineyev, N.; Haqq, CH.; Crothers, J.

    2015-01-01

    Roč. 149, č. 1 (2015), s. 121-131 ISSN 0167-6806 Institutional support: RVO:60077344 Keywords : Circulating tumor cells * Micrometastases * Breast cancer * EpCAM Subject RIV: FD - Oncology ; Hematology Impact factor: 4.085, year: 2015

  6. Antibacterial and anti-breast cancer cell line activities of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activity of extracts of Sanghuangporus sp.1 fungus against pathogenic bacteria and a breast cancer cell line. Methods: The wild fruiting body and mycelium of Sanghuangporus sp.1 were extracted with water and ethanol by ultrasonication extraction. The activity of the extracts against pathogenic ...

  7. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  8. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice.

    Science.gov (United States)

    Campbell, J Preston; Karolak, Matthew R; Ma, Yun; Perrien, Daniel S; Masood-Campbell, S Kathryn; Penner, Niki L; Munoz, Steve A; Zijlstra, Andries; Yang, Xiangli; Sterling, Julie A; Elefteriou, Florent

    2012-07-01

    Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.

  9. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    Science.gov (United States)

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  10. BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells.

    Science.gov (United States)

    Yan, Yanfang; Wang, Ying; Zhao, Pengxin; Ma, Weiyuan; Hu, Zhigang; Zhang, Kaili

    2017-12-01

    Breast cancer is a hormone-dependent malignancy and is the most prevalent cause of cancer-related mortality among females. Radiation therapy and chemotherapy are common treatments of breast cancer. However, tumor relapse and metastasis following therapy are major clinical challenges. The importance of B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) was implicated in cell proliferation, stem cell maintenance, and tumor initiation. We established radio- and temozolomide (TMZ)-resistant (IRC-R) MCF-7 and MDA-MB-231 cell lines to investigate the mechanism involved in therapeutic resistance. Cell proliferation and sphere number were dramatically elevated, and BMI-1 was remarkably upregulated, in IRC-R cells compared to parental cells. Silencing BMI-1 by RNA interference only affected the cell proliferation of IRC-R but not parental cells, suggesting the critical role of BMI-1 in radio- and TMZ resistance. We used a xenograft mice model to elucidate that BMI-1 was necessary in tumor development by assessing tumor volume and Ki67 expression. We found that Hedgehog (Hhg) signaling exerted synergized functions together with BMI-1, implicating the importance of BMI-1 in Hhg signaling. Downregulation of BMI-1 could be an effective strategy to suppress tumor growth, which supports the potential clinical use of targeting BMI-1 in breast cancer treatment.

  11. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells.

    Science.gov (United States)

    Bartucci, M; Dattilo, R; Moriconi, C; Pagliuca, A; Mottolese, M; Federici, G; Benedetto, A Di; Todaro, M; Stassi, G; Sperati, F; Amabile, M I; Pilozzi, E; Patrizii, M; Biffoni, M; Maugeri-Saccà, M; Piccolo, S; De Maria, R

    2015-02-05

    Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a set of patient-derived breast cancer stem cell (BCSC) lines. We found that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs). By developing an in vivo metastatic model simulating the disease of patients with early BC, we observed that BCSCs is the only cell population endowed with metastatic potential. Gene-expression profile studies comparing metastagenic and non-metastagenic cells identified TAZ, a transducer of the Hippo pathway and biomechanical cues, as a central mediator of BCSCs metastatic ability involved in their chemoresistance and tumorigenic potential. Overexpression of TAZ in low-expressing dBCCs induced cell transformation and conferred tumorigenicity and migratory activity. Conversely, loss of TAZ in BCSCs severely impaired metastatic colonization and chemoresistance. In clinical data from 99 BC patients, high expression levels of TAZ were associated with shorter disease-free survival in multivariate analysis, thus indicating that TAZ may represent a novel independent negative prognostic factor. Overall, this study designates TAZ as a novel biomarker and a possible therapeutic target for BC.

  12. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    Science.gov (United States)

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  13. miR-200–containing extracellular vesicles promote breast cancer cell metastasis

    Science.gov (United States)

    Le, Minh T.N.; Hamar, Peter; Guo, Changying; Basar, Emre; Perdigão-Henriques, Ricardo; Balaj, Leonora; Lieberman, Judy

    2014-01-01

    Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200–expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200–dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles. PMID:25401471

  14. BIM-EL localization: The key to understanding anoikis resistance in inflammatory breast cancer cells.

    Science.gov (United States)

    Buchheit, Cassandra L; Schafer, Zachary T

    2016-01-01

    Inflammatory breast cancer (IBC) is a highly metastatic and rare type of breast cancer, accounting for 2-6% of newly diagnosed breast cancer cases each year. The highly metastatic nature of IBC cells remains poorly understood. Here we describe our recent data regarding the ability of IBC cells to overcome anoikis.

  15. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  16. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827 ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  17. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes.

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Feng, Steve Si Jia; van Zelst, Jan; Vreemann, Suzan; Mann, Jessica Rice; D'Orsi, Carl Joseph; Sechopoulos, Ioannis

    2017-06-01

    To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and medio-lateral oblique (MLO) views of the breast. We seek to improve on an existing model of compressed breasts by overcoming detector size bias, removing the nipple and non-mammary tissue, pairing the CC and MLO views from a single breast, and incorporating the pectoralis major muscle contour into the model. The outer breast shapes in 931 paired CC and MLO mammograms were automatically detected with an in-house developed segmentation algorithm. From these shapes three generic models (CC-only, MLO-only, and joint CC/MLO) with linearly independent components were constructed via principal component analysis (PCA). The ability of the models to represent mammograms not used for PCA was tested via leave-one-out cross-validation, by measuring the average distance error (ADE). The individual models based on six components were found to depict breast shapes with accuracy (mean ADE-CC = 0.81 mm, ADE-MLO = 1.64 mm, ADE-Pectoralis = 1.61 mm), outperforming the joint CC/MLO model (P ≤ 0.001). The joint model based on 12 principal components contains 99.5% of the total variance of the data, and can be used to generate new clinically realistic paired CC and MLO breast shapes. This is achieved by generating random sets of 12 principal components, following the Gaussian distributions of the histograms of each component, which were obtained from the component values determined from the images in the mammography database used. Our joint CC/MLO model can successfully generate paired CC and MLO view shapes of the same simulated breast, while the individual models can be used to represent with high accuracy clinical acquired mammograms with a small set of parameters. This is the first

  18. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  19. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  20. Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer.

    Science.gov (United States)

    Yamamoto, Mizuki; Sakane, Kota; Tominaga, Kana; Gotoh, Noriko; Niwa, Takayoshi; Kikuchi, Yasuko; Tada, Keiichiro; Goshima, Naoki; Semba, Kentaro; Inoue, Jun-Ichiro

    2017-06-01

    Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition MET, are crucial in several stages of cancer metastasis. Epithelial-mesenchymal transition allows cancer cells to move to proximal blood vessels for intravasation. However, because EMT and MET processes are dynamic, mesenchymal cancer cells are likely to undergo MET transiently and subsequently re-undergo EMT to restart the metastatic process. Therefore, spatiotemporally coordinated mutual regulation between EMT and MET could occur during metastasis. To elucidate such regulation, we chose HCC38, a human triple-negative breast cancer cell line, because HCC38 is composed of epithelial and mesenchymal populations at a fixed ratio even though mesenchymal cells proliferate significantly more slowly than epithelial cells. We purified epithelial and mesenchymal cells from Venus-labeled and unlabeled HCC38 cells and mixed them at various ratios to follow EMT and MET. Using this system, we found that the efficiency of EMT is approximately an order of magnitude higher than that of MET and that the two populations significantly enhance the transition of cells from the other population to their own. In addition, knockdown of Zinc finger E-box-binding homeobox 1 (ZEB1) or Zinc finger protein SNAI2 (SLUG) significantly suppressed EMT but promoted partial MET, indicating that ZEB1 and SLUG are crucial to EMT and MET. We also show that primary breast cancer cells underwent EMT that correlated with changes in expression profiles of genes determining EMT status and breast cancer subtype. These changes were very similar to those observed in EMT in HCC38 cells. Consequently, we propose HCC38 as a suitable model to analyze EMT-MET dynamics that could affect the development of triple-negative breast cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  2. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis.

    Science.gov (United States)

    Locke, Warwick J; Clark, Susan J

    2012-11-15

    Epigenetic gene regulation has influence over a diverse range of cellular functions, including the maintenance of pluripotency, differentiation, and cellular identity, and is deregulated in many diseases, including cancer. Whereas the involvement of epigenetic dysregulation in cancer is well documented, much of the mechanistic detail involved in triggering these changes remains unclear. In the current age of genomics, the development of new sequencing technologies has seen an influx of genomic and epigenomic data and drastic improvements in both resolution and coverage. Studies in cancer cell lines and clinical samples using next-generation sequencing are rapidly delivering spectacular insights into the nature of the cancer genome and epigenome. Despite these improvements in technology, the timing and relationship between genetic and epigenetic changes that occur during the process of carcinogenesis are still unclear. In particular, what changes to the epigenome are playing a driving role during carcinogenesis and what influence the temporal nature of these changes has on cancer progression are not known. Understanding the early epigenetic changes driving breast cancer has the exciting potential to provide a novel set of therapeutic targets or early-disease biomarkers or both. Therefore, it is important to find novel systems that permit the study of initial epigenetic events that potentially occur during the first stages of breast cancer. Non-malignant human mammary epithelial cells (HMECs) provide an exciting in vitro model of very early breast carcinogenesis. When grown in culture, HMECs are able to temporarily escape senescence and acquire a pre-malignant breast cancer-like phenotype (variant HMECs, or vHMECs). Cultured HMECs are composed mainly of cells from the basal breast epithelial layer. Therefore, vHMECs are considered to represent the basal-like subtype of breast cancer. The transition from HMECs to vHMECs in culture recapitulates the epigenomic

  3. Impacts of berberine on the growth, migration and radiosensitivity of breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Chaoqian; Xu Jiaying; Jiao Yang; Hu Xudong; Che Jun; Fan Saijun

    2012-01-01

    Objective: To study the impacts of berberine on the growth, migration and radiosensitivity in human breast cancer cells. Methods: MTT assay was used to evaluate cell growth.In vitro scratch migration assay was used to determine cell migration. Annexin V assay was used to detect cell apoptosis. The distribution of cell cycle was evaluated by flow cytometry assay. Colony formation assay was used to detect the influence of berberine on cell radiosensitivity. Western blot assay was employed to measure protein expression. Results: Berberine inhibited cell growth and migration in two human breast cancer cell lines, MCF-7 and MDA-MB-231, in a dose-and time-dependent manner. Furthermore, berberine resulted in a cell cycle G 0 /G 1 arrest. Compared with control, the early apoptosis in MDA-MB-231 and MCF-7 cells treated with 40 pμmol/L of berberine was as high as 86.6% and 66.6% (t=8.79, 10.32, P<0.01), respectively. Berberine caused a dose-dependent increase in Bax and Caspase-3 protein expressions, but did not change Cyclin D1 protein expression, while suppressed the expressions of Cyclin B1 and Bcl-2 protein. As analyzed with multi-target click model fitting curves, the SER D0 of berberine-treated cells were 1.12 and 1.22 for MDA-MB-231 and MCF-7 cells respectively at the dose D 0 of X-rays. Conclusions: The berberine inhibited the growth and migration of breast cancer cells via apoptosis induction and cell cycle arrest. Moreover, berberine increases cell sensitivity to X-ray irradiation. (authors)

  4. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  5. Development of a Combination Cell and Gene Therapy Approach for Early-Stage Breast Cancer

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2005-01-01

    The unique biology of the breast presents the opportunity to these cell and gene therapy techniques in a way that circumvents many of these technical limitations for the treatment of early stage breast cancer...

  6. Computational Modeling of Micrometastatic Breast Cancer Radiation Dose Response

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Daniel L.; Debeb, Bisrat G. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thames, Howard D. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-09-01

    Purpose: Prophylactic cranial irradiation (PCI) involves giving radiation to the entire brain with the goals of reducing the incidence of brain metastasis and improving overall survival. Experimentally, we have demonstrated that PCI prevents brain metastases in a breast cancer mouse model. We developed a computational model to expand on and aid in the interpretation of our experimental results. Methods and Materials: MATLAB was used to develop a computational model of brain metastasis and PCI in mice. Model input parameters were optimized such that the model output would match the experimental number of metastases per mouse from the unirradiated group. An independent in vivo–limiting dilution experiment was performed to validate the model. The effect of whole brain irradiation at different measurement points after tumor cells were injected was evaluated in terms of the incidence, number of metastases, and tumor burden and was then compared with the corresponding experimental data. Results: In the optimized model, the correlation between the number of metastases per mouse and the experimental fits was >95. Our attempt to validate the model with a limiting dilution assay produced 99.9% correlation with respect to the incidence of metastases. The model accurately predicted the effect of whole-brain irradiation given 3 weeks after cell injection but substantially underestimated its effect when delivered 5 days after cell injection. The model further demonstrated that delaying whole-brain irradiation until the development of gross disease introduces a dose threshold that must be reached before a reduction in incidence can be realized. Conclusions: Our computational model of mouse brain metastasis and PCI correlated strongly with our experiments with unirradiated mice. The results further suggest that early treatment of subclinical disease is more effective than irradiating established disease.

  7. FLI1 Expression in Breast Cancer Cell Lines and Primary Breast Carcinomas is Correlated with ER, PR and HER2

    Directory of Open Access Journals (Sweden)

    Inam Jasim Lafta

    2017-12-01

    Full Text Available FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2 was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinomas, FLI1 is significantly under expressed in all of the stages of breast cancer upon using 18S as an internal control. This FLI1 expression was correlated with ER, PR and HER2 status. In conclusion FLI1 can be exploited as a preliminary marker that can predict the status of ER, PR and HER2 in primary breast tumors.

  8. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lautenschlaeger, Tim; Perry, James; Peereboom, David; Li, Bin; Ibrahim, Ahmed; Huebner, Alexander; Meng, Wei; White, Julia; Chakravarti, Arnab

    2013-01-01

    Brain metastasis from breast cancer poses a major clinical challenge. Integrins play a role in regulating adhesion, growth, motility, and survival, and have been shown to be critical for metastatic growth in the brain in preclinical models. Cilengitide, an αvβ3/αvβ5 integrin inhibitor, has previously been studied as an anti-cancer drug in various tumor types. Previous studies have shown additive effects of cilengitide and radiation in lung cancer and glioblastoma cell lines. The ability of cilengitide to enhance the effects of radiation was examined preclinically in the setting of breast cancer to assess its possible efficacy in the setting of brain metastasis from breast cancer. Our panel of breast cells was composed of four cell lines: T-47D (ER/PR+, Her2-, luminal A), MCF-7 (ER/PR+, Her2-, luminal A), MDA-MB-231 (TNBC, basal B), MDA-MB-468 (TNBC, basal A). The presence of cilengitide targets, β3 and β5 integrin, was first determined. Cell detachment was determined by cell counting, cell proliferation was determined by MTS proliferation assay, and apoptosis was measured by Annexin V staining and flow cytometry. The efficacy of cilengitide treatment alone was analyzed, followed by assessment of combined cilengitide and radiation treatment. Integrin β3 knockdown was performed, followed by cilengitide and radiation treatment to test for incomplete target inhibition by cilengitide, in high β3 expressing cells. We observed that all cell lines examined expressed both β3 and β5 integrin and that cilengitide was able to induce cell detachment and reduced proliferation in our panel. Annexin V assays revealed that a portion of these effects was due to cilengitide-induced apoptosis. Combined treatment with cilengitide and radiation served to further reduce proliferation compared to either treatment alone. Following β3 integrin knockdown, radiosensitization in combination with cilengitide was observed in a previously non-responsive cell line (MDA-MB-231

  9. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells.

    Science.gov (United States)

    Liu, Jiaying; Yang, Longqiu; Guo, Xia; Jin, Guangli; Wang, Qimin; Lv, Dongdong; Liu, Junli; Chen, Qiu; Song, Qiong; Li, Baolin

    2018-05-03

    Rapid proliferation is one of the critical characteristics of breast cancer. However, the underlying regulatory mechanism of breast cancer cell proliferation is largely unclear. The present study indicated that sevoflurane, one of inhalational anesthetics, could significantly suppress breast cancer cell proliferation by arresting cell cycle at G1 phase. Notably, the rescue experiment indicated that miR-203 was upregulated by sevoflurane and mediated the function of sevoflurane on suppressing the breast cancer cell proliferation. The present study indicated the function of the sevoflurane/miR-203 signaling pathway on regulating breast cancer cell proliferation. These results provide mechanistic insight into how the sevoflurane/miR-203 signaling pathway supresses proliferation of breast cancer cells, suggesting the sevoflurane/miR-203 pathway may be a potential target in the treatment of breast cancer.

  10. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  11. Increased Levels of Erythropoietin in Nipple Aspirate Fluid and in Ductal Cells from Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ferdinando Mannello

    2008-01-01

    Full Text Available Background: Erythropoietin (Epo is an important regulator of erythropoiesis, and controls proliferation and differentiation of both erythroid and non-erythroid tissues. Epo is actively synthesized by breast cells during lactation, and also plays a role in breast tissues promoting hypoxia-induced cancer initiation. Our aims are to perform an exploratory investigation on the Epo accumulation in breast secretions from healthy and cancer patients and its localization in breast cancer cells.

  12. A Therapeutic and Diagnostic Dilemma: Granular Cell Tumor of the Breast

    Directory of Open Access Journals (Sweden)

    Ahmet Pergel

    2011-01-01

    Full Text Available Six to eight percent of granular cell tumors are seen in the breast. Although mostly benign, they rarely have malignant features clinically and radiologically reminding of breast cancer. This may lead to a potential misdiagnosis of breast carcinoma and overtreatment of patients. The final diagnosis is made by immunohistochemical examination. We performed excisional biopsy on a patient who was diagnosed to have a breast mass. The histopathological examination of the mass revealed granular cell tumor.

  13. A therapeutic and diagnostic dilemma: granular cell tumor of the breast.

    Science.gov (United States)

    Pergel, Ahmet; Yucel, Ahmet Fikret; Karaca, A Serdar; Aydin, Ibrahim; Sahin, Dursun Ali; Demirbag, Nilgun

    2011-01-01

    Six to eight percent of granular cell tumors are seen in the breast. Although mostly benign, they rarely have malignant features clinically and radiologically reminding of breast cancer. This may lead to a potential misdiagnosis of breast carcinoma and overtreatment of patients. The final diagnosis is made by immunohistochemical examination. We performed excisional biopsy on a patient who was diagnosed to have a breast mass. The histopathological examination of the mass revealed granular cell tumor.

