WorldWideScience

Sample records for breast cancer mcf7

  1. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    Science.gov (United States)

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.

  2. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen, E-mail: fupeifendoczju@163.com

    2013-12-10

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: • We used different technologies to prove our conclusion. • DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. • DUSP4 is a potential target for combating drug resistance in breast cancer. • DUSP4 is a potential target for regulating the EMT in breast cancer.

  3. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients.

    Science.gov (United States)

    He, Miao; Fu, Yingzi; Yan, Yuanyuan; Xiao, Qinghuan; Wu, Huizhe; Yao, Weifan; Zhao, Haishan; Zhao, Lin; Jiang, Qian; Yu, Zhaojin; Jin, Feng; Mi, Xiaoyi; Wang, Enhua; Cui, Zeshi; Fu, Liwu; Chen, Jianju; Wei, Minjie

    2015-11-01

    BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

  4. A new MCF-7 breast cancer cell line resistant to the arzoxifene metabolite desmethylarzoxifene

    DEFF Research Database (Denmark)

    Freddie, Cecilie T; Christensen, Gitte Lund; Lykkesfeldt, Anne E

    2004-01-01

    estrogenic effects than tamoxifen on gene expression. A cell line with acquired resistance to ARZm (MCF-7/ARZm(R)-1) was established from MCF-7 cells. MCF-7/ARZm(R)-1 cells responded to treatment with tamoxifen and the pure antiestrogen ICI 182,7870. The estrogen receptor alpha (ERalpha) level in MCF-7/ARZm......The development of resistance in tamoxifen-treated breast cancer patients and the estrogenic side effects of tamoxifen have lead to the design of many new drugs. The new SERM arzoxifene and its active metabolite desmethylarzoxifene (ARZm) inhibits growth of breast cancer cells and has less......(R)-1 cells was lower than in MCF-7 cells due to a destabilization of the receptor by ARZm. A significant reduction in the mRNA and protein level of some estrogen-regulated genes was observed in MCF-7/ARZm(R)-1 compared to MCF-7. However, both the level of the ERalpha and several ER-regulated gene...

  5. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells

    Science.gov (United States)

    Wang, Liang; Chan, Judy Y.; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P.; Shan, Luchen; Lee, Simon M.

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity. PMID:27559313

  6. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells.

    Science.gov (United States)

    Zeighamian, Vahideh; Darabi, Masoud; Akbarzadeh, Abolfazl; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah; Badrzadeh, Fariba; Salehi, Roya; Mirakabad, Fatemeh Sadat Tabatabaei; Taheri-Anganeh, Mortaza

    2016-01-01

    Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm-MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

  7. Construction of single-chain variable fragment antibodies against MCF-7 breast cancer cells.

    Science.gov (United States)

    Zuhaida, A A; Ali, A M; Tamilselvan, S; Alitheen, N B; Hamid, M; Noor, A M; Yeap, S K

    2013-11-18

    A phage display library of single chain variable fragment (scFv) against MCF-7 breast cancer cells was constructed from C3A8 hybridoma cells. RNA from the C3A8 was isolated, cDNA was constructed, and variable heavy and light immunoglobulin chain gene region were amplified using PCR. The variable heavy and light chain gene regions were combined with flexible linker, linked to a pCANTAB 5E phagemid vector and electrophoresed into supE strain of Escherichia coli TG1 cells. Forty-eight clones demonstrated positive binding activity to MCF-7 breast cancer cell membrane fragments and the strongest of 48 clones was selected for analysis. The anti-MCF-7 library evaluated by SfiI and NotI digests demonstrated that anti-MCF-7 scFv antibodies possess individual patterns that should be able to recognize distinct human breast cancer cells. The C3A8 scFv, with an apparent molecular weight of 32 kDa, showed high homology (99%) with single chain antibody against rice stripe virus protein P20. In summary, the anti MCF-7 scFv antibody can be used for pretargeting breast cancer for clinical diagnosis of patients; it also has potential for therapeutic applications.

  8. [Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics].

    Science.gov (United States)

    Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao

    2014-03-01

    The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t < 0.05) were identified to be biomarkers. Eleven metabolites such as butanedioic acid, phosphoric acid, L-leucine and isoleucine which had a significant contribution to classification were selected and preliminarily identified due to the accurate mass. Cell cycle assay was analyzed by FACSCalibur. Since the cells in the phase of G1 were increased significantly after the treatment of lupeol, we speculated that lupeol has a blocking effect on the generation of succinyl-CoA and the reaction of substrate phosphorylation of tricarboxylic acid cycle of MCF-7 cells. This study provided a novel approach to the mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics.

  9. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Yi-Feng Ye

    2015-01-01

    Objective:To investigate the expression of survivin in breast cancer cell lines and explore the effect of survivin siRNA on biology behavior of breast cancer cells.Methods: Western blot was performed to detect the expression of survivin in breast cancer cell lines. Eukaryotic expression vector pIRES2-EGFP-Survivin siRNA was constructed and transfected in MCF7 cells with liposome, the efficiency of survivin siRNA was measured by Western blot and RT-PCR. Cell proliferation and apoptosis were detected by CCK8 and cell flow respectively. Cell migration and invasion was measured by transwell assay.Results: Survivin was highly expressed in MCF-7. Green fluorescence was found in MCF-7 cells tranfected with survivin siRNA and control siRNA by inverted fluorescence microscopy, the protein and mRNA level of survivin was significantly lower in cells tranfected with survivin siRNA compared with control group. Compared with control group, interfering the expression of survivin by siRNA significantly decreased the proliferation, migration and invasion of MCF-7 cells, the percentage of apoptosis cells was greatly promoted.Conclusions: Interfering the expression of Survivin can inhibit the cell proliferation, migration and invasion, and promot apoptosis in MCF-7.

  10. Overexpress of CD47 does not alter the stemness of MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Oanh Thi-Kieu Nguyen

    2016-09-01

    Full Text Available Background: CD47 is a transmembrane glycoprotein expressed on all cells in the body and particularly overexpressed on cancer cells and cancer stem cells of both hematologic and solid malignancies. In the immune system, CD47 acts as a and ldquo;don't eat me and rdquo; signal, inhibiting phagocytosis by macrophages by interaction with signal regulatory protein and #945; (SIRP and #945;. In cancer, CD47 promotes tumor invasion and metastasis. This study aimed to evaluate the stemness of breast cancer cells when CD47 is overexpressed. Methods: MCF-7 breast cancer cells were transfected with plasmid pcDNA3.4-CD47 containing the CD47 gene. The stemness of the transduced MCF7 cell population was evaluated by expression of CD44 and CD24 markers, anti-tumor drug resistance and mammosphere formation. Results: Transfection of plasmid pcDNA3.4-CD47 significantly increased the expression of CD47 in MCF-7 cells. The overexpression of CD47 in transfected MCF-7 cells led to a significant increase in the CD44+CD24- population, but did not increase doxorubicin resistance of the cells or their capacity to form mammospheres. Conclusion: CD47 overexpression enhances the CD44+CD24- phenotype of breast cancer cells as observed by an increase in the CD44+CD24- expressing population. However, these changes are insufficient to increase the stemness of breast cancer cells. [Biomed Res Ther 2016; 3(9.000: 826-835

  11. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  12. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7

    Science.gov (United States)

    Qian, Airong; Zhang, Wei; Xie, Li; Weng, Yuanyuan; Yang, Pengfei; Wang, Zhe; Hu, Lifang; Xu, Huiyun; Tian, Zongcheng; Shang, Peng

    The aim of this study is to investigate the effects of the clinostat-simulated microgravity on MCF-7 cells (a breast cancer cell line) biological characteristics. MCF-7 cells were incubated for 24 h in an incubator and then rotated in a clinostat as a model of simulated microgravity for 24, 48 and 72 h, respectively. The effects of the clinostat-simulated microgravity on MCF-7 cells proliferation, invasion, migration, gelatinase production, adhesion, cell cycle, apoptosis and vinculin expression were detected. The results showed that the clinostat-simulated microgravity affected breast cancer cell invasion, migration, adhesion, cell cycle, cell apoptosis and vinculin expression. These results may explore a new field of vision to study tumor metastasis in future.

