WorldWideScience

Sample records for breast cancer susceptibility

  1. Search for new breast cancer susceptibility genes

    NARCIS (Netherlands)

    Oldenburg, Rogier Abel

    2008-01-01

    This thesis describes the search for new high-risk breast cancer susceptibility genes by linkage analysis. To date 20-25% of familial breast cancer is explained by mutations in the high-risk BRCA1 and BRCA2 breast cancer susceptibility genes. For the remaining families the genetic etiology is unknow

  2. ENVIRONMENTAL FACTORS AFFECTING BREAST CANCER SUSCEPTIBILITY

    Science.gov (United States)

    Environmental Factors Affecting Breast Cancer SusceptibilitySuzanne. E. FentonUS EPA, ORD, MD-67 NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711.Breast cancer is still the most common malignancy afflicting women in the Western world. Alt...

  3. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.Conclusion:Our results suggest...

  4. CHEK2 1100delC and polygenic susceptibility to breast cancer and colorectal cancer

    NARCIS (Netherlands)

    M. Wasielewski (Marijke)

    2009-01-01

    textabstractApproximately 15-25% of breast cancers are identified in women with a family history of breast cancer. Yet, germline mutations in the currently known breast cancer susceptibility genes account for only one-third of familial breast cancer cases. In 2002, our research group had identified

  5. Hereditary Breast Cancer: The Era of New Susceptibility Genes

    Directory of Open Access Journals (Sweden)

    Paraskevi Apostolou

    2013-01-01

    Full Text Available Breast cancer is the most common malignancy among females. 5%–10% of breast cancer cases are hereditary and are caused by pathogenic mutations in the considered reference BRCA1 and BRCA2 genes. As sequencing technologies evolve, more susceptible genes have been discovered and BRCA1 and BRCA2 predisposition seems to be only a part of the story. These new findings include rare germline mutations in other high penetrant genes, the most important of which include TP53 mutations in Li-Fraumeni syndrome, STK11 mutations in Peutz-Jeghers syndrome, and PTEN mutations in Cowden syndrome. Furthermore, more frequent, but less penetrant, mutations have been identified in families with breast cancer clustering, in moderate or low penetrant genes, such as CHEK2, ATM, PALB2, and BRIP1. This paper will summarize all current data on new findings in breast cancer susceptibility genes.

  6. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Objectives. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-based case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel art and Falconer methods were used to analyze the segregation ratio and heritability. Polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significartly, OR is 3.905 ( 95 % CI = 1.079 ~ 14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blood relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LOH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome aberrations were observed. Conclusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  7. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Obieaites. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-besed case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel-Gart and Falconer methods were used to analyze the segregation ratio and heritability. Polymemse chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significantly, OR is 3.905(95% CI = 1.079—14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blnod relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LDH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome abermtions were observed.Condusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  8. Common non-synonymous SNPs associated with breast cancer susceptibility

    DEFF Research Database (Denmark)

    Milne, Roger L; Burwinkel, Barbara; Michailidou, Kyriaki

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsS...

  9. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    3803662 (16q12), rs889312 (5q11), rs3817198 (11p15) and rs13387042 (2q35); however, only two of them (16q12 and 2q35) were associated with tumors with the core basal phenotype (P ≤ 0.002). These analyses are consistent with different biological origins of breast cancers, and indicate that tumor......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  10. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    3803662 (16q12), rs889312 (5q11), rs3817198 (11p15) and rs13387042 (2q35); however, only two of them (16q12 and 2q35) were associated with tumors with the core basal phenotype (P = 0.002). These analyses are consistent with different biological origins of breast cancers, and indicate that tumor......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  11. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus

    DEFF Research Database (Denmark)

    Stevens, Kristen N; Fredericksen, Zachary; Vachon, Celine M

    2012-01-01

    The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone recepto...

  12. Breast cancer susceptibility variants alter risk in familial ovarian cancer.

    Science.gov (United States)

    Latif, A; McBurney, H J; Roberts, S A; Lalloo, F; Howell, A; Evans, D G; Newman, W G

    2010-12-01

    Recent candidate gene and genome wide association studies have revealed novel loci associated with an increased risk of breast cancer. We evaluated the effect of these breast cancer associated variants on ovarian cancer risk in individuals with familial ovarian cancer both with and without BRCA1 or BRCA2 mutations. A total of 158 unrelated white British women (54 BRCA1/2 mutation positive and 104 BRCA1/2 mutation negative) with familial ovarian cancer were genotyped for FGFR2, TNRC9/TOX3 and CASP8 variants. The p.Asp302His CASP8 variant was associated with reduced ovarian cancer risk in the familial BRCA1/2 mutation negative ovarian cancer cases (P = 0.016). The synonymous TNRC9/TOX3 (Ser51) variant was present at a significantly lower frequency than in patients with familial BRCA1/2 positive breast cancer (P = 0.0002). Our results indicate that variants in CASP8 and TNRC9/TOX3 alter the risk of disease in individuals affected with familial ovarian cancer.

  13. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, w

  14. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci...

  15. Low-risk susceptibility alleles in 40 human breast cancer cell lines

    NARCIS (Netherlands)

    M. Riaz (Muhammad); F. Elstrodt (Fons); A. Hollestelle (Antoinette); A. Dehghan (Abbas); J.G.M. Klijn (Jan); M. Schutte (Mieke)

    2009-01-01

    textabstractBackground: Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to 1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by w

  16. Rare variants in XRCC2 as breast cancer susceptibility alleles

    NARCIS (Netherlands)

    Hilbers, F.S.; Wijnen, J.T.; Hoogerbrugge-van der Linden, N.; Oosterwijk, J.C.; Collee, M.J.; Peterlongo, P.; Radice, P.; Manoukian, S.; Feroce, I.; Capra, F.; Couch, F.J.; Wang, X.; Guidugli, L.; Offit, K.; Shah, S.; Campbell, I.G.; Thompson, E.R.; James, P.A.; Trainer, A.H.; Gracia, J.; Benitez, J.; Asperen, C.J. van; Devilee, P.

    2012-01-01

    BACKGROUND: Recently, rare germline variants in XRCC2 were detected in non-BRCA1/2 familial breast cancer cases, and a significant association with breast cancer was reported. However, the breast cancer risk associated with these variants needs further evaluation. METHODS: The coding regions and exo

  17. ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry

    Science.gov (United States)

    Renault, Anne-Laure; Lesueur, Fabienne; Coulombe, Yan; Gobeil, Stéphane; Soucy, Penny; Hamdi, Yosr; Desjardins, Sylvie; Le Calvez-Kelm, Florence; Vallée, Maxime; Voegele, Catherine; Hopper, John L.; Andrulis, Irene L.; Southey, Melissa C.; John, Esther M.; Masson, Jean-Yves; Tavtigian, Sean V.; Simard, Jacques

    2016-01-01

    Approximately half of the familial aggregation of breast cancer remains unexplained. This proportion is less for early-onset disease where familial aggregation is greater, suggesting that other susceptibility genes remain to be discovered. The majority of known breast cancer susceptibility genes are involved in the DNA double-strand break repair pathway. ABRAXAS is involved in this pathway and mutations in this gene impair BRCA1 recruitment to DNA damage foci and increase cell sensitivity to ionizing radiation. Moreover, a recurrent germline mutation was reported in Finnish high-risk breast cancer families. To determine if ABRAXAS could be a breast cancer susceptibility gene in other populations, we conducted a population-based case-control mutation screening study of the coding exons and exon/intron boundaries of ABRAXAS in the Breast Cancer Family Registry. In addition to the common variant p.Asp373Asn, sixteen distinct rare variants were identified. Although no significant difference in allele frequencies between cases and controls was observed for the identified variants, two variants, p.Gly39Val and p.Thr141Ile, were shown to diminish phosphorylation of gamma-H2AX in MCF7 human breast adenocarcinoma cells, an important biomarker of DNA double-strand breaks. Overall, likely damaging or neutral variants were evenly represented among cases and controls suggesting that rare variants in ABRAXAS may explain only a small proportion of hereditary breast cancer. PMID:27270457

  18. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  19. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  20. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress

    Science.gov (United States)

    2005-10-01

    hypotheses were investigated: Hypothesis 1: Women with family histories of breast cancer are more emotionally distressed than women at normal risk... emotionally distressed than women at normal risk, particularly after notification that they carry a mutation in a primary susceptibility gene. o Healthy...Valdimarsdottir HB, Montgomery GH, Bovbjerg DH. Heightened cortisol responses to daily stress in working women at familial risk for breast cancer. Biological

  1. Mutations in BRCA1 and BRCA2 in breast cancer families: Are there more breast cancer-susceptibility genes?

    Energy Technology Data Exchange (ETDEWEB)

    Serova, O.M.; Mazoyer, S.; Putet, N. [CNRS, Lyon (France)] [and others

    1997-03-01

    To estimate the proportion of breast cancer families due to BRCA1 or BRCA2, we performed mutation screening of the entire coding regions of both genes supplemented with linkage analysis of 31 families, 8 containing male breast cancers and 23 site-specific female breast cancer. A combination of protein-truncation test and SSCP or heteroduplex analyses was used for mutation screening complemented, where possible, by the analysis of expression level of BRCA1 and BRCA2 alleles. Six of the eight families with male breast cancer revealed frameshift mutations, two in BRCA1 and four in BRCA2. Although most families with female site-specific breast cancers were thought to be due to mutations in either BRCA1 or BRCA2, we identified only eight mutations in our series of 23 site-specific female breast cancer families (34%), four in BRCA1 and four in BRCA2. According to the posterior probabilities calculated for mutation-negative families, based on linkage data and mutation screening results, we would expect 8-10 site-specific female breast cancer families of our series to be due to neither BRCA1 nor BRCA2. Thus, our results suggest the existence of at least one more major breast cancer-susceptibility gene. 24 refs., 1 fig., 3 tabs.

  2. Caspase 9 promoter polymorphisms confer increased susceptibility to breast cancer.

    Science.gov (United States)

    Theodoropoulos, George E; Michalopoulos, Nikolaos V; Pantou, Malena P; Kontogianni, Panagiota; Gazouli, Maria; Karantanos, Theodoros; Lymperi, Maria; Zografos, George C

    2012-10-01

    Caspases (CASPs), play a crucial role in the development and progression of cancer. We evaluated the association between two polymorphisms (rs4645978 and rs4645981) of the CASP9 gene and the risk of breast cancer (BC). Genotypes and allelic frequencies for the two polymorphisms were determined in 261 patients with breast cancer and 480 healthy controls. Polymerase chain reaction-restriction fragment length polymorphisms were used, and statistical significance was determined by the χ(2) test. Carriers of the rs4645978G allele (AG and GG genotypes) were at higher risk for BC than individuals with other genotypes (odds ratio (OR) 1.59, 95% confidence interval (CI) 1.07-2.37, P = 0.022). The rs4645978GG genotype, in particular, was associated with the highest risk for BC development (OR 2.25, 95% CI 1.45-3.49, P = 0.0003). Similarly, individuals with at least one rs4645981T allele were at a significantly increased risk of developing BC compared with those harboring the CC genotype (OR 2.75, 95% CI 1.99-3.78, P < 0.0001), and the risk of BC increased with increasing numbers of rs4645981T alleles (OR 2.66, 95% CI 1.91-3.69, P < 0.0001 for the CT genotype; OR 3.95, 95% CI 1.58-9.88, P = 0.004 for the TT genotype). The CASP9 promoter polymorphisms rs4645978 and rs4645981 are associated with BC susceptibility and suggest that CASP9 transcriptional regulation is an important factor during BC development.

  3. CTLA-4 polymorphisms associate with breast cancer susceptibility in Asians: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Zhiming Dai

    2017-01-01

    Full Text Available Previous studies have investigated the association between cytotoxic T-lymphocyte antigen-4 (CTLA-4 polymorphisms and breast cancer susceptibility, but the results remained inconsistent. Therefore, we evaluated the relationship between four common CTLA-4 polymorphisms and breast cancer risk by a meta-analysis, aiming to derive a comprehensive and precise conclusion. We searched EMBASE, Pubmed, Web of Science, CNKI, and Wanfang databases until July 18th, 2016. Finally, ten eligible studies involving 4,544 breast cancer patients and 4,515 cancer-free controls were included; all these studies were from Asia. Odds ratio (OR and 95% confidence interval (CI were used to evaluate the breast cancer risk in five genetic models. The results indicated that the CTLA-4 +49A>G (rs231775 polymorphism had a significant association with decreased breast cancer risk in allelic, homozygous, dominant and recessive models. Also, the +6230G>A (rs3087243 polymorphism reduced breast cancer risk especially in the Chinese population under homozygous and recessive models. In contrast, the −1661A>G (rs4553808 polymorphism increased breast cancer risk in allelic, heterozygous and dominant models, whereas −1722 T>C (rs733618 did not relate to breast cancer risk. In conclusion, CTLA-4 polymorphisms significantly associate with breast cancer susceptibility in Asian populations, and different gene loci may have different effects on breast cancer development. Further large-scale studies including multi-racial populations are required to confirm our findings.

  4. CTLA-4 polymorphisms associate with breast cancer susceptibility in Asians: a meta-analysis

    Science.gov (United States)

    Liu, Xinghan; Lin, Shuai; Yang, Pengtao; Liu, Kang; Zheng, Yi; Xu, Peng; Liu, Meng; Yang, Xuewen

    2017-01-01

    Previous studies have investigated the association between cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphisms and breast cancer susceptibility, but the results remained inconsistent. Therefore, we evaluated the relationship between four common CTLA-4 polymorphisms and breast cancer risk by a meta-analysis, aiming to derive a comprehensive and precise conclusion. We searched EMBASE, Pubmed, Web of Science, CNKI, and Wanfang databases until July 18th, 2016. Finally, ten eligible studies involving 4,544 breast cancer patients and 4,515 cancer-free controls were included; all these studies were from Asia. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the breast cancer risk in five genetic models. The results indicated that the CTLA-4 +49A>G (rs231775) polymorphism had a significant association with decreased breast cancer risk in allelic, homozygous, dominant and recessive models. Also, the +6230G>A (rs3087243) polymorphism reduced breast cancer risk especially in the Chinese population under homozygous and recessive models. In contrast, the −1661A>G (rs4553808) polymorphism increased breast cancer risk in allelic, heterozygous and dominant models, whereas −1722 T>C (rs733618) did not relate to breast cancer risk. In conclusion, CTLA-4 polymorphisms significantly associate with breast cancer susceptibility in Asian populations, and different gene loci may have different effects on breast cancer development. Further large-scale studies including multi-racial populations are required to confirm our findings. PMID:28097051

  5. 9q31.2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer: Evidence from the Breast Cancer Association Consortium

    NARCIS (Netherlands)

    H. Warren (Helen); F. Dudbridge (Frank); O. Fletcher (Olivia); N. Orr (Nick); N. Johnson (Nichola); J.L. Hopper (John); C. Apicella (Carmel); M.C. Southey (Melissa); M. Mahmoodi (Maryam); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Cornelissen (Sten); L.M. Braaf (Linde); K.R. Muir (Kenneth); A. Lophatananon (Artitaya); A. Chaiwerawattana (Arkom); S. Wiangnon (Surapon); P.A. Fasching (Peter); M.W. Beckmann (Matthias); A.B. Ekici (Arif); R. Schulz-Wendtland (Rüdiger); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Christof); P. Guénel (Pascal); T. Truong (Thérèse); P. Laurent-Puig (Pierre); C. Mulot (Claire); S.E. Bojesen (Stig); S.F. Nielsen (Sune); H. Flyger (Henrik); B.G. Nordestgaard (Børge); R.L. Milne (Roger); J. Benítez (Javier); J.I. Arias Pérez (José Ignacio); M.P. Zamora (Pilar); H. Anton-Culver (Hoda); A. Ziogas (Argyrios); L. Bernstein (Leslie); C.C. Dur (Christina Clarke); H. Brenner (Hermann); H. Müller (Heike); V. Arndt (Volker); A. Langheinz (Anne); A. Meindl (Alfons); M. Golatta (Michael); C.R. Bartram (Claus); R.K. Schmutzler (Rita); H. Brauch (Hiltrud); C. Justenhoven (Christina); T. Brüning (Thomas); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); U. Eilber (Ursula); T. Dörk (Thilo); P. Schürmann (Peter); M. Bremer (Michael); P. Hillemanns (Peter); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); Y.I. Rogov (Yuri); M. Bermisheva (Marina); D. Prokofyeva (Darya); G. Zinnatullina (Guzel); E.K. Khusnutdinova (Elza); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V-M. Kosma (Veli-Matti); J. Hartikainen (Jaana); V. Kataja (Vesa); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); X. Chen (Xiaoqing); D. Lambrechts (Diether); A. Smeets (Ann); R. Paridaens (Robert); C. Weltens (Caroline); D. Flesch-Janys (Dieter); K. Buck (Katharina); T.W. Behrens (Timothy); P. Peterlongo (Paolo); L. Bernard (Loris); S. Manoukian (Siranoush); P. Radice (Paolo); F.J. Couch (Fergus); C. Vachon (Celine); X. Wang (Xing); J.E. Olson (Janet); G.G. Giles (Graham); L. Baglietto (Laura); C.A. McLean (Cariona); G. Severi (Gianluca); E.M. John (Esther); A. Miron (Alexander); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); I.L. Andrulis (Irene); J.A. Knight (Julia); A.M. Mulligan (Anna Marie); N. Weerasooriya (Nayana); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); J.W.M. Martens (John); C.M. Seynaeve (Caroline); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); A. Jager (Agnes); M.M.A. Tilanus-Linthorst (Madeleine); P. Hall (Per); K. Czene (Kamila); J. Liu (Jianjun); J. Li (Jingmei); A. Cox (Angela); S.S. Cross (Simon); I.W. Brock (Ian); M.W.R. Reed (Malcolm); P.D.P. Pharoah (Paul); F. Blows (Fiona); A.M. Dunning (Alison); M. Ghoussaini (Maya); A. Ashworth (Alan); A.J. Swerdlow (Anthony ); M. Jones (Marta); M. Schoemaker (Minouk); D.F. Easton (Douglas); M.K. Humphreys (Manjeet); Q. Wang (Qing); J. Peto (Julian); I. dos Santos Silva (Isabel)

    2012-01-01

    textabstractBackground: Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686). Methods: To further investigate the rs865686-breast cancer association, we conducted a replication study within the Breast Cancer Association Consortium, which

  6. Interactions between breast cancer susceptibility loci and menopausal hormone therapy in relationship to breast cancer in the Breast and Prostate Cancer Cohort Consortium.

    Science.gov (United States)

    Gaudet, Mia M; Barrdahl, Myrto; Lindström, Sara; Travis, Ruth C; Auer, Paul L; Buring, Julie E; Chanock, Stephen J; Eliassen, A Heather; Gapstur, Susan M; Giles, Graham G; Gunter, Marc; Haiman, Christopher; Hunter, David J; Joshi, Amit D; Kaaks, Rudolf; Khaw, Kay-Tee; Lee, I-Min; Le Marchand, Loic; Milne, Roger L; Peeters, Petra H M; Sund, Malin; Tamimi, Rulla; Trichopoulou, Antonia; Weiderpass, Elisabete; Yang, Xiaohong R; Prentice, Ross L; Feigelson, Heather Spencer; Canzian, Federico; Kraft, Peter

    2016-02-01

    Current use of menopausal hormone therapy (MHT) has important implications for postmenopausal breast cancer risk, and observed associations might be modified by known breast cancer susceptibility loci. To provide the most comprehensive assessment of interactions of prospectively collected data on MHT and 17 confirmed susceptibility loci with invasive breast cancer risk, a nested case-control design among eight cohorts within the NCI Breast and Prostate Cancer Cohort Consortium was used. Based on data from 13,304 cases and 15,622 controls, multivariable-adjusted logistic regression analyses were used to estimate odds ratios (OR) and 95 % confidence intervals (CI). Effect modification of current and past use was evaluated on the multiplicative scale. P values breast cancer risk for the TT genotype (OR 1.79, 95 % CI 1.43-2.24; P interaction = 1.2 × 10(-4)) was less than expected on the multiplicative scale. There are no biological implications of the sub-multiplicative interaction between MHT and rs865686. Menopausal hormone therapy is unlikely to have a strong interaction with the common genetic variants associated with invasive breast cancer.

  7. SNP-SNP interactions in breast cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Wang Yuanyuan

    2006-05-01

    Full Text Available Abstract Background Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2 are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. Methods In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR principle. Results None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082A], cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val], cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln], and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val] pathways. Conclusion The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their

  8. Breast Cancer Susceptibility Genes in High Risk Women

    Science.gov (United States)

    2005-12-01

    232-7. 32. Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus [see comments]. Arthritis...duplicates do not have identical genotype and the cause for the discordancy ( systematic or isolated) will be determined. A second level of QC is provided...AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiology

  9. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    DEFF Research Database (Denmark)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further...

  10. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    NARCIS (Netherlands)

    N. Orr (Nick); F. Dudbridge (Frank); N. Dryden (Nicola); S. Maguire (Sarah); D. Novo (Daniela); E. Perrakis (Eleni); N. Johnson (Nichola); M. Ghoussaini (Maya); J. Hopper (John); M.C. Southey (Melissa); C. Apicella (Carmel); J. Stone (Jennifer); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); F.B.L. Hogervorst (Frans); P.A. Fasching (Peter); L. Haeberle (Lothar); A.B. Ekici (Arif); M.W. Beckmann (Matthias W.); L.J. Gibson (Lorna); A. Aitken; H. Warren (Helen); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Chistof); P. Guénel (Pascal); T. Truong (Thérèse); E. Cordina-Duverger (Emilie); M. Sanchez (Marie); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); P. Menéndez (Primitiva); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); U. Hamann (Ute); H. Brauch (Hiltrud); C. Justenhoven (Christina); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); D. Lambrechts (Diether); M. Moisse (Matthieu); O.A.M. Floris; B. Beuselinck (B.); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); P. Radice (Paolo); P. Peterlongo (Paolo); B. Peissel (Bernard); V. Pensotti (Valeria); F.J. Couch (Fergus); J.E. Olson (Janet); S. Slettedahl (Seth); C. Vachon (Celine); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); V. Kristensen (Vessela); G.G. Alnæs (Grethe Grenaker); S. Nord (Silje); A.-L. Borresen-Dale (Anne-Lise); W. Zheng (Wei); S.L. Deming-Halverson (Sandra); M. Shrubsole (Martha); J. Long (Jirong); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); S. Tchatchou (Sandrine); P. Devilee (Peter); R.A.E.M. Tollenaar (Robertus A. E. M.); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); J. Lissowska (Jolanta); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); D. Klevebring (Daniel); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); C.H.M. van Deurzen (Carolien); M. Kriege (Mieke); P. Hall (Per); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); M. Shah (Mitul); B. Perkins (Barbara); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Ashworth (Alan); A.J. Swerdlow (Anthony ); M. Jones (Michael); M. Schoemaker (Minouk); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Olswold (Curtis); S. Slager (Susan); A.E. Toland (Amanda); D. Yannoukakos (Drakoulis); K.R. Muir (K.); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); K. Matsuo (Keitaro); H. Ito (Hidema); H. Iwata (Hisato); J. Ishiguro (Junko); A.H. Wu (Anna H.); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); S.-H. Teo; C.H. Yip (Cheng Har); P. Kang (Peter); M.K. Ikram (Kamran); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); D. Kang (Daehee); J.-Y. Choi (J.); S.K. Park (Sue); D-Y. Noh (Dong-Young); J.M. Hartman (Joost); X. Miao; W.-Y. Lim (Wei-Yen); S.C. Lee (Soo Chin); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); J-C. Yu (Jyh-Cherng); C-Y. Shen (Chen-Yang); W.J. Blot (William); Q. Cai (Qiuyin); L.B. Signorello (Lisa B.); C. Luccarini (Craig); C. Bayes (Caroline); S. Ahmed (Shahana); M. Maranian (Melanie); S. Healey (Sue); A. González-Neira (Anna); G. Pita (G.); M. Rosario Alonso; N. Álvarez (Nuria); D. Herrero (Daniel); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); D. Hunter (David); S. Lindstrom (Stephen); J. Dennis (Joe); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet); D.F. Easton (Douglas); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); J. Peto (Julian)

    2015-01-01

    textabstractWe recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and

  11. The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility.

    Science.gov (United States)

    Keimling, Marlen; Deniz, Miriam; Varga, Dominic; Stahl, Andreea; Schrezenmeier, Hubert; Kreienberg, Rolf; Hoffmann, Isabell; König, Jochem; Wiesmüller, Lisa

    2012-05-01

    Most presently known breast cancer susceptibility genes have been linked to DSB repair. To identify novel markers that may serve as indicators for breast cancer risk, we performed DSB repair analyses using a case-control design. Thus, we examined 35 women with defined familial history of breast and/or ovarian cancer (first case group), 175 patients with breast cancer (second case group), and 245 healthy women without previous cancer or family history of breast cancer (control group). We analyzed DSB repair in peripheral blood lymphocytes (PBLs) by a GFP-based test system using 3 pathway-specific substrates. We found increases of microhomology-mediated nonhomologous end joining (mmNHEJ) and nonconservative single-strand annealing (SSA) in women with familial risk vs. controls (P=0.0001-0.0022) and patients with breast cancer vs. controls (P=0.0004-0.0042). Young age (DSB repair activities in PBLs as method to estimate breast cancer susceptibility beyond limitations of genotyping and to predict responsiveness to therapeutics targeting DSB repair-dysfunctional tumors.

  12. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases.......5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry....... and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according...

  13. Fine-mapping of the 1p11.2 breast cancer susceptibility locus

    NARCIS (Netherlands)

    Horne, H.N. (Hisani N.); Chung, C.C. (Charles C.); Zhang, H. (Han); Yu, K. (Kai); Prokunina-Olsson, L. (Ludmila); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet K.); Q. Wang (Qing); J. Dennis (Joe); J.L. Hopper (John); M.C. Southey (Melissa); M.K. Schmidt (Marjanka); A. Broeks (Annegien); K.R. Muir (K.); A. Lophatananon (Artitaya); P.A. Fasching (Peter); M.W. Beckmann (Matthias); O. Fletcher (Olivia); Johnson, N. (Nichola); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); Burwinkel, B. (Barbara); Marme, F. (Frederik); P. Guénel (Pascal); T. Truong (Thérèse); S.E. Bojesen (Stig); H. Flyger (Henrik); J. Benítez (Javier); A. González-Neira (Anna); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); Brenner, H. (Hermann); V. Arndt (Volker); A. Meindl (Alfons); R.K. Schmutzler (Rita); H. Brauch (Hiltrud); U. Hamann (Ute); H. Nevanlinna (Heli); S. Khan (Sofia); K. Matsuo (Keitaro); H. Iwata (Hiroji); T. Dörk (Thilo); N.V. Bogdanova (Natalia); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V-M. Kosma (Veli-Matti); G. Chenevix-Trench (Georgia); A.H. Wu (Anna); Ven Den Berg, D. (David); A. Smeets (Ann); H. Zhao (Hui); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Radice (Paolo); M. Barile (Monica); F.J. Couch (Fergus); Vachon, C. (Celine); Giles, G.G. (Graham G.); R.L. Milne (Roger); C.A. Haiman (Christopher A.); L. Le Marchand (Loic); M.S. Goldberg (Mark); S.-H. Teo; N.A.M. Taib (Nur Aishah Mohd); V. Kristensen (Vessela); Borresen-Dale, A.-L. (Anne-Lise); W. Zheng (Wei); M. Shrubsole (Martha); R. Winqvist (Robert); A. Jukkola-Vuorinen (Arja); I.L. Andrulis (Irene); J.A. Knight (Julia); P. Devilee (Peter); C.M. Seynaeve (Caroline); M. García-Closas (Montserrat); K. Czene (Kamila); H. Darabi (Hatef); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Li (Jingmei); W. Lu (Wei); X.-O. Shu (Xiao-Ou); A. Cox (Angela); S.S. Cross (Simon); W.J. Blot (William); Q. Cai (Qiuyin); M. Shah (Mitul); C. Luccarini (Craig); Baynes, C. (Caroline); P. harrington (Patricia); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); J.M. Hartman (Joost); Chia, K.S. (Kee Seng); M. Kabisch (Maria); D. Torres (Diana); A. Jakubowska (Anna); J. Lubinski (Jan); S. Sangrajrang (Suleeporn); P. Brennan (Paul); S. Slager (Susan); D. Yannoukakos (Drakoulis); C.-Y. Shen (Chen-Yang); M.-F. Hou (Ming-Feng); A.J. Swerdlow (Anthony ); N. Orr (Nick); J. Simard (Jacques); P. Hall (Per); P.D.P. Pharoah (Paul); D.F. Easton (Douglas F.); Chanock, S.J. (Stephen J.); A.M. Dunning (Alison); J.D. Figueroa (Jonine)

    2016-01-01

    textabstractThe Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132)

  14. 9q31.2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer

    DEFF Research Database (Denmark)

    Warren, Helen; Dudbridge, Frank; Fletcher, Olivia

    2012-01-01

    Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686).......Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686)....

  15. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: Implications for risk prediction

    NARCIS (Netherlands)

    A.C. Antoniou (Antonis); J. Beesley (Jonathan); L. McGuffog (Lesley); O. Sinilnikova (Olga); S. Healey (Sue); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); R. Rebbeck (Timothy); J.N. Weitzel (Jeffrey); H. Lynch (Henry); C. Isaacs (Claudine); P.A. Ganz (Patricia); G. Tomlinson (Gail); O.I. Olopade (Olofunmilayo); F.J. Couch (Fergus); X. Wang (Xing); N.M. Lindor (Noralane); V.S. Pankratz (Shane); P. Radice (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); M. Barile (Monica); A. Viel (Alessandra); A. Allavena (Anna); V. Dall'Olio (Valentina); P. Peterlongo (Paolo); C. Szabo (Csilla); M. Zikan (Michal); K. Claes (Kathleen); B. Poppe (Bruce); L. Foretova (Lenka); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); F. Lejbkowicz (Flavio); G. Glendon (Gord); H. Ozcelik (Hilmi); I.L. Andrulis (Irene); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); L. Sunde (Lone); D. Cruger (Dorthe); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); B. Kaufman (Bella); Y. Laitman (Yael); R. Milgrom (Roni); M. Dubrovsky (Maya); S. Cohen (Shimrit); Å. Borg (Åke); H. Jernström (H.); A. Lindblom (Annika); J. Rantala (Johanna); M. Stenmark-Askmalm (M.); B. Melin (Beatrice); K.L. Nathanson (Katherine); S.M. Domchek (Susan); A. Jakubowska (Anna); J. Lubinski (Jan); T. Huzarski (Tomasz); A. Osorio (Ana); A. Lasa (Adriana); M. Durán (Mercedes); M.I. Tejada; J. Godino (Javier); J. Benitez (Javier); U. Hamann (Ute); M. Kriege (Mieke); N. Hoogerbrugge (Nicoline); R.B. van der Luijt (Rob); C.J. van Asperen (Christi); P. Devilee (Peter); E.J. Meijers-Heijboer (Hanne); M.J. Blok (Marinus); C.M. Aalfs (Cora); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); M. Cook (Margaret); C.T. Oliver (Clare); D. Frost (Debra); D. Conroy (Don); D.G. Evans (Gareth); F. Lalloo (Fiona); G. Pichert (Gabriella); R. Davidson (Rosemarie); T.J. Cole (Trevor); J. Paterson (Joan); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); M.E. Porteous (Mary); L.J. Walker (Lisa); M.J. Kennedy (John); H. Dorkins (Huw); S. Peock (Susan); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); A. de Pauw (Antoine); S. Mazoyer (Sylvie); V. Bonadona (Valérie); C. Lasset (Christine); H. Dreyfus (Hélène); D. Leroux (Dominique); A. hardouin (Agnès); P. Berthet (Pascaline); L. Faivre (Laurence); C. Loustalot (Catherine); T. Noguchi (Tetsuro); H. Sobol (Hagay); E. Rouleau (Etienne); C. Nogues (Catherine); M. Frenay (Marc); L. Vénat-Bouvet (Laurence); J. Hopper (John); M.J. Daly (Mark); M-B. Terry (Mary-beth); E.M. John (Esther); S.S. Buys (Saundra); Y. Yassin (Yosuf); A. Miron (Alexander); D. Goldgar (David); C.F. Singer (Christian); C. Dressler (Catherina); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); T.V.O. Hansen (Thomas); L. Jnson (Lars); B.A. Agnarsson (Bjarni); T. Kircchoff (Tomas); K. Offit (Kenneth); V. Devlin (Vincent); A. Dutra-Clarke (Ana); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); K. Wakeley (Katie); J.F. Boggess (John); J. Basil (Jack); P.E. Schwartz (Peter); S.V. Blank (Stephanie); A.E. Toland (Amanda); M. Montagna (Marco); C. Casella (Cinzia); E.N. Imyanitov (Evgeny); L. Tihomirova (Laima); I. Blanco (Ignacio); C. Lazaro (Conxi); S.J. Ramus (Susan); L. Sucheston (Lara); B.Y. Karlan (Beth); J. Gross (Jenny); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); M. Lochmann (Magdalena); N. Arnold (Norbert); S. Heidemann (Simone); R. Varon-Mateeva (Raymonda); D. Niederacher (Dieter); C. Sutter (Christian); H. Deissler (Helmut); D. Gadzicki (Dorothea); S. Preisler-Adams (Sabine); K. Kast (Karin); I. Schönbuchner (Ines); T. Caldes (Trinidad); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J. Simard (Jacques); A.B. Spurdle (Amanda); H. Holland (Helene); G. Chenevix-Trench (Georgia); R. Platte (Radka); D.F. Easton (Douglas)

    2010-01-01

    textabstractThe known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10,

  16. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Beesley, Jonathan; McGuffog, Lesley;

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs650495...

  17. Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers : Implications for Risk Prediction

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Beesley, Jonathan; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Neuhausen, Susan L.; Ding, Yuan Chun; Rebbeck, Timothy R.; Weitzel, Jeffrey N.; Lynch, Henry T.; Isaacs, Claudine; Ganz, Patricia A.; Tomlinson, Gail; Olopade, Olufunmilayo I.; Couch, Fergus J.; Wang, Xianshu; Lindor, Noralane M.; Pankratz, Vernon S.; Radice, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Barile, Monica; Viel, Alessandra; Allavena, Anna; Dall'Olio, Valentina; Peterlongo, Paolo; Szabo, Csilla I.; Zikan, Michal; Claes, Kathleen; Poppe, Bruce; Foretova, Lenka; Mai, Phuong L.; Greene, Mark H.; Rennert, Gad; Lejbkowicz, Flavio; Glendon, Gord; Ozcelik, Hilmi; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Sunde, Lone; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Milgrom, Roni; Dubrovsky, Maya; Cohen, Shimrit; Borg, Ake; Jernstroem, Helena; Lindblom, Annika; Rantala, Johanna; Stenmark-Askmalm, Marie; Melin, Beatrice; Nathanson, Kate; Domchek, Susan; Jakubowska, Ania; Lubinski, Jan; Huzarski, Tomasz; Osorio, Ana; Lasa, Adriana; Duran, Mercedes; Tejada, Maria-Isabel; Godino, Javier; Benitez, Javier; Hamann, Ute; Kriege, Mieke; Hoogerbrugge, Nicoline; van der Luijt, Rob B.; van Asperen, Christi J.; Devilee, Peter; Meijers-Heijboer, E. J.; Blok, Marinus J.; Aalfs, Cora M.; Hogervorst, Frans; Rookus, Matti; Cook, Margaret; Oliver, Clare; Frost, Debra; Conroy, Don; Evans, D. Gareth; Lalloo, Fiona; Pichert, Gabriella; Davidson, Rosemarie; Cole, Trevor; Cook, Jackie; Paterson, Joan; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary E.; Walker, Lisa; Kennedy, M. John; Dorkins, Huw; Peock, Susan; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; de Pauw, Antoine; Mazoyer, Sylvie; Bonadona, Valerie; Lasset, Christine; Dreyfus, Helene; Leroux, Dominique; Hardouin, Agnes; Berthet, Pascaline; Faivre, Laurence; Loustalot, Catherine; Noguchi, Tetsuro; Sobol, Hagay; Rouleau, Etienne; Nogues, Catherine; Frenay, Marc; Venat-Bouvet, Laurence; Hopper, John L.; Daly, Mary B.; Terry, Mary B.; John, Esther M.; Buys, Saundra S.; Yassin, Yosuf; Miron, Alexander; Goldgar, David; Singer, Christian F.; Dressler, Anne Catharina; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Hansen, Thomas V. O.; Jnson, Lars; Agnarsson, Bjarni A.; Kirchhoff, Tomas; Offit, Kenneth; Devlin, Vincent; Dutra-Clarke, Ana; Piedmonte, Marion; Rodriguez, Gustavo C.; Wakeley, Katie; Boggess, John F.; Basil, Jack; Schwartz, Peter E.; Blank, Stephanie V.; Toland, Amanda Ewart; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny; Tihomirova, Laima; Blanco, Ignacio; Lazaro, Conxi; Ramus, Susan J.; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Schmutzler, Rita; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Lochmann, Magdalena; Arnold, Norbert; Heidemann, Simone; Varon-Mateeva, Raymonda; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Preisler-Adams, Sabine; Kast, Karin; Schoenbuchner, Ines; Caldes, Trinidad; de la Hoya, Miguel; Aittomaeki, Kristiina; Nevanlinna, Heli; Simard, Jacques; Spurdle, Amanda B.; Holland, Helene; Chen, Xiaoqing; Platte, Radka; Chenevix-Trench, Georgia; Easton, Douglas F.

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 i

  18. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.

    Science.gov (United States)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-04-27

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.

  19. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    Science.gov (United States)

    Couch, Fergus J.; Kuchenbaecker, Karoline B.; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A.; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W.; Benitez, Javier; Blank, Stephanie V.; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J.; Chung, Wendy K.; Claes, Kathleen B. M.; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C.; Dolcetti, Riccardo; Domchek, Susan M.; Dorfling, Cecilia M.; dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M.; Eccles, Diana M.; Ehrencrona, Hans; Ekici, Arif B.; Eliassen, Heather; Ellis, Steve; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D.; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D.; Ganz, Patricia A.; Gapstur, Susan M.; Garber, Judy; Gaudet, Mia M.; Gayther, Simon A.; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G.; Glendon, Gord; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Greene, Mark H.; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hansen, Thomas V. O.; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E.; Herzog, Josef; Hogervorst, Frans B. L.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Humphreys, Keith; Hunter, David J.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M.; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y.; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G.; Knight, Julia A.; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L.; Makalic, Enes; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W. M.; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L.; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M.; Muranen, Taru A.; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Nordestgaard, Børge G.; Nussbaum, Robert L.; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Osorio, Ana; Park, Sue K.; Peeters, Petra H.; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M.; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J.; Sanchez, Maria-Jose; Santella, Regina M.; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F.; Sinilnikova, Olga M.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I.; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary B.; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E.; Tollenaar, Robert A. E. M.; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H. M.; van Rensburg, Elizabeth J.; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N.; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R.; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Monteiro, Alvaro A. N.; García-Closas, Montserrat; Easton, Douglas F.; Antoniou, Antonis C.

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction. PMID:27117709

  20. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  1. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

    DEFF Research Database (Denmark)

    Ahmed, Shahana; Thomas, Gilles; Ghoussaini, Maya

    2009-01-01

    Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage...

  2. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus

    Science.gov (United States)

    Horne, Hisani N.; Chung, Charles C.; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L.; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V.; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H.; ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J.; Vachon, Celine; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Marchand, Loic Le; Goldberg, Mark S.; Teo, Soo H.; Taib, Nur A. M.; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L.; Knight, Julia A.; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W. M.; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S.; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D. P.

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799–121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000–120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08–1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive. PMID:27556229

  3. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus.

    Science.gov (United States)

    Horne, Hisani N; Chung, Charles C; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H; Ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J; Vachon, Celine; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Marchand, Loic Le; Goldberg, Mark S; Teo, Soo H; Taib, Nur A M; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W M; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D P; Easton, Douglas F; Chanock, Stephen J; Dunning, Alison M; Figueroa, Jonine D

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.

  4. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Milne, Roger L; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk; Ko, Yon-Dschun; Brauch, Hiltrud; Hamann, Ute; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Li, Jingmei; Brand, Judith S; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lambrechts, Diether; Peuteman, Gilian; Christiaens, Marie-Rose; Smeets, Ann; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katazyna; Hartman, Mikael; Hui, Miao; Yen Lim, Wei; Wan Chan, Ching; Marme, Federick; Yang, Rongxi; Bugert, Peter; Lindblom, Annika; Margolin, Sara; García-Closas, Montserrat; Chanock, Stephen J; Lissowska, Jolanta; Figueroa, Jonine D; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Hooning, Maartje J; Kriege, Mieke; van den Ouweland, Ans M W; Koppert, Linetta B; Fletcher, Olivia; Johnson, Nichola; dos-Santos-Silva, Isabel; Peto, Julian; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha J; Long, Jirong; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Cornelissen, Sten; Braaf, Linde; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Simard, Jacques; Dumont, Martine; Goldberg, Mark S; Labrèche, France; Fasching, Peter A; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Radice, Paolo; Peterlongo, Paolo; Azzollini, Jacopo; Barile, Monica; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Hopper, John L; Schmidt, Daniel F; Makalic, Enes; Southey, Melissa C; Hwang Teo, Soo; Har Yip, Cheng; Sivanandan, Kavitta; Tay, Wan-Ting; Shen, Chen-Yang; Hsiung, Chia-Ni; Yu, Jyh-Cherng; Hou, Ming-Feng; Guénel, Pascal; Truong, Therese; Sanchez, Marie; Mulot, Claire; Blot, William; Cai, Qiuyin; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Bogdanova, Natalia; Dörk, Thilo; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Zhang, Ben; Couch, Fergus J; Toland, Amanda E; Yannoukakos, Drakoulis; Sangrajrang, Suleeporn; McKay, James; Wang, Xianshu; Olson, Janet E; Vachon, Celine; Purrington, Kristen; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Ahmed, Shahana; Shah, Mitul; Pharoah, Paul D P; Hall, Per; Giles, Graham G; Benítez, Javier; Dunning, Alison M; Chenevix-Trench, Georgia; Easton, Douglas F

    2014-11-15

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.

  5. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium

    Science.gov (United States)

    Milne, Roger L.; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M. Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K.; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk; Ko, Yon-Dschun; Brauch, Hiltrud; Hamann, Ute; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Li, Jingmei; Brand, Judith S.; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lambrechts, Diether; Peuteman, Gilian; Christiaens, Marie-Rose; Smeets, Ann; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katazyna; Hartman, Mikael; Hui, Miao; Yen Lim, Wei; Wan Chan, Ching; Marme, Federick; Yang, Rongxi; Bugert, Peter; Lindblom, Annika; Margolin, Sara; García-Closas, Montserrat; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Hooning, Maartje J.; Kriege, Mieke; van den Ouweland, Ans M.W.; Koppert, Linetta B.; Fletcher, Olivia; Johnson, Nichola; dos-Santos-Silva, Isabel; Peto, Julian; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha J.; Long, Jirong; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Cox, Angela; Cross, Simon S.; Reed, Malcolm W.R.; Schmidt, Marjanka K.; Broeks, Annegien; Cornelissen, Sten; Braaf, Linde; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Simard, Jacques; Dumont, Martine; Goldberg, Mark S.; Labrèche, France; Fasching, Peter A.; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Radice, Paolo; Peterlongo, Paolo; Azzollini, Jacopo; Barile, Monica; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Hopper, John L.; Schmidt, Daniel F.; Makalic, Enes; Southey, Melissa C.; Hwang Teo, Soo; Har Yip, Cheng; Sivanandan, Kavitta; Tay, Wan-Ting; Shen, Chen-Yang; Hsiung, Chia-Ni; Yu, Jyh-Cherng; Hou, Ming-Feng; Guénel, Pascal; Truong, Therese; Sanchez, Marie; Mulot, Claire; Blot, William; Cai, Qiuyin; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Wu, Anna H.; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O.; Bogdanova, Natalia; Dörk, Thilo; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Zhang, Ben; Couch, Fergus J.; Toland, Amanda E.; Yannoukakos, Drakoulis; Sangrajrang, Suleeporn; McKay, James; Wang, Xianshu; Olson, Janet E.; Vachon, Celine; Purrington, Kristen; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Ahmed, Shahana; Shah, Mitul; Pharoah, Paul D.P.; Hall, Per; Giles, Graham G.; Benítez, Javier; Dunning, Alison M.; Chenevix-Trench, Georgia; Easton, Douglas F.; Berchuck, Andrew; Eeles, Rosalind A.; Olama, Ali Amin Al; Kote-Jarai, Zsofia; Benlloch, Sara; Antoniou, Antonis; McGuffog, Lesley; Offit, Ken; Lee, Andrew; Dicks, Ed; Luccarini, Craig; Tessier, Daniel C.; Bacot, Francois; Vincent, Daniel; LaBoissière, Sylvie; Robidoux, Frederic; Nielsen, Sune F.; Cunningham, Julie M.; Windebank, Sharon A.; Hilker, Christopher A.; Meyer, Jeffrey; Angelakos, Maggie; Maskiell, Judi; van der Schoot, Ellen; Rutgers, Emiel; Verhoef, Senno; Hogervorst, Frans; Boonyawongviroj, Prat; Siriwanarungsan, Pornthep; Schrauder, Michael; Rübner, Matthias; Oeser, Sonja; Landrith, Silke; Williams, Eileen; Ryder-Mills, Elaine; Sargus, Kara; McInerney, Niall; Colleran, Gabrielle; Rowan, Andrew; Jones, Angela; Sohn, Christof; Schneeweiß, Andeas; Bugert, Peter; Álvarez, Núria; Lacey, James; Wang, Sophia; Ma, Huiyan; Lu, Yani; Deapen, Dennis; Pinder, Rich; Lee, Eunjung; Schumacher, Fred; Horn-Ross, Pam; Reynolds, Peggy; Nelson, David; Ziegler, Hartwig; Wolf, Sonja; Hermann, Volker; Lo, Wing-Yee; Justenhoven, Christina; Baisch, Christian; Fischer, Hans-Peter; Brüning, Thomas; Pesch, Beate; Rabstein, Sylvia; Lotz, Anne; Harth, Volker; Heikkinen, Tuomas; Erkkilä, Irja; Aaltonen, Kirsimari; von Smitten, Karl; Antonenkova, Natalia; Hillemanns, Peter; Christiansen, Hans; Myöhänen, Eija; Kemiläinen, Helena; Thorne, Heather; Niedermayr, Eveline; Bowtell, D; Chenevix-Trench, G; deFazio, A; Gertig, D; Green, A; Webb, P; Green, A.; Parsons, P.; Hayward, N.; Webb, P.; Whiteman, D.; Fung, Annie; Yashiki, June; Peuteman, Gilian; Smeets, Dominiek; Brussel, Thomas Van; Corthouts, Kathleen; Obi, Nadia; Heinz, Judith; Behrens, Sabine; Eilber, Ursula; Celik, Muhabbet; Olchers, Til; Manoukian, Siranoush; Peissel, Bernard; Scuvera, Giulietta; Zaffaroni, Daniela; Bonanni, Bernardo; Feroce, Irene; Maniscalco, Angela; Rossi, Alessandra; Bernard, Loris; Tranchant, Martine; Valois, Marie-France; Turgeon, Annie; Heguy, Lea; Sze Yee, Phuah; Kang, Peter; Nee, Kang In; Mariapun, Shivaani; Sook-Yee, Yoon; Lee, Daphne; Ching, Teh Yew; Taib, Nur Aishah Mohd; Otsukka, Meeri; Mononen, Kari; Selander, Teresa; Weerasooriya, Nayana; staff, OFBCR; Krol-Warmerdam, E.; Molenaar, J.; Blom, J.; Brinton, Louise; Szeszenia-Dabrowska, Neonila; Peplonska, Beata; Zatonski, Witold; Chao, Pei; Stagner, Michael; Bos, Petra; Blom, Jannet; Crepin, Ellen; Nieuwlaat, Anja; Heemskerk, Annette; Higham, Sue; Cross, Simon; Cramp, Helen; Connley, Dan; Balasubramanian, Sabapathy; Brock, Ian; Luccarini, Craig; Conroy, Don; Baynes, Caroline; Chua, Kimberley

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04–1.10, P = 2.9 × 10−6], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03–1.07, P = 1.7 × 10−6) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07–1.12, P = 5.1 × 10−17). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05–1.10, P = 1.0 × 10−8); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04–1.07, P = 2.0 × 10−10). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act

  6. 11q13 is a Susceptibility Locus for Hormone Receptor Positive Breast Cancer

    DEFF Research Database (Denmark)

    Lambrechts, Diether; Truong, Therese; Justenhoven, Christina

    2012-01-01

    A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10 and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we...... genotyped the variants rs2380205, rs1011970, rs704010, rs614367, rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P = 3 × 10-9) and weak...... evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10-39). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR...

  7. Experience with breast cancer, pre-screening perceived susceptibility and the psychological impact of screening

    DEFF Research Database (Denmark)

    Absetz, Pilvikki; Aro, Arja R; Sutton, Stephen R

    2003-01-01

    This prospective study examined whether the psychological impact of organized mammography screening is influenced by women's pre-existing experience with breast cancer and perceived susceptibility (PS) to the disease. From a target population of 16,886, a random sample of women with a normal...... responded to the follow-ups. Psychological impact was measured as anxiety (STAI-S), depression (BDI), health-related concerns (IAS), and breast cancer-specific beliefs and concerns. Data was analyzed with repeated measures analyses of variance, with estimates of effect size based on Eta-squared. Women...... normal mammograms. Experience and PS did not influence responses to different screening findings. Of the finding groups, false positives experienced most adverse effects: their risk perception increased and they reported most post-screening breast cancer-specific concerns. Furthermore, they became more...

  8. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    Directory of Open Access Journals (Sweden)

    Pina Julieta

    2009-09-01

    Full Text Available Abstract Background MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. Methods We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Results Using unconditional logistic regression we found that MLH3 (L844P, G>A polymorphism GA (Leu/Pro and AA (Pro/Pro genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95 (p = 0.03 and OR = 0.62 (0.41-0.94 (p = 0.03, respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83, p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49, p = 0.01], GG/AA [OR = 2.11 (1.12-3,98, p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15, p = 0.02] all associated with an increased risk for breast cancer. Conclusion It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.

  9. Replication of breast cancer susceptibility loci in whites and African Americans using a Bayesian approach.

    Science.gov (United States)

    O'Brien, Katie M; Cole, Stephen R; Poole, Charles; Bensen, Jeannette T; Herring, Amy H; Engel, Lawrence S; Millikan, Robert C

    2014-02-01

    Genome-wide association studies (GWAS) and candidate gene analyses have led to the discovery of several dozen genetic polymorphisms associated with breast cancer susceptibility, many of which are considered well-established risk factors for the disease. Despite attempts to replicate these same variant-disease associations in African Americans, the evaluable populations are often too small to produce precise or consistent results. We estimated the associations between 83 previously identified single nucleotide polymorphisms (SNPs) and breast cancer among Carolina Breast Cancer Study (1993-2001) participants using maximum likelihood, Bayesian, and hierarchical methods. The selected SNPs were previous GWAS hits (n = 22), near-hits (n = 19), otherwise well-established risk loci (n = 5), or located in the same genes as selected variants (n = 37). We successfully replicated 18 GWAS-identified SNPs in whites (n = 2,352) and 10 in African Americans (n = 1,447). SNPs in the fibroblast growth factor receptor 2 gene (FGFR2) and the TOC high mobility group box family member 3 gene (TOX3) were strongly associated with breast cancer in both races. SNPs in the mitochondrial ribosomal protein S30 gene (MRPS30), mitogen-activated protein kinase kinase kinase 1 gene (MAP3K1), zinc finger, MIZ-type containing 1 gene (ZMIZ1), and H19, imprinted maternally expressed transcript gene (H19) were associated with breast cancer in whites, and SNPs in the estrogen receptor 1 gene (ESR1) and H19 gene were associated with breast cancer in African Americans. We provide precise and well-informed race-stratified odds ratios for key breast cancer-related SNPs. Our results demonstrate the utility of Bayesian methods in genetic epidemiology and provide support for their application in small, etiologically driven investigations.

  10. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    OpenAIRE

    2014-01-01

    This is the final version of the article. It was first published by BioMed Central at http://www.breast-cancer-research.com/content/16/6/3416 Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loc...