  14. Anti-cancer Effect of Xao Tam Phan Paramignya trimera Methanol Root Extract on Human Breast Cancer Cell Line MCF-7 in 3D Model.

    Science.gov (United States)

    Nguyen-Thi, Lam-Huyen; Nguyen, Sinh Truong; Tran, Thao Phuong; Phan-Lu, Chinh-Nhan; The Van, Trung; Van Pham, Phuc

    2018-04-24

    Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue ® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 μg/ml compared to 260.8 ± 16.54 μg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 μg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 μg/mL concentration. The results from this study emphasize the promise of PTE in cancer therapy.

  15. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    International Nuclear Information System (INIS)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran; Chu, Wenhua; Chu, Yunxiang; Mach, Robert H.; Zeng, Chenbo

    2017-01-01

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119, WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.

  16. Separation of breast cancer cells from peripherally circulating blood using antibodies fixed in microchannels

    Science.gov (United States)

    Feng, Juan; Soper, Steven A.; McCarley, Robin L.; Murphy, Michael C.

    2004-07-01

    Bio-Micro Electro Mechanical System (Bio-MEMS) technology was applied to the problem of early breast cancer detection and diagnosis. A micro-device is being developed to identify and specifically collect tumor cells of low abundance (1 tumor cell among 107 normal blood cells) from circulating whole blood. By immobilizing anti-EpCAM (Epithelial Cell Adhesion Molecule) antibodies on polymer micro-channel walls by chemically modifying the surface of the PMMA, breast cancer cells from the MCF-7 cell line, which over-express EpCAM, were selected from a sample volume by the strong binding affinity between the antibody and antigen. To validate the capture of the breast cancer cells, three fluorochrome markers, each identified by a separate color, were used to reliably identify the cancer cells. The cancer cells were defined by DAPI+ (blue), CD45- and the FITC-cell membrane linker+ (green). White blood cells, which may interfere in the detection of the cancer cells, were identified by DAPI+ (blue), CD45+ (red), and the FITC-cell membrane linker+ (green). EpCAM/anti-EpCAM binding models from the literature were used to estimate an optimal velocity, 2mm/sec, for maximizing the number of cells binding and the critical binding force. At higher velocities, shear forces (> 0.48 dyne) will break existing bonds and prevent the formation of new ones. This detection micro-device can be assembled with other lab-on-a-chip components for follow-up gene and protein analysis.

  17. Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions

    International Nuclear Information System (INIS)

    Ben-Baruch, A

    2003-01-01

    A comprehensive overview of breast cancer development and progression suggests that the process is influenced by intrinsic properties of the tumor cells, as well as by microenvironmental factors. Indeed, in breast carcinoma, an intensive interplay exists between the tumor cells on one hand, and inflammatory cells/cytokines/chemokines on the other. The purpose of the present review is to outline the reciprocal interactions that exist between these different elements, and to shed light on their potential involvement in breast cancer development and progression

  18. Models of breast cancer: quo vadis, animal modeling?

    International Nuclear Information System (INIS)

    Wagner, Kay-Uwe

    2004-01-01

    Rodent models for breast cancer have for many decades provided unparalleled insights into cellular and molecular aspects of neoplastic transformation and tumorigenesis. Despite recent improvements in the fidelity of genetically engineered mice, rodent models are still being criticized by many colleagues for not being 'authentic' enough to the human disease. Motives for this criticism are manifold and range from a very general antipathy against the rodent model system to well-founded arguments that highlight physiological variations between species. Newly proposed differences in genetic pathways that cause cancer in humans and mice invigorated the ongoing discussion about the legitimacy of the murine system to model the human disease. The present commentary intends to stimulate a debate on this subject by providing the background about new developments in animal modeling, by disputing suggested limitations of genetically engineered mice, and by discussing improvements but also ambiguous expectations on the authenticity of xenograft models to faithfully mimic the human disease

  19. File list: InP.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.50.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155768,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.50.AllAg.Breast_cancer_cells.bed ...

  20. File list: InP.Brs.20.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.20.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155768,SRX155771 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.20.AllAg.Breast_cancer_cells.bed ...

  1. File list: InP.Brs.10.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Brs.10.AllAg.Breast_cancer_cells hg19 Input control Breast Breast cancer cells ...SRX155771,SRX155768 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Brs.10.AllAg.Breast_cancer_cells.bed ...

  2. File list: NoD.Brs.50.AllAg.Breast_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Brs.50.AllAg.Breast_cancer_cells hg19 No description Breast Breast cancer cells... ERX210215,ERX210213,ERX210206,ERX210205,ERX210207,ERX210209,ERX210208,ERX210212 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Brs.50.AllAg.Breast_cancer_cells.bed ...

  3. Activation of VCAM-1 and Its Associated Molecule CD44 Leads to Increased Malignant Potential of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chen Wang

    2014-02-01

    Full Text Available VCAM-1 (CD106, a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1. In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.

  4. Cell death induced by taxanes in sensitive and resistant breast cancer cells

    Czech Academy of Sciences Publication Activity Database

    Ehrlichová, Marie; Truksa, Jaroslav; Naďová, Zuzana; Gut, I.; Kovář, Jan

    2004-01-01

    Roč. 37, č. 2 (2004), s. 120-121 ISSN 0960-7722. [Meeting of the European study group for cell proliferation /26./. Praha, 13.05.2004-16.05.2004] R&D Projects: GA MZd NL6715 Keywords : breast cancer cells * cell death * taxanes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.907, year: 2004

  5. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    International Nuclear Information System (INIS)

    Charpentier, Monica; Martin, Stuart

    2013-01-01

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis

  6. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Charpentier, Monica [Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Martin, Stuart, E-mail: ssmartin@som.umaryland.edu [Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States)

    2013-11-14

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis.

  7. Reaching rural women: breast cancer prevention information seeking behaviors and interest in Internet, cell phone, and text use.

    Science.gov (United States)

    Kratzke, Cynthia; Wilson, Susan; Vilchis, Hugo

    2013-02-01

    The purpose of this study was to examine the breast cancer prevention information seeking behaviors among rural women, the prevalence of Internet, cell, and text use, and interest to receive breast cancer prevention information cell and text messages. While growing literature for breast cancer information sources supports the use of the Internet, little is known about breast cancer prevention information seeking behaviors among rural women and mobile technology. Using a cross-sectional study design, data were collected using a survey. McGuire's Input-Ouput Model was used as the framework. Self-reported data were obtained from a convenience sample of 157 women with a mean age of 60 (SD = 12.12) at a rural New Mexico imaging center. Common interpersonal information sources were doctors, nurses, and friends and common channel information sources were television, magazines, and Internet. Overall, 87% used cell phones, 20% had an interest to receive cell phone breast cancer prevention messages, 47% used text messaging, 36% had an interest to receive text breast cancer prevention messages, and 37% had an interest to receive mammogram reminder text messages. Bivariate analysis revealed significant differences between age, income, and race/ethnicity and use of cell phones or text messaging. There were no differences between age and receiving text messages or text mammogram reminders. Assessment of health information seeking behaviors is important for community health educators to target populations for program development. Future research may identify additional socio-cultural differences.

  8. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    International Nuclear Information System (INIS)

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-01-01

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  9. Protein tyrosine phosphatase µ (PTP µ or PTPRM, a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis.

    Directory of Open Access Journals (Sweden)

    Ping-Hui Sun

    Full Text Available BACKGROUND: PTPRM has been shown to exhibit homophilic binding and confer cell-cell adhesion in cells including epithelial and cancer cells. The present study investigated the expression of PTPRM in breast cancer and the biological impact of PTPRM on breast cancer cells. DESIGN: Expression of PTPRM protein and gene transcript was examined in a cohort of breast cancer patients. Knockdown of PTPRM in breast cancer cells was performed using a specific anti-PTPRM transgene. The impact of PTPRM knockdown on breast cancer was evaluated using in vitro cell models. RESULTS: A significant decrease of PTPRM transcripts was seen in poorly differentiated and moderately differentiated tumours compared with well differentiated tumours. Patients with lower expression of PTPRM had shorter survival compared with those which had a higher level of PTPRM expression. Knockdown of PTPRM increased proliferation, adhesion, invasion and migration of breast cancer cells. Furthermore, knockdown of PTPRM in MDA-MB-231 cells resulted in increased cell migration and invasion via regulation of the tyrosine phosphorylation of ERK and JNK. CONCLUSIONS: Decreased expression of PTPRM in breast cancer is correlated with poor prognosis and inversely correlated with disease free survival. PTPRM coordinated cell migration and invasion through the regulation of tyrosine phosphorylation of ERK and JNK.

  10. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    International Nuclear Information System (INIS)

    Schrlau, Michael G; Brailoiu, Eugen; Dun, Nae J; Patel, Sandip; Gogotsi, Yury; Bau, Haim H

    2008-01-01

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements

  11. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Schrlau, Michael G [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Brailoiu, Eugen; Dun, Nae J [Department of Pharmacology, Temple University, Philadelphia, PA 19104 (United States); Patel, Sandip [Department of Physiology, University College London, London WC1E 6BT (United Kingdom); Gogotsi, Yury [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States); Bau, Haim H [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 229 Towne Building, 220 S. 33rd Street, Philadelphia, PA 19104 (United States)], E-mail: mschrlau@seas.upenn.edu, E-mail: ebrailou@temple.edu, E-mail: patel.s@ucl.ac.uk, E-mail: yg36@drexel.edu, E-mail: ndun@temple.edu, E-mail: bau@seas.upenn.edu

    2008-08-13

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  12. CD8+ T cell infiltration in breast and colon cancer: A histologic and statistical analysis.

    Directory of Open Access Journals (Sweden)

    James Ziai

    Full Text Available The prevalence of cytotoxic tumor infiltrating lymphocytes (TILs has demonstrated prognostic value in multiple tumor types. In particular, CD8 counts (in combination with CD3 and CD45RO have been shown to be superior to traditional UICC staging in colon cancer patients and higher total CD8 counts have been associated with better survival in breast cancer patients. However, immune infiltrate heterogeneity can lead to potentially significant misrepresentations of marker prevalence in routine histologic sections. We examined step sections of breast and colorectal cancer samples for CD8+ T cell prevalence by standard chromogenic immunohistochemistry to determine marker variability and inform practice of T cell biomarker assessment in formalin-fixed, paraffin-embedded (FFPE tissue samples. Stained sections were digitally imaged and CD8+ lymphocytes within defined regions of interest (ROI including the tumor and surrounding stroma were enumerated. Statistical analyses of CD8+ cell count variability using a linear model/ANOVA framework between patients as well as between levels within a patient sample were performed. Our results show that CD8+ T-cell distribution is highly homogeneous within a standard tissue sample in both colorectal and breast carcinomas. As such, cytotoxic T cell prevalence by immunohistochemistry on a single level or even from a subsample of biopsy fragments taken from that level can be considered representative of cytotoxic T cell infiltration for the entire tumor section within the block. These findings support the technical validity of biomarker strategies relying on CD8 immunohistochemistry.

  13. International study on inter-reader variability for circulating tumor cells in breast cancer

    NARCIS (Netherlands)

    Ignatiadis, Michail; Riethdorf, Sabine; Bidard, François-Clement; Vaucher, Isabelle; Khazour, Mustapha; Rothe, Francoise; Metallo, Jessica; Rouas, Ghizlane; Payne, Rachel E.; Coombes, Raoul Charles; Teufel, Ingrid; Andergassen, Ulrich; Apostolaki, Stella; Politaki, Eleni; Mavroudis, Dimitris; Bessi, Silvia; Pestrin, Martta; di Leo, Angelo; Campion, Michael; Reinholz, Monica; Perez, Edith; Piccart, Martine; Borgen, Elin; Naume, Bjorn; Jimenez, Jose; Aura, Claudia Monica; Zorzino, Laura; Cassatella, Maria Cristina; Sandri, Maria Teresa; Mostert, Bianca; Sleijfer, Stefan; Kraan, Jaco; Janni, Wolfgang; Fehm, Tanja; Rack, Brigitte; Terstappen, Leonardus Wendelinus Mathias Marie; Repollet, Madeline; Pierga, Jean-Yves; Miller, Craig; Sotiriou, Christos; Michiels, Stefan; Pantel, Klaus

    2014-01-01

    IntroductionCirculating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement. MethodsCellSearch® images (N = 272) of either CTCs or white blood cells or

  14. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  15. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  16. Inhibition of PTP1B disrupts cell?cell adhesion and induces anoikis in breast epithelial cells

    OpenAIRE

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, S?var; Gustafsdottir, Sigrun; M?landsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells a...

  17. In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    Science.gov (United States)

    Alfonso, J. C. L.; Schaadt, N. S.; Schönmeyer, R.; Brieu, N.; Forestier, G.; Wemmert, C.; Feuerhake, F.; Hatzikirou, H.

    2016-09-01

    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches.

  18. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  19. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry......, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two......-tailed paired t-test and one-way ANOVA with Tukey¿s post-hoc test were used in the analysis of data. Results: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced...

  20. Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies

    International Nuclear Information System (INIS)

    Santilli, Guido; Binda, Mara; Zaffaroni, Nadia; Daidone, Maria Grazia

    2011-01-01

    There is accumulating evidence that breast cancer may arise from mutated mammary stem/progenitor cells which have been termed breast cancer-initiating cells (BCIC). BCIC identified in clinical specimens based on membrane phenotype (CD44 + /CD24 −/low and/or CD133 + expression) or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1 + ), have been demonstrated to have stem/progenitor cell properties, and are tumorigenic when injected in immunocompromized mice at very low concentrations. BCIC have also been isolated and in vitro propagated as non-adherent spheres of undifferentiated cells, and stem cell patterns have been recognized even in cancer cell lines. Recent findings indicate that aberrant regulation of self renewal is central to cancer stem cell biology. Alterations in genes involved in self-renewal pathways, such as Wnt, Notch, sonic hedgehog, PTEN and BMI, proved to play a role in breast cancer progression. Hence, targeting key elements mediating the self renewal of BCIC represents an attractive option, with a solid rationale, clearly identifiable molecular targets, and adequate knowledge of the involved pathways. Possible concerns are related to the poor knowledge of tolerance and efficacy of inhibiting self-renewal mechanisms, because the latter are key pathways for a variety of biological functions and it is unknown whether their interference would kill BCIC or simply temporarily stop them. Thus, efforts to develop BCIC-targeted therapies should not only be focused on interfering on self-renewal, but could seek to identify additional molecular targets, like those involved in regulating EMT-related pathways, in reversing the MDR phenotype, in inducing differentiation and controlling cell survival pathways

  1. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  2. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  3. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  4. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  5. Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-κB signaling.

    Science.gov (United States)

    Xu, Hongying; Xiao, Qian; Fan, Yu; Xiang, Tingxiu; Li, Chen; Li, Chunhong; Li, Shuman; Hui, Tianli; Zhang, Lu; Li, Hongzhong; Li, Lili; Ren, Guosheng

    2017-06-01

    ADAMTS18 dysregulation plays an important role in many disease processes including cancer. We previously found ADAMTS18 as frequently methylated tumor suppressor gene (TSG) for multiple carcinomas, however, its biological functions and underlying molecular mechanisms in breast carcinogenesis remain unknown. Here, we found that ADAMTS18 was silenced or downregulated in breast cancer cell lines. ADAMTS18 was reduced in primary breast tumor tissues as compared with their adjacent noncancer tissues. ADAMTS18 promoter methylation was detected in 70.8% of tumor tissues by methylation-specific PCR, but none of the normal tissues. Demethylation treatment restored ADAMTS18 expression in silenced breast cell lines. Ectopic expression of ADAMTS18 in breast tumor cells resulted in inhibition of cell migration and invasion. Nude mouse model further confirmed that ADAMTS18 suppressed breast cancer metastasis in vivo. Further mechanistic studies showed that ADAMTS18 suppressed epithelial-mesenchymal transition (EMT), further inhibited migration and invasion of breast cancer cells. ADAMT18 deregulated AKT and NF-κB signaling, through inhibiting phosphorylation levels of AKT and p65. Thus, ADAMTS18 as an antimetastatic tumor suppressor antagonizes AKT and NF-κB signaling in breast tumorigenesis. Its methylation could be a potential tumor biomarker for breast cancer. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Science.gov (United States)

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  7. Basal Cell Carcinoma Arising in a Breast Augmentation Scar.

    Science.gov (United States)

    Edwards, Lisa R; Cresce, Nicole D; Russell, Mark A

    2017-04-01

    We report a case of a 46-year-old female who presented with a persistent lesion on the inferior right breast. The lesion was located within the scar from a breast augmentation procedure 12 years ago. The lesion had been treated as several conditions with no improvement. Biopsy revealed a superficial and nodular basal cell carcinoma, and the lesion was successfully removed with Mohs micrographic surgery. Basal cell carcinoma arising in a surgical scar is exceedingly rare with only 13 reported cases to date. This is the first reported case of basal cell carcinoma arising in a breast augmentation scar. We emphasize the importance of biopsy for suspicious lesions or those refractory to treatment, particularly those lesions that form within a scar. Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. Effect of acadesine on breast cancer cells under hypoxia

    Directory of Open Access Journals (Sweden)

    A. M. Shcherbakov

    2017-01-01

    Full Text Available The riboside derivative acadesine (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside is currently being tested in clinical trials as a promising anti-tumor drug. Intracellular target of acadesine is adenosine monophosphate-activated protein kinase (АМРК, an important regulatory molecule of energy metabolism. It is expected that acadesine would be active in tumors under hypoxia conditions. In normoxia (cells incubated in 21 % oxygen, acadesine inhibited proliferation and induced cell death of breast adenocarcinoma, including the triple negative breast cancer line. When oxygen partial pressure was decreased to 1 % (experimental hypoxia, acadesine inhibited activation of reporter construct responsive to HIF-1α (hypoxia inducible factor 1 alpha transcription factor. This effect was observed for acadesine in concentrations close to cytotoxic. Acadesine retained cytotoxicity under hypoxia and decreased the survival of the MDA-MB-231 cell line when used in combination with cisplatin. These results considerably widen acadesine’s field of application and allow to assume its efficacy in chemotherapy combination regimens for breast cancer, including the tumors with low oxygenation.

  9. Hypoxic enhancement of exosome release by breast cancer cells

    International Nuclear Information System (INIS)

    King, Hamish W; Michael, Michael Z; Gleadle, Jonathan M

    2012-01-01

    Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O 2 ) or severe (0.1% O 2 ) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O 2 ) and severe (0.1% O 2 ) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release

  10. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  11. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  12. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells.