  13. Curcumin Induces Cell Death and Restores Tamoxifen Sensitivity in the Antiestrogen-Resistant Breast Cancer Cell Lines MCF-7/LCC2 and MCF-7/LCC9

    Directory of Open Access Journals (Sweden)

    Min Jiang

    2013-01-01

    Full Text Available Curcumin, a principal component of turmeric (Curcuma longa, has potential therapeutic activities against breast cancer through multiple signaling pathways. Increasing evidence indicates that curcumin reverses chemo-resistance and sensitizes cancer cells to chemotherapy and targeted therapy in breast cancer. To date, few studies have explored its potential antiproliferation effects and resistance reversal in antiestrogen-resistant breast cancer. In this study, we therefore investigated the efficacy of curcumin alone and in combination with tamoxifen in the established antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. We discovered that curcumin treatment displayed anti-proliferative and pro-apoptotic activities and induced cell cycle arrest at G2/M phase. Of note, the combination of curcumin and tamoxifen resulted in a synergistic survival inhibition in MCF-7/LCC2 and MCF-7/LCC9 cells. Moreover, we found that curcumin targeted multiple signals involved in growth maintenance and resistance acquisition in endocrine resistant cells. In our cell models, curcumin could suppress expression of pro-growth and anti-apoptosis molecules, induce inactivation of NF-κB, Src and Akt/mTOR pathways and downregulate the key epigenetic modifier EZH2. The above findings suggested that curcumin alone and combinations of curcumin with endocrine therapy may be of therapeutic benefit for endocrine-resistant breast cancer.

  14. GENISTEIN INHIBITS EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN HER-2/NEU TRANSFECTED HUMAN BREAST CANCER MCF-7 CELLS

    Institute of Scientific and Technical Information of China (English)

    ZHU Jun-dong; YU Xiao-ping; MI Man-tian

    2006-01-01

    Objective: our previous studies have demonstrated that HER-2/neu gene expression in human breast cancer MCF-7 cells promotes angiogenesis in MCF-7 cells xenograft tumors, and genistein inhibits angiogenesis in MCF-7 cells with HER-2/neu expression xenograft tumors. Here, the effects of genistein on the expression of vascular endothelial growth factor (VEGF) inMCR-7 cells with HER-2/neu expression were further studied for exploring the molecular mechanism of anti-angiogenesis in HER-2/neu-overexpressing breast cancer by genistein. Methods: HER-2/neu-overexpressing MCF-7 cells (MCF-7/HER-2)were established by transfecting HER-2/neu gene into HER-2/neu negative expression breast cancer MCF-7 cells.Immunocytochemical staining, western blot and reverse transcription-polymerase chain reaction (RT-PCR) were adopted to measure the expression of VEGF in MCF-7/HER-2 cells treated by genistein for 24, 48 and 72h. Results: HER-2/neu expression up-regulated VEGF mRNA and protein in MCF-7 cells, genistein decreased VEGF mRNA and protein level in MCF-7/HER-2 cells in a time-dependent manner. Conclusion: These results suggest that VEGF plays an important role in HER-2/neu gene expression promoted antiogenesis in breast cancer and genistein induced down-regulation of the expression of VEGF may be one of the molecular mechanisms of its anti-angiogenesis in HER-2/neu-overexpressing breast cancer.

  15. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  16. Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation.

    Science.gov (United States)

    Falany, Josie L; Macrina, Nancy; Falany, Charles N

    2002-07-01

    Estrogen stimulation is an important factor in human breast cancer cell growth and development. Metabolism of beta-estradiol (E2), the major endogenous human estrogen, is important in regulating both the level and activity of the hormone in breast tissues. Conjugation of E2 with a sulfonate moiety is an inactivation process since the sulfate ester formed by this reaction can not bind and activate the estrogen receptor. In human tissues including the breast, estrogen sulfotransferase (EST, SULT1E1) is responsible for high affinity E2 sulfation activity. EST is expressed in human mammary epithelial (HME) cells but not in most cultured breast cancer cell lines, including estrogen responsive MCF-7 cells. Stable expression of EST in MCF-7 cells at levels similar to those detected in HME cells significantly inhibits cell growth at physiologically relevant E2 concentrations. The mechanism of cell growth inhibition involves the abrogation of responses observed in growth factor expression in MCF-7 cells following E2 stimulation. MCF-7 cells expressing EST activity did not show a decrease in estrogen receptor-alpha levels, nor a characteristic increase in progesterone receptor or decrease in transforming growth factor-beta expression upon exposure to 100 pM or 1 nM E2. The lack of response in these MCF-7 cells is apparently due to the rapid sulfation and inactivation of free E2 by EST. These results suggest that loss of EST expression in the transformation of normal breast tissues to breast cancer may be an important factor in increasing the growth responsiveness of preneoplastic or tumor cells to estrogen stimulation.

  17. The Study of Apoptotic Effect of p-Coumaric Acid on Breast Cancer Cells MCF-7

    Directory of Open Access Journals (Sweden)

    M Kolahi

    2016-06-01

    Full Text Available Introduction: Polyphenolic compounds have anti proliferative and induced apoptotic features on cancer cells. p-Coumaric acid can be abundantly found in fruits, vegetables, plant production and honey. .  Breast cancer is the most frequently diagnosed cancer among women in the world. This study aimed to investigate the effect and mechanism of p- coumaric acid on apoptosis of MCF-7 breast cancer cells. Methods: In order to study appoptic effect of p- coumaric acid, MCF-7 breast cancer cells were treated with different concentrations of p- coumaric acid (10, 37, 70, 150 and 300 mM for 24 h. Cell viability was determined using MTT assay. Apoptosis markers including phosphatidylserine exposure at the outer leaflet of the plasma membrane were measured using flow cytometery for Annexin V affinity. Results: Cell viability of MCF-7 cells was decreased with increasing of p- coumaric acid concentration. Maximal effect of p- coumaric acid was observed in cells that treated with 300 mM for 24h (p< 0.05. Viability assay showed that the IC50 of p- coumaric acid in MCF-7 cells was about 40 mM. p- coumaric acid at dose of 300 mM significantly increased the late apoptotic cells with Annexin V+ and propium iodide (PI+ features after 24 h treatment. Conclusion: The results of this study showed that p- coumaric acid had effective appoptic activity against MCF-7 cells. The results can be helpful in understanding the anticancer mechanism of p- coumaric acid and using it was suggested as an alternative or complementary drug in cancer chemotherapy.

  18. PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, C-G; Zhuang, J; Teng, W-J; Wang, Z; Du, S-S

    2015-05-29

    We explored whether p53 upregulated modulator of apoptosis (PUMA) gene transfection could enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells. The liposome-mediated recombinant eukaryotic expression vector PU-MA-pCDNA3 and empty vector plasmid were stably transfected into MCF-7 cells. Epirubicin (0.01-100 μM) was applied to MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells for 72 h. The MTT assay was used to calculate the cell survival rate in each group, and the 50% inhibitory concentration (IC50) was calculated. The IC50 values of epirubicin in MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells were 13 ± 1.4, 1.8 ± 0.2, and 10.7 ± 1.3 μM, respectively. The sensitivity of MCF-7/PUMA cells to epirubicin increased 7.2-fold. Epirubicin induced apoptosis in MCF-7 cells dose-dependently, but MCF-7/PUMA cell-induced apoptosis was more significant compared to controls. Low concentrations of epirubicin (0.1 μM) caused low levels of apoptosis of MCF-7/pCDNA3 (1.15 ± 0.26%) and MCF-7 cells (0.9 ± 0.24%), but significantly induced apoptosis of MCF-7/PUMA cells (6.44 ± 1.46%). High epirubicin concentration (1 μM) induced apoptosis in each group, but the epirubicin MCF-7/PUMA apoptosis rate (35.47 ± 9.36%) was significantly higher than that of MCF-7 (12.6 ± 3.73%) and MCF-7/ pCDNA3 (15.2 ± 5.17%) cells (P PUMA protein expression in MCF-7/PUMA cells was significantly higher than that in MCF-7 and MCF-7/pCDNA3 cells by Western blot analysis. There-fore, stable transfection of PUMA can significantly enhance epirubicin-induced apoptosis sensitivity of MCF-7 breast cancer cells.