  11. Increased radiosensitivity as an indicator of genes conferring breast cancer susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Varga, D.; Kreienberg, R.; Deissler, H.; Sauer, G. [Dept. of Gynecology and Obstetrics, Univ. of Ulm Medical School (Germany); Vogel, W.; Bender, A.; Surowy, H.; Maier, C. [Dept. of Genetics, Univ. of Ulm Medical School (Germany)

    2007-12-15

    Purpose: This paper briefly summarizes the research on increased radiosensitivity in breast cancer patients measured by the micronucleus test (MNT) and its association to genetic variants in DNA repair genes. More preliminary data are presented on the distribution of chromosomes and chromosome fragments in micronuclei (MN) in order to gain more information on clastogenic and aneugenic effects and better understand the phenotype of increased radiosensitivity. Material and Methods: Reports of relevant studies obtained from a search of PubMed and studies referenced in those reports were reviewed. In four patients with high MN frequency (three cancer patients, one control) and four probands with low MN frequency, the presence of chromosome fragments or whole chromosomes in MN was determined by fluorescence in situ hybridization analysis for chromosomes 1, 7, and 17. Results: An increased MN frequency in breast cancer patients compared to controls has consistently been reported with high significance. Higher MN frequencies were observed in 20-50% of breast cancer patients. Chromosomal fragments of chromosome 17, but not of chromosomes 1 and 7 were more frequent in the probands with high MN frequency than in those with low frequency (p = 0.045). Conclusion: The MNT detects a cellular phenotype common to a portion of sporadic breast cancer patients. This phenotype is very likely to be genetically determined. For the genetic dissection of breast cancer susceptibility this phenotype may turn out to be more efficient than breast cancer itself. Additional parameters which can be measured simultaneously with the MN frequency may be able to further enhance its usefulness. (orig.)

  12. Characterization of the Breast Cancer Susceptibility Gene, BRCA2

    Science.gov (United States)

    1998-09-01

    retrieval solution (BioGenex, San Ramon CA) for 2C9 or 0.01M citrate solution for cytokeratins, 2 x 5 minutes at 600 Watts using a microwave oven , prior...response to puberty , pregnancy and parity, three different stages in which the breast is actively undergoing differentiation as well as proliferation (9). As...of the breasts and ovaries at the onset of puberty is a cyclic pattern of high estradiol (E2) levels, the most active endogenous estrogen. Furthermore

  13. Clinical application of micronucleus test: a case-control study on the prediction of breast cancer risk/susceptibility.

    Science.gov (United States)

    Bolognesi, Claudia; Bruzzi, Paolo; Gismondi, Viviana; Volpi, Samantha; Viassolo, Valeria; Pedemonte, Simona; Varesco, Liliana

    2014-01-01

    The micronucleus test is a well-established DNA damage assay in human monitoring. The test was proposed as a promising marker of cancer risk/susceptibility mainly on the basis of studies on breast cancer. Our recent meta-analysis showed that the association between micronuclei frequency, either at baseline or after irradiation, and breast cancer risk or susceptibility, has been evaluated in few studies of small size, with inconsistent results. The aim of the present study is to investigate the role of micronucleus assay in evaluating individual breast cancer susceptibility. Two-hundred and twenty untreated breast cancer patients and 295 female controls were enrolled in the study. All women were characterized for cancer family history and 155 subjects were evaluated for the presence of BRCA mutations. Micronuclei frequency was evaluated at baseline and after irradiation with 1-Gy gamma rays from a 137Cs source. The results show a non significant increase of frequency of micronucleated binucleated lymphocytes in cancer patients compared with the controls at baseline (Mean (S.E.): 16.8 (0.7) vs 15.7 (0.5), but not after irradiation (Mean (S.E.): 145.8 (3.0) vs 154.0 (2.6)). Neither a family history of breast cancer nor the presence of a pathogenic mutation in BRCA1/2 genes were associated with an increased micronuclei frequency. Our results do not support a significant role of micronucleus frequency as a biomarker of breast cancer risk/susceptibility.

  14. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development.

    Science.gov (United States)

    Theodoropoulos, George E; Saridakis, Vasilios; Karantanos, Theodoros; Michalopoulos, Nikolaos V; Zagouri, Flora; Kontogianni, Panagiota; Lymperi, Maria; Gazouli, Maria; Zografos, George C

    2012-08-01

    Toll-like receptor (TLR) activation may be an important event in tumor cell immune evasion. TLR2 and TLR4 gene polymorphisms have been related to increased susceptibility to cancer development in various organs. 261 patients and 480 health individuals were investigated for genotype and allelic frequencies of a 22-bp nucleotide deletion (-196 to -174del) in the promoter of TLR2 gene as well as two polymorphisms causing amino acid substitutions (Asp299Gly and Thr399Ile) in TLR4 gene. As far as (-196 to -174del) in TLR2 gene is concerned ins/del and del/del genotypes and del allele were significantly more frequent in breast cancer patients compared to healthy controls. Considering Asp299Gly replacement of TLR4 gene, Gly carriers (Asp/Gly & Gly/Gly genotype) and Gly allele were overrepresented among the breast cancer cases. The -174 to -196del of TLR2 gene and Asp299Gly of TLR4 gene polymorphisms may confer an increased susceptibility to breast cancer development.

  15. Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness

    Directory of Open Access Journals (Sweden)

    Helal Ahmed N

    2010-06-01

    Full Text Available Abstract Background Interleukin-8 (IL-8/CXCL-8 is a prototype of the ELR+CXC chemokines that play an important role in the promotion and progression of many human cancers including breast cancer. We have recently showed the implication of polymorphism (-251 T/A of IL-8 gene in the susceptibility and prognosis of breast carcinoma. IL-8 acts through its CXCR1 and CXCR2 receptors. CXCR2, expressed on the endothelial cells, is the receptor involved in mediating the angiogenic effects of ELR+CXC chemokines and in particular IL-8. In the current study, we investigated the susceptibility and prognostic implications of the genetic variation in CXCR2 in breast carcinoma. We also confirmed the implication of IL-8 (-251 T/A polymorphism in a larger cohort. Finally, we combined the IL-8 and CXCR2 variant alleles and analyzed their effects in breast cancer risk and prognosis. Methods We used the allele-specific polymerase chain reaction to characterize the variation of IL-8 and CXCR2 for 409 unrelated Tunisian patients with breast carcinoma and 301 healthy control subjects. To estimate the relative risks, Odds ratios and 95% confidence intervals were calculated using unconditional logistic regression after adjusting for the known risk factors for breast cancer. Associations of the genetic marker with the rates of breast carcinoma-specific overall survival and disease-free survival were assessed using univariate and multivariate analyses. Results A highly significant association was found between the homozygous CXCR2 (+ 1208 TT genotype (adjusted OR = 2.89; P = 0.008 and breast carcinoma. A significantly increased risk of breast carcinoma was associated with IL-8 (-251 A allele (adjusted OR = 1.86; P = 0.001. The presence of two higher risk genotypes (the TA and TT in IL-8, and the TT in CXCR2 significantly increased the risk of developing breast carcinoma (adjusted OR = 4.15; P = 0.0004. The CXCR2 (+ 1208 T allele manifested a significant association with an

  16. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2.

    Science.gov (United States)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola; Maguire, Sarah; Novo, Daniela; Perrakis, Eleni; Johnson, Nichola; Ghoussaini, Maya; Hopper, John L; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Gibson, Lorna; Aitken, Zoe; Warren, Helen; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Chistof; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Sanchez, Marie; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Maria Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Hamann, Ute; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Bogdanova, Natalia; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Beesley, Jonathan; Lambrechts, Diether; Moisse, Matthieu; Floris, Guiseppe; Beuselinck, Benoit; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Pensotti, Valeria; Couch, Fergus J; Olson, Janet E; Slettedahl, Seth; Vachon, Celine; Giles, Graham G; Milne, Roger L; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Kristensen, Vessela; Alnæs, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Van Asperen, Christi J; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Klevebring, Daniel; Hooning, Maartje J; Hollestelle, Antoinette; van Deurzen, Carolien H M; Kriege, Mieke; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Perkins, Barbara J; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Schoemaker, Minouk J; Meindl, Alfons; Schmutzler, Rita K; Olswold, Curtis; Slager, Susan; Toland, Amanda E; Yannoukakos, Drakoulis; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Matsuo, Keitaro; Ito, Hidema; Iwata, Hiroji; Ishiguro, Junko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Teo, Soo Hwang; Yip, Cheng Har; Kang, Peter; Ikram, Mohammad Kamran; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Lee, Soo Chin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Wu, Pei-Ei; Hou, Ming-Feng; Yu, Jyh-Cherng; Shen, Chen-Yang; Blot, William; Cai, Qiuyin; Signorello, Lisa B; Luccarini, Craig; Bayes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Hunter, David J; Lindstrom, Sara; Dennis, Joe; Michailidou, Kyriaki; Bolla, Manjeet K; Easton, Douglas F; dos Santos Silva, Isabel; Fletcher, Olivia; Peto, Julian

    2015-05-15

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

  17. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  18. Evaluation of breast cancer susceptibility using improved genetic algorithms to generate genotype SNP barcodes.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2013-01-01

    Genetic association is a challenging task for the identification and characterization of genes that increase the susceptibility to common complex multifactorial diseases. To fully execute genetic studies of complex diseases, modern geneticists face the challenge of detecting interactions between loci. A genetic algorithm (GA) is developed to detect the association of genotype frequencies of cancer cases and noncancer cases based on statistical analysis. An improved genetic algorithm (IGA) is proposed to improve the reliability of the GA method for high-dimensional SNP-SNP interactions. The strategy offers the top five results to the random population process, in which they guide the GA toward a significant search course. The IGA increases the likelihood of quickly detecting the maximum ratio difference between cancer cases and noncancer cases. The study systematically evaluates the joint effect of 23 SNP combinations of six steroid hormone metabolisms, and signaling-related genes involved in breast carcinogenesis pathways were systematically evaluated, with IGA successfully detecting significant ratio differences between breast cancer cases and noncancer cases. The possible breast cancer risks were subsequently analyzed by odds-ratio (OR) and risk-ratio analysis. The estimated OR of the best SNP barcode is significantly higher than 1 (between 1.15 and 7.01) for specific combinations of two to 13 SNPs. Analysis results support that the IGA provides higher ratio difference values than the GA between breast cancer cases and noncancer cases over 3-SNP to 13-SNP interactions. A more specific SNP-SNP interaction profile for the risk of breast cancer is also provided.

  19. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21.

    Science.gov (United States)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique; Michailidou, Kyriaki; Canisius, Sander; Lemaçon, Audrey; Droit, Arnaud; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Burwinkel, Barbara; Chang-Claude, Jenny; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G; Goldberg, Mark S; González-Neira, Anna; Grenaker-Alnæs, Grethe; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hallberg, Emily; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jones, Michael; Kabisch, Maria; Kataja, Vesa; Lambrechts, Diether; Le Marchand, Loic; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Maranian, Mel; Margolin, Sara; Marme, Frederik; Milne, Roger L; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olswold, Curtis; Peto, Julian; Plaseska-Karanfilska, Dijana; Pylkäs, Katri; Radice, Paolo; Rudolph, Anja; Sawyer, Elinor J; Schmidt, Marjanka K; Shu, Xiao-Ou; Southey, Melissa C; Swerdlow, Anthony; Tollenaar, Rob A E M; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Van Den Ouweland, Ans M W; Wang, Qin; Winqvist, Robert; Zheng, Wei; Benitez, Javier; Chenevix-Trench, Georgia; Dunning, Alison M; Pharoah, Paul D P; Kristensen, Vessela; Hall, Per; Easton, Douglas F; Pastinen, Tomi; Nord, Silje; Simard, Jacques

    2016-12-06

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.

  20. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

    Science.gov (United States)

    Adoue, Véronique; Michailidou, Kyriaki; Canisius, Sander; Lemaçon, Audrey; Droit, Arnaud; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Burwinkel, Barbara; Chang-Claude, Jenny; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; García-Closas, Montserrat; Giles, Graham G.; Goldberg, Mark S.; González-Neira, Anna; Grenaker-Alnæs, Grethe; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hallberg, Emily; Hooning, Maartje J.; Hopper, John L.; Jakubowska, Anna; Jones, Michael; Kabisch, Maria; Kataja, Vesa; Lambrechts, Diether; Marchand, Loic Le; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Maranian, Mel; Margolin, Sara; Marme, Frederik; Milne, Roger L.; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Olswold, Curtis; Peto, Julian; Plaseska-Karanfilska, Dijana; Pylkäs, Katri; Radice, Paolo; Rudolph, Anja; Sawyer, Elinor J.; Schmidt, Marjanka K.; Shu, Xiao-Ou; Southey, Melissa C.; Swerdlow, Anthony; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Van Den Ouweland, Ans M. W.; Wang, Qin; Winqvist, Robert; Investigators, kConFab/AOCS; Zheng, Wei; Benitez, Javier; Chenevix-Trench, Georgia; Dunning, Alison M.; Pharoah, Paul D. P.; Kristensen, Vessela; Hall, Per; Easton, Douglas F.; Pastinen, Tomi; Nord, Silje; Simard, Jacques

    2016-01-01

    There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas. PMID:27792995

  1. The effects of message framing and feelings of susceptibility to breast cancer on reported frequency of breast self-examination.

    Science.gov (United States)

    Lalor, K M; Hailey, B J

    1989-01-01

    One of two types of pamphlets on breast self-examination (BSE) attitudes and behavior was administered to subjects who were classified as high or low in feelings of susceptibility to breast cancer. Half of the subjects received pamphlets stressing the positive consequences of doing BSE and the other half received pamphlets stressing the negative consequences of not doing BSE. A previous study found negatively framed pamphlets to be superior in BSE promotion and these results were explained in terms of Tversky and Kahneman's framing postulate. The original framing postulate includes characteristics of the decision-maker as well as the type of frame presented, thus, we hypothesized an interaction between pamphlet type and level of susceptibility with the largest effect on the group with low perceived susceptibility who received negatively framed pamphlets. The hypothesized interaction did not occur, nor was there a significant effect for pamphlet type. However, there were significant differences between the BSE performance at follow-up of women who were high or low in perceived susceptibility prior to the intervention. These results are discussed in terms of implications for BSE training in the future, more specifically-the need to consider perceived level of susceptibility as an important subject characteristic that could have a large impact on the effectiveness of training programs.

  2. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.L. Neuhausen (Susan); M. Robson (Mark); D. Barrowdale (Daniel); L. McGuffog (Lesley); A.M. Mulligan (Anna Marie); I.L. Andrulis (Irene); A.B. Spurdle (Amanda); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); C. Engel (Christoph); B. Wapenschmidt (Barbara); H. Nevanlinna (Heli); M. Thomassen (Mads); M.C. Southey (Melissa); P. Radice (Paolo); S.J. Ramus (Susan); S.M. Domchek (Susan); K.L. Nathanson (Katherine); A. Lee (Andrew); S. Healey (Sue); R. Nussbaum (Robert); R. Rebbeck (Timothy); B.K. Arun (Banu); M. James (Margaret); B. Karlan; K.J. Lester (Kathryn); I. Cass (Ilana); M.B. Terry (Mary Beth); M.J. Daly (Mark); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); T. v O Hansen (Thomas); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); F. Nielsen (Finn); J. Dennis (Joe); J.M. Cunningham (Julie); S. Hart (Stewart); S. Slager (Susan); A. Osorio (Ana); J. Benítez (Javier); M. Duran (Mercedes); J.N. Weitzel (Jeffrey); I. Tafur (Isaac); M. Hander (Mary); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); G. Roversi (Gaia); G. Scuvera (Giulietta); B. Bonnani (Bernardo); P. Mariani (Paolo); S. Volorio (Sara); R. Dolcetti (Riccardo); L. Varesco (Liliana); L. Papi (Laura); M.G. Tibiletti (Maria Grazia); G. Giannini (Giuseppe); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); A. Brady (A.); J. Cook (Jackie); M. Tischkowitz (Marc); L. Adlard; J. Barwell (Julian); K. Ong; L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); S.D. Ellis (Steve); A.K. Godwin (Andrew); K. Rhiem (Kerstin); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); D. Steinemann (Doris); N. Bogdanova-Markov (Nadja); K. Kast (Karin); R. Varon-Mateeva (Raymonda); S. Wang-Gohrke (Shan); P.A. Gehrig (Paola A.); B. Markiefka (Birgid); B. Buecher (Bruno); C. Lefol (Cédrick); D. Stoppa-Lyonnet (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); L. Barjhoux (Laure); L. Faivre (Laurence); M. Longy (Michel); N. Sevenet (Nicolas); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); V. Bonadona (Valérie); V. Caux-Moncoutier (Virginie); C. Isaacs (Claudine); T. Van Maerken (Tom); K.B.M. Claes (Kathleen B.M.); M. Piedmonte (Marion); L. Andrews (Lesley); J. Hays (John); G.C. Rodriguez (Gustavo); T. Caldes (Trinidad); M. de La Hoya (Miguel); S. Khan (Sofia); F.B.L. Hogervorst (Frans); C.M. Aalfs (Cora); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); J.T. Wijnen (Juul); K.E. van Roozendaal (Kees); A.R. Mensenkamp (Arjen); A.M.W. van den Ouweland (Ans); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); C. Lazaro (Conxi); I. Blanco (Ignacio); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); J. Lubinski (Jan); C. Cybulski (Cezary); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Arason (Adalgeir); C. Maugard; P. Soucy (Penny); M. Montagna (Marco); S. Agata (Simona); P.J. Teixeira; C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); B. Hallberg (Boubou); X. Wang (Xianshu); C. Szabo (Csilla); J. Vijai (Joseph); L. Jacobs (Lauren); M. Corines (Marina); A. Lincoln (Anne); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; C. Phelan (Catherine); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); E.N. Imyanitov (Evgeny); G. Glendon (Gord); A.E. Toland (Amanda); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); R. Berger (Raanan); Y. Laitman (Yael); J. Rantala (Johanna); B. Arver (Brita Wasteson); N. Loman (Niklas); Å. Borg (Åke); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); F.J. Couch (Fergus); A.C. Antoniou (Antonis C.); CIMBA; EMBRACE Study; Breast Cancer Family; GEMO Study Collaborators; HEBON; KConFab Investigators

    2014-01-01

    textabstractIntroduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 muta

  3. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Kjaer, Susanne Krüger;

    2009-01-01

    , three SNPs (rs2107425 in MRPL23, rs7313833 in PTHLH, rs3803662 in TNRC9) were weakly associated with ovarian cancer risk and one SNP (rs4954956 in NXPH2) was associated with serous ovarian cancer in non-Hispanic white subjects (P-trend ....01-1.13, P-trend = 0.02 for all types of ovarian cancer and OR 1.14 95% CI 1.07-1.22, P-trend = 0.00017 for serous ovarian cancer]. In conclusion, we found that rs4954956 was associated with increased ovarian cancer risk, particularly for serous ovarian cancer. However, none of the six confirmed breast...... cancer susceptibility variants we tested was associated with ovarian cancer risk. Further work will be needed to identify the causal variant associated with rs4954956 or elucidate its function....

  4. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females

    Directory of Open Access Journals (Sweden)

    Alaa Mohammed Ali

    2016-01-01

    Full Text Available We investigated three common polymorphisms (SNPs in the XRCC3 gene (rs861539, rs1799794, and rs1799796 in 143 Saudi females suffering from breast cancer (median age = 51.4 years and 145 age matched normal healthy controls. DNA was extracted from whole blood and genotyping was conducted using PCR-RFLP. rs1799794 showed significant association, where AA and AA+AG occurred at a significantly higher frequency in the cancer patients compared to the control group (OR: 28.1; 95% CI: 3.76–21.12; χ2: 22.82; pT and rs1799796 A>G did not show a significant difference when the results in the patients and controls were compared. However, the frequency of rs1799796 differed significantly in patients with different age of diagnosis, tumor grade, and ER and HER2 status. The wild type A allele occurred at a higher frequency in the ER− and HER2− group. Our results among Saudis suggest that some variations in XRCC3 may contribute to breast cancer susceptibility. In conclusion, the results obtained during this study suggest that rs1799794 in XRCC3 shows strong association with breast cancer development in Saudi females.

  5. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    F.J. Couch (Fergus); K.B. Kuchenbaecker (Karoline); K. Michailidou (Kyriaki); G.A. Mendoza-Fandino (Gustavo A.); S. Nord (Silje); J. Lilyquist (Janna); C. Olswold (Curtis); B. Hallberg (Boubou); S. Agata (Simona); H. Ahsan (Habibul); K. Aittomäki (Kristiina); C.B. Ambrosone (Christine B.); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); V. Arndt (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); M. Barile (Monica); R.B. Barkardottir (Rosa); D. Barrowdale (Daniel); L. Beckmann (Lars); M.W. Beckmann (Matthias); J. Benítez (Javier); S.V. Blank (Stephanie); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet); B. Bonnani (Bernardo); H. Brauch (Hiltrud); H. Brenner (Hermann); B. Burwinkel (Barbara); S.S. Buys (Saundra S.); T. Caldes (Trinidad); M.A. Caligo (Maria); F. Canzian (Federico); T.A. Carpenter (Adrian); J. Chang-Claude (Jenny); S.J. Chanock (Stephen J.); W.K. Chung (Wendy K.); K.B.M. Claes (Kathleen B.M.); A. Cox (Angela); S.S. Cross (Simon); J.M. Cunningham (Julie); K. Czene (Kamila); M.B. Daly (Mary B.); F. Damiola (Francesca); H. Darabi (Hatef); M. de La Hoya (Miguel); P. Devilee (Peter); O. Díez (Orland); Y.C. Ding (Yuan); R. Dolcetti (Riccardo); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); I. dos Santos Silva (Isabel); M. Dumont (Martine); A.M. Dunning (Alison); D. Eccles (Diana); H. Ehrencrona (Hans); A.B. Ekici (Arif); H. Eliassen (Heather); S.D. Ellis (Steve); P.A. Fasching (Peter); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); A. Försti (Asta); F. Fostira (Florentia); W.D. Foulkes (William); M.O.W. Friebel (Mark ); E. Friedman (Eitan); D. Frost (Debra); M. Gabrielson (Marike); M. Gammon (Marilie); P.A. Ganz (Patricia A.); S.M. Gapstur (Susan M.); J. Garber (Judy); M.M. Gaudet (Mia); S.A. Gayther (Simon); A-M. Gerdes (Anne-Marie); M. Ghoussaini (Maya); G.G. Giles (Graham); G. Glendon (Gord); A.K. Godwin (Andrew K.); M.S. Goldberg (Mark); D. Goldgar (David); A. González-Neira (Anna); M.H. Greene (Mark H.); J. Gronwald (Jacek); P. Guénel (Pascal); M.J. Gunter (Marc J.); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); S. Healey (Sue); T. Heikkinen (Tuomas); B.E. Henderson (Brian); J. Herzog (Josef); F.B.L. Hogervorst (Frans); A. Hollestelle (Antoinette); M.J. Hooning (Maartje); R.N. Hoover (Robert); J.L. Hopper (John); K. Humphreys (Keith); D. Hunter (David); T. Huzarski (Tomasz); E.N. Imyanitov (Evgeny N.); C. Isaacs (Claudine); A. Jakubowska (Anna); M. James (Margaret); R. Janavicius (Ramunas); U.B. Jensen; E.M. John (Esther); M. Jones (Michael); M. Kabisch (Maria); S. Kar (Siddhartha); B.Y. Karlan (Beth Y.); S. Khan (Sofia); K.T. Khaw; M.G. Kibriya (Muhammad); J.A. Knight (Julia); Y.-D. Ko (Yon-Dschun); I. Konstantopoulou (I.); V-M. Kosma (Veli-Matti); V. Kristensen (Vessela); A. Kwong (Ava); Y. Laitman (Yael); D. Lambrechts (Diether); C. Lazaro (Conxi); E. Lee (Eunjung); L. Le Marchand (Loic); K.J. Lester (Kathryn); A. Lindblom (Annika); N.M. Lindor (Noralane); S. Lindstrom (Stephen); J. Liu (Jianjun); J. Long (Jirong); J. Lubinski (Jan); P.L. Mai (Phuong); E. Makalic (Enes); K.E. Malone (Kathleen E.); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); F. Marme (Federick); J.W.M. Martens (John); L. McGuffog (Lesley); A. Meindl (Alfons); A. Miller (Austin); R.L. Milne (Roger); P. Miron (Penelope); M. Montagna (Marco); S. Mazoyer (Sylvie); A.-M. Mulligan (Anna-Marie); T.A. Muranen (Taru); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); B.G. Nordestgaard (Børge); R. Nussbaum (Robert); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); J.E. Olson (Janet); A. Osorio (Ana); S.K. Park (Sue K.); P.H.M. Peeters; B. Peissel (Bernard); P. Peterlongo (Paolo); J. Peto (Julian); C. Phelan (Catherine); R. Pilarski (Robert); B. Poppe (Bruce); K. Pykäs (Katri); P. Radice (Paolo); N. Rahman (Nazneen); J. Rantala (Johanna); C. Rappaport (Christine); G. Rennert (Gad); A.L. Richardson (Andrea); M. Robson (Mark); I. Romieu (Isabelle); A. Rudolph (Anja); E.J.T. Rutgers (Emiel); M.-J. Sanchez (Maria-Jose); R. Santella (Regina); E.J. Sawyer (Elinor); D.F. Schmidt (Daniel); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); F.R. Schumacher (Fredrick); R.J. Scott (Rodney); L. Senter (Leigha); P. Sharma (Priyanka); J. Simard (Jacques); C.F. Singer (Christian); O. Sinilnikova (Olga); P. Soucy (Penny); M.C. Southey (Melissa); D. Steinemann (Doris)

    2016-01-01

    textabstractCommon variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibili

  6. What Is Breast Cancer?

    Science.gov (United States)

    ... Research? Breast Cancer About Breast Cancer What Is Breast Cancer? Breast cancer starts when cells in the breast ... spread, see our section on Cancer Basics . Where breast cancer starts Breast cancers can start from different parts ...

  7. Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer.

    Directory of Open Access Journals (Sweden)

    Jirong Long

    Full Text Available Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls. SNP rs9485372, near the TGF-β activated kinase (TAB2 gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10(-12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals were 0.89 (0.85-0.94 and 0.80 (0.75-0.86 for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10(-6 from the combined analysis of all samples, located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10(-7, located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1, and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively.

  8. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    Science.gov (United States)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola; Maguire, Sarah; Novo, Daniela; Perrakis, Eleni; Johnson, Nichola; Ghoussaini, Maya; Hopper, John L.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Schmidt, Marjanka K.; Broeks, Annegien; Van't Veer, Laura J.; Hogervorst, Frans B.; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Gibson, Lorna; Aitken, Zoe; Warren, Helen; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Chistof; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Sanchez, Marie; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Maria Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L.; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Hamann, Ute; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Bogdanova, Natalia; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Beesley, Jonathan; Lambrechts, Diether; Moisse, Matthieu; Floris, Guiseppe; Beuselinck, Benoit; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Pensotti, Valeria; Couch, Fergus J.; Olson, Janet E.; Slettedahl, Seth; Vachon, Celine; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Kristensen, Vessela; Alnæs, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robertus A. E. M.; Seynaeve, Caroline M.; Van Asperen, Christi J.; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Klevebring, Daniel; Hooning, Maartje J.; Hollestelle, Antoinette; van Deurzen, Carolien H. M.; Kriege, Mieke; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Perkins, Barbara J.; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Schoemaker, Minouk J.; Meindl, Alfons; Schmutzler, Rita K.; Olswold, Curtis; Slager, Susan; Toland, Amanda E.; Yannoukakos, Drakoulis; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Matsuo, Keitaro; Ito, Hidema; Iwata, Hiroji; Ishiguro, Junko; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Teo, Soo Hwang; Yip, Cheng Har; Kang, Peter; Ikram, Mohammad Kamran; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Lee, Soo Chin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Wu, Pei-Ei; Hou, Ming-Feng; Yu, Jyh-Cherng; Shen, Chen-Yang; Blot, William; Cai, Qiuyin; Signorello, Lisa B.; Luccarini, Craig; Bayes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S.; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Hunter, David J.; Lindstrom, Sara; Dennis, Joe; Michailidou, Kyriaki; Bolla, Manjeet K.; Easton, Douglas F.; dos Santos Silva, Isabel; Fletcher, Olivia; Peto, Julian

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88–0.92]; P-value = 1.58 × 10−25). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08–1.17]; P-value = 7.89 × 10−09) and rs13294895 (OR = 1.09 [1.06–1.12]; P-value = 2.97 × 10−11). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06–1.18]; P-value = 2.77 × 10−05). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis. PMID:25652398

  9. Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Haixia; Zhang, Yong; Wu, Dan; Ma, Hongmin; Li, Xiaojing; Li, Yan; Wang, Huan; Li, He; Du, Bin [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin, E-mail: sdjndxwq@163.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2013-04-03

    Highlights: ► The immunosensor is designed to determine breast cancer susceptibility gene. ► Mesoporous carbon nanospheres (MCN) have great adsorption capacity. ► MCN could enhance the electroactivity of toluidine blue. ► Room temperature ionic liquid should increase the electrochemical signal. -- Abstract: In this contribution, mesoporous carbon nanospheres (MCN) were used to fabricate a label-free electrochemical immunosensor for breast cancer susceptibility gene (BRCAl). The detection platform was constructed by conjugation of anti-BRCA1 on glassy carbon electrodes which were modified by mesoporous carbon nanospheres–toluidine blue nanocomposite (MCN–TB)/room temperature ionic-liquid (RTIL) composited film. TB was adsorbed onto MCN and acted as a redox probe. The electroactivity of TB was greatly enhanced in the presence of MCN. The good conductivity of MCN and BMIM·BF{sub 4} could promote the electron transfer and thus enhance the detection sensitivity. Moreover, the large surface area of MCN and the protein-binding properties of BMIM·BF{sub 4} could greatly increase the antibody loading. The specific antibody–antigen immunoreaction on the electrode surface resulted in a decrease of amperometric signal of the electrode. Under optimized conditions, the amperometric signal decreased linearly with BRCAl concentration in the range of 0.01–15 ng mL{sup −1} with a low detection limit of 3.97 pg mL{sup −1}. The immunosensor exhibits high sensitivity, good selectivity and stability.

  10. Risk perceptions, worry, and attitudes about genetic testing for breast cancer susceptibility.

    Science.gov (United States)

    Cameron, Linda D; Reeve, Jeanne

    2006-01-01

    This study assessed the unique associations of risk perceptions and worry with attitudes about genetic testing for breast cancer susceptibility. Women (general practitioner clinic attenders, university students, and first-degree relatives of breast cancer survivors; N = 303) read information about genetic testing and completed measures assessing perceived cancer risk, cancer worry, and genetic testing attitudes and beliefs. Worry was associated with greater interest in genetic testing, stronger beliefs that testing has detrimental emotional consequences, and positive beliefs about benefits of testing and risk-reducing surgeries. Perceived risk was unrelated to interest and associated with more skeptical beliefs about emotional consequences and benefits of testing and risk-reducing surgeries. At low worry levels, testing interest increased with more positive beliefs about testing benefits; at high worry levels, interest was high regardless of benefits beliefs. The findings support Leventhal's Common-Sense Model of self-regulation delineating interactive influences of risk-related cognitions and emotions on information processing and behavior.

  11. Germline mutations in the breast cancer susceptibility gene PTEN are rare in high-risk non-BRCA1/2 French Canadian breast cancer families.

    Science.gov (United States)

    Guénard, Frédéric; Labrie, Yvan; Ouellette, Geneviève; Beauparlant, Charles Joly; Bessette, Paul; Chiquette, Jocelyne; Laframboise, Rachel; Lépine, Jean; Lespérance, Bernard; Pichette, Roxane; Plante, Marie; Durocher, Francine

    2007-01-01

    Cowden syndrome is a disease associated with an increase in breast cancer susceptibility. Alleles in PTEN and other breast cancer susceptibility genes would be responsible for approximately 25% of the familial component of breast cancer risk, BRCA1 and BRCA2 being the two major genes responsible for this inherited risk. In order to evaluate the proportion of high-risk French Canadian non-BRCA1/BRCA2 breast/ovarian cancer families potentially harboring a PTEN germline mutation, the whole coding and flanking intronic sequences were analyzed in a series of 98 breast cancer cases. Although no germline mutation has been identified in the coding region, our study led to the identification of four intronic variants. Further investigations were performed to analyze the effect of these variants, alone and/or in combination, on splicing and PTEN protein levels. Despite suggestive evidence emerging from in silico analyses, the presence of these intronic variants do not seem to alter RNA splicing or PTEN protein levels. In addition, as loss of PTEN or part of it has been reported, Western blot analysis has also been performed. No major deletion could be identified in our cohort. Therefore, assuming a Poisson distribution for the frequency of deleterious mutation in our cohort, if the frequency of such deleterious mutation was 2%, we would have had a 90% or greater chance of observing at least one such mutation. These results suggest that PTEN germline mutations are rare and are unlikely to account for a significant proportion of familial breast cancer cases in the French Canadian population.

  12. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  13. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Margriet Collée; W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe Grenaker); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias W.); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine B.); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (G.); M.R. Alonso (M Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprisi

  14. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  15. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry

    DEFF Research Database (Denmark)

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki

    2016-01-01

    PURPOSE: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. METHODS: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D suscept...

  16. Association study of prostate cancer susceptibility variants with risks of invasive ovarian, breast, and colorectal cancer

    DEFF Research Database (Denmark)

    Song, H.; Koessler, T.; Ahmed, S.

    2008-01-01

    test of association was a comparison of genotype frequencies between cases and controls, and a test for trend stratified by study where appropriate. Genotype-specific odds ratios (OR) were estimated by logistic regression. SNP rs2660753 (chromosome 3p12) showed evidence of association with ovarian...... cancer [per minor allele OR, 1.19; 95% confidence interval (95% CI), 1.04-1.37; P(trend) = 0.012]. This association was stronger for the serous histologic subtype (OR, 1.29; 95% CI, 1.09-1.53; P = 0.003). SNP rs7931342 (chromosome 11q13) showed some evidence of association with breast cancer (per minor...

  17. FOXP3 Transcription Factor: A Candidate Marker for Susceptibility and Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Leandra Fiori Lopes

    2014-01-01

    Full Text Available Triple negative breast cancer (TNBC is a relevant subgroup of neoplasia which presents negative phenotype of estrogen and progesterone receptors and has no overexpression of the human epidermal growth factor 2 (HER2. FOXP3 (forkhead transcription factor 3 is a marker of regulatory T cells (Tregs, whose expression may be increased in tumor cells. This study aimed to investigate a polymorphism (rs3761548 and the protein expression of FOXP3 for a possible involvement in TNBC susceptibility and prognosis. Genetic polymorphism was evaluated in 50 patients and in 115 controls by allele-specific PCR (polymerase chain reaction. Protein expression was evaluated in 38 patients by immunohistochemistry. It was observed a positive association for homozygous AA (OR = 3.78; 95% CI = 1.02–14.06 in relation to TNBC susceptibility. Most of the patients (83% showed a strong staining for FOXP3 protein in the tumor cells. In relation to FOXP3-positive infiltrate, 47% and 58% of patients had a moderate or intense intratumoral and peritumoral mononuclear infiltrate cells, respectively. Tumor size was positively correlated to intratumoral FOXP3-positive infiltrate (P=0.026. In conclusion, since FOXP3 was positively associated with TNBC susceptibility and prognosis, it seems to be a promising candidate for further investigation in larger TNBC samples.

  18. An Integrated Genome-Wide Systems Genetics Screen for Breast Cancer Metastasis Susceptibility Genes.

    Directory of Open Access Journals (Sweden)

    Ling Bai

    2016-04-01

    Full Text Available Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease.

  19. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study

    DEFF Research Database (Denmark)

    Milne, Roger L; Gaudet, Mia M; Spurdle, Amanda B;

    2010-01-01

    Several common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in th...

  20. The Nuclear Death Domain Protein p84N5; A Candidate Breast Cancer Susceptibility Gene

    Science.gov (United States)

    2007-05-01

    maintained in RPMI supplemented with 10% FBS and 0.2 unit/mL of pork insulin. SKBP-3 cells were maintained in McCoy’s 5a medium supplemented with 15... Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long term

  1. Breast Cancer Overview

    Science.gov (United States)

    ... Cancer > Breast Cancer > Breast Cancer: Overview Request Permissions Breast Cancer: Overview Approved by the Cancer.Net Editorial Board , ... bean-shaped organs that help fight infection. About breast cancer Cancer begins when healthy cells in the breast ...

  2. Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification

    Science.gov (United States)

    Chen, Liming; Jenjaroenpun, Piroon; Pillai, Andrea Mun Ching; Ivshina, Anna V.; Ow, Ghim Siong; Efthimios, Motakis; Zhiqun, Tang; Lee, Song-Choon; Rogers, Keith; Ward, Jerrold M.; Mori, Seiichi; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.; Ban, Kenneth Hon-Kim; Kuznetsov, Vladimir A.; Thiery, Jean Paul

    2017-01-01

    Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers. PMID:28251929

  3. The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes

    Directory of Open Access Journals (Sweden)

    Johnson Julie K

    2012-06-01

    Full Text Available Abstract Background Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product 1. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI, has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs from multiple-case, non- BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes. Methods We applied GINI to a total of 24 LCLs, established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition. Results The expression profiling identified a total of eight candidate genes from these three families. One gene, PPARGC1A, was a candidate in two separate families. We performed semi-quantitative real-time reverse transcriptase PCR of all candidate genes but only PPARGC1A showed successful validation by being stabilised in individuals with breast cancer but not in many unaffected members of the same family. Sanger sequencing of all coding and splice site regions of PPARGC1A did not reveal any protein

  4. Breast Cancer

    Science.gov (United States)

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks that ... who have family members with breast or ovarian cancer may wish to be tested for the genes. ...

  5. A Review of Whole-Exome Sequencing Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery.

    Science.gov (United States)

    Chandler, Madison R; Bilgili, Erin P; Merner, Nancy D

    2016-09-01

    Inherited genetic risk factors contribute toward breast cancer (BC) onset. BC risk variants can be divided into three categories of penetrance (high, moderate, and low) that reflect the probability of developing the disease. Traditional BC susceptibility gene discovery approaches that searched for high- and moderate-risk variants in familial BC cases have had limited success; to date, these risk variants explain only ∼30% of familial BC cases. Next-generation sequencing technologies can be used to search for novel high and moderate BC risk variants, and this manuscript reviews 12 familial BC whole-exome sequencing efforts. Study design, filtering strategies, and segregation and validation analyses are discussed. Overall, only a modest number of novel BC risk genes were identified, and 90% and 97% of the exome-sequenced families and cases, respectively, had no BC risk variants reported. It is important to learn from these studies and consider alternate strategies in order to make further advances. The discovery of new BC susceptibility genes is critical for improved risk assessment and to provide insight toward disease mechanisms for the development of more effective therapies.

  6. The Polymorphism of DNA Repair Gene ERCC2/XPD Arg156Arg and Susceptibility to Breast Cancer in a Chinese Population

    DEFF Research Database (Denmark)

    Yin, J. Y.; Liang, D. H.; Vogel, Ulla Birgitte

    2009-01-01

    the association between ERCC2/XPD Arg156Arg and susceptibility to breast cancer in a Chinese population, we conducted a hospital-based case-control study consisting of 129 patients with breast cancer and 205 controls matched by age, gender, and ethnicity. PCR-RFLP was used for genotyping. No associations were...

  7. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    NARCIS (Netherlands)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindstrom, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomaki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Francoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Mueller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; Silva, Isabel dos Santos; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, JoEllen; Schulz-Wendtland, Ruediger; Wilkens, Lynne R.; Van Den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of E

  8. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  9. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer

    Science.gov (United States)

    Ha, Ngoc-Han; Long, Jirong; Cai, Qiuyin; Shu, Xiao Ou

    2016-01-01

    Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. PMID:27656887

  10. Surgery for Breast Cancer

    Science.gov (United States)

    ... Cancer During Pregnancy Breast Cancer Breast Cancer Treatment Surgery for Breast Cancer Surgery is a common treatment ... removed (breast reconstruction) Relieve symptoms of advanced cancer Surgery to remove breast cancer There are two main ...

  11. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Genome-wide association studies (GWASs have identified low-penetrance common variants (i.e., single nucleotide polymorphisms, SNPs associated with breast cancer susceptibility. Although GWASs are primarily focused on single-locus effects, gene-gene interactions (i.e., epistasis are also assumed to contribute to the genetic risks for complex diseases including breast cancer. While it has been hypothesized that moderately ranked (P value based weak single-locus effects in GWASs could potentially harbor valuable information for evaluating epistasis, we lack systematic efforts to investigate SNPs showing consistent associations with weak statistical significance across independent discovery and replication stages. The objectives of this study were i to select SNPs showing single-locus effects with weak statistical significance for breast cancer in a GWAS and/or candidate-gene studies; ii to replicate these SNPs in an independent set of breast cancer cases and controls; and iii to explore their potential SNP-SNP interactions contributing to breast cancer susceptibility. A total of 17 SNPs related to DNA repair, modification and metabolism pathway genes were selected since these pathways offer a priori knowledge for potential epistatic interactions and an overall role in breast carcinogenesis. The study design included predominantly Caucasian women (2,795 cases and 4,505 controls from Alberta, Canada. We observed two two-way SNP-SNP interactions (APEX1-rs1130409 and RPAP1-rs2297381; MLH1-rs1799977 and MDM2-rs769412 in logistic regression that conferred elevated risks for breast cancer (P(interaction<7.3 × 10(-3. Logic regression identified an interaction involving four SNPs (MBD2-rs4041245, MLH1-rs1799977, MDM2-rs769412, BRCA2-rs1799943 (P(permutation = 2.4 × 10(-3. SNPs involved in SNP-SNP interactions also showed single-locus effects with weak statistical significance, while BRCA2-rs1799943 showed stronger statistical significance (P

  12. DNA repair gene XRCC3 241Met variant and breast cancer susceptibility of Azeri population in Iranian

    Directory of Open Access Journals (Sweden)

    Gohari-Lasaki Sahar

    2015-01-01

    Full Text Available DNA-repair systems are essential for repairing damage that occurs when there is recombination between homologous chromosomes. The gene XRCC3 (X-ray cross complementing group 3 encodes a member of the RecA/Rad51-related protein family that participates in homologous recombination to maintain chromosome stability and repair DNA damage. The Thr241Met XRCC3-18067C>T, rs861539 substitution, a C to T transition at codon 241 in exon7, thus plays critical roles in cancer development. The aim of this study was association between XRCC3 Thr241Met polymorphism and risk of sporadic breast cancer in Azari population. We analysed DNA samples from 100 sporadic breast cancer patients and 100 healthy women, for XRCC3 Thr241Met polymorphism using PCR-RFLP. Genotype specific risks were tested using chi-test with 95% confident intervals. Frequency of Thr/Thr at codon 241was 69% in controls and 70% in patients, Thr/Met frequency was 22% in controls and 13 % in patients, the Met/Met genotype was 9% incontrols and 17% in patients. No correlation between the genotype and allele distribution and increased susceptibility for breast Cancer. Our results suggested that in pre-menopausal women, breast cancer riskis not significantly associated with rs861539 in Azari population.

  13. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    DEFF Research Database (Denmark)

    Garcia-Closas, M.; Hall, P.; Nevanlinna, H.

    2008-01-01

    A three-stage genome-wide association study recently identified single nucleotide polymorphisms ( SNPs) in five loci ( fibroblast growth receptor 2 ( FGFR2), trinucleotide repeat containing 9 ( TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte- specific protein 1 ( LSP1......)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival...... related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER- positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs...

  14. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability

    Directory of Open Access Journals (Sweden)

    Kong Sun-Young

    2008-10-01

    Full Text Available Abstract Background Elucidating the molecular mechanisms by which tumors become resistant to Herceptin is critical for the treatment of Her2-overexpressed metastatic breast cancer. Methods To further understand Herceptin resistance mechanisms at the molecular level, we used comparative proteome approaches to analyze two human breast cancer cell lines; Her2-positive SK-BR-3 cells and its Herceptin-resistant SK-BR-3 (SK-BR-3 HR cells. Results Heat-shock protein 27 (HSP27 expression was shown to be upregulated in SK-BR-3 HR cells. Suppression of HSP27 by specific siRNA transfection increased the susceptibility of SK-BR-3 HR cells to Herceptin. In the presence of Herceptin, Her2 was downregulated in both cell lines. However, Her2 expression was reduced by a greater amount in SK-BR-3 parent cells than in SK-BR-3 HR cells. Interestingly, co-immunoprecipitation analysis showed that HSP27 can bind to Her2. In the absence of Herceptin, HSP27 expression is suppressed and Her2 expression is reduced, indicating that downregulation of Her2 by Herceptin can be obstructed by the formation of a Her2-HSP27 complex. Conclusion Our present study demonstrates that upregulated HSP27 in human breast cancer cells can reduce Herceptin susceptibility by increasing Her2 protein stability.

  15. Basal-subtype and MEK-Pl3K feedback signaling determine susceptibility of breast cancer cells to MEK inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoeva, Olga K.; Das, Debopriya; Heiser, Laura M.; Bhattacharya, Sanchita; Siwak, Doris; Gendelman, Rina; Bayani, Nora; Wang, Nicholas J.; Neve, Richard M.; Knight, Zachary; Feiler, Heidi S.; Gascard, Philippe; Parvin, Bahram; Spellman, Paul T.; Shokat, Kevan M.; Wyrobek, Andrew J.; Bissell, Mina J.; McCormick, Frank; Kuo, Wen-Lin; Mills, Gordon B.; Gray, Joe W.; Korn, W. Michael

    2009-01-23

    Specific inhibitors of MEK have been developed that efficiently inhibit the oncogenic RAF-MEK-ERK pathway. We employed a systems-based approach to identify breast cancer subtypes particularly susceptible to MEK inhibitors and to understand molecular mechanisms conferring resistance to such compounds. Basal-type breast cancer cells were found to be particularly susceptible to growth-inhibition by small-molecule MEK inhibitors. Activation of the PI3 kinase pathway in response to MEK inhibition through a negative MEK-EGFR-PI3 kinase feedback loop was found to limit efficacy. Interruption of this feedback mechanism by targeting MEK and PI3 kinase produced synergistic effects, including induction of apoptosis and, in some cell lines, cell cycle arrest and protection from apoptosis induced by proapoptotic agents. These findings enhance our understanding of the interconnectivity of oncogenic signal transduction circuits and have implications for the design of future clinical trials of MEK inhibitors in breast cancer by guiding patient selection and suggesting rational combination therapies.

  16. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  17. microRNAs: Novel Breast Cancer Susceptibility Factors in Caucasian and African American Women

    Science.gov (United States)

    2012-06-01

    informed consent and to query participants on a number of potential risk factors, including medical history, family history of cancer, diet , physical...0.07) 0.99 (0.03) 0.07 Count (%) Count (%) Count (%) Count (%) Menopausal status 0.14 0.17 Premenopausal 337 (61.6) 263 (57.0) 235...associated with breast cancer risk (Table 2), but there were no associations in EA women for any haplotypes. Stratified analysis by menopausal

  18. The role of genetic breast cancer susceptibility variants as prognostic factors

    DEFF Research Database (Denmark)

    Fasching, Peter A; Pharoah, Paul D P; Cox, Angela

    2012-01-01

    Recent genome-wide association studies identified 11 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. We investigated these and 62 other SNPs for their prognostic relevance. Confirmed BC risk SNPs rs17468277 (CASP8), rs1982073 (TGFB1), rs2981582 (FGFR2), rs13281615 ...

  19. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    DEFF Research Database (Denmark)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,47...

  20. Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: a case-control analysis

    Directory of Open Access Journals (Sweden)

    Liu Jiyong

    2006-05-01

    Full Text Available Abstract Background Accumulative evidence suggests that low folate intake is associated with increased risk of breast cancer. Polymorphisms in genes involved in folate metabolism may influence DNA methylation, nucleotide synthesis, and thus individual susceptibility to cancer. Thymidylate synthase (TYMS is a key enzyme that participates in folate metabolism and catalyzes the conversion of dUMP to dTMP in the process of DNA synthesis. Two potentially functional polymorphisms [a 28-bp tandem repeat in the TYMS 5'-untranslated enhanced region (TSER and a 6-bp deletion/insertion in the TYMS 3'-untranslated region (TS 3'-UTR] were suggested to be correlated with alteration of thymidylate synthase expression and associated with cancer risk. Methods To test the hypothesis that polymorphisms of the TYMS gene are associated with risk of breast cancer, we genotyped these two polymorphisms in a case-control study of 432 incident cases with invasive breast cancer and 473 cancer-free controls in a Chinese population. Results We found that the distribution of TS3'-UTR (1494del6 genotype frequencies were significantly different between the cases and controls (P = 0.026. Compared with the TS3'-UTR del6/del6 wild-type genotype, a significantly reduced risk was associated with the ins6/ins6 homozygous variant genotype (adjusted OR = 0.58, 95% CI = 0.35–0.97 but not the del6/ins6 genotype (OR = 1.09, 95% CI = 0.82–1.46. Furthermore, breast cancer risks associated with the TS3'-UTR del6/del6 genotype were more evident in older women, postmenopausal subjects, individuals with a younger age at first-live birth and individuals with an older age at menarche. However, there was no evidence for an association between the TSER polymorphism and breast cancer risks. Conclusion These findings suggest that the TS3'-UTR del6 polymorphism may play a role in the etiology of breast cancer. Further larger population-based studies as well as functional evaluation of the

  1. Breast Cancer Research Update

    Science.gov (United States)

    ... JavaScript on. Feature: Breast Cancer Breast Cancer Research Update Winter 2017 Table of Contents National Cancer Institute ... Addressing Breast Cancer's Unequal Burden / Breast Cancer Research Update Winter 2017 Issue: Volume 11 Number 4 Page ...