    Science.gov (United States)

    Maturi, Varun; Enroth, Stefan; Heldin, Carl-Henrik; Moustakas, Aristidis

    2018-05-10

    Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30 bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT. © 2018 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  13. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  14. CD56+ immune cell infiltration and MICA are decreased in breast lobules with fibrocystic changes.

    Science.gov (United States)

    Kerekes, Daniel; Visscher, Daniel W; Hoskin, Tanya L; Radisky, Derek C; Brahmbhatt, Rushin D; Pena, Alvaro; Frost, Marlene H; Arshad, Muhammad; Stallings-Mann, Melody; Winham, Stacey J; Murphy, Linda; Denison, Lori; Carter, Jodi M; Knutson, Keith L; Degnim, Amy C

    2018-02-01

    While the role of natural killer (NK) cells in breast cancer therapy has been investigated, little information is known about NK cell function and presence in nonmalignant and premalignant breast tissue. Here, we investigate and quantify NK cell marker CD56 and activating ligand MICA in breast tissue with benign breast disease. Serial tissue sections from 88 subjects, 44 with benign breast disease (BBD) who remained cancer-free, and 44 with BBD who later developed cancer, were stained with H&E, anti-MICA, and anti-CD56. Up to ten representative lobules were identified on each section. Using digital image analysis, MICA and CD56 densities were determined for each lobule, reported as percent of pixels in the lobule that registered as stained by each antibody. Analyses were performed on a per-subject and per-lobule basis. Per-subject multivariate analyses showed associations of CD56 and MICA with age: CD56 was increased in older subjects (p = 0.03), while MICA was increased in younger subjects (p = 0.005). Per-lobule analyses showed that CD56 and MICA levels were both decreased in lobules with fibrocystic change, with median levels of CD56 and MICA staining, respectively, at 0.31 and 7.0% in fibrocystic lobules compared to 0.76 and 12.2% in lobules without fibrocystic change (p fibrocystic lobules, proliferative/atypical lobules showed significantly lower expression compared to nonproliferative lobules for MICA (p = 0.02) but not for CD56 (p = 0.80). Levels of CD56+ NK cells and activating ligand MICA were decreased in breast lobules with fibrocystic change, and MICA levels showed a significant stepwise decrease with increasing histopathologic abnormality. MICA levels were also significantly decreased in older subjects, who generally have higher risk of developing cancer. These findings advance a model in which MICA promotes cytotoxic activity in CD56+ NK cells to protect against tumorigenesis in breast lobules, and suggest further research is warranted.

  15. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  16. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  17. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment.

    Science.gov (United States)

    Charpentier, Monica S; Whipple, Rebecca A; Vitolo, Michele I; Boggs, Amanda E; Slovic, Jana; Thompson, Keyata N; Bhandary, Lekhana; Martin, Stuart S

    2014-02-15

    Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the human mammary epithelial (HMLE) cell line presents increased McTNs compared with its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTNs in stem cell reattachment. Moreover, live-cell confocal microscopy showed that McTNs persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. Although exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTNs can mediate attachment and metastasis but might be targeted by curcumin as an antimetastatic strategy. ©2013 AACR.

  18. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    Science.gov (United States)

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  19. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  20. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    Energy Technology Data Exchange (ETDEWEB)

    Scherbakov, Alexander M., E-mail: alex.scherbakov@gmail.com [Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Berstein, Lev M. [Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758 (Russian Federation); Krasil’nikov, Mikhail A. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation)

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  1. Breast carcinoma with osteoclast-like giant cells

    DEFF Research Database (Denmark)

    Gjerdrum, L M; Lauridsen, M C; Sørensen, Flemming Brandt

    2001-01-01

    Primary carcinoma with osteoclast-like giant cells is a very rare tumour of the female breast. The clinical course, histological, immunohistochemical and ultrastructural features of 61 cases of invasive duct carcinoma with osteoclast-like multinucleated giant cells (OMGCs) are reviewed and a new...... in the literature have shown that 86% of patients with these tumours are still alive after 5 years. Histologically, these tumours are invasive ductal carcinomas with OMGCs next to the neoplastic glands and within their lumen. Signs of recent and past haemorrhage are ubiquitously present in the highly vascularized...

  2. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  3. Design ensemble machine learning model for breast cancer diagnosis.

    Science.gov (United States)

    Hsieh, Sheau-Ling; Hsieh, Sung-Huai; Cheng, Po-Hsun; Chen, Chi-Huang; Hsu, Kai-Ping; Lee, I-Shun; Wang, Zhenyu; Lai, Feipei

    2012-10-01

    In this paper, we classify the breast cancer of medical diagnostic data. Information gain has been adapted for feature selections. Neural fuzzy (NF), k-nearest neighbor (KNN), quadratic classifier (QC), each single model scheme as well as their associated, ensemble ones have been developed for classifications. In addition, a combined ensemble model with these three schemes has been constructed for further validations. The experimental results indicate that the ensemble learning performs better than individual single ones. Moreover, the combined ensemble model illustrates the highest accuracy of classifications for the breast cancer among all models.

  4. Loss of cadherin-based cell adhesion and the progression of Invasive Lobular Breast Cancer

    NARCIS (Netherlands)

    Vlug, E.J.

    2015-01-01

    Lobular breast cancer is a type of breast cancer that is histologically characterized by a noncohesive growth pattern of small regular cells, where single cells infiltrate as one-layered strands of cells. This noncohesive growth pattern is due to inactivation of the E-cadherin complex and a

  5. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    International Nuclear Information System (INIS)

    Yan, Bing; Stantic, Marina; Zobalova, Renata; Bezawork-Geleta, Ayenachew; Stapelberg, Michael; Stursa, Jan; Prokopova, Katerina; Dong, Lanfeng; Neuzil, Jiri

    2015-01-01

    Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs. The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours. Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2 high tumours derived from breast TICs by inducing apoptosis in tumour cells. These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells. The online version of this article (doi:10.1186/s12885-015-1394-7) contains supplementary material, which is available to authorized users

  6. A novel resveratrol-salinomycin combination sensitizes ER-positive breast cancer cells to apoptosis.

    Science.gov (United States)

    Venkatadri, Rajkumar; Iyer, Anand Krishnan V; Kaushik, Vivek; Azad, Neelam

    2017-08-01

    Resveratrol is a dietary compound that has been widely reported for its anticancer activities. However, successful extrapolation of its effects to pre-clinical studies is met with limited success due to inadequate bioavailability. We investigated the potential of combination therapy to improve the efficacy of resveratrol in a more physiologically relevant dose range. The effect of resveratrol on canonical Wnt signaling was evaluated by Western blotting. Wnt modulators HLY78 (activator) and salinomycin (inhibitor) were evaluated in combination with resveratrol for their effect on breast cancer cell viability (MTT assay), cell cycle progression and apoptosis (Western blotting). Bliss independency model was used to evaluate combinatorial effects of resveratrol-salinomycin combination. Resveratrol downregulated canonical Wnt signaling proteins in treated breast cancer cells (MCF-7, MDA-MB-231 and MDA-MB-468) in the dose range of 50-200μM, which also affected cellular viability. However, at very low doses (0-50μM), resveratrol exhibited no cellular toxicity. Co-treatment with salinomycin significantly potentiated the anti-cancer effects of resveratrol, whereas HLY78 co-treatment had minimal effect. Bliss independency model revealed that Wnt inhibition synergistically potentiates the effects of resveratrol in MCF-7 and BT474 cells. Significantly downregulated canonical Wnt signaling proteins and marker of epithelial-mesenchymal transition (EMT), vimentin were observed in cells treated with resveratrol-salinomycin combination. Cell cycle arrest, caspase activation and apoptosis induction in cells treated with resveratrol-salinomycin combination further confirmed the efficacy of the combination. We report a novel resveratrol-salinomycin combination for targeting ER-positive breast cancer cells and present evidence for successful pre-clinical implementation of resveratrol. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban

  7. A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism.

    Science.gov (United States)

    Hernández, John Fredy; Urueña, Claudia Patricia; Cifuentes, Maria Claudia; Sandoval, Tito Alejandro; Pombo, Luis Miguel; Castañeda, Diana; Asea, Alexzander; Fiorentino, Susana

    2014-05-14

    Folk medicine uses aqueous and alcoholic extracts from Petiveria alliacea (Phytolaccaceae) in leukemia and breast cancer treatment in the Caribbean, Central and South America. Herein, we validated the biological activity of a Petiveria alliacea fraction using a metastatic breast adenocarcinoma model (4T1). Petiveria alliacea fraction biological activity was determined estimating cell proliferation, cell colony growth capacity and apoptosis (caspase-3 activity, DNA fragmentation and mitochondrial membrane potential) in 4T1 cells. Petiveria alliacea was used at IC₅₀ concentration (29 µg/mL) and 2 dilutions below, doxorubicin at 0.27 µg/mL (positive control) and dibenzyl disulfide at 2.93 µg/mL (IC50 fraction marker compound). Proteomic estimations were analyzed by LC-MS-MS. Protein level expression was confirmed by RT-PCR. Glucose and lactate levels were measured by enzymatic assays. LD50 was established in BALB/c mice and antitumoral activity evaluated in mice transplanted with GFP-tagged 4T1 cells. Mice were treated with Petiveria alliacea fraction via I.P (182 mg/kg corresponding to 1/8 of LD₅₀ and 2 dilutions below). Petiveria alliacea fraction in vitro induces 4T1 cells apoptosis, caspase-3 activation, DNA fragmentation without mitochondria membrane depolarization, and decreases cell colony growth capacity. Also, changes in glycolytic enzymes expression cause a decrease in glucose uptake and lactate production. Fraction also promotes breast primary tumor regression in BALB/c mice transplanted with GFP-tagged 4T1 cells. A fraction of Petiveria alliacea leaves and stems induces in vitro cell death and in vivo tumor regression in a murine breast cancer model. Our results validate in partly, the traditional use of Petiveria alliacea in breast cancer treatment, revealing a new way of envisioning Petiveria alliacea biological activity. The fraction effect on the glycolytic pathway enzymes contributes to explain the antiproliferative and antitumor activities

  8. Real Time Visualization and Manipulation of the Metastatic Trajectory ofBreast Cancer Cell

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-13-1-0173 TITLE: Real-Time Visualization and Manipulation of the Metastatic Trajectory of Breast Cancer Cells ...of this work was to engineer breast cancer cells to irreversibly alter the genome of nearby cells through exosomal transfer of Cre recombinase from...the cancer cells to surrounding cells . Our goal was to use this study to activate green fluorescent protein in the host reporter cells in the

  9. Monitoring breast cancer treatment using a Fourier transform infrared spectroscopy-based computational model.

    Science.gov (United States)

    Depciuch, J; Kaznowska, E; Golowski, S; Koziorowska, A; Zawlik, I; Cholewa, M; Szmuc, K; Cebulski, J

    2017-09-05

    Breast cancer affects one in four women, therefore, the search for new diagnostic technologies and therapeutic approaches is of critical importance. This involves the development of diagnostic tools to facilitate the detection of cancer cells, which is useful for assessing the efficacy of cancer therapies. One of the major challenges for chemotherapy is the lack of tools to monitor efficacy during the course of treatment. Vibrational spectroscopy appears to be a promising tool for such a purpose, as it yields Fourier transformation infrared (FTIR) spectra which can be used to provide information on the chemical composition of the tissue. Previous research by our group has demonstrated significant differences between the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Furthermore, the results obtained for three extreme patient cases revealed that the infrared spectra of post-chemotherapy breast tissue closely resembles that of healthy breast tissue when chemotherapy is effective (i.e., a good therapeutic response is achieved), or that of cancerous breast tissue when chemotherapy is ineffective. In the current study, we compared the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Characteristic parameters were designated for the obtained spectra, spreading the function of absorbance using the Kramers-Kronig transformation and the best fit procedure to obtain Lorentz functions, which represent components of the bands. The Lorentz function parameters were used to develop a physics-based computational model to verify the efficacy of a given chemotherapy protocol in a given case. The results obtained using this model reflected the actual patient data retrieved from medical records (health improvement or no improvement). Therefore, we propose this model as a useful tool for monitoring the efficacy of chemotherapy in patients with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution

    DEFF Research Database (Denmark)

    Villadsen, René

    2005-01-01

    . Most attention has been devoted to the question of different cellular origins of cancer subtypes and different susceptibilities of possible stem cells to gain or loss of oncogenes and tumor suppressor genes, respectively. Invaluable progress has been made over the past two decades in culture technology......, kidney and prostate. It is therefore now possible to integrate this information in a search for similar cells within the breast. Even if cell turnover after birth is provided exclusively by dividing lineage-restricted cells, more information about the robustness of breast differentiation programs during...

  11. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Aura Muntasell

    2017-11-01

    Full Text Available Overexpression of the human epidermal growth factor receptor 2 (HER2 defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i the configuration of the patient NK cell repertoire; (ii tumor molecular features (i.e., estrogen receptor expression; (iii concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors; and (iv evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through

  12. Primary anaplastic large cell lymphoma of the breast arising in reconstruction mammoplasty capsule of saline filled breast implant after radical mastectomy for breast cancer: an unusual case presentation

    Directory of Open Access Journals (Sweden)

    Sur Monalisa

    2009-04-01

    Full Text Available Abstract Background Primary non-Hodgkin lymphoma (NHL of the breast represents 0.04–0.5% of malignant lesions of the breast and accounts for 1.7–2.2% of extra-nodal NHL. Most primary cases are of B-cell phenotype and only rare cases are of T-cell phenotype. Anaplastic large cell lymphoma (ALCL is a rare T-cell lymphoma typically seen in children and young adults with the breast being one of the least common locations. There are a total of eleven cases of primary ALCL of the breast described in the literature. Eight of these cases occurred in proximity to breast implants, four in relation to silicone breast implant and three in relation to saline filled breast implant with three out of the eight implant related cases having previous history of breast cancer treated surgically. Adjuvant postoperative chemotherapy is given in only one case. Secondary hematological malignancies after breast cancer chemotherapy have been reported in literature. However in contrast to acute myeloid leukemia (AML, the association between lymphoma and administration of chemotherapy has never been clearly demonstrated. Case Presentation In this report we present a case of primary ALCL of the breast arising in reconstruction mamoplasty capsule of saline filled breast implant after radical mastectomy for infiltrating ductal carcinoma followed by postoperative chemotherapy twelve years ago. Conclusion Primary ALK negative ALCL arising at the site of saline filled breast implant is rare. It is still unclear whether chemotherapy and breast implantation increases risk of secondary hematological malignancies significantly. However, it is important to be aware of these complications and need for careful pathologic examination of tissue removed for implant related complications to make the correct diagnosis for further patient management and treatment. It is important to be aware of this entity at this site as it can be easily misdiagnosed on histologic grounds and to exclude

  13. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sangmin Kim

    2018-01-01

    Full Text Available Background/Aims: Transforming growth factor-beta proteins (TGF-βs are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR on tumor growth and metastasis of triple negative breast cancer (TNBC cells via suppression of TGF-β1 expression. Methods: The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. Results: In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1–induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. Conclusion: BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC.

  14. SU-E-T-320: The Effect of Survivin Perturbation On the Radiation Response of Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Smith, D; Debeb, B; Woodward, W

    2014-01-01

    Purpose: Survivin is the smallest member of the inhibitor of apoptosis protein family and is well-known for its universal over-expression in human cancers. Due to its role in apoptosis and cellular proliferation, survivin is implicated in the radiation response in several cancer types, and antisurvivin treatments have had success as a radiation sensitizer in many preclinical cancer models. As no studies to date have reported survivin as a factor affecting radiation resistance in breast cancer models, we sought to evaluate the synergistic relationship between survivin function and irradiation in breast cancer cell lines. Methods: Information regarding survivin protein expression in breast cancer was retrieved from three public databases: Oncomine, Kaplan-Meier Plotter, and GOBO. For the in vitro studies, survivin function was compromised by transducing a non-functional mutant form (survivin-DN) into two breast cancer cell lines, the estrogen receptor-positive MCF7 and the triple-negative, inflammatory SUM149. Cell growth was compared in the survivin-DN and control populations with colony-formation assays. To assess how survivin affects radiation response, clonogenic assays were performed by irradiating the cell lines up to 6 Gy. Results: From the public databases, survivin is more highly expressed in triple-negative breast cancer compared to all other subtypes, and is prognostic of poor survival in all breast cancer patients. In MCF7, the survivin-DN population had decreased colony-formation potential; the opposite was true in SUM149. In the clonogenic assays, abrogation of survivin function radio-protected MCF7 cells in monolayer and 3D growth conditions, while SUM149 survivin-DN cells were radiosensitized in monolayer conditions. Conclusion: We observed synergy between survivin function and radiation, although the results between the two cell lines were disparate. Further investigation is required to identify the mechanism of this discrepancy, including evaluation

  15. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1996-10-01

    colleagues, Dr. Henry Pitot , an expert in hepatocarcinogenesis, and Dr. Michael Gould, an expert in breast cancer. Through our initial attempts at...974-978. 29. Dragan, Y.P. and H.C. Pitot . 1992. The role of the stages of initiation and promotion in phenotypic diversity during hepatocarcinogenesis

  16. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  17. MEK inhibitor effective against proliferation in breast cancer cell.

    Science.gov (United States)

    Zhou, Yan; Hu, Hai-Yan; Meng, Wei; Jiang, Ling; Zhang, Xing; Sha, Jing-Jing; Lu, Zhigang; Yao, Yang

    2014-09-01

    The targeted small-molecule drug AZD6244 is an allosteric, ATP-noncompetitive inhibitor of MEK1/2 that has shown activity against several malignant tumors. Here, we report that AZD6244 repressed cell growth and induced apoptosis and G1-phase arrest in the breast cancer cell lines MDA-MB-231 and HCC1937. Using microRNA (miRNA) arrays and quantitative RT-PCR, we found that miR-203 was up-regulated after AZD6244 treatment. In accordance with bioinformatics and luciferase activity analyses, CUL1 was found to be the direct target of miR-203. Furthermore, miR-203 inhibition and CUL1 overexpression reversed the cytotoxicity of AZD6244 on the MDA-MB-231 and HCC1937 cells. Collectively, our data indicate that miR-203 mediates the AZD6244-induced cytotoxicity of breast cancer cells and that the MEK/ERK/miR-203/CUL1 signaling pathway may participate in this process.