  19. Molecular Characteristics of Breast Cancer Cell Line MCF-7%乳腺癌MCF-7细胞的分子生物学特征

    Institute of Scientific and Technical Information of China (English)

    叶静; 李明华; 龙霞; 万汇涓; 范昭

    2012-01-01

    Objective To study the molecular characteristics of breast cancer cell line MCF-7. Methods Methylations of Stratifin and CyclinD2 genes were examined by methylation-specific polymerase chain reaction( MSP ). Expressions of Stratifin, CyclinD2 and Dnmt3b genes mRNA were detected by RT-PCR. Results Unmethylation and high mRNA level of Stratifin gene, complete methylation and expression deletion of CyclinD2 gene, significant expression of Dnmt3b gene were showed in breast cancer cell line MCF-7. Conclusion Methylations of Stratifin and CyclinD2 genes maybe down-regulate mRNA expressions. These molecular characteristics provide certain reference to epigenetic study of breast cancer.%目的 研究乳腺癌MCF-7细胞的分子生物学特征.方法 采用甲基化特异性PCR(MSP),对MCF-7细胞进行Stratifin和CyclinD2基因甲基化检测;采用RT-PCR法,检测Stratifin、CyclinD2和Dnmt3b基因的mRNA表达.结果 乳腺癌MCF-7细胞系中,Stratifin基因是非甲基化的,mRNA表达水平较高;CyclinD2基因完全甲基化,mRNA表达缺失;Dnmt3b基因呈明显表达.结论 Stratifin和CyclinD2基因的甲基化发生,可能下调其mRNA的转录表达,MCF-7细胞的这些分子生物学特性可为乳腺癌的表观遗传学研究提供一定的参考价值.

  20. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  1. Establishment of a paclitaxel resistant human breast cancer cell strain (MCF-7/Taxol) and intracellular paclitaxel binding protein analysis.

    Science.gov (United States)

    Zuo, K-Q; Zhang, X-P; Zou, J; Li, D; Lv, Z-W

    2010-01-01

    Multidrug resistance of tumours is one of the most important factors that leads to chemotherapy failure. A multidrug-resistant breast cancer cell line, MCF-7/Taxol, was established from the drug-sensitive parent cell line MCF-7. The biological properties of MCF-7/Taxol, including its drug resistance profile and profile of paclitaxel binding proteins, were analysed and compared with the parent cell line. A number of paclitaxel binding proteins were present in MCF-7 cells but absent from MCF-7/Taxol cells, namely heat shock protein 90, actinin and dermcidin precursor. The identification of differential paclitaxel binding proteins between the multidrug-resistant MCF-7/Taxol cell line and the parent drug-sensitive cell line MCF-7 provides insight into possible mechanisms involved in resistance to these chemotherapy drugs.

  2. Induction of Apoptosis in Human Breast Cancer (MCF7) Cells by n-Hexane Extract of Plectranthus amboinicus (Lour.) Spreng.

    OpenAIRE

    Hasibuan, Poppy Anjelisa Z.

    2016-01-01

    The n-hexane extract of Plectranthus amboinicus, (Lour.) Spreng. reduced the proliferation of MCF7 cells. The present study was carried out to evaluate the effect of the extract on human breast cancer cells viability and apoptosis. To detect apoptotic cells, MCF7 cells were stained with etydium bromide-acrydine orange (double staining method). Quantitative detectin of apoptotic cells was performed by fluorescens microscope. The growth of MCF7 was inhibited by treatment with n-h...

  3. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  4. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  5. Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Kim, In Young; Han, Soon Young; Moon, Aree

    2004-12-01

    Environmental estrogens represent a class of compounds that can mimic the function or activity of the endogenous estrogen 17 -estradiol (E2). Phthalates including butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP) are used as plasticizers, and also widely used in food wraps and cosmetic formulations. Phthalates have been shown to mimic estrogen and are capable of binding to the estrogen receptor (ER). It has been demonstrated that estrogen promotes drug resistance to tamoxifen (TAM) in breast cancer. In order to further evaluate the potential role of the phthalates as environmental estrogens, the effect of phthalates was investigated on TAM-induced apoptosis in MCF-7 human breast cancer cells. Our results show that phthalates, BBP (100 M), DBP (10 M), and DEHP (10 M), significantly increased cell proliferation in MCF-7, but not in MDA-MB-231 cells. In addition, BBP, DBP, and DEHP mimicked estrogen in the inhibition of TAM-induced apoptosis in MCF-7 cells. Our data suggest that the inhibitory effect of phthalates on TAM-induced apoptosis involves an increase in intracellular Bcl-2 to Bax ratio. Given that the phthalates are widely used in cosmetics mainly for women, our findings that revealed the promoting effect of BBP, DBP, and DEHP on chemotherapeutic drug resistance to TAM in breast cancer may be of biological relevance.

  6. Proteomic Analysis of MCF-7 Breast Cancer Cell Line Exposed To Leptin

    Directory of Open Access Journals (Sweden)

    A. Valle

    2011-01-01

    Full Text Available Background: Obesity is a well-known factor risk for breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play an important role in mammary tumor formation and progression. To contribute to the understanding of the molecular mechanisms underlying leptin action in breast cancer, our aim was to identify proteins regulated by leptin in MCF-7 human breast cancer cells. Methods: We used two-dimensional gel electrophoresis (2-DE and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS to identify proteins affected by leptin. Results: Thirty proteins were found differentially expressed in MCF-7 cells after 48 h leptin exposure. Proteins regulated by leptin included proteins previously implicated in breast cancer such as catechol-o-methyltransferase, cathepsin D, hsp27, serine/threonine-protein phosphatase and regulatory proteins of the Ras signaling pathway. Proteins involved in other cellular functions such as stress response, cytosqueleton remodeling and proteins belonging to ubiquitin-proteasome system, were also identified. Furthermore, leptin-treated cells showed a substantial uptake of the serum carrier proteins albumin and alpha-2-HS-glycoprotein. Conclusions: This screening reveals that leptin influences the levels of key proteins involved in breast cancer which opens new avenues for the study of the molecular mechanisms linking obesity to breast cancer.

  7. Acute and chronic cadmium exposure promotes E-cadherin degradation in MCF7 breast cancer cells.

    Science.gov (United States)

    Ponce, Esmeralda; Louie, Maggie C; Sevigny, Mary B

    2015-10-01

    Cadmium is an environmental carcinogen that usually enters the body at minute concentrations through diet or cigarette smoke and bioaccumulates in soft tissues. In past studies, cadmium has been shown to contribute to the development of more aggressive cancer phenotypes including increased cell migration and invasion. This study aims to determine if cadmium exposure-both acute and chronic-contributes to breast cancer progression by interfering with the normal functional relationship between E-cadherin and β-catenin. An MCF7 breast cancer cell line (MCF7-Cd) chronically exposed to 10(-7)  M CdCl2 was previously developed and used as a model system to study chronic exposures, whereas parental MCF7 cells exposed to 10(-6)  M CdCl2 for short periods of time were used to study acute exposures. Cadmium exposure of MCF7 cells led to the degradation of the E-cadherin protein via the ubiquitination pathway. This resulted in fewer E-cadherin/β-catenin complexes and the relocation of active β-catenin to the nucleus, where it interacted with transcription factor TCF-4 to modulate gene expression. Interestingly, only cells chronically exposed to cadmium showed a significant decrease in the localization of β-catenin to the plasma membrane and an increased distance between cells. Our data suggest that cadmium exposure promotes breast cancer progression by (1) down-regulating E-cadherin, thus decreasing the number of E-cadherin/β-catenin adhesion complexes, and (2) enhancing the nuclear translocation of β-catenin to increase expression of cancer-promoting proteins (i.e., c-Jun and cyclin D1).

  8. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  9. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel.

    Science.gov (United States)

    Pavlíková, Nela; Bartoňová, Irena; Balušíková, Kamila; Kopperova, Dana; Halada, Petr; Kovář, Jan

    2015-04-10

    Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.