  2. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    A.M. Mulligan (Anna Marie); F.J. Couch (Fergus); D. Barrowdale (Daniel); S.M. Domchek (Susan); D. Eccles (Diana); H. Nevanlinna (Heli); S.J. Ramus (Susan); M. Robson (Mark); M.E. Sherman (Mark); A.B. Spurdle (Amanda); B. Wapenschmidt (Barbara); A. Lee (Andrew); L. McGuffog (Lesley); S. Healey (Sue); O. Sinilnikova (Olga); R. Janavicius (Ramunas); T.V.O. Hansen (Thomas); F.C. Nielsen (Finn); B. Ejlertsen (Bent); A. Osorio (Ana); I. Muñoz-Repeto (Iván); M. Durán (Mercedes); J. Godino (Javier); M. Pertesi (Maroulio); J. Benítez (Javier); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); E. Cattaneo (Elisa); B. Bonnani (Bernardo); A. Viel (Alessandra); B. Pasini (Barbara); L. Papi (Laura); L. Ottini (Laura); A. Savarese (Antonella); L. Bernard (Loris); P. Radice (Paolo); U. Hamann (Ute); M. Verheus (Martijn); E.J. Meijers-Heijboer (Hanne); J.T. Wijnen (Juul); E.B. Gómez García (Encarna); M.R. Nelen (Marcel); C.M. Kets; C.M. Seynaeve (Caroline); M.M.A. Tilanus-Linthorst (Madeleine); R.B. van der Luijt (Rob); T.V. Os (Theo); M.A. Rookus (Matti); D. Frost (Debra); J.L. Jones (J Louise); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); J.W. Adlard (Julian); R. Davidson (Rosemarie); J. Cook (Jackie); A. Donaldson (Alan); H. Dorkins (Huw); H. Gregory (Helen); J. Eason (Jacqueline); C. Houghton (Catherine); J. Barwell (Julian); L. Side (Lucy); E. McCann (Emma); A. Murray (Alexandra); S. Peock (Susan); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); K. Rhiem (Kerstin); C. Engel (Christoph); A. Meindl (Alfons); I. Ruehl (Ina); N. Arnold (Norbert); D. Niederacher (Dieter); C. Sutter (Christian); H. Deissler (Helmut); D. Gadzicki (Dorothea); K. Kast (Karin); S. Preisler-Adams (Sabine); R. Varon-Mateeva (Raymonda); I. Schoenbuchner (Ines); B. Fiebig (Britta); W. Heinritz (Wolfram); D. Schäfer; H. Gevensleben (Heidrun); V. Caux-Moncoutier (Virginie); M. Fassy-Colcombet (Marion); F. Cornelis (Franco̧is); S. Mazoyer (Sylvie); M. Léone (Mélanie); N. Boutry-Kryza (N.); A. Hardouin (Agnès); P. Berthet (Pascaline); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); I. Mortemousque (Isabelle); P. Pujol (Pascal); I. Coupier (Isabelle); M. Lebrun (Marine); C. Kientz (Caroline); M. Longy (Michel); N. Sevenet (Nicolas); D. Stoppa-Lyonnet (Dominique); C. Isaacs (Claudine); T. Caldes (Trinidad); M. de La Hoya (Miguel); T. Heikinen (Tuomas); K. Aittomäki (Kristiina); I. Blanco (Ignacio); C. Lazaro (Conxi); R.B. Barkardottir (Rosa); P. Soucy (Penny); M. Dumont (Martine); J. Simard (Jacques); M. Montagna (Marco); S. Tognazzo (Silvia); E. D'Andrea (Emma); S.B. Fox (Stephen); M. Yan (Max); R. Rebbeck (Timothy); O.I. Olopade (Olofunmilayo); J.N. Weitzel (Jeffrey); H. Lynch (Henry); P.A. Ganz (Patricia); G. Tomlinson (Gail); X. Wang (Xing); Z. Fredericksen (Zachary); V.S. Pankratz (Shane); N.M. Lindor (Noralane); C. Szabo (Csilla); K. Offit (Kenneth); R. Sakr (Rita); M.M. Gaudet (Mia); K.P. Bhatia (Kailash); N. Kauff (Noah); C.F. Singer (Christian); M.-K. Tea; D. Gschwantler-Kaulich (Daphne); A. Fink-Retter (Anneliese); P.L. Mai (Phuong); M.H. Greene (Mark); E.N. Imyanitov (Evgeny); F.P. O'Malley (Frances); H. Ozcelik (Hilmi); G. Glendon (Gord); A.E. Toland (Amanda); A-M. Gerdes (Anne-Marie); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; A.-B. Skytte (Anne-Bine); M.A. Caligo (Maria); M. Soller (Maria); K. Henriksson (Karin); A. von Wachenfeldt (Anna); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); P. Karlsson (Per); Y.C. Ding (Yuan); S.L. Neuhausen (Susan); M.S. Beattie (Mary); P.D.P. Pharoah (Paul); K.B. Moysich (Kirsten); K.L. Nathanson (Katherine); B. Karlan; J. Gross (Jenny); E.M. John (Esther); M.B. Daly (Mary); S.S. Buys (Saundra); M.C. Southey (Melissa); J.L. Hopper (John); M.-B. Terry (Mary-Beth); W. Chung (Wendy); A. Miron (Alexander); D. Goldgar (David); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); I.L. Andrulis (Irene); A.C. Antoniou (Antonis)

    2011-01-01

    textabstractIntroduction: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes

  3. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers : results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    Mulligan, Anna Marie; Couch, Fergus J.; Barrowdale, Daniel; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Robson, Mark; Sherman, Mark; Spurdle, Amanda B.; Wappenschmidt, Barbara; Lee, Andrew; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Janavicius, Ramunas; Hansen, Thomas V. O.; Nielsen, Finn C.; Ejlertsen, Bent; Osorio, Ana; Munoz-Repeto, Ivan; Duran, Mercedes; Godino, Javier; Pertesi, Maroulio; Benitez, Javier; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Bonanni, Bernardo; Viel, Alessandra; Pasini, Barbara; Papi, Laura; Ottini, Laura; Savarese, Antonella; Bernard, Loris; Radice, Paolo; Hamann, Ute; Verheus, Martijn; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Garcia, Encarna B. Gomez; Nelen, Marcel R.; Kets, C. Marleen; Seynaeve, Caroline; Tilanus-Linthorst, Madeleine M. A.; van der Luijt, Rob B.; van Os, Theo; Rookus, Matti; Frost, Debra; Jones, J. Louise; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Cook, Jackie; Donaldson, Alan; Dorkins, Huw; Gregory, Helen; Eason, Jacqueline; Houghton, Catherine; Barwell, Julian; Side, Lucy E.; McCann, Emma; Murray, Alex; Peock, Susan; Godwin, Andrew K.; Schmutzler, Rita K.; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Kast, Karin; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schoenbuchner, Ines; Fiebig, Britta; Heinritz, Wolfram; Schaefer, Dieter; Gevensleben, Heidrun; Caux-Moncoutier, Virginie; Fassy-Colcombet, Marion; Cornelis, Francois; Mazoyer, Sylvie; Leone, Melanie; Boutry-Kryza, Nadia; Hardouin, Agnes; Berthet, Pascaline; Muller, Daniele; Fricker, Jean-Pierre; Mortemousque, Isabelle; Pujol, Pascal; Coupier, Isabelle; Lebrun, Marine; Kientz, Caroline; Longy, Michel; Sevenet, Nicolas; Stoppa-Lyonnet, Dominique; Isaacs, Claudine; Caldes, Trinidad; de la Hoya, Miguel; Heikkinen, Tuomas; Aittomaki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Barkardottir, Rosa B.; Soucy, Penny; Dumont, Martine; Simard, Jacques; Montagna, Marco; Tognazzo, Silvia; D'Andrea, Emma; Fox, Stephen; Yan, Max; Rebbeck, Tim; Olopade, Olufunmilayo I.; Weitzel, Jeffrey N.; Lynch, Henry T.; Ganz, Patricia A.; Tomlinson, Gail E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia; Bhatia, Jasmine; Kauff, Noah; Singer, Christian F.; Tea, Muy-Kheng; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Mai, Phuong L.; Greene, Mark H.; Imyanitov, Evgeny; O'Malley, Frances P.; Ozcelik, Hilmi; Glendon, Gordon; Toland, Amanda E.; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Soller, Maria; Henriksson, Karin; Wachenfeldt, von Anna; Arver, Brita; Stenmark-Askmalm, Marie; Karlsson, Per; Ding, Yuan Chun; Neuhausen, Susan L.; Beattie, Mary; Pharoah, Paul D. P.; Moysich, Kirsten B.; Nathanson, Katherine L.; Karlan, Beth Y.; Gross, Jenny; John, Esther M.; Daly, Mary B.; Buys, Saundra M.; Southey, Melissa C.; Hopper, John L.; Terry, Mary Beth; Chung, Wendy; Miron, Alexander F.; Goldgar, David; Chenevix-Trench, Georgia; Easton, Douglas F.; Andrulis, Irene L.; Antoniou, Antonis C.

    2011-01-01

    Introduction: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 an

  4. Genome-wide Meta-analyses of Breast, Ovarian and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by At Least Two Cancer Types

    Science.gov (United States)

    Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether

    2016-01-01

    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10−5 in the three-cancer meta-analysis. PMID:27432226

  5. Identification of Variants in Breast Cancer Susceptibility Genes and Determination of Functional and Clinical Significance of Novel Mutations

    Science.gov (United States)

    2014-10-01

    likely deleterious variants in genes for which clinical guidelines exist for management, namely TP53 (4), CDKN2A (1) MSH2 (1), and MUTYH (double...included 26 study genes plus BRCA1 and BRCA2 and were: 1) high penetrance breast cancer susceptibility genes (CDH1, PTEN, STK11, TP53 ); 2) genes known...for management, namely TP53 (4), CDKN2A (1) MSH2 (1), and MUTYH (double heterozygote). Twenty- four patients (8.6%) had deleterious or likely

  6. Association of Type 2 Diabetes Susceptibility Variants With Advanced Prostate Cancer Risk in the Breast and Prostate Cancer Cohort Consortium

    Science.gov (United States)

    Machiela, Mitchell J.; Lindström, Sara; Allen, Naomi E.; Haiman, Christopher A.; Albanes, Demetrius; Barricarte, Aurelio; Berndt, Sonja I.; Bueno-de-Mesquita, H. Bas; Chanock, Stephen; Gaziano, J. Michael; Gapstur, Susan M.; Giovannucci, Edward; Henderson, Brian E.; Jacobs, Eric J.; Kolonel, Laurence N.; Krogh, Vittorio; Ma, Jing; Stampfer, Meir J.; Stevens, Victoria L.; Stram, Daniel O.; Tjønneland, Anne; Travis, Ruth; Willett, Walter C.; Hunter, David J.; Le Marchand, Loic; Kraft, Peter

    2012-01-01

    Observational studies have found an inverse association between type 2 diabetes (T2D) and prostate cancer (PCa), and genome-wide association studies have found common variants near 3 loci associated with both diseases. The authors examined whether a genetic background that favors T2D is associated with risk of advanced PCa. Data from the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium, a genome-wide association study of 2,782 advanced PCa cases and 4,458 controls, were used to evaluate whether individual single nucleotide polymorphisms or aggregations of these 36 T2D susceptibility loci are associated with PCa. Ten T2D markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, FTO, and HNF1B) were nominally associated with PCa (P < 0.05); the association for single nucleotide polymorphism rs757210 at the HNF1B locus was significant when multiple comparisons were accounted for (adjusted P = 0.001). Genetic risk scores weighted by the T2D log odds ratio and multilocus kernel tests also indicated a significant relation between T2D variants and PCa risk. A mediation analysis of 9,065 PCa cases and 9,526 controls failed to produce evidence that diabetes mediates the association of the HNF1B locus with PCa risk. These data suggest a shared genetic component between T2D and PCa and add to the evidence for an interrelation between these diseases. PMID:23193118

  7. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  8. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm WR; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; TAN, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John WM; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dmitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert AEM; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul PDP; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-01-01

    Genome wide association studies (GWAS) and large scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to be driven by an amino-acid substitution in EXO1. PMID:25751625

  9. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki;

    2016-01-01

    .05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER...

  10. Clustering of sebaceous gland carcinoma, papillary thyroid carcinoma and breast cancer in a woman as a new cancer susceptibility disorder: a case report

    Directory of Open Access Journals (Sweden)

    Newman Brian D

    2009-07-01

    Full Text Available Abstract Introduction Multiple distinct tumors arising in a single individual or within members of a family raise the suspicion of a genetic susceptibility disorder. Case presentation We present the case of a 52-year-old Caucasian woman diagnosed with sebaceous gland carcinoma of the eyelid, followed several years later with subsequent diagnoses of breast cancer and papillary carcinoma of the thyroid. Although the patient was also exposed to radiation from a pipe used in the oil field industry, the constellation of neoplasms in this patient suggests the manifestation of a known hereditary susceptibility cancer syndrome. However, testing for the most likely candidates such as Muir-Torre and Cowden syndrome proved negative. Conclusion We propose that our patient's clustering of neoplasms either represents a novel cancer susceptibility disorder, of which sebaceous gland carcinoma is a characteristic feature, or is a variant of the Muir-Torre syndrome.

  11. Breast cancer

    CERN Multimedia

    2002-01-01

    "Cancer specialists will soon be able to compare mammograms with computerized images of breast cancer from across Europe, in a bid to improve diagnosis and treatment....The new project, known as MammoGrid, brings together computer and medical imaging experts, cancer specialists, radiologists and epidemiologists from Bristol, Oxford, Cambridge, France and Italy" (1 page).

  12. Learning about Breast Cancer

    Science.gov (United States)

    ... genetic terms used on this page Learning About Breast Cancer What do we know about heredity and breast ... Cancer What do we know about heredity and breast cancer? Breast cancer is a common disease. Each year, ...

  13. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Science.gov (United States)

    Nickels, Stefan; Truong, Thérèse; Hein, Rebecca; Stevens, Kristen; Buck, Katharina; Behrens, Sabine; Eilber, Ursula; Schmidt, Martina; Häberle, Lothar; Vrieling, Alina; Gaudet, Mia; Figueroa, Jonine; Schoof, Nils; Spurdle, Amanda B; Rudolph, Anja; Fasching, Peter A; Hopper, John L; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Beckmann, Matthias W; Ekici, Arif B; Fletcher, Olivia; Gibson, Lorna; Silva, Isabel dos Santos; Peto, Julian; Humphreys, Manjeet K; Wang, Jean; Cordina-Duverger, Emilie; Menegaux, Florence; Nordestgaard, Børge G; Bojesen, Stig E; Lanng, Charlotte; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Clarke, Christina A; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Harth, Volker; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Smeets, Dominiek; Neven, Patrick; Paridaens, Robert; Flesch-Janys, Dieter; Obi, Nadia; Wang-Gohrke, Shan; Couch, Fergus J; Olson, Janet E; Vachon, Celine M; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Offit, Kenneth; John, Esther M; Miron, Alexander; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Chanock, Stephen J; Lissowska, Jolanta; Liu, Jianjun; Cox, Angela; Cramp, Helen; Connley, Dan; Balasubramanian, Sabapathy; Dunning, Alison M; Shah, Mitul; Trentham-Dietz, Amy; Newcomb, Polly; Titus, Linda; Egan, Kathleen; Cahoon, Elizabeth K; Rajaraman, Preetha; Sigurdson, Alice J; Doody, Michele M; Guénel, Pascal; Pharoah, Paul D P; Schmidt, Marjanka K; Hall, Per; Easton, Doug F; Garcia-Closas, Montserrat; Milne, Roger L; Chang-Claude, Jenny

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6)) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4)). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01-1.16) in nulliparous women and ranged from 1.03 (0.96-1.10) in parous women with one birth to 1.26 (1.16-1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98) in those with an alcohol intake of environmental risk factors.

  14. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.

    Directory of Open Access Journals (Sweden)

    Montserrat Garcia-Closas

    2008-04-01

    Full Text Available A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs in five loci (fibroblast growth receptor 2 (FGFR2, trinucleotide repeat containing 9 (TNRC9, mitogen-activated protein kinase 3 K1 (MAP3K1, 8q24, and lymphocyte-specific protein 1 (LSP1 associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI = 1.31 (1.27-1.36 than ER-negative (1.08 (1.03-1.14 disease (P for heterogeneity = 10(-13. This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5, 10(-8, 0.013, respectively. The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4, respectively. The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312 showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21. rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97. The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding

  15. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    Science.gov (United States)

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  16. Identification of a breast cancer susceptibility locus at 4q31.22 using a genome-wide association study paradigm.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available More than 40 single nucleotide polymorphisms (SNPs for breast cancer susceptibility were identified by genome-wide association studies (GWASs. However, additional SNPs likely contribute to breast cancer susceptibility and overall genetic risk, prompting this investigation for additional variants. Six putative breast cancer susceptibility SNPs identified in a two-stage GWAS that we reported earlier were replicated in a follow-up stage 3 study using an independent set of breast cancer cases and controls from Canada, with an overall cumulative sample size of 7,219 subjects across all three stages. The study design also encompassed the 11 variants from GWASs previously reported by various consortia between the years 2007-2009 to (i enable comparisons of effect sizes, and (ii identify putative prognostic variants across studies. All SNP associations reported with breast cancer were also adjusted for body mass index (BMI. We report a strong association with 4q31.22-rs1429142 (combined per allele odds ratio and 95% confidence interval = 1.28 [1.17-1.41] and P combined = 1.5×10(-7, when adjusted for BMI. Ten of the 11 breast cancer susceptibility loci reported by consortia also showed associations in our predominantly Caucasian study population, and the associations were independent of BMI; four FGFR2 SNPs and TNRC9-rs3803662 were among the most notable associations. Since the original report by Garcia-Closas et al. 2008, this is the second study to confirm the association of 8q24.21-rs13281615 with breast cancer outcomes.

  17. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B; Behrens, Sabine; Goode, Ellen L; Bolla, Manjeet K; Dennis, Joe; Dunning, Alison M; Easton, Douglas F; Wang, Qin; Benitez, Javier; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Fasching, Peter A; Haeberle, Lothar; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marmé, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Nielsen, Sune F; Nordestgaard, Børge G; González-Neira, Anna; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Fagerholm, Rainer; Dörk, Thilo; Bogdanova, Natalia V; Mannermaa, Arto; Hartikainen, Jaana M; Van Dijck, Laurien; Smeets, Ann; Flesch-Janys, Dieter; Eilber, Ursula; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J; Hallberg, Emily; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Schumacher, Fredrick; Simard, Jacques; Goldberg, Mark S; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Winqvist, Robert; Grip, Mervi; Andrulis, Irene L; Glendon, Gord; García-Closas, Montserrat; Figueroa, Jonine; Czene, Kamila; Brand, Judith S; Darabi, Hatef; Eriksson, Mikael; Hall, Per; Li, Jingmei; Cox, Angela; Cross, Simon S; Pharoah, Paul D P; Shah, Mitul; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Ademuyiwa, Foluso; Ambrosone, Christine B; Swerdlow, Anthony; Jones, Michael; Chang-Claude, Jenny

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry.

  18. Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: Evidence for genetic susceptibility.

    Science.gov (United States)

    Kumar, Pradeep; Yadav, Upendra; Rai, Vandana

    2015-12-01

    There are several evidences supporting the role of 5-10 methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms in breast cancer (BC). Case control association studies on breast cancer have been repeatedly performed over the last two decades, but results are inconsistent. We performed a meta-analysis to confirm the association between MTHFR C677T polymorphism and BC risk. The articles were retrieved by searching the PubMed, Google Scholar, and Springer Link databases. Crude odds ratios (OR) with 95% confidence intervals (CIs) was used to assess the strength of association between C677T polymorphism and BC. Publication bias was assessed by Egger's and Begg-Mazumdar tests. Meta-analysis was performed with Open Meta Analyst. Total 75 studies with 31,315 cases and 35, 608 controls were found suitable for the inclusion in the present meta-analysis. The results of meta-analysis suggested that there were moderate significant association between C677T polymorphism and BC risk using overall comparisons in five genetic models (T vs. C: OR = 1.08, 95% CI = 1.03-1.13, p = < 0.001; TT + CT vs. CC: OR = 1.06, 95% CI = 1.02-1.09, p = < 0.001; TT vs. CC: OR = 1.17, 95% CI = 1.06-1.28, p = 0.001; CT vs. CC OR = 1.05, 95% CI = 1.01-1.08, p = 0.005; TT vs. CT + CC: OR = 1.12, 95% CI = 1.03-1.22, p = 0.005). In conclusion, results of present meta-analysis showed modest association between MTHFR C677T polymorphism with breast cancer in total studies. However, sub-group analysis results based on ethnicity showed strong significant association between TT genotype and breast cancer (TT vs. CC; OR°=°1.26; 95% CI: 1.06-1.51; p = 0.009) in Asian population but in Caucasian population such association was not observed (TT vs. CC; OR°=°1.08; 95% CI: 0.99-1.14; p = 0.05).

  19. Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation

    Science.gov (United States)

    2006-03-01

    associated factor 3 - 3.0 IFNAR1 AA133989 interferon (alpha, beta and omega) receptor 1 -3.1 PDXK AW449022 pyridoxal ( pyridoxine , vitamin B6...IFNAR1 AA133989 Interferon (, , and ) receptor 1 3.1 PDXK AW449022 Pyridoxal ( pyridoxine , vitamin B6) kinase 4.0 HTATIP2 BC002439 HIV-1 Tat...evaluate the risk of breast cancer. N Engl J Med 336, 1409-1415. 26 Cullmann, G., Fien, K., Kobayashi, R., and Stillman, B. (1995). Characterization

  20. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Directory of Open Access Journals (Sweden)

    Stefan Nickels

    Full Text Available Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6 and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4. Overall, the per-allele odds ratio (95% confidence interval for LSP1-rs3817198 was 1.08 (1.01-1.16 in nulliparous women and ranged from 1.03 (0.96-1.10 in parous women with one birth to 1.26 (1.16-1.37 in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98 in those with an alcohol intake of <20 g/day and 1.45 (1.14-1.85 in those who drank ≥ 20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3 × 10(-5, with a per-allele OR of 1.14 (1.11-1.17 in parous women and 0.98 (0.92-1.05 in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.

  1. RAD51 135G>C polymorphism contributes to breast cancer susceptibility: a meta-analysis involving 26,444 subjects.

    Science.gov (United States)

    Wang, Zhanwei; Dong, Hairong; Fu, Yuanyuan; Ding, Haixia

    2010-12-01

    RAD51 plays a key role in homologous recombination repair of double-stranded DNA breaks which may cause chromosomal breaks and genomic instability. We performed a meta-analysis of 9 epidemiological studies involving 13,241 cases and 13,203 controls that examined the association between RAD51 135G>C polymorphism and breast cancer. No significant association of RAD51 135G>C polymorphism with breast cancer was found in overall and European populations. However, after the studies which did not fulfill Hardy-Weinberg equilibrium were excluded, we observed an overall significant increased breast cancer risk (for the recessive model CC vs. GG/CG: OR = 1.35, 95% CI = 1.05-1.74, P (heterogeneity) = 0.06). In summary, our meta-analysis suggested the RAD51 135G > C polymorphism may contribute to breast cancer susceptibility.

  2. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer.

    Directory of Open Access Journals (Sweden)

    Kerstin B Meyer

    2008-05-01

    Full Text Available The recent whole-genome scan for breast cancer has revealed the FGFR2 (fibroblast growth factor receptor 2 gene as a locus associated with a small, but highly significant, increase in the risk of developing breast cancer. Using fine-scale genetic mapping of the region, it has been possible to narrow the causative locus to a haplotype of eight strongly linked single nucleotide polymorphisms (SNPs spanning a region of 7.5 kilobases (kb in the second intron of the FGFR2 gene. Here we describe a functional analysis to define the causative SNP, and we propose a model for a disease mechanism. Using gene expression microarray data, we observed a trend of increased FGFR2 expression in the rare homozygotes. This trend was confirmed using real-time (RT PCR, with the difference between the rare and the common homozygotes yielding a Wilcox p-value of 0.028. To elucidate which SNPs might be responsible for this difference, we examined protein-DNA interactions for the eight most strongly disease-associated SNPs in different breast cell lines. We identify two cis-regulatory SNPs that alter binding affinity for transcription factors Oct-1/Runx2 and C/EBPbeta, and we demonstrate that both sites are occupied in vivo. In transient transfection experiments, the two SNPs can synergize giving rise to increased FGFR2 expression. We propose a model in which the Oct-1/Runx2 and C/EBPbeta binding sites in the disease-associated allele are able to lead to an increase in FGFR2 gene expression, thereby increasing the propensity for tumour formation.

  3. Understanding a Breast Cancer Diagnosis

    Science.gov (United States)

    ... Cancer A-Z Breast Cancer Understanding a Breast Cancer Diagnosis If you’ve been diagnosed with breast cancer, ... Prevention Early Detection and Diagnosis Understanding a Breast Cancer Diagnosis Treatment Breast Reconstruction Surgery Living as a Breast ...

  4. The role of the breast cancer susceptibility gene 1 (BRCA1 in sporadic epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Mueller Christopher R

    2003-10-01

    Full Text Available Abstract Mutations within the BRCA1 tumor suppressor gene occur frequently in familial epithelial ovarian carcinomas but they are a rare event in the much more prevalent sporadic form of the disease. However, decreased BRCA1 expression occurs frequently in sporadic tumors, and the magnitude of this decrease has been correlated with increased disease progression. The near absence of somatic mutations consequently suggests that there are alternative mechanisms that may contribute to the observed loss of BRCA1 in sporadic tumors. Indeed, both allelic loss at the BRCA1 locus and epigenetic hypermethylation of the BRCA1 promoter play an important role in BRCA1 down-regulation; yet these mechanisms alone or in combination do not always account for the reduced BRCA1 expression. Alternatively, misregulation of specific upstream factors that control BRCA1 transcription may be a crucial means by which BRCA1 is lost. Therefore, determining how regulators of BRCA1 expression may be co-opted during sporadic ovarian tumorigenesis will lead to a better understanding of ovarian cancer etiology and it may help foster the future development of novel therapeutic strategies aimed at halting ovarian tumor progression.

  5. Breast Cancer Treatment

    Science.gov (United States)

    ... Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Treatment (PDQ®)–Patient Version General Information About Breast Cancer ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  6. Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer

    Science.gov (United States)

    Kabisch, Maria; Lorenzo Bermejo, Justo; Dünnebier, Thomas; Ying, Shibo; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Lambrechts, Diether; Neven, Patrick; Peeters, Stephanie; Weltens, Caroline; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Purrington, Kristen; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Peto, Julian; dos-Santos-Silva, Isabel; Johnson, Nichola; Fletcher, Olivia; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Schmidt, Marjanka K.; Broeks, Annegien; Cornelissen, Sten; Hogervorst, Frans B.L.; Li, Jingmei; Brand, Judith S.; Humphreys, Keith; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Burwinkel, Barbara; Marmé, Frederik; Yang, Rongxi; Bugert, Peter; González-Neira, Anna; Benitez, Javier; Pilar Zamora, M.; Arias Perez, Jose I.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W.R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; Kriege, Mieke; Koppert, Linetta B.; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Slettedahl, Seth; Toland, Amanda E.; Vachon, Celine; Yannoukakos, Drakoulis; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Fasching, Peter A.; Ruebner, Matthias; Ekici, Arif B.; Beckmann, Matthias W.; Brenner, Hermann; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk J.; Swerdlow, Anthony; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Radice, Paolo; Peterlongo, Paolo; Scuvera, Giulietta; Fortuzzi, Stefano; Bogdanova, Natalia; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Zheng, Wei; Shrubsole, Martha J.; Cai, Qiuyin; Torres, Diana; Anton-Culver, Hoda; Kristensen, Vessela; Bacot, François; Tessier, Daniel C.; Vincent, Daniel; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Maranian, Mel; Simard, Jacques; Chenevix-Trench, Georgia; Hall, Per; Pharoah, Paul D.P.; Dunning, Alison M.; Easton, Douglas F.; Hamann, Ute

    2015-01-01

    The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92–0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83–0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3ʹ untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00–1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02–1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04–1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated. PMID:25586992

  7. Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: Evidence for genetic susceptibility

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2015-12-01

    Total 75 studies with 31,315 cases and 35, 608 controls were found suitable for the inclusion in the present meta-analysis. The results of meta-analysis suggested that there were moderate significant association between C677T polymorphism and BC risk using overall comparisons in five genetic models (T vs. C: OR = 1.08, 95% CI = 1.03–1.13, p = <0.001; TT + CT vs. CC: OR = 1.06, 95% CI = 1.02–1.09, p = <0.001; TT vs. CC: OR = 1.17, 95% CI = 1.06–1.28, p = 0.001; CT vs. CC OR = 1.05, 95% CI = 1.01–1.08, p = 0.005; TT vs. CT + CC: OR = 1.12, 95% CI = 1.03–1.22, p = 0.005. In conclusion, results of present meta-analysis showed modest association between MTHFR C677T polymorphism with breast cancer in total studies. However, sub-group analysis results based on ethnicity showed strong significant association between TT genotype and breast cancer (TT vs. CC; OR°=°1.26; 95% CI: 1.06–1.51; p = 0.009 in Asian population but in Caucasian population such association was not observed (TT vs. CC; OR°=°1.08; 95% CI: 0.99–1.14; p = 0.05.

  8. Detecting differential allelic expression using high-resolution melting curve analysis: application to the breast cancer susceptibility gene CHEK2

    Directory of Open Access Journals (Sweden)

    Sinilnikova Olga

    2011-05-01

    Full Text Available Abstract Background The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2 was subject to DAE in lymphoblastoid cell lines (LCLs from high-risk breast cancer patients for whom no mutation in BRCA1 or BRCA2 had been identified. Methods We implemented an assay based on high-resolution melting (HRM curve analysis and developed an analysis tool for DAE assessment. Results We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs. Conclusions Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms.

  9. Breast Cancer -- Male

    Science.gov (United States)

    ... Home > Types of Cancer > Breast Cancer in Men Breast Cancer in Men This is Cancer.Net’s Guide to Breast Cancer in Men. Use the menu below to choose ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer in Men Introduction Statistics Risk Factors and Prevention ...

  10. Confirmation of 5p12 as a susceptibility locus for progesterone-receptor- positive, lower grade breast cancer

    NARCIS (Netherlands)

    R.L. Milne (Roger); E.L. Goode (Ellen); M. García-Closas (Montserrat); F.J. Couch (Fergus); G. Severi (Gianluca); R. Hein (Rebecca); Z. Fredericksen (Zachary); N. Malats (Núria); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); J. Benítez (Javier); T. Dörk (Thilo); P. Schürmann (Peter); J.H. Karstens (Johann); P. Hillemanns (Peter); A. Cox (Angela); I.W. Brock (Ian); K.S. Elliot (Katherine); S.S. Cross (Simon); S. Seal (Sheila); C. Turnbull (Clare); A. Renwick (Anthony); N. Rahman (Nazneen); C-Y. Shen (Chen-Yang); J-C. Yu (Jyh-Cherng); C.-S. Huang (Chiun-Sheng); M.-F. Hou (Ming-Feng); B.G. Nordestgaard (Børge); S.E. Bojesen (Stig); C. Lanng (Charlotte); G.G. Alnæs (Grethe); V. Kristensen (Vessela); A.-L. Børrensen-Dale (Anne-Lise); J.L. Hopper (John); G.S. Dite (Gillian); C. Apicella (Carmel); M.C. Southey (Melissa); D. Lambrechts (Diether); B.T. Yesilyurt (Betül); O.A.M. Floris; K. Leunen; S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); M. Barile (Monica); G.G. Giles (Graham); L. Baglietto (Laura); E.M. John (Esther); A. Miron (Alexander); S.J. Chanock (Stephen); J. Lissowska (Jolanta); M.E. Sherman (Mark); J.D. Figueroa (Jonine); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); I.V. Zalutsky (Iosif); Y.I. Rogov (Yuri); P.A. Fasching (Peter); T. Bayer (T.); A.B. Ekici (Arif); M.W. Beckmann (Matthias); H. Brenner (Hermann); H. Müller (Heike); V. Arndt (Volker); C. Stegmaier (Christa); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.M. Mulligan (Anna Marie); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J. Hartikainen (Jaana); A. Meindl (Alfons); J. Heil (Joerg); C.R. Bartram (Claus); R.K. Schmutzler (Rita); G. Thomas (Gilles); R.N. Hoover (Robert); O. Fletcher (Olivia); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Peto (Julian); S. Nickels (Stefan); D. Flesch-Janys (Dieter); H. Anton-Culver (Hoda); A. Ziogas (Argyrios); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); R.A.E.M. Tollenaar (Rob); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); K.A. Pooley (Karen); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Christof); B. Burwinkel (Barbara); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); K. Durda (Katarzyna); D. Kang (Daehee); K-Y. Yoo (Keun-Young); D-Y. Noh (Dong-Young); S.-H. Ahn (Sei-Hyun); D. Hunter (David); S.E. Hankinson (Susan); P. Kraft (Peter); S. Lindstrom (Stephen); X. Chen (Xiaoqing); J. Beesley (Jonathan); U. Hamann (Ute); V. Harth (Volker); C. Justenhoven (Christina); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); R.A. Oldenburg (Rogier); M.M.A. Tilanus-Linthorst (Madeleine); E.K. Khusnutdinova (Elza); M. Bermisheva (Marina); D. Prokofieva (Darya); A. Farahtdinova (Albina); J.E. Olson (Janet); X. Wang (Xing); M.K. Humphreys (Manjeet); Q. Wang (Qing); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas)

    2011-01-01

    textabstractBackground: The single-nucleotide polymorphism (SNP) 5p12-rs10941679 has been found to be associated with risk of breast cancer, particularly estrogen receptor (ER)-positive disease. We aimed to further explore this association overall, and by tumor histopathology, in the Breast Cancer A

  11. Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor-Positive, Lower Grade Breast Cancer

    NARCIS (Netherlands)

    Milne, Roger L.; Goode, Ellen L.; Garca-Closas, Montserrat; Couch, Fergus J.; Severi, Gianluca; Hein, Rebecca; Fredericksen, Zachary; Malats, Nuria; Pilar Zamora, M.; Arias Perez, Jose Ignacio; Benitez, Javier; Doerk, Thilo; Schuermann, Peter; Karstens, Johann H.; Hillemanns, Peter; Cox, Angela; Brock, Ian W.; Elliot, Graeme; Cross, Simon S.; Seal, Sheila; Turnbull, Clare; Renwick, Anthony; Rahman, Nazneen; Shen, Chen-Yang; Yu, Jyh-Cherng; Huang, Chiun-Sheng; Hou, Ming-Feng; Nordestgaard, Borge G.; Bojesen, Stig E.; Lanng, Charlotte; Alnaes, Grethe Grenaker; Kristensen, Vessela; Borrensen-Dale, Anne-Lise; Hopper, John L.; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Chang-Claude, Jenny; Wang-Gohrke, Shan; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Giles, Graham G.; Baglietto, Laura; John, Esther M.; Miron, Alexander; Chanock, Stephen J.; Lissowska, Jolanta; Sherman, Mark E.; Figueroa, Jonine D.; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Zalutsky, Iosif V.; Rogov, Yuri I.; Fasching, Peter A.; Bayer, Christian M.; Ekici, Arif B.; Beckmann, Matthias W.; Brenner, Hermann; Mueller, Heiko; Arndt, Volker; Stegmaier, Christa; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Meindl, Alfons; Heil, Joerg; Bartram, Claus R.; Schmutzler, Rita K.; Thomas, Gilles D.; Hoover, Robert N.; Fletcher, Olivia; Gibson, Lorna J.; Silva, Isabel dos Santos; Peto, Julian; Nickels, Stefan; Flesch-Janys, Dieter; Anton-Culver, Hoda; Ziogas, Argyrios; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Schmidt, Marjanka K.; Broeks, Annegien; Van't Veer, Laura J.; Tollenaar, Rob A. E. M.; Pharoah, Paul D. P.; Dunning, Alison M.; Pooley, Karen A.; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Kraft, Peter; Lindstrom, Sara; Chen, Xiaoqing; Beesley, Jonathan; Hamann, Ute; Harth, Volker; Justenhoven, Christina; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Hooning, Maartje; Hollestelle, Antoinette; Oldenburg, Rogier A.; Tilanus-Linthorst, Madeleine; Khusnutdinova, Elza; Bermisheva, Marina; Prokofieva, Darya; Farahtdinova, Albina; Olson, Janet E.; Wang, Xianshu; Humphreys, Manjeet K.; Wang, Qin; Chenevix-Trench, Georgia; Easton, Douglas F.

    2011-01-01

    Background: The single-nucleotide polymorphism (SNP) 5p12-rs10941679 has been found to be associated with risk of breast cancer, particularly estrogen receptor (ER)-positive disease. We aimed to further explore this association overall, and by tumor histopathology, in the Breast Cancer Association C

  12. Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor-Positive, Lower Grade Breast Cancer

    DEFF Research Database (Denmark)

    Milne, Roger L; Goode, Ellen L; García-Closas, Montserrat;

    2011-01-01

    BACKGROUND: The single-nucleotide polymorphism (SNP) 5p12-rs10941679 has been found to be associated with risk of breast cancer, particularly estrogen receptor (ER)-positive disease. We aimed to further explore this association overall, and by tumor histopathology, in the Breast Cancer Associatio...

  13. An investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    OpenAIRE

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse; Knight, Julia A; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Alison M Dunning; Shah, Mitul; Munday, Hannah R.; Darabi, Hatef

    2014-01-01

    A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC.

  14. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium

    Science.gov (United States)

    Milne, Roger L.; Herranz, Jesús; Michailidou, Kyriaki; Dennis, Joe; Tyrer, Jonathan P.; Zamora, M. Pilar; Arias-Perez, José Ignacio; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Wang, Qin; Bolla, Manjeet K.; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Li, Jingmei; Anton-Culver, Hoda; Neuhausen, Susan L.; Ziogas, Argyrios; Clarke, Christina A.; Hopper, John L.; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Chenevix-Trench, Georgia; Swerdlow, Anthony; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Wang, Xianshu; Olson, Janet E.; Vachon, Celine; Purrington, Kristen; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Dunning, Alison M.; Shah, Mitul; Guénel, Pascal; Truong, Thérèse; Sanchez, Marie; Mulot, Claire; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; Collée, J. Margriet; Jager, Agnes; Cox, Angela; Brock, Ian W.; Reed, Malcolm W.R.; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Dumont, Martine; Soucy, Penny; Dörk, Thilo; Bogdanova, Natalia V.; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Fasching, Peter A.; Häberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; dos Santos Silva, Isabel; Peto, Julian; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Mariani, Paolo; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; García-Closas, Montserrat; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J.; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Couch, Fergus J.; Toland, Amanda E.; Yannoukakos, Drakoulis; Pharoah, Paul D.P.; Hall, Per; Benítez, Javier; Malats, Núria; Easton, Douglas F.

    2014-01-01

    Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70 917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46 450 breast cancer cases and 42 461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P 10−10). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome. PMID:24242184

  15. Male Breast Cancer

    Science.gov (United States)

    ... breast cancer include exposure to radiation, a family history of breast cancer, and having high estrogen levels, which can happen with diseases like cirrhosis or Klinefelter's syndrome. Treatment for male breast cancer is usually ...

  16. Breast cancer in pregnancy.

    Science.gov (United States)

    Krishna, Iris; Lindsay, Michael

    2013-09-01

    Pregnancy-associated breast cancer is defined as breast cancer diagnosed during pregnancy or in the first postpartum year. Breast cancer is one of the more common malignancies to occur during pregnancy and, as more women delay childbearing, the incidence of breast cancer in pregnancy is expected to increase. This article provides an overview of diagnosis, staging, and treatment of pregnancy-associated breast cancer. Recommendations for management of breast cancer in pregnancy are discussed.

  17. Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gracia-Aznarez

    Full Text Available The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10 diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.

  18. An investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    Science.gov (United States)

    Rudolph, Anja; Milne, Roger L.; Truong, Thérèse; Knight, Julia A.; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Dunning, Alison M.; Shah, Mitul; Munday, Hannah R.; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S.; Olson, Janet; Vachon, Celine M.; Hallberg, Emily; Castelao, J. Esteban; Carracedo, Angel; Torres, Maria; Li, Jingmei; Humphreys, Keith; Cordina-Duverger, Emilie; Menegaux, Florence; Flyger, Henrik; Nordestgaard, Børge G.; Nielsen, Sune F.; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Engelhardt, Ellen G.; Broeks, Annegien; Rutgers, Emiel J.; Glendon, Gord; Mulligan, Anna Marie; Cross, Simon; Reed, Malcolm; Gonzalez-Neira, Anna; Perez, José Ignacio Arias; Provenzano, Elena; Apicella, Carmel; Southey, Melissa C.; Spurdle, Amanda; Investigators, kConFab; Group, AOCS; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; McLean, Catriona; Baglietto, Laura; Chanock, Stephen J.; Lissowska, Jolanta; Sherman, Mark E.; Brüning, Thomas; Hamann, Ute; Ko, Yon-Dschun; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Mannermaa, Arto; Swerdlow, Anthony; Giles, Graham G.; Brenner, Hermann; Fasching, Peter A.; Chenevix-Trench, Georgia; Hopper, John; Benítez, Javier; Cox, Angela; Andrulis, Irene L.; Lambrechts, Diether; Gago-Dominguez, Manuela; Couch, Fergus; Czene, Kamila; Bojesen, Stig E.; Easton, Doug F.; Schmidt, Marjanka K.; Guénel, Pascal; Hall, Per; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Chang-Claude, Jenny

    2014-01-01

    A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint) <1.1×10−3. None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women ≥170cm (OR=1.22, p=0.017), but inversely associated with ER-negative BC risk in women <160cm (OR=0.83, p=0.039, pint=1.9×10−4). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR=0.85, p=2.0×10−4), and absent in women who had had just one (OR=0.96, p=0.19, pint = 6.1×10−4). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR=0.93, p=2.8×10−5), but no association was observed in current smokers (OR=1.07, p=0.14, pint = 3.4×10−4). In conclusion, recently identified breast cancer susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. PMID:25227710

  19. Evaluation the susceptibility of five polymorphisms in microRNA-binding sites to female breast cancer risk in Chinese population.

    Science.gov (United States)

    He, Bang-Shun; Pan, Yu-Qin; Lin, Kang; Ying, Hou-Qun; Wang, Feng; Deng, Qi-Wen; Sun, Hui-Ling; Gao, Tian-Yi; Wang, Shu-Kui

    2015-11-15

    Polymorphisms in microRNA (miRNA) binding site have been widely discussed to be associated with cancer risk; however, the associations were unclear in Chinese population. To investigate the associations of five polymorphisms (rs11097457, rs1434536, rs1970801, rs1044129, rs11169571) in miRNA binding sites with breast cancer risk, a total of 435 female patients with breast cancer and 439 age- and gender-matched tumor-free individuals were enrolled in this case-control study. Sequenom MassARRAY was applied to detect the polymorphisms, and the immunohistochemistry assay was used to measure the expression of estrogen receptor (ER) and progesterone receptor (PR) and CerbB-2. The data showed that these polymorphisms were not associated with breast cancer risk or clinical characters of breast cancer in all participants and sub-group with the exception that, in the sub-group of women with their first menstruation after 14 years old, those who carried rs1970801 T allele (genotype TT/GT) were associated with decreased breast cancer risk. In short, this case-control study provided the evidence that women with their first menstruation after 14 years old and carried rs1970801 T allele (genotype TT/GT) were associated with decreased breast cancer risk.

  20. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  1. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability

    OpenAIRE

    Kong Sun-Young; Lee Ho-Young; Kim Seok-Ki; Kwon Bumi; Kim Kyung-Hee; Kang Keon; Kang Se; Lee Eun; Jang Sang-Geun; Yoo Byong

    2008-01-01

    Abstract Background Elucidating the molecular mechanisms by which tumors become resistant to Herceptin is critical for the treatment of Her2-overexpressed metastatic breast cancer. Methods To further understand Herceptin resistance mechanisms at the molecular level, we used comparative proteome approaches to analyze two human breast cancer cell lines; Her2-positive SK-BR-3 cells and its Herceptin-resistant SK-BR-3 (SK-BR-3 HR) cells. Results Heat-shock protein 27 (HSP27) expression was shown ...

  2. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Mulligan, Anna Marie; Couch, Fergus J; Barrowdale, Daniel

    2011-01-01

    -negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status...

  3. Recognition of tumor antigens in 4T1 cells by natural IgM from three strains of mice with different susceptibilities to spontaneous breast cancer

    Science.gov (United States)

    Díaz-Zaragoza, Mariana; Hernández-Ávila, Ricardo; Ostoa-Saloma, Pedro

    2017-01-01

    The issue of antibody responses to tumors is potentially important to cancer immunologists. Early detection of cancer represents one of the most promising approaches to reduce the growing cancer burden. Natural immunoglobulin (Ig)M antibodies have been associated with the recognition and elimination of cancerous and precancerous cells. Using natural IgM antibodies, the present study identified a set of antigens in healthy mice from three different strains and examined whether the global patterns of antibodies are able to discriminate between a condition of more or less susceptibility to breast cancer. The current study performed two-dimensional (2D) immunoblotting to detect antigens from 4T1 cells using natural IgM from serum of healthy female mice from three different strains. The t-test was used to analyze the total number of spots. There were no significant differences in the numbers of antigens recognized in each strain. However, differences in patterns were observed on 2D immunoblots among the three strains. The reactivity patterns of natural IgM antibodies to particular antigens exhibited non-random clustering, which discriminated between strains with different susceptibilities to spontaneous breast cancer. The results demonstrated that the patterns of reactivity to defined subsets of antigens are able to provide information regarding differential diagnosis associated with breast cancer sensitivity. Therefore, it may be concluded that it is possible to segregate the IgM humoral immune response toward cancer antigens according to the genetic background of individuals. In addition, it is possible to identify the recognized antigens that allow grouping or discriminate between the different IgM antibodies expressed. The possible association between a particular antigen and cancer susceptibility requires further study, but the methodology exposed in the present study may identify potential candidates for this possible association.

  4. Breast Cancer Disparities

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  5. Breast cancer in men

    Science.gov (United States)

    ... in situ - male; Intraductal carcinoma - male; Inflammatory breast cancer - male; Paget disease of the nipple - male; Breast cancer - male ... The cause of breast cancer in men is not clear. But there are risk factors that make breast cancer more likely in men: Exposure to ...

  6. Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPPIRI3L/iASPP

    DEFF Research Database (Denmark)

    Nexø, Bjørn A.; Vogel, Ulla Birgitte; Olsen, Anja

    2008-01-01

    Background: Previous results have suggested an association of the region of 19q13.3 with several forms of cancer. In the present study, we investigated 27 public markers within a previously identified 69 kb stretch of chromosome 19q for association with breast cancer by using linkage disequilibrium...... mapping. The study groups included 434 postmenopausal breast cancer cases and an identical number of individually matched controls. Methods and Results: Studying one marker at a time, we found a region spanning the gene RAI ( alias PPP1R13L or iASPP) and the 5' portion of XPD to be associated......, many of which were not in the public databases. We tested an additional 44 of these for association with disease and found a new tandem repeat marker, called RAI-3' d1, located downstream of the transcribed region of RAI, which was more strongly associated with breast cancer than any other marker we...

  7. Imaging male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, S., E-mail: sdoyle2@nhs.net [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom); Steel, J.; Porter, G. [Primrose Breast Care Unit, Derriford Hospital, Plymouth (United Kingdom)

    2011-11-15

    Male breast cancer is rare, with some pathological and radiological differences from female breast cancer. There is less familiarity with the imaging appearances of male breast cancer, due to its rarity and the more variable use of preoperative imaging. This review will illustrate the commonest imaging appearances of male breast cancer, with emphasis on differences from female breast cancer and potential pitfalls in diagnosis, based on a 10 year experience in our institution.

  8. Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

    Science.gov (United States)

    Naushad, Shaik Mohammad; Ramaiah, M Janaki; Pavithrakumari, Manickam; Jayapriya, Jaganathan; Hussain, Tajamul; Alrokayan, Salman A; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadharao; Kutala, Vijay Kumar

    2016-04-15

    In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1.

  9. Male Breast Cancer

    Science.gov (United States)

    ... ducts that carry milk to the nipples, and fat. During puberty, women begin developing more breast tissue, and men do not. But because men are born with a small amount of breast tissue, they can develop breast cancer. Types of breast cancer diagnosed in men include: Cancer ...

  10. Association of single nucleotide polymorphisms in CYP1B1 and COMT genes with breast cancer susceptibility in Indian women.

    Science.gov (United States)

    Yadav, Sharawan; Singhal, Naveen Kumar; Singh, Virendra; Rastogi, Neeraj; Srivastava, Pramod Kumar; Singh, Mahendra Pratap

    2009-01-01

    Cytochrome P450 1B1 (CYP1B1) and catechol-O-methyltransferase (COMT) enzymes play critical roles in estrogen metabolism. Alterations in the catalytic activity of CYP1B1 and COMT enzymes have been found associated with altered breast cancer risk in postmenopausal women in many populations. The substitution of leucine (Leu) to valine (Val) at codon 432 increases the catalytic activity of CYP1B1, however, substitution of Val to methionine (Met) at codon 158 decreases the catalytic activity of COMT. The present study was performed to evaluate the associations of CYP1B1 Leu(432)Val and/or COMT Val(158)Met polymorphisms with total, premenopausal and postmenopausal breast cancer risks in Indian women. COMT and CYP1B1 polymorphisms in controls and breast cancer patients were analyzed employing polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) followed by gel electrophoresis. Although CYP1B1 and COMT genotypes did not exhibit statistically significant association with breast cancer risks when analyzed individually, COMT wild type (Val(158)Val) in combination with CYP1B1 heterozygous variant (Leu(432)Val) [OR: 0.21; 95% CI (0.05-0.82), p value; 0.021] and COMT heterozygous variant (Val(158)Met) in combination with CYP1B1 wild type (Leu(432)Leu) [OR: 0.29; 95% CI (0.08-0.96), p value; 0.042] showed significant protective association with premenopausal breast cancer risk. The results demonstrate that CYP1B1 wild type in combination with COMT heterozygous or their inverse combination offer protection against breast cancer in premenopausal Indian women.

  11. Association of Single Nucleotide Polymorphisms in CYP1B1 and COMT Genes with Breast Cancer Susceptibility in Indian Women

    Directory of Open Access Journals (Sweden)

    Sharawan Yadav

    2009-01-01

    Full Text Available Cytochrome P450 1B1 (CYP1B1 and catechol-$O$-methyltransferase (COMT enzymes play critical roles in estrogen metabolism. Alterations in the catalytic activity of CYP1B1 and COMT enzymes have been found associated with altered breast cancer risk in postmenopausal women in many populations. The substitution of leucine (Leu to valine (Val at codon 432 increases the catalytic activity of CYP1B1, however, substitution of Val to methionine (Met at codon 158 decreases the catalytic activity of COMT. The present study was performed to evaluate the associations of CYP1B1 Leu432Val and/or COMT Val158Met polymorphisms with total, premenopausal and postmenopausal breast cancer risks in Indian women. COMT and CYP1B1 polymorphisms in controls and breast cancer patients were analyzed employing polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP followed by gel electrophoresis. Although CYP1B1 and COMT genotypes did not exhibit statistically significant association with breast cancer risks when analyzed individually, COMT wild type (Val158Val in combination with CYP1B1 heterozygous variant (Leu432Val [OR: 0.21; 95% CI (0.05–0.82, p value; 0.021] and COMT heterozygous variant (Val158Met in combination with CYP1B1 wild type (Leu432Leu [OR: 0.29; 95% CI (0.08–0.96, p value; 0.042] showed significant protective association with premenopausal breast cancer risk. The results demonstrate that CYP1B1 wild type in combination with COMT heterozygous or their inverse combination offer protection against breast cancer in premenopausal Indian women.