  18. Stage-specific predictive models for breast cancer survivability.

    Science.gov (United States)

    Kate, Rohit J; Nadig, Ramya

    2017-01-01

    Survivability rates vary widely among various stages of breast cancer. Although machine learning models built in past to predict breast cancer survivability were given stage as one of the features, they were not trained or evaluated separately for each stage. To investigate whether there are differences in performance of machine learning models trained and evaluated across different stages for predicting breast cancer survivability. Using three different machine learning methods we built models to predict breast cancer survivability separately for each stage and compared them with the traditional joint models built for all the stages. We also evaluated the models separately for each stage and together for all the stages. Our results show that the most suitable model to predict survivability for a specific stage is the model trained for that particular stage. In our experiments, using additional examples of other stages during training did not help, in fact, it made it worse in some cases. The most important features for predicting survivability were also found to be different for different stages. By evaluating the models separately on different stages we found that the performance widely varied across them. We also demonstrate that evaluating predictive models for survivability on all the stages together, as was done in the past, is misleading because it overestimates performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. An anatomically oriented breast model for MRI

    Science.gov (United States)

    Kutra, Dominik; Bergtholdt, Martin; Sabczynski, Jörg; Dössel, Olaf; Buelow, Thomas

    2015-03-01

    Breast cancer is the most common cancer in women in the western world. In the breast cancer care-cycle, MRIis e.g. employed in lesion characterization and therapy assessment. Reading of a single three dimensional image or comparing a multitude of such images in a time series is a time consuming task. Radiological reporting is done manually by translating the spatial position of a finding in an image to a generic representation in the form of a breast diagram, outlining quadrants or clock positions. Currently, registration algorithms are employed to aid with the reading and interpretation of longitudinal studies by providing positional correspondence. To aid with the reporting of findings, knowledge about the breast anatomy has to be introduced to translate from patient specific positions to a generic representation. In our approach we fit a geometric primitive, the semi-super-ellipsoid to patient data. Anatomical knowledge is incorporated by fixing the tip of the super-ellipsoid to the mammilla position and constraining its center-point to a reference plane defined by landmarks on the sternum. A coordinate system is then constructed by linearly scaling the fitted super-ellipsoid, defining a unique set of parameters to each point in the image volume. By fitting such a coordinate system to a different image of the same patient, positional correspondence can be generated. We have validated our method on eight pairs of baseline and follow-up scans (16 breasts) that were acquired for the assessment of neo-adjuvant chemotherapy. On average, the location predicted and the actual location of manually set landmarks are within a distance of 5.6 mm. Our proposed method allows for automatic reporting simply by uniformly dividing the super-ellipsoid around its main axis.

  20. Galectin-3 coats the membrane of breast cells and makes a signature of tumours

    KAUST Repository

    Simone, Giuseppina; Malara, Natalia Maria; Trunzo, Valentina; Renne, Maria; Perozziello, Gerardo; Di Fabrizio, Enzo M.; Manz, Andreas

    2014-01-01

    Galectin-3, β-galactoside-binding lectin, coats the membrane of most cancer cells and is involved in metastasis and endothelium recognition as well as in evading immune surveillance through killing of activated T cells. To flag galectin as a biomarker of tumours and metastasis, it is pivotal to understand the role of this protein in different tumours and at different stages. Breast tumours have an anomalous behaviour of the galectin-3 compared to other tumour cells. Herein, FACS sorting and galactoside based assays were used to investigate the role of galectin-3 in metastasis and metastatisation of breast cancer cells. Breast galectin fingerprint at the FACS displayed a higher amount in healthy cells, compared to metastatic cells. The microfluidic assay was able to isolate tumour and metastatic cells more than healthy breast cells. Investigation was performed on samples from patients with breast tumours at stage I and stage III whilst MCF7 and EPH-4 cells were used to perform preliminary investigations. The readout of the conditioned medium (from culturing of stage I cells) fingerprint by FACS evidenced high expression of free galectin. Analysis of the results established that the galectin coating the membrane, by galactoside recognition of the breast cells, and engaged by the cells to form protein-carbohydrate complexes inside the microfluidic assay, resembled the tumour signature of tumours in breast cells whilst the galectin free is independent of those mechanisms. © 2014 The Royal Society of Chemistry.

  1. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    International Nuclear Information System (INIS)

    Mandal, Soma; Davie, James R

    2007-01-01

    The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation. Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors. This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors

  2. Relationship of Predicted Risk of Developing Invasive Breast Cancer, as Assessed with Three Models, and Breast Cancer Mortality among Breast Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Mark E Sherman

    Full Text Available Breast cancer risk prediction models are used to plan clinical trials and counsel women; however, relationships of predicted risks of breast cancer incidence and prognosis after breast cancer diagnosis are unknown.Using largely pre-diagnostic information from the Breast Cancer Surveillance Consortium (BCSC for 37,939 invasive breast cancers (1996-2007, we estimated 5-year breast cancer risk (<1%; 1-1.66%; ≥1.67% with three models: BCSC 1-year risk model (BCSC-1; adapted to 5-year predictions; Breast Cancer Risk Assessment Tool (BCRAT; and BCSC 5-year risk model (BCSC-5. Breast cancer-specific mortality post-diagnosis (range: 1-13 years; median: 5.4-5.6 years was related to predicted risk of developing breast cancer using unadjusted Cox proportional hazards models, and in age-stratified (35-44; 45-54; 55-69; 70-89 years models adjusted for continuous age, BCSC registry, calendar period, income, mode of presentation, stage and treatment. Mean age at diagnosis was 60 years.Of 6,021 deaths, 2,993 (49.7% were ascribed to breast cancer. In unadjusted case-only analyses, predicted breast cancer risk ≥1.67% versus <1.0% was associated with lower risk of breast cancer death; BCSC-1: hazard ratio (HR = 0.82 (95% CI = 0.75-0.90; BCRAT: HR = 0.72 (95% CI = 0.65-0.81 and BCSC-5: HR = 0.84 (95% CI = 0.75-0.94. Age-stratified, adjusted models showed similar, although mostly non-significant HRs. Among women ages 55-69 years, HRs approximated 1.0. Generally, higher predicted risk was inversely related to percentages of cancers with unfavorable prognostic characteristics, especially among women 35-44 years.Among cases assessed with three models, higher predicted risk of developing breast cancer was not associated with greater risk of breast cancer death; thus, these models would have limited utility in planning studies to evaluate breast cancer mortality reduction strategies. Further, when offering women counseling, it may be useful to note that high

  3. Circadian Gating of Epithelial-to-Mesenchymal Transition in Breast Cancer Cells Via Melatonin-Regulation of GSK3β

    Science.gov (United States)

    Mao, Lulu; Dauchy, Robert T.; Blask, David E.; Slakey, Lauren M.; Xiang, Shulin; Yuan, Lin; Dauchy, Erin M.; Shan, Bin; Brainard, George C.; Hanifin, John P.; Duplessis, Tamika T.; Hill, Steven M.

    2012-01-01

    Disturbed sleep-wake cycle and circadian rhythmicity are associated with cancer, but the underlying mechanisms are unknown. Employing a tissue-isolated human breast xenograft tumor nude rat model, we observed that glycogen synthase kinase 3β (GSK3β), an enzyme critical in metabolism and cell proliferation/survival, exhibits a circadian rhythm of phosphorylation in human breast tumors. Exposure to light-at-night suppresses the nocturnal pineal melatonin synthesis, disrupting the circadian rhythm of GSK3β phosphorylation. Melatonin activates GSK3β by inhibiting the serine-threonine kinase Akt phosphorylation, inducing β-catenin degradation and inhibiting epithelial-to-mesenchymal transition, a fundamental process underlying cancer metastasis. Thus, chronic circadian disruption by light-at-night via occupational exposure or age-related sleep disturbances may contribute to cancer incidence and the metastatic spread of breast cancer by inhibiting GSK3β activity and driving epithelial-to-mesenchymal transition in breast cancer patients. PMID:23002080

  4. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nora D Mineva

    Full Text Available Inflammatory Breast Cancer (IBC is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration

  5. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    Science.gov (United States)

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  7. CD147 knockdown improves the antitumor efficacy of trastuzumab in HER2-positive breast cancer cells.

    Science.gov (United States)

    Xiong, Lijuan; Ding, Li; Ning, Haoyong; Wu, Chenglin; Fu, Kaifei; Wang, Yuxiao; Zhang, Yan; Liu, Yan; Zhou, Lijun

    2016-09-06

    Trastuzumab is widely used in the clinical treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer, but the patient response rate is low. CD147 stimulates cancer cell proliferation, migration, metastasis and differentiation and is involved in chemoresistance in many types of cancer cells. Whether CD147 alters the effect of trastuzumab on HER2-positive breast cancer cells has not been previously reported. Our study confirmed that CD147 suppression enhances the effects of trastuzumab both in vitro and in vivo. CD147 suppression increased the inhibitory rate of trastuzumab and cell apoptosis in SKBR3, BT474, HCC1954 and MDA-MB453 cells compared with the controls. Furthermore, CD147 knockdown increased expression of cleaved Caspase-3/9 and poly (ADP-ribose) polymerase (PARP) and decreased both mitogen-activated protein kinase (MAPK) and Akt phosphorylation in the four cell lines. In an HCC1954 xenograft model, trastuzumab achieved greater suppression of tumor growth in the CD147-knockdown group than in the shRNA negative control (NC) group. These data indicated that enhancement of the effect of trastuzumab on HER2-positive cells following CD147 knockdown might be attributed to increased apoptosis and decreased phosphorylation of signaling proteins. CD147 may be a key protein for enhancing the clinical efficacy of trastuzumab.

  8. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Brett A. Morris

    2016-11-01

    Full Text Available Increased breast density attributed to collagen I deposition is associated with a 4–6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  9. Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells.

    Science.gov (United States)

    Zhang, Jianxiang; Ma, Yanmei; Wang, Shoujun; Chen, Fu; Gu, Yuanting

    2016-06-01

    Breast cancer is the most common malignancy in women around the world, and its incidence and mortality rates are still rising. An increasing number of studies have reported that SOX18 plays an important role in various cancers. However, the role of SOX18 in breast cancer remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of SOX18 in breast cancer. We found that the mRNA and protein expression levels of SOX18 were prevalently and significantly overexpressed in human breast cancer cell lines. Next, we performed loss-of-function experiments by transfection of two breast cancer cell lines, BT-474 and MCF-7, with SOX18 small interfering RNAs (siRNA). Results showed that SOX18 siRNA transfection significantly suppressed mRNA and protein expression of SOX18 in breast cancer cells. Furthermore, knockdown of SOX18 significantly inhibited cell proliferation and invasion, but promoted apoptosis in breast cancer cells. Importantly, several oncogenic proteins, including the Ras homolog gene family member A (RhoA), platelet-derived growth factor B (PDGFB), Insulin-like growth factor 1 receptor (IGF-1R), and matrix metalloproteinase-7 (MMP-7), were markedly decreased by SOX18 siRNA. Taken together, the results of our study suggest that knockdown of SOX18 inhibits breast cancer cell growth and invasion, possibly by downregulating downstream oncogenic proteins, providing novel insights into the development of breast cancer therapy through targeting of SOX18.

  10. Metformin induces a Senescence-associated gene Signature in Breast Cancer Cells

    Science.gov (United States)

    Williams, Christopher C.; Singleton, Brittany A.; Llopis, Shawn D.; Skripnikova, Elena V.

    2013-01-01

    Diabetic patients taking metformin have lower incidence of breast cancer than those taking other anti-diabetic medications. Additionally, triple negative breast cancer (TNBC), a form of breast cancer disproportionately afflicting premenopausal African American women, shows atypical susceptibility to metformin’s antiproliferative effect. The mechanisms involved in metformin’s function in TNBC has not yet been fully elucidated. Therefore, we sought to identify pathways regulated by metformin in using the MDA-MB-468 TNBC cell model. Metformin dose-dependently caused apoptosis, decreased cell viability, and induced cell morphology/chromatin condensation consistent with the permanent proliferative arrest. Furthermore, gene expression arrays revealed that metformin caused expression of stress markers DDIT3, CYP1A1, and GDF-15 and a concomitant reduction in PTGS1 expression. Our findings show that metformin may affect the viability and proliferative capacity of TNBC by inducing an antiproliferative gene signature, and that metformin may be effective in the treatment/prevention of TNBC. PMID:23395946

  11. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Han NK

    2016-04-01

    Full Text Available Na-Kyung Han,1,* Dae Hwan Shin,1,* Jung Seok Kim,1 Kwon Yeon Weon,2 Chang-Young Jang,1 Jin-Seok Kim1 1Research Center for Cell Fate Control (RCCFC and College of Pharmacy, Sookmyung Women’s University, Seoul, 2College of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea *These authors contributed equally to this work Abstract: Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on targeted liposomal delivery systems have indicated the conjugation of hyaluronan (HA, a primary ligand for CD44 surface markers, as an appropriate method for targeting BCSCs. For this study, enriched BCSCs were obtained by culturing MCF-7 breast cancer cells in nonadherent conditions. The enriched BCSCs were challenged with HA-conjugated liposomes encapsulating gemcitabine (2, 2-difluoro-2-deoxycytidine, GEM. In vitro study showed that the HA-conjugated liposomes significantly enhanced the cytotoxicity, anti-migration, and anti-colony formation abilities of GEM through targeting of CD44 expressed on BCSCs. In pharmacokinetic study, area under the drug concentration vs time curve (AUC of the immunoliposomal GEM was 3.5 times higher than that of free GEM, indicating that the HA-conjugated liposomes enhanced the stability of GEM in the bloodstream and therefore prolonged its half-life time. The antitumor effect of the immunoliposomal GEM was 3.3 times higher than that of free GEM in a xenograft mouse model, probably reflecting the unique targeting of the CD44 receptor by HA and the increased cytotoxicity and stability through the liposomal formulation. Furthermore, marginal change in body weight demonstrated that the use of liposomes considerably reduced the systemic toxicity of GEM on normal healthy cells. Taken together

  12. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells: Morphometric Analysis

    Directory of Open Access Journals (Sweden)

    Firdos Alam Khan

    2018-05-01

    Full Text Available Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7. We tested different concentrations (1.25, 12.5 and 50 µg/mL of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 µg/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment.

  13. Multicolor immunofluorescence reveals that p63- and/or K5-positive progenitor cells contribute to normal breast epithelium and usual ductal hyperplasia but not to low-grade intraepithelial neoplasia of the breast.

    Science.gov (United States)

    Boecker, Werner; Stenman, Göran; Schroeder, Tina; Schumacher, Udo; Loening, Thomas; Stahnke, Lisa; Löhnert, Catharina; Siering, Robert Michael; Kuper, Arthur; Samoilova, Vera; Tiemann, Markus; Korsching, Eberhard; Buchwalow, Igor

    2017-05-01

    We contend that knowledge about the cellular composition of normal breast epithelium is a prerequisite for understanding proliferative breast disease. Against this background, we used multicolor immunofluorescence to study normal breast epithelium and two types of intraepithelial proliferative breast lesion for expression of the p63, basal keratin K5, glandular keratin K8/18, SMA, ER-alpha, and Ki67. We studied eight normal breast epithelium samples, 12 cases of usual ductal hyperplasia, and 33 cases of low-grade intraepithelial neoplasia (9 flat epithelial atypia, 14 low-grade ductal carcinoma in situ and 10 cases of lobular neoplasia). Usual ductal hyperplasia showed striking similarity to normal luminal breast epithelium including p63+ and/or K5+ luminal progenitor cells and the full spectrum of luminal progeny cells. In normal breast epithelium and usual ductal hyperplasia, expression of ER-alpha was associated with lack of expression of the proliferation antigen Ki67. In contrast, we found in both types of low-grade intraepithelial neoplasia robust expression of keratin K8/18 and a positive association between ER-alpha and Ki67 expression. However, these lesions were consistently negative for p63 and/or K5. Our observational study supports the view that usual ductal hyperplasia and low-grade intraepithelial neoplasia are different entities rather than part of a spectrum of the same disease. We propose a new operational model of cell differentiation that may serve to better understand correlations between normal breast epithelium and proliferative breast diseases. From our data we conclude that p63+ and/or K5+ progenitor cells contribute to maintenance of normal epithelium and usual ductal hyperplasia, but not to low-grade intraepithelial neoplasia of the breast.

  14. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    Science.gov (United States)

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  16. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice.

    Directory of Open Access Journals (Sweden)

    J Preston Campbell

    2012-07-01

    Full Text Available Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.

  17. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response.

    Science.gov (United States)

    Gangadhara, Sharath; Smith, Chris; Barrett-Lee, Peter; Hiscox, Stephen

    2016-06-01

    The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity. A 3D Matrigel-based culture system was established and optimized for the growth of ER+/Her2+ breast cancer cell models. Growth of cells in response to trastuzumab and endocrine agents in 3D culture versus routine monolayer culture were assessed using cell counting and Ki67 staining. Endogenous and trastuzumab-modulated signalling pathway activity in 2D and 3D cultures were assessed using Western blotting. Breast cancer cells in 3D culture displayed an attenuated response to both endocrine agents and trastuzumab compared with cells cultured in traditional 2D monolayers. Underlying this phenomenon was an apparent matrix-induced shift from AKT to MAPK signalling; consequently, suppression of MAPK in 3D cultures restores therapeutic response. These data suggest that breast cancer cells in 3D culture display a reduced sensitivity to therapeutic agents which may be mediated by internal MAPK-mediated signalling. Targeting of adaptive pathways that maintain growth in 3D culture may represent an effective strategy to improve therapeutic response clinically.

  18. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    Science.gov (United States)

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  19. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer

    DEFF Research Database (Denmark)

    Tvedskov, Tove F; Jensen, Maj-Britt; Kroman, Niels

    2012-01-01

    Isolated tumor cells (ITC) are more common in the sentinel node (SN) after needle biopsy of a breast cancer, indicating iatrogenic displacement of tumor cells. We here investigate whether similar iatrogenic displacement occurs after surgical excision of a breast tumor. We compared the incidence...

  20. Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells.

    Science.gov (United States)

    Muhammad, Nafees; Sadia, Nasreen; Zhu, Chengcheng; Luo, Cheng; Guo, Zijian; Wang, Xiaoyong

    2017-09-05

    A biotin-guided platinum IV complex is highly cytotoxic against breast cancer cells but hypotoxic against mammary epithelial cells. The mono-biotinylated Pt IV complex is superior to the di-biotinylated one and hence a promising drug candidate for the targeted therapy of breast cancer.

  1. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  2. Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration

    Science.gov (United States)

    Donatello, Simona; Babina, Irina S.; Hazelwood, Lee D.; Hill, Arnold D.K.; Nabi, Ivan R.; Hopkins, Ann M.

    2012-01-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration. PMID:23031255

  3. Radiobilogical cell survival models

    International Nuclear Information System (INIS)

    Zackrisson, B.