  10. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Fani S

    2015-11-01

    Full Text Available Somayeh Fani,1 Behnam Kamalidehghan,1 Kong Mun Lo,2 Najihah Mohd Hashim,1 Kit May Chow,2 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, 2Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia Abstract: A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene-4-chlorobenzyhydrazidato](o-methylbenzylaquatin(IV chloride, (compound C1, was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50 value of 2.5±0.50 µg/mL after 48 hours treatment. The IC50 value was >30 µg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the

  11. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maëlle Lempereur

    2016-01-01

    Full Text Available Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L. which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box. In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells. Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  12. A crystal lapiferin derived from Ferula vesceritensis induces apoptosis pathway in MCF-7 breast cancer cells.

    Science.gov (United States)

    Gamal-Eldeen, Amira M; Hegazy, M-E F

    2010-02-01

    Ferula vesceritensis is a plant that is used in the traditional medicine in Algeria. Chromatographic investigation of the methylene chloride/methanol extract of the aerial parts of F. vesceritensis afforded a crystal carotene sesquiterpene designed lapiferin (10alpha-acetoxy-6alpha-angeloyloxy-8alpha,9alpha-epoxy-trans-caxotan-4beta-ol) for the first time from this species. The structure was determined by comprehensive NMR studies, including DEPT, COSY, NOE, HMQC, HMBC and HRMS, and X-ray data of lapiferin. We report here for the first time the isolation of lapiferin from F. vesceritensis as a new natural source, and we additionally report the first X-ray data for lapiferin. We also report for the first time the specific anti-cancer activity of lapiferin against human breast cancer cells (MCF-7), which is due to apoptosis and not necrosis. Moreover, we have identified for the first time the cell death pathway induced by lapiferin in human breast cancer cells, and also that lapiferin evokes multiple consequences that trigger apoptotic cell death, involving the enhancement of DNA fragmentation, the activation of caspases and the induction of histone acetylation in MCF-7 cells. In conclusion, we record here F. vesceritensis as a new natural source of lapiferin and its first X-ray analysis, and the promising specific anti-cancer activity against human breast cancer of lapiferin and accordingly F. vesceritensis extract.

  13. Effects of ELF magnetic fields on protein expression profile of human breast cancer cell MCF7

    Institute of Scientific and Technical Information of China (English)

    LI Han; ZENG Qunli; WENG Yu; LU Deqiang; JIANG Huai; XU Zhengping

    2005-01-01

    Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a "possible human carcinogen" by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unknown. In this study, a proteomics approach was employed to investigate the changes of protein expression profile induced by ELF MF in human breast cancer cell line MCF7, in order to determine ELF MF-responsive proteins. MCF7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h and the changes of protein profile were examined using two dimensional electrophoresis. Up to 6 spots have been statistically significantly altered (their expression levels were changed at least 5 fold up or down) compared with sham-exposed group. 19 ones were only detected in exposure group while 19 ones were missing. Three proteins were identified by LC-IT Tandem MS as RNA binding protein regulatory subunit、Proteasome subunit beta type 7 precursor and Translationally Controlled Tumor Protein. Our finding showed that 50 Hz, 0.4 mT ELF MF alternates the protein profile of MCF7 cell and may affect many physiological functions of normal cell and 2-DE coupled with MS is a promising approach to elucidating cellular effects of electromagnetic fields.

  14. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Martin, Keith R; Brophy, Sara K

    2010-11-01

    Worldwide, over one million women will be newly diagnosed with breast cancer in the next year. Moreover, breast cancer is the second leading cause of cancer death in the USA. An accumulating body of evidence suggests that consumption of dietary mushrooms can protect against breast cancer. In this study, we tested and compared the ability of five commonly consumed or specialty mushrooms to modulate cell number balance in the cancer process using MCF-7 human breast cancer cells. Hot water extracts (80°C for 2 h) of maitake (MT, Grifola frondosa), crimini (CRIM, Agaricus bisporus), portabella (PORT, Agaricus bisporus), oyster (OYS, Pleurotus ostreatus) and white button (WB, Agaricus bisporus) mushrooms or water alone (5% v/v) were incubated for 24 h with MCF-7 cells. Cellular proliferation determined by bromodeoxyuridine incorporation was significantly (P mushrooms, with MT and OYS being the most effective. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction, an often used mitochondrion-dependent marker of proliferation, was unchanged although decreased (P > 0.05) by 15% with OYS extract. Lactate dehydrogenase release, as a marker of necrosis, was significantly increased after incubation with MT but not with other test mushrooms. Furthermore, MT extract significantly increased apoptosis, or programmed cell death, as determined by terminal deoxynucleotidyl end labeling method, whereas other test mushrooms displayed trends of ∼15%. The total numbers of cells per flask, determined by hemacytometry, were not different from control cultures. Overall, all test mushrooms significantly suppressed cellular proliferation, with MT further significantly inducing apoptosis and cytotoxicity in human breast cancer cells. This suggests that both common and specialty mushrooms may be chemoprotective against breast cancer.

  15. Inhibition of SGK1 enhances mAR-induced apoptosis in MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Guilai; Honisch, Sabina; Liu, Guoxing; Schmidt, Sebastian; Pantelakos, Stavros; Alkahtani, Saad; Toulany, Mahmoud; Lang, Florian; Stournaras, Christos

    2015-01-01

    Functional membrane androgen receptors (mAR) have previously been described in MCF-7 breast cancer cells. Their stimulation by specific testosterone albumin conjugates (TAC) activate rapidly non-genomic FAK/PI3K/Rac1/Cdc42 signaling, trigger actin reorganization and inhibit cell motility. PI3K stimulates serum and glucocorticoid inducible kinase SGK1, which in turn regulates the function of mAR. In the present study we addressed the role of SGK1 in mAR-induced apoptosis. TAC-stimulated mAR activation elicited apoptosis of MCF-7 cells, an effect significantly potentiated by concomitant incubation of the cells with TAC and the specific SGK1 inhibitors EMD638683 and GSK650394. In line with this, TAC and EMD638683 activated caspase-3. These effects were insensitive to the classical androgen receptor (iAR) antagonist flutamide, pointing to iAR-independent, mAR-induced responses. mAR activation and SGK1 inhibition further considerably augmented the radiation-induced apoptosis of MCF-7 cells. Moreover, TAC- and EMD638683 triggered early actin polymerization in MCF-7 cells. Blocking actin restructuring with cytochalasin B abrogated the TAC- and EMD638683-induced pro-apoptotic responses. Further analysis of the molecular signaling revealed late de-phosphorylation of FAK and Akt. Our results demonstrate that mAR activation triggers pro-apoptotic responses in breast tumor cells, an effect significantly enhanced by SGK1 inhibition, involving actin reorganization and paralleled by down-regulation of FAK/Akt signaling.

  16. Dracorhodin Perchlorate Induced Human Breast Cancer MCF-7 Apoptosis through Mitochondrial Pathways

    Science.gov (United States)

    Yu, Jing-hua; Zheng, Gui-bin; Liu, Chun-yu; Zhang, Li-ying; Gao, Hong-mei; Zhang, Ya-hong; Dai, Chun-yan; Huang, Lin; Meng, Xian-ying; Zhang, Wen-yan; Yu, Xiao-fang

    2013-01-01

    Objective: Dracorhodin perchlorate (DP) was a synthetic analogue of the antimicrobial anthocyanin red pigment dracorhodin. It was reported that DP could induce apoptosis in human prostate cancer, human gastric tumor cells and human melanoma, but the cytotoxic effect of DP on human breast cancer was not investigated. This study would investigate whether DP was a candidate chemical of anti-human breast cancer. Methods: The MTT assay reflected the number of viable cells through measuring the activity of cellular enzymes. Phase contrast microscopy visualized cell morphology. Fluorescence microscopy detected nuclear fragmentation after Hoechst 33258 staining. Flowcytometric analysis of Annexin V-PI staining and Rodamine 123 staining was used to detect cell apoptosis and mitochondrial membrane potential (MMP). Real time PCR detected mRNA level. Western blot examined protein expression. Results: DP dose and time-dependently inhibited the growth of MCF-7 cells. DP inhibited MCF-7 cell growth through apoptosis. DP regulated the expression of Bcl-2 and Bax, which were mitochondrial pathway proteins, to decrease MMP, and DP promoted the transcription of Bax and inhibited Bcl-2. Apoptosis-inducing factor (AIF) and cytochrome c which localized in mitochondrial in physiological condition were released into cytoplasm when MMP was decreased. DP activated caspase-9, which was the downstream of mitochondrial pathway. Therefore DP decreased MMP to release AIF and cytochrome c into cytoplasm, further activating caspase 9, lastly led to apoptosis. Conclusion: Therefore DP was a candidate for anti-breast cancer, DP induced apoptosis of MCF-7 through mitochondrial pathway. PMID:23869191