  12. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    NARCIS (Netherlands)

    K. Lawrenson (Kate); S. Kar (Siddhartha); K. McCue (Karen); Kuchenbaeker, K. (Karoline); K. Michailidou (Kyriaki); J.P. Tyrer (Jonathan); J. Beesley (Jonathan); S.J. Ramus (Susan); Li, Q. (Qiyuan); Delgado, M.K. (Melissa K.); J.M. Lee (Janet M.); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Arndt, V. (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); E.V. Bandera (Elisa); M. Barile (Monica); Barkardottir, R.B. (Rosa B.); D. Barrowdale (Daniel); M.W. Beckmann (Matthias); J. Benítez (Javier); A. Berchuck (Andrew); M. Bisogna (Maria); L. Bjorge (Line); C. Blomqvist (Carl); W.J. Blot (William); N.V. Bogdanova (Natalia); Bojesen, A. (Anders); S.E. Bojesen (Stig); M.K. Bolla (Manjeet K.); B. Bonnani (Bernardo); A.-L. Borresen-Dale (Anne-Lise); H. Brauch (Hiltrud); P. Brennan (Paul); H. Brenner (Hermann); F. Bruinsma (Fiona); J. Brunet (Joan); S.A.B.S. Buhari (Shaik Ahmad Bin Syed); B. Burwinkel (Barbara); R. Butzow (Ralf); S.S. Buys (Saundra); Q. Cai (Qiuyin); T. Caldes (Trinidad); I. Campbell (Ian); Canniotto, R. (Rikki); J. Chang-Claude (Jenny); Chiquette, J. (Jocelyne); Choi, J.-Y. (Ji-Yeob); K.B.M. Claes (Kathleen B.M.); L.S. Cook (Linda S.); A. Cox (Angela); D.W. Cramer (Daniel); S.S. Cross (Simon); C. Cybulski (Cezary); K. Czene (Kamila); M.B. Daly (Mary B.); F. Damiola (Francesca); A. Dansonka-Mieszkowska (Agnieszka); H. Darabi (Hatef); J. Dennis (Joe); P. Devilee (Peter); O. Díez (Orland); J.A. Doherty (Jennifer A.); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); T. Dörk (Thilo); M. Dumont (Martine); H. Ehrencrona (Hans); B. Ejlertsen (Bent); S.D. Ellis (Steve); C. Engel (Christoph); E. Lee (Eunjung); Evans, D.G. (D. Gareth); P.A. Fasching (Peter); L. Feliubadaló (L.); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); H. Flyger (Henrik); L. Foretova (Lenka); F. Fostira (Florentia); W.D. Foulkes (William); B.L. Fridley (Brooke); E. Friedman (Eitan); D. Frost (Debra); Gambino, G. (Gaetana); P.A. Ganz (Patricia A.); J. Garber (Judy); M. García-Closas (Montserrat); A. Gentry-Maharaj (Aleksandra); M. Ghoussaini (Maya); G.G. Giles (Graham); R. Glasspool (Rosalind); A.K. Godwin (Andrew K.); M.S. Goldberg (Mark); D. Goldgar (David); A. González-Neira (Anna); E.L. Goode (Ellen); M.T. Goodman (Marc); M.H. Greene (Mark H.); J. Gronwald (Jacek); P. Guénel (Pascal); C.A. Haiman (Christopher A.); P. Hall (Per); Hallberg, E. (Emily); U. Hamann (Ute); T.V.O. Hansen (Thomas); P. harrington (Patricia); J.M. Hartman (Joost); N. Hassan (Norhashimah); S. Healey (Sue); P.U. Heitz; J. Herzog (Josef); E. Høgdall (Estrid); C.K. Høgdall (Claus); F.B.L. Hogervorst (Frans); A. Hollestelle (Antoinette); J.L. Hopper (John); P.J. Hulick (Peter); T. Huzarski (Tomasz); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); H. Ito (Hidemi); A. Jakubowska (Anna); R. Janavicius (Ramunas); A. Jensen (Allan); E.M. John (Esther); Johnson, N. (Nichola); M. Kabisch (Maria); D. Kang (Daehee); M.K. Kapuscinski (Miroslav K.); Karlan, B.Y. (Beth Y.); S. Khan (Sofia); L.A.L.M. Kiemeney (Bart); M. Kjaer (Michael); J.A. Knight (Julia); I. Konstantopoulou (I.); V-M. Kosma (Veli-Matti); V. Kristensen (Vessela); J. Kupryjanczyk (Jolanta); A. Kwong (Ava); M. de La Hoya (Miguel); Y. Laitman (Yael); Lambrechts, D. (Diether); N.D. Le (Nhu D.); K. De Leeneer (Kim); K.J. Lester (Kathryn); D.A. Levine (Douglas); J. Li (Jingmei); A. Lindblom (Annika); J. Long (Jirong); A. Lophatananon (Artitaya); J.T. Loud (Jennifer); K.H. Lu (Karen); J. Lubinski (Jan); A. Mannermaa (Arto); S. Manoukian (Siranoush); L. Le Marchand (Loic); S. Margolin (Sara); F. Marme (Frederick); L.F. Massuger (Leon); K. Matsuo (Keitaro); S. Mazoyer (Sylvie); L. McGuffog (Lesley); C.A. McLean (Catriona Ann); I. McNeish (Iain); A. Meindl (Alfons); U. Menon (Usha); Mensenkamp, A.R. (Arjen R.); R.L. Milne (Roger); M. Montagna (Marco); K.B. Moysich (Kirsten); K.R. Muir (K.); A.-M. Mulligan (Anna-Marie); K.L. Nathanson (Katherine); R.B. Ness (Roberta); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); S. Nord (Silje); R.L. Nussbaum (Robert L.); K. Odunsi (Kunle); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); J.E. Olson (Janet); C. Olswold (Curtis); D.M. O'Malley (David M.); I. Orlow (Irene); N. Orr (Nick); A. Osorio (Ana); Park, S.K. (Sue Kyung); C.L. Pearce (Celeste); T. Pejovic (Tanja); P. Peterlongo (Paolo); G. Pfeiler (Georg); C. Phelan (Catherine); E.M. Poole (Elizabeth); K. Pykäs (Katri); P. Radice (Paolo); J. Rantala (Johanna); M.U. Rashid (Muhammad); G. Rennert (Gad); V. Rhenius (Valerie); K. Rhiem (Kerstin); H. Risch (Harvey); G.C. Rodriguez (Gustavo); M.A. Rossing (Mary Anne); Rudolph, A. (Anja); H.B. Salvesen (Helga); Sangrajrang, S. (Suleeporn); Sawyer, E.J. (Elinor J.); J.M. Schildkraut (Joellen); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); T.A. Sellers (Thomas A.); C.M. Seynaeve (Caroline); Shah, M. (Mitul); C.-Y. Shen (Chen-Yang); X.-O. Shu (Xiao-Ou); W. Sieh (Weiva); C.F. Singer (Christian); O. Sinilnikova (Olga); S. Slager (Susan); H. Song (Honglin); Soucy, P. (Penny); M.C. Southey (Melissa); M. Stenmark-Askmalm (Marie); D. Stoppa-Lyonnet (Dominique); C. Sutter (Christian); A.J. Swerdlow (Anthony ); Tchatchou, S. (Sandrine); P.J. Teixeira; S.-H. Teo; K.L. Terry (Kathryn); M.B. Terry (Mary Beth); M. Thomassen (Mads); M.G. Tibiletti (Maria Grazia); L. Tihomirova (Laima); S. Tognazzo (Silvia); A.E. Toland (Amanda); I.P. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); C.-C. Tseng (Chiu-Chen); N. Tung (Nadine); Tworoger, S.S. (Shelley S.); C. Vachon (Celine); Van Den Ouweland, A.M.W. (Ans M.W.); Van Doorn, H.C. (Helena C.); E.J. van Rensburg (Elizabeth); L.J. van 't Veer (Laura); A. Vanderstichele (Adriaan); I. Vergote (Ignace); J. Vijai (Joseph); Wang, Q. (Qin); S. Wang-Gohrke (Shan); J.N. Weitzel (Jeffrey); N. Wentzensen (N.); A.S. Whittemore (Alice); H. Wildiers (Hans); R. Winqvist (Robert); A.H. Wu (Anna); Yannoukakos, D. (Drakoulis); S.-Y. Yoon (Sook-Yee); J-C. Yu (Jyh-Cherng); W. Zheng (Wei); Y. Zheng (Ying); Khanna, K.K. (Kum Kum); J. Simard (Jacques); A.N.A. Monteiro (Alvaro N.); J.D. French (Juliet); F.J. Couch (Fergus); M. Freedman (Matthew); D.F. Easton (Douglas F.); A.M. Dunning (Alison); P.D.P. Pharoah (Paul); S.L. Edwards (Stacey); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); S.A. Gayther (Simon); D. Bowtell (David); A. DeFazio (Anna); P. Webb (Penny); M.-A. Collonge-Rame; Damette, A. (Alexandre); E. Barouk-Simonet (Emmanuelle); F. Bonnet (Françoise); V. Bubien (Virginie); N. Sevenet (Nicolas); M. Longy (Michel); P. Berthet (Pascaline); D. Vaur (Dominique); L. Castera (Laurent); S.F. Ferrer; Y.-J. Bignon (Yves-Jean); N. Uhrhammer (Nancy); F. Coron (Fanny); L. Faivre (Laurence); Baurand, A. (Amandine); Jacquot, C. (Caroline); Bertolone, G. (Geoffrey); Lizard, S. (Sarab); D. Leroux (Dominique); H. Dreyfus (Hélène); C. Rebischung (Christine); Peysselon, M. (Magalie); J.-P. Peyrat; J. Fournier (Joëlle); F. Révillion (Françoise); C. Adenis (Claude); L. Vénat-Bouvet (Laurence); M. Léone (Mélanie); N. Boutry-Kryza (N.); A. Calender (Alain); S. Giraud (Sophie); C. Verny-Pierre (Carole); C. Lasset (Christine); V. Bonadona (Valérie); Barjhoux, L. (Laure); H. Sobol (Hagay); V. Bourdon (Violaine); Noguchi, T. (Tetsuro); A. Remenieras (Audrey); I. Coupier (Isabelle); P. Pujol (Pascal); J. Sokolowska (Johanna); M. Bronner (Myriam); C.D. Delnatte (Capucine); Bézieau, S. (Stéphane); Mari, V. (Véronique); M. Gauthier-Villars (Marion); B. Buecher (Bruno); E. Rouleau (Etienne); L. Golmard (Lisa); V. Moncoutier (Virginie); M. Belotti (Muriel); A. de Pauw (Antoine); Elan, C. (Camille); Fourme, E. (Emmanuelle); Birot, A.-M. (Anne-Marie); Saule, C. (Claire); Laurent, M. (Maïté); C. Houdayer (Claude); F. Lesueur (Fabienne); N. Mebirouk (Noura); F. Coulet (Florence); C. Colas (Chrystelle); F. Soubrier; Warcoin, M. (Mathilde); F. Prieur (Fabienne); M. Lebrun (Marine); C. Kientz (Caroline); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); C. Toulas (Christine); R. Guimbaud (Rosine); L. Gladieff (Laurence); V. Feillel (Viviane); I. Mortemousque (Isabelle); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); M. Guillaud-Bataille (Marine); H. Gregory (Helen); Z. Miedzybrodzka (Zosia); P.J. Morrison (Patrick); A. Donaldson (Alan); M.T. Rogers (Mark); M.J. Kennedy (John); M.E. Porteous (Mary); A. Brady (A.); J. Barwell (Julian); Foo, C. (Claire); F. Lalloo (Fiona); L. Side (Lucy); J. Eason (Jacqueline); Henderson, A. (Alex); L.J. Walker (Lisa); J. Cook (Jackie); Snape, K. (Katie); A. Murray (Alexandra); E. McCann (Emma); M.A. Rookus (Matti); F.E. van Leeuwen (F.); L. van der Kolk (Lizet); M.K. Schmidt (Marjanka); N.S. Russell (Nicola); J.L. de Lange (J.); Wijnands, R.; J.M. Collée; M.J. Hooning (Maartje); Seynaeve, C.; C.H.M. van Deurzen (Carolien); A.I.M. Obdeijn (Inge-Marie); C.J. van Asperen (Christi); R.A.E.M. Tollenaar (Rob); T.C.T.E.F. van Cronenburg; C.M. Kets; M.G.E.M. Ausems (Margreet); C. van der Pol (Carmen); T.A.M. van Os (Theo); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); E.B. Gómez García (Encarna); J.C. Oosterwijk (Jan); M.J. Mourits; G.H. de Bock (Geertruida); H. Vasen (Hans); Siesling, S.; Verloop, J.; L.I.H. Overbeek (Lucy); S.B. Fox (Stephen); J. Kirk (Judy); G.J. Lindeman; M. Price (Melanie)

    2016-01-01

    textabstractA locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20

  13. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Kar, Siddhartha; McCue, Karen

    2016-01-01

    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-n...

  14. Breast cancer awareness

    OpenAIRE

    2012-01-01

    The incidence of breast cancer is rising among women in many European countries, affecting up to 1 in 16 women and has become the most common cause of cancer in European women. In Malta breast cancer is the commonest oncological cause of death in females. In fact 5.2% of all deaths in females in 2010 was from breast cancer.

  15. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus

    DEFF Research Database (Denmark)

    Horne, Hisani N; Chung, Charles C; Zhang, Han

    2016-01-01

    cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433...

  16. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    NARCIS (Netherlands)

    Day, Felix R.; Ruth, Katherine S.; Thompson, Deborah J.; Lunetta, Kathryn L.; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K.; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tonu; Johnson, Andrew D.; Elks, Cathy E.; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A.; Franke, Lude L.; Huffman, Jennifer E.; Keller, Margaux F.; McArdle, Patrick F.; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Smith, Jennifer A.; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V.; Tanaka, Toshiko; Abecasis, Goncalo R.; Andrulis, Irene L.; Anton-Culver, Hoda; Antoniou, Antonis C.; Arndt, Volker; Arnold, Alice M.; Barbieri, Caterina; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J.; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Boutin, Thibaud S.; Brauch, Hiltrud; Brenner, Hermann; Bruening, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J.; Chapman, J. Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J.; Coviello, Andrea D.; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Doerk, Thilo; dos-Santos-Silva, Isabel; Dunning, Alison M.; Eicher, John D.; Fasching, Peter A.; Faul, Jessica D.; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E.; Garcia-Closas, Montserrat; Giles, Graham G.; Girotto, Giorgia G.; Goldberg, Mark S.; Gonzalez-Neira, Anna; Goodarzi, Mark O.; Grove, Megan L.; Gudbjartsson, Daniel F.; Guenel, Pascal; Guo, Xiuqing; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Henderson, Brian E.; Hocking, Lynne J.; Hofman, Albert; Homuth, Georg; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Huang, Jinyan; Humphreys, Keith; Hunter, David J.; Jakubowska, Anna; Jones, Samuel E.; Kabisch, Maria; Karasik, David; Knight, Julia A.; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindstroem, Sara; Liu, Yongmei; Luan, Jian'an; Lubinski, Jan; Maegi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G.; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Mueller-Nurasyid, Martina; Nalls, Michael; Neale, Benjamin M.; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B.; Nordestgaard, Borge G.; Olson, Janet E.; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D. P.; Pirastu, Nicola N.; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M.; Pylkas, Katri; Radice, Paolo; Raffel, Leslie J.; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F.; Sanna, Serena; Sawyer, Elinor J.; Schlessinger, David; Schmidt, Marjanka K.; Schmidt, Frank; Schmutzler, Rita K.; Schoemaker, Minouk J.; Scott, Robert A.; Seynaeve, Caroline M.; Simard, Jacques; Sorice, Rossella; Southey, Melissa C.; Stoeckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D.; Thorsteinsdottir, Unnur; Toland, Amanda E.; Tomlinson, Ian; Truong, Therese; Tryggvadottir, Laufey; Turner, Stephen T.; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F.; Winqvist, Robert; Wolffenbuttel, Bruce B. H. R.; Wright, Alan F.; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I.; Buring, Julie E.; Ferrucci, Luigi; Montgomery, Grant W.; Gudnason, Vilmundur; Spector, Tim D.; van Duijn, Cornelia M.; Alizadeh, Behrooz Z.; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F.; Gasparini, Paolo P.; Gieger, Christian; Harris, Tamara B.; Hayward, Caroline; Kardia, Sharon L. R.; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C.; Reiner, Alex P.; Ridker, Paul M.; Rotter, Jerome I.; Toniolo, Daniela; Uitterlinden, Andre G.; Ulivi, Sheila; Voelzke, Henry; Wareham, Nicholas J.; Weir, David R.; Yerges-Armstrong, Laura M.; Price, Alkes L.; Stefansson, Kari; Visser, Jenny A.; Ong, Ken K.; Chang-Claude, Jenny; Murabito, Joanne M.; Perry, John R. B.; Murray, Anna

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in similar to 70,000 women to identify common and low-frequency protein-coding variation associated with age at natura

  17. Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPPIRI3L/iASPP

    DEFF Research Database (Denmark)

    Nexø, Bjørn A.; Vogel, Ulla Birgitte; Olsen, Anja;

    2008-01-01

    , many of which were not in the public databases. We tested an additional 44 of these for association with disease and found a new tandem repeat marker, called RAI-3' d1, located downstream of the transcribed region of RAI, which was more strongly associated with breast cancer than any other marker we...

  18. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    DEFF Research Database (Denmark)

    Day, Felix R; Ruth, Katherine S; Thompson, Deborah J

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menop...

  19. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    NARCIS (Netherlands)

    Day, Felix R; Ruth, Katherine S; Thompson, Deborah J; Lunetta, Kathryn L; Pervjakova, Natalia; Chasman, Daniel I; Stolk, Lisette; Finucane, Hilary K; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D; Elks, Cathy E; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A; Franke, Lude L; Huffman, Jennifer E; Keller, Margaux F; McArdle, Patrick F; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M; Schick, Ursula M; Smith, Jennifer A; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V; Tanaka, Toshiko; Abecasis, Gonçalo R; Andrulis, Irene L; Anton-Culver, Hoda; Antoniou, Antonis C; Arndt, Volker; Arnold, Alice M; Barbieri, Caterina; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J; Chapman, J Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J; Coviello, Andrea D; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M; Eicher, John D; Fasching, Peter A; Faul, Jessica D; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E; García-Closas, Montserrat; Giles, Graham G; Girotto, Giorgia G; Goldberg, Mark S; González-Neira, Anna; Goodarzi, Mark O; Grove, Megan L; Gudbjartsson, Daniel F; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A; Hall, Per; Hamann, Ute; Henderson, Brian E; Hocking, Lynne J; Hofman, Albert; Homuth, Georg; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Huang, Jinyan; Humphreys, Keith; Hunter, David J; Jakubowska, Anna; Jones, Samuel E; Kabisch, Maria; Karasik, David; Knight, Julia A; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian'an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Benjamin M; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B; Nordestgaard, Børge G; Olson, Janet E; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D P; Pirastu, Nicola N; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F; Sanna, Serena; Sawyer, Elinor J; Schlessinger, David; Schmidt, Marjanka K; Schmidt, Frank; Schmutzler, Rita K; Schoemaker, Minouk J; Scott, Robert A; Seynaeve, Caroline M; Simard, Jacques; Sorice, Rossella; Southey, Melissa C; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D; Thorsteinsdottir, Unnur; Toland, Amanda E; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F; Winqvist, Robert; Wolffenbuttel, Bruce B H R; Wright, Alan F; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I; Buring, Julie E; Ferrucci, Luigi; Montgomery, Grant W; Gudnason, Vilmundur; Spector, Tim D; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F; Gasparini, Paolo P; Gieger, Christian; Harris, Tamara B; Hayward, Caroline; Kardia, Sharon L R; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C; Reiner, Alex P; Ridker, Paul M; Rotter, Jerome I; Toniolo, Daniela; Uitterlinden, André G; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J; Weir, David R; Yerges-Armstrong, Laura M; Price, Alkes L; Stefansson, Kari; Visser, Jenny A; Ong, Ken K; Chang-Claude, Jenny; Murabito, Joanne M; Perry, John R B; Murray, Anna

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopaus

  20. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry

    NARCIS (Netherlands)

    Z. Zhao (Zhiguo); W. Wen (Wanqing); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet); Q. Wang (Qing); B. Zhang (Bin); J. Long (Jirong); X.-O. Shu (Xiao-Ou); M.K. Schmidt (Marjanka); R.L. Milne (Roger); M. García-Closas (Montserrat); J. Chang-Claude (Jenny); S. Lindstrom (Stephen); S.E. Bojesen (Stig); H. Ahsan (Habibul); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); V. Arndt (Volker); M.W. Beckmann (Matthias); A. Beeghly-Fadiel (Alicia); J. Benítez (Javier); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); A.-L. Borresen-Dale (Anne-Lise); J.S. Brand (Judith S.); H. Brauch (Hiltrud); H. Brenner (Hermann); B. Burwinkel (Barbara); Q. Cai (Qiuyin); G. Casey (Graham); G. Chenevix-Trench (Georgia); F.J. Couch (Fergus); A. Cox (Angela); S.S. Cross (Simon); K. Czene (Kamila); T. Dörk (Thilo); M. Dumont (Martine); P.A. Fasching (Peter); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); H. Flyger (Henrik); F. Fostira (Florentia); M. Gammon (Marilie); G.G. Giles (Graham); P. Guénel (Pascal); C.A. Haiman (Christopher A.); U. Hamann (Ute); P. harrington (Patricia); J.M. Hartman (Joost); M.J. Hooning (Maartje); J.L. Hopper (John); A. Jakubowska (Anna); F. Jasmine (Farzana); E.M. John (Esther); N. Johnson (Nichola); M. Kabisch (Maria); S. Khan (Sofia); M.G. Kibriya (Muhammad); J.A. Knight (Julia A.); V-M. Kosma (Veli-Matti); M. Kriege (Mieke); V. Kristensen (Vessela); L. Le Marchand (Loic); E. Lee (Eunjung); J. Li (Jingmei); A. Lindblom (Annika); A. Lophatananon (Artitaya); R.N. Luben (Robert); J. Lubinski (Jan); K.E. Malone (Kathleen E.); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); F. Marme (Federick); C.A. McLean (Catriona Ann); E.J. Meijers-Heijboer (Hanne); A. Meindl (Alfons); X. Miao; K.R. Muir (K.); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Neven (Patrick); J.E. Olson (Janet); B. Perkins (Barbara); P. Peterlongo (Paolo); K.-A. Phillips (Kelly-Anne); K. Pykäs (Katri); A. Rudolph (Anja); R. Santella (Regina); E.J. Sawyer (Elinor); R.K. Schmutzler (Rita); M. Schoemaker (Minouk); M. Shah (Mitul); M. Shrubsole (Martha); M.C. Southey (Melissa); A.J. Swerdlow (Anthony ); A.E. Toland (Amanda); I. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); G. Ursin (Giske); R.B. van der Luijt (Rob); S. Verhoef; S. Wang-Gohrke (Shan); A.S. Whittemore (Alice S.); R. Winqvist (Robert); M.P. Zamora (Pilar); H. Zhao (Hui); A.M. Dunning (Alison); J. Simard (Jacques); P. Hall (Per); P. Kraft (Peter); P.D.P. Pharoah (Paul); D. Hunter (David); D.F. Easton (Douglas F.); W. Zheng (Wei)

    2016-01-01

    textabstractPurpose: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2

  1. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry

    NARCIS (Netherlands)

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K; Milne, Roger L; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G; Guénel, Pascal; Haiman, Christopher A; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jasmine, Farzana; John, Esther M; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J; Schmutzler, Rita K; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C; Swerdlow, Anthony J; Toland, Amanda E; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S; Winqvist, Robert; Pilar Zamora, M; Zhao, Hui; Dunning, Alison M; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F; Zheng, Wei

    2016-01-01

    PURPOSE: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. METHODS: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibi

  2. Genomic profiling of breast cancer.

    Science.gov (United States)

    Pandey, Anjita; Singh, Alok Kumar; Maurya, Sanjeev Kumar; Rai, Rajani; Tewari, Mallika; Kumar, Mohan; Shukla, Hari S

    2009-05-01

    Genome study provides significant changes in the advancement of molecular diagnosis and treatment in Breast cancer. Several recent critical advances and high-throughput techniques identified the genomic trouble and dramatically accelerated the pace of research in preventing and curing this malignancy. Tumor-suppressor genes, proto-oncogenes, DNA-repair genes, carcinogen-metabolism genes are critically involved in progression of breast cancer. We reviewed imperative finding in breast genetics, ongoing work to segregate further susceptible genes, and preliminary studies on molecular profiling.

  3. Breast cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000911.htm Breast cancer staging To use the sharing features on this ... Once your health care team knows you have breast cancer , they will do more tests to stage it. ...

  4. Breast Cancer Early Detection and Diagnosis

    Science.gov (United States)

    ... En Español Category Cancer A-Z Breast Cancer Breast Cancer Early Detection and Diagnosis Breast cancer is sometimes ... cancer screening is so important. Learn more. Can Breast Cancer Be Found Early? Breast cancer is sometimes found ...

  5. Breast Cancer and Infertility

    OpenAIRE

    2015-01-01

    Breast cancer is the most common malignancy among women and may accompany infertility. The relationship between infertility treatment and breast cancer has not yet been proven. However, estrogen exposure is well known to cause breast cancer. Recent advances in treatment options have provided young patients with breast cancer a chance of being mother [Archives Medical Review Journal 2015; 24(3.000): 317-323

  6. Breast Cancer (For Kids)

    Science.gov (United States)

    ... With Breast Cancer Breast Cancer Prevention en español Cáncer de mama You may have heard about special events, like walks or races, to raise money for breast cancer research. Or maybe you've seen people wear ...

  7. Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    Science.gov (United States)

    Lunetta, Kathryn L.; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K.; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D.; Elks, Cathy E.; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A.; Franke, Lude L.; Huffman, Jennifer E.; Keller, Margaux F.; McArdle, Patrick F.; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Smith, Jennifer A.; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V.; Tanaka, Toshiko; Abecasis, Goncalo; Andrulis, Irene L.; Anton-Culver, Hoda; Antoniou, Antonis C.; Arndt, Volker; Arnold, Alice M.; Barbieri, Caterina; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J.; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J.; Chapman, J. Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J.; Coviello, Andrea D.; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Dörk, Thilo; dos-Santos-Silva, Isabel; Dunning, Alison M.; Eicher, John D.; Fasching, Peter A.; Faul, Jessica D.; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E.; García-Closas, Montserrat; Giles, Graham G.; Girotto, Giorgia G.; Goldberg, Mark S.; González-Neira, Anna; Goodarzi, Mark O.; Grove, Megan L.; Gudbjartsson, Daniel F.; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Henderson, Brian E.; Hocking, Lynne J.; Hofman, Albert; Homuth, Georg; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Huang, Jinyan; Humphreys, Keith; Hunter, David J.; Jakubowska, Anna; Jones, Samuel E.; Kabisch, Maria; Karasik, David; Knight, Julia A.; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian’an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G.; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Ben M.; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B.; Nordestgaard, Børge G.; Olson, Janet E.; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D.P.; Pirastu, Nicola N.; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M.; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J.; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F.; Sanna, Serena; Sawyer, Elinor J.; Schlessinger, David; Schmidt, Marjanka K.; Schmidt, Frank; Schmutzler, Rita K.; Schoemaker, Minouk J.; Scott, Robert A.; Seynaeve, Caroline M.; Simard, Jacques; Sorice, Rossella; Southey, Melissa C.; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D.; Thorsteinsdottir, Unnur; Toland, Amanda E.; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T.; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F.; Winqvist, Robert; Wolffenbuttel, Bruce B.H.R.; Wright, Alan F.; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I.; Buring, Julie E.; Ferrucci, Luigi; Montgomery, Grant W.; Gudnason, Vilmundur; Spector, Tim D.; van Duijn, Cornelia M; Alizadeh, Behrooz Z.; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F.; Gasparini, Paolo P.; Gieger, Christian; Harris, Tamara B.; Hayward, Caroline; Kardia, Sharon L.R.; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C.; Reiner, Alex P.; Ridker, Paul M.; Rotter, Jerome I.; Toniolo, Daniela; Uitterlinden, André G.; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J.; Weir, David R.; Yerges-Armstrong, Laura M.; Price, Alkes L.; Stefansson, Kari; Visser, Jenny A.; Ong, Ken K.; Chang-Claude, Jenny; Murabito, Joanne M.; Perry, John R.B.; Murray, Anna

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ~70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two harbouring additional rare missense alleles of large effect. We found enrichment of signals in/near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses revealed a major association with DNA damage-response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomisation analyses supported a causal effect of later ANM on breast cancer risk (~6% risk increase per-year, P=3×10−14), likely mediated by prolonged sex hormone exposure, rather than DDR mechanisms. PMID:26414677

  8. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors.

    Science.gov (United States)

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse; Knight, Julia A; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dunning, Alison M; Shah, Mitul; Munday, Hannah R; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S; Olson, Janet; Vachon, Celine M; Hallberg, Emily; Castelao, J Esteban; Carracedo, Angel; Torres, Maria; Li, Jingmei; Humphreys, Keith; Cordina-Duverger, Emilie; Menegaux, Florence; Flyger, Henrik; Nordestgaard, Børge G; Nielsen, Sune F; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Engelhardt, Ellen G; Broeks, Annegien; Rutgers, Emiel J; Glendon, Gord; Mulligan, Anna Marie; Cross, Simon; Reed, Malcolm; Gonzalez-Neira, Anna; Arias Perez, José Ignacio; Provenzano, Elena; Apicella, Carmel; Southey, Melissa C; Spurdle, Amanda; Häberle, Lothar; Beckmann, Matthias W; Ekici, Arif B; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; McLean, Catriona; Baglietto, Laura; Chanock, Stephen J; Lissowska, Jolanta; Sherman, Mark E; Brüning, Thomas; Hamann, Ute; Ko, Yon-Dschun; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M; Mannermaa, Arto; Swerdlow, Anthony; Giles, Graham G; Brenner, Hermann; Fasching, Peter A; Chenevix-Trench, Georgia; Hopper, John; Benítez, Javier; Cox, Angela; Andrulis, Irene L; Lambrechts, Diether; Gago-Dominguez, Manuela; Couch, Fergus; Czene, Kamila; Bojesen, Stig E; Easton, Doug F; Schmidt, Marjanka K; Guénel, Pascal; Hall, Per; Pharoah, Paul D P; Garcia-Closas, Montserrat; Chang-Claude, Jenny

    2015-03-15

    A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint ) factors and the observed potential interactions require confirmation in independent studies.

  9. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.

    Science.gov (United States)

    Day, Felix R; Ruth, Katherine S; Thompson, Deborah J; Lunetta, Kathryn L; Pervjakova, Natalia; Chasman, Daniel I; Stolk, Lisette; Finucane, Hilary K; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D; Elks, Cathy E; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A; Franke, Lude L; Huffman, Jennifer E; Keller, Margaux F; McArdle, Patrick F; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M; Schick, Ursula M; Smith, Jennifer A; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V; Tanaka, Toshiko; Abecasis, Gonçalo R; Andrulis, Irene L; Anton-Culver, Hoda; Antoniou, Antonis C; Arndt, Volker; Arnold, Alice M; Barbieri, Caterina; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J; Chapman, J Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J; Coviello, Andrea D; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M; Eicher, John D; Fasching, Peter A; Faul, Jessica D; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E; García-Closas, Montserrat; Giles, Graham G; Girotto, Giorgia G; Goldberg, Mark S; González-Neira, Anna; Goodarzi, Mark O; Grove, Megan L; Gudbjartsson, Daniel F; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A; Hall, Per; Hamann, Ute; Henderson, Brian E; Hocking, Lynne J; Hofman, Albert; Homuth, Georg; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Huang, Jinyan; Humphreys, Keith; Hunter, David J; Jakubowska, Anna; Jones, Samuel E; Kabisch, Maria; Karasik, David; Knight, Julia A; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian'an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Benjamin M; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B; Nordestgaard, Børge G; Olson, Janet E; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D P; Pirastu, Nicola N; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F; Sanna, Serena; Sawyer, Elinor J; Schlessinger, David; Schmidt, Marjanka K; Schmidt, Frank; Schmutzler, Rita K; Schoemaker, Minouk J; Scott, Robert A; Seynaeve, Caroline M; Simard, Jacques; Sorice, Rossella; Southey, Melissa C; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D; Thorsteinsdottir, Unnur; Toland, Amanda E; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F; Winqvist, Robert; Wolffenbuttel, Bruce B H R; Wright, Alan F; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I; Buring, Julie E; Ferrucci, Luigi; Montgomery, Grant W; Gudnason, Vilmundur; Spector, Tim D; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F; Gasparini, Paolo P; Gieger, Christian; Harris, Tamara B; Hayward, Caroline; Kardia, Sharon L R; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C; Reiner, Alex P; Ridker, Paul M; Rotter, Jerome I; Toniolo, Daniela; Uitterlinden, André G; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J; Weir, David R; Yerges-Armstrong, Laura M; Price, Alkes L; Stefansson, Kari; Visser, Jenny A; Ong, Ken K; Chang-Claude, Jenny; Murabito, Joanne M; Perry, John R B; Murray, Anna

    2015-11-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

  10. Occupational exposure and risk of breast cancer.

    Science.gov (United States)

    Fenga, Concettina

    2016-03-01

    Breast cancer is a multifactorial disease and the most commonly diagnosed cancer in women. Traditional risk factors for breast cancer include reproductive status, genetic mutations, family history and lifestyle. However, increasing evidence has identified an association between breast cancer and occupational factors, including environmental stimuli. Epidemiological and experimental studies demonstrated that ionizing and non-ionizing radiation exposure, night-shift work, pesticides, polycyclic aromatic hydrocarbons and metals are defined environmental factors for breast cancer, particularly at young ages. However, the mechanisms by which occupational factors can promote breast cancer initiation and progression remains to be elucidated. Furthermore, the evaluation of occupational factors for breast cancer, particularly in the workplace, also remains to be explained. The present review summarizes the occupational risk factors and the associated mechanisms involved in breast cancer development, in order to highlight new environmental exposures that could be correlated to breast cancer and to provide new insights for breast cancer prevention in the occupational settings. Furthermore, this review suggests that there is a requirement to include, through multidisciplinary approaches, different occupational exposure risks among those associated with breast cancer development. Finally, the design of new epigenetic biomarkers may be useful to identify the workers that are more susceptible to develop breast cancer.

  11. Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor-Positive, Lower Grade Breast Cancer

    DEFF Research Database (Denmark)

    Milne, Roger L; Goode, Ellen L; García-Closas, Montserrat

    2011-01-01

    and histopathology were assessed using logistic regression. RESULTS: For white Europeans, the per-allele OR associated with 5p12-rs10941679 was 1.11 (95% CI = 1.08-1.14, P = 7 × 10(-18)) for invasive breast cancer and 1.10 (95% CI = 1.01-1.21, P = 0.03) for DCIS. For Asian women, the estimated OR for invasive...

  12. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    OpenAIRE

    Day, Felix R.; Ruth, Katherine S.; Deborah J Thompson; Kathryn L Lunetta; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Andrew D Johnson; Elks, Cathy E; Franceschini, Nora; He, Chunyan

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ~70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in...

  13. Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    OpenAIRE

    Day, Felix R.; Ruth, Katherine S.; Deborah J Thompson; Kathryn L Lunetta; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Andrew D Johnson; Elks, Cathy E; Franceschini, Nora; He, Chunyan

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ~70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two harbouring additional rare missense alleles of large effect. We found enrichment of signals in/near genes involved in delayed p...

  14. Breast cancer epidemiology and risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, M. J. M.; Verbeek, A. L. M. [Nijmegen, Univ. (Netherlands). Dept. of Epidemiology

    1997-09-01

    Breast cancer is the most common malignancy among women in the Western society. Over the past decades it has become apparent that breast cancer incidence rates are increasing steadily, whereas the mortality rates for breast cancer have remained relatively constant. Information through the media on this rising number of cases has increased breast health awareness but has also introduced anxiety in the female population. This combination of factors has made the need for prevention of breast cancer an urgent matter. Breast cancer does not seem to be a single disease entity. A specific etiologic factor may therefore have more influence on one form may therefore have more influence on one form of breast cancer than another. So far though, as shown in their summary of current knowledge on established and dubious risk factors, no risk factors have been identified that can explain a major part of the incidence. Efforts to identify other ways for primary prevention have also been discouraging, even though breast cancer is one of the most investigated tumours world-wide. Thus, at this point i time, the most important strategy to reduce breast cancer mortality is early detection through individual counselling and organised breast screening programs. The recent isolation of breast cancer susceptibility genes may introduce new ways to reduce the risk of breast cancer in a small subset of women.

  15. Breast Cancer Rates by State

    Science.gov (United States)

    ... Associated Lung Ovarian Prostate Skin Uterine Cancer Home Breast Cancer Rates by State Language: English Español (Spanish) Recommend ... from breast cancer each year. Rates of Getting Breast Cancer by State The number of people who get ...

  16. 6 Common Cancers - Breast Cancer

    Science.gov (United States)

    ... have revolutionized breast cancer treatment: tamoxifen (Nolvadex) and trastuzumab (Herceptin). Bernard Fisher, M.D., of the University of ... breast tumors. Dr. Slamon and his colleagues developed trastuzumab (Herceptin). Trastuzumab, a monoclonal antibody, was the first ...

  17. Do We Know What Causes Breast Cancer?

    Science.gov (United States)

    ... Research? Breast Cancer About Breast Cancer How Does Breast Cancer Form? Changes or mutations in DNA can cause ... requests, please contact permissionrequest@cancer.org . More In Breast Cancer About Breast Cancer Risk and Prevention Early Detection ...

  18. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349...

  19. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus.

    Science.gov (United States)

    Lawrenson, Kate; Kar, Siddhartha; McCue, Karen; Kuchenbaeker, Karoline; Michailidou, Kyriaki; Tyrer, Jonathan; Beesley, Jonathan; Ramus, Susan J; Li, Qiyuan; Delgado, Melissa K; Lee, Janet M; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Bandera, Elisa V; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Matthias W; Benitez, Javier; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Blomqvist, Carl; Blot, William; Bogdanova, Natalia; Bojesen, Anders; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Bruinsma, Fiona; Brunet, Joan; Buhari, Shaik Ahmad; Burwinkel, Barbara; Butzow, Ralf; Buys, Saundra S; Cai, Qiuyin; Caldes, Trinidad; Campbell, Ian; Canniotto, Rikki; Chang-Claude, Jenny; Chiquette, Jocelyne; Choi, Ji-Yeob; Claes, Kathleen B M; Cook, Linda S; Cox, Angela; Cramer, Daniel W; Cross, Simon S; Cybulski, Cezary; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Dansonka-Mieszkowska, Agnieszka; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Diez, Orland; Doherty, Jennifer A; Domchek, Susan M; Dorfling, Cecilia M; Dörk, Thilo; Dumont, Martine; Ehrencrona, Hans; Ejlertsen, Bent; Ellis, Steve; Engel, Christoph; Lee, Eunjung; Evans, D Gareth; Fasching, Peter A; Feliubadalo, Lidia; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Foretova, Lenka; Fostira, Florentia; Foulkes, William D; Fridley, Brooke L; Friedman, Eitan; Frost, Debra; Gambino, Gaetana; Ganz, Patricia A; Garber, Judy; García-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Ghoussaini, Maya; Giles, Graham G; Glasspool, Rosalind; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Goode, Ellen L; Goodman, Marc T; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Haiman, Christopher A; Hall, Per; Hallberg, Emily; Hamann, Ute; Hansen, Thomas V O; Harrington, Patricia A; Hartman, Mikael; Hassan, Norhashimah; Healey, Sue; Heitz, Florian; Herzog, Josef; Høgdall, Estrid; Høgdall, Claus K; Hogervorst, Frans B L; Hollestelle, Antoinette; Hopper, John L; Hulick, Peter J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Ito, Hidemi; Jakubowska, Anna; Janavicius, Ramunas; Jensen, Allan; John, Esther M; Johnson, Nichola; Kabisch, Maria; Kang, Daehee; Kapuscinski, Miroslav; Karlan, Beth Y; Khan, Sofia; Kiemeney, Lambertus A; Kjaer, Susanne Kruger; Knight, Julia A; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kupryjanczyk, Jolanta; Kwong, Ava; de la Hoya, Miguel; Laitman, Yael; Lambrechts, Diether; Le, Nhu; De Leeneer, Kim; Lester, Jenny; Levine, Douglas A; Li, Jingmei; Lindblom, Annika; Long, Jirong; Lophatananon, Artitaya; Loud, Jennifer T; Lu, Karen; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Le Marchand, Loic; Margolin, Sara; Marme, Frederik; Massuger, Leon F A G; Matsuo, Keitaro; Mazoyer, Sylvie; McGuffog, Lesley; McLean, Catriona; McNeish, Iain; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R; Milne, Roger L; Montagna, Marco; Moysich, Kirsten B; Muir, Kenneth; Mulligan, Anna Marie; Nathanson, Katherine L; Ness, Roberta B; Neuhausen, Susan L; Nevanlinna, Heli; Nord, Silje; Nussbaum, Robert L; Odunsi, Kunle; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Olswold, Curtis; O'Malley, David; Orlow, Irene; Orr, Nick; Osorio, Ana; Park, Sue Kyung; Pearce, Celeste L; Pejovic, Tanja; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M; Poole, Elizabeth M; Pylkäs, Katri; Radice, Paolo; Rantala, Johanna; Rashid, Muhammad Usman; Rennert, Gad; Rhenius, Valerie; Rhiem, Kerstin; Risch, Harvey A; Rodriguez, Gus; Rossing, Mary Anne; Rudolph, Anja; Salvesen, Helga B; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schildkraut, Joellen M; Schmidt, Marjanka K; Schmutzler, Rita K; Sellers, Thomas A; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shu, Xiao-Ou; Sieh, Weiva; Singer, Christian F; Sinilnikova, Olga M; Slager, Susan; Song, Honglin; Soucy, Penny; Southey, Melissa C; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Sutter, Christian; Swerdlow, Anthony; Tchatchou, Sandrine; Teixeira, Manuel R; Teo, Soo H; Terry, Kathryn L; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; Toland, Amanda Ewart; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Tseng, Chiu-Chen; Tung, Nadine; Tworoger, Shelley S; Vachon, Celine; van den Ouweland, Ans M W; van Doorn, Helena C; van Rensburg, Elizabeth J; Van't Veer, Laura J; Vanderstichele, Adriaan; Vergote, Ignace; Vijai, Joseph; Wang, Qin; Wang-Gohrke, Shan; Weitzel, Jeffrey N; Wentzensen, Nicolas; Whittemore, Alice S; Wildiers, Hans; Winqvist, Robert; Wu, Anna H; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Khanna, Kum Kum; Simard, Jacques; Monteiro, Alvaro N; French, Juliet D; Couch, Fergus J; Freedman, Matthew L; Easton, Douglas F; Dunning, Alison M; Pharoah, Paul D; Edwards, Stacey L; Chenevix-Trench, Georgia; Antoniou, Antonis C; Gayther, Simon A

    2016-09-07

    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.

  20. Breast Cancer in Men

    Science.gov (United States)

    ... Older age • B RCA2 gene mutation • F amily history of breast cancer • Gynecomastia (enlargement of the breast tissue) • Klinefelter’s syndrome (a genetic condition related to high levels ...

  1. Association of Single Nucleotide Polymorphisms in CYP1B1 and COMT Genes with Breast Cancer Susceptibility in Indian Women

    OpenAIRE

    Sharawan Yadav; Naveen Kumar Singhal; Virendra Singh; Neeraj Rastogi; Pramod Kumar Srivastava; Mahendra Pratap Singh

    2009-01-01

    Cytochrome P450 1B1 (CYP1B1) and catechol-$O$-methyltransferase (COMT) enzymes play critical roles in estrogen metabolism. Alterations in the catalytic activity of CYP1B1 and COMT enzymes have been found associated with altered breast cancer risk in postmenopausal women in many populations. The substitution of leucine (Leu) to valine (Val) at codon 432 increases the catalytic activity of CYP1B1, however, substitution of Val to methionine (Met) at codon 158 decreases the catalytic activity of ...

  2. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  3. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  4. Associations of Genetic Variants at Nongenic Susceptibility Loci with Breast Cancer Risk and Heterogeneity by Tumor Subtype in Southern Han Chinese Women

    Directory of Open Access Journals (Sweden)

    Huiying Liang

    2016-01-01

    Full Text Available Current understanding of cancer genomes is mainly “gene centric.” However, GWAS have identified some nongenic breast cancer susceptibility loci. Validation studies showed inconsistent results among different populations. To further explore this inconsistency and to investigate associations by intrinsic subtype (Luminal-A, Luminal-B, ER−&PR−&HER2+, and triple negative among Southern Han Chinese women, we genotyped five nongenic polymorphisms (2q35: rs13387042, 5p12: rs981782 and rs4415084, and 8q24: rs1562430 and rs13281615 using MassARRAY IPLEX platform in 609 patients and 882 controls. Significant associations with breast cancer were observed for rs13387042 and rs4415084 with OR (95% CI per-allele 1.29 (1.00–1.66 and 0.83 (0.71–0.97, respectively. In subtype specific analysis, rs13387042 (per-allele adjusted OR = 1.36, 95% CI = 1.00–1.87 and rs4415084 (per-allele adjusted OR = 0.82, 95% CI = 0.66–1.00 showed slightly significant association with Luminal-A subtype; however, only rs13387042 was associated with ER−&PR−&HER2+ tumors (per-allele adjusted OR = 1.55, 95% CI = 1.00–2.40, and none of them were linked to Luminal-B and triple negative subtype. Collectively, nongenic SNPs were heterogeneous according to the intrinsic subtype. Further studies with larger datasets along with intrinsic subtype categorization should explore and confirm the role of these variants in increasing breast cancer risk.

  5. CHEK2*1100delC and susceptibility to breast cancer : A collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies

    NARCIS (Netherlands)

    Easton, D; McGuffog, L; Thompson, D; Dunning, A; Tee, L; Baynes, C; Healey, C; Pharoah, P; Ponder, B; Seal, S; Barfoot, R; Sodha, N; Eeles, R; Stratton, M; Rahman, N; Peto, J; Spurdle, AB; Chen, XQ; Chenevix-Trench, G; Hopper, JL; Giles, GG; McCredie, MRE; Syrjakoski, K; Holli, K; Kallioniemi, O; Eerola, H; Vahteristo, P; Blomqvist, C; Nevanlinna, H; Kataja, Vesa; Mannermaa, A; Dork, T; Bremer, M; Devilee, P; de Bock, GH; Krol-Warmerdam, EMM; Kroese-Jansema, K; Wijers-Koster, P; Cornelisse, CJ; Tollenaar, RAEM; Meijers-Heijboer, H; Berns, E; Nagel, J; Foekens, J; Klijn, JGM; Schutte, M

    2004-01-01

    Previous studies of families with multiple cases of breast cancer have indicated that a frameshift alteration in the CHEK2 gene, 1100delC, is associated with an elevated frequency of breast cancer in such families, but the risk associated with the variant in other situations is uncertain. To evaluat

  6. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium

    DEFF Research Database (Denmark)

    Milne, Roger L; Herranz, Jesús; Michailidou, Kyriaki

    2014-01-01

    Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibil...

  7. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Kar, Siddhartha; McCue, Karen

    2016-01-01

    BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P...A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative...

  8. INHIBITION OF SPONTANEOUS APOPTOSIS IN HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    邵志敏; 江明; 吴炅; 余黎民; 韩企夏; 张延璆; 沈镇宙

    1996-01-01

    Breast tumorigenesis proceeds through an accumulation of specific genetic alteration. Breast malignant transformation is dependent on not only the rate of cell production but also on apoptcsis,a genetically prograined process of autonomous ceil death. We investigated whether breast tumorigenesis involved an altered susceptibility to apoptosis and proliferation by examining normal breast epithelium and breast cancer sampies. We found there is a great inhibition of spontaneous apoptosis in breast cancer ceils compared with normal breast epithelium. The inhibition of apoptosis in breast cancer may contribute to neoplastic transformation.

  9. Missense Variants in ATM in 26,101 Breast Cancer Cases and 29,842 Controls

    DEFF Research Database (Denmark)

    Fletcher, O.; Johnson, N.; Silva, Andreá Lema Da;

    2010-01-01

    of breast cancer, explaining an estimated 0.03% of the excess familial risk of breast cancer. Impact: Testing the combined effects of rare missense variants in known breast cancer genes in large collaborative studies should clarify their overall contribution to breast cancer susceptibility. Cancer Epidemiol...

  10. Polymorphisms in CYP1B1, GSTM1, GSTT1 and GSTP1, and susceptibility to breast cancer.

    Science.gov (United States)

    Van Emburgh, Beth O; Hu, Jennifer J; Levine, Edward A; Mosley, Libyadda J; Perrier, Nancy D; Freimanis, Rita I; Allen, Glenn O; Rubin, Peter; Sherrill, Gary B; Shaw, Cindy S; Carey, Lisa A; Sawyer, Lynda R; Miller, Mark Steven

    2008-05-01

    Polymorphisms in the cytochrome P450 1B1 (CYP1B1) and glutathione S-transferase (GST) drug metabolic enzymes, which are responsible for metabolic activation/detoxification of estrogen and environmental carcinogens, were analyzed for their association with breast cancer risk in 541 cases and 635 controls from a North Carolina population. Each polymorphism, altering the catalytic function of their respective enzymes, was analyzed in Caucasian and African-American women. As reported in previous studies, individual polymorphisms did not significantly impact breast cancer risk in either Caucasian or African-American women. However, African-American women exhibited a trend towards a protective effect when they had at least one CYP1B1 119S allele (OR=0.53; 95% CI=0.20-1.40) and increased risk for those women harboring at least one CYP1B1 432V allele (OR=5.52; 95% CI=0.50-61.37). Stratified analyses demonstrated significant interactions in younger (age CYP1B1 119SS genotype (OR=3.09; 95% CI=1.22-7.84) and younger African-American women with the GSTT1 null genotype (OR=4.07; 95% CI=1.12-14.80). A notable trend was also found in Caucasian women with a history of smoking and at least one valine allele at GSTP1 114 (OR=2.12; 95% CI=1.02-4.41). In Caucasian women, the combined GSTP1 105IV/VV and CYP1B1 119AA genotypes resulted in a near 2-fold increase in risk (OR=1.96; 95% CI=1.04-3.72) and the three way combination of GSTP1 105IV/VV, CYP1B1 119AS/SS and GSTT1 null genotypes resulted in an almost 4-fold increase in risk (OR=3.97; 95% CI=1.27-12.40). These results suggest the importance of estrogen/carcinogen metabolic enzymes in the etiology of breast cancer, especially in women before the age of 60, as well as preventative measures such as smoking cessation.

  11. Breast cancer statistics, 2011.

    Science.gov (United States)

    DeSantis, Carol; Siegel, Rebecca; Bandi, Priti; Jemal, Ahmedin

    2011-01-01

    In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including trends in incidence, mortality, survival, and screening. Approximately 230,480 new cases of invasive breast cancer and 39,520 breast cancer deaths are expected to occur among US women in 2011. Breast cancer incidence rates were stable among all racial/ethnic groups from 2004 to 2008. Breast cancer death rates have been declining since the early 1990s for all women except American Indians/Alaska Natives, among whom rates have remained stable. Disparities in breast cancer death rates are evident by state, socioeconomic status, and race/ethnicity. While significant declines in mortality rates were observed for 36 states and the District of Columbia over the past 10 years, rates for 14 states remained level. Analyses by county-level poverty rates showed that the decrease in mortality rates began later and was slower among women residing in poor areas. As a result, the highest breast cancer death rates shifted from the affluent areas to the poor areas in the early 1990s. Screening rates continue to be lower in poor women compared with non-poor women, despite much progress in increasing mammography utilization. In 2008, 51.4% of poor women had undergone a screening mammogram in the past 2 years compared with 72.8% of non-poor women. Encouraging patients aged 40 years and older to have annual mammography and a clinical breast examination is the single most important step that clinicians can take to reduce suffering and death from breast cancer. Clinicians should also ensure that patients at high risk of breast cancer are identified and offered appropriate screening and follow-up. Continued progress in the control of breast cancer will require sustained and increased efforts to provide high-quality screening, diagnosis, and treatment to all segments of the population.

  12. Normal breast physiology: the reasons hormonal contraceptives and induced abortion increase breast-cancer risk.

    Science.gov (United States)

    Lanfranchi, Angela

    2014-01-01

    A woman gains protection from breast cancer by completing a full-term pregnancy. In utero, her offspring produce hormones that mature 85 percent of the mother's breast tissue into cancer-resistant breast tissue. If the pregnancy ends through an induced abortion or a premature birth before thirty-two weeks, the mother's breasts will have only partially matured, retaining even more cancer-susceptible breast tissue than when the pregnancy began. This increased amount of immature breast tissue will leave the mother with more sites for cancer initiation, thereby increasing her risk of breast cancer. Hormonal contraceptives increase breast-cancer risk by their proliferative effect on breast tissue and their direct carcinogenic effects on DNA. Hormonal contraceptives include estrogen-progestin combination drugs prescribed in any manner of delivery: orally, transdermally, vaginally, or intrauterine. This article provides the detailed physiology and data that elucidate the mechanisms through which induced abortion and hormonal contraceptives increase breast-cancer risk.

  13. Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation

    NARCIS (Netherlands)

    M. Ghoussaini (Maya); J.D. French (Juliet); K. Michailidou (Kyriaki); S. Nord (Silje); J. Beesley (Jonathan); Canisus, S. (Sander); K.M. Hillman (Kristine); S. Kaufmann (Susanne); H. Sivakumaran (Haran); Moradi Marjaneh, M. (Mahdi); J.S. Lee (Jason S); J. Dennis (Joe); M.K. Bolla (Manjeet K.); Wang, Q. (Qin); E. Dicks (Ed); R.L. Milne (Roger); Hopper, J.L. (John L.); Southey, M.C. (Melissa C.); M.K. Schmidt (Marjanka); A. Broeks (Annegien); K.R. Muir (K.); A. Lophatananon (Artitaya); P.A. Fasching (Peter); M.W. Beckmann (Matthias); O. Fletcher (Olivia); Johnson, N. (Nichola); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); B. Burwinkel (Barbara); Marme, F. (Frederik); P. Guénel (Pascal); T. Truong (Thérèse); S.E. Bojesen (Stig); H. Flyger (Henrik); J. Benítez (Javier); A. González-Neira (Anna); M.R. Alonso (M Rosario); G. Pita (G.); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); H. Brenner (Hermann); Arndt, V. (Volker); A. Meindl (Alfons); R.K. Schmutzler (Rita); H. Brauch (Hiltrud); U. Hamann (Ute); D.C. Tessier (Daniel C.); D. Vincent (Daniel); H. Nevanlinna (Heli); S. Khan (Sofia); Matsuo, K. (Keitaro); H. Ito (Hidemi); T. Dörk (Thilo); N.V. Bogdanova (Natalia); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V-M. Kosma (Veli-Matti); A.H. Wu (Anna); D. Van Den Berg (David); Lambrechts, D. (Diether); O.A.M. Floris; J. Chang-Claude (Jenny); Rudolph, A. (Anja); P. Radice (Paolo); M. Barile (Monica); F.J. Couch (Fergus); Hallberg, E. (Emily); Giles, G.G. (Graham G.); C.A. Haiman (Christopher A.); L. Le Marchand (Loic); M.S. Goldberg (Mark); S.-H. Teo; C.H. Yip (Cheng Har); A.-L. Borresen-Dale (Anne-Lise); W. Zheng (Wei); Q. Cai (Qiuyin); R. Winqvist (Robert); K. Pykäs (Katri); I.L. Andrulis (Irene); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); P. Hall (Per); K. Czene (Kamila); J.S. Brand (Judith S.); H. Darabi (Hatef); M. Eriksson (Mats); M.J. Hooning (Maartje); Koppert, L.B. (Linetta B.); J. Li (Jingmei); X.-O. Shu (Xiao-Ou); Y. Zheng (Ying); A. Cox (Angela); S.S. Cross (Simon); Shah, M. (Mitul); V. Rhenius (Valerie); Choi, J.-Y. (Ji-Yeob); D. Kang (Daehee); J.M. Hartman (Joost); Chia, K.S. (Kee Seng); M. Kabisch (Maria); D. Torres (Diana); C. Luccarini (Craig); D. Conroy (Don); A. Jakubowska (Anna); J. Lubinski (Jan); Sangrajrang, S. (Suleeporn); P. Brennan (Paul); C. Olswold (Curtis); S. Slager (Susan); C.-Y. Shen (Chen-Yang); M.-F. Hou (Ming-Feng); A.J. Swerdlow (Anthony ); M. Schoemaker (Minouk); J. Simard (Jacques); P.D.P. Pharoah (Paul); V. Kristensen (Vessela); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas F.); A.M. Dunning (Alison); S.L. Edwards (Stacey)

    2016-01-01

    textabstractGenome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (

  14. Breast cancer

    Science.gov (United States)

    ... women: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med . 2014;160:271-281. PMID: 24366376 www.ncbi. ... Cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med . [Epub ahead of print 12 January 2016] doi: ...