    1992-01-01

    A central issue in clinical radiobiological research is the prediction of responses to different radiation qualities. The choice of cell survival and dose-response model greatly influences the results. In this context the relationship between theory and model is emphasized. Generally, the interpretations of experimental data depend on the model. Cell survival models are systematized with respect to their relations to radiobiological theories of cell kill. The growing knowlegde of biological, physical, and chemical mechanisms is reflected in the formulation of new models. The present overview shows that recent modelling has been more oriented towards the stochastic fluctuations connected to radiation energy deposition. This implies that the traditional cell surivival models ought to be complemented by models of stochastic energy deposition processes and repair processes at the intracellular level. (orig.)

  4. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire.

    Science.gov (United States)

    Beausang, John F; Wheeler, Amanda J; Chan, Natalie H; Hanft, Violet R; Dirbas, Frederick M; Jeffrey, Stefanie S; Quake, Stephen R

    2017-11-28

    Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment. Copyright © 2017 the Author(s). Published by PNAS.

  5. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation

    Directory of Open Access Journals (Sweden)

    Frithiof H

    2016-11-01

    Full Text Available Henrik Frithiof,1 Kristina Aaltonen,1 Lisa Rydén2,3 1Division of Oncology and Pathology, 2Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, 3Department of Surgery, Skåne University Hospital, Malmö, Sweden Introduction: Amplification of the HER-2/neu (HER-2 proto-oncogene occurs in 10%–15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Methods: Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line, an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. Results: A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients

  6. Promoting effects of adipose-derived stem cells on breast cancer cells are reversed by radiation therapy.

    Science.gov (United States)

    Baaße, Annemarie; Juerß, Dajana; Reape, Elaine; Manda, Katrin; Hildebrandt, Guido

    2018-04-01

    Partial breast irradiation of early breast cancer patients after lumpectomy and the use of endogenous adipose tissue (AT) for breast reconstruction are promising applications to reduce the side effects of breast cancer therapy. This study tries to investigate the possible risks associated with these therapeutic approaches. It also examines the influence of adipose derived stem cells (ADSCs) as part of the breast cancer microenvironment, and endogenous AT on breast cancer cells following radiation therapy. ADSCs, isolated from human reduction mammoplasties of healthy female donors, exhibited multilineage capacity and specific surface markers. The promoting effects of ADSCs on the growth and survival fraction of breast cancer cells were reversed by treatment with high (8 Gy) or medium (2 Gy) radiation doses. In addition, a suppressing influence on breast cancer growth could be detected by co-culturing with irradiated ADSCs (8 Gy). Furthermore the clonogenic survival of unirradiated tumor cells was reduced by medium of irradiated ADSCs. In conclusion, radiation therapy changed the interactions of ADSCs and breast cancer cells. On the basis of our work, the importance of further studies to exclude potential risks of ADSCs in regenerative applications and radiotherapy has been emphasized.

  7. Differential Cell Adhesion of Breast Cancer Stem Cells on Biomaterial Substrate with Nanotopographical Cues

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2015-04-01

    Full Text Available Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24−/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC, breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC cells obtained from patients’ samples, on micro- and nano-patterned poly-L-lactic acid (PLLA films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24−/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24− in MCF7. A slightly higher percentage of CD44+CD24−/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24−ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells.

  8. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation.

    Science.gov (United States)

    Dontu, Gabriela; Ince, Tan A

    2015-06-01

    Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.

  9. Korean risk assessment model for breast cancer risk prediction.

    Science.gov (United States)

    Park, Boyoung; Ma, Seung Hyun; Shin, Aesun; Chang, Myung-Chul; Choi, Ji-Yeob; Kim, Sungwan; Han, Wonshik; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee; Yoo, Keun-Young; Park, Sue K

    2013-01-01

    We evaluated the performance of the Gail model for a Korean population and developed a Korean breast cancer risk assessment tool (KoBCRAT) based upon equations developed for the Gail model for predicting breast cancer risk. Using 3,789 sets of cases and controls, risk factors for breast cancer among Koreans were identified. Individual probabilities were projected using Gail's equations and Korean hazard data. We compared the 5-year and lifetime risk produced using the modified Gail model which applied Korean incidence and mortality data and the parameter estimators from the original Gail model with those produced using the KoBCRAT. We validated the KoBCRAT based on the expected/observed breast cancer incidence and area under the curve (AUC) using two Korean cohorts: the Korean Multicenter Cancer Cohort (KMCC) and National Cancer Center (NCC) cohort. The major risk factors under the age of 50 were family history, age at menarche, age at first full-term pregnancy, menopausal status, breastfeeding duration, oral contraceptive usage, and exercise, while those at and over the age of 50 were family history, age at menarche, age at menopause, pregnancy experience, body mass index, oral contraceptive usage, and exercise. The modified Gail model produced lower 5-year risk for the cases than for the controls (p = 0.017), while the KoBCRAT produced higher 5-year and lifetime risk for the cases than for the controls (pKorean women, especially urban women.

  10. Nanovectors for Targeting and Delivery of Therapeutics to HER-2 NEU Positive Breast Cancer Cells

    National Research Council Canada - National Science Library

    Serda, Rita E

    2008-01-01

    Nanofabricated devices designed to carry drug and contrast agents to breast cancer cells are surface modified with targeting moieties that recognize unique or abundantly expressed molecules on the surface of tumor cells...

  11. Role of Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Zolov, Sergey N

    2006-01-01

    ...: protein glycosylation and its sorting. For analysis of COG complex function we utilized RNA interference assay to knockdown COG3p subunit of COG complex in normal and breast cancer cells and other tumor cell lines...

  12. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells.

    Science.gov (United States)

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Sánchez-Martínez, Ruth; Vargas, Teodoro; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2014-06-01

    Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer.

    Science.gov (United States)

    Mukherjee, Pinku; Madsen, Cathy S; Ginardi, Amelia R; Tinder, Teresa L; Jacobs, Fred; Parker, Joanne; Agrawal, Babita; Longenecker, B Michael; Gendler, Sandra J

    2003-01-01

    Human mucin 1 (MUC1) is an epithelial mucin glycoprotein that is overexpressed in 90% of all adenocarcinomas including breast, lung, pancreas, prostate, stomach, colon, and ovary. MUC1 is a target for immune intervention, because, in patients with solid adenocarcinomas, low-level cellular and humoral immune responses to MUC1 have been observed, which are not sufficiently strong to eradicate the growing tumor. The hypothesis for this study is that enhancing MUC1-specific immunity will result in antitumor immunity. To test this, the authors have developed a clinically relevant breast cancer model that demonstrates peripheral and central tolerance to MUC1 and develops spontaneous tumors of the mammary gland. In these mice, the authors tested a vaccine formulation comprised of liposomal-MUC1 lipopeptide and human recombinant interleukin-2. Results indicate that when compared with untreated mice, immunized mice develop T cells that express intracellular IFN-gamma, are reactive with MHC class I H-2Db/MUC1 tetramer, and are cytotoxic against MUC1-expressing tumor cells in vitro. The presence of MUC1-specific CTL did not translate into a clinical response as measured by time of tumor onset, tumor burden, and survival. The authors demonstrate that some of the immune-evasion mechanisms used by the tumor cells include downregulation of MHC-class I molecule, expression of TGF-beta2, and decrease in IFN-gamma -expressing effector T cells as tumors progress. Finally, utilizing an injectable breast cancer model, the authors show that targeting a single tumor antigen may not be an effective antitumor treatment, but that immunization with dendritic cells fed with whole tumor lysate is effective in breaking tolerance and protecting mice from subsequent tumor challenge. A physiologically relevant spontaneous breast cancer model has been developed to test improved immunotherapeutic approaches.

  14. Cell death induced by taxanes in breast cancer cells: cytochrome C is released in resistant but not in sensitive cells

    Czech Academy of Sciences Publication Activity Database

    Ehrlichová, Marie; Koc, Michal; Truksa, Jaroslav; Naďová, Zuzana; Václavíková, R.; Kovář, Jan

    2005-01-01

    Roč. 25, 6B (2005), s. 4215-4224 ISSN 0250-7005 R&D Projects: GA MZd(CZ) NL7567 Institutional research plan: CEZ:AV0Z50520514 Keywords : paclitaxel * cell death * breast cancer cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.604, year: 2005

  15. An atypical cause of rapidly progressing breast lump with abscess formation: Pure squamous cell carcinoma of the breast.

    Science.gov (United States)

    Cilekar, Murat; Erkasap, Serdar; Oner, Ulku; Akici, Murat; Ciftci, Evrim; Dizen, Hayrettin; Turel, Serkan; Kavak, Ozgu I; Yilmaz, Sezgin

    2015-01-01

    Squamous cell carcinoma (SCC) is a rare type of breast malignancy and little is known about long-term outcome. In the present report, the clinical features, histopathologic findings and postoperative course of a patient with squamous cell carcinoma are described. We have treated a 47-years-old woman who admitted for right breast mass without any discharge, bleeding and pain. The tumor was, 3 × 2 × 1.5 cm in size with central abscess formation. The result of surgical biopsy revealed large cell keratinizing type of SCC. The metastatic work-up studies ruled out any other probable sources of primary tumor. The patient was performed modified radical mastectomy and axillary dissection and received two cycles of chemotherapy. Squamous cell carcinoma of the breast (SCCB) is a rare entity and should be considered in patients with rapidly progressing breast mass. It should also be considered in breast lesions with abscess formation. The initial therapeutic approach should be surgical excision after histopathological diagnosis.

  16. Inhibition of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-11-21

    Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.

  17. Breast Camps for Awareness and Early Diagnosis of Breast Cancer in Countries With Limited Resources: A Multidisciplinary Model From Kenya.

    Science.gov (United States)

    Sayed, Shahin; Moloo, Zahir; Ngugi, Anthony; Allidina, Amyn; Ndumia, Rose; Mutuiri, Anderson; Wasike, Ronald; Wahome, Charles; Abdihakin, Mohamed; Kasmani, Riaz; Spears, Carol D; Oigara, Raymond; Mwachiro, Elizabeth B; Busarla, Satya V P; Kibor, Kibet; Ahmed, Abdulaziz; Wawire, Jonathan; Sherman, Omar; Saleh, Mansoor; Zujewski, Jo Anne; Dawsey, Sanford M

    2016-09-01

    Breast cancer is the most common cancer of women in Kenya. There are no national breast cancer early diagnosis programs in Kenya. The objective was to conduct a pilot breast cancer awareness and diagnosis program at three different types of facilities in Kenya. This program was conducted at a not-for-profit private hospital, a faith-based public hospital, and a government public referral hospital. Women aged 15 years and older were invited. Demographic, risk factor, knowledge, attitudes, and screening practice data were collected. Breast health information was delivered, and clinical breast examinations (CBEs) were performed. When appropriate, ultrasound imaging, fine-needle aspirate (FNA) diagnoses, core biopsies, and onward referrals were provided. A total of 1,094 women were enrolled in the three breast camps. Of those, 56% knew the symptoms and signs of breast cancer, 44% knew how breast cancer was diagnosed, 37% performed regular breast self-exams, and 7% had a mammogram or breast ultrasound in the past year. Of the 1,094 women enrolled, 246 (23%) had previously noticed a lump in their breast. A total of 157 participants (14%) had abnormal CBEs, of whom 111 had ultrasound exams, 65 had FNAs, and 18 had core biopsies. A total of 14 invasive breast cancers and 1 malignant phyllodes tumor were diagnosed Conducting a multidisciplinary breast camp awareness and early diagnosis program is feasible in different types of health facilities within a low- and middle-income country setting. This can be a model for breast cancer awareness and point-of-care diagnosis in countries with limited resources like Kenya. This work describes a novel breast cancer awareness and early diagnosis demonstration program in a low- and middle-income country within a limited resource setting. The program includes breast self-awareness and breast cancer education, clinical exams, and point-of-care diagnostics for women in three different types of health facilities in Kenya. This pilot

  18. Pure squamous cell carcinoma of the breast presenting as a pyogenic abscess: a case report.

    Science.gov (United States)

    Nair, Vimoj J; Kaushal, Vivek; Atri, Rajeev

    2007-08-01

    The field of oncology is studded with fascinating case reports of rarities, and management of breast cancer by the oncologist has, at times, resulted in the surfacing of such instances of rarities. Pure squamous cell carcinoma (SCC) of the breast is such an example of a rare and generally aggressive malignancy constituting breast cancers. To the best of our knowledge, until 2006, only 5 patients of primary SCC of the breast, which presented clinically as breast abscess, have been reported in medical literature. We report the sixth worldwide case of pure primary SCC of the breast presenting as an abscess. In this report, we highlight the fact that a benign lesion like breast abscess can harbor such a rare malignancy. Clinicians should be aware of that fact, and adequate investigations should be done to rule out that possibility. Extensive literature review has been done to discuss the clinical and radiologic features as well as management of this rare lesion.

  19. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  20. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  1. New use of an old drug: Inhibition of breast cancer stem cells by benztropine mesylate

    OpenAIRE

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells...

  2. Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Kang, Ju-Hee; Song, Ki-Hoon; Jeong, Kyung-Chae; Kim, Sunshin; Choi, Changsun; Lee, Chang Hoon; Oh, Seung Hyun

    2011-01-01

    A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX). We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, DNA fragmentation assays, Western blot analysis, cell invasion assays, small interfering RNA (siRNA) transfection, reverse transcription-polymerase chain reaction, experimental lung metastasis models, and gelatin and fibrinogen/plasminogen zymography to study the molecular mechanism of metastatic activities in MCF-7/DOX cells. We found that MCF-7/DOX acquired invasive activities. In addition, Western blot analysis showed increased expression of epidermal growth factor receptor (EGFR) and Cox-2 in MCF-7/DOX cells. Inhibition of Cox-2, phosphoinositide 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase (MAPK) pathways effectively inhibited the invasive activities of MCF-7/DOX cells. Gelatin and fibrinogen/plasminogen zymography analysis showed that the enzymatic activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator were markedly higher in MCF-7/DOX cells than in the MCF-7 cells. In vitro invasion assays and mouse models of lung metastasis demonstrated that MCF-7/DOX cells acquired invasive abilities. Using siRNAs and agonists specific for prostaglandin E (EP) receptors, we found that EP1 and EP3 played important roles in the invasiveness of MCF-7/DOX cells. We found that the invasive activity of MCF-7/DOX cells is mediated by Cox-2, which is induced by the EGFR-activated PI3K/Akt and MAPK pathways. In addition, EP1 and EP3 are important in

  3. Modelling breast cancer tumour growth for a stable disease population.

    Science.gov (United States)

    Isheden, Gabriel; Humphreys, Keith

    2017-01-01

    Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.

  4. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    Science.gov (United States)

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  5. Myrtus comunis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hrubik Jelena D.

    2012-01-01

    Full Text Available In vitro cytotoxicity of methanol, ethyl acetate, n-buthanol, and water extracts of Myrtus communis L. and Eucalyptus camaldulensis Dehnh. was examined against two human breast cancer cell lines (MCF 7 and MDA-MB-231 using MTT and SRB assays. The results showed significant cytotoxic potential of examined extracts, with IC50 values ranging from 7 to 138 μg/ml for M. communis and 3-250 μg/ml for E. camaldulensis. The two plants generally expressed similar activity, and no significant difference in cell line’s sensitivity towards extracts was observed. The results indicate to M. communis and E. camaldulensis as candidates for thorough chemical analyses for identification of active compounds, and eventually for attention in the process of discovery of new natural products in the control of cancer. [Projekat Ministarstva nauke Republike Srbije, br. 173037 i br. 172058

  6. Low-risk susceptibility alleles in 40 human breast cancer cell lines

    International Nuclear Information System (INIS)

    Riaz, Muhammad; Elstrodt, Fons; Hollestelle, Antoinette; Dehghan, Abbas; Klijn, Jan GM; Schutte, Mieke

    2009-01-01

    Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by which the low-risk SNPs confer breast cancer risks is currently unclear. The breast cancer association consortium BCAC has hypothesized that the low-risk SNPs modulate expression levels of nearby located genes. Genotypes of five low-risk SNPs were determined for 40 human breast cancer cell lines, by direct sequencing of PCR-amplified genomic templates. We have analyzed expression of the four genes that are located nearby the low-risk SNPs, by using real-time RT-PCR and Human Exon microarrays. The SNP genotypes and additional phenotypic data on the breast cancer cell lines are presented. We did not detect any effect of the SNP genotypes on expression levels of the nearby-located genes MAP3K1, FGFR2, TNRC9 and LSP1. The SNP genotypes provide a base line for functional studies in a well-characterized cohort of 40 human breast cancer cell lines. Our expression analyses suggest that a putative disease mechanism through gene expression modulation is not operative in breast cancer cell lines

  7. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi, E-mail: gargi@umich.edu

    2014-11-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds.

  8. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    International Nuclear Information System (INIS)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi

    2014-01-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds

  9. Gene expression of circulating tumour cells in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Bölke E

    2009-09-01

    Full Text Available Abstract Background The diagnostic tools to predict the prognosis in patients suffering from breast cancer (BC need further improvements. New technological achievements like the gene profiling of circulating tumour cells (CTC could help identify new prognostic markers in the clinical setting. Furthermore, gene expression patterns of CTC might provide important informations on the mechanisms of tumour cell metastasation. Materials and methods We performed realtime-PCR and multiplex-PCR analyses following immunomagnetic separation of CTC. Peripheral blood (PB samples of 63 patients with breast cancer of various stages were analyzed and compared to a control group of 14 healthy individuals. After reverse-transcription, we performed multiplex PCR using primers for the genes ga733.3, muc-1 and c-erbB2. Mammaglobin1, spdef and c-erbB2 were analyzed applying realtime-PCR. Results ga733.2 overexpression was found in 12.7% of breast cancer cases, muc-1 in 15.9%, mgb1 in 9.1% and spdef in 12.1%. In this study, c-erbB2 did not show any significant correlation to BC, possibly due to a highly ambient expression. Besides single gene analyses, gene profiles were additionally evaluated. Highly significant correlations to BC were found in single gene analyses of ga733.2 and muc-1 and in gene profile analyses of ga733.3*muc-1 and GA7 ga733.3*muc-1*mgb1*spdef. Conclusion Our study reveals that the single genes ga733.3, muc-1 and the gene profiles ga733.3*muc-1 and ga733.3*3muc-1*mgb1*spdef can serve as markers for the detection of CTC in BC. The multigene analyses found highly positive levels in BC patients. Our study indicates that not single gene analyses but subtle patterns of multiple genes lead to rising accuracy and low loss of specificity in detection of breast cancer cases.

  10. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  11. Prolactin-inducible proteins in human breast cancer cells

    International Nuclear Information System (INIS)

    Shiu, R.P.; Iwasiow, B.M.