  17. Deletion breakpoint mapping on chromosome 9p21 in breast cancer cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Hua-ping XIE

    2012-05-01

    Full Text Available Objective  To map the deletion breakpoint of chromosome 9p21 in breast cancer cell line MCF-7. Methods  The deletion of chromosome 9p21 was checked by Multiplex Ligation-dependent Probe Amplification (MLPA in MCF-7. Subsequently, the deletion breakpoint was amplified by long range PCR and the deletion region was narrowed by primer walking. Finally, the deletion position was confirmed by sequencing. Results  The deletion was found starting within the MTAP gene and ending within CDKN2A gene by MLPA. Based on long range PCR and primer walking, the deletion was confirmed to cover the region from chr9:21819532 to chr9:21989622 by sequencing, with a deletion size of 170kb, starting within the intron 4 of MTAP and ending within the intron 1 near exon 1β of CDKN2A. Conclusions  Long range PCR is an efficient way to detect deletion breakpoints. In MCF-7, the deletion has been confirmed to be 170kb, starting within the MTAP gene and ending within the CDKN2A gene. The significance of the deletion warrants further research.

  18. Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt/β-Catenin Signaling Pathway

    Science.gov (United States)

    Fani, Somayeh; Dehghan, Firouzeh; Karimian, Hamed; Mun Lo, Kong; Ebrahimi Nigjeh, Siyamak; Swee Keong, Yeap; Soori, Rahman; May Chow, Kit; Kamalidehghan, Behnam; Mohd Ali, Hapipah; Mohd Hashim, Najihah

    2016-01-01

    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence. PMID:27529753

  19. Pseudolaric acid B induces apoptosis, senescence, and mitotic arrest in human breast cancer MCF-7

    Institute of Scientific and Technical Information of China (English)

    Jing-hua YU; Qiao CUI; Yuan-yuan JIANG; Wei YANG; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2007-01-01

    Aim: The aim of the present study was to investigate the inhibitory effect of pseudolaric acid B (PAB) on human breast cancer MCF-7 cells. Methods: 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis, morphological changes, acridine orange staining, and agarose gel electrophoresis were applied to detect apoptosis. The percentage of apoptotic and necrotic cells was calcu- lated by the lactate dehydrogenase activity-based cytotoxicity assay; senescence associated (SA)-β-galactosidase activity was detected to evaluate senescence; flow cytometric analysis of propidium iodide staining was carried out to investi- gate the distribution of cell cycle, and the protein expression was examined by Western blot analysis. Results: During apoptosis, the half maximal inhibitory concentration IC502 was 3.4 and 1.35 μmol/L at 36 and 48 h after PAB treatment, respectively. The MCF-7 cells exposed to PAB showed typical characteristics of apoptosis, including the morphological changes and DNA fragmentation. The MCF-7 cells treated with 4 μmol/L PAB for 36 h underwent apoptosis, but not necrosis. The apoptosis induced by PAB was independent of the death receptor pathway. The senescent cells became larger and flatter, and the SA-β-galactosi- dase staining was positive. PAB induced obvious mitotic arrest and it preceded apoptosis and senescence. The expressions of p21 and p53 was upregulated with PAB treatment, and cyclin B 1 was upregulated and transported from the cyto- plasm to nuclei, and sustained stable levels. Conclusion: PAB induced mitotic arrest in the MCF-7 cells and inhibited proliferation through apoptosis and senescence. The apoptosis was independent of the death receptor pathway.

  20. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  1. New 3-Cyano-2-Substituted Pyridines Induce Apoptosis in MCF 7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ahmed Malki

    2016-02-01

    Full Text Available The synthesis of new 3-cyano-2-substituted pyridines bearing various pharmacophores and functionalities at position 2 is described. The synthesized compounds were evaluated for their in vitro anti-cancer activities on five cancer cell lines using 5-FU as reference compound. The results revealed that the benzohydrazide derivative 9a induced growth inhibition in human breast cancer cell line MCF-7 with an IC50 value of 2 μM and it showed lower cytotoxicity on MCF-12a normal breast epithelial cells. Additionally, 9a induced apoptotic morphological changes and induced apoptosis in MCF-7 in a dose and time-dependent manner according to an enzyme linked immunosorbent apoptosis assay which is further confirmed by a TUNEL assay. Flow cytometric analysis indicated that 9a arrested MCF-7 cells in the G1 phase, which was further confirmed by increased expression of p21 and p27 and reduced expression of CDK2 and CDK4. Western blot data revealed significant upregulation of the expression of p53, Bax, caspase-3 and down-regulation of Bcl-2, Mdm-2 and Akt. Additionally, 9a increased the release of cytochrome c from mitochondria to cytoplasm which provokes the mitochondrial apoptotic pathway while it showed no significant change on the expression of the death receptor proteins procaspase-8, caspase-8 and FAS. Furthermore, 9a reduced the expression of phospho AKT and β-catenin in dose dependent manner while inhibiting the expression of migration-related genes such as matrix metalloproteinase (MMP-9 and vascular endothelial growth factor (VEGF. Our findings suggest that compound 9a could be considered as a lead structure for further development of more potent apoptosis inducing agents with anti-metastatic activities.

  2. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  3. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  4. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Murawala, Priyanka [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); Tirmale, Amruta [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); National Centre for Cell Science, NCCS, Pune 411007 (India); Shiras, Anjali, E-mail: anjalishiras@nccs.res.in [National Centre for Cell Science, NCCS, Pune 411007 (India); Prasad, B.L.V., E-mail: pl.bhagavatula@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated.

  5. Metabolic Response to XD14 Treatment in Human Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Daqiang Pan

    2016-10-01

    Full Text Available XD14 is a 4-acyl pyrrole derivative, which was discovered by a high-throughput virtual screening experiment. XD14 inhibits bromodomain and extra-terminal domain (BET proteins (BRD2, BRD3, BRD4 and BRDT and consequently suppresses cell proliferation. In this study, metabolic profiling reveals the molecular effects in the human breast cancer cell line MCF-7 (Michigan Cancer Foundation-7 treated by XD14. A three-day time series experiment with two concentrations of XD14 was performed. Gas chromatography-mass spectrometry (GC-MS was applied for untargeted profiling of treated and non-treated MCF-7 cells. The gained data sets were evaluated by several statistical methods: analysis of variance (ANOVA, clustering analysis, principle component analysis (PCA, and partial least squares discriminant analysis (PLS-DA. Cell proliferation was strongly inhibited by treatment with 50 µM XD14. Samples could be discriminated by time and XD14 concentration using PLS-DA. From the 117 identified metabolites, 67 were significantly altered after XD14 treatment. These metabolites include amino acids, fatty acids, Krebs cycle and glycolysis intermediates, as well as compounds of purine and pyrimidine metabolism. This massive intervention in energy metabolism and the lack of available nucleotides could explain the decreased proliferation rate of the cancer cells.