  15. BREAST CANCER AND EXERCISE

    Science.gov (United States)

    2008-03-19

    Prevent Osteoporosis and Osteoporotic Fractures; Improve Quality of Life; Improve Weight Control, and Muscular and Cardiovascular Fitness; Help the Patients to Return to Working Life; Reduce the Risk of Breast Cancer Recurrence; Prevent Other Diseases and Reduce All-Cause Mortality in Patients With Primary Breast Cancer.

  16. CDC Vital Signs: Breast Cancer

    Science.gov (United States)

    ... 2.65 MB] Read the MMWR Science Clips Breast Cancer Black Women Have Higher Death Rates from Breast ... of Page U.S. State Info Number of Additional Breast Cancer Deaths Among Black Women, By State SOURCE: National ...

  17. Breast Cancer and Bone Loss

    Science.gov (United States)

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  18. DNA methyltransferase 1/3a overexpression in sporadic breast cancer is associated with reduced expression of estrogen receptor-alpha/breast cancer susceptibility gene 1 and poor prognosis.

    Science.gov (United States)

    Yu, Zhaojin; Xiao, Qinghuan; Zhao, Lin; Ren, Jie; Bai, Xuefeng; Sun, Mingli; Wu, Huizhe; Liu, Xiaojian; Song, Zhiguo; Yan, Yuanyuan; Mi, Xiaoyi; Wang, Enhua; Jin, Feng; Wei, Minjie

    2015-09-01

    DNA methyltransferases (DNMTs), including DNMT1, 3a, and 3b, play an important role in the progression of many malignant tumors. However, it remains unclear whether expression of DNMTs is associated with the development of breast cancer. This study aimed to explore the clinical significance of DNMT proteins in sporadic breast cancer. We investigated the expression of DNMT1, 3a, and 3b in 256 breast cancer and 36 breast fibroadenoma, using immunohistochemistry. The expression of DNMT1 and 3a was significantly higher in breast cancer than in fibroadenoma. In breast cancer, the expression of DNMT1 was significantly correlated with lymph node metastasis (P = 0.020), and the expression of DNMT3a and 3b was significantly correlated with advanced clinical stages (P = 0.046 and 0.012, respectively). Overexpression of DNMT1/3a was correlated with promoter hypermethylation and reduced expression of ERα and BRCA1. The expression levels of DNMT1 or DNMT3a were associated with a significantly shorter DFS or OS in a subgroup of breast cancer patients (patients with the age ≤50 years old, ERα-negative status, or HER2-postive status). The expression of DNMT1 or a combined expression of DNMT1 and 3a was associated with poor prognosis in patients who received chemotherapy and endocrine therapy, but not in patients who received chemotherapy alone. These findings suggest that DNMT1 and 3a may be involved in the progression and prognosis of sporadic breast cancer.

  19. Association between breast and thyroid cancers

    Directory of Open Access Journals (Sweden)

    Lehrer S

    2014-02-01

    Full Text Available Steven Lehrer, Sheryl Green, John A Martignetti, Kenneth E Rosenzweig Departments of Radiation Oncology and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA Background: The risk of thyroid cancer is known to be slightly increased in women after treatment for breast cancer. In the current study, we analyzed the incidence of thyroid cancer and breast cancer in 50 US states and in the District of Columbia to ascertain how often these two diseases are associated. Methods: Data on the incidence of thyroid cancer were obtained from the Centers for Disease Control and Prevention and the National Cancer Institute and data on the incidence of breast cancer were from the American Cancer Society. Data on the average number of children per family with children and mean household income were sourced from the US Bureau of the Census and prevalence of obesity by state is determined from a paper published in 2010 on state-specific obesity prevalence among US adults by the Centers for Disease Control and Prevention. Results: There was a significant association between breast and thyroid cancer (P=0.002. Since the incidence of breast cancer increases with increasing income and obesity, while decreasing with parity, multiple linear regression was performed. Breast cancer incidence was significantly related to thyroid cancer incidence (β=0.271, P=0.039, inversely related to average number of children per family with children (β=-0.271, P=0.039, unrelated to adult obesity (β=0.134, P=0.369, and significantly related to family income (β=0.642, P<0.001. Conclusion: This study identifies an association between breast and thyroid cancer. The association suggests that unexplored breast-thyroid cancer susceptibility loci exist and warrant further study. Keywords: breast cancer, thyroid cancer, genetics, association

  20. Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; French, Juliet D; Michailidou, Kyriaki

    2016-01-01

    expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers......, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis....

  1. Breast Cancer in Young Women

    Science.gov (United States)

    ... NPCR 2017 CDC National Cancer Conference Stay Informed Breast Cancer in Young Women Recommend on Facebook Tweet Share Compartir Syndicate this page Marleah's family history of breast cancer was her motivation for pursuing a career where ...

  2. Breast Cancer In Women

    Science.gov (United States)

    This infographic shows the Breast Cancer Subtypes in Women. It’s important for guiding treatment and predicting survival. Know the Science: HR = Hormone receptor. HR+ means tumor cells have receptors for the hormones estrogen or progesterone, which can promote the growth of HR+ tumors. Hormone therapies like tamoxifen can be used to treat HR+ tumors. HER2 = Human epidermal growth Factor receptor, HER2+ means tumor cells overexpress (make high levels of) a protein, called HE2/neu, which has been shown to be associated with certain aggressive types of breast cancer. Trastuzumab and some other therapies can target cells that overexpress HER2. HR+/HER2, aka “LuminalA”. 73% of all breast cancer cases: best prognosis, most common subtype for every race, age, and poverty level. HR-/HER2, aka “Triple Negative”: 13% of all breast cancer cases, Worst prognosis, Non-Hispanic blacks have the highest rate of this subtype at every age and poverty level. HR+/HER2+, aka “Luminal B”, 10% of all breast cancer cases, little geographic variation by state. HR-/HER2+, aka”HER2-enriched”, 5% of all breast cancer cases, lowest rates for all races and ethnicities. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  3. Assessment of Breast Cancer Risk and Belief in Breast Cancer Screening Among the Primary Healthcare Nurses.

    Science.gov (United States)

    İz, Fatma Başalan; Tümer, Adile

    2016-09-01

    Breast cancer is the most frequently diagnosed cancer in women. Early detection of breast cancer is known to increase survival rates significantly after diagnosis. This research was carried out to determine the level of breast cancer risk among primary healthcare nurses and their belief in breast cancer screening. In this descriptive research, the data were collected in face-to-face interviews with the participants. The researchers contacted all primary healthcare nurses currently working in the province. The data collection tools included a questionnaire form on sociodemographic characteristics, breast cancer risk assessment form, and Champion's Health Belief Model Scale (CHBMS) for breast cancer screening. In data analysis, descriptive statistics, t test, and analysis of variance (ANOVA) were used. The mean age of nurses was 35 ± 3.6. The mean score for the breast cancer risk assessment form was calculated as 82.9 ± 18.7. The subscale scores for the CHBMS for breast cancer screening were as follows: susceptibility 7.3 ± 1.8, seriousness 19.5 ± 4.1, benefits of breast self-exam 15.5 ± 2.6, barriers to breast self-exam 15.1 ± 2.8, self-efficacy 40.3 ± 7.0, and motivation 19.5 ± 4.1. The risk of breast cancer was found to be low in the study group. The analysis of the subscale scores for the CHBMS for breast cancer screening revealed that nurses had a below-average susceptibility perception, a somewhat lower perception of seriousness, an above-average mean score for perceived benefits, a moderate barrier perception, a relatively high perceived self-efficacy, and motivation above average.

  4. Hormone receptors in breast cancer

    NARCIS (Netherlands)

    Suijkerbuijk, K. P M; van der Wall, E.; van Diest, P. J.

    2016-01-01

    Steroid hormone receptors are critical for the growth and development of breast tissue as well as of breast cancer. The importance of the role estrogens in breast cancer has been delineated for more than 100 years. The analysis of its expression has been used not only to classify breast cancers but

  5. Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia – breast cancer susceptibility (FA-BRCA) DNA damage response network

    Science.gov (United States)

    Abraham, Jessy; Balbo, Silvia; Crabb, David; Brooks, P.J.

    2011-01-01

    Background We recently reported that exposure of human cells in vitro to acetaldehyde resulted in activation of the Fanconi anemia-breast cancer associated (FA-BRCA) DNA damage response network. Methods To determine whether intracellular generation of acetaldehyde from ethanol metabolism can cause DNA damage and activate the FA-BRCA network, we engineered HeLa cells to metabolize alcohol by expression of human alcohol dehydrogenase 1B. Results Incubation of HeLa-ADH1B cells with ethanol (20 mM) resulted in acetaldehyde accumulation in the media which was prevented by co-incubation with 4-methyl pyrazole (4-MP), a specific inhibitor of ADH. Ethanol treatment of HeLa-ADH1B cells produced a 4-fold increase in the acetaldehyde-DNA adduct, N2-ethylidene-dGuo, and also resulted in activation of the Fanconi anemia -breast cancer susceptibility (FA-BRCA) DNA damage response network, as indicated by a monoubiquitination of FANCD2, and phosphorylation of BRCA1. Ser 1524 was identified as one site of BRCA1 phosphorylation. The increased levels of DNA adducts, FANCD2 monoubiquitination, and BRCA1 phosphorylation were all blocked by 4-MP, indicating that acetaldehyde, rather than ethanol itself, was responsible for all three responses. Importantly, the ethanol concentration we used is within the range that can be attained in the human body during social drinking. Conclusions Our results indicate that intracellular metabolism of ethanol to acetaldehyde results in DNA damage which activates the FA-BRCA DNA damage response network. PMID:21919919

  6. Association of 677 C>T (rs1801133 and 1298 A>C (rs1801131 polymorphisms in the MTHFR gene and breast cancer susceptibility: a meta-analysis based on 57 individual studies.

    Directory of Open Access Journals (Sweden)

    Kai Li

    Full Text Available OBJECTIVE: The 677 C>T and 1298 A>C polymorphisms of methylenetetrahydrofolate reductase (MTHFR gene have been widely reported and considered to have a significant effect on breast cancer risk, but the results are inconsistent. A meta-analysis based on 57 eligible studies was carried out to clarify the role of MTHFR gene polymorphisms in breast cancer. METHODS AND RESULTS: Eligible articles were identified by searching databases including PubMed, Web of Science, EMBASE, CNKI and CBM for the period up to August 2012. Finally, a total of 57 studies were included in this meta-analysis. Crude ORs with 95% CIs were used to assess the association between the MTHFR polymorphisms and breast cancer risk. The pooled ORs were performed with additive model, dominant model and recessive model, respectively. Subgroup analysis was also performed by ethnicity. The statistical heterogeneity across studies was examined with χ2-based Q-test. A meta-analysis was performed using the Stata 12.0 software. Overall, the 677 C allele was significantly associated with breast cancer risk (OR = 0.942, 95%CI = 0.898 to 0.988 when compared with the 677 T allele in the additive model, and the same results were also revealed under other genetic models. Simultaneously, the 1298 A allele was not associated with the breast cancer susceptibility when compared with the 1298 C allele (OR = 0.993, 95%CI = 0.978 to 1.009. Furthermore, analyses under the dominant, recessive and the allele contrast model yielded similar results. CONCLUSIONS: The results of this meta-analysis suggest that 677 C>T polymorphism in the MTHFR gene may contribute to breast cancer development. However, the 1298 A>C polymorphism is not significantly associated with increased risks of breast cancer.

  7. Preeclampsia and breast cancer

    DEFF Research Database (Denmark)

    Pacheco, Nadja Livia Pekkola; Andersen, Anne-Marie Nybo; Kamper-Jørgensen, Mads

    2015-01-01

    BACKGROUND: In parous women preeclampsia has been associated with reduced risk of developing breast cancer. Characteristics of births following preeclamptic pregnancies may help understand mechanisms involved in the breast cancer risk reduction inferred by preeclampsia. METHODS: We conducted...... a register-based cohort study of all Danish women giving birth during 1978-2010 (n = 778,701). The association between preeclampsia and breast cancer was evaluated overall and according to birth characteristics by means of incidence rate ratios (IRR) estimated in Poisson regression models. RESULTS: Compared...... with women with non-preeclamptic pregnancies only, women with one or more preeclamptic pregnancies were 19% significantly less likely to develop breast cancer (IRR = 0.81 [95% CI 0.72-0.93]). We found some indication of greater risk reduction in women with term births, one or more previous births...

  8. Inflammatory Breast Cancer

    Science.gov (United States)

    ... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... means they developed from cells that line the milk ducts of the breast and then spread beyond ...

  9. Recurrent Breast Cancer

    Science.gov (United States)

    ... that can help you cope with distress include: Art therapy Dance or movement therapy Exercise Meditation Music ... mayoclinic.org/diseases-conditions/recurrent-breast-cancer/basics/definition/CON-20032432 . Mayo Clinic Footer Legal Conditions and ...

  10. The breast cancer conundrum

    OpenAIRE

    2013-01-01

    For decades, rates of breast cancer have been going up faster in rich countries than in poor ones. Scientists are beginning to understand more about its causes but unanswered questions remain. Patrick Adams reports.

  11. Targeting Breast Cancer Metastasis

    OpenAIRE

    2015-01-01

    Metastasis is the leading cause of breast cancer-associated deaths. Despite the significant improvement in current therapies in extending patient life, 30–40% of patients may eventually suffer from distant relapse and succumb to the disease. Consequently, a deeper understanding of the metastasis biology is key to developing better treatment strategies and achieving long-lasting therapeutic efficacies against breast cancer. This review covers recent breakthroughs in the discovery of various me...

  12. Linkage analysis of 19 French breast cancer families, with five chromosome 17q markers.

    OpenAIRE

    Mazoyer, S; Lalle, P.; Narod, S. A.; Bignon, Y J; Courjal, F; Jamot, B.; Dutrillaux, B.; Stoppa-Lyonnett, D; Sobol, H

    1993-01-01

    Nineteen French breast and breast-ovarian cancer families were tested for linkage with five chromosome 17q markers. The five breast-ovarian cancer families as a group give positive evidence for linkage, whereas the 14 breast cancer-only families do not. Heterogeneity of linkage of breast and breast-ovarian cancers is significant in France and supports the existence of more than one susceptibility gene.

  13. Loss of heterozygosity in bilateral breast cancer.

    Science.gov (United States)

    Kollias, J; Man, S; Marafie, M; Carpenter, K; Pinder, S; Ellis, I O; Blamey, R W; Cross, G; Brook, J D

    2000-12-01

    Women who develop bilateral breast cancer at an early age are likely to harbour germline mutations in breast cancer susceptibility genes. The aim of this study was to test for concordant genetic changes in left and right breast cancer of young women (age < 50) with bilateral breast cancer that may suggest an inherited breast cancer predisposition. Microsatellite markers were used to test for loss of heterozygosity (LOH) in left and right tumours for 31 women with premenopausal bilateral breast cancer. Markers adjacent to or within candidate genes on 17p (p53), 17q (BRCA1), 13q (BRCA2), 11q (Ataxia Telangiectasia-ATM) and 3p (FHIT) were chosen. Mutational testing for BRCA1 and BRCA2 was performed for cases where blood was available. Concordant LOH in both left and right tumours was demonstrated for at least one of the markers tested in 16/31(54%) cases. Where allelic loss was demonstrated for both left and right breast cancer, the same allele was lost on each occasion. This may suggest a common mutational event. Four cases showed concordant loss of alleles in both left and right breast cancer at D17S791 (BRCA1). BRCA1 mutations were identified in two of these cases where blood was available. Four cases showed concordant LOH at D13S155 (BRCA2). Concordant LOH was further demonstrated in seven cases for D11S1778 (ATM) and four cases for D3S1300 (which maps to the FHIT gene), suggesting a possible role for these tumour suppressor genes in this subgroup of breast cancer patients. No concordant allelic loss was demonstrated for D17S786 suggesting that germline mutations in p53 are unlikely in such cases of bilateral breast cancer.

  14. Increasing Breast Cancer Surveillance Among African American Breast Cancer Survivors

    Science.gov (United States)

    2010-01-01

    Family history of breast cancer  specifically mother or sister diagnosed with breast cancer  Not the same as genetic risk for breast cancer...treatment. Table 5 presents sociodemographic variables for the first 20 SIS participants. The majority of participants were African American, unmarried

  15. Breast Cancer Basics and You

    Science.gov (United States)

    ... in both men and women, although male breast cancer is rare. The Breasts Inside a woman's breast are 15 to 20 sections called lobes. Each lobe contains many smaller sections called lobules. These are groups of tiny glands that make breast milk. Breast milk flows through thin tubes called ducts ...

  16. Relationship between mutation of BRCA1 and susceptibility to early onset of breast cancer%BRCAl基因突变与年轻患者乳腺癌发生的相关性分析

    Institute of Scientific and Technical Information of China (English)

    孟洁; 史玉荣; 牛瑞芳; 付丽

    2009-01-01

    目的 筛查年轻乳腺癌BRCAl基因的突变位点及SNP携带情况,探讨BRCAl基因突变与年轻乳腺癌发生的关系.方法 来自我院2004年1月-2006年8月收集的乳腺癌组织共30例,其中5例有至少1个一级亲属患乳腺癌,发病年龄≤35岁.由乳腺癌组织提取基因组DNA,对BRCAl基因第2、11C、11F、11L、11I、16、20外显子的编码序列进行PCR扩增.扩增产物进行DNA直接测序证实,利用DNA Star-MagAlign软件进行序列比较.结果 BRCAl基因中共发现14个序列变异,有3个移码突变(cDNA2639、2640delTA、3343delG及3398delT)和11个点突变(cDNA 2570 C>T、cDNA2620 A>T、1473A>G、1561C>T、1594G>A、2206A>G、2227T>C、2659C>A、2806T>C、3307A>G、3375G>A),其中3个乳腺癌家族史阳性.突变率为10%(3/30).第16及20外显子未发现突变.结论 BRCAl突变主要位于第11号外显子上,乳腺癌家族史阳性的年轻乳腺癌突变率高,3个移码突变可能与年轻乳腺癌发生相关.%Objective To detect the prevalence of Breast Cancer Susceptibility Gene 1 (BRCA1) mutations and single nucleotide polymorphism (SNP) among young patients with breast cancer and to study the relationship between BRCAI gene mutation and susceptibility to breast cancer. Methods 30 samples of breast cancer tissue were collected from female patients with breast cancer diagnosed when they were aged 35 5 of which had at least one first-degree relative affected with breast cancer. Genomic DNA was extracted from the breast cancer tissues. The PCR products were amplified in the coding sequence of exon 2, 11C, 11F, 11L, 11I, 16, and 20 by using polymerase chain reaction. Then the PCR products were analyzed using DNA direct sequencing. The sequence was compared with the DNA Star-MagAlign software. Results A total of 14 sequence variations in BRCA1 gene were identified, including 3 frameshift mutations (cDNA2639, 2640delTA, 3343 delG, and 3398delT) and 11 spot mutations (cDNA 2570 C > T , cDNA 2620 A

  17. Genetics Home Reference: breast cancer

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions breast cancer breast cancer Enable ...

  18. Inflammatory breast cancer: an overview

    NARCIS (Netherlands)

    Uden, D.J. van; Laarhoven, H.W.M. van; Westenberg, A.H.; Wilt, J.H. de; Blanken-Peeters, C.F.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most aggressive entity of breast cancer. Management involves coordination of multidisciplinary management and usually includes neoadjuvant chemotherapy, ablative surgery if a tumor-free resection margin is expected and locoregional radiotherapy. This multimoda

  19. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  20. Affluence and Breast Cancer.

    Science.gov (United States)

    Lehrer, Steven; Green, Sheryl; Rosenzweig, Kenneth E

    2016-09-01

    High income, high socioeconomic status, and affluence increase breast cancer incidence. Socioeconomic status in USA breast cancer studies has been assessed by block-group socioeconomic measures. A block group is a portion of a census tract with boundaries that segregate, as far as possible, socioeconomic groups. In this study, we used US Census income data instead of block groups to gauge socioeconomic status of breast cancer patients in relationship with incidence, prognostic markers, and survival. US state breast cancer incidence and mortality data are from the U.S. Cancer Statistics Working Group, United States Cancer Statistics: 1999-2011. Three-Year-Average Median Household Income by State, 2010 to 2012, is from the U.S. Census Bureau, Current Population Survey, 2011 to 2013 Annual Social and Economic Supplements. County incomes are from the 2005-2009 American Community Survey of the U.S. Census Bureau. The American Community Survey is an ongoing statistical survey that samples a small percentage of the population yearly. Its purpose is to provide communities the information they need to plan investments and services. Breast cancer county incidence and survival data are from the National Cancer Institute's Surveillance, Epidemiology and End Results Program (SEER) data base. We analyzed SEER data from 198 counties in California, Connecticut, Georgia, Hawaii, Iowa, New Mexico, Utah, and Washington. SEER uses the Collaborative Stage (CS) Data Collection System. We have retained the SEER CS variables. There was a significant relationship of income with breast cancer incidence in 50 USA states and the District of Columbia in White women (r = 0.623, p breast cancer. Income was not correlated with 5-year survival of Black race (p = 0.364) or other races (p = 0.624). The multivariate general linear model with income as covariate, 5-year survival by race as a dependent variable, showed a significant effect of income and White race on 5-year survival (p breast cancer

  1. Hereditary breast cancer

    DEFF Research Database (Denmark)

    Larsen, Martin J; Thomassen, Mads; Gerdes, Anne-Marie

    2014-01-01

    Pathogenic mutations in BRCA1 or BRCA2 are only detected in 25% of families with a strong history of breast cancer, though hereditary factors are expected to be involved in the remaining families with no recognized mutation. Molecular characterization is expected to provide new insight...... into the tumor biology to guide the search of new high-risk alleles and provide better classification of the growing number of BRCA1/2 variants of unknown significance (VUS). In this review, we provide an overview of hereditary breast cancer, its genetic background, and clinical implications, before focusing...... on the pathologically and molecular features associated with the disease. Recent transcriptome and genome profiling studies of tumor series from BRCA1/2 mutation carriers as well as familial non-BRCA1/2 will be discussed. Special attention is paid to its association with molecular breast cancer subtypes as well...

  2. Polymorphisms of estrogen synthesizing and metabolizing genes and breast cancer susceptibility%雌激素合成及代谢基因的多态性与乳腺癌易感性

    Institute of Scientific and Technical Information of China (English)

    姜永冬; 刘晶; 庞达

    2009-01-01

    Estrogens,the major risk factors for breast cancer,are speculated to affect breast cancer risk through estrogens receptor(ER), thus, genetic polymorphisms of the genes involved in the estrogens biosynthesis and metabolism are expected as the main risk factors for breast cancer. Polymorphisms of the genes involved in estrogens biosynthesis (CYP11A1, CYP17, CYP19) and metabolism (CYP1A1, CYP1B1, CYP1A2) in modulating the susceptibility of breast cancer is important.%雌激素是乳腺癌的主要危险因素,推测是通过雌激素受体影响乳腺癌的发病风险.因此,与雌激素合成和代谢相关的基因多态性被认为是乳腺癌的主要危险因子.与雌激素合成基因(CYP11A1、CYP17、CYP19)和代谢基因(CYP1A1、CYP1B1、CYP1A2)相关的基因多态性在调节乳腺癌易感性中具有一定意义.

  3. Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation.

    Science.gov (United States)

    Ghoussaini, Maya; French, Juliet D; Michailidou, Kyriaki; Nord, Silje; Beesley, Jonathan; Canisus, Sander; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Moradi Marjaneh, Mahdi; Lee, Jason S; Dennis, Joe; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Milne, Roger L; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Alonso, M Rosario; Pita, Guillermo; Neuhausen, Susan L; Anton-Culver, Hoda; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Tessier, Daniel C; Vincent, Daniel; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Ito, Hidemi; Dörk, Thilo; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Wu, Anna H; Van Den Berg, David; Lambrechts, Diether; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J; Hallberg, Emily; Giles, Graham G; Haiman, Christopher A; Le Marchand, Loic; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Borresen-Dale, Anne-Lise; Zheng, Wei; Cai, Qiuyin; Winqvist, Robert; Pylkäs, Katri; Andrulis, Irene L; Devilee, Peter; Tollenaar, Rob A E M; García-Closas, Montserrat; Figueroa, Jonine; Hall, Per; Czene, Kamila; Brand, Judith S; Darabi, Hatef; Eriksson, Mikael; Hooning, Maartje J; Koppert, Linetta B; Li, Jingmei; Shu, Xiao-Ou; Zheng, Ying; Cox, Angela; Cross, Simon S; Shah, Mitul; Rhenius, Valerie; Choi, Ji-Yeob; Kang, Daehee; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Luccarini, Craig; Conroy, Don M; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Olswold, Curtis; Slager, Susan; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Schoemaker, Minouk J; Simard, Jacques; Pharoah, Paul D P; Kristensen, Vessela; Chenevix-Trench, Georgia; Easton, Douglas F; Dunning, Alison M; Edwards, Stacey L

    2016-10-06

    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER(+)) breast cancer (per-g allele OR ER(+) = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10(-30)). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER(-)) breast cancer (lead SNP rs6864776: per-a allele OR ER(-) = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10(-12)), and a single signal 3 SNP (rs200229088: per-t allele OR ER(+) = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10(-05)). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.

  4. Abortion, Miscarriage, and Breast Cancer Risk

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Abortion, Miscarriage, and Breast Cancer Risk: 2003 Workshop In ... cancer risk, including studies of induced and spontaneous abortions. They concluded that having an abortion or miscarriage ...

  5. Early detection of breast cancer.

    Science.gov (United States)

    Nettles-Carlson, B

    1989-01-01

    Timely, comprehensive screening for breast cancer is a major, though often overlooked, component of primary health care for women. This article reviews the scientific rationale for screening and outlines the current recommendations of the American Cancer Society and the U.S. Preventive Services Task Force regarding the use of mammography, clinical breast examination (CBE), and breast self-examination (BSE). Nursing interventions to decrease barriers to effective screening are discussed, and an expanded role of nurses in breast cancer screening is proposed.

  6. Interactions Between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium

    NARCIS (Netherlands)

    Campa, Daniele; Kaaks, Rudolf; Le Marchand, Loic; Haiman, Christopher A.; Travis, Ruth C.; Berg, Christine D.; Buring, Julie E.; Chanock, Stephen J.; Diver, W. Ryan; Dostal, Lucie; Fournier, Agnes; Hankinson, Susan E.; Henderson, Brian E.; Hoover, Robert N.; Isaacs, Claudine; Johansson, Mattias; Kolonel, Laurence N.; Kraft, Peter; Lee, I-Min; McCarty, Catherine A.; Overvad, Kim; Panico, Salvatore; Peeters, Petra H. M.; Riboli, Elio; Jose Sanchez, Maria; Schumacher, Fredrick R.; Skeie, Guri; Stram, Daniel O.; Thun, Michael J.; Trichopoulos, Dimitrios; Zhang, Shumin; Ziegler, Regina G.; Hunter, David J.; Lindstroem, Sara; Canzian, Federico

    2011-01-01

    Background Recently, several genome-wide association studies have identified various genetic susceptibility loci for breast cancer. Relatively little is known about the possible interactions between these loci and the established risk factors for breast cancer. Methods To assess interactions between

  7. Multi-variant pathway association analysis reveals the importance of genetic determinants of estrogen metabolism in breast and endometrial cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yen Ling Low

    2010-07-01

    Full Text Available Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML-based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (p(global = 0.034 and endometrial (p(global = 0.052 cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (p(global = 0.008 and endometrial cancer (p(global = 0.014. The sub-pathway association was validated in the Finnish sample of breast cancer (p(global = 0.015. Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (p(global = 0.0003. Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite

  8. Breast cancer epidemiology.

    Science.gov (United States)

    Kelsey, J L; Berkowitz, G S

    1988-10-15

    The various risk factors for breast cancer have been recognized for many years. A table lists these established breast cancer risk factors together with the approximate magnitude of the increase in risk associated with them. Breast cancer incidence rates increase with age throughout the life span in Western countries, although the rate of increase is greater up to age 50 years than after 50 years. Breast cancer is more common among women in upper rather than lower social classes, among women who never have been married, among women living in urban areas, among women living in the northern US than in the southern US, and among whites than blacks, at least among those over age 50. Women in North American and Northern European countries have the highest risk for breast cancer, women in Southern European and Latin American countries are at intermediate risk, and women in Africa and Asian countries have the lowest risk. Yet, rapid rates of increase in incident rates have been noted in recent years in many Asian, Central European, and some South American countries. The later the age at which a woman has her 1st full-term pregnancy, the higher her risk for breast cancer; the earlier the age at menarche and the later the age at menopause the higher the risk; and among women who have a premenopausal oophorectomy, the earlier the age at which this occurs the lower the risk. Among postmenopausal women, obesity is associated with an increase in risk. Lactation is negatively associated with subsequent breast cancer risk. Some current research is considering potential risk factors that have not been well studied in the past, including alcohol consumption, cigarette smoking, caffeine consumption, exposure to diethylstilbestrol (DES), emotional stress, exposure to electric power, and lack of physical activity. Other areas of current research reviewed here include radiation, mammographic parenchymal patterns, a high-fat diet, use of oral contraceptives (OCs), use of estrogen

  9. Mechanisms of inherited cancer susceptibility

    Institute of Scientific and Technical Information of China (English)

    Shirley HODGSON

    2008-01-01

    A small proportion of many cancers are due to inherited mutations in genes, which result in a high risk to the individual of developing specific cancers. There are several classes of genes that may be involved: tumour suppressor genes, oncogenes, genes encoding proteins involved in DNA repair and cell cycle control, and genes involved in stimulating the angiogenic pathway. Alterations in susceptibility to cancer may also be due to variations in genes involved in carcinogen metabolism. This review discusses examples of some of these genes and the associated clinical conditions caused by the inheritance of mutations in such genes.

  10. Breast Cancer in Art Painting

    OpenAIRE

    2011-01-01

    Breast cancer is an emotive cancer. It is a disease that affects a visible sexual organ and it is the commonest single cause of death of women between 40 and 60 years of age. Nevertheless, this type of cancer was infrequently depicted in art paintings. In this article the themes from the breast cancer in famous art paintings are discussed.

  11. Prostate cancer is not breast cancer

    Directory of Open Access Journals (Sweden)

    Ajit Venniyoor

    2016-01-01

    Full Text Available Cancers of the prostate and breast are hormone dependent cancers. There is a tendency to equate them and apply same algorithms for treatment. It is pointed out that metastatic prostate cancer with bone-only disease is a potentially fatal condition with a much poorer prognosis than metastatic breast cancer and needs a more aggressive approach.

  12. Hormones and Breast Cancer.

    Science.gov (United States)

    1997-10-01

    pathway of El metabolism may be altered by dietary (in particular, cruciferous vegetables ) and other factors (54-58). In this project we compared the... Cancer PRINCIPAL INVESTIGATOR: Giske Ursin, M.D., Ph.D. CONTRACTING ORGANIZATION: University of Southern California School of Medicine Los Angeles...TYPE AND DATES COVERED I October 1997 Final (30 Sep 94 - 29 Sep 97) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Hormones and Breast Cancer DAMD17-94-J

  13. Breast Cancer Research Program

    Science.gov (United States)

    2010-09-01

    tion of tumor cells with red indicating the highest density of tumor cells at the primary tumor (4th mammary fat pad ) and purple/blue showing the...Idea Award Elaine Hardman and Philippe Georgel “ Maternal Consumption of Omega 3 Fatty Acids to Reduce Breast Cancer Risk in Offspring” FY09

  14. Living Beyond Breast Cancer

    Science.gov (United States)

    ... MBC Radiation Therapy for MBC Surgery for MBC Yoga and MBC Side Effects Bone Health and MBC Bone Pain and MBC ... Yoga Poses Special Situations Yoga and Lymphedema Risk Yoga and Metastatic Breast Cancer Side Effects Anemia Bone Loss Bone Pain Chemobrain Depression and ...

  15. Breast Cancer - Early Diagnosis

    Centers for Disease Control (CDC) Podcasts

    2011-04-28

    This podcast answers a listener's question about how to tell if she has breast cancer.  Created: 4/28/2011 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 4/28/2011.

  16. Progestins and breast cancer.

    Science.gov (United States)

    Pasqualini, Jorge R

    2007-10-01

    Progestins exert their progestational activity by binding to the progesterone receptor (form A, the most active and form B, the less active) and may also interact with other steroid receptors (androgen, glucocorticoid, mineralocorticoid, estrogen). They can have important effects in other tissues besides the endometrium, including the breast, liver, bone and brain. The biological responses of progestins cover a very large domain: lipids, carbohydrates, proteins, water and electrolyte regulation, hemostasis, fibrinolysis, and cardiovascular and immunological systems. At present, more than 200 progestin compounds have been synthesized, but the biological response could be different from one to another depending on their structure, metabolism, receptor affinity, experimental conditions, target tissue or cell line, as well as the biological response considered. There is substantial evidence that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of estradiol (E(2)) from circulating precursors. Two principal pathways are implicated in the final steps of E(2) formation in breast cancer tissue: the 'aromatase pathway', which transforms androgens into estrogens, and the 'sulfatase pathway', which converts estrone sulfate (E(1)S) into estrone (E(1)) via estrone sulfatase. The final step is the conversion of weak E(1) to the potent biologically active E(2) via reductive 17beta-hydroxysteroid dehydrogenase type 1 activity. It is also well established that steroid sulfotransferases, which convert estrogens into their sulfates, are present in breast cancer tissues. It has been demonstrated that various progestins (e.g. nomegestrol acetate, medrogestone, promegestone) as well as tibolone and their metabolites can block the enzymes involved in E(2) bioformation (sulfatase, 17beta-hydroxysteroid dehydrogenase) in breast cancer cells. These substances can also stimulate the sulfotransferase activity which converts estrogens into the biologically

  17. Review: Mitochondrial Defects in Breast Cancer

    OpenAIRE

    Salgado, J.; Honorato, B. (Beatriz); Garcia-Foncillas, J

    2008-01-01

    Mitochondria play important roles in cellular energy metabolism, free radical generation, and apoptosis. Mitochondrial DNA has been proposed to be involved in carcinogenesis because of its high susceptibility to mutations and limited repair mechanisms in comparison to nuclear DNA. Breast cancer is the most frequent cancer type among women in the world and, although exhaustive research has been done on nuclear DNA changes, several studies describe ...

  18. Mindfulness Meditation or Survivorship Education in Improving Behavioral Symptoms in Younger Stage 0-III Breast Cancer Survivors (Pathways to Wellness)

    Science.gov (United States)

    2017-03-21

    Cancer Survivor; Early-Stage Breast Carcinoma; Stage 0 Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  19. Structure and function of breast cancer susceptibility protein 2%乳腺癌易感蛋白2的结构和功能

    Institute of Scientific and Technical Information of China (English)

    卢向阳; 田云; 周海燕; 彭丽莎; 徐锋

    2004-01-01

    BACKGROUND: Breast cancer susceptibility protein BRCA 2 encoded by BRCA2 gene is a tumor suppressor required for maintenance of chromosomal stability in mammalian cells and playing a pivotal role in biological response to DNA damage. Many researches showed that BRCA2 protein was closely related to the pathogenesis of hereditary breast cancer, ovarian cancer and Fanconi anemia (FA), presumably involving DNA double-stranded break (DSB) repair, but the exact mechanism of its actions remains unknown.OBJECTIVE: To review the researches on BRCA2 protein structure and DNA repair so as to elucidate the mechanism of BRCA2 in DNA repair.STUDY SELECTION: The documents about BRCA2 protein and DNA repair were chosen.DATA SOURCES: The data were searched overall including electronic search, craft search and personal communication search and so on. DATA EXTRATION: The information about BRCA2 protein and DNA repair in the researched documents was surveyed.MAIN OUTCOME MEASURES: The structure, function model and mechanism of BRCA2 protein in DNA repair are explored.RESULTS: The results showed that BRCA2 protein performed important functions in tumor suppression. The DNA) binding activities of DNA-binding domain(DBD) of BRCA2, in conjunction with the RAD51-binding activities of the BRC repeat, were directly associated with DSB repair during homologous recombination.CONCLUSION: BRCA2 protein plays an important role in DSB repair, but the exact process and signal transduction pathway still need further study.The study of BRCA2 may hold significant value in developing new treatment target for diseases involving DNA damage.%背景:乳腺癌易感蛋白2(breast cancer susceptibility protein 2,BRCA2)是由乳腺癌易感基因2编码的一种在维持哺乳动物细胞染色体稳定及DNA损伤生物应答中发挥重要作用的肿瘤抑制因子.许多研究表明:BRCA2蛋白与遗传性乳腺癌、卵巢癌及范康尼氏贫血症的发生具有密切关系,猜测其与双链DNA损伤

  20. Environmental chemical exposures and breast cancer

    Directory of Open Access Journals (Sweden)

    E. Stanley

    2016-02-01

    Full Text Available As a hormone-sensitive condition with no single identifiable cause, breast cancer is a major health problem. It is characterized by a wide range of contributing factors and exposures occurring in different combinations and strengths across a lifetime that may be amplified during periods of enhanced developmental susceptibility and impacted by reproductive patterns and behaviours. The vast majority of cases are oestrogen-receptor positive and occur in women with no family history of the disease suggesting that modifiable risk factors are involved. A substantial body of evidence now links oestrogen-positive breast cancer with environmental exposures. Synthetic chemicals capable of oestrogen mimicry are characteristic of industrial development and have been individually and extensively assessed as risk factors for oestrogen-sensitive cancers. Existing breast cancer risk assessment tools do not take such factors into account. In the absence of consensus on causation and in order to better understand the problem of escalating incidence globally, an expanded, integrated approach broadening the inquiry into individual susceptibility breast cancer is proposed. Applying systems thinking to existing data on oestrogen-modulating environmental exposures and other oestrogenic factors characteristic of Westernisation and their interactions in the exposure, encompassing social, behavioural, environmental, hormonal and genetic factors, can assist in understanding cancer risks and the pursuit of prevention strategies. A new conceptual framework based on a broader understanding of the “system” that underlies the development of breast cancer over a period of many years, incorporating the factors known to contribute to breast cancer risk, could provide a new platform from which government and regulators can promulgate enhanced and more effective prevention strategies.

  1. Opioids and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P

    2015-01-01

    BACKGROUND: Opioids may alter immune function, thereby potentially affecting cancer recurrence. The authors investigated the association between postdiagnosis opioid use and breast cancer recurrence. METHODS: Patients with incident, early stage breast cancer who were diagnosed during 1996 through...... 2008 in Denmark were identified from the Danish Breast Cancer Cooperative Group Registry. Opioid prescriptions were ascertained from the Danish National Prescription Registry. Follow-up began on the date of primary surgery for breast cancer and continued until breast cancer recurrence, death......, emigration, 10 years, or July 31, 2013, whichever occurred first. Cox regression models were used to compute hazard ratios and 95% confidence intervals associating breast cancer recurrence with opioid prescription use overall and by opioid type and strength, immunosuppressive effect, chronic use (≥6 months...

  2. [Occult multicentric breast cancer].

    Science.gov (United States)

    Vtorushin, S V; Zab'ialova, M V; Glushchenko, S A; Perel'muter, V M; Slonimskaia, E M

    2009-01-01

    The study included 92 patients with invasive ductal breast cancer (T2-4N0-2M0-1). In 38 cases, tumor growth was unicentric while histologically identifiable ones as multicentric in 44. Multicentricity mostly occurred in cases of macroscopically-identifiable nodes located in the central segments of the breast. Clinically-identifiable nodes of multicentric tumor growth measured more than 3 cm. Multicentric tumors were mostly grade III, featured lower expression of sex hormone receptors and positive Her2 status.

  3. Treatment Option Overview (Male Breast Cancer)

    Science.gov (United States)

    ... Cancers Breast Cancer Screening Research Male Breast Cancer Treatment (PDQ®)–Patient Version General Information about Male Breast ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  4. You, Your Teenage Daughter and Breast Cancer.

    Science.gov (United States)

    Brateman, Libby

    1991-01-01

    Discusses breast cancer and teenagers, focusing on how parents can introduce the subject and encourage breast self-examination. The article provides information on breast cancer statistics, mammography, and American Cancer Society services. (SM)

  5. Braving Breast Cancer: Just Do It!

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Breast Cancer Braving Breast Cancer: Just Do It! Past Issues / Spring - Summer 2010 Table of Contents Breast cancer survivor Jana Brightwell, pictured here on the NIH ...

  6. Breast cancer fear in African American breast cancer survivors.

    Science.gov (United States)

    Gibson, Lynette M; Thomas, Sheila; Parker, Veronica; Mayo, Rachel; Wetsel, Margaret Ann

    2014-01-01

    The purpose of this study was to describe breast cancer fear according to phase of survivorship, determine whether breast cancer fear levels differed among survivorship phases, and determine the relationship between fear and age in African-American breast cancer survivors. The study utilized secondary data analysis from the study, Inner Resources as Predictors of Psychological Well-Being in AABCS. A new subscale entitled, "Breast Cancer Fear" was adapted from the Psychological Well Being Subscale by Ferrell and Grant. There was no significant difference between fear and phase of survivorship. There was a significant positive relationship between age and fear.

  7. Getting free of breast cancer

    DEFF Research Database (Denmark)

    Halttunen, Arja; Hietanen, P; Jallinoja, P

    1992-01-01

    Twenty-two breast cancer patients who were relapse-free and had no need for cancer-related treatment were interviewed 8 years after mastectomy in order to evaluate their feelings of getting free of breast cancer and the meaning of breast cancer in their lives. The study is a part of an intervention...... and follow-up study of 57 breast cancer patients. Half of the 22 patients still had frequent or occasional thoughts of recurrence and over two-thirds still thought they had not been 'cured' of cancer. More than half of the patients admitted that going through breast cancer had made them more mature. Women...... who had less thoughts of recurrence belonged to a group that had gone through an eight-week group psychotherapy intervention, were less depressed and had more other illnesses. Women who felt 'cured' had less limitations and restrictions due to cancer and belonged more often to higher social classes...

  8. Molecular imaging of breast cancer

    NARCIS (Netherlands)

    Adams, A.L.L.

    2014-01-01

    Breast cancer is the most common type of cancer in women. Imaging techniques play a pivotal role in breast cancer management, especially in lesion detection, treatment planning and evaluation, and prognostication. These imaging techniques have however limitations such as the use of ionizing radiatio

  9. BARD1 variants are not associated with breast cancer risk in Australian familial breast cancer.

    Science.gov (United States)

    Gorringe, Kylie L; Choong, David Y H; Visvader, Jane E; Lindeman, Geoffrey J; Campbell, Ian G

    2008-10-01

    Several studies in various populations have suggested that non-synonymous BARD1 variants are associated with increased breast cancer risk. Using DHPLC analysis we screened the coding region of BARD1 for variants in 210 probands of breast cancer families including 129 families with no mutations in BRCA1 or BRCA2. These families were ascertained in Australia through the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab). Nine coding variants were detected among the kConFab families, including two novel variants (Thr598Ile and Ile692Thr). The frequency of five of these variants were evaluated in 258 non-cancer controls and 401 women with sporadic breast cancer. Three variants (1139del21, G1756C and A2285G) were detected in all three groups at a similar frequency suggesting that these do not represent BRCAX candidates. Two variants (Thr598Ile and Ile692Thr) were not detected in any of the 659 sporadic breast cancer cases and controls and were assessed for segregation with breast cancer in the families of the probands. However, neither variant was identified in any other breast cancer case in either family suggesting that these variants are non-pathogenic polymorphisms. We have found no evidence to support involvement of BARD1 in familial breast cancer risk in the Australian population. In addition, three variants previously reported to be pathogenic in other populations are likely to represent benign polymorphisms and therefore we conclude that BARD1 is unlikely to represent a high-penetrance breast cancer susceptibility gene.

  10. The Breast Cancer DNA Interactome

    Science.gov (United States)

    2014-12-01

    Sugumar A, Liu YC, Xia Q , Koh YS, Matsuo K. Insulin-like growth factor (IGF)-I and IGF-binding protein 3 and the risk of premenopausal breast cancer: a...stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene 32(19): 2412 2420. 29. Mehta HH, Gao Q ...Award Number: W81XWH-11-1-0474 TITLE: The Breast Cancer DNA Interactome PRINCIPAL INVESTIGATOR: Andrew R. Hoffman CONTRACTING ORGANIZATION

  11. Progress in breast cancer: overview.

    Science.gov (United States)

    Arteaga, Carlos L

    2013-12-01

    This edition of CCR Focus titled Research in Breast Cancer: Frontiers in Genomics, Biology, and Clinical Investigation reviews six topics that cover areas of translational research of high impact in breast cancer. These topics represent areas of breast cancer research where significant progress has occurred but also where very important challenges remain. The papers in this CCR Focus section are contributed by experts in the respective areas of investigation. Herein, key aspects of these contributions and the research directions they propose are reviewed.

  12. Proteomic classification of breast cancer.

    LENUS (Irish Health Repository)

    Kamel, Dalia

    2012-11-01

    Being a significant health problem that affects patients in various age groups, breast cancer has been extensively studied to date. Recently, molecular breast cancer classification has advanced significantly with the availability of genomic profiling technologies. Proteomic technologies have also advanced from traditional protein assays including enzyme-linked immunosorbent assay, immunoblotting and immunohistochemistry to more comprehensive approaches including mass spectrometry and reverse phase protein lysate arrays (RPPA). The purpose of this manuscript is to review the current protein markers that influence breast cancer prediction and prognosis and to focus on novel advances in proteomic classification of breast cancer.

  13. Subtle variations in Pten dose determine cancer susceptibility.

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  14. Estrogens and breast cancer

    Directory of Open Access Journals (Sweden)

    HANKINSON SUSAN E

    1997-01-01

    Full Text Available In this review, we summarize the epidemiologic evidence for the associations of oral contraceptives and postmenopausal hormones with risk of breast cancer. We also describe the biologic plausibility of these relationships. Overall, there appears to be little, if any, increase in risk with oral contraceptive use in general, even among users for 10 or more years. However, compared to never users, current oral contraceptive users appear to have a modest elevation in risk that subsides within about 10 years after cessation of use. For postmenopausal hormones, the weight of the evidence suggests little or no increase in risk among users of short duration, or for use in the past. However, current longer term use is associated with an increased risk of breast cancer that increases with duration. This increase in risk is large enough, and well enough supported, to be considered along with the other risks and benefits of postmenopausal hormone therapy.

  15. Interleukin-19 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2013-01-01

    Full Text Available Inflammatory cytokines within the tumor microenvironment are linked to progression in breast cancer. Interleukin- (IL- 19, part of the IL-10 family, contributes to a range of diseases and disorders, such as asthma, endotoxic shock, uremia, psoriasis, and rheumatoid arthritis. IL-19 is expressed in several types of tumor cells, especially in squamous cell carcinoma of the skin, tongue, esophagus, and lung and invasive duct carcinoma of the breast. In breast cancer, IL-19 expression is correlated with increased mitotic figures, advanced tumor stage, higher metastasis, and poor survival. The mechanisms of IL-19 in breast cancer have recently been explored both in vitro and in vivo. IL-19 has an autocrine effect in breast cancer cells. It directly promotes proliferation and migration and indirectly provides a microenvironment for tumor progression, which suggests that IL-19 is a prognostic marker in breast cancer and that antagonizing IL-19 may have therapeutic potential.

  16. Breast cancer risk factors

    Directory of Open Access Journals (Sweden)

    Marzena Kamińska

    2015-09-01

    Full Text Available Breast cancer is the most frequently diagnosed neoplastic disease in women around menopause often leading to a significant reduction of these women’s ability to function normally in everyday life. The increased breast cancer incidence observed in epidemiological studies in a group of women actively participating in social and professional life implicates the necessity of conducting multidirectional studies in order to identify risk factors associated with the occurrence of this type of neoplasm. Taking the possibility of influencing the neoplastic transformation process in individuals as a criterion, all the risk factors initiating the process can be divided into two groups. The first group would include inherent factors such as age, sex, race, genetic makeup promoting familial occurrence of the neoplastic disease or the occurrence of benign proliferative lesions of the mammary gland. They all constitute independent parameters and do not undergo simple modification in the course of an individual’s life. The second group would include extrinsic factors conditioned by lifestyle, diet or long-term medical intervention such as using oral hormonal contraceptives or hormonal replacement therapy and their influence on the neoplastic process may be modified to a certain degree. Identification of modifiable factors may contribute to development of prevention strategies decreasing breast cancer incidence.

  17. Increasing Breast Cancer Surveillance among African American Breast Cancer Survivors

    Science.gov (United States)

    2005-07-01

    Madam , The project entitled INCREASING BREAST CANCER SURVEILLANCE AMONG AFRICAN AMERICAN BREAST CANCER SURVIVORS includes activities involving human...B b- d § fr. Thomisonwill Work e .y .With’Dra) Vdldf naTir, W and y Bo • rganif Janidorf on data a"_`l- ssi reatihfiutfor pres~entatidns and publi

  18. Replication and functional genomic analyses of the breast cancer susceptibility locus at 6q25.1 generalize its importance in women of chinese, Japanese, and European ancestry.

    Science.gov (United States)

    Cai, Qiuyin; Wen, Wanqing; Qu, Shimian; Li, Guoliang; Egan, Kathleen M; Chen, Kexin; Deming, Sandra L; Shen, Hongbing; Shen, Chen-Yang; Gammon, Marilie D; Blot, William J; Matsuo, Keitaro; Haiman, Christopher A; Khoo, Ui Soon; Iwasaki, Motoki; Santella, Regina M; Zhang, Lina; Fair, Alecia Malin; Hu, Zhibin; Wu, Pei-Ei; Signorello, Lisa B; Titus-Ernstoff, Linda; Tajima, Kazuo; Henderson, Brian E; Chan, Kelvin Y K; Kasuga, Yoshio; Newcomb, Polly A; Zheng, Hong; Cui, Yong; Wang, Furu; Shieh, Ya-Lan; Iwata, Hiroji; Le Marchand, Loic; Chan, Sum Yin; Shrubsole, Martha J; Trentham-Dietz, Amy; Tsugane, Shoichiro; Garcia-Closas, Montserrat; Long, Jirong; Li, Chun; Shi, Jiajun; Huang, Bo; Xiang, Yong-Bing; Gao, Yu-Tang; Lu, Wei; Shu, Xiao-Ou; Zheng, Wei

    2011-02-15

    We evaluated the generalizability of a single nucleotide polymorphism (SNP), rs2046210 (A/G allele), associated with breast cancer risk that was initially identified at 6q25.1 in a genome-wide association study conducted among Chinese women. In a pooled analysis of more than 31,000 women of East-Asian, European, and African ancestry, we found a positive association for rs2046210 and breast cancer risk in Chinese women [ORs (95% CI) = 1.30 (1.22-1.38) and 1.64 (1.50-1.80) for the AG and AA genotypes, respectively, P for trend = 1.54 × 10⁻³⁰], Japanese women [ORs (95% CI) = 1.31 (1.13-1.52) and 1.37 (1.06-1.76), P for trend = 2.51 × 10⁻⁴], and European-ancestry American women [ORs (95% CI) = 1.07 (0.99-1.16) and 1.18 (1.04-1.34), P for trend = 0.0069]. No association with this SNP, however, was observed in African American women [ORs (95% CI) = 0.81 (0.63-1.06) and 0.85 (0.65-1.11) for the AG and AA genotypes, respectively, P for trend = 0.4027]. In vitro functional genomic studies identified a putative functional variant, rs6913578. This SNP is 1,440 bp downstream of rs2046210 and is in high linkage disequilibrium with rs2046210 in Chinese (r(2) = 0.91) and European-ancestry (r² = 0.83) populations, but not in Africans (r² = 0.57). SNP rs6913578 was found to be associated with breast cancer risk in Chinese and European-ancestry American women. After adjusting for rs2046210, the association of rs6913578 with breast cancer risk in African Americans approached borderline significance. Results from this large consortium study confirmed the association of rs2046210 with breast cancer risk among women of Chinese, Japanese, and European ancestry. This association may be explained in part by a putatively functional variant (rs6913578) identified in the region.