    1985-01-01

    The mechanism of action of prolactin in target cells and the role of prolactin in human breast cancer are poorly understood phenomena. The present study examines the effect of human prolactin (hPRL) on the synthesis of unique proteins by a human breast cancer cell line, T-47D, in serum-free medium containing bovine serum albumin. [ 35 S]Methionine-labeled proteins were analysed by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. Treatment of cells with hPRL (1-1000 ng/ml) and hydrocortisone (1 microgram/ml) for 36 h or longer resulted in the synthesis and secretion of three proteins having molecular weights of 11,000, 14,000, and 16,000. Neither hPRL nor hydrocortisone alone induced these proteins. Of several other peptide hormones tested, only human growth hormone, a hormone structurally and functionally similar to hPRL, could replace hPRL in causing protein induction. These three proteins were, therefore, referred to as prolactin-inducible proteins (PIP). Each of the three PIPs was purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and specific antibodies were generated to them in rabbits. By immunoprecipitation and immunoblotting (Western blot) of proteins secreted by T-47D cells, it was demonstrated that the three PIPs were immunologically identical to one another. In addition, the 16-kDa and 14-kDa proteins (PIP-16 and PIP-14), and not the 11-kDa protein (PIP-11), incorporated [ 3 H]glycosamine. Furthermore, 2-deoxyglucose (2 mM) and tunicamycin (0.5 micrograms/ml), two compounds known to inhibit glycosylation, blocked the production of PIP-16 and PIP-14, with a concomitant increase in the accumulation of PIP-11

  12. Tumor xenograft modeling identifies an association between TCF4 loss and breast cancer chemoresistance

    Directory of Open Access Journals (Sweden)

    Gorka Ruiz de Garibay

    2018-05-01

    Full Text Available Understanding the mechanisms of cancer therapeutic resistance is fundamental to improving cancer care. There is clear benefit from chemotherapy in different breast cancer settings; however, knowledge of the mutations and genes that mediate resistance is incomplete. In this study, by modeling chemoresistance in patient-derived xenografts (PDXs, we show that adaptation to therapy is genetically complex and identify that loss of transcription factor 4 (TCF4; also known as ITF2 is associated with this process. A triple-negative BRCA1-mutated PDX was used to study the genetics of chemoresistance. The PDX was treated in parallel with four chemotherapies for five iterative cycles. Exome sequencing identified few genes with de novo or enriched mutations in common among the different therapies, whereas many common depleted mutations/genes were observed. Analysis of somatic mutations from The Cancer Genome Atlas (TCGA supported the prognostic relevance of the identified genes. A mutation in TCF4 was found de novo in all treatments, and analysis of drug sensitivity profiles across cancer cell lines supported the link to chemoresistance. Loss of TCF4 conferred chemoresistance in breast cancer cell models, possibly by altering cell cycle regulation. Targeted sequencing in chemoresistant tumors identified an intronic variant of TCF4 that may represent an expression quantitative trait locus associated with relapse outcome in TCGA. Immunohistochemical studies suggest a common loss of nuclear TCF4 expression post-chemotherapy. Together, these results from tumor xenograft modeling depict a link between altered TCF4 expression and breast cancer chemoresistance.

  13. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    Science.gov (United States)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  14. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    Science.gov (United States)

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  15. Role of Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    Science.gov (United States)

    2006-05-01

    of COG complex function we utilized RNA interference assay to knockdown COG3p subunit of COG complex in normal and breast cancer cells and other tumor...protein trafficking, but the role of the COG complex in the abnormal glycosylation and secretion of tumor markers in breast cancer cells remains... COG complex in breast cancer cells MCF7 had been elevated 2-4 times in comparison to HB2 cells (Figure 5 A). The expression of HeLa COG3 CD44 ab

  16. Function of AURKA protein kinase in the formation of vasculogenic mimicry in triple-negative breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Liu Y

    2016-06-01

    Full Text Available Ying Liu,1,2,* Baocun Sun,1–3,* Tieju Liu,1,2,* Xiulan Zhao,1,2 Xudong Wang,3 Yanlei Li,1,2 Jie Meng,2 Qiang Gu,1,2 Fang Liu,1,2 Xueyi Dong,1,2 Peimei Liu,2 Ran Sun,2 Nan Zhao1 1Department of Pathology, General Hospital of Tianjin Medical University, 2Department of Pathology, Tianjin Medical University, 3Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Tumor cell vasculogenic mimicry (VM, a newly defined pattern of tumor blood supply, signifies the functional plasticity of aggressive cancer cells forming vascular networks. VM and cancer stem cells (CSCs have been shown to be associated with tumor growth, local invasion, and distant metastasis. In our previous study, CSCs in triple-negative breast cancer were potential to participate in VM formation. In this study, breast CSCs were isolated from the triple-negative breast cancer cell line MDA-MB-231 by using mammosphere culture. Western blotting and reverse transcription polymerase chain reaction showed that mammosphere cells displayed an increased expression of AURKA protein kinase and stem cell marker c-myc and sox2. The VM formation by mammosphere cells was inhibited by AURKA knockdown or the addition of AURKA inhibitor MLN8237. In the meantime, MLN8237 induced the increased E-cadherin and decreased c-myc, sox2, and β-catenin expressions. The function of AURKA in VM formation was further confirmed using a xenograft-murine model. The results suggested that AURKA protein kinase is involved in VM formation of CSCs and may become a new treatment target in suppressing VM and metastasis of breast cancer. Keywords: AURKA, cancer stem cells, vasculogenic mimicry, breast cancer

  17. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    Science.gov (United States)

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Metastatic Signet-Ring Cell Gastric Carcinoma Masquerading as Breast Primary

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra Doval

    2009-03-01

    Full Text Available Metastasis to the breast from an extra-mammary primary is a rare phenomenon; metastasis from gastric carcinoma to the breast is extremely so. We report a case who initially presented as mucin-secreting and signet-ring cell tumor of the ovary, and after an interval of 8 months with breast and chest wall metastatic nodules. The covert gastric primary eluded the oncologists at both presentations.

  19. Establishment and characterization of two human breast carcinoma cell lines by spontaneous immortalization: Discordance between Estrogen, Progesterone and HER2/neu receptors of breast carcinoma tissues with derived cell lines

    Directory of Open Access Journals (Sweden)

    Kamalidehghan Behnam

    2012-10-01

    Full Text Available Abstract Background Breast cancer is one of the most common cancers among women throughout the world. Therefore, established cell lines are widely used as in vitro experimental models in cancer research. Methods Two continuous human breast cell lines, designated MBC1 and MBC2, were successfully established and characterized from invasive ductal breast carcinoma tissues of Malaysian patients. MBC1 and MBC2 have been characterized in terms of morphology analysis, population doubling time, clonogenic formation, wound healing assay, invasion assay, cell cycle, DNA profiling, fluorescence immunocytochemistry, Western blotting and karyotyping. Results MBC1 and MBC2 exhibited adherent monolayer epithelial morphology at a passage number of 150. Receptor status of MBC1 and MBC2 show (ER+, PR+, HER2+ and (ER+, PR-, HER2+, respectively. These results are in discordance with histopathological studies of the tumoral tissues, which were triple negative and (ER-, PR-, HER2+ for MBC1 and MBC2, respectively. Both cell lines were capable of growing in soft agar culture, which suggests their metastatic potential. The MBC1 and MBC2 metaphase spreads showed an abnormal karyotype, including hyperdiploidy and complex rearrangements with modes of 52–58 chromosomes per cell. Conclusions Loss or gain in secondary properties, deregulation and specific genetic changes possibly conferred receptor changes during the culturing of tumoral cells. Thus, we hypothesize that, among heterogenous tumoral cells, only a small minority of ER+/PR+/HER2+ and ER+/PR-/HER2+ cells with lower energy metabolism might survive and adjust easily to in vitro conditions. These cell lines will pave the way for new perspectives in genetic and biological investigations, drug resistance and chemotherapy studies, and would serve as prototype models in Malaysian breast carcinogenesis investigations.

  20. Modeling digital breast tomosynthesis imaging systems for optimization studies

    Science.gov (United States)

    Lau, Beverly Amy

    Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a

  1. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Directory of Open Access Journals (Sweden)

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  2. Surface topography and ultrastructural changes of mucinous carcinoma breast cells.

    Science.gov (United States)

    Voloudakis, G E; Baltatzis, G E; Agnantis, N J; Arnogianaki, N; Misitzis, J; Voloudakis-Baltatzis, I

    2007-01-01

    Mucinous carcinoma of the breast (MCB) is histologically classified into 2 groups: (1) pure MCB and (2) mixed MCB. Pure MCB carries a better diagnosis than mixed MCB. This research relates to the cell surface topography and ultrastructure of the cells in the above cases and aims to find the differences between them, by means of two methods: scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For the SEM examination, it was necessary to initially culture the MCB tissues and then proceed with the usual SEM method. In contrast, for the TEM technique, MCB tissues were initially fixed followed by the classic TEM method. The authors found the topography of pure MCB cases to be without nodes. The cell membrane was smooth, with numerous pores and small ruffles that covered the entire cell. The ultrastructural appearance of the same cases was with a normal cell membrane containing abundant collagen fibers. They also had many small vesicles containing mucin as well as secretory droplets. In contrast the mixed MCB had a number of lymph nodes and their cell surface topography showed stronger changes such as microvilli, numerous blebs, ruffles and many long projections. Their ultrastructure showed very long microvilli with large cytoplasmic inclusions and extracellular mucin collections, electron-dense material vacuoles, and many important cytoplasmic organelles. An important fact is that mixed MCB also contains areas of infiltrating ductal carcinoma. These cells of the cytoplasmic organelles are clearly responsible for the synthesis, storage, and secretion of the characteristic mucin of this tumor type. Evidently, this abnormal mucin production and the abundance of secretory granules along with the long projections observed in the topographical structure might be responsible for transferring tumor cells to neighboring organs, thus being responsible for metastatic disease.

  3. Cordycepin, a Natural Antineoplastic Agent, Induces Apoptosis of Breast Cancer Cells via Caspase-dependent Pathways.

    Science.gov (United States)

    Wang, Di; Zhang, Yongfeng; Lu, Jiahui; Wang, Yang; Wang, Junyue; Meng, Qingfan; Lee, Robert J; Wang, Di; Teng, Lesheng

    2016-01-01

    Cordycepin, a major compound separated from Cordyceps sinensis, is known as a potential novel candidate for cancer therapy. Breast cancer, the most typical cancer diagnosed among women, remains a global health problem. In this study, the anti-breast cancer property of cordycepin and its underlying mechanisms was investigated. The direct effects of cordycepin on breast cancer cells both in in vitro and in vivo experiments were evaluated. Cordycepin exerted cytotoxicity in MCF-7 and MDA-MB-231 cells confirmed by reduced cell viability, inhibition of cell proliferation, enhanced lactate dehydrogenase release and reactive oxygen species accumulation, induced mitochondrial dysfunction and nuclear apoptosis in human breast cancer cells. Cordycepin increased the activation of pro-apoptotic proteins, including caspase-8, caspase-9, caspase-3 and Bax, and suppressed the expression of the anti-apoptotic protein, B-cell lymphoma 2 (Bcl-2). The inhibition on MCF-7-xenografted tumor growth in nude mice further confirmed cordycepin's anti-breast cancer effect. These aforementioned results reveal that cordycepin induces apoptosis in human breast cancer cells via caspase-dependent pathways. The data shed light on the possibility of cordycepin being a safe agent for breast cancer treatment.

  4. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-06

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.

  5. Characterization of a naturally occurring breast cancer subset enriched in EMT and stem cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Gilcrease, Michael Z.; Krishnamurthy, Savitri; Lee, Ju-Seog; Fridlyand, Jane; Sahin, Aysegul; Agarwal, Roshan; Joy, Corwin; Liu, Wenbin; Stivers, David; Baggerly, Keith; Carey, Mark; Lluch, Ana; Monteagudo, Carlos; He, Xiaping; Weigman, Victor; Fan, Cheng; Palazzo, Juan; Hortobagyi, Gabriel N.; Nolden, Laura K.; Wang, Nicholas J.; Valero, Vicente; Gray, Joe W.; Perou, Charles M.; Mills, Gordon B.

    2009-05-19

    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a 'tumorigenic' signature defined using CD44{sup +}/CD24{sup -} breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

  6. Developing a workplace breast feeding support model for employed lactating mothers.

    Science.gov (United States)

    Yimyam, Susanha; Hanpa, Wasana

    2014-06-01

    Resuming work is often considered an obstacle for continued breast feeding. The objectives of this participatory action research study were to develop a breast feeding support model in the workplace and to compare breast feeding rates before and after implementation of the breast feeding support campaign. Twenty-four women participated before the implementation of the breast feeding support campaign, whereas 31 women participated after the campaign. Data were collected by interviewing employed women about their breast feeding practices within six months post partum. Additional data were collected through interviews with the workplace administrator and head of work sections as well as observation of the breast feeding support campaigns. Qualitative data were analysed using thematic analysis, whereas quantitative data were analysed using descriptive statistics and χ(2) test. The workplace breast feeding support model was developed based on the concept of Mother-Friendly Workplace Initiatives by the World Alliance for Breastfeeding Action (WABA) and the Thai government׳s promotion of a workplace breast feeding corner. Within this model, a committee for breast feeding support was created for working with the research team to develop breast feeding activities and media for breast feeding education and breast feeding support campaigns in the workplace. Breast feeding rates at six months after implementation of the breast feeding support campaign were significantly higher than rates before, both for exclusive breast feeding and any breast feeding at levels .004 and .033, respectively. These results suggest that breast feeding should be encouraged in every workplace depending on context. Individual advice and help for employed mothers should be provided from pregnancy through weaning in the postpartum period. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  8. Fluorescent polymer-based post-translational differentiation and subtyping of breast cancer cells.

    Science.gov (United States)

    Scott, Michael D; Dutta, Rinku; Haldar, Manas K; Wagh, Anil; Gustad, Thomas R; Law, Benedict; Friesner, Daniel L; Mallik, Sanku

    2012-12-07

    Herein, we report the application of synthesized fluorescent, water soluble polymers for post-translational subtyping and differentiation of breast cancer cells in vitro. The fluorescence emission spectra from these polymers were modulated differently in the presence of conditioned cell culture media from various breast cancer cells. These polymers differentiate at a post-translation level possibly due to their ability to interact with extracellular enzymes that are over-expressed in cancerous conditions.

  9. Cell cycle regulatory proteins and miRNAs in premalignant lesions and breast cancer

    OpenAIRE

    Björner, Sofie

    2013-01-01

    Early diagnosis and reliable prognosis and treatment prediction of breast cancer will ultimately lead to a decreased mortality rate. This can be achieved by identification of prognostic and treatment predictive biomarkers, and by understanding the mechanisms behind early changes in the breast. The cell cycle is a closely controlled process, involving multiple components with regulation on several levels. Loss of adequate cell proliferation control and cell cycle regulation is one of the ma...

  10. The T61 human breast cancer xenograft: an experimental model of estrogen therapy of breast cancer

    DEFF Research Database (Denmark)

    Brunner, N; Spang-Thomsen, M; Cullen, K

    1996-01-01

    Endocrine therapy is one of the principal treatment modalities of breast cancer, both in an adjuvant setting and in advanced disease. The T61 breast cancer xenograft described here provides an experimental model of the effects of estrogen treatment at a molecular level. T61 is an estrogen receptor......-II), but not transforming growth factor beta-I (TGF-beta1). Of these, IGF-II is the only peptide whose expression is altered by endocrine therapy. Treatment of T61-bearing nude mice with physiologic doses of estrogen is accompanied by loss of IGF-II mRNA expression within 24 hours, and rapid regression of tumor. T61 tumor...

  11. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T.; Lorenz, Katrin; Lee, Eva H.; Barcellos-Hoff, Mary Helen; Petersen, Ole W.; Gray, Joe W.; Bissell, MinaJ.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.

  12. Radiation Gene-expression Signatures in Primary Breast Cancer Cells.

    Science.gov (United States)

    Minafra, Luigi; Bravatà, Valentina; Cammarata, Francesco P; Russo, Giorgio; Gilardi, Maria C; Forte, Giusi I

    2018-05-01

    In breast cancer (BC) care, radiation therapy (RT) is an efficient treatment to control localized tumor. Radiobiological research is needed to understand molecular differences that affect radiosensitivity of different tumor subtypes and the response variability. The aim of this study was to analyze gene expression profiling (GEP) in primary BC cells following irradiation with doses of 9 Gy and 23 Gy delivered by intraoperative electron radiation therapy (IOERT) in order to define gene signatures of response to high doses of ionizing radiation. We performed GEP by cDNA microarrays and evaluated cell survival after IOERT treatment in primary BC cell cultures. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate candidate genes. We showed, for the first time, a 4-gene and a 6-gene signature, as new molecular biomarkers, in two primary BC cell cultures after exposure at 9 Gy and 23 Gy respectively, for which we observed a significantly high survival rate. Gene signatures activated by different doses of ionizing radiation may predict response to RT and contribute to defining a personalized biological-driven treatment plan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ in normal mammary epithelial cells and breast tumors.

    Directory of Open Access Journals (Sweden)

    Chanel E Smart

    Full Text Available The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  14. Simulation models in population breast cancer screening: A systematic review.

    Science.gov (United States)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    2015-08-01

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for qualitative assessment which incorporated model type; input parameters; modeling approach, transparency of input data sources/assumptions, sensitivity analyses and risk of bias; validation, and outcomes was developed. Predicted mortality reduction (MR) and cost-effectiveness (CE) were compared to estimates from meta-analyses of randomized control trials (RCTs) and acceptability thresholds. Seven original simulation models were distinguished, all sharing common input parameters. The modeling approach was based on tumor progression (except one model) with internal and cross validation of the resulting models, but without any external validation. Differences in lead times for invasive or non-invasive tumors, and the option for cancers not to progress were not explicitly modeled. The models tended to overestimate the MR (11-24%) due to screening as compared to optimal RCTs 10% (95% CI - 2-21%) MR. Only recently, potential harms due to regular breast cancer screening were reported. Most scenarios resulted in acceptable cost-effectiveness estimates given current thresholds. The selected models have been repeatedly applied in various settings to inform decision making and the critical analysis revealed high risk of bias in their outcomes. Given the importance of the models, there is a need for externally validated models which use systematical evidence for input data to allow for more critical evaluation of breast cancer screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer

    NARCIS (Netherlands)

    Franken, Bas; De Groot, Marco R.; Mastboom, Walter J.B.; Vermes, I.; van der Palen, Jacobus Adrianus Maria; Tibbe, Arjan G.J.; Terstappen, Leonardus Wendelinus Mathias Marie

    2012-01-01

    Introduction The presence of circulating tumor cells (CTC) is an independent prognostic factor for progression-free survival and breast cancer-related death (BRD) for patients with metastatic breast cancer beginning a new line of systemic therapy. The current study was undertaken to explore whether

  16. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Directory of Open Access Journals (Sweden)

    Mariam El-Ashmawy

    Full Text Available Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs. In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF = 1.3, and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  17. Granular cell tumor of the breast: a report of the three cases

    International Nuclear Information System (INIS)

    Mellado, M.; Pina, L.; Cojo, R.; Arias-Camison, I.