  6. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  7. Metabolic Response to XD14 Treatment in Human Breast Cancer Cell Line MCF-7

    Science.gov (United States)

    Pan, Daqiang; Kather, Michel; Willmann, Lucas; Schlimpert, Manuel; Bauer, Christoph; Lagies, Simon; Schmidtkunz, Karin; Eisenhardt, Steffen U.; Jung, Manfred; Günther, Stefan; Kammerer, Bernd

    2016-01-01

    XD14 is a 4-acyl pyrrole derivative, which was discovered by a high-throughput virtual screening experiment. XD14 inhibits bromodomain and extra-terminal domain (BET) proteins (BRD2, BRD3, BRD4 and BRDT) and consequently suppresses cell proliferation. In this study, metabolic profiling reveals the molecular effects in the human breast cancer cell line MCF-7 (Michigan Cancer Foundation-7) treated by XD14. A three-day time series experiment with two concentrations of XD14 was performed. Gas chromatography-mass spectrometry (GC-MS) was applied for untargeted profiling of treated and non-treated MCF-7 cells. The gained data sets were evaluated by several statistical methods: analysis of variance (ANOVA), clustering analysis, principle component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Cell proliferation was strongly inhibited by treatment with 50 µM XD14. Samples could be discriminated by time and XD14 concentration using PLS-DA. From the 117 identified metabolites, 67 were significantly altered after XD14 treatment. These metabolites include amino acids, fatty acids, Krebs cycle and glycolysis intermediates, as well as compounds of purine and pyrimidine metabolism. This massive intervention in energy metabolism and the lack of available nucleotides could explain the decreased proliferation rate of the cancer cells. PMID:27783056

  8. FHL2 Antagonizes Id1-Promoted Proliferation and Invasive Capacity of Human MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Ming-zhou Guo; Xiao-bing Fu

    2010-01-01

    Objective:FHL2 was previously identified to be a novel interacting factor of Id family proteins.The aim of this study was to investigate,the effects of FHL2 on Id1-mediated transcriptional regulation activity and its oncogenic activity in human breast cancer cells.Methods:Cell transfection was performed by Superfect reagent.Id1 stably overexpressed MCF-7 cells was cloned by G418 screening.The protein level of Id1 was detected by western blot analysis.Dual relative luciferase assays were used to measure the effect of E47-mediated transcriptional activity in MCF-7 human breast cancer cells.MTT assay was used to measure cell proliferation.Transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results:The basic helix-loop-helix(bHLH)factor E47-mediated transcription activity was markedly repressed by Id1 in MCF-7 cells.This Id1-mediated repression was effectively antagonized by FHL2 transduction.Overexpression of Id1 markedly promoted the proliferation rate and invasive capacity of MCF-7 cells; however,these effects induced by Id1 were significantly suppressed by overexpression of FHL2 in cells.Conclusion:FHL2 can inhibit the proliferation and invasiveness of human breast cancer cells by repressing the functional activity of Id1.These findings provide the basis for further investigating the functional roles of FHL2-Id1 signaling in the carcinogenesis and development of human breast cancer.

  9. Fenugreek induced apoptosis in breast cancer MCF-7 cells mediated independently by fas receptor change.

    Science.gov (United States)

    Alshatwi, Ali Abdullah; Shafi, Gowhar; Hasan, Tarique Noorul; Syed, Naveed Ahmed; Khoja, Kholoud Khalid

    2013-01-01

    Trigonella foenum in graecum (Fenugreek) is a traditional herbal plant used to treat disorders like diabetes, high cholesterol, wounds, inflammation, gastrointestinal ailments, and it is believed to have anti-tumor properties, although the mechanisms for the activity remain to be elucidated. In this study, we prepared a methanol extract from Fenugreek whole plants and investigated the mechanism involved in its growth-inhibitory effect on MCF- 7 human breast cancer cells. Apoptosis of MCF-7 cells was evidenced by investigating trypan blue exclusion, TUNEL and Caspase 3, 8, 9, p53, FADD, Bax and Bak by real-time PCR assays inducing activities, in the presence of FME at 65 μg/mL for 24 and 48 hours. FME induced apoptosis was mediated by the death receptor pathway as demonstrated by the increased level of Fas receptor expression after FME treatment. However, such change was found to be absent in Caspase 3, 8, 9, p53, FADD, Bax and Bak, which was confirmed by a time-dependent and dose-dependent manner. In summary, these data demonstrate that at least 90% of FME induced apoptosis in breast cell is mediated by Fas receptor-independently of either FADD, Caspase 8 or 3, as well as p53 interdependently.

  10. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  11. Combinatorial Cytotoxic Effects of Damnacanthal and Doxorubicin against Human Breast Cancer MCF-7 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Muhammad Yusran Abdul Aziz

    2016-09-01

    Full Text Available Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.

  12. In vitro Studies on anticancer activity of fungal taxol against human breast cancer cell line MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    R. Vennila; S. Kamalraj; J. Muthumary

    2012-01-01

    Objective: To prove the anticancer activity of fungal taxol obtained from Pestalotiopsis pauciseta VM1 endophytic fungus of Tabebuia pentaphylla on human breast cancer cell line MCF-7 by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.record ethnobotanical information from a hill-dwelling aboriginal tribe of Odisha. Methods: Different concentrations of fungal taxol ranging from 100 µg to 700 µg were tested against the MCF-7 breast cancer cell line showed significant decrease in the concentration of 350 µg. Results: This cell viability of control cells was consistently 85-90%, The cell shrinkage increased progressively. Conclusions: Thus, the fungal taxol isolated from Pestalotiopsis pauciseta VM1, exhibited a very high degree of in vitro cytotoxic activity against MCF-7 breast cancer cell line.

  13. Euclidean distance harmonic method for establishing theoretical MAPK/Erk signaling pathway in treated breast cancer line MCF-7

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-xin; LU Ying-hua; ZHANG Jin-ling

    2007-01-01

    Hierarchical clustering algorithms, such as Pearson's correlation, Euclidean distance, Euclidean distance harmonic,Spearman rank correlation, Kendall's tau, and City-block distance, were used to find the best way to establish theoretical MAPK/Erk signaling pathway on the basis of breast cancer line MCF-7 gene expressions. The algorithm consttucts a hierarchy from top to bottom on the basis of a self-organizing tree. It dynamically finds the number of clusters at each level. It was found that only Euclidean distance harmonic is fit for the analysis of the cascade composed from a RAF1 (c-Raf), a MKNK1, a MAPKK (MEK1/2) to MAPK (Erk) in breast cancer line MCF-7. The result is consistent with the biological experimental MAP/Erk signaling pathway, and the theoretical MAPK/Erk signaling pathway on breast cancer line MCF-7 is set up.

  14. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  15. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    Science.gov (United States)

    Kamala Priya, M. R.; Iyer, Priya R.

    2015-04-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  16. Can vitamin A modify the activity of docetaxel in MCF-7 breast cancer cells?

    Directory of Open Access Journals (Sweden)

    Dorota Lemancewicz

    2008-04-01

    Full Text Available Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. On the other hand, the vitamin A family compounds play the essential roles in many biological processes in mammary gland. The aim of our study was to investigate the effect of all-trans retinol, carotenoids (beta-carotene, lycopene and retinoids (9-cis, 13-cis and all-trans retinoic acid on the activity of docetaxel and to compare these effects with the estradiol and tamoxifen actions on human ER(+ MCF-7 breast cancer cell line. The evaluation was based on [3H] thymidine incorporation and the proliferative activity of PCNA and Ki 67 positive cells. In our study, the incorporation of [3H] thymidine into cancer cells was inhibited to 50% by 0.2, 0.5 and 1 microM of docetaxel in the 24-hour culture and addition of estradiol (0.001 microM didn't influence the results. However, addition of tamoxifen caused a statistically significant decrease of the percentage of the proliferating cells in the culture medium with 0.2 and 0.5 microM of docetaxel (38.99 +/- 2.84%, p<0.01 and 40.67 +/- 5.62%, p<0.01 in comparison to the docetaxel only group. The above-mentioned observations were also confirmed with the use of the immunohistochemical investigations. Among the examined vitamin A family compounds, the simultaneous application of beta-carotene (0.1 microM and docetaxel (0.2 microM resulted in a statistically significant reduction in the percentage of proliferating cells (40.25 +/- 14.62%, p<0.01. Lycopene (0.1 microM, which stimulates the growth of breast cancer cells in a 24-hour culture, had an inhibitory effect (42.97 +/- 9.58%, p<0.01 when combined with docetaxel (0.2 microM. Although, beta-carotene and lycopene belong to the different chemical groups, they surprisingly had a similar inhibitory influence on both growth and proliferation of MCF-7 breast cancer cells when combined with docetaxel. The application of docetaxel either with beta-carotene or

  17. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    Science.gov (United States)

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  18. Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Xin; Wang, Chunyan; Zhang, Longjiang; Li, Yanjun; Wang, Shouju; Wang, Jiandong; Yuan, Caiyun; Niu, Jia; Wang, Chengsheng; Lu, Guangming