  19. Drugs Approved for Breast Cancer

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for breast cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  20. Breast cancer in BRCA mutation carriers: medical treatment.

    Science.gov (United States)

    Milani, Andrea; Geuna, Elena; Zucchini, Giorgia; Aversa, Caterina; Martinello, Rossella; Montemurro, Filippo

    2016-10-01

    About 10% of breast cancers are associated with the inheritance of autosomal dominant breast cancer susceptibility alleles BRCA1 and BRCA2. Until recently, the medical management of BRCA mutation-associated breast cancer has not differed from that of the sporadic breast cancer counterpart. However, there is mounting evidence that this molecular alteration confers sensitivity or resistance to systemic therapies that can be exploited in terms of medical management. For example, studies support the use of platinum salts chemotherapy in BRCA mutated cancers. Moreover, a number of targeted therapies are showing activity in BRCA mutation carriers. Above all, BRCA defective tumor cells are particularly sensitive to Poly(ADP-ribose) polymerase (PARP) inhibitors. This review will summarize the state of the art of the medical treatment of breast cancer in BRCA mutation carriers, with a particular focus on chemotherapies and targeted therapies.

  1. Breast and Colon Cancer Family Registries

    Science.gov (United States)

    The Breast Cancer Family Registry and the Colon Cancer Family Registry were established by the National Cancer Institute as a resource for investigators to use in conducting studies on the genetics and molecular epidemiology of breast and colon cancer.

  2. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  3. Height and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Zhang, Ben; Shu, Xiao-Ou; Delahanty, Ryan J

    2015-01-01

    BACKGROUND: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. METHODS: We performed a met...

  4. Circadian clocks and breast cancer

    OpenAIRE

    Blakeman, Victoria; Jack L. Williams; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, an...

  5. [Therapeutic advances in breast cancer].

    Science.gov (United States)

    Pestalozzi, B C

    2006-04-01

    The treatment of breast cancer has made significant improvements during the past ten years. For early breast cancer with a clinically negative axilla sentinel node biopsy has become the preferred approach. For endocrine therapy of postmenopausal patients the selective aromatase inhibitors have become standard in metastatic as well as in early breast cancer. Trastuzumab (Herceptin) plays an important role in the treatment of HER2-positive breast cancer in the metastatic and since 2005 also in the adjuvant setting. When chemotherapy is used to treat metastatic breast cancer drug combinations are superior to monotherapy only in terms of response rates. By contrast, in the adjuvant setting combination drug therapy is the standard. New methods of tissue analysis including expression patterns of mRNA and proteins are promising research strategies to further advance the field.

  6. Decline in breast cancer mortality

    DEFF Research Database (Denmark)

    Njor, Sisse Helle; Schwartz, Walter; Blichert-Toft, Mogens

    2015-01-01

    OBJECTIVES: When estimating the decline in breast cancer mortality attributable to screening, the challenge is to provide valid comparison groups and to distinguish the screening effect from other effects. In Funen, Denmark, multidisciplinary breast cancer management teams started before screening...... was introduced; both activities came later in the rest of Denmark. Because Denmark had national protocols for breast cancer treatment, but hardly any opportunistic screening, Funen formed a "natural experiment", providing valid comparison groups and enabling the separation of the effect of screening from other...... factors. METHODS: Using Poisson regression we compared the observed breast cancer mortality rate in Funen after implementation of screening with the expected rate without screening. The latter was estimated from breast cancer mortality in the rest of Denmark controlled for historical differences between...

  7. Unemployment among breast cancer survivors

    DEFF Research Database (Denmark)

    Carlsen, Kathrine; Ewertz, Marianne; Dalton, Susanne Oksbjerg

    2014-01-01

    AIM: Though about 20% of working age breast cancer survivors do not return to work after treatment, few studies have addressed risk factors for unemployment. The majority of studies on occupational consequences of breast cancer focus on non-employment, which is a mixture of sickness absence......, unemployment, retirement pensions and other reasons for not working. Unemployment in combination with breast cancer may represent a particular challenge for these women. The aim of the present study is therefore to analyze the risk for unemployment in the years following diagnosis and treatment for breast...... cancer. METHOD: This study included 14,750 women diagnosed with breast cancer in Denmark 2001-2009 identified through a population-based clinical database and linked with information from Danish administrative population based registers for information on labour market affiliation, socio...

  8. Statins and breast cancer prognosis

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Lash, Timothy L; Damkier, Per

    2014-01-01

    Much preclinical and epidemiological evidence supports the anticancer effects of statins. Epidemiological evidence does not suggest an association between statin use and reduced incidence of breast cancer, but does support a protective effect of statins-especially simvastatin-on breast cancer...... recurrence. Here, we argue that the existing evidence base is sufficient to justify a clinical trial of breast cancer adjuvant therapy with statins and we advocate for such a trial to be initiated without delay. If a protective effect of statins on breast cancer recurrence is supported by trial evidence......, then the indications for a safe, well tolerated, and inexpensive treatment can be expanded to improve outcomes for breast cancer survivors. We discuss several trial design opportunities-including candidate predictive biomarkers of statin safety and efficacy-and off er solutions to the key challenges involved...

  9. Pregnancy associated breast cancer and pregnancy after breast cancer treatment

    OpenAIRE

    Doğer, Emek; Çalışkan, Eray; Mallmann, Peter

    2011-01-01

    Breast cancer is one of the most common cancers diagnosed during pregnancy and its frequency is increasing as more women postpone their pregnancies to their thirties and forties. Breast cancer diagnosis during pregnancy and lactation is difficult and complex both for the patient and doctors. Delay in diagnosis is frequent and treatment modalities are difficult to accept for the pregnant women. The common treatment approach is surgery after diagnosis, chemotherapy after the first trimester and...

  10. Optimal breast cancer pathology manifesto.

    Science.gov (United States)

    Tot, T; Viale, G; Rutgers, E; Bergsten-Nordström, E; Costa, A

    2015-11-01

    This manifesto was prepared by a European Breast Cancer (EBC) Council working group and launched at the European Breast Cancer Conference in Glasgow on 20 March 2014. It sets out optimal technical and organisational requirements for a breast cancer pathology service, in the light of concerns about variability and lack of patient-centred focus. It is not a guideline about how pathology services should be performed. It is a call for all in the cancer community--pathologists, oncologists, patient advocates, health administrators and policymakers--to check that services are available that serve the needs of patients in a high quality, timely way.

  11. Biomarkers in Tissue Samples From Patients With Newly Diagnosed Breast Cancer Treated With Zoledronic Acid

    Science.gov (United States)

    2016-07-12

    Estrogen Receptor-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Progesterone Receptor-positive Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer

  12. Aluminium, antiperspirants and breast cancer.

    Science.gov (United States)

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer.

  13. Breast Cancer Center Support Grant

    Science.gov (United States)

    1999-09-01

    also occur with increased frequency in gene carriers, such prostate cancer. First-degree relatives of individuals with a BRCA1 or BRCA2 mutation have...Tumor M 36 Asian Prostate Cancer M 52 Caucasian Ovarian Cancer F 56 Caucasian Cervical Cancer F 43 Caucasian Breast Cancer F 45 Caucasian Cancer of...address transportation barriers, alternate mechanisms were put in place for provision of parking and taxi vouchers. It was expected that many of the women

  14. The Pittsburgh Breast Cancer Consortium

    Science.gov (United States)

    2005-08-01

    Protein Autovac in Patients with Brest Cancer CPharmexa). This trial was initiated in June 2003. The PBCC accrued 5 of the planned 11 patients. This...AD_________________ Award Number: DAMD17-01-1-0374 TITLE: The Pittsburgh Breast Cancer Consortium...3. DATES COVERED 1 AUG 2001 - 31 JUL 2005 4. TITLE AND SUBTITLE The Pittsburgh Breast Cancer Consortium 5a. CONTRACT NUMBER 5b. GRANT

  15. Epigenetics and Breast Cancers

    Directory of Open Access Journals (Sweden)

    An T. Vo

    2012-01-01

    Full Text Available Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2, phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM to 5′-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes.

  16. Diet and breast cancer

    Directory of Open Access Journals (Sweden)

    Isabelle Romieu

    2011-10-01

    Full Text Available Both diet and nutrition have been studied in relationship with breast cancer risk, as the great variation among different countries in breast cancer incidence could possibly be explained through the inflammatory and immune response, as well as antioxidant intake, among others.To date, no clear association with diet beyond overweight and weight gain has been found, except for alcohol consumption. Nonetheless, the small number of studies done in middle to low income countries where variability of food intake is wider,is beginning to show interesting results.Tanto la dieta como la nutrición han sido estudiadas en relación con el riesgo de cáncer de mama, dada la gran variación de incidencia de cáncer entre países, y la posibilidad de explicarla a través de la respuesta inflamatoria o inmune, así como ingesta de antioxidantes,entre otros.Hasta la fecha, ninguna asociación clara con la dieta ha sido encontrada, excepto para el consumo de alcohol, más allá del sobrepeso y del incremento de peso. Sin embargo, los estudios que se están realizando en países de mediano a bajo nivel de ingresos, con mayor variabilidad de ingesta de alimentos, comienzan a mostrar resultados interesantes.

  17. Other Considerations for Pregnancy and Breast Cancer

    Science.gov (United States)

    ... the survival of women who have had breast cancer in the past. Lactation (breast milk production) and breast-feeding should be stopped if ... methotrexate , may occur in high levels in breast milk and may harm the nursing baby. Women ... Breast cancer does not appear to harm the unborn baby. ...

  18. General Information about Breast Cancer and Pregnancy

    Science.gov (United States)

    ... the survival of women who have had breast cancer in the past. Lactation (breast milk production) and breast-feeding should be stopped if ... methotrexate , may occur in high levels in breast milk and may harm the nursing baby. Women ... Breast cancer does not appear to harm the unborn baby. ...

  19. MicroRNA Related Polymorphisms and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer....... We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41......,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated...

  20. MicroRNA related polymorphisms and breast cancer risk

    NARCIS (Netherlands)

    S. Khan (Sofia); D. Greco (Dario); K. Michailidou (Kyriaki); R.L. Milne (Roger); T.A. Muranen (Taru); T. Heikkinen (Tuomas); K. Aaltonen (Kirsimari); J. Dennis (Joe); M.K. Bolla (Manjeet); J. Liu (Jianjun); P. Hall (Per); A. Irwanto (Astrid); M.K. Humphreys (Manjeet); J. Li (Jingmei); K. Czene (Kamila); J. Chang-Claude (Jenny); R. Hein (Rebecca); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); J. Peto (Julian); I. dos Santos Silva (Isabel); N. Johnson (Nichola); L.J. Gibson (Lorna); A. Aitken; J.L. Hopper (John); H. Tsimiklis (Helen); M. Bui (Minh); E. Makalic (Enes); D.F. Schmidt (Daniel); M.C. Southey (Melissa); C. Apicella (Carmel); J. Stone (Jennifer); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); A. Meindl (Alfons); R.K. Schmutzler (Rita); B. Müller-Myhsok (B.); P. Lichtner (Peter); C. Turnbull (Clare); N. Rahman (Nazneen); S.J. Chanock (Stephen); D. Hunter (David); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); F.B.L. Hogervorst (Frans); P.A. Fasching (Peter); A. Schrauder (André); A.B. Ekici (Arif); M.W. Beckmann (Matthias); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); P.M. Zamora (Pilar M.); J.I.A. Perez (Jose Ignacio Arias); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L.L. March (Loic Le); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); M. Shah (Mitul); R.N. Luben (Robert); J. Brown (Judith); F.J. Couch (Fergus); X. Wang (X.); C. Vachon (Celine); J.E. Olson (Janet); D. Lambrechts (Diether); M. Moisse (Matthieu); R. Paridaens (Robert); M.R. Christiaens (Marie Rose); P. Guénel (Pascal); T. Truong (Thérèse); P. Laurent-Puig (Pierre); C. Mulot (Claire); F. Marme (Frederick); B. Burwinkel (Barbara); A. Schneeweiss (Andreas); C. Sohn (Christof); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); I.L. Andrulis (Irene); J.A. Knight (Julia); S. Tchatchou (Srine); A.-M. Mulligan (Anna-Marie); T. Dörk (Thilo); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); H. Anton-Culver (Hoda); H. Darabi (Hatef); M. Eriksson (Mats); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); J. Lissowska (Jolanta); L.A. Brinton (Louise); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); V. Kristensen (Vessela); S. Slager (Susan); A.E. Tol (Ama E.); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); A. Lindblom (Annika); S. Margolin (Sara); P. Radice (Paolo); P. Peterlongo (Paolo); M. Barile (Monica); P. Mariani (Paolo); M.J. Hooning (Maartje); J.W.M. Martens (John); J. Margriet Collée; A. Jager (Agnes); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); G.G. Giles (Graham); C.A. McLean (Catriona Ann); H. Brauch (Hiltrud); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); H.B. The Genica Network (Hermann Brenner); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A.J. Swerdlow (Anthony ); A. Ashworth (Alan); N. Orr (Nick); M. Jones (Michael); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); A. Mannermaa (Arto); U. Hamann (Ute); G. Chenevix-Trench (Georgia); C. Blomqvist (Carl); K. Aittomäki (Kristiina); D.F. Easton (Douglas); H. Nevanlinna (Heli)

    2014-01-01

    textabstractGenetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility

  1. Breast Cancer Chemotherapy and Your Heart

    Science.gov (United States)

    ... American Heart Association Cardiology Patient Page Breast Cancer Chemotherapy and Your Heart Christine Unitt , Kamaneh Montazeri , Sara ... cancer treatments. Breast cancer treatments include the following: Chemotherapy involves drugs that are intended to kill the ...

  2. Manganese Superoxide Dismutase Val-9Ala Polymorphism and Breast Cancer Susceptibility: A Meta-analysis%MnSOD基因Val-9Ala多态性与乳腺癌易感性关系的Meta分析

    Institute of Scientific and Technical Information of China (English)

    孙国贵; 王雅棣; 王士杰; 郑明民; 程云杰; 李成林; 柴红

    2011-01-01

    Objective To explore the association between manganese superoxide dismutase (MnSOD) Val-9Ala polymorphism and breast cancer risk and to investigate the interaction with menopausal status by meta-analysis. Methods Such databases as The Cochrane Libtary (Issuel, 2010), Pubmed, CBM, CNKI and WanFang Data were searched from the date of their establishment to October, 2010, and the case-control studies of MnSOD Val-9Ala polymorphism and breast cancer risk were collected according to the inclusion and exclusion criteria. Then the quality of the included trials was assessed and meta-analysis was performed by RevMan 4.2.10 software. Results A total of 14 studies involving 17 842 patients were included. The results of meta-analyses showed no significant relation between MnSOD Val-9Ala polymorphism and the breast cancer susceptibility (Val/Ala vs. Val/Val: OR=1.04, 9596CI 0.93 to 1.17; Ala/Ala vs. Val/ Val: OR=1.12, 95%CI 0.95 to 1.33; Ala/Ala vs. Val/Ala+Val/Val: OR=1.06, 95%CI 0.93 to 1.20; Val/Ala+ Ala/Ala vs. Val/ Val: OR=1.06, 9596CI 0.94 to 1.10). However, in the subgroup analysis, the breast cancer risk significantly increased for premenopausal women (Val/Ala+Ala/Ala vs. Val/Val: OR=1.15, 95%CI 1.01 tol.31). Conclusion This meta-analysis suggests that the MnSOD Val-9Ala polymorphism is not significantly associated with the breast cancer susceptibility, but it may increase the risk of breast cancer in the presence of menopausal state.%目的 评价锰超氧化物歧化酶(MnSOD)基因Val-9Ala多态性与乳腺癌易感性及经期状态的关系.方法 计算机检索Cochrane Library(2010年第1期)、PubMed、CNKI、CBM和万方数据库,按照纳入与排除标准选择相关的病例对照试验,检索时限均为建库至2010年10月.在提取资料和评价质量后,采用RevMan 4.2.10软件进行Meta分析.结果 共纳入14个研究,合计17 842例患者.Meta分析结果显示,MnSOD基因Val-9Ala多态性与乳腺癌易感性无关[ Val/Ala vs.Val/Val:OR=1

  3. Association of CASP3 polymorphisms and its haplotypes with susceptibility of breast cancer%CASP3基因多态及单体型分布与乳腺癌危险性的关联研究

    Institute of Scientific and Technical Information of China (English)

    倪勤; 刘冰; 金明娟; 马新源; 姚开颜; 李其龙; 陈坤

    2011-01-01

    Objective: To investigate the association of Caspase3 (CASP3) polymorphisms with susceptibility of breast cancer in Chinese Han population.Methods: In this population-based casecontrol study, 251 cases with breast cancers and 251 matched controls in terms of habitation and age ( ±5 years) were recruited.Rs4647693 ,rs2696056,rs4647610 were selected as TagSNPs in CASP3 gene and genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.The haplotype distribution was estimated and compared by PHASE software.Results: There was significant association between menarche age and breast cancer (P = 0.007 ), as well as the early pregnancy age and breast cancer ( P = 0.002).No significant differences were detected in the distribution of CASP3 genotype and haplotype frequencies between breast cancer patients and controls.The GGA was the most common haplotype both in cases and controls.Conclusion: CASP3 polymorphisms and its haplotypes were not related to the susceptibility of breast cancer.%目的:探讨CASP3基因单核苷酸多态性与乳腺癌易感性的关系.方法:采用以自然人群为基础的病例对照设计,对251例乳腺癌患者与以1:1频数匹配原则获得的251例对照者进行研究.从HapMap数据库中获取CASP3的TagSNPs数据,根据入选标准确定rs4647693、rs2696056和rs4647610共3个TagSNPs进行分析.基因分型采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)方法,单体型分析采用PHASE软件进行估计和比较.结果:以对照组初潮年龄中位数(16岁)分组,乳腺癌组和对照组间初潮年龄有统计学差异(P=0.007);以对照组平均初孕年龄中位数(24岁)分组,两组间分布有统计学差异(P=0.002).年龄、吸烟、饮酒、饮茶、生理生育史等因素在乳腺癌组和对照组中分布无统计学差异.CASP3 TagSNPs的多态基因型在两组间的分布均无统计学上的差异(P>0.05),经年龄、吸烟、饮酒、生理生育

  4. Miscellaneous syndromes and their management: occult breast cancer, breast cancer in pregnancy, male breast cancer, surgery in stage IV disease.

    Science.gov (United States)

    Colfry, Alfred John

    2013-04-01

    Surgical therapy for occult breast cancer has traditionally centered on mastectomy; however, breast conservation with whole breast radiotherapy followed by axillary lymph node dissection has shown equivalent results. Patients with breast cancer in pregnancy can be safely and effectively treated; given a patient's pregnancy trimester and stage of breast cancer, a clinician must be able to guide therapy accordingly. Male breast cancer risk factors show strong association with BRCA2 mutations, as well as Klinefelter syndrome. Several retrospective trials of surgical therapy in stage IV breast cancer have associated a survival advantage with primary site tumor extirpation.

  5. Breast Cancer Types: What Your Type Means

    Science.gov (United States)

    ... what treatments are most effective. Parts of the breast where cancer begins include: Milk ducts. Ductal carcinoma is the most common type of breast cancer. This type of cancer forms in the lining of a milk duct within your breast. The ducts carry breast ...

  6. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also

  7. In Search of Breast Cancer Culprits: Suspecting the Suspected and the Unsuspected

    OpenAIRE

    Dimri, Goberdhan P.

    2008-01-01

    I would like to welcome breast cancer research community to the fi rst editorial of our newest journal “Breast Cancer: Basic and Clinical Research”. In pursuit of breast cancer culprits, we have come a long way since the early 90’s when the first breast cancer susceptibility gene BRCA1 was mapped and cloned. In the past few years, several new loci associated with the various degree of breast cancer risk have been identified using “Candidate Gene Association Study (CGAS) and Genome-Wide Associ...

  8. Tissue specific DNA methylation in normal human breast epithelium and in breast cancer.

    Science.gov (United States)

    Avraham, Ayelet; Cho, Sean Soonweng; Uhlmann, Ronit; Polak, Mia Leonov; Sandbank, Judith; Karni, Tami; Pappo, Itzhak; Halperin, Ruvit; Vaknin, Zvi; Sella, Avishay; Sukumar, Saraswati; Evron, Ella

    2014-01-01

    Cancer is a heterogeneous and tissue-specific disease. Thus, the tissue of origin reflects on the natural history of the disease and dictates the therapeutic approach. It is suggested that tissue differentiation, mediated mostly by epigenetic modifications, could guide tissue-specific susceptibility and protective mechanisms against cancer. Here we studied breast specific methylation in purified normal epithelium and its reflection in breast cancers. We established genome wide methylation profiles of various normal epithelial tissues and identified 110 genes that were differentially methylated in normal breast epithelium. A number of these genes also showed methylation alterations in breast cancers. We elaborated on one of them, TRIM29 (ATDC), and showed that its promoter was hypo-methylated in normal breast epithelium and heavily methylated in other normal epithelial tissues. Moreover, in breast carcinomas methylation increased and expression decreased whereas the reverse was noted for multiple other carcinomas. Interestingly, TRIM29 regulation in breast tumors clustered according to the PAM50 classification. Thus, it was repressed in the estrogen receptor positive tumors, particularly in the more proliferative luminal B subtype. This goes in line with previous reports indicating tumor suppressive activity of TRIM29 in estrogen receptor positive luminal breast cells in contrast to oncogenic function in pancreatic and lung cancers. Overall, these findings emphasize the linkage between breast specific epigenetic regulation and tissue specificity of cancer.

  9. Consumer Health Education. Breast Cancer.

    Science.gov (United States)

    Arkansas Univ., Fayetteville, Cooperative Extension Service.

    This short booklet is designed to be used by health educators when teaching women about breast cancer and its early detection and the procedure for breast self-examination. It includes the following: (1) A one-page teaching plan consisting of objectives, subject matter, methods (including titles of films and printed materials), target audience,…

  10. Genetics of Breast and Gynecologic Cancers (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the genetics of breast and gynecologic cancers, including information about specific genes and family cancer syndromes. The summary also contains information about interventions that may influence the risk of developing breast and gynecologic cancers in individuals who may be genetically susceptible to these diseases. Psychosocial issues associated with genetic testing are also discussed.

  11. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10...

  12. Understanding your breast cancer risk

    Science.gov (United States)

    Skip navigation U.S. National Library of Medicine The navigation menu has been collapsed. ... page: //medlineplus.gov/ency/patientinstructions/000830.htm Understanding your breast cancer risk To use the sharing features ...

  13. Nonestrogenic drugs and breast cancer.

    Science.gov (United States)

    Danielson, D A; Jick, H; Hunter, J R; Stergachis, A; Madsen, S

    1982-08-01

    The relation between breast cancer and selected nonestrogenic drugs was evaluated in the Group Health Cooperative of Puget Sound, Seattle, Washington, a prepaid health care organization with computerized information on diagnoses and outpatient drug use. No important positive associations with breast cancer were found in a follow-up study of 302 women aged 35-74 years. These women were newly diagnosed with breast cancer in 1977-1980 and were studied in relation to exposure in the six months prior to diagnosis to one or more of the following drugs: diazepam, digitalis glycosides, medroxyprogesterone acetate, methyldopa, metronidazole, phenothiazines, tricyclic antidepressants, thiazides, thyroid/levothyroxine sodium, or spironolactone. A modest association between recent reserpine use and breast cancer was present (risk ratio = 1.7, 90% confidence interval 0.9-3.3).

  14. Palbociclib for Advanced Breast Cancer

    Science.gov (United States)

    An interim analysis of the PALOMA3 trial shows that women with hormone receptor-positive metastatic breast cancer who received palbociclib plus fulvestrant had longer progression-free survival rates than women who received a placebo plus fulvestrant.

  15. Breast cancer. Part 3: advanced cancer and psychological implications.

    Science.gov (United States)

    Harmer, Victoria

    This is the last article in this 3-part series on breast cancer. The previous two articles have outlined the principles behind breast awareness and breast health, detailing common benign breast diseases, types of breast cancer and staging, and treatment for breast cancer, including surgery, chemotherapy, radiotherapy and endocrine treatment. The series concludes by giving information on advanced disease, including when a patient presents late with a fungating breast lesion, or if the disease has metastasized from the breast to other organs. Lymphoedema is also described and discussed, and the latter half of this article discusses psychological implications of breast cancer, from diagnosis through the individual treatments.

  16. Metals and breast cancer.

    Science.gov (United States)

    Byrne, Celia; Divekar, Shailaja D; Storchan, Geoffrey B; Parodi, Daniela A; Martin, Mary Beth

    2013-03-01

    Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer.

  17. RELATIONSHIP BETWEEN GENETIC POLYMORPHISMS OF N- ACETYLTRANSFERASE 2 AND SUSCEPTIBILITY OF BREAST CANCER IN SHANDONG DISTRICT%山东地区NAT2基因多态性与乳腺癌易感性的研究

    Institute of Scientific and Technical Information of China (English)

    王萍玉; 谢书阳; 张超; 高宗华

    2011-01-01

    [目的]研究NAT2基因多态性与乳腺癌易感性的关系.[方法]采用1:1配对病例-对照研究,对山东地区100例乳腺癌患者和100例健康对照者采用聚合酶链反应-限制性片段长度多态性分析(PCR- RFLP),检测NAT2基因多态性,分析NAT2基因多态性与乳腺癌易感性之间的关系.[结果]携带NAT2/5B等位基因者患乳腺癌 危险性增加(OR=2.38, 95%CI=1.54~3.67);幔基因型者患乳腺癌的危险性是快基因型者2.28倍(OR=2.28,95%CI=1.12~4.63);是中间基因型者2.14倍(OR=2.14,95%CI=1.08~4.24);慢型乙酰化患乳腺癌的危险性是快型乙酰化的2.11倍(OR=2.11, 95%CI=1.15-3.88).[结论]NAT2基因多态性在乳腺癌的遗传发病机制中起重要作用,携带NAT2/5B等位基因、慢基因型及慢型乙酰化能增加患乳腺癌的易感性.%[Objective] To evaluate the possible relationship between N-acetyltransferase 2 (NAT2) polymorphisms and breast cancer. [Methods] In the 1: 1 matched case-control study, NAT2 genotypes were determined by PCR-RFLP method in 100 patients with breast cancer and 100 healthy controls. The possible relationship between NAT2 polymorphisms and lung cancer risk was analyzed. [Results] NAT2*5B allele was associated with an increased risk of breast cancer (odds ratio (OR) 2.38 (95% confidence interval (95%Cl) 1.54-3.67; slow genotype was 2.28 times to rapid genotype (OR = 2.28, 95%CI= 1.12-4.63) and 2.14 times to intermediate genotype (OR - 2.14, 95%C/=1.08-4.24); and NAT2 slow acetylates increased risk of breast cancer (OR = 2.11, 95%C/ = 1.15-3.88). [Conclusion] These findings suggest that NAT2 genetic polymorphism may be associated with breast cancer susceptibility. People with NAT2*5B allele or NAT2 slow genotype or NAT2 slow acetylates have higher breast cancer risk.

  18. Association of breast cancer risk with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Adoue, Véronique

    2016-01-01

    in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage...... candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and....../or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating...

  19. Iodide transport and breast cancer.

    Science.gov (United States)

    Poole, Vikki L; McCabe, Christopher J

    2015-10-01

    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer.

  20. Screening for Breast Cancer: Detection and Diagnosis

    Science.gov (United States)

    ... please turn JavaScript on. Feature: Screening For Breast Cancer Detection and Diagnosis Past Issues / Summer 2014 Table of Contents Screening ... Cancer" Articles #BeBrave: A life-saving test / Breast Cancer Basics and ... and Diagnosis / Staging and Treatment / Selected National Cancer Institute Breast ...

  1. Occupational exposure and risk of breast cancer

    OpenAIRE

    FENGA, CONCETTINA

    2016-01-01

    Breast cancer is a multifactorial disease and the most commonly diagnosed cancer in women. Traditional risk factors for breast cancer include reproductive status, genetic mutations, family history and lifestyle. However, increasing evidence has identified an association between breast cancer and occupational factors, including environmental stimuli. Epidemiological and experimental studies demonstrated that ionizing and non-ionizing radiation exposure, night-shift work, pesticides, polycyclic...

  2. Metabolic polymorphisms and cancer susceptibility.

    Science.gov (United States)

    Smith, G; Stanley, L A; Sim, E; Strange, R C; Wolf, C R

    1995-01-01

    The vast majority of cancers arise as a consequence of exposure to environmental agents that are toxic or mutagenic. In response to this, all higher organisms have evolved complex mechanisms by which they can protect themselves from environmental challenge. In many cases, this involves an adaptive response in which the levels of expression of enzymes active in the metabolism and detoxification of the foreign chemical are induced. The best characterized of these enzyme systems are the cytochrome P450s, the GSTs and the NATs. An unfortunate consequence of many of these reactions, however, is the creation of a toxic or mutagenic reaction product from chemicals that require metabolic activation before realizing their full carcinogenic potential. Altered expression of one or more of these drug metabolizing enzymes can therefore be predicted to have profound toxicological consequences. Genetic polymorphisms with well defined associated phenotypes have now been characterized in P450, GST and NAT genes. Indeed, many of these polymorphisms have been associated with decreased or increased metabolism of many tumour promoters and chemical carcinogens and hence offer protection against or increased susceptibility to many distinct tumour types.

  3. Alcohol and breast cancer: reconciling epidemiological and molecular data.

    Science.gov (United States)

    Zakhari, Samir; Hoek, Jan B

    2015-01-01

    Breast cancer is the most diagnosed cancer in women worldwide. Epidemiological studies have suggested a possible causative role of alcohol consumption as a risk factor for breast cancer. However, such conclusions should be interpreted with considerable caution for several reasons. While epidemiological studies can help identify the roots of health problems and disease incidence in a community, they are by necessity associative and cannot determine cause and effect relationships. In addition, all these studies rely on self-reporting to determine the amount and type of alcoholic beverage consumed, which introduces recall bias. This is documented in a recent study which stated that the apparent increased risk of cancer among light-moderate drinkers may be "substantially due to underreporting of intake." Another meta-analysis about alcohol and breast cancer declared "the modest size of the association and variation in results across studies leave the causal role of alcohol in question." Furthermore, breast cancer develops over decades; thus, correlations between alcohol consumption and breast cancer cannot be determined in epidemiological studies with windows of alcohol exposure that captures current or recent alcohol intake, after clinical diagnosis. Numerous risk factors are involved in breast carcinogenesis; some are genetic and beyond the control of a woman; others are influenced by lifestyle factors. Breast cancer is a heterogeneous and polygenic disease which is further influenced by epigenetic mechanisms that affect the transciptomes, proteomes and metabolomes, and ultimately breast cancer evolution. Environmental factors add another layer of complexity by their interactions with the susceptibility genes for breast cancer and metabolic diseases. The current state-of-knowledge about alcohol and breast cancer association is ambiguous and confusing to both a woman and her physician. Confronting the huge global breast cancer issue should be addressed by sound

  4. Perspectives of breast cancer etiology: synergistic interaction between smoking and exogenous hormone use

    Institute of Scientific and Technical Information of China (English)

    Hong-Hong Zhu; Cao-Hui Hu; Paul Strickland

    2011-01-01

    To explore breast cancer etiology, literature was searched using Medline. We explored the (1)plausibility of smoking in breast carcinogenesis; (2) physiological properties, susceptibility windows, and exposure timing of breast cells; (3) role of exogenous hormones in breast carcinogenesis; (4) biological mechanism of synergistic interactions between smoking and exogenous hormones in breast carcinogenesis; and (5) evidence from epidemiologic studies and the fitted secular trend between smoking rate, exogenous hormone use, and breast cancer incidence in past decades. We deduced that exogenous hormone use per se is not a significant cause and its association with breast cancer is distorted by chronic exposure to environmental carcinogens, especially smoking. We hypothesize that smoking is one of the causes of breast cancer and that this causality is strengthened by synergistic interaction between smoking and exogenous hormone use. Physicians should be cautious of prescribing exogenous hormones for those with chronic exposure to environmental carcinogens to prevent breast cancer.

  5. PARP-1基因Val762Ala多态性与乳腺癌易感性的关系%Relation between PARP-1 Val762Ala Polymorphisms and Susceptibility to Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    王昆鹏; 杨淋清; 刘建军; 庄志雄; 任泽舫

    2011-01-01

    [ Objective] To investigate the association between the Val762Ala polymorphisms of the poly( ADP-ribose) polymerase-1 (PARP-1) gene and susceptibility to breast cancer in a Chinese population. [ Methods] PARP-1 Val762Ala genotyping were conducted in 837 breast carcinoma patients and 865 cancer-free controls by Sequenom MassARRAY (SNP) genotype analysis technique. The associations between genotypes and breast cancer risk were estimated by computing the Ors and their 95% Cis from non-conditional logistic regression analyses. Experiment data was analyzed by using SPSS13.0 software. [Results]The differences of genotype IT, TC, Ccand TC + CC distributions between patients and controls were not significant, Off [95% CI] values were 1, 1. 07 (0.83 -1.39), 1.03 (0.70 ~ 1.467, 1.08 (0.82 ~ 1. 33). [ Conclusion ] Val762Ala is not obviously correlated with susceptibility to breast cancer. tThe PARP-1 Val762Ala polymorphisms may not play a role in the etiology of breast cancer.%目的 探讨DNA修复基因聚腺苷二磷酸核糖聚合酶-1(PARP-1)单核苷酸多态性位点Val762Ala基因多态性与中国人群乳腺癌易感性的关系.方法 采用Sequenom MassARRAY单核苷酸多态性(SNP)基因型分析技术对经病理确诊的原发性乳腺癌女性患者837例(病例组)和健康对照组865例进行PARP-1基因单核苷酸位点Val762Ala基因分型.以非条件logistic回归计算优势比(odds ratio,OR)及其95%可信区间(a)评价各基因型与乳腺癌发病风险的关系.数据均由SPSS13.0统计软件分析.结果 病例组和对照组中TT、TC、CC和TC+CC4种基因型的分布分别差异无统计学意义,OR[95%CI]值分别为1、1.07(0.83~1.39)、1.03(0.70~1.36)、1.08(0.82 ~1.33).结论 Val762Ala基因型与乳腺癌易感性无显著相关性.PARP-1基因Val762Ala多态性在乳腺癌发病过程中无作用.

  6. Microwaves for breast cancer treatments

    Directory of Open Access Journals (Sweden)

    Heba Abdelhamid Elkayal

    2015-12-01

    Full Text Available Hyperthermia is potentially an effective method for the treatment of cancer, especially breast cancer tumors. One of the most attractive attributes of hyperthermia is the possibility of providing therapeutic benefit noninvasively, minimizing side effects. To be effective, a hyperthermia treatment must selectively heat the cancerous tissue, elevating the temperature in the tumor without exposing healthy tissue to excessive temperature elevations. In this paper, a suggested simple model of Annular Phased Array (APA using eight half wavelength linear dipoles is presented. New software (COMSOL MULTIPHYSICS is used to calculate the temperature distribution inside a model of a three layered breast (skin, breast tissue, and tumor. In addition, the effect of changing the amplitude and phases of the array elements on the temperature distributions and the conditions on the values of the phases are demonstrated in order to achieve the objective of hyperthermia for breast tumor treatment.

  7. The Associations of Single Nucleotide Polymorphisms in miR196a2, miR-499, and miR-608 With Breast Cancer Susceptibility

    Science.gov (United States)

    Dai, Zhi-Ming; Kang, Hua-Feng; Zhang, Wang-Gang; Li, Hong-Bao; Zhang, Shu-Qun; Ma, Xiao-Bin; Lin, Shuai; Wang, Meng; Feng, Yan-Jing; Liu, Kang; Liu, Xing-Han; Xu, Peng; Dai, Zhi-Jun

    2016-01-01

    Abstract MicroRNAs (miRNAs) play an important role as regulators of tumor suppressors and oncogenes in cancer-related processes. Single nucleotide polymorphisms (SNPs) in miRNAs have been shown to be relevant to various different cancers, including breast cancer (BC). The aim of this study was to estimate the associations between miRNA-related gene polymorphisms (miR-196a2, miR-499, and miR-608) and the risk of BC in a Chinese population. Gene polymorphisms were analyzed in 1143 subjects (controls = 583; BC = 560). The 3 SNPs were genotyped using the Sequenom Mass-ARRAY platform. The associations between the SNP frequencies and BC were assessed by computing odds ratios (ORs) and 95% confidence intervals (95% CIs), as well as by applying Chi-square tests. The miR-196a2 (rs11614913) T allele was associated with a decreased risk of BC based on results from dominant (OR = 0.67, 95% CI = 0.52–0.86), recessive (OR = 0.65, 95% CI = 0.48–0.86), and allele models (OR = 0.73, 95% CI = 0.62–0.86). In contrast, the miR-499 (rs3746444) AG/GG genotypes were associated with an increased risk of BC (OR = 1.45, 95% CI = 1.10–1.91), and miR-608 (rs4919510) was not significantly associated with BC risk. Our study suggested that the polymorphisms of rs11614913 and rs3746444 may be associated with BC risk in Chinese individuals. PMID:26886638

  8. What Is Breast Cancer in Men?

    Science.gov (United States)

    ... of the breast are glandular tissue (they make breast milk in women), so cancers starting in these areas are sometimes called adenocarcinomas. ... invasive) lobular carcinoma (ILC) This type of breast cancer starts in ... that, in women, produce breast milk) and grows into the fatty tissue of the ...

  9. Endocrine determinants of breast density and breast cancer

    NARCIS (Netherlands)

    Verheus, M.

    2007-01-01

    Worldwide, breast cancer is the most common malignancy among females. The total breast area on a mammogram can be dived in a radiologicaly dense area (glandular and stromal tissue) and a non-dense area (mainly fat tissue). Women with a high proportion of dense breast tissue (percent breast density)

  10. Propranolol and survival from breast cancer

    DEFF Research Database (Denmark)

    Cardwell, Chris R; Pottegård, Anton; Vaes, Evelien

    2016-01-01

    BACKGROUND: Preclinical studies have demonstrated that propranolol inhibits several pathways involved in breast cancer progression and metastasis. We investigated whether breast cancer patients who used propranolol, or other non-selective beta-blockers, had reduced breast cancer-specific or all......-cause mortality in eight European cohorts. METHODS: Incident breast cancer patients were identified from eight cancer registries and compiled through the European Cancer Pharmacoepidemiology Network. Propranolol and non-selective beta-blocker use was ascertained for each patient. Breast cancer-specific and all......-analysis techniques. Dose-response analyses by number of prescriptions were also performed. Analyses were repeated investigating propranolol use before cancer diagnosis. RESULTS: The combined study population included 55,252 and 133,251 breast cancer patients in the analysis of breast cancer-specific and all...

  11. Heavy Metal Exposure in Predicting Peripheral Neuropathy in Patients With Stage I-III Breast Cancer Undergoing Chemotherapy

    Science.gov (United States)

    2015-05-01

    Male Breast Cancer; Neurotoxicity; Peripheral Neuropathy; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  12. Alternative Dosing of Exemestane Before Surgery in Treating Postmenopausal Patients With Stage 0-II Estrogen Positive Breast Cancer

    Science.gov (United States)

    2017-02-17

    Estrogen Receptor Positive; Postmenopausal; Stage 0 Breast Cancer; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer

  13. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  14. Lung cancer after treatment for breast cancer.

    Science.gov (United States)

    Lorigan, Paul; Califano, Raffaele; Faivre-Finn, Corinne; Howell, Anthony; Thatcher, Nick

    2010-12-01

    Breast cancer is the most common cancer in women, and the second most common cause of cancer death after lung cancer. Improvements in the outcome of breast cancer mean that more patients are living longer and are, therefore, at risk of developing a second malignancy. The aim of this review is to present the current understanding of the risk of lung cancer arising in patients previously treated for early stage breast cancer. We review data on the effect of treatment factors (ie, surgery type, radiotherapy technique, and adjuvant chemotherapy) and patient factors (ie, age and smoking) on the risk of developing a subsequent lung cancer. The evidence suggests that older radiotherapy techniques were associated with a substantially increased risk of developing lung cancer in the ipsilateral lung, but there is no clear evidence of an increased risk with modern techniques. Smoking is an important risk factor, and increases the risk of lung cancer in those receiving radiotherapy. Adjuvant chemotherapy is not significantly associated with an increased risk. The risk of developing lung cancer increases with time elapsed since treatment, but any effect of age at treatment is unclear.

  15. Breast Cancer and the Environment Research Program

    Science.gov (United States)

    The Breast Cancer and the Environment Research Program supports a multidisciplinary network of scientists, clinicians, and community partners to examine the effects of environmental exposures that may predispose a woman to breast cancer throughout her life.

  16. THERAPEUTIC OPTIONS FOR BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Milena Georgescu

    2011-12-01

    Full Text Available Breast cancer remains a major public health problem, being the second cause of cancer death in women. There is a marked tendency to restrict the extension of surgical gesture, which directly leads to two different attitudes: radical surgery and conservative surgery, to which, at least in our country, there are still some delays. Prospective and retrospective studies have shown that, in 20 years, conservative and radical therapy had about the same rate of survival and disease-free interval, at least for stage I and II breast cancer, the only real counterargument against conservative surgery being that, in principle, the higher rate of recurrence local constraint can be solved by postoperative radiotherapy. Finally, the survival rate is the main parameter of evaluation, assessing the effectiveness of the treatment in breast cancer, and in all its other forms.

  17. Multi-epitope Folate Receptor Alpha Peptide Vaccine, Sargramostim, and Cyclophosphamide in Treating Patients With Triple Negative Breast Cancer

    Science.gov (United States)

    2017-01-24

    Bilateral Breast Carcinoma; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma; Unilateral Breast Carcinoma

  18. Evaluate Risk/Benefit of Nab Paclitaxel in Combination With Gemcitabine and Carboplatin Compared to Gemcitabine and Carboplatin in Triple Negative Metastatic Breast Cancer (or Metastatic Triple Negative Breast Cancer)

    Science.gov (United States)

    2016-10-25

    Breast Tumor; Breast Cancer; Cancer of the Breast; Estrogen Receptor- Negative Breast Cancer; HER2- Negative Breast Cancer; Progesterone Receptor- Negative Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer; Triple-negative Metastatic Breast Cancer; Metastatic Breast Cancer

  19. Internet Use and Breast Cancer Survivors

    Science.gov (United States)

    Muhamad, Mazanah; Afshari, Mojgan; Mohamed, Nor Aini

    2011-01-01

    A survey was administered to 400 breast cancer survivors at hospitals and support group meetings in Peninsular Malaysia to explore their level of Internet use and factors related to the Internet use by breast cancer survivors. Findings of this study indicated that about 22.5% of breast cancer survivors used Internet to get information about breast…

  20. Angiogenesis in male breast cancer

    Directory of Open Access Journals (Sweden)

    Kanthan Rani

    2005-03-01

    Full Text Available Abstract Background Male breast cancer is a rare but aggressive and devastating disease. This disease presents at a later stage and in a more advanced fashion than its female counterpart. The immunophenotype also appears to be distinct when compared to female breast cancer. Angiogenesis plays a permissive role in the development of a solid tumor and provides an avenue for nutrient exchange and waste removal. Recent scrutiny of angiogenesis in female breast cancer has shown it to be of significant prognostic value. It was hypothesized that this holds true in invasive ductal carcinoma of the male breast. In the context of male breast cancer, we investigated the relationship of survival and other clinico-pathological variables to the microvascular density of the tumor tissue. Methods Seventy-five cases of primary male breast cancer were identified using the records of the Saskatchewan Cancer Agency over a period of 26 years. Forty-seven cases of invasive ductal carcinoma of the male breast had formalin-fixed paraffin-embedded tissue blocks that were suitable for this study. All cases were reviewed. Immunohistochemical staining was performed for the angiogenic markers (cluster designations 31 (CD31, 34 (CD34 and 105 (CD105, von Willebrand factor (VWF, and vascular endothelial growth factor (VEGF. Microvascular density (MVD was determined using average, centre, and highest microvessel counts (AMC, CMC, and HMC, respectively. Statistical analyses compared differences in the distribution of survival times and times to relapse between levels of MVD, tumor size, node status and age at diagnosis. In addition, MVD values were compared within each marker, between each marker, and were also compared to clinico-pathological data. Results Advanced age and tumor size were related to shorter survival times. There were no statistically significant differences in distributions of survival times and times to relapse between levels of MVD variables. There was no

  1. Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors and breast cancer risk

    DEFF Research Database (Denmark)

    Blackburn, Anneke C; Hill, Linda Z; Roberts, Amy L;

    2007-01-01

    Low-penetrance breast cancer susceptibility alleles seem to play a significant role in breast cancer risk but are difficult to identify in human cohorts. A genetic screen of 176 N2 backcross progeny of two Trp53(+/-) strains, BALB/c and C57BL/6, which differ in their susceptibility to mammary...

  2. Secretory breast cancer. Case report.

    Science.gov (United States)

    Lombardi, A; Maggi, S; Bersigotti, L; Lazzarin, G; Nuccetelli, E; Amanti, C

    2013-04-01

    Secretory carcinoma of the breast is a rare tumor initially described in children but occurring equally in adult population. This unusual breast cancer subtype has a generally favorable prognosis, although several cases have been described in adults with increased aggressiveness and a risk of metastases. However, surgery is still considered the most appropriate treatment for this pathology. We describe the case of a 50 -year-old woman who has undergone a breast conservative surgery for a little tumor, preoperatively diagnosticated by a fine needle aspiration biopsy (FNAB) as a well differentiated infiltrating carcinoma.

  3. Intensity Modulated Accelerated Partial Breast Irradiation Before Surgery in Treating Older Patients With Hormone Responsive Stage 0-I Breast Cancer

    Science.gov (United States)

    2016-05-04

    Ductal Breast Carcinoma in Situ; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Ductal Breast Carcinoma With Predominant Intraductal Component; Lobular Breast Carcinoma in Situ; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Progesterone Receptor-positive Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Tubular Ductal Breast Carcinoma

  4. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression

    DEFF Research Database (Denmark)

    Wyszynski, Asaf; Hong, Chi-Chen; Lam, Kristin

    2016-01-01

    Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q...

  5. Inflammatory breast cancer: an overview.

    Science.gov (United States)

    van Uden, D J P; van Laarhoven, H W M; Westenberg, A H; de Wilt, J H W; Blanken-Peeters, C F J M

    2015-02-01

    Inflammatory breast cancer (IBC) is the most aggressive entity of breast cancer. Management involves coordination of multidisciplinary management and usually includes neoadjuvant chemotherapy, ablative surgery if a tumor-free resection margin is expected and locoregional radiotherapy. This multimodal therapeutic approach has significantly improved patient survival. However, the median overall survival among women with IBC is still poor. By elucidating the biologic characteristics of IBC, new treatment options may become available. We performed a comprehensive review of the English-language literature on IBC through computerized literature searches. The objective of the current review is to present an overview of the literature related to the biology, imaging and multidisciplinary treatment of inflammatory breast cancer.

  6. Introduction to cancer genetic susceptibility syndromes.

    Science.gov (United States)

    McGee, Rose B; Nichols, Kim E

    2016-12-02

    The last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.

  7. Individual differences in emotional expressivity predict oxytocin responses to cortisol administration : Relevance to breast cancer?

    NARCIS (Netherlands)

    Tops, Mattie; van Peer, Jacobien M.; Korf, Jakob

    2007-01-01

    Reduced emotional expression has been consistently related to susceptibility or fast progression of breast cancer. Breast cancer development and reduced emotional expression have both been related to rejection- and separation-related conditions. The neuropeptide oxytocin is low in response to reject

  8. Prediction of breast cancer risk based on profiling with common genetic variants

    DEFF Research Database (Denmark)

    Mavaddat, Nasim; Pharoah, Paul D P; Michailidou, Kyriaki

    2015-01-01

    BACKGROUND: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. M...

  9. Prediction of breast cancer risk based on profiling with common genetic variants

    NARCIS (Netherlands)

    N. Mavaddat (Nasim); P.D.P. Pharoah (Paul); K. Michailidou (Kyriaki); J.P. Tyrer (Jonathan); M.N. Brook (Mark N.); M.K. Bolla (Manjeet); Q. Wang (Qing); J. Dennis (Joe); A.M. Dunning (Alison); M. Shah (Mitul); R.N. Luben (Robert); J. Brown (Judith); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune F.); H. Flyger (Henrik); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); J. Peto (Julian); I. dos Santos Silva (Isabel); F. Dudbridge (Frank); N. Johnson (Nichola); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; E.J. Rutgers (Emiel J.); A.J. Swerdlow (Anthony ); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); L.A. Brinton (Louise); J. Lissowska (Jolanta); F.J. Couch (Fergus); J.E. Olson (Janet); C. Vachon (Celine); V.S. Pankratz (Shane); D. Lambrechts (Diether); H. Wildiers (Hans); C. van Ongeval (Chantal); E. van Limbergen (Erik); V. Kristensen (Vessela); G. Grenaker Alnæs (Grethe); S. Nord (Silje); A.-L. Borresen-Dale (Anne-Lise); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); P.A. Fasching (Peter); L. Haeberle (Lothar); A.B. Ekici (Arif); M.W. Beckmann (Matthias); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Christof); A. Trentham-Dietz (Amy); P. Newcomb (Polly); L. Titus (Linda); K.M. Egan (Kathleen M.); D. Hunter (David); S. Lindstrom (Stephen); R. Tamimi (Rulla); P. Kraft (Peter); N. Rahman (Nazneen); C. Turnbull (Clare); A. Renwick (Anthony); S. Seal (Sheila); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); J. Benítez (Javier); M.P. Zamora (Pilar); J.I. Arias Pérez (José Ignacio); P. Menéndez (Primitiva); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); T. Dörk (Thilo); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); A. Ziogas (Argyrios); L. Bernstein (Leslie); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); E.K. Khusnutdinova (Elza); M. Bermisheva (Marina); D. Prokofyeva (Darya); Z. Takhirova (Zalina); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); P. Schürmann (Peter); M. Bremer (Michael); H. Christiansen (Hans); T.-W. Park-Simon; P. Hillemanns (Peter); P. Guénel (Pascal); T. Truong (Thérèse); F. Menegaux (Florence); M. Sanchez (Marie); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); V. Pensotti (Valeria); J. Hopper (John); H. Tsimiklis (Helen); C. Apicella (Carmel); M.C. Southey (Melissa); H. Brauch (Hiltrud); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); A.J. Sigurdson (Alice); M.M. Doody (Michele M.); U. Hamann (Ute); D. Torres (Diana); H.U. Ulmer (Hans); A. Försti (Asta); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A. Marie Mulligan (Anna); G. Chenevix-Trench (Georgia); R. Balleine (Rosemary); G.G. Giles (Graham); R.L. Milne (Roger); C.A. McLean (Catriona Ann); A. Lindblom (Annika); S. Margolin (Sara); C.A. Haiman (Christopher); B.E. Henderson (Brian); F. Schumacher (Fredrick); L. Le Marchand (Loic); U. Eilber (Ursula); S. Wang-Gohrke (Shan); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); A.M.W. van den Ouweland (Ans); L.B. Koppert (Linetta); J. Carpenter (Jane); C. Clarke (Christine); R.J. Scott (Rodney J.); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); H. Brenner (Hermann); V. Arndt (Volker); C. Stegmaier (Christa); A. Karina Dieffenbach (Aida); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); K. Offit (Kenneth); J. Vijai (Joseph); M. Robson (Mark); R. Rau-Murthy (Rohini); M. Dwek (Miriam); R. Swann (Ruth); K. Annie Perkins (Katherine); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); D. Eccles (Diana); W. Tapper (William); M. Rafiq (Meena); E.M. John (Esther M.); A.S. Whittemore (Alice); S. Slager (Susan); D. Yannoukakos (Drakoulis); A.E. Toland (Amanda); S. Yao (Song); W. Zheng (Wei); S.L. Halverson (Sandra L.); A. González-Neira (Anna); G. Pita (G.); M. Rosario Alonso; N. Álvarez (Nuria); D. Herrero (Daniel); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); M. Maranian (Melanie); S. Healey (Sue); J. Simard (Jacques); P. Hall (Per); D.F. Easton (Douglas); M. García-Closas (Montserrat)

    2015-01-01

    textabstractBackground: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is l

  10. Reconstruction for breast cancer in a nutshell.

    Science.gov (United States)

    Harmer, Victoria

    Breast cancer is a disease many will experience. Depending on the size of the cancer, the size of the host breast, and whether it is multi-focal, a mastectomy may be recommended as part of the treatment. If this is the case, an immediate breast reconstruction may be offered. This article will describe the three main types of breast reconstruction and discuss pertinent issues regarding this, including complications, surgery to the other (contraleteral) breast and potential psychological implications of this surgery.