    2000-01-01

    Granular cell tumors (GCT) of the breast are uncommon benign neoplasms that are usually indistinguishable from breast cancer with respect to their clinical and radiological presentation. FNAB can be a usefull diagnostic tool, but histological examination is essential for the correct diagnosis. This benign tumor should be considered among the diagnostic possibilities in the presence of a lesion with mammographic and ultrasonographic indications of highly probable malignancy. We present three cases of breast GCT that mimicked primary breast cancer. Benign neoplasm was diagnosed and local excision was carried out rather than mastectomy and lymphadenectomy. (Author) 9 refs

  18. Cyclohexylmethyl Flavonoids Suppress Propagation of Breast Cancer Stem Cells via Downregulation of NANOG

    Directory of Open Access Journals (Sweden)

    Wen-Ying Liao

    2013-01-01

    Full Text Available Breast cancer stem cells (CSCs are highly tumorigenic and possess the capacity to self-renew. Recent studies indicated that pluripotent gene NANOG involves in regulating self-renewal of breast CSCs, and expression of NANOG is correlated with aggressiveness of poorly differentiated breast cancer. We initially confirmed that breast cancer MCF-7 cells expressed NANOG, and overexpression of NANOG enhanced the tumorigenicity of MCF-7 cells and promoted the self-renewal expansion of CD24−/lowCD44+ CSC subpopulation. In contrast, knockdown of NANOG significantly affected the growth of breast CSCs. Utilizing flow cytometry, we identified five cyclohexylmethyl flavonoids that can inhibit propagation of NANOG-positive cells in both breast cancer MCF-7 and MDA-MB231 cells. Among these flavonoids, ugonins J and K were found to be able to induce apoptosis in non-CSC populations and to reduce self-renewal growth of CD24−/lowCD44+ CSC population. Treatment with ugonin J significantly reduced the tumorigenicity of MCF-7 cells and efficiently suppressed formation of mammospheres. This suppression was possibly due to p53 activation and NANOG reduction as either addition of p53 inhibitor or overexpression of NANOG can counteract the suppressive effect of ugonin J. We therefore conclude that cyclohexylmethyl flavonoids can possibly be utilized to suppress the propagation of breast CSCs via reduction of NANOG.

  19. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    International Nuclear Information System (INIS)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T

    2014-01-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays

  20. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T [University of Wisconsin, Madison, WI (United States)

    2014-06-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays.

  1. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics

    International Nuclear Information System (INIS)

    Scimeca, Manuel; Giannini, Elena; Antonacci, Chiara; Pistolese, Chiara Adriana; Spagnoli, Luigi Giusto; Bonanno, Elena

    2014-01-01

    Mammary microcalcifications have a crucial role in breast cancer detection, but the processes that induce their formation are unknown. Moreover, recent studies have described the occurrence of the epithelial–mesenchymal transition (EMT) in breast cancer, but its role is not defined. In this study, we hypothesized that epithelial cells acquire mesenchymal characteristics and become capable of producing breast microcalcifications. Breast sample biopsies with microcalcifications underwent energy dispersive X-ray microanalysis to better define the elemental composition of the microcalcifications. Breast sample biopsies without microcalcifications were used as controls. The ultrastructural phenotype of breast cells near to calcium deposits was also investigated to verify EMT in relation to breast microcalcifications. The mesenchymal phenotype and tissue mineralization were studied by immunostaining for vimentin, BMP-2, β2-microglobulin, β-catenin and osteopontin (OPN). The complex formation of calcium hydroxyapatite was strictly associated with malignant lesions whereas calcium-oxalate is mainly reported in benign lesions. Notably, for the first time, we observed the presence of magnesium-substituted hydroxyapatite, which was frequently noted in breast cancer but never found in benign lesions. Morphological studies demonstrated that epithelial cells with mesenchymal characteristics were significantly increased in infiltrating carcinomas with microcalcifications and in cells with ultrastructural features typical of osteoblasts close to microcalcifications. These data were strengthened by the rate of cells expressing molecules typically involved during physiological mineralization (i.e. BMP-2, OPN) that discriminated infiltrating carcinomas with microcalcifications from those without microcalcifications. We found significant differences in the elemental composition of calcifications between benign and malignant lesions. Observations of cell phenotype led us to

  2. Regulation of Akt/Protein Kinase B Signaling by a Novel Protein Phosphatase in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Brognard, John; Newton, Alexandra

    2008-01-01

    ...: cell proliferation, growth, and apoptosis. Finally, since this phosphatase resides in a location of frequent loss of heterozygosity in breast cancer, we sought to determine if this phosphatase played a role in breast tumorigenesis...

  3. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

    Science.gov (United States)

    Surichan, Somchaiya; Androutsopoulos, Vasilis P; Sifakis, Stavros; Koutala, Eleni; Tsatsakis, Aristidis; Arroo, Randolph R J; Boarder, Michael R

    2012-09-01

    Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Breast metastasis and lung large-cell neuroendocrine carcinoma: first clinical observation.

    Science.gov (United States)

    Papa, Anselmo; Rossi, Luigi; Verrico, Monica; Di Cristofano, Claudio; Moretti, Valentina; Strudel, Martina; Zoratto, Federica; Minozzi, Marina; Tomao, Silverio

    2017-09-01

    The lung large-cell neuroendocrine carcinoma (LCNEC) is a very rare aggressive neuroendocrine tumor with a high propensity to metastasize and very poor prognosis. We report an atypical presentation of lung LCNEC was diagnosed from a metastatic nodule on the breast. Our patient is a 59-years-old woman that presented in March 2014 nonproductive cough. A CT scan showed multiple brain, lung, adrenal gland and liver secondary lesions; moreover, it revealed a breast right nodule near the chest measuring 1.8 cm. The breast nodule and lung lesions were biopsied and their histology and molecular diagnosis were LCNEC of the lung. To our knowledge, this is the first documented case of breast metastasis from LCNEC of the lung. Furthermore, breast metastasis from extramammary malignancy is uncommon and its diagnosis is difficult but important for proper management and prediction of prognosis. Therefore, a careful clinical history with a thorough clinical examination is needed to make the correct diagnosis. Moreover, metastasis to the breast should be considered in any patient with a known primary malignant tumor history who presents with a breast lump. Anyhow, pathological examination should be performed to differentiate the primary breast cancer from metastatic tumor. Therefore, an accurate diagnosis of breast metastases may not only avoid unnecessary breast resection, more importantly it is crucial to determine an appropriate and systemic treatment. © 2015 John Wiley & Sons Ltd.

  5. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer

    International Nuclear Information System (INIS)

    Kang, Hua; Watkins, Gareth; Parr, Christian; Douglas-Jones, Anthony; Mansel, Robert E; Jiang, Wen G

    2005-01-01

    Stromal cell-derived factor (SDF)-1 (CXC chemokine ligand-12) is a member of the CXC subfamily of chemokines, which, through its cognate receptor (CXC chemokine receptor [CXCR]4), plays an important role in chemotaxis of cancer cells and in tumour metastasis. We conducted the present study to evaluate the effect of SDF-1 on the invasiveness and migration of breast cancer cells, and we analyzed the expression of SDF-1 and its relation to clinicopathological features and clinical outcomes in human breast cancer. Expression of SDF-1 mRNA in breast cancer, endothelial (HECV) and fibroblast (MRC5) cell lines and in human breast tissues were studied using RT-PCR. MDA-MB-231 cells were transfected with a SDF-1 expression vector, and their invasiveness and migration was tested in vitro. In addition, the expression of SDF-1 was investigated using immunohistochemistry and quantitative RT-PCR in samples of normal human mammary tissue (n = 32) and mammary tumour (n = 120). SDF-1 expression was identified in MRC5, MDA-MB-435s and MDA-MB-436 cell lines, but CXCR4 expression was detected in all cell lines and breast tissues. An autocrine loop was created following transfection of MDA-MB-231 (which was CXCR4 positive and SDF-1 negative) with a mammalian expression cassette encoding SDF-1 (MDA-MB-231SDF1 +/+ ) or with control plasmid pcDNA4/GFP (MDA-MB-231 +/- ). MDA-MB-231SDF1 +/+ cells exhibited significantly greater invasion and migration potential (in transfected cells versus in wild type and empty MDA-MB-231 +/- ; P < 0.01). In mammary tissues SDF-1 staining was primarily seen in stromal cells and weakly in mammary epithelial cells. Significantly higher levels of SDF-1 were seen in node-positive than in node-negative tumours (P = 0.05), in tumours that metastasized (P = 0.05), and tumours from patients who died (P = 0.03) than in tumours from patients who were disease free. It was most notable that levels of SDF-1 correlated significantly with overall survival (P = 0.001) and

  6. Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain.

    Science.gov (United States)

    Priceman, Saul J; Tilakawardane, Dileshni; Jeang, Brook; Aguilar, Brenda; Murad, John P; Park, Anthony K; Chang, Wen-Chung; Ostberg, Julie R; Neman, Josh; Jandial, Rahul; Portnow, Jana; Forman, Stephen J; Brown, Christine E

    2018-01-01

    Purpose: Metastasis to the brain from breast cancer remains a significant clinical challenge, and may be targeted with CAR-based immunotherapy. CAR design optimization for solid tumors is crucial due to the absence of truly restricted antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we have optimized HER2-CAR T cells for the treatment of breast to brain metastases, and determined optimal second-generation CAR design and route of administration for xenograft mouse models of breast metastatic brain tumors, including multifocal and leptomeningeal disease. Experimental Design: HER2-CAR constructs containing either CD28 or 4-1BB intracellular costimulatory signaling domains were compared for functional activity in vitro by measuring cytokine production, T-cell proliferation, and tumor killing capacity. We also evaluated HER2-CAR T cells delivered by intravenous, local intratumoral, or regional intraventricular routes of administration using in vivo human xenograft models of breast cancer that have metastasized to the brain. Results: Here, we have shown that HER2-CARs containing the 4-1BB costimulatory domain confer improved tumor targeting with reduced T-cell exhaustion phenotype and enhanced proliferative capacity compared with HER2-CARs containing the CD28 costimulatory domain. Local intracranial delivery of HER2-CARs showed potent in vivo antitumor activity in orthotopic xenograft models. Importantly, we demonstrated robust antitumor efficacy following regional intraventricular delivery of HER2-CAR T cells for the treatment of multifocal brain metastases and leptomeningeal disease. Conclusions: Our study shows the importance of CAR design in defining an optimized CAR T cell, and highlights intraventricular delivery of HER2-CAR T cells for treating multifocal brain metastases. Clin Cancer Res; 24(1); 95-105. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Breast Implant-Associated Anaplastic Large Cell Lymphoma: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Eva Berlin

    2018-01-01

    Full Text Available We are reporting the case of a 58-year-old woman with history of bilateral silicone breast implants for cosmetic augmentation. At 2-year interval from receiving the breast implants, she presented with swelling of the right breast with associated chest wall mass, effusion around the implant, and axillary lymphadenopathy. Pathology confirmed breast implant-associated anaplastic large cell lymphoma (stage III, T4N2M0, using BIA-ALCL TNM staging and stage IIAE, using Ann-Arbor staging. The patient underwent bilateral capsulectomy and right partial mastectomy with excision of the right breast mass and received adjuvant CHOP chemotherapy and radiation to the right breast and regional nodes. Since completion of multimodality therapy, the patient has sustained remission on both clinical exam and PET/CT scan. We report this case and review of the literature on this rare form of lymphoma.

  8. Breast Implant-Associated Anaplastic Large Cell Lymphoma: Case Report and Review of the Literature.

    Science.gov (United States)

    Berlin, Eva; Singh, Kunwar; Mills, Christopher; Shapira, Ilan; Bakst, Richard L; Chadha, Manjeet

    2018-01-01

    We are reporting the case of a 58-year-old woman with history of bilateral silicone breast implants for cosmetic augmentation. At 2-year interval from receiving the breast implants, she presented with swelling of the right breast with associated chest wall mass, effusion around the implant, and axillary lymphadenopathy. Pathology confirmed breast implant-associated anaplastic large cell lymphoma (stage III, T4N2M0, using BIA-ALCL TNM staging and stage IIAE, using Ann-Arbor staging). The patient underwent bilateral capsulectomy and right partial mastectomy with excision of the right breast mass and received adjuvant CHOP chemotherapy and radiation to the right breast and regional nodes. Since completion of multimodality therapy, the patient has sustained remission on both clinical exam and PET/CT scan. We report this case and review of the literature on this rare form of lymphoma.

  9. Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model.

    Science.gov (United States)

    Salafzoon, Samaneh; Mahmoodzadeh Hosseini, Hamideh; Halabian, Raheleh

    2017-10-21

    Background Abnormal metabolism is a common event in cancerous cells. For example, the increase of reactive oxygen species (ROS) production, particularly due to aerobic respiration during invasive stage, results in cancer progression. Herein, the impact of kombucha tea prepared from ginger on the alteration of antioxidant agents was assessed in the breast cancer animal model. Methods Two types of kombucha tea with or without ginger were administered to BALB/c mice before and after tumor challenge. Superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) were evaluated in tumor, liver and kidney. Results Administration of kombucha ginger tea significantly decreased catalase activity as well as GSH and MDA level in tumor homogenate (pkombucha ginger tea (pkombucha prepared from ginger could exert minor antioxidant impacts by balancing multi antioxidant factors in different tissues in the breast cancer models.

  10. TMEPAI genome editing in triple negative breast cancer cells

    Directory of Open Access Journals (Sweden)

    Bantari W.K. Wardhani

    2017-05-01

    Full Text Available Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9 is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA. By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining or HDR (homology-directed repair and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI gene in the triple negative breast cancer cell line.Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.

  11. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  12. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  13. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis.

    Science.gov (United States)

    Bidard, François-Clément; Michiels, Stefan; Riethdorf, Sabine; Mueller, Volkmar; Esserman, Laura J; Lucci, Anthony; Naume, Bjørn; Horiguchi, Jun; Gisbert-Criado, Rafael; Sleijfer, Stefan; Toi, Masakazu; Garcia-Saenz, Jose A; Hartkopf, Andreas; Generali, Daniele; Rothé, Françoise; Smerage, Jeffrey; Muinelo-Romay, Laura; Stebbing, Justin; Viens, Patrice; Magbanua, Mark Jesus M; Hall, Carolyn S; Engebraaten, Olav; Takata, Daisuke; Vidal-Martínez, José; Onstenk, Wendy; Fujisawa, Noriyoshi; Diaz-Rubio, Eduardo; Taran, Florin-Andrei; Cappelletti, Maria Rosa; Ignatiadis, Michail; Proudhon, Charlotte; Wolf, Denise M; Bauldry, Jessica B; Borgen, Elin; Nagaoka, Rin; Carañana, Vicente; Kraan, Jaco; Maestro, Marisa; Brucker, Sara Yvonne; Weber, Karsten; Reyal, Fabien; Amara, Dominic; Karhade, Mandar G; Mathiesen, Randi R; Tokiniwa, Hideaki; Llombart-Cussac, Antonio; Meddis, Alessandra; Blanche, Paul; d'Hollander, Koenraad; Cottu, Paul; Park, John W; Loibl, Sibylle; Latouche, Aurélien; Pierga, Jean-Yves; Pantel, Klaus

    2018-04-12

    We conducted a meta-analysis in nonmetastatic breast cancer patients treated by neoadjuvant chemotherapy (NCT) to assess the clinical validity of circulating tumor cell (CTC) detection as a prognostic marker. We collected individual patient data from 21 studies in which CTC detection by CellSearch was performed in early breast cancer patients treated with NCT. The primary end point was overall survival, analyzed according to CTC detection, using Cox regression models stratified by study. Secondary end points included distant disease-free survival, locoregional relapse-free interval, and pathological complete response. All statistical tests were two-sided. Data from patients were collected before NCT (n = 1574) and before surgery (n = 1200). CTC detection revealed one or more CTCs in 25.2% of patients before NCT; this was associated with tumor size (P < .001). The number of CTCs detected had a detrimental and decremental impact on overall survival (P < .001), distant disease-free survival (P < .001), and locoregional relapse-free interval (P < .001), but not on pathological complete response. Patients with one, two, three to four, and five or more CTCs before NCT displayed hazard ratios of death of 1.09 (95% confidence interval [CI] = 0.65 to 1.69), 2.63 (95% CI = 1.42 to 4.54), 3.83 (95% CI = 2.08 to 6.66), and 6.25 (95% CI = 4.34 to 9.09), respectively. In 861 patients with full data available, adding CTC detection before NCT increased the prognostic ability of multivariable prognostic models for overall survival (P < .001), distant disease-free survival (P < .001), and locoregional relapse-free interval (P = .008). CTC count is an independent and quantitative prognostic factor in early breast cancer patients treated by NCT. It complements current prognostic models based on tumor characteristics and response to therapy.

  14. Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer.

    Science.gov (United States)

    Li, Teng; Liu, Yun; Xiao, Haifeng; Xu, Guanghui

    2017-07-01

    Long non-coding RNAs (LncRNAs) utilize a wide variety of mechanisms to regulate RNAs or proteins on the transcriptional or post-transcriptional levels. Accumulating studies have identified numerous LncRNAs to exert critical effects on different physiological processes, genetic disorders, and human diseases. Both clinical tissues from breast cancer patients and cultured cells were used for the qRT-PCR analysis. Specific siRNAs were included to assess the roles of TUG1 with cell viability assay, transwell assay, and cell apoptosis assay, respectively. The expression of TUG1 was enhanced in breast cancerous tissues and in highly invasive breast cancer cell lines and was associated with clinical variables, including tumor size, distant metastasis and TNM staging. Knockdown of TUG1 significantly slowed down cell proliferation, cell migration, and invasion in breast cancer cell lines MDA-MB-231 and MDA-MB-436. In addition, cell apoptotic rate was shown to increase upon siTUG1 treatment as evidenced by increases of the activities of caspase-3 and caspase-9. The identification of TUG1 as a critical mediator of breast cancer progression implied that it might serve as a biomarker for the diagnosis and treatment of breast cancer in clinic.

  15. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  16. Breast implant capsule-associated squamous cell carcinoma: a report of 2 cases.