    2015-02-01

    Multidrug resistance (MDR) is a major cause for incurable breast cancer. Salvianolic acid A (SAA), the hydrophilic polyphenolic derivative of Salvia miltiorrhiza Bunge (Danshen/Red Sage), was examined for cytotoxicities to MDR MCF-7 human breast cancer cells and their parental counterparts. We have shown that SAA inhibited proliferation, caused cell cycle arrest at the S phase, and induced apoptosis dose dependently to the two kinds of cancer cells. However, the resistant cells were significantly susceptible to the inhibition of SAA compared with the parental cells. SAA increased the level of reactive oxygen species (ROS) by 6.2-fold in the resistant cells, whereas the level of SAA-induced ROS changed only by 1.6-fold in their parental counterparts. Thus, the data showed that the selective cytotoxicity resulted from the hypersensitivity of the resistant cells to the strongly elevated ROS by SAA. In addition, SAA-triggered apoptosis was associated with increased caspase-3 activity, disrupted mitochondrial membrane potential, downregulated Bcl-2 expression, and upregulated Bax expression in the resistant cells. Moreover, SAA downregulated the level of P-glycoprotein, which was overexpressed in the resistant cells. This indicated that SAA modulated MDR. Furthermore, SAA showed higher antitumor activity than did doxorubicin in xenografts established from the resistant cells. The present work raised a possibility that SAA might be considered a potential choice to overcome MDR for the selective susceptibility of the resistant breast cancer cells to SAA treatment.

  19. INHIBITION OF PROLIFERATION OF HUMAN BREAST CANCER MCF-7 CELLS BY SMALL INTERFERENCE RNA AGAINST LRP16 GENE

    Institute of Scientific and Technical Information of China (English)

    韩为东; 赵亚力; 李琦; 母义明; 李雪; 宋海静; 陆祖谦

    2004-01-01

    Objective: Our previous studies have firstly demonstrated that 17(-E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferation. Here, the effects of the LRP16 gene expression on growth of MCF-7 human breast cancer cells and the mechanism were further studied by establishing two stably LRP16-inhibitory MCR-7 cell lines. Methods: Hairpin small interference RNA (siRNA) strategy, by which hairpin siRNA was released by U6 promoter and was mediated by pLPC-based retroviral vector, was adopted to knockdown endogenous LRP16 level in MCF-7 cells. And the hairpin siRNA against green fluorescence protein (GFP) was used as the negative control. The suppressant efficiency of the LRP16 gene expression was confirmed by Nothern blot. Cell proliferation assay and soft agar colony formation assay were used to determine the status of the cells proliferation. Cell cycle checkpoints including cyclin E and cyclin D1 were examined by Western blot. Results: The results from cell proliferation assays suggested that down-regulation of LRP16 gene expression is capable of inhibiting MCF-7 breast cancer cell growth and down-regulation of the LRP16 gene expression is able to inhibit anchorage-independent growth of breast cancer cells in soft agar. We also demonstrated that cyclin E and cyclin D1 proteins were much lower in the LRP16-inhibitory cells than in the control cells. Conclusion: These data suggest that LRP16 gene play an important role in MCF-7 cells proliferation by regulating the pathway of the G1/S transition and may function as an important modulator in regulating the process of tumorigenesis in human breast.

  20. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    Science.gov (United States)

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.

  1. In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells.

    Science.gov (United States)

    Murawala, Priyanka; Tirmale, Amruta; Shiras, Anjali; Prasad, B L V

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment.

  2. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    Directory of Open Access Journals (Sweden)

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  3. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations.

    Science.gov (United States)

    Nie, Song; McDermott, Sean P; Deol, Yadwinder; Tan, Zhijing; Wicha, Max S; Lubman, David M

    2015-11-01

    Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem-like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label-free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti-CSC therapeutics.

  4. Induction of cell cycle arrest in human MCF-7 breast cancer cells by cis-stilbene derivatives related to VIOXX.

    NARCIS (Netherlands)

    Sangjun, S.; de Jong, E.; Nijmeijer, S.; Mutarapat, T.; Ruchirawat, S.; van den Berg, M.; van Duursen, M.B.M.

    2009-01-01

    In our present study, 12 new cis-stilbene derivatives (CRI-1-CRI-13) related to VIOXX((R)) were synthesized and studied for their inhibitory effects on cell cycle progression and anti-estrogenicity in human adenoma breast cancer MCF-7 cells. Based on the different substituents in the cis-stilbene mo

  5. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yamila B. Gándola

    2014-01-01

    Full Text Available Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC, have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design.

  6. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by oridonin nanosuspension.

    Science.gov (United States)

    Feng, Fei-Fei; Zhang, Dian-Rui; Tian, Ke-Li; Lou, Hai-Yan; Qi, Xiao-Li; Wang, Yan-Cai; Duan, Cun-Xian; Jia, Le-Jiao; Wang, Fei-Hu; Liu, Yue; Zhang, Qiang

    2011-05-01

    The mechanism for anti-tumor activity of oridonin (ORI) nanosuspension, prepared by the high pressure homogenization method, was studied using MCF-7 human breast carcinoma cells in vitro. MTT assay, observation of morphologic changes, flow cytometric analysis, and western blot analysis indicated that ORI nanosuspension could significantly intensify the in vitro anti-tumor activity to MCF-7 cells, as compared with ORI solution. Furthermore, ORI nanosuspension induced G₂/M stage proliferation arrest and apoptosis in MCF-7 cells depending on its concentration. In addition, western blot analysis indicated that the pro-caspase-3 protein was not cleaved into the activated form and the expression of anti-apoptotic Bcl-2 protein decreased, on the contrary, the expression of pro-apoptotic Bax protein increased in a dose-dependent manner in ORI nanosuspension-treated cells. These observations indicated that the anti-tumor activity of ORI nanosuspension was intensified by cell-cycle arrest and apoptosis induction.

  7. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    Directory of Open Access Journals (Sweden)

    Soto Ana M

    2010-06-01

    Full Text Available Abstract Background Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. Methods The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks, the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Results Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Conclusions Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to

  8. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  9. The redox state of cytochrome c modulates resistance to methotrexate in human MCF7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Susana Barros

    Full Text Available BACKGROUND: Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. RESULTS: Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexate-induced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. CONCLUSIONS: We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.

  10. Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7.

    Directory of Open Access Journals (Sweden)

    Juliette Adjo Aka

    Full Text Available T47D and MCF7 are two human hormone-dependent breast cancer cell lines which are widely used as experimental models for in vitro and in vivo (tumor xenografts breast cancer studies. Several proteins involved in cancer development were identified in these cell lines by proteomic analyses. Although these studies reported the proteomic profiles of each cell line, until now, their differential protein expression profiles have not been established. Here, we used two-dimensional gel and mass spectrometry analyses to compare the proteomic profiles of the two cell lines, T47D and MCF7. Our data revealed that more than 164 proteins are differentially expressed between them. According to their biological functions, the results showed that proteins involved in cell growth stimulation, anti-apoptosis mechanisms and cancerogenesis are more strongly expressed in T47D than in MCF7. These proteins include G1/S-specific cyclin-D3 and prohibitin. Proteins implicated in transcription repression and apoptosis regulation, including transcriptional repressor NF-X1, nitrilase homolog 2 and interleukin-10, are, on the contrary, more strongly expressed in MCF7 as compared to T47D. Five proteins that were previously described as breast cancer biomarkers, namely cathepsin D, cathepsin B, protein S100-A14, heat shock protein beta-1 (HSP27 and proliferating cell nuclear antigen (PCNA, are found to be differentially expressed in the two cell lines. A list of differentially expressed proteins between T47D and MCF7 was generated, providing useful information for further studies of breast cancer mechanisms with these cell lines as models.

  11. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sun-Hyung Ha

    2016-04-01

    Full Text Available Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose polymerase, without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2 gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.

  12. Differential ability of antiestrogens to stimulate breast cancer cell (MCF-7) growth in vivo and in vitro.

    Science.gov (United States)

    Gottardis, M M; Wagner, R J; Borden, E C; Jordan, V C

    1989-09-01

    We have previously described an MCF-7 breast cancer cell variant, MCF-7TAM, which is stimulated to grow in athymic mice by tamoxifen (TAM) (M. M. Gottardis and V. C. Jordan, Cancer Res., 48:5183-5187, 1988). Earlier experiments have shown that TAM exhibits some profound estrogen-like effects in mice whereas TAM is less estrogenic in the rat. The aim in these studies was to compare the ability of MCF-7TAM to grow in different host environments and to determine whether the TAM-stimulated phenotype could be maintained in vitro. Ovariectomized athymic mice and rats were implanted with 1-mm3 pieces of MCF-7TAM tumor and treated with estradiol, TAM, or control silastic capsules. After 9 weeks of growth in either species, TAM or estradiol-treated groups both had sustained growth of MCF-7TAM compared with the control groups. To determine the effects of estradiol and TAM on immune function in athymic mice, splenocytes from treated or control athymic mice, challenged with poly(I:C), were assayed for natural killer (NK) cell activity against 51Cr-labeled YAC1 target cells. Both estradiol and TAM abolished lytic activity by 12 weeks of treatment. To evaluate the role of a decrease in NK-cell activity in the host on growth of MCF-7TAM xenografts we compared the growth effects in athymic and NK-cell deficient, ovariectomized beige mice. TAM stimulated MCF-7TAM in both beige and athymic mice; however, the tumor grew more rapidly in control beige mice than in control athymic mice. This study demonstrated that TAM-stimulated growth could occur in vivo. However, TAM or 4-hydroxytamoxifen did not cause a stimulation of MCF-7TAM compared with wild-type MCF-7 cells when experiments were conducted in vitro. These studies demonstrate that a suppression immune function can facilitate the growth of MCF-7TAM in athymic animals. However, additional components of the host environment contribute to TAM-stimulated growth in vivo.

  13. Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast cancer cells.

    Science.gov (United States)

    Ruohola, J K; Viitanen, T P; Valve, E M; Seppänen, J A; Loponen, N T; Keskitalo, J J; Lakkakorpi, P T; Härkönen, P L

    2001-05-15

    Fibroblast growth factor 8 (FGF-8) is a secreted heparin-binding protein, which has mitogenic and transforming activity. Increased expression of FGF-8 has been found in human breast cancer, and it has a potential autocrine role in its progression. Human FGF-8 is alternatively spliced to generate four protein isoforms (a, b, e, and f). Isoform b has been shown to be the most transforming. In this work, we studied the role of FGF-8b in the growth (in vitro and in vivo) of MCF-7 human breast cancer cells, which proliferate in an estrogen-dependent manner. Constitutive overexpression of FGF-8b in MCF-7 cells down-regulated FGF-8b-binding receptors FGF receptor (FGFR) 1IIIc, FGFR2IIIc, and FGFR4 found to be expressed in these cells. FGF-8b overexpression led to an increase in the anchorage-independent proliferation rate in suspension culture and colony formation in soft agar, when MCF-7 cells were cultured with or without estradiol. FGF-8b also provided an additional growth advantage for cells stimulated with estradiol. In addition, FGF-8b-transfected cells invaded more actively through Matrigel than did control cells. This was possibly due to the increased secretion of matrix metalloproteinase 9. In vivo, FGF-8b-transfected MCF-7 cells formed faster growing tumors than vector-only-transfected cells when xenografted into nude mice. The tumors formed by FGF-8b-transfected cells were more vascular than the tumors formed by vector-only-transfected cells. In conclusion, FGF-8b expression confers a growth advantage to MCF-7 breast carcinoma cells, both in vitro and in vivo. In addition to stimulation of proliferation, this growth advantage probably arises from increased invasion and tumor vascularization induced by FGF-8b. The results suggest that FGF-8b signaling may be an important factor in the regulation of tumorigenesis and progression of human breast cancer.

  14. Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Uchino Masahiro

    2010-08-01

    Full Text Available Abstract Background In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT and the CD44+/CD24- stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44+/CD24- subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression? Methods Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment. Results MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (PIK3R1, SOCS2, BMP7, CD44 and CD24. Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6

  15. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells

    OpenAIRE

    Meng-Wong Taing; Jean-Thomas Pierson; Shaw, Paul N.; Dietzgen, Ralf G.; Roberts-Thomson, Sarah J.; Gidley, Michael J.; Monteith, Gregory R.

    2015-01-01

    The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW), Nam Doc Mai (NDM), and Kensington Pride (KP), differentially affect proliferation, extracellular signal-regulated kinase (ERK) activity, and intracellular calcium ([Ca2+]I) signalling in MCF-7 human breast cancer cells. Man...

  16. PM-3, a benzo-gamma-pyran derivative isolated from propolis, inhibits growth of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Luo, J; Soh, J W; Xing, W Q; Mao, Y; Matsuno, T; Weinstein, I B

    2001-01-01

    Propolis has numerous biologic activities including antibiotic, antifungal, antiviral and anti-inflammatory properties. Several components isolated from propolis have been shown to have anticancer activity. This study demonstrates that the compound PM-3 (3-[2-dimethyl-8-(3-methyl-2-butenyl)benzopyran]-6-propenoic acid) isolated from Brazilian propolis markedly inhibits the growth of MCF-7 human breast cancer cells. This effect was associated with inhibition of cell cycle progression and induction of apoptosis. Treatment of MCF-7 cells with PM-3 arrested cells in the G1 phase and resulted in a decrease in the protein levels of cyclin D1 and cyclin E. PM-3 also inhibited the expression of cyclin D1 at the transcriptional level when examined in cyclin D1 promoter luciferase assays. Induction of apoptosis by PM-3 occurred within 48 hours after treatment of MCF-7 cells. The MCF-7 treated cells also displayed a decrease in the level of the estrogen receptor (ER) protein and inhibition of estrogen response element (ERE) promoter activity. Therefore, PM-3 merits further investigation with respect to breast cancer chemoprevention or therapy.

  17. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells.

    Science.gov (United States)

    Fenne, Ingvild S; Helland, Thomas; Flågeng, Marianne H; Dankel, Simon N; Mellgren, Gunnar; Sagen, Jørn V

    2013-01-01

    The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells.

  18. [Reversal of adriamycin resistance by digoxin in human breast cancer cell line MCF-7/adriamycin and its mechanism].

    Science.gov (United States)

    Li, Bai-He; Yuan, Lei; Shi, Ran-Ran; Wang, Jian-Guo

    2015-12-25

    The aim of this study was to investigate the effects of digoxin on the chemoresistance of human breast cancer cell line MCF-7/adriamycin (ADR) and its underlying mechanism. MCF-7 and MCF-7/ADR cells were designated as control and ADR groups, respectively. MCF-7/ADR cells in ADR + digoxin group received 48 h of digoxin (10 nmol/L) treatment; MCF-7/ADR cells transfected with pLKO.1-shHIF-1α and pLKO.1-shcontrol plasmids were named shHIF-1α and shcontrol groups, respectively. CCK-8 assay was employed to detect the cytotoxic effect of ADR on MCF-7/ADR cells, and IC50 value and resistance index were calculated according to CCK-8. RT-PCR was used to measure the mRNA levels of hypoxia inducible factor-1α (HIF-1α) and multidrug resistance-1 (MDR1). Western blot was used to analyze the protein levels of HIF-1α and MDR1. Flow cytometry was used to determine the apoptosis. The result showed that the resistance index of MCF-7/ADR cells was 115.6, and it was reduced to 47.2 under the action of digoxin (P Digoxin reduced the protein levels of HIF-1α and MDR1, as well as the mRNA level of MDR1, but did not affect the mRNA level of HIF-1α. After HIF-1α gene was silenced, the protein levels of HIF-1α and MDR1 were down-regulated (P digoxin promoted cell apoptosis in both shcontrol and shHIF-1α groups, the difference between the two groups was not significant. In conclusion, the results suggest that digoxin may partially reverse the ADR resistance in human breast cancer cell line MCF-7/ADR by means of down-regulating the expression levels of HIF-1α and MDR1 and promoting apoptosis via HIF-1α-independent pathway.

  19. The Inhibitory Action of Resveratrol on Proliferation of MCF-7 Breast Cancer Cells%白藜芦醇抑制MCF-7乳腺癌细胞增殖的机制研究

    Institute of Scientific and Technical Information of China (English)

    郭慧琳; 张献全

    2011-01-01

    Objective: To investigate the inhibitory action of resveratrol on the proliferation of MCF-7 breast cancer cells and its underlying mechanisms. Methods: Human MCF-7 breast cancer