  11. Tannic Acid Preferentially Targets Estrogen Receptor-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Brian W. Booth

    2013-01-01

    Full Text Available Research efforts investigating the potential of natural compounds in the fight against cancer are growing. Tannic acid (TA belongs to the class of hydrolysable tannins and is found in numerous plants and foods. TA is a potent collagen cross-linking agent; the purpose of this study was to generate TA-cross-linked beads and assess the effects on breast cancer cell growth. Collagen beads were stable at body temperature following crosslinking. Exposure to collagen beads with higher levels of TA inhibited proliferation and induced apoptosis in normal and cancer cells. TA-induced apoptosis involved activation of caspase 3/7 and caspase 9 but not caspase 8. Breast cancer cells expressing the estrogen receptor were more susceptible to the effects of TA. Taken together the results suggest that TA has the potential to become an anti-ER+ breast cancer treatment or preventative agent.

  12. Familial breast cancer: what the radiologist needs to know; Familiaere Brustkrebserkrankung: klinische Grundlagen und Frueherkennung

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, C.K. [Radiologische Klinik, Universitaetskliniken Bonn (Germany)

    2006-07-15

    About 10% of breast cancers are ''hereditary'', i.e. caused by a pathogenic mutation in one of the ''breast and ovarian cancer susceptibility genes'' (BRCA). The BRCA genes 1 and 2 identified to date follow an autosomal dominant inheritance pattern. A clustering of breast cancer in a family without a documented mutation and without a recognizable inheritance pattern is usually referred to as ''familial cancer''. A distinction between hereditary and familial is difficult in the individual case because not all of the genetic mutations that cause breast cancer susceptibility are known and thus amenable to genetic testing. Women who are suspected of or documented as carrying a breast cancer susceptibility gene face a substantially increased lifetime risk of breast (and ovarian) cancer ranging from 60-80% for breast and up to 40% for ovarian cancer. In addition, the disease develops at a young age (the personal risk starts increasing at age 25; average age of diagnosis is 40). BRCA-associated breast cancers tend to exhibit histologic and histochemical evidence of aggressive biologic behavior (usually grade 3, receptor negative) with very fast growth rates. In particular BRCA1-associated breast cancer may be indistinguishable from fibroadenomas: They appear as well-defined, roundish, hypoechoic masses with smooth borders, without posterior acoustic shadowing on ultrasound, without associated microcalcifications on mammography, and with strong wash-out phenomenon on breast MRI. This article reviews the different options that exist for the prevention of familial or hereditary breast cancer and the specific difficulties that are associated with the radiological diagnosis of these cancers. Lastly, an overview is given of the current evidence regarding the effectiveness of the different imaging modalities for early diagnosis of familial and hereditary breast cancer. (orig.)

  13. Interactive Gentle Yoga in Improving Quality of Life in Patients With Stage I-III Breast Cancer Undergoing Radiation Therapy

    Science.gov (United States)

    2017-01-17

    Anxiety Disorder; Depression; Ductal Breast Carcinoma in Situ; Fatigue; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  14. An update on inflammatory breast cancer

    Directory of Open Access Journals (Sweden)

    P. Thapaliya

    2011-12-01

    Full Text Available Inflammatory breast cancer is one of the most aggressive forms of breast cancer. Once considered to be a uniformly fatal disease, treatment of this entity has evolved significantly over the last two decades. In this article, we review the epidemiology, pathology, biologic underpinnings, radiologic advances, and treatment modalities for inflammatory breast cancer. Updates in surgical therapy, medical oncologic therapy and radiation therapy are reviewed. Emphasis is on cutting edge information regarding inflammatory breast cancer. The management of inflammatory breast cancer is best served by a multidisciplinary team. Continued research into molecular pathways and potential targets is imperative. Future clinical trials should include evaluation of conventional therapy with targeted therapies.

  15. Subtle variations in Pten dose determine cancer susceptibility

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  16. Danish Breast Cancer Cooperative Group

    DEFF Research Database (Denmark)

    Christiansen, Peer; Ejlertsen, Bent; Jensen, Maj-Britt

    2016-01-01

    AIM OF DATABASE: Danish Breast Cancer Cooperative Group (DBCG), with an associated database, was introduced as a nationwide multidisciplinary group in 1977 with the ultimate aim to improve the prognosis in breast cancer. Since then, the database has registered women diagnosed with primary invasive...... of adherence to the guidelines in the different departments. CONCLUSION: Utilizing data from the DBCG database, a long array of high-quality DBCG studies of various designs and scope, nationwide or in international collaboration, have contributed to the current updating of the guidelines, and have been...

  17. Breast Cancer (For Kids)

    Science.gov (United States)

    ... or sacs) or they can be due to normal breast changes associated with hormone changes or aging. Girls who are beginning puberty might notice a lump underneath the nipple when their breasts start developing. Usually, this is a normal. You can ask a parent or your doctor ...

  18. Ultrasound screening of contralateral breast after surgery for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ja [Department of Radiology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center (Korea, Republic of); Chung, Se-Yeong; Chang, Jung Min; Cho, Nariya [Department of Radiology, Seoul National University Hospital (Korea, Republic of); Han, Wonshik [Department of Surgery, Seoul National University Hospital (Korea, Republic of); Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University Hospital (Korea, Republic of)

    2015-01-15

    Highlights: • The addition of supplemental US to mammography depicted additional 5.0 cancers per 1000 postoperative women. • Positive biopsy rate of mammography-detected lesions was 66.7% (4 of 6) and that of US-detected lesions was 40.0% (6 of 15). • US can be helpful to detect mammographically occult breast cancer in the contralateral breast in women with previous history of cancer and dense breast. - Abstract: Objective: To determine whether supplemental screening ultrasound (US) to mammography could improve cancer detection rate of the contralateral breast in patients with a personal history of breast cancer and dense breasts. Materials and methods: During a one-year study period, 1314 screening patients with a personal history of breast cancer and dense breasts simultaneously underwent mammography and breast US. BI-RADS categories were given for mammography or US-detected lesions in the contralateral breast. The reference standard was histology and/or 1-year imaging follow-up, and the cancer rate according to BI-RADS categories and cancer detection rate and positive biopsy rate according to detection modality were analyzed. Results: Of 1314 patients, 84 patients (6.4%) were categorized as category 3 with one interval cancer and one cancer which was upgraded to category 4A after 6-month follow-up US (2.5% cancer rate, 95% CIs 1.5–9.1%). Fifteen patients (1.1%) had category 4A or 4B lesions in the contralateral breast. Four lesions were detected on mammography (two lesions were also visible on US) and 11 lesions were detected on US and 5 cancers were confirmed (33.3%, 95% CIs 15.0–58.5%). Six patients (0.5%) had category 4C lesions, 2 detected on mammography and 4 on US and 4 cancers were confirmed (66.7%, 95% CIs 29.6–90.8%). No lesions were categorized as category 5 in the contralateral breast. Cancer detection rate by mammography was 3.3 per 1000 patients and that by US was 5.0 per 1000 patients, therefore overall cancer detection rate by

  19. NUCKS overexpression in breast cancer

    Directory of Open Access Journals (Sweden)

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  20. Delayed breast reconstruction with implants after invasive breast cancer does not impair prognosis

    DEFF Research Database (Denmark)

    Hölmich, Lisbet Rosenkrantz; Düring, Maria; Henriksen, Trine Foged;

    2008-01-01

    We investigated if delayed breast implant reconstruction after breast cancer impairs prognosis. Using data from the Danish Breast Cancer Cooperative Group register, we identified all women......We investigated if delayed breast implant reconstruction after breast cancer impairs prognosis. Using data from the Danish Breast Cancer Cooperative Group register, we identified all women...

  1. Association of breast cancer risk loci with breast cancer survival

    NARCIS (Netherlands)

    Barrdahl, Myrto; Canzian, Federico; Lindström, Sara; Shui, Irene; Black, Amanda; Hoover, Robert N.; Ziegler, Regina G.; Buring, Julie E.; Chanock, Stephen J.; Diver, W. Ryan; Gapstur, Susan M.; Gaudet, Mia M.; Giles, Graham G.; Haiman, Christopher; Henderson, Brian E.; Hankinson, Susan; Hunter, David J.; Joshi, Amit D.; Kraft, Peter; Lee, I. Min; Le Marchand, Loic; Milne, Roger L.; Southey, Melissa C.; Willett, Walter; Gunter, Marc; Panico, Salvatore; Sund, Malin; Weiderpass, Elisabete; Sánchez, María José; Overvad, Kim; Dossus, Laure; Peeters, Petra H.; Khaw, Kay Tee; Trichopoulos, Dimitrios; Kaaks, Rudolf; Campa, Daniele

    2015-01-01

    The survival of breast cancer patients is largely influenced by tumor characteristics, such as TNM stage, tumor grade and hormone receptor status. However, there is growing evidence that inherited genetic variation might affect the disease prognosis and response to treatment. Several lines of eviden

  2. Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    DEFF Research Database (Denmark)

    Mulligan, Anna Marie; Couch, Fergus J; Barrowdale, Daniel

    2011-01-01

    -negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status...

  3. Detection of eight BRCA1 mutations in 10 breast/ovarian cancer families, including 1 family with male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sruewing, J.P.; Brody, L.C.; Erdos, M.R. [National Institute of Health, Bethesda, MD (United States)] [and others

    1995-07-01

    Genetic epidemiological evidence suggests that mutations in BRCA1 may be responsible for approximately one half of early onset familial breast cancer and the majority of familial breast/ovarian cancer. The recent cloning of BRCA1 allows for the direct detection of mutations, but the feasibility of presymptomatic screening for cancer susceptibility is unknown. We analyzed genomic DNA from one affected individual from each of 24 families with at least three cases of ovarian or breast cancer, using SSCP assays. Variant SSCP bands were subcloned and sequenced. Allele-specific oligonucleotide hybridization was used to verify sequence changes and to screen DNA from control individuals. Six frameshift and two missense mutations were detected in 10 different families. A frameshift mutation was detected in a male proband affected with both breast and prostate cancer. A 40-bp deletion was detected in a patient who developed intra-abdominal carcinomatosis 1 year after prophylactic oophorectomy. Mutations were detected throughout the gene, and only one was detected in more than a single family. These results provide further evidence that inherited breast and ovarian cancer can occur as a consequence of a wide array of BRCA1 mutations. These results suggests that development of a screening test for BRCA1 mutations will be technically challenging. The finding of a mutation in a family with male breast cancer, not previously thought to be related to BRCA1, also illustrates the potential difficulties of genetic counseling for individuals known to carry mutations. 37 refs., 1 fig., 1 tab.

  4. THE RELATION BETWEEN BREAST FEEDING AND BREAST CANCER

    Directory of Open Access Journals (Sweden)

    M.Alavi Naini

    1998-03-01

    Full Text Available Second to the cardiovascular disease, cancer is the main cause of death in Iran. In this study some of the risk factors of breast cancer; especially the ones related to breastfeeding have been assessed. The study was a retrospective study of 100 women with breast cancer. The most important risk factors in breast cancer were number of children, age of mother on the first pregnancy. The result showed that the increase of breast cancer was related to women who stopped breastfeeding before age 24 months. Breastfeeding for more than 12 months will reduce the incidence of breast cancer by 25%. In general there was a reverse relationship between duration of breastfeeding and risk of cancer in premonopausal, but not in postmenopausal women.

  5. Human papilloma viruses (HPV and breast cancer.

    Directory of Open Access Journals (Sweden)

    James Sutherland Lawson

    2015-12-01

    Full Text Available Purpose: Human papillomaviruses (HPV may have a role in some breast cancers. The purpose of this study is to fill important gaps in the evidence. These gaps are: (i confirmation of the presence of high risk for cancer HPVs in breast cancers, (ii evidence of HPV infections in benign breast tissues prior to the development of HPV positive breast cancer in the same patients, (iii evidence that HPVs are biologically active and not harmless passengers in breast cancer.Methods: RNA-seq data from The Cancer Genome Atlas (TCGA was used to identify HPV RNA sequences in breast cancers. We also conducted a retrospective cohort study based on polymerase chain reaction (PCR analyses to identify HPVs in archival specimens from Australian women with benign breast biopsies who later developed breast cancer. To assess whether HPVs in breast cancer were biologically active, the expression of the oncogenic protein HPV E7 was assessed by immunohistochemistry (IHC.Results: Thirty (3.5% low risk and 20 (2.3% high risk HPV types were identified in 855 breast cancers from the TCGA data base. The high risk types were HPV 18 (48%, HPV 113 (24%, HPV 16 (10%, HPV 52 (10%. Data from the PCR cohort study, indicated that HPV type 18 was the most common type identified in breast cancer specimens (55% of 40 breast cancer specimens followed by HPV 16 (13%. The same HPV type was identified in both the benign and subsequent breast cancer in 15 patients. HPV E7 proteins were identified in 72% of benign breast specimens and 59% of invasive breast cancer specimens.Conclusions: There were 4 observations of particular interest: (i confirmation by both NGS and PCR of the presence of high risk HPV gene sequences in breast cancers, (ii a correlation between high risk HPV in benign breast specimens and subsequent HPV positive breast cancer in the same patient, (iii HPVs in breast cancer are likely to be biologically active (as shown by transcription of HPV DNA to RNA plus the expression of

  6. Preliminary research on dendritic cells loaded with resistant breast cancer antigens in breast cancer-bearing nude mice

    Institute of Scientific and Technical Information of China (English)

    Wei Zhuang; Limin Lun

    2015-01-01

    Objective The aim of the study was to investigate the inhibitory ef ects of dendritic cel s (DCs) loaded with resistant breast cancer antigens on breast cancer in nude mice. Methods A single-cel suspension was prepared from a primary breast cancer and chemotherapeutic drugs were screened using the ATP-PCA susceptibility testing system. Cancer cel s were treated with 1/10 × IC50, 1/5 × IC50, 1/2 × IC50, 1 × IC50, and 2 × IC50 medium until their growth became steady in the 2 × IC50 medium. Peripheral blood mononuclear cel s (PBMCs) were obtained from the peripheral blood of patients with leukapheresis. The obtained adherent cel s were induced by granulocyte-macrophage colony-stimu-lating factor (GM-CSF) and interleukin-4 (IL-4) to generate DCs, which carried resistant strain cel lysis compounds or non-treated cancer cel lysis compounds. The former mature DCs carried resistant breast tumor antigens. A breast tumor-bearing nude mouse model was established with these resistant strains and the mice were randomly divided in three groups. The mice in the treatment group were injected with DCs loaded with resistant breast cancer antigens. The control group consisted of mice injected with DCs loaded with primary tumor cel antigens and the blank group consisted of mice injected with the same volume of normal saline. Changes in the cancers were observed. Results After treatment with the ef ector cel s, the cancer volume and weight were significantly dif erent to those before treatment in every group of mice (P Conclusion DCs loaded with resistant breast cancer antigens demonstrated a significant inhibition ef ect on the cancers of breast tumor-bearing nude mice.

  7. Antiangiogenic therapy for breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D.L.; Andersson, M.; Andersen, Jon Alexander Lykkegaard

    2010-01-01

    and optimal use of these agents for the treatment of breast cancer. Currently, the most promising approach has been the use of bevacizumab, a humanized monoclonal antibody directed against the most potent pro-angiogenic factor, vascular endothelial growth factor (VEGF). Small molecular inhibitors of VEGF...... tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria......ABSTRACT: Angiogenesis is an important component of cancer growth, invasion and metastasis. Therefore, inhibition of angiogenesis is an attractive strategy for treatment of cancer. We describe existing clinical trials of antiangiogenic agents and the challenges facing the clinical development...

  8. Dietary fiber and breast cancer.

    Science.gov (United States)

    Cohen, L A

    1999-01-01

    The Fiber Hypothesis which had its origins in the work of Burkitt and others in the early 1970's, focussed largely on fiber's beneficial effects on colon cancer and disorders of the gastric intestinal tract. In the 1980's it was proposed that fiber may also have beneficial effects on breast cancer and a rational for this was proposed involving modulation, by fiber, of the enterohepatic recirculation of estrogens. In the following the evidence from epidemiology, clinical interventions and animal model studies, supporting a role for fiber in breast cancer is critically reviewed. Evidence from animal model studies support the notion that supplementary fiber inhibits chemically-induced mammary tumorigenesis but do not support an estrogen-based mechanism. Some studies in human populations suggest modulation by estrogens and some do not. The aggregate data point to minor constituents present in fiber, such as isoflavones and phytate as the biologically active components of fiber which may be responsible for its anti cancer effects.

  9. Breast Cancer in Systemic Lupus Erythematosus

    DEFF Research Database (Denmark)

    Tessier Cloutier, B; Clarke, A E; Ramsey-Goldman, R

    2013-01-01

    Evidence points to a decreased breast cancer risk in systemic lupus erythematosus (SLE). We analyzed data from a large multisite SLE cohort, linked to cancer registries.......Evidence points to a decreased breast cancer risk in systemic lupus erythematosus (SLE). We analyzed data from a large multisite SLE cohort, linked to cancer registries....

  10. Hereditary breast and ovarian cancer

    DEFF Research Database (Denmark)

    Nielsen, Finn Cilius; van Overeem Hansen, Thomas; Sørensen, Claus Storgaard

    2016-01-01

    Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among...... of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making....

  11. Risk, characteristics, and prognosis of breast cancer after Hodgkin's lymphoma

    OpenAIRE

    Veit-rubin, Nikolaus; Rapiti Aylward, Elisabetta; Usel, Massimo; Benhamou, Simone; Vinh Hung, Vincent; Vlastos, Georges; Bouchardy Magnin, Christine

    2012-01-01

    Patients with breast cancer after Hodgkin's lymphoma were compared with patients with other breast cancers using the Surveillance, Epidemiology and End Results dataset. Hodgkin's lymphoma survivors had a higher risk for breast cancer, more aggressive breast cancers, a higher risk for a second breast cancer, and a poorer prognosis.

  12. What You Need to Know about Breast Cancer

    Science.gov (United States)

    ... Publications Reports What You Need To Know About™ Breast Cancer This booklet is about breast cancer. Learning about your cancer can help you take ... This booklet covers: Basics about breast anatomy and breast cancer Treatments for breast cancer, including taking part in ...

  13. Risk of primary non-breast cancer after female breast cancer by age at diagnosis

    DEFF Research Database (Denmark)

    Mellemkjær, Lene; Christensen, Jane; Frederiksen, Kirsten Skovsgaard;

    2011-01-01

    Women diagnosed with breast cancer at young age have been shown to be at higher risk of developing a new primary cancer than women diagnosed at older ages, but little is known about whether adjustment for calendar year of breast cancer diagnosis, length of follow-up, and/or breast cancer treatment...

  14. Adipocytokines and breast cancer risk

    Institute of Scientific and Technical Information of China (English)

    HOU Wei-kai; XU Yu-xin; YU Ting; ZHANG Li; ZHANG Wen-wen; FU Chun-li; SUN Yu; WU Qing; CHEN Li

    2007-01-01

    Background Many researches suggested that obesity increased the risk of breast cancer, but the mechanism was currently unknown. Adipocytokines might mediate the relationship. Our study was aimed to investigate the relationship between serum levels of resistin, adiponectin and leptin and the onset, invasion and metastasis of breast cancer.Methods Blood samples were collected from 80 newly diagnosed, histologically confirmed breast cancer patients and 50 age-matched healthy controls. Serum levels of resistin, adiponectin and leptin were determined by enzyme-linked immunosorbent assays (ELISA); fasting blood glucose (FBG), lipids, body mass index (BMI), and waist circumference (WC) were assayed simultaneously.Results Serum levels of adiponectin ((8.60±2.92) mg/L vs (10.37±2.81) mg/L, P=0.001) and HDL-c were significantly decreased in breast cancer patients in comparison to controls. Serum levels of resistin ((26.35±5.36) μg/L vs (23.32±4.75)μg/L, P=0.000), leptin ((1.35±0.42) μg/L vs (1.06±0.39) μg/L, P=0.003), FBG and triglyceride (TG) in breast cancer patients were increased in contrast to controls, respectively. However, we did not find the significant difference of the serum levels of resistin, adiponectin and leptin between premenopausal breast cancer patients and healthy controls (P=0.091, 0.109 and 0.084, respectively). The serum levels of resistin, adiponectin and leptin were significantly different between patients with lymph node metastasis (LNM) and those without LNM (P=0.001, 0.000 and 0.006, respectively).The stepwise regression analysis indicated that the tumor size had the close correlation with leptin (R2=0.414, P=0.000)and FBG (R2=0.602, P=0.000). Logistic regression analysis showed that reduced serum levels of adiponectin (OR:0.805;95%CI: 0.704-0.921; P=0.001), HDL (OR: 0.087; 95%CI: 0.011-0.691, P=0.021), elevated leptin (OR:2.235;95%CI:1.898-4.526; P=0.004) and resistin (OR: 1.335; 95%CI: 1.114-2.354; P=0.012) increased the risk for

  15. Integrated Immunotherapy for Breast Cancer

    Science.gov (United States)

    2013-09-01

    CSF. J Clin Invest 117, 1902 (Jul, 2007). 32. H. Yamaguchi et al., Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus . J Leukoc Biol 83, 1300 (May, 2008). ...comprehensive and systematic manner is the underlying principle of my goal to develop ’rational combination immunotherapy’ for breast cancer, one

  16. Mouse Stirs up Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Helen Pilcher; 孙雯

    2004-01-01

    @@ The humble house mouse could be more dangerous than we thought,according to a study that suggests a rodent① virus plays a role in the development of breast cancer. But the finding is contentious② and reignites③ a long-standing④wrangle⑤ about the potential⑥ causes of the disease.

  17. Antiangiogenic therapy for breast cancer

    DEFF Research Database (Denmark)

    Nielsen, D.L.; Andersson, M.; Andersen, Jon Alexander Lykkegaard;

    2010-01-01

    tyrosine kinase activity, such as sorafenib, appear promising. While, the role of sunitinib and inhibitors of mammalian target of rapamycin (mTOR) in breast cancer has to be defined. Several unanswered questions remain, such as choice of drug(s), optimal duration of therapy and patient selection criteria...

  18. Genetic determinants of breast cancer

    NARCIS (Netherlands)

    A.M. Gonzalez-Zuloeta Ladd (Angela)

    2007-01-01

    textabstractBreast cancer is the most common malignancy in women in the Western world and it is estimated that women who survive to the age of 85 years will have a 1 in 9 lifetime probability of developing this type of neoplasia (1, 2). The degree of risk is not spread homogeneously across the gener

  19. Breast Cancer Startup Challenge winners

    Science.gov (United States)

    Ten winners of a world-wide competition to bring emerging breast cancer research technologies to market faster were announced today by the Avon Foundation for Women, in partnership with NCI and the Center for Advancing Innovation (CAI). Avon is providing

  20. Breast cancer with inguinal node recurrence

    Directory of Open Access Journals (Sweden)

    Shikha Goyal

    2015-03-01

    Full Text Available Surgery and irradiation for breast cancer may interfere with conventional pathways of spread, leading to bizarre patterns of dissemination through lymphatics or through hematogenous route. Lymphoscintigraphic studies may help identify nodal involvement. Other possible reasons could be occurrence of primary breast cancer in accessory breast tissue retained in the vulva following involution of milk line. We describe a case of triple negative breast cancer, who developed contralateral breast cancer during treatment. Three years later, she developed isolated inguinal nodal metastases, which responded to local radiotherapy and chemotherapy. However, the patient relapsed after 2 years and could not be salvaged thereafter.

  1. Zinc isotopic compositions of breast cancer tissue.

    Science.gov (United States)

    Larner, Fiona; Woodley, Laura N; Shousha, Sami; Moyes, Ashley; Humphreys-Williams, Emma; Strekopytov, Stanislav; Halliday, Alex N; Rehkämper, Mark; Coombes, R Charles

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.

  2. FLT PET in Measuring Treatment Response in Patients With Newly Diagnosed Estrogen Receptor-Positive, HER2-Negative Stage I-III Breast Cancer

    Science.gov (United States)

    2016-06-02

    Estrogen Receptor Positive; HER2/Neu Negative; Male Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  3. Death certification in cancer of the breast.

    OpenAIRE

    1984-01-01

    The cause of death entered on the death certificates of 193 patients originally diagnosed as having cancer of the breast was compared with information obtained from clinical records, cancer registry records, and necropsy findings to determine the accuracy of death certification and the proportion of patients who, though dying from another cause, still had overt signs of cancer of the breast. It was found that the overall error in certifying cause of death as breast cancer was small, being an ...

  4. RECURRENCE PATTERN FOLLOWING BREAST - CONSERVING SURGERY FOR EARLY BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Govindaraj

    2015-08-01

    Full Text Available OBJECTIVE: To study the Local Recurrence and metastasis pattern after Breast - Conserving Surgery for early breast cancer. MATERIALS AND METHODS: From 2010 to 2014 in department of surgery in VIMS Bellary, 70 patients with stage I or II invasive breast carcinoma were treated with breast - conserving surgery, radiation and chemotherapy. In this study we investigated the prognostic value of clinical and pathological factors in early breast cancer patients treated with BCS. All of the surgeries were performed by a single surgical team. Recurrence and its risk factors were evaluated.

  5. Coping with a Breast Cancer Diagnosis

    Science.gov (United States)

    ... cancer.org Handling treatment The goal of any breast cancer treatment is to get rid of the cancer and offer the best possible chance of survival. But even the best treatments have side effects. ...

  6. Environmental Factors and Breast Cancer Risk

    Science.gov (United States)

    ... at Stony Brook University found no association between exposure to electromagnetic fields from residential power use and breast cancer risk. 5 National Institute of Environmental Health Sciences Cancer-causing ... to naturally occurring and synthetic cancer, and designing ...

  7. Dietary fat and risk of breast cancer

    Directory of Open Access Journals (Sweden)

    Mathew Aleyamma

    2005-07-01

    Full Text Available Abstract Background Breast cancer is one of the major public health problems among women worldwide. A number of epidemiological studies have been carried out to find the role of dietary fat and the risk of breast cancer. The main objective of the present communication is to summarize the evidence from various case-control and cohort studies on the consumption of fat and its subtypes and their effect on the development of breast cancer. Methods A Pubmed search for literature on the consumption of dietary fat and risk of breast cancer published from January 1990 through December 2003 was carried out. Results Increased consumption of total fat and saturated fat were found to be positively associated with the development of breast cancer. Even though an equivocal association was observed for the consumption of total monounsaturated fatty acids (MUFA and the risk of breast cancer, there exists an inverse association in the case of oleic acid, the most abundant MUFA. A moderate inverse association between consumption of n-3 fatty acids and breast cancer risk and a moderate positive association between n-6 fatty acids and breast cancer risk were observed. Conclusion Even though all epidemiological studies do not provide a strong positive association between the consumption of certain types of dietary fat and breast cancer risk, at least a moderate association does seem to exist and this has a number of implications in view of the fact that breast cancer is an increasing public health concern.

  8. The role of E-cadherin - 160C/A polymorphism in breast cancer

    Directory of Open Access Journals (Sweden)

    Luo Gaojian

    2016-08-01

    Full Text Available Breast cancer is the most prevalent cancer in women worldwide. Numerous studies have suggested that the E-cadherin adhesion system is dysregulated in cancer cells. These impaired functions of E-cadherin contribute to releasing cancer cells from the primary lesion to cell dedifferentiation. Some studies have shown that polymorphism may affect E-cadherin expression, and then play a role in susceptibility to breast cancer. However, the results remained controversial. In this short review, we summarize the functions of E-cadherin and the signaling pathways it regulates, and assess the association between CDH1 polymorphisms and breast cancer susceptibility. This study suggests that genetic variation in CDH1 and -160C/A polymorphism may have an association with breast cancer risk. The assessment of CDH1 polymorphisms may be used for the identification of patients suitable for anti- CDH1 therapy.

  9. Breast-feeding after breast cancer: if you wish, madam.

    Science.gov (United States)

    Azim, Hatem A; Bellettini, Giulia; Gelber, Shari; Peccatori, Fedro A

    2009-03-01

    Breast cancer is the most common malignant tumor-affecting women during the child bearing period. With the rising trend in delaying pregnancy later in life, the issue of subsequent pregnancy and lactation following breast cancer diagnosis has been more frequently encountered. In this context, data is scarce particularly those addressing the issue of lactation. In this review, we discussed different endocrinal, clinical and biological aspects dealing with breast-feeding after breast cancer in an attempt to determine how safe and feasible this approach is.

  10. Education and Outreach for Breast Imaging and Breast Cancer Patients

    Science.gov (United States)

    2003-07-01

    the project was the development of an educational intervention ( flip chart ) for physicians to use in the clinic setting when discussing breast...Procedure Scheduling on Breast Biopsy Patient Outcomes The first phase of this project is the development of an educational flip chart for...breast biopsy and breast cancer survivors to guide the content of the flip chart b) Develop outline and overall format c) Identify/develop

  11. Breast Cancer Risk in American Women

    Science.gov (United States)

    ... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... carry these changes. Mammographic breast density : The glandular (milk-producing) and connective tissue of the breast are ...

  12. Polygenic susceptibility to testicular cancer

    DEFF Research Database (Denmark)

    Litchfield, Kevin; Mitchell, Jonathan S; Shipley, Janet

    2015-01-01

    BACKGROUND: The increasing incidence of testicular germ cell tumour (TGCT) combined with its strong heritable basis suggests that stratified screening for the early detection of TGCT may be clinically useful. We modelled the efficiency of such a personalised screening approach, based on genetic...... known TGCT susceptibility variants. The diagnostic performance of testicular biopsy and non-invasive semen analysis was also assessed, within a simulated combined screening programme. RESULTS: The area under the curve for the TGCT PRS model was 0.72 with individuals in the top 1% of the PRS having...

  13. Drug transporters in breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Stenvang, Jan; Moreira, José

    2015-01-01

    Despite the advances that have taken place in the past decade, including the development of novel molecular targeted agents, cytotoxic chemotherapy remains the mainstay of cancer treatment. In breast cancer, anthracyclines and taxanes are the two main chemotherapeutic options used on a routine...... basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter...

  14. Breast and Gynecologic Cancer | Division of Cancer Prevention

    Science.gov (United States)

    [[{"fid":"184","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Breast and Gynecologic Cancer Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Breast and Gynecologic Cancer Research Group Homepage Logo","field_folder[und]":"15"},"type":"media","attributes":{"alt":"Breast and Gynecologic Cancer Research Group Homepage Logo","title":"Breast and Gynecologic Cancer Research Group Homepage Logo","height":"266","width":"400"," | Prevention and early detection of breast, cervix, endometrial and ovarian cancers and their precursors.

  15. Environmental cadmium and breast cancer risk

    OpenAIRE

    2010-01-01

    Breast cancer is the most prevalent women's cancer, with an age-adjusted incidence of 122.9 per 100,000 US women. Cadmium, a ubiquitous carcinogenic pollutant with multiple biological effects, has been reported to be associated with breast cancer in one US regional case-control study. We examined the association of breast cancer with urinary cadmium (UCd), in a case-control sample of women living on Long Island (LI), NY (100 with breast cancer and 98 without), a region with an especially high...

  16. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2015-09-01

    the standard of care for treating breast diseases and breast cancer. This approach integrates prevention , screening, diagnosis, treatment and...follow a healthy lifestyle ?” (submitted for publication clearance April 2015). Ellsworth RE, Mamula KA, Costantino NS, Deyarmin B, Kostyniak PJ, Chi...disorders. The project will continue utilizing a multidisciplinary approach as the standard of care for treating breast diseases and breast cancer. This

  17. Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk

    NARCIS (Netherlands)

    Wei-Yu Lin; N.J. Camp (Nicola); M. Ghoussaini (Maya); J. Beesley (Jonathan); K. Michailidou (Kyriaki); J. Hopper (John); C. Apicella (Carmel); M.C. Southey (Melissa); J. Stone (Jennifer); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); E.J. Th Rutgers (Emiel J.); K.R. Muir (K.); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); P.A. Fasching (Peter); L. Haeberle (Lothar); A.B. Ekici (Arif); M.W. Beckmann (Matthias W.); J. Peto (Julian); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); N. Johnson (Nichola); M.K. Bolla (Manjeet); Q. Wang (Qing); J. Dennis (Joe); E.J. Sawyer (Elinor); T. Cheng (Timothy); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); Frederik Marmé; H. Surowy (Harald); B. Burwinkel (Barbara); P. Guénel (Pascal); T. Truong (Thérèse); F. Menegaux (Florence); C. Mulot (Claire); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); P. Menéndez (Primitiva); A. González-Neira (Anna); G. Pita (G.); M. Rosario Alonso; N. Álvarez (Nuria); D. Herrero (Daniel); H. Anton-Culver (Hoda); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Meindl (Alfons); P. Lichtner (Peter); R.K. Schmutzler (Rita); B. Müller-Myhsok (B.); H. Brauch (Hiltrud); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hisato); A. Horio (Akiyo); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); T. Dörk (Thilo); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); A.H. Wu (Anna H.); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); P. Neven (Patrick); E. Wauters (Erwin); H. Wildiers (Hans); D. Lambrechts (Diether); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Bonnani (Bernardo); F.J. Couch (Fergus); X. Wang (Xianshu); C. Vachon (Celine); K. Purrington (Kristen); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); S.-H. Teo; C.H. Yip (Cheng Har); N. Hassan (Norhashimah); E.N. Vithana (Eranga); V. Kristensen (Vessela); W. Zheng (Wei); S.L. Deming-Halverson (Sandra); M. Shrubsole (Martha); J. Long (Jirong); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); S. Kauppila (Saila); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); S. Tchatchou (Sandrine); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); J. Lissowska (Jolanta); L.A. Brinton (Louise); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); J.S. Brand (Judith S.); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); A.M.W. Van DenOuweland (Ans M.W.); A. Jager (Agnes); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); S.S. Cross (Simon); M.W.R. Reed (Malcolm); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); P.D.P. Pharoah (Paul); B. Perkins (Barbara); M. Shah (Mitul); F. Blows (Fiona); D. Kang (Daehee); K.Y. Yoo; D-Y. Noh (Dong-Young); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); T.C. Putti (Thomas Choudary); U. Hamann (Ute); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); M. Maranian (Melanie); S. Healey (Sue); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); D. Yannoukakos (Drakoulis); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); S.-L. Ding (Shian-Ling); A. Ashworth (Alan); M. Jones (Michael); N. Orr (Nick); A.J. Swerdlow (Anthony ); H. Tsimiklis (Helen); E. Makalic (Enes); D.F. Schmidt (Daniel); Q.M. Bui (Quang); S.J. Chanock (Stephen); D. Hunter (David); R. Hein (Rebecca); N. Dahmen (N.); L. Beckmann (Lars); K. Aaltonen (Kirsimari); T.A. Muranen (Taru); T. Heikkinen (Tuomas); A. Irwanto (Astrid); N. Rahman (Nazneen); C. Turnbull (Clare); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R. Van Der Luijt (Rob); P. Hall (Per); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); D.F. Easton (Douglas); A. Cox (Angela)

    2015-01-01

    textabstractPrevious studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucl

  18. Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk

    NARCIS (Netherlands)

    Wei-Yu Lin, Lin; Camp, Nicola J.; Ghoussaini, Maya; Beesley, Jonathan; Michailidou, Kyriaki; Hopper, John L.; Apicella, Carmel; Southey, Melissa C.; Stone, Jennifer; Schmidt, Marjanka K.; Broeks, Annegien; Van't Veer, Laura J.; Th Rutgers, Emiel J.; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; Dos-Santos-Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Sawyer, Elinor J.; Cheng, Timothy; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Frederik Marmé, Marmé; Surowy, Harald M.; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Mulot, Claire; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Pilar Zamora, M.; Perez, Jose Ignacio Arias; Menéndez, Primitiva; González-Neira, Anna; Pita, Guillermo; Rosario Alonso, M.; Álvarez, Nuria; Herrero, Daniel; Anton-Culver, Hoda; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Lichtner, Peter; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon Dschun; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Horio, Akiyo; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli Matti; Hartikainen, Jaana M.; Wu, Anna H.; Tseng, Chiu Chen; Van Den Berg, David; Stram, Daniel O.; Neven, Patrick; Wauters, Els; Wildiers, Hans; Lambrechts, Diether; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Purrington, Kristen; Giles, Graham G.; Milne, Roger L.; Mclean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Marchand, Loic Le; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo Hwang; Yip, Cheng Har; Hassan, Norhashimah; Vithana, Eranga Nishanthie; Kristensen, Vessela; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha J.; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J.; García-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S.; Hooning, Maartje J.; Hollestelle, Antoinette; Van DenOuweland, Ans M W; Jager, Agnes; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao Ou; Lu, Wei; Gao, Yu Tang; Cai, Hui; Cross, Simon S.; Reed, Malcolm W R; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D P; Perkins, Barbara; Shah, Mitul; Blows, Fiona M.; Kang, Daehee; Yoo, Keun Young; Noh, Dong Young; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Putti, Thomas Choudary; Hamann, Ute; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S.; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Yannoukakos, Drakoulis; Shen, Chen Yang; Hsiung, Chia Ni; Wu, Pei Ei; Ding, Shian Ling; Ashworth, Alan; Jones, Michael; Orr, Nick; Swerdlow, Anthony J.; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel F.; Bui, Quang M.; Chanock, Stephen J.; Hunter, David J.; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Muranen, Taru A.; Heikkinen, Tuomas; Irwanto, Astrid; Rahman, Nazneen; Turnbull, Clare A.; Waisfisz, Quinten; Meijers-Heijboer, Hanne E J; Adank, Muriel A.; Van Der Luijt, Rob B.; Hall, Per; Chenevix-Trench, Georgia; Dunning, Alison; Easton, Douglas F.; Cox, Angela

    2015-01-01

    Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polym

  19. Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk

    DEFF Research Database (Denmark)

    Lin, Wei-Yu; Camp, Nicola J; Ghoussaini, Maya

    2015-01-01

    Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide po...

  20. THE MAMMOGRAPHIC CALCIFICATIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Tang Ruiying; Liu Jingxian; Gaowen

    1998-01-01

    Objective: This study was performed to exam the relativeship between mammographic calcifications and breast cancer. Methods: All of the 184 patients with breast diseases underwent mammography before either an open biopsy or a mastectomy. The presence,morphology, and distribution of calcifications visualized on mammograms for breast cancer were compared with the controls who remained cancer free. Statistical comparisons were made by using the x2 test. Results:Of the 184 patients with breast diaeases, 93 malignant and 91 benign lesions were histologically confirmed.Calcifications were visualized on mammograms in 60(64%) of 93 breast cancers and 26 (28%) of 91 non breast cancers. The estimated odds ratio (OR) of breast cancer was 4.5 in women with calcifications seen on mammograms, compared with those having none (P<0.01). Of the 60 breast carcinomas having mammographic calcifications, 28 (47%) were infiltrating ductal carcinomas.There were only 8 (24%) cases with infiltrating ductal cancers in the group of without calcifications seen on the mammograms (P<0.05). Conclusion: Our finding suggests that mammographic calcification appears to be a risk factor for breast cancer. The granular and linear cast type calcification provide clues to the presence of breast cancer, especially when the carcinomas without associated masses were seen on mammograms.

  1. Knowing Their Breast Cancer Risk May Empower Teens

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_161233.html Knowing Their Breast Cancer Risk May Empower Teens Greater self-esteem noted in ... interviewed to assess their mental health, perception of breast cancer risk, and levels of distress about breast cancer. The ...

  2. NIH study confirms risk factors for male breast cancer

    Science.gov (United States)

    Pooled data from studies of about 2,400 men with breast cancer and 52,000 men without breast cancer confirmed that risk factors for male breast cancer include obesity, a rare genetic condition called Klinefelter syndrome, and gynecomastia.

  3. Diagnosis of breast cancer by tissue analysis

    Institute of Scientific and Technical Information of China (English)

    Debnath Bhattacharyya; Samir Kumar Bandyopadhyay; Tai-hoon Kim

    2013-01-01

    In this paper,we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test,when require.We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps.Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper.In fact,features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue.We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent.

  4. Breast cancer in Singapore: some perspectives.

    Science.gov (United States)

    Jara-Lazaro, Ana Richelia; Thilagaratnam, Shyamala; Tan, Puay Hoon

    2010-01-01

    Breast cancer is the commonest malignancy among Singapore women, accounting for 29.7% of all female cancers, with an age-standardized rate of 54.9 per 100,000 per year. It has been the most frequent cancer in Singapore women for the last 30 years, with the highest rates previously reported in those aged between 45 and 49 years, but with a more recent observation of a change in peak age group to women in their late 50s. About 1,100 new cases are diagnosed annually and approximately 270 women die in Singapore each year from breast cancer. In the multiethnic population of Singapore, it has been noted that rising breast cancer incidence is consistent across all three ethnic groups (Chinese, Malays, and Indians). Singapore has among the highest breast cancer incidence in Asia. Possible explanations include rapid urbanization, improvement in socio-economic status, and adoption of a western lifestyle. Our experience with the Singapore breast screening pilot project (1994-1997) and the national breast-screening program (BreastScreen Singapore) has led to increased understanding of this disease in the country. Data from the pilot project showed that breast screening is just as effective in a predominantly Asian population as in the west. Early breast cancer accounted for most breast cancers detected, with pre-invasive ductal carcinoma in situ (DCIS) comprising 26% of all screen-detected cancers in the pilot study. In the currently on-going BreastScreen Singapore, DCIS forms >30% of all breast cancers among pre-menopausal women, a relatively high proportion probably accounted for partially by the greater participation of women aged between 40 and 49 years. Despite the ready availability of subsidized mammographic screening, there are still women in Singapore who present with locally advanced breast cancer. Clinical management of an increasing number of women with breast cancer embraces a multidisciplinary team-based approach, with regular discussions of therapeutic

  5. Propranolol and survival from breast cancer

    DEFF Research Database (Denmark)

    Cardwell, Chris R; Pottegård, Anton; Vaes, Evelien;

    2016-01-01

    BACKGROUND: Preclinical studies have demonstrated that propranolol inhibits several pathways involved in breast cancer progression and metastasis. We investigated whether breast cancer patients who used propranolol, or other non-selective beta-blockers, had reduced breast cancer-specific or all......-cause mortality in eight European cohorts. METHODS: Incident breast cancer patients were identified from eight cancer registries and compiled through the European Cancer Pharmacoepidemiology Network. Propranolol and non-selective beta-blocker use was ascertained for each patient. Breast cancer-specific and all......-cause mortality were available for five and eight cohorts, respectively. Cox regression models were used to calculate hazard ratios (HR) and 95% confidence intervals (CIs) for cancer-specific and all-cause mortality by propranolol and non-selective beta-blocker use. HRs were pooled across cohorts using meta...

  6. Educational Counseling in Improving Communication and Quality of Life in Spouses and Breast Cancer Patients

    Science.gov (United States)

    2014-12-29

    Anxiety Disorder; Depression; Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Psychosocial Effects of Cancer and Its Treatment; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  7. Environmental cadmium and breast cancer risk.

    Science.gov (United States)

    Gallagher, Carolyn M; Chen, John J; Kovach, John S

    2010-11-01

    Breast cancer is the most prevalent women's cancer, with an age-adjusted incidence of 122.9 per 100,000 US women. Cadmium, a ubiquitous carcinogenic pollutant with multiple biological effects, has been reported to be associated with breast cancer in one US regional case-control study. We examined the association of breast cancer with urinary cadmium (UCd), in a case-control sample of women living on Long Island (LI), NY (100 with breast cancer and 98 without), a region with an especially high rate of breast cancer (142.7 per 100,000 in Suffolk County) and in a representative sample of US women (NHANES 1999-2008, 92 with breast cancer and 2,884 without). In a multivariable logistic model, both samples showed a significant trend for increased odds of breast cancer across increasing UCd quartiles (NHANES, p=0.039 and LI, p=0.023). Compared to those in the lowest quartile, LI women in the highest quartile had increased risk for breast cancer (OR=2.69; 95% CI=1.07, 6.78) and US women in the two highest quartiles had increased risk (OR=2.50; 95% CI=1.11, 5.63 and OR=2.22; 95% CI=.89, 5.52, respectively). Further research is warranted on the impact of environmental cadmium on breast cancer risk in specific populations and on identifying the underlying molecular mechanisms.

  8. Typhoid Vaccine in Testing Response to Immune Stress in Patients With Stage I-IIIA Breast Cancer Who Received Chemotherapy

    Science.gov (United States)

    2016-11-29

    Cognitive Side Effects of Cancer Therapy; Depression; Recurrent Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer

  9. [CHEK2-mutation in Dutch breast cancer families: expanding genetic testing for breast cancer

    NARCIS (Netherlands)

    Adank, M.A.; Hes, F.J.; Zelst-Stams, W.A.G. van; Tol, M.P. van den; Seynaeve, C.; Oosterwijk, J.C.

    2015-01-01

    - In the majority of breast cancer families, DNA testing does not show BRCA1 or BRCA2 mutations and the genetic cause of breast cancer remains unexplained. - Routine testing for the CHEK2*1100delC mutation has recently been introduced in breast cancer families in the Netherlands. - The 1100delC muta

  10. Breast cancer heterogeneity: mechanisms, proofs, and implications

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hsiao, Ming-Chih Chou, Carol Fowler, Jeffrey T. Mason, Yan-gao Man

    2010-01-01

    Full Text Available Human breast cancer represents a group of highly heterogeneous lesions consisting of about 20 morphologically distinct subtypes with substantially different molecular and/or biochemical signatures, clinical courses, and prognoses. This study analyzed the possible correlation between the morphological presentations of breast cancer and two hypothesized models of carcinogenesis, in order to identify the intrinsic mechanism(s and clinical implications of breast cancer heterogeneity.

  11. The p53 pathway in breast cancer

    OpenAIRE

    Gasco, Milena; Shami, Shukri; Crook, Tim

    2002-01-01

    p53 mutation remains the most common genetic change identified in human neoplasia. In breast cancer, p53 mutation is associated with more aggressive disease and worse overall survival. The frequency of mutation in p53 is, however, lower in breast cancer than in other solid tumours. Changes, both genetic and epigenetic, have been identified in regulators of p53 activity and in some downstream transcriptional targets of p53 in breast cancers that express wild-type p53. Molecular pathological an...

  12. Breast Cancer: Catch It with Ultrasound

    Science.gov (United States)

    2011-09-01

    Heintz, Ph.D. Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM e-mail: MWilliamson@salud.unm.edu Breast cancer ...AD_________________ Award Number: W81XWH-10-1-0566 TITLE: Breast Cancer : Catch It with Ultrasound...CONTRACT NUMBER Breast Cancer : Catch It with Ultrasound 5b. GRANT NUMBER W81XWH-10-1-0566 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  13. Targeting ESR1-Mutant Breast Cancer

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0359 TITLE: Targeting ESR1-Mutant Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Sarat Chandarlapaty CONTRACTING...31 Aug 2015 4. TITLE AND SUBTITLE Targeting ESR1-Mutant Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0359 5c. PROGRAM ELEMENT...mutations found in breast cancer using both structural and cell based assays. We have now have evidence for the effects of the most recurrent

  14. Causative relationship between diabetes mellitus and breast cancer in various regions of Saudi Arabia: an overview.

    Science.gov (United States)

    Arif, Jamal M; Al-Saif, Ahmad M; Al-Karrawi, Mohammed A; Al-Sagair, Othman A

    2011-01-01

    The unwarranted connection between diabetes mellitus and breast cancer has gained new ground in recent years. Breast cancer in Saudi females accounts for approximately 21% of all cancers and the prevalence of diabetes mellitus (DM) in Saudi females is also 21.5%. DM is diagnosed in the age group of 30+ years with possible exposure to predisposing factors like hyperinsulinemia and obesity at younger age. Further, 12% of the breast cancer cases are diagnosed in the young females aged 20-34 years. Despite the readily available access to healthcare facilities in the Kingdom, a large number of diabetics, approximately 27.9%, were unaware of having diabetes mellitus. This subpopulation is quite susceptible of developing breast cancer at later age. This review discusses common etiological and predisposing factors for breast cancer and diabetes, regional distribution and possible correlation of diabetes and cancer in Saudi Arabia.

  15. Knowledge towards breast cancer among Libyan women in Tripoli

    Directory of Open Access Journals (Sweden)

    Yousef A Taher

    2016-11-01

    Conclusion: Our findings demonstrate that Libyan women have acceptable level of knowledge regarding breast cancer. However, improvement of the health systems and awareness regarding breast cancer is needed.

  16. The lipid peroxidation in breast cancer patients.

    Science.gov (United States)

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Jeziorski, Arkadiusz; Piekarski, Janusz

    2010-06-01

    The aim of our study was to estimate oxidative stress (by using different biomarkers of lipid peroxidation--isoprostanes and thiobarbituric acid reactive substances (TBARS)) in patients with invasive breast cancer, patients with benign breast diseases and in a control group. We observed a statistically increased level of TBARS in plasma and isoprostanes in urine of patients with invasive breast cancer in comparison with a control group. The concentration of tested biomarkers in plasma or urine from patients with invasive breast cancer was also higher than in patients with benign breast diseases. Moreover, the levels of tested markers in patients with benign breast diseases and in a control group did not differ. Considering the data presented in this study, we suggest that free radicals induce peroxidation of unsaturated fatty acid in patients with breast cancer.

  17. Diazepam use and progression of breast cancer.

    Science.gov (United States)

    Kleinerman, R A; Brinton, L A; Hoover, R; Fraumeni, J F

    1984-03-01

    The relationship between diazepam and breast cancer was evaluated using data from a case-control study of breast cancer, in which 1075 cases and 1146 controls who were participants in a breast cancer screening program were interviewed. Diazepam use was negatively associated with extent of disease and lymph node involvement, and this effect seemed greatest for long-term users of diazepam. It is not certain to what extent these data reflect an ascertainment bias, an association with the reasons for which the drug was prescribed, or chance. Whatever the explanation, the findings do not support a previous contention that diazepam promotes or accelerates breast cancer growth.

  18. Breast Cancer Screening and Prevention.

    Science.gov (United States)

    Nattinger, Ann B; Mitchell, Julie L

    2016-06-07

    This issue provides a clinical overview of breast cancer screening and prevention, focusing on risk assessment, screening, prevention, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  19. Integrated Immunotherapy for Breast Cancer

    Science.gov (United States)

    2015-09-01

    myocardial infarction among apparently healthy men. Circulation 101, 1767 (Apr 18, 2000). 33. E. A. Rakha, Pitfalls in outcome prediction of breast...cancer patients at diagnosis IL-6 plasma levels have been shown to be elevated in advanced metastatic BC patients (15, 31). To investigate whether the...plasma from BC patients was collected at diagnosis prior to surgery or any therapy. Interestingly, we found that IL-6 plasma levels were not

  20. Integrated Immunotherapy for Breast Cancer

    Science.gov (United States)

    2014-09-01

    be cultured in calcium‐ free DMEM supplemented with 1% FBS, cholera toxin (10 ng/ml), bovine insulin (3 μg/ml), hydrocortisone (0.5 μg/ml), EGF and...regimens for induction of optimal anti-tumor immunity. Then we will determine the optimal time to administer these regimens during disease ...node status. Breast Cancer Res Treat 60, 227 (Apr, 2000). 4. H. E. Kohrt et al., Profile of immune cells in axillary lymph nodes predicts disease -free

  1. Prevalence of TP53 germ line mutations in young Pakistani breast cancer patients.

    Science.gov (United States)

    Rashid, Muhammad U; Gull, Sidra; Asghar, Kashif; Muhammad, Noor; Amin, Asim; Hamann, Ute

    2012-06-01

    Women from Pakistan and India are more often diagnosed with early-onset breast cancer than Caucasian women. Given that only 12% of Pakistani women diagnosed with breast cancer at or before 30 years of age have previously been shown to harbor germ line mutations in the breast cancer susceptibility genes BRCA1 and BRCA2, the genetic causes of the majority of early-onset cases are unexplained. Since germ line mutations in the tumor suppressor gene TP53 predispose women to early-onset breast cancer, we assessed the prevalence of TP53 mutations in 105 early-onset breast cancer patients from Pakistan, who had previously been found to be negative for BRCA1 and BRCA2 germ line mutations. The patient group included 67 women diagnosed with early-onset breast cancer at or before age 30 with no family history of breast or ovarian cancer (EO30NFH group) and 38 women diagnosed with breast cancer at or before age 40 with one or more first- or second-degree relatives with breast or ovarian cancer (EO40FH group). Mutation analysis of the complete TP53 coding region was performed using denaturing high-performance liquid chromatography analysis, followed by DNA sequencing of variant fragments. One deleterious mutation, c.499-500delCA in exon 5, was identified in the 105 breast cancer patients (1%). This mutation is novel in the germ line and has not been described in other populations. It was detected in a 28-year-old patient with no family history of breast or ovarian cancer. This mutation is rare as it was not detected in additional 157 recently recruited non-BRCA1 and non-BRCA2-associated early-onset breast cancer patients. Our findings show that TP53 mutations may account for a minimal portion of early-onset breast cancer in Pakistan.

  2. Breast cancer management: Past, present and evolving

    Directory of Open Access Journals (Sweden)

    M Akram

    2012-01-01

    Full Text Available Breast cancer is known from ancient time,and the treatment strategy evolved as our understanding of the disease changed with time. In 460 BC Hippocrates described breast cancer as a humoral disease and presently after a lot of studies breast cancer is considered as a local disease with systemic roots. For most of the twentieth century Halsted radical mastectomy was the "established and standardized operation for cancer of the breast in all stages, early or late". New information about tumor biology and its behavior suggested that less radical surgery might be just as effective as the more extensive one. Eventually, with the use of adjuvant therapy likeradiation and systemic therapy, the extent of surgical resection in the breast and axilla got reduced further and led to an era of breast conservation. The radiation treatment of breast cancer has evolved from 2D to 3D Conformal and to accelarated partial breast irradiation, aiming to reduce normal tissue toxicity and overall treatment time. Systemic therapy in the form of hormone therapy, chemotherapy and biological agents is now a well-established modality in treatment of breast cancer. The current perspective of breast cancer management is based on the rapidly evolving and increasingly integrated study on the genetic, molecular , biochemical and cellular basis of disease. The challenge for the future is to take advantage of this knowledge for the prediction of therapeutic outcome and develop therapies and rapidly apply more novel biologic therapeutics.

  3. Accessory breast tissue in axilla masquerading as breast cancer recurrence

    Directory of Open Access Journals (Sweden)

    Goyal Shikha

    2008-01-01

    Full Text Available Ectopic or accessory breast tissue is most commonly located in the axilla, though it may be present anywhere along the milk line. Development is hormone dependent, similar to normal breast tissue. These lesions do not warrant any intervention unless they produce discomfort, thus their identification and distinction from other breast pathologies, both benign and malignant, is essential. We report a case with locally advanced breast cancer who presented with an ipsilateral axillary mass following surgery, radiotherapy, and chemotherapy. Subsequent evaluation with excision biopsy showed duct ectasia in axillary breast tissue and the patient was continued on hormone therapy with tamoxifen.

  4. Breast Cancer 2012 - New Aspects.

    Science.gov (United States)

    Kolberg, H-C; Lüftner, D; Lux, M P; Maass, N; Schütz, F; Fasching, P A; Fehm, T; Janni, W; Kümmel, S

    2012-07-01

    Treatment options as well as the characteristics for therapeutic decisions in patients with primary and advanced breast cancer are increasing in number and variety. New targeted therapies in combination with established chemotherapy schemes are broadening the spectrum, however potentially promising combinations do not always achieve a better result. New data from the field of pharmacogenomics point to prognostic and predictive factors that take not only the properties of the tumour but also inherited genetic properties of the patient into consideration. Current therapeutic decision-making is thus based on a combination of classical clinical and modern molecular biomarkers. Also health-economic aspects are more frequently being taken into consideration so that health-economic considerations may also play a part. This review is based on information from the recent annual congresses. The latest of these are the 34th San Antonio Breast Cancer Symposium 2011 and the ASCO Annual Meeting 2012. Among their highlights are the clinically significant results from the CLEOPATRA, BOLERO-2, EMILIA and SWOG S0226 trials on the therapy for metastatic breast cancer as well as further state-of-the-art data on the adjuvant use of bisphosphonates within the framework of the ABCSG-12, ZO-FAST, NSABP-B34 and GAIN trials.

  5. [THE EFFECT OF PREGNANCY ON BREAST CANCER].

    Science.gov (United States)

    Matalon, Shelly Tartakover; Shochet, Gali Epstein; Drucker, Liat; Lishner, Michael

    2015-08-01

    Cancer and pregnancy coincide in about one in 1,000 pregnancies. One of the most common malignancies associated with pregnancy is breast cancer. Women with pregnancy-associated breast cancer (PABC) have a higher likelihood of being diagnosed with metastatic disease and estrogen receptor (ER) negative tumors than do non-pregnant women. Controversies exist regarding the effect of pregnancy on breast cancer prognosis. Some researchers suggest that pregnancy does not affect breast cancer prognosis, whereas others claim the opposite. Although PABC is usually discovered in an advanced stage, breast cancer metastasis on the placenta is a rare event. During cancer progression, the surrounding microenvironment co-evolves into an activated state through continuous communication with the malignant cells, thereby promoting tumor growth. The effect of pregnancy and placental environment on breast cancer biology is the issue of this review. Placental and cancer cells implantation processes share similar molecular pathways. This suggests that placental factors may affect breast cancer cells biology. Previously, we analyzed the effect of first trimester human placenta on breast cancer cells. Breast cancer cells were co-cultured with placental explants during their implantation on matrigel substrate. We found that the placenta reduced ER expression on the cancer cells and induced their migration and invasion abilities. As a result of it, breast cancer cells migrated away from the placental implantation sites. Hormonal pathways were involved in these phenomena. These results may explain the high incidence of metastases during pregnancy in on the one hand and the rarity of metastases on the placenta on the other hand.

  6. Long-term side effects of adjuvant breast cancer treatment

    NARCIS (Netherlands)

    Buijs, Ciska

    2008-01-01

    Breast cancer is the most common malignancy in women. Breast cancer accounts for one-third of all cancers in females and 24% of the patients are younger than 55 years of age. More than 10% all Dutch women will develop breast cancer and 70-80% of all breast cancer patients will survive over 5 years.

  7. Stages of Breast Cancer

    Science.gov (United States)

    ... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... in dozens of tiny bulbs that can make milk. The lobes, lobules, and bulbs are linked by ...

  8. Vitamin D and prevention of breast cancer

    Institute of Scientific and Technical Information of China (English)

    JoEllen WELSH

    2007-01-01

    Epidemiologic data have demonstrated that breast cancer incidence is inversely correlated with indices of vitamin D status, including ultraviolet exposure, which enhances epidermal vitamin D synthesis. The vitamin D receptor (VDR) is ex-pressed in mammary epithelial cells, suggesting that vitamin D may directly influ-ence sensitivity of the gland to transformation. Consistent with this concept, in vitro studies have demonstrated that the VDR ligand, 1,25-dihydroxyvitamin D (1,25D), exerts negative growth regulatory effects on mammary epithelial ceils that contribute to maintenance of the differentiated phenotype. Furthermore, deletion of the VDR gene in mice alters the balance between proliferation and apoptosis in the mammary gland, which ultimately enhances its susceptibility to carcinogenesis.In addition, dietary supplementation with vitamin D, or chronic treatment with synthetic VDR agonists, reduces the incidence of carcinogen-induced mammary tumors in rodents. Collectively, these observations have reinforced the need to further define the human requirement for vitamin D and the molecular actions of the VDR in relation to prevention of breast cancer.

  9. The Role of the Hypothalamus-Pituitary-Gonadal Axis in Breast Cancer: a candidate gene approach

    NARCIS (Netherlands)

    D. Piersma (Djura)

    2007-01-01

    textabstractThis chapter provides a general overview of breast cancer, including the possible role of genetic and exogenous factors and an overview of the role of hormones in carcinogenesis of the breast. Variability in susceptibility to the disease, timing of development, as well as tumor character

  10. Association of the Three Common SNPs of Cyclooxygenase-2 Gene (rs20417, rs689466, and rs5275 with the Susceptibility of Breast Cancer: An Updated Meta-Analysis Involving 34,590 Subjects

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Dai

    2014-01-01

    Full Text Available Several single nucleotide polymorphisms have been identified in cyclooxygenase-2 (COX-2 genes (e.g., −765 G>C (rs20417, −1195G>A (rs689466, and 8473 C>T (rs5275. The association of these SNPs with the risk of different cancer types is still controversial. This study aims to evaluate the correlation between these SNPs and breast cancer risk in different ethnic groups. We have searched PubMed, Web of Knowledge, and Embase for relevant studies. Odds ratios (ORs with 95% confidence intervals (CIs were used to estimate the strength of the associations. A total of 13 studies (15,330 cases and 19,260 controls were eligible for meta-analysis. This meta-analysis showed that COX-2 rs20417 polymorphism was correlated with an increased risk of breast cancer in Caucasians, while rs689466 was associated with a decreased risk of breast cancer in Caucasians. The rs5275 polymorphism had no association with breast cancer risk.

  11. Lifetime grain consumption and breast cancer risk.

    Science.gov (United States)

    Farvid, Maryam S; Cho, Eunyoung; Eliassen, A Heather; Chen, Wendy Y; Willett, Walter C

    2016-09-01

    We evaluated individual grain-containing foods and whole and refined grain intake during adolescence, early adulthood, and premenopausal years in relation to breast cancer risk in the Nurses' Health Study II. Grain-containing food intakes were reported on a baseline dietary questionnaire (1991) and every 4 years thereafter. Among 90,516 premenopausal women aged 27-44 years, we prospectively identified 3235 invasive breast cancer cases during follow-up to 2013. 44,263 women reported their diet during high school, and from 1998 to 2013, 1347 breast cancer cases were identified among these women. Cox proportional hazards regression was used to estimate relative risks (RR) and 95 % confidence intervals (95 % CI) of breast cancer for individual, whole and refined grain foods. After adjusting for known breast cancer risk factors, adult intake of whole grain foods was associated with lower premenopausal breast cancer risk (highest vs. lowest quintile: RR 0.82; 95 % CI 0.70-0.97; P trend = 0.03), but not postmenopausal breast cancer. This association was no longer significant after further adjustment for fiber intake. The average of adolescent and early adulthood whole grain food intake was suggestively associated with lower premenopausal breast cancer risk (highest vs lowest quintile: RR 0.74; 95 % CI 0.56-0.99; P trend = 0.09). Total refined grain food intake was not associated with risk of breast cancer. Most individual grain-containing foods were not associated with breast cancer risk. The exceptions were adult brown rice which was associated with lower risk of overall and premenopausal breast cancer (for each 2 servings/week: RR 0.94; 95 % CI 0.89-0.99 and RR 0.91; 95 % CI 0.85-0.99, respectively) and adult white bread intake which was associated with increased overall breast cancer risk (for each 2 servings/week: RR 1.02; 95 % CI 1.01-1.04), as well as breast cancer before and after menopause. Further, pasta intake was inversely associated with

  12. The cancer genetics and pathology of male breast cancer.

    Science.gov (United States)

    Deb, Siddhartha; Lakhani, Sunil R; Ottini, Laura; Fox, Stephen B

    2016-01-01

    Male breast cancer (MBC) is an uncommon and poorly understood disease. Recent molecular studies have shown important differences from female breast cancer which are likely to influence treatment strategies from the current female-based management towards a more tailored approach. Significantly more MBCs than female breast cancers arise with an underlying germline cancer predisposition, and display a vastly different penetrance compared with females. Furthermore, the genophenotypical association of basal-like cancer with BRCA1 present in female breast cancer is not observed in male breast cancer. Differences in somatic changes between male and female breast cancer have also been reported, with particular enrichment of PIK3CA mutations and a paucity of TP53 mutations. In general, chromosomal-based changes, in particular regions of gains, are seen more frequently in male than female breast cancer and methylation is seen less frequently. Clinically, several molecular subtypes with prognostic relevance have been described, including chromosomal complex high and methylation high groups, and subgroups with profiling signatures pertaining to epithelial mesenchymal transition and hormonal therapy insensitivity. As with female breast cancer, attention to male specific multicentre trials based on the individual characteristics are needed, together with establishment of reliable preclinical models to understand more clearly the pathogenesis of male breast cancer and improve the general poor outcome of this disease.

  13. Interleukin-8 in breast cancer progression.

    Science.gov (United States)

    Todorović-Raković, Nataša; Milovanović, Jelena

    2013-10-01

    Interleukin-8 (IL-8) is a chemokine that has an autocrine and/or paracrine tumor-promoting role and significant potential as a prognostic and/or predictive cancer biomarker. In breast cancer, which is mostly determined by expression of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), IL-8 could play a specific role. IL-8 is highly expressed in ER- breast cancers, but it increases invasiveness and metastatic potential of both ER- and ER+ breast cancer cells. It is also highly expressed in HER2+ breast cancers. Because of the complex crosstalk between these receptors and IL-8, its role is mainly determined by delicate balance in their signaling pathways. Therefore, the main point of this review was to analyze the possible influence of IL-8 in breast cancer progression related to its interaction with ER and HER2 and the consequent therapeutic implications of these relations.

  14. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non......BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...

  15. RAD51B in Familial Breast Cancer

    DEFF Research Database (Denmark)

    Pelttari, Liisa M; Khan, Sofia; Vuorela, Mikko

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition......, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD......51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients...

  16. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  17. Living as a Breast Cancer Survivor

    Science.gov (United States)

    ... cancers after breast cancer . Ask your doctor for a survivorship care plan Talk with your doctor about ... Close Image of Previous Next Close Close Select A Hope Lodge Close Please share your thoughts about ...

  18. Breast Cancers Between Mammograms Have Aggressive Features

    Science.gov (United States)

    Breast cancers that are discovered in the period between regular screening mammograms—known as interval cancers—are more likely to have features associated with aggressive behavior and a poor prognosis than cancers found via screening mammograms.

  19. Evolution of surgical treatment for breast cancer

    Directory of Open Access Journals (Sweden)

    V. P. Letyagin

    2012-01-01

    Full Text Available The paper considers main surgical interventions used to treat breast cancer. It defines the role and place of conservative surgery and describes current procedures for the organ-saving treatment of cancer at this site.

  20. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    Science.gov (United States)

    2016-10-04

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  1. Early Life and Risk of Breast Cancer

    Science.gov (United States)

    2004-08-01

    adulthood in the 1958 British born cohort. Am J Clin Nutr 1997; 66:1094-101. 52. Kvale G, Heuch I. Menstrual factors and breast cancer risk. Cancer 1988; 62...Biomarkers Prey 2002;11: J Clin Nutr 1997;66:1094-101. 32. He Q Karlbergj. BMI in childhood and 207-10. 28. Kvale G, Heuch I. Menstrual factors and its...breast cancer among young U.S. women. Epidemiology 1997; 8(5):559-565. (76) Kvale G, Heuch I. Menstrual factors and breast cancer risk. Cancer 1988; 62(8

  2. CYP1B1 gene polymorphism and susceptibility to breast cancer with abnormal Hilit%CYP1B1基因多态性与异常体液型乳腺癌易感性

    Institute of Scientific and Technical Information of China (English)

    吐尔逊·买买提; 哈木拉提·吾甫尔; 伊力哈木·乃扎木; 彭晓梅; 多力坤·买买提玉素甫; 卡依尔·玉素甫

    2011-01-01

    Objective To explore the association between gene polymorphism of cytochrome P4501 Bl in exon 3 codon 432 Leu-Val and breast cancer( BC) and its clinical subgroups( breast cancer with abnormal Hilit[ BCAH]. Methods The BC patients were divided into four groups with different body fluid type according to Uighur medicine theory. The polymerase chain reaction-restriction fragment length polymorphism( PCR-RFLP) technique was used to detect the polymorphism in exon 3 Leu432Val of CYP1B1 in 84 BC patients and 131 normal control subjects. Results The frequency of genotype and allele of CYP1B1 of BC,BCAH and the control group was not significantly different(P>0.05). Compared with wild type(Leu/Leu) ,the susceptibility to BC for subjects with the Leu/Val + Val/Val was increased by 2.137(odds ratio [OR] =2. 137,95% confidence interval [CY] :0.969 -4.717,P =0.056),and by 3.636( OR =3.636,95% C7:0.996 -13.157;/>=0.062) in BCAH patients. Conclusion Mutation of genotype (Leu/Val + Val/Val) of CYP1B1 may be correlated to the susceptibility to BC and BCABH in Chinese Han population of Xinjiang.%目的 探讨细胞色素氧化酶p450(cytochrome,CYP)1B1基因外显子3密码子432亮氨酸(Leu)-缬氨酸(Val)位点多态性与乳腺癌(BC)及其异常体液型乳腺癌(BCAH)的相关性.方法 按维吾尔医学将乳腺癌病例组分为4种体液型,应用聚合酶链反应-限制性片断长度多态性(PCR-RFLP)技术检测84例BC患者和131例对照组的CYP1B1基因Leu432Val位点多态性的分布频率.结果 CYP1 B1各基因型及等位基因分布频率在BC、BCAH与对照组之间差异均无统计学意义(P>0.05);在BC病例组中Leu/Val和Val/Val合并后其发生BC的风险是野生型Leu/Leu个体的2.137倍(95%CI=0.969 ~4.717,P=0.056),在BCABH病例组中其发生BC的风险是野生型Leu/Leu个体的3.636倍(95% CI =0.996~13.157,P=0.062).结论 CYP1B1突变基因型(Leu/Val+ Val/Val)可能与新疆汉族人群BC和BCABH易感性有关.

  3. Trastuzumab Emtansine in Treating Older Patients With Human Epidermal Growth Factor Receptor 2-Positive Stage I-III Breast Cancer

    Science.gov (United States)

    2016-10-04

    Estrogen Receptor Negative; HER2 Positive Breast Carcinoma; Progesterone Receptor Negative; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIC Breast Cancer

  4. Breast Cancer During Pregnancy: Case Report

    Directory of Open Access Journals (Sweden)

    Serden Ay

    2013-06-01

    Full Text Available During pregnancy breast cancer is rarely seen. In this case, when the patient was being operated for the right breast cancer which was diagnosed in the first exam, a left breast cancer was also detected in the operation. When the patient analysed retrospectively, lesion in the left breast could not detected because of the lactation period. Consequently,pregnancy patients must be re-examined after the lactation period to avoid any possible mistakes. [Cukurova Med J 2013; 38(3.000: 492-494

  5. Urinary phytoestrogens and postmenopausal breast cancer risk

    NARCIS (Netherlands)

    Tonkelaar, den I.; Keinan-Boker, L.; Veer, van't P.; Arts, C.J.M.; Adlercreutz, H.; Thijssen, J.H.H.; Peeters, H.M.

    2001-01-01

    Phytoestrogens are defined as plant substances that are structurally or functionally similar to estradiol. We report the associations of two major phytoestrogens, genistein and enterolactone, with breast cancer risk, using urinary specimens collected 1-9 years before breast cancer was diagnosed. The

  6. Screening for breast cancer with mammography

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C; Jørgensen, Karsten Juhl

    2013-01-01

    A variety of estimates of the benefits and harms of mammographic screening for breast cancer have been published and national policies vary.......A variety of estimates of the benefits and harms of mammographic screening for breast cancer have been published and national policies vary....

  7. Loneliness May Sabotage Breast Cancer Survival: Study

    Science.gov (United States)

    ... gov/news/fullstory_162498.html Loneliness May Sabotage Breast Cancer Survival: Study Weak social ties linked to higher risk ... 2016 (HealthDay News) -- Loneliness may impede long-term breast cancer survival, a new study suggests. In the years after ...

  8. Gene Expression Analysis of Breast Cancer Progression

    Science.gov (United States)

    2005-07-01

    Giri D, Chen B, Gerald W Molecular Diagnosis of Breast Cancer Therapeutic Biomarkers Using Oligonucleotide Arrays Abstract presentation USCAP 2005. 5...Bone Metastasis. Submitted Lal P, Donaton M, Girl D, Chen B, Gerald W Molecular Diagnosis of Breast Cancer Therapeutic Biomarkers Using Oligonucleotide

  9. Paclitaxel and doxorubicin in metastatic breast cancer

    DEFF Research Database (Denmark)

    Gehl, J; Boesgaard, M; Paaske, T;

    1996-01-01

    be explored. Paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) has been demonstrated to be highly effective in treating patients with advanced breast cancer, including those with anthracycline-resistant breast cancer, a fact that has led to efforts to combine paclitaxel and anthracyclines...

  10. New ways to optimize breast cancer treatment

    NARCIS (Netherlands)

    Schröder, Carolina Pia

    2001-01-01

    Breast cancer patients without apparent distant metastases at the time of primary tumor removal, may later suffer from a distant relapse, indicating the presence of occult micrometastases at the time of diagnosis. Sensitive methods to detect micrometastatic breast cancer may be helpful in optimizing

  11. Breast cancer radiotherapy and cardiac risk

    OpenAIRE

    Anusheel Munshi; Kaustav Talapatra; Debanarayan Dutta

    2011-01-01

    Breast cancer is the leading cause of morbidity and mortality in women in the developed world and its incidence in the developing world is on the rise. Management of breast cancer requires a multimodality approach and an integration of the services of surgery, radiation, and medical oncology. Radiotherapy after mastectomy or breast conservation leads to reduction in local recurrence by two-thirds. Recent trials and metaanalyses have also demonstrated overall survival benefit with radiotherapy...

  12. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    A.C. Antoniou (Antonis); C. Kartsonaki (Christiana); O. Sinilnikova (Olga); P. Soucy (Penny); L. McGuffog (Lesley); S. Healey (Sue); A. Lee (Andrew); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); E. Cattaneo (Elisa); M. Barile (Monica); V. Pensotti (Valeria); B. Pasini (Barbara); R. Dolcetti (Riccardo); G. Giannini (Giuseppe); A.L. Putignano; L. Varesco (Liliana); P. Radice (Paolo); P.L. Mai (Phuong); M.H. Greene (Mark); I.L. Andrulis (Irene); G. Glendon (Gord); H. Ozcelik (Hilmi); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); T.A. Kruse (Torben); U.B. Jensen; D. Cruger (Dorthe); M.A. Caligo (Maria); Y. Laitman (Yael); R. Milgrom (Roni); B. Kaufman (Bella); S. Paluch-Shimon (Shani); E. Friedman (Eitan); N. Loman (Niklas); K. Harbst (Katja); A. Lindblom (Annika); B. Melin (Beatrice); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); T. Huzarski (Tomasz); T. Byrski (Tomasz); C. Cybulski (Cezary); B. Górski (Bohdan); A. Osorio (Ana); T.R. Cajal; F. Fostira (Florentia); R. Andres (Raquel); J. Benitez (Javier); U. Hamann (Ute); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); M.J. Hooning (Maartje); M.R. Nelen (Marcel); R.B. van der Luijt (Rob); T.A.M. van Os (Theo); C.J. van Asperen (Christi); P. Devilee (Peter); H. Meijers-Heijboer (Hanne); E.B.G. Garcia; S. Peock (Susan); M. Cook (Margaret); D. Frost; R. Platte (Radka); J. Leyland (Jean); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); R. Davidson (Rosemarie); D. Eccles (Diana); K.-R. Ong; F. Douglas (Fiona); J. Paterson (Joan); M.J. Kennedy (John); Z. Miedzybrodzka (Zosia); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); M. Belotti (Muriel); C. Tirapo (Carole); S. Mazoyer (Sylvie); L. Barjhoux (Laure); C. Lasset (Christine); D. Leroux (Dominique); L. Faivre (Laurence); M. Bronner (Myriam); F. Prieur (Fabienne); C. Nogues (Catherine); E. Rouleau (Etienne); P. Pujol (Pascal); I. Coupier (Isabelle); M. Frenay (Marc); J. Hopper (John); M.J. Daly (Mark); M-B. Terry (Mary-beth); E.M. John (Esther); S.S. Buys (Saundra); Y. Yassin (Yosuf); A. Miron (Alexander); D. Goldgar (David); C.F. Singer (Christian); M.-K. Tea; G. Pfeiler (Georg); C. Dressler (Catherina); T.V.O. Hansen (Thomas); L. Jønson (Lars); B. Ejlertsen (Bent); R.B. Barkardottir (Rosa); T. Kircchoff (Tomas); K. Offit (Kenneth); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); L. Small (Laurie); J.F. Boggess (John); S.V. Blank (Stephanie); J. Basil (Jack); M. Azodi (Masoud); A.E. Toland (Amanda); M. Montagna (Marco); S. Tognazzo (Silvia); S. Agata (Simona); E.N. Imyanitov (Evgeny); R. Janavicius (Ramunas); C. Lazaro (Conxi); I. Blanco (Ignacio); P.D.P. Pharoah (Paul); L. Sucheston (Lara); B.Y. Karlan (Beth); C.S. Walsh (Christine); E. Olah (Edith); A. Bozsik (Aniko); S.-H. Teo; J.L. Seldon (Joyce); M.S. Beattie (Mary); E.J. van Rensburg (Elizabeth); M.D. Sluiter (Michelle); O. Diez (Orland); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); I. Ruehl (Ina); R. Varon-Mateeva (Raymonda); K. Kast (Karin); H. Deissler (Helmut); D. Niederacher (Dieter); N. Arnold (Norbert); D. Gadzicki (Dorothea); I. Schönbuchner (Ines); T. Caldes (Trinidad); M. de La Hoya (Miguel); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); M. Dumont (Martine); J. Chiquette (Jocelyne); M. Tischkowitz (Marc); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); A.B. Spurdle (Amanda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); Z. Fredericksen (Zachary); X. Wang (Xing); V.S. Pankratz (Shane); F.J. Couch (Fergus); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); P. Karlsson (Per); M. Nordling (Margareta); A. Bergman (Annika); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (M.); S. Liedgren (Sigrun); Å. Borg (Åke); H. Olsson (Hans); U. Kristoffersson (Ulf); H. Jernström (H.); K. Henriksson (Karin); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); G. Barbany-Bustinza (Gisela); J. Rantala (Johanna); H. Grönberg (Henrik); E.-L. Stattin; M. Emanuelsson (Monica); R.R. Brandell; N. Dahl (Niklas); S. Verhoef; M. Verheus (Martijn); L.J. van 't Veer (Laura); F.E. van Leeuwen; J.M. Collee (Margriet); A.M.W. van den Ouweland (Ans); A. Jager (Agnes); M.M.A. Tilanus-Linthorst (Madeleine); C.M. Seynaeve (Caroline); J.T. Wijnen (Juul); M.P. Vreeswijk (Maaike); R.A.E.M. Tollenaar (Rob); M.J. Ligtenberg (Marjolijn); N. Hoogerbrugge (Nicoline); M.G.E.M. Ausems (Margreet); C.M. Aalfs (Cora); J.J.P. Gille (Jan); Q. Waisfisz (Quinten); E.B. Gómez García (Encarna); C.E. van Roozendaal (Cees); M.J. Blok (Marinus); B. Caanen; J.C. Oosterwijk; A.H. van der Hout (Annemarie); M.J. Mourits; H.F. Vasen (Hans); H. Gregory (Helen); P.J. Morrison (Patrick); L. Jeffers (Lisa); T.J. Cole (Trevor); C. McKeown (Carole); J. Hoffman (Jonathan); A. Donaldson (Alan); S. Downing (Sarah); A. Taylor (Amy); A. Murray (Alexandra); M.T. Rogers (Mark); E. McCann (Emma); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); K. Hill (Kathryn); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); C. Jacobs (Chris); C. Langman (Caroline); A. Whaite (Anna); H. Dorkins (Huw); J. Barwell (Julian); C. Chu (Chengbin); J. Miller (Julie); I.O. Ellis (Ian); C. Houghton (Catherine); L. Side (Lucy); A. Male (Alison); C. Berlin (Cheryl); J. Eason (Jacqueline); R. Collier (Rebecca); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); E. Bancroft (Elizabeth); L. D'Mello (Lucia); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); A. Mitra (Anita); L. Robertson (Lisa); O. Quarrell (Oliver); C. Bardsley (Cathryn); H. Ehrencrona (Hans); S.V. Hodgson (Shirley); D.E. Barton (David); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lucassen (Anneke); G. Crawford (Gillian); D. McBride (Donna); S. Smalley (Sarah); J.W. Adlard (Julian); B. Arver (Brita Wasteson)

    2011-01-01

    textabstractTwo single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility var

  13. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Kartsonaki, Christiana; Sinilnikova, Olga M

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs...... to a better understanding of the biology of tumour development in these women....

  14. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Kartsonaki, Christiana; Sinilnikova, Olga M.; Soucy, Penny; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Barile, Monica; Pensotti, Valeria; Pasini, Barbara; Dolcetti, Riccardo; Giannini, Giuseppe; Putignano, Anna Laura; Varesco, Liliana; Radice, Paolo; Mai, Phuong L.; Greene, Mark H.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Jensen, Uffe Birk; Crueger, Dorthe G.; Caligo, Maria A.; Laitman, Yael; Milgrom, Roni; Kaufman, Bella; Paluch-Shimon, Shani; Friedman, Eitan; Loman, Niklas; Harbst, Katja; Lindblom, Annika; Arver, Brita; Ehrencrona, Hans; Melin, Beatrice; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy; Jakubowska, Ania; Lubinski, Jan; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Gorski, Bohdan; Osorio, Ana; Ramon y Cajal, Teresa; Fostira, Florentia; Andres, Raquel; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B.; Rookus, Matti A.; Hooning, Maartje J.; Nelen, Marcel R.; van der Luijt, Rob B.; van Os, Theo A. M.; van Asperen, Christi J.; Devilee, Peter; Meijers-Heijboer, Hanne E. J.; Garcia, Encarna B. Gomez; Peock, Susan; Cook, Margaret; Frost, Debra; Platte, Radka; Leyland, Jean; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Ong, Kai-ren; Cook, Jackie; Douglas, Fiona; Paterson, Joan; Kennedy, M. John; Miedzybrodzka, Zosia; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Buecher, Bruno; Belotti, Muriel; Tirapo, Carole; Mazoyer, Sylvie; Barjhoux, Laure; Lasset, Christine; Leroux, Dominique; Faivre, Laurence; Bronner, Myriam; Prieur, Fabienne; Nogues, Catherine; Rouleau, Etienne; Pujol, Pascal; Coupier, Isabelle; Frenay, Marc; Hopper, John L.; Daly, Mary B.; Terry, Mary B.; John, Esther M.; Buys, Saundra S.; Yassin, Yosuf; Miron, Alexander; Goldgar, David; Singer, Christian F.; Tea, Muy-Kheng; Pfeiler, Georg; Dressler, Anne Catharina; Hansen, Thomas v. O.; Jonson, Lars; Ejlertsen, Bent; Barkardottir, Rosa Bjork; Kirchhoff, Tomas; Offit, Kenneth; Piedmonte, Marion; Rodriguez, Gustavo; Small, Laurie; Boggess, John; Blank, Stephanie; Basil, Jack; Azodi, Masoud; Toland, Amanda Ewart; Montagna, Marco; Tognazzo, Silvia; Agata, Simona; Imyanitov, Evgeny; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Pharoah, Paul D. P.; Sucheston, Lara; Karlan, Beth Y.; Walsh, Christine S.; Olah, Edith; Bozsik, Aniko; Teo, Soo-Hwang; Seldon, Joyce L.; Beattie, Mary S.; van Rensburg, Elizabeth J.; Sluiter, Michelle D.; Diez, Orland; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Varon-Mateeva, Raymonda; Kast, Karin; Deissler, Helmut; Niederacher, Dieter; Arnold, Norbert; Gadzicki, Dorothea; Schoenbuchner, Ines; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomaki, Kristiina; Dumont, Martine; Chiquette, Jocelyne; Tischkowitz, Marc; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Fredericksen, Zachary; Wang, Xianshu; Pankratz, Vernon S.; Couch, Fergus; Simard, Jacques; Easton, Douglas F.; Chenevix-Trench, Georgia

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs112

  15. Breast Cancer Diagnosed During Pregnancy: Adapting Recent Advances in Breast Cancer Care for Pregnant Patients

    NARCIS (Netherlands)

    Loibl, S.; Schmidt, A.; Gentilini, O.; Kaufman, B.; Kuhl, C.; Denkert, C.; Minckwitz, G. von; Parokonnaya, A.; Stensheim, H.; Thomssen, C.; Calsteren, K. van; Poortmans, P.; Berveiller, P.; Markert, U.R.; Amant, F.

    2015-01-01

    Breast cancer during pregnancy (BCP), although rare, is becoming more common and treatment should be as similar as possible to that for nonpregnant young patients with breast cancer. A group of specialists convened to review current guidelines and provide guidance on how recent advances in breast ca

  16. Breast thermography. A prognostic indicator for breast cancer survival.

    Science.gov (United States)

    Isard, H J; Sweitzer, C J; Edelstein, G R

    1988-08-01

    A prognostic classification for thermographic staging of breast cancer has been applied to a cohort of 70 patients from 5040 screenees enrolled in the Albert Einstein Medical Center (AEMC) Breast Cancer Detection Demonstration Project (BCDDP). A diagnosis of breast cancer was established in each case before December 31, 1980. None of the patients have been lost to follow-up which extended from a minimum of 6 to a maximum of 13 years. Survival rates for those with favorable, equivocal, and poor thermographic factors are compared with each other and with results in accordance with tumor-node-metastasis (TNM) classification. As of December 31, 1986, there have been 22 (31.4%) deaths, all attributed to breast cancer. The thermographic scoring system clearly shows shorter survival for patients with poor thermographic prognostic factors, 30% surviving at 5 years and only 20% at 10 years compared with overall survival of 80% at 5 years and 70% at 10 years.

  17. The potential role of breast ductoscopy in breast cancer screening.

    Science.gov (United States)

    Sarakbi, W Al; Escobar, Pedro F; Mokbel, Kefah

    2005-01-01

    Breast cancer remains the most common malignancy among women in the Western world. Mammography, which is currently the main screening modality for early detection, has a low positive predictive value of only 25%, especially in young women with very dense breasts. Therefore, new screening approaches are needed for the early detection of breast cancer in all age groups. Mammary ductoscopy (MD) is a newly developed endoscopic technique that allows direct visualization and biopsy of the mammary ductal epithelium where most cancers originate. The procedure can be performed under local anesthesia in the office setting. At present, MD is used as a diagnostic adjunct in patients with pathological nipple discharge and to guide duct excision surgery. This article focuses on the potential of this technique in breast cancer screening and highlights its limitations in this context.

  18. Breast cancer. Part 2: present and future treatment modalities.

    Science.gov (United States)

    Harmer, Victoria

    This is the second article in a series of three on breast cancer. Part 1 discussed breast anatomy, the principles behind breast awareness and breast health, detailing common benign breast diseases, types of breast cancer and staging. In this article, treatment for breast cancer is discussed. The article will follow the usual order of modalities in the trajectory, starting with surgery, then chemotherapy, radiotherapy and endocrine treatment, finishing with a discussion of future and biological treatments.

  19. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  20. Insulin receptor what role in breast cancer?

    Science.gov (United States)

    Papa, V; Costantino, A; Belfiore, A

    1997-10-01

    It is commonly believed that the insulin receptor mainly mediates the metabolic effects of insulin, whereas the closely related IGF-I receptor is considered a major factor for the regulation of cell proliferation. Experimental and epidemiological evidence indicates, however, that insulin and insulin receptors may play an important role in breast cancer. This article reviews evidence indicating that (a) insulin receptors are overexpressed in human breast cancer, (b) insulin stimulates growth in breast cancer cells, (c) cells transfected with human insulin receptor may acquire a ligand-dependent transformed phenotype, and (d) breast cancer is associated with insulin resistance and hyperinsulinemia. These findings may open new possibilities in breast cancer prevention, prognosis assessment, and therapy. (Trends Endocrinol Metab 1997; 8:306-312). (c) 1997, Elsevier Science Inc.

  1. Screening for breast cancer with mammography

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C; Nielsen, Margrethe

    2009-01-01

    BACKGROUND: A variety of estimates of the benefits and harms of mammographic screening for breast cancer have been published and national policies vary. OBJECTIVES: To assess the effect of screening for breast cancer with mammography on mortality and morbidity. SEARCH STRATEGY: We searched Pub...... excluded a biased trial and included 600,000 women in the analyses. Three trials with adequate randomisation did not show a significant reduction in breast cancer mortality at 13 years (relative risk (RR) 0.90, 95% confidence interval (CI) 0.79 to 1.02); four trials with suboptimal randomisation showed...... a significant reduction in breast cancer mortality with an RR of 0.75 (95% CI 0.67 to 0.83). The RR for all seven trials combined was 0.81 (95% CI 0.74 to 0.87). We found that breast cancer mortality was an unreliable outcome that was biased in favour of screening, mainly because of differential...

  2. Is clinical breast examination important for breast cancer detection?

    Science.gov (United States)

    Provencher, L.; Hogue, J.C.; Desbiens, C.; Poirier, B.; Poirier, E.; Boudreau, D.; Joyal, M.; Diorio, C.; Duchesne, N.; Chiquette, J.

    2016-01-01

    Background Screening clinical breast examination (cbe) is controversial; the use of cbe is declining not only as a screening tool, but also as a diagnostic tool. In the present study, we aimed to assess the value of cbe in breast cancer detection in a tertiary care centre for breast diseases. Methods This retrospective study of all breast cancers diagnosed between July 1999 and December 2010 at our centre categorized cases according to the mean of detection (cbe, mammography, or both). A cbe was considered “abnormal” in the presence of a mass, nipple discharge, skin or nipple retraction, edema, erythema, peau d’orange, or ulcers. Results During the study period, a complete dataset was available for 6333 treated primary breast cancers. Cancer types were ductal carcinoma in situ (15.3%), invasive ductal carcinoma (75.7%), invasive lobular carcinoma (9.0%), or others (2.2%). Of the 6333 cancers, 36.5% (n = 2312) were detected by mammography alone, 54.8% (n = 3470) by mammography and cbe, and 8.7% (n = 551) by physician-performed cbe alone (or 5.3% if considering ultrasonography). Invasive tumours diagnosed by cbe alone were more often triple-negative, her2-positive, node-positive, and larger than those diagnosed by mammography alone (p < 0.05). Conclusions A significant number of cancers would have been missed if cbe had not been performed. Compared with cancers detected by mammography alone, those detected by cbe had more aggressive features. Clinical breast examination is a very low-cost test that could improve the detection of breast cancer and could prompt breast ultrasonography in the case of a negative mammogram. PMID:27536182

  3. Role of KCNMA1 in breast cancer.

    Directory of Open Access Journals (Sweden)

    Martin Oeggerli

    Full Text Available KCNMA1 encodes the α-subunit of the large conductance, voltage and Ca(2+-activated (BK potassium channel and has been reported as a target gene of genomic amplification at 10q22 in prostate cancer. To investigate the prevalence of the amplification in other human cancers, the copy number of KCNMA1 was analyzed by fluorescence-in-situ-hybridization (FISH in 2,445 tumors across 118 different tumor types. Amplification of KCNMA1 was restricted to a small but distinct fraction of breast, ovarian and endometrial cancer with the highest prevalence in invasive ductal breast cancers and serous carcinoma of ovary and endometrium (3-7%. We performed an extensive analysis on breast cancer tissue microarrays (TMA of 1,200 tumors linked to prognosis. KCNMA1 amplification was significantly associated with high tumor stage, high grade, high tumor cell proliferation, and poor prognosis. Immunofluorescence revealed moderate or strong KCNMA1 protein expression in 8 out of 9 human breast cancers and in the breast cancer cell line MFM223. KCNMA1-function in breast cancer cell lines was confirmed by whole-cell patch clamp recordings and proliferation assays, using siRNA-knockdown, BK channel activators such as 17ß-estradiol and the BK-channel blocker paxilline. Our findings revealed that enhanced expression of KCNMA1 correlates with and contributes to high proliferation rate and malignancy of breast cancer.

  4. [Association between cadmium and breast cancer].

    Science.gov (United States)

    Strumylaite, Loreta; Bogusevicius, Algirdas; Ryselis, Stanislovas; Pranys, Darius; Poskiene, Lina; Kregzdyte, Rima; Abdrachmanovas, Olegas; Asadauskaite, Rūta

    2008-01-01

    Cadmium is a known human lung carcinogen, although some studies indicate a link between cadmium exposure and human breast cancer. The objective of this study was to assess cadmium concentration in breast tissue samples of patients with breast cancer and benign breast tumor. MATERIAL AND METHODS. The concentration of cadmium was determined in breast tissue samples of 21 breast cancer and 19 benign tumor patients. Two samples of breast tissue from each patient, i.e. tumor and normal tissue close to tumor, were taken for the analysis. Cadmium was determined by atomic absorption spectrometry (Perkin-Elmer, Zeeman 3030). RESULTS. In patients with breast cancer, the mean cadmium concentration was 33.1 ng/g (95% CI, 21.9-44.4) in malignant breast tissue and 10.4 ng/g (95% CI, 5.6-15.2) in normal breast tissue (P=0.002). In patients with benign tumor, the corresponding values were 17.5 ng/g (95% CI, 8.4-26.5) and 11.8 ng/g (95% CI, 5.1-18.5) (P=0.3144). There was a statistically significant difference in cadmium concentration between malignant and benign breast tissues (P=0.009). CONCLUSION. The data obtained show that cadmium concentration is significantly higher in malignant breast tissue as compared with normal breast tissue of the same women or benign breast tissue. Further studies are necessary to determine the association between cadmium concentration in malignant breast tissue and estrogen receptor level, and smoking.

  5. Multidisciplinary Meeting on Male Breast Cancer : Summary and Research Recommendations

    NARCIS (Netherlands)

    Korde, Larissa A.; Zujewski, Jo Anne; Kamin, Leah; Giordano, Sharon; Domchek, Susan; Anderson, William F.; Bartlett, John M. S.; Gelmon, Karen; Nahleh, Zeina; Bergh, Jonas; Cutuli, Bruno; Pruneri, Giancarlo; McCaskill-Stevens, Worta; Gralow, Julie; Hortobagyi, Gabriel; Cardoso, Fatima

    2010-01-01

    Male breast cancer is a rare disease, accounting for less than 1% of all breast cancer diagnoses worldwide. Most data on male breast cancer comes from small single-institution studies, and because of the paucity of data, the optimal treatment for male breast cancer is not known. This article summari

  6. Molecular Mechanisms of Metastasis Suppression in Human Breast Cancer

    Science.gov (United States)

    2000-07-01

    and breast carcinoma metastasis, Wake Forest University Cancer Center, July 28 Molecular mechanisms controlling melanoma and breast carcinoma...Bowman Show, August 17 Molecular regulation of melanoma and breast carcinoma metastasis, Wake Forest University Cancer Center, July 28 Molecular...Institute, April 20, Pathology ofNeoplasia Cumberland Unit, American Cancer Society, April 19; Breast Cancer Research Ministerio de Sanidad y

  7. Use of proteomics for the early diagnosis fo breast cancer

    NARCIS (Netherlands)

    van Winden, A.W.J.

    2010-01-01

    Breast cancer mortality rates in The Netherlands are among the highest in Europe. To improve breast cancer survival, early detection is of vital importance. The introduction of the national breast cancer screening program has led to an improvement in stage distribution at diagnosis of breast cancer.

  8. Efficacy of Neoadjuvant Cisplatin in Triple-Negative Breast Cancer

    DEFF Research Database (Denmark)

    Szallasi, Zoltan Imre; Eklund, Aron Charles; Li, Qiyuan

    2010-01-01

    PURPOSE Cisplatin is a chemotherapeutic agent not used routinely for breast cancer treatment. As a DNA cross-linking agent, cisplatin may be effective treatment for hereditary BRCA1-mutated breast cancers. Because sporadic triple-negative breast cancer (TNBC) and BRCA1-associated breast cancer...

  9. [Male breast cancer: a challenge for urologists].

    Science.gov (United States)

    Hofer, C; Schmalfeldt, B; Gschwend, J E; Herkommer, K

    2010-09-01

    Male breast cancer (male BC) accounts for Klinefelter syndrome) and a positive family history for breast cancer. About 90% of male BC are invasive ductal carcinomas. Standard treatment for localized cancer is surgical removal. Adjuvant radiation and systemic therapy are the same as in women with breast cancer. Male BC expresses hormone receptors in about 90% of cases; therefore, tamoxifen is a therapeutic option. A future challenge for the urologist or andrologist is to diagnose the disease at an early stage to improve prognosis.

  10. Suppression of Ovarian Function With Either Tamoxifen or Exemestane Compared With Tamoxifen Alone in Treating Premenopausal Women With Hormone-Responsive Breast Cancer

    Science.gov (United States)

    2016-07-29

    Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Recurrent Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer

  11. OPTIMIZATION OF DIAGNOSTIC IMAGING IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    S. A. Velichko

    2015-01-01

    Full Text Available The paper presents the results of breast imaging for 47200 women. Breast cancer was detected in 862 (1.9% patients, fibroadenoma in 1267 (2.7% patients and isolated breast cysts in 1162 (2.4% patients. Different types of fibrocystic breast disease (adenosis, diffuse fibrocystic changes, local fibrosis and others were observed in 60.1% of women. Problems of breast cancer visualization during mammography, characterized by the appearance of fibrocystic mastopathy (sclerosing adenosis, fibrous bands along the ducts have been analyzed. Data on the development of diagnostic algorithms including the modern techniques for ultrasound and interventional radiology aimed at detecting early breast cancer have been presented.  

  12. Genetic susceptibility for specific cancers. Medical liability of the clinician.

    Science.gov (United States)

    Severin, M J

    1999-12-01

    The use of genetic profiling techniques to detect individuals with an increased susceptibility to heritable cancers has provoked recent legal interest in the duties of the attending physician and in the rights of patients and their families. In the current study specific prima facie and recently litigated cases are presented and explored to delineate the issues facing physicians and to illustrate the prerogatives of patients who are caught up in a heritable cancer enigma. Various courts have attempted to answer questions involving lawsuits in which incidents of breast/ovarian carcinoma and colon carcinoma have provoked claims of negligence against health care providers. Health care workers involved in the care of these patients have specific duties to these individuals. It would appear that physicians are being forced to assume the additional duty of delving into a patient's family history of cancer through multiple generations. This duty is followed by a responsibility to provide detailed counseling to those patients in whom such activity impacts the diagnosis and management of familial cancer.

  13. Aetio-pathogenesis of breast cancer

    Directory of Open Access Journals (Sweden)

    Imran Haruna Abdulkareem

    2013-01-01

    Full Text Available This is a literature review on the aetiology and pathogenesis of breast cancer, which is the most common cancer worldwide, and the second leading cause of cancer death, especially in Western countries. Several aetiological factors have been implicated in its pathogenesis, and include age, genetics, family history, diet, alcohol, obesity, lifestyle, physical inactivity, as well as endocrine factors. These factors act separately or together in the causation of breast cancer. More recently, triple negative breast cancer has been described in certain categories of patients and is associated with poorer prognosis and earlier recurrence compared with the conventional breast cancer. Therefore, adequate knowledge of these factors is important in identifying high risk groups and individuals, which will help in screening, early detection and follow-up. This will help to decrease the morbidity and mortality from this life-threatening disease.

  14. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    Science.gov (United States)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Silva, Isabel dos Santos; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Van’t Veer, Laura J; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility. PMID:23535729

  15. A family history of breast cancer will not predict female early onset breast cancer in a population-based setting

    NARCIS (Netherlands)

    de Bock, Geertruida H.; Jacobi, Catharina E.; Seynaeve, Caroline; Krol-Warmerdam, Elly M. M.; Blom, Jannet; van Asperen, Christi J.; Cornelisse, Cees J.; Klijn, Jan G. M.; Devilee, Peter; Tollenaar, Rob A. E. M.; Brekelmans, Cecile T. M.; van Houwelingen, Johannes C.

    2008-01-01

    Background: An increased risk of breast cancer for relatives of breast cancer patients has been demonstrated in many studies, and having a relative diagnosed with breast cancer at an early age is an indication for breast cancer screening. This indication has been derived from estimates based on data

  16. Assessment of SLX4 Mutations in Hereditary Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Sohela Shah

    Full Text Available SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose polymerase (PARP inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA, FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers.To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823* mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF1%], of which 22 (5 novel and 17 rare were predicted to be damaging by Polyphen2 (score = 0.65-1. We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC, campthothecin (CPT, and PARP inhibitor (Olaparib the p.W823* SLX4 mutant failed to do so.Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.

  17. Estimation of volumetric breast density for breast cancer risk prediction

    Science.gov (United States)

    Pawluczyk, Olga; Yaffe, Martin J.; Boyd, Norman F.; Jong, Roberta A.

    2000-04-01

    Mammographic density (MD) has been shown to be a strong risk predictor for breast cancer. Compared to subjective assessment by a radiologist, computer-aided analysis of digitized mammograms provides a quantitative and more reproducible method for assessing breast density. However, the current methods of estimating breast density based on the area of bright signal in a mammogram do not reflect the true, volumetric quantity of dense tissue in the breast. A computerized method to estimate the amount of radiographically dense tissue in the overall volume of the breast has been developed to provide an automatic, user-independent tool for breast cancer risk assessment. The procedure for volumetric density estimation consists of first correcting the image for inhomogeneity, then performing a volume density calculation. First, optical sensitometry is used to convert all images to the logarithm of relative exposure (LRE), in order to simplify the image correction operations. The field non-uniformity correction, which takes into account heel effect, inverse square law, path obliquity and intrinsic field and grid non- uniformity is obtained by imaging a spherical section PMMA phantom. The processed LRE image of the phantom is then used as a correction offset for actual mammograms. From information about the thickness and placement of the breast, as well as the parameters of a breast-like calibration step wedge placed in the mammogram, MD of the breast is calculated. Post processing and a simple calibration phantom enable user- independent, reliable and repeatable volumetric estimation of density in breast-equivalent phantoms. Initial results obtained on known density phantoms show the estimation to vary less than 5% in MD from the actual value. This can be compared to estimated mammographic density differences of 30% between the true and non-corrected values. Since a more simplistic breast density measurement based on the projected area has been shown to be a strong indicator

  18. Risk of treatment-related esophageal cancer among breast cancer survivors

    DEFF Research Database (Denmark)

    Morton, L M; Gilbert, E S; Hall, P

    2012-01-01

    Radiotherapy for breast cancer may expose the esophagus to ionizing radiation, but no study has evaluated esophageal cancer risk after breast cancer associated with radiation dose or systemic therapy use.......Radiotherapy for breast cancer may expose the esophagus to ionizing radiation, but no study has evaluated esophageal cancer risk after breast cancer associated with radiation dose or systemic therapy use....

  19. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  20. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Borrego-Soto, Gissela; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto, E-mail: arojasmtz@gmail.com, E-mail: augusto.rojasm@uanl.mx [Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León (Mexico)

    2015-10-15

    Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity. (author)

  1. Epithelial-Mesenchymal Transition and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yanyuan Wu

    2016-01-01

    Full Text Available Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges.

  2. [Vitamin D and breast cancer].

    Science.gov (United States)

    Nagykálnai, Tamás; Landherr, László; Nagy, András Csaba

    2014-07-13

    The active form of vitamin D, in conjunction with his own receptor, affect a multitude of biological processes in the cell (inter alia it influences the expression of oncogenes and tumor suppressor genes). There is an increasing volume of scientific publications examining the relationships between serum vitamin D levels, vitamin D supplementation and malignant diseases. Some articles suggest inverse relationship between the low serum levels of vitamin D and the breast cancer risk and mortality, whilst other publications do not support this view. Thus the present opinion is conflicted. Vitamin D can exert a beneficial influence on the symptoms and outcomes of a large number of ailments, but its role in affecting cancer is still not completely clear.

  3. Cytogenetic report of a male breast cancer

    DEFF Research Database (Denmark)

    Cavalli, L R; Rogatto, S R; Rainho, C A

    1995-01-01

    The cytogenetic findings on G-banding in an infiltrating ductal breast carcinoma in a 69-year-old man are reported. The main abnormalities observed were trisomy of chromosomes 8 and 9 and structural rearrangement in the long arm of chromosome 17 (add(17)(q25)). Our results confirm the trisomy...... of chromosome 8 in the characterization of the subtype of ductal breast carcinomas and demonstrate that chromosome 17, which is frequently involved in female breast cancers, is also responsible for the development or progression of primary breast cancers in males....

  4. Cancer in the "cold" breast thermogram.

    Science.gov (United States)

    Isard, H J

    1976-11-01

    The hallmark of the normal breast thermogram is relative symmetry of vascular configuration and thermal content with preservation of the breast contour. Accepted criteria of abnormality are predicated upon graphic and thermal asymmetry with emphasis placed upon elevated temperature, an increase in the number of discernible vessels, and distorted vascular patterns. The association of a confirmed breast cancer and an avascular thermogram has been labeled a false negative. Avascularity ("cold" breast<