    Science.gov (United States)

    Olsen, Daniel L; Keeney, Gary L; Chen, Beiyun; Visscher, Daniel W; Carter, Jodi M

    2017-09-01

    The use of prosthetic implants for breast augmentation has become commonplace. Although implants do not increase the risk of conventional mammary carcinoma, they are rarely associated with anaplastic large cell lymphoma. We report 2 cases of breast implant capsule-associated squamous cell carcinoma with poor clinical outcomes. Both patients (56-year-old woman and 81-year-old woman) had long-standing implants (>25 years) and presented with acute unilateral breast enlargement. In both cases, squamous cell carcinoma arose in (focally dysplastic) squamous epithelium-lined breast implant capsules and widely invaded surrounding breast parenchyma or chest wall. Neither patient had evidence of a primary mammary carcinoma or squamous cell carcinoma at any other anatomic site. Within 1 year, one patient developed extensive, treatment-refractory, locoregional soft tissue metastasis, and the second patient developed hepatic and soft tissue metastases and died of disease. There are 2 prior reported cases of implant-associated squamous cell carcinoma in the plastic surgery literature; one provides no pathologic staging or outcome information, and the second case was a capsule-confined squamous cell carcinoma. Together, all 4 cases share notable commonalities: the patients had long-standing breast implants and presented with acute unilateral breast pain and enlargement secondary to tumors arising on the posterior aspect of squamous epithelialized implant capsules. Because of both its rarity and its unusual clinical presentation, implant capsule-associated squamous cell carcinoma may be underrecognized. The aggressive behavior of the tumors in this series underscores the importance of excluding malignancy in patients with long-standing breast implants who present with acute unilateral breast pain and enlargement. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  18. Prognostic significance of axillary dissection in breast cancer patients with micrometastases or isolated tumor cells in sentinel nodes

    DEFF Research Database (Denmark)

    Tvedskov, Tove Filtenborg; Jensen, Maj-Britt; Ejlertsen, Bent

    2015-01-01

    We estimated the impact of axillary lymph node dissection (ALND) on the risk of axillary recurrence (AR) and overall survival (OS) in breast cancer patients with micrometastases or isolated tumor cells (ITC) in sentinel nodes. We used the Danish Breast Cancer Cooperative Group (DBCG) database...... to identify patients with micrometastases or ITC in sentinel nodes following surgery for primary breast cancer between 2002 and 2008. A Cox proportional hazard regression model was developed to assess the hazard ratios (HR) for AR and OS between patients with and without ALND. We identified 2074 patients...... and 2.21 (95 % CI 0.54-8.95, P = 0.27), in patients with ITC after a median follow-up of 6 years and 3 months. There was no significant difference in overall survival between patients with and without ALND, when adjusting for age, co-morbidity, tumor size, histology type, malignancy grade...

  19. Effects of biosurfactants on the viability and proliferation of human breast cancer cells.

    Science.gov (United States)

    Duarte, Cristina; Gudiña, Eduardo J; Lima, Cristovao F; Rodrigues, Ligia R

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l(-1) surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l(-1) BioEG for 48 h decreased cancer cells' viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein.

  20. Internalization: acute apoptosis of breast cancer cells using herceptin-immobilized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Rathinaraj P

    2015-02-01

    Full Text Available Pierson Rathinaraj,1 Ahmed M Al-Jumaily,1 Do Sung Huh21Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand; 2Department of Nano science and Engineering, Inje University, Gimhea, South KoreaAbstract: Herceptin, the monoclonal antibody, was successfully immobilized on gold nanoparticles (GNPs to improve their precise interactions with breast cancer cells (SK-BR3. The mean size of the GNPs (29 nm, as determined by dynamic light scattering, enlarged to 82 nm after herceptin immobilization. The in vitro cell culture experiment indicated that human skin cells (FB proliferated well in the presence of herceptin-conjugated GNP (GNP–Her, while most of the breast cancer cells (SK-BR3 had died. To elucidate the mechanism of cell death, the interaction of breast cancer cells with GNP–Her was tracked by confocal laser scanning microscopy. Consequently, GNP–Her was found to be bound precisely to the membrane of the breast cancer cell, which became almost saturated after 6 hours incubation. This shows that the progression signal of SK-BR3 cells is retarded completely by the precise binding of antibody to the human epidermal growth factor receptor 2 receptor of the breast cancer cell membrane, causing cell death.Keywords: herceptin, gold nanoparticles, SK-BR3 cells, intracellular uptake

  1. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  2. The Effect of Simvastatin on Breast Cancer Cell Growth in Women With Stage I-II Breast Cancer

    Science.gov (United States)

    2018-03-02

    Invasive Breast Carcinoma; Stage I Breast Cancer AJCC v7; Stage IA Breast Cancer AJCC v7; Stage IB Breast Cancer AJCC v7; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7

  3. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  4. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk

    Science.gov (United States)

    2008-04-01

    Sweden, for overseeing the DNA isolation from the blood sam- ples; Heng Khai Koon and Ong Eng Hu Jason for genotyping; Lim Siew Lan and Irene Chen for...of normal and malignant breast epithelium. In The Breast: Comprehensive Management of Benign and Malignant Diseases Edited by: Bland KI, Copeland EM...life etiological model, taking also into account that certain breast cancer epidemiologic characteris- tics reflecting general principles of

  5. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    Science.gov (United States)

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  6. Mechanisms of Twist 1-Induced Invasion in Breast Cancer Metastasis

    Science.gov (United States)

    2011-01-01

    affect breast cancer metastasis with a subcutaneous mouse tumor implantation model of breast cancer metastasis. HMLE -Twist1 cells expressing shRNAs...13 4 Introduction Distant metastases are responsible for the vast majority of breast cancer deaths. This process...to migrate and invade is therefore essential to the metastatic process. The initial steps of breast cancer metastasis, local invasion and

  7. Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-α status.

    Science.gov (United States)

    Harrison, Hannah; Rogerson, Lynsey; Gregson, Hannah J; Brennan, Keith R; Clarke, Robert B; Landberg, Göran

    2013-02-15

    Tumor hypoxia is often linked to decreased survival in patients with breast cancer and current therapeutic strategies aim to target the hypoxic response. One way in which this is done is by blocking hypoxia-induced angiogenesis. Antiangiogenic therapies show some therapeutic potential with increased disease-free survival, but these initial promising results are short lived and followed by tumor progression. We hypothesized that this may be due to altered cancer stem cell (CSC) activity resulting from increased tumor hypoxia. We studied the effects of hypoxia on CSC activity, using in vitro mammosphere and holoclone assays as well as in vivo limiting dilution experiments, in 13 patient-derived samples and four cell lines. There was a HIF-1α-dependent CSC increase in ER-α-positive cancers following hypoxic exposure, which was blocked by inhibition of estrogen and Notch signaling. A contrasting decrease in CSC was seen in ER-α-negative cancers. We next developed a xenograft model of cell lines and patient-derived samples to assess the hypoxic CSC response. Varying sizes of xenografts were collected and analyzed for HIF1-α expression and CSC. The same ER-α-dependent contrasting hypoxic-CSC response was seen validating the initial observation. These data suggest that ER-α-positive and negative breast cancer subtypes respond differently to hypoxia and, as a consequence, antiangiogenic therapies will not be suitable for both subgroups.

  8. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  9. Breast

    International Nuclear Information System (INIS)

    Ribeiro, G.G.

    1985-01-01

    The treatment of malignant disease of the breast arouses more controversy and emotion than that of any other form of malignant disease. Many clinical trials have been carried out and others are still in progress. In addition, research work continues in regard to other aspects of the disease, such as epidemiology, population screening, and endocrine factors; yet little is really known about the true biological nature of carcinoma of the breast. A vast amount of literature has accumulated on the treatment of ''operable'' carcinoma of the breast, but it is not proposed to discuss here the merits or demerits of the various suggested treatments. Instead this chapter will be confined to the practical management of carcinoma of the breast as seen from the point of view of radiotherapist. For this reason greater attention will be paid to the radiotherapy techniques as practised at the Christie Hospital

  10. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  11. Machine learning models in breast cancer survival prediction.

    Science.gov (United States)

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of

  12. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro

    NARCIS (Netherlands)

    Lirk, P.; Hollmann, M. W.; Fleischer, M.; Weber, N. C.; Fiegl, H.

    2014-01-01

    Lidocaine demethylates deoxyribonucleic acid (DNA) in breast cancer cells. This modification of epigenetic information may be of therapeutic relevance in the perioperative period, because a decrease in methylation can reactivate tumour suppressor genes and inhibit tumour growth. The objectives of

  13. C-KIT AND Stem Cell Factor Expression in Breast Cancer

    National Research Council Canada - National Science Library

    Hines, Susan

    1998-01-01

    ...) is seen frequently in breast cancer. The MCF7 cell line (which only expresses SCF) transfected with a c-kit expression vector, shows enhanced growth in serum/free medium supplemented with EGF or lGF1...

  14. Reactive Oxygen is a Major Factor Regulating Cell Division and Angiogenesis in Breast Cancer

    National Research Council Canada - National Science Library

    Arnold, Rebecca

    2001-01-01

    .... These include lines developed from both primary and metastatic tumors. In addition, we surveyed three control cells lines, MCFlOA, MCFl2A, and 184A1 derived from either fibrocystic disease or breast reduction...

  15. Rational Design of Regulators of Programmed Cell Death in Human Breast Cancer

    National Research Council Canada - National Science Library

    Cowburn, David

    2000-01-01

    The purpose of this research is to develop a better understanding of the intricate pathways of cell death and their contributions to breast cancers, with the goal of designing potential therapeutic...

  16. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1998-01-01

    .... This project is aimed at testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-a (TNF...

  17. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells

    National Research Council Canada - National Science Library

    Sekowski, Jennifer

    1998-01-01

    In order to determine the degree to which the accumulation of mutations in breast cancer cells is due to a change in the fidelity of the cellular DNA replication machinery we have completed a series...

  18. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1997-01-01

    .... This project is testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-alpha (TNF...

  19. Mullerian Inhibiting Substances (MIS) Augments IFN-gamma Mediated Inhibition of Breast Cancer Cell Growth

    National Research Council Canada - National Science Library

    Gupta, Vandana

    2006-01-01

    MIS is a member of the TGF family. The purpose of this study is to test the hypothesis that MIS and IFN-gamma might be more effective in the inhibition of breast cancer cell growth than either agent alone...

  20. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Sheng, Chenyi; Qiu, Jian; Wang, Yingying; He, Zhixian; Wang, Hua; Wang, Qingqing; Huang, Yeqing; Zhu, Lianxin; Shi, Feng; Chen, Yingying; Xiong, Shiyao; Xu, Zhen; Ni, Qichao

    2018-05-03

    Breast cancer is the second leading cause of cancer‑associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin‑fixed paraffin‑embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki‑67 expression (a marker of cell proliferation). Kaplan‑Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA‑MB‑231 cancer cells treated with Ran‑si‑RNA (si‑Ran), which knocked down expression of Ran, exhibited decreased motility in trans‑well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA‑MB‑231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re‑feeding (CCK‑8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.

  1. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  2. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  3. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-01-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  4. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Science.gov (United States)

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  5. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells.

    Science.gov (United States)

    Carmody, Leigh C; Germain, Andrew R; VerPlank, Lynn; Nag, Partha P; Muñoz, Benito; Perez, Jose R; Palmer, Michelle A J

    2012-10-01

    Cancer stem cells (CSCs) are resistant to standard cancer treatments and are likely responsible for cancer recurrence, but few therapies target this subpopulation. Due to the difficulty in propagating CSCs outside of the tumor environment, previous work identified CSC-like cells by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state (HMLE_sh_ECad). A phenotypic screen was conducted against HMLE_sh_ECad with 300 718 compounds from the Molecular Libraries Small Molecule Repository to identify selective inhibitors of CSC growth. The screen yielded 2244 hits that were evaluated for toxicity and selectivity toward an isogenic control cell line. An acyl hydrazone scaffold emerged as a potent and selective scaffold targeting HMLE_sh_ECad. Fifty-three analogues were acquired and tested; compounds ranged in potency from 790 nM to inactive against HMLE_sh_ECad. Of the analogues, ML239 was best-in-class with an IC(50)= 1.18 µM against HMLE_sh_ECad, demonstrated a >23-fold selectivity over the control line, and was toxic to another CSC-like line, HMLE_shTwist, and a breast carcinoma cell line, MDA-MB-231. Gene expression studies conducted with ML239-treated cells showed altered gene expression in the NF-κB pathway in the HMLE_sh_ECad line but not in the isogenic control line. Future studies will be directed toward the identification of ML239 target(s).

  6. Identification of novel LRH-1 target genes in breast cancer cells

    OpenAIRE

    Zhao, Zhe

    2017-01-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) plays important roles in embryonic development, lipid homeostasis and steroidogenesis, and has been implicated in driving several cancers. In breast cancer, LRH-1 is expressed in tumour epithelial cells of invasive ductal carcinomas. We hypothesized that LRH-1 regulates epithelial cell proliferation and invasiveness to drive breast tumour progression. The overall goal of this study was to identify molecular mechanisms regulated by L...

  7. Taraxacum officinale dandelion extract efficiently inhibited the breast cancer stem cell proliferation

    OpenAIRE

    Ngu Van Trinh; Nghi Doan-Phuong Dang; Diem Hong Tran; Phuc Van Pham

    2016-01-01

    Background: Breast cancer stem cells (BCSCs) play an important role in breast cancer initiation, metastasis, recurrence, and drug resistance. Therefore, targeting BCSCs is an essential strategy to suppress cancer growth. This study aimed to evaluate the effects of dandelion Taraxacum officinale extracts on BCSC proliferation in vitro in 2D and 3D cell culture platforms. Materials and Methods: The BCSCs were maintained under standard conditions, verified for expression of CD44 and CD24 surface...

  8. In silico analysis of the potential mechanism of telocinobufagin on breast cancer MCF-7 cells.

    Science.gov (United States)

    Dang, Yi-Wu; Lin, Peng; Liu, Li-Min; He, Rong-Quan; Zhang, Li-Jie; Peng, Zhi-Gang; Li, Xiao-Jiao; Chen, Gang

    2018-05-01

    The extractives from a ChanSu, traditional Chinese medicine, have been discovered to possess anti-inflammatory and tumor-suppressing abilities. However, the molecular mechanism of telocinobufagin, a compound extracted from ChanSu, on breast cancer cells has not been clarified. The aim of this study is to investigate the underlying mechanism of telocinobufagin on breast cancer cells. The differentially expressed genes after telocinobufagin treatment on breast cancer cells were searched and downloaded from Gene Expression Omnibus (GEO), ArrayExpress and literatures. Bioinformatics tools were applied to further explore the potential mechanism of telocinobufagin in breast cancer using the Kyoto Encyclopedia of genes and genomes (KEGG) pathway, Gene ontology (GO) enrichment, panther, and protein-protein interaction analyses. To better comprehend the role of telocinobufagin in breast cancer, we also queried the Connectivity Map using the gene expression profiles of telocinobufagin treatment. One GEO accession (GSE85871) provided 1251 differentially expressed genes after telocinobufagin treatment on MCF-7 cells. The pathway of neuroactive ligand-receptor interaction, cell adhesion molecules (CAMs), intestinal immune network for IgA production, hematopoietic cell lineage and calcium signaling pathway were the key pathways from KEGG analysis. IGF1 and KSR1, owning to higher protein levels in breast cancer tissues, IGF1 and KSR1 could be the hub genes related to telocinobufagin treatment. It was indicated that the molecular mechanism of telocinobufagin resembled that of fenspiride. Telocinobufagin might regulate neuroactive ligand-receptor interaction pathway to exert its influences in breast cancer MCF-7 cells, and its molecular mechanism might share some similarities with fenspiride. This study only presented a comprehensive picture of the role of telocinobufagin in breast cancer MCF-7 cells using big data. However, more thorough and deeper researches are required to add

  9. Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Al-Bahlani, Shadia; Al-Lawati, Hanaa; Al-Adawi, Moza; Al-Abri, Nadia; Al-Dhahli, Buthaina; Al-Adawi, Kawther

    2017-06-01

    Fatty acid synthase (FASN) is a key enzyme in fat biosynthesis that is over-expressed in advanced breast cancer stages. Cisplatin (CDDP) is a platinum-based drug used in the treatment of certain types of this disease. Although it was shown that FASN inhibition induced apoptosis by enhancing the cytotoxicity of certain drugs in breast cancer, its role in regulating the chemosensitivity of different types of breast cancer cells to CDDP-induced apoptosis is not established yet. Therefore, two different breast cancer cell lines; triple negative breast cancer (TNBC; MDA-MB-231) and triple positive breast cancer (TPBC; BT-474) cells were used to examine such role. We show that TNBC cells had naturally less fat content than TPBC cells. Subsequently, the fat content increased in both cells when treated with Palmitate rather than Oleate, whereas both fatty acids produced apoptotic ultra-structural effects and attenuated FASN expression. However, Oleate increased FASN expression in TPBC cells. CDDP decreased FASN expression and increased apoptosis in TNBC cells. These effects were further enhanced by combining CDDP with fatty acids. We also illustrate that the inhibition of FASN by either siRNA or exogenous inhibitor decreased CDDP-induced apoptosis in TPBC cells suggesting its role as an apoptotic factor, while an opposite finding was observed in TNBC cells when siRNA and fatty acids were used, suggesting its role as a survival factor. To our knowledge, we are the first to demonstrate a dual role of FASN in CDDP-induced apoptosis in breast cancer cells and how it can modulate their chemosensitivity.

  10. An Unusual Case of Locally Advanced Glycogen-Rich Clear Cell Carcinoma of the Breast

    Directory of Open Access Journals (Sweden)

    Beatriz Martín-Martín

    2011-09-01

    Full Text Available Glycogen-rich clear cell (GRCC is a rare subtype of breast carcinoma characterized by carcinoma cells containing an optically clear cytoplasm and intracytoplasmic glycogen. We present the case of a 55-year-old woman with a palpable mass in the right breast and clinical signs of locally advanced breast cancer (LABC. The diagnosis of GRCC carcinoma was based on certain histopathological characteristics of the tumor and immunohistochemical analysis. To our knowledge, this is the first case of GRCC LABC with intratumoral calcifications. There is no evidence of recurrence or metastatic disease after 14 months’ follow-up.

  11. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    International Nuclear Information System (INIS)

    Zheng, Jin; Liu, Qiang; Yang, Jiandong; Ren, Qinyou; Cao, Wei; Yang, Jingyue; Yu, Zhaocai; Yu, Fang; Wu, Yanlan; Shi, Hengjun; Liu, Wenchao

    2012-01-01

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells

  12. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Qiang [Department of Hematology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jiandong [Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Ren, Qinyou [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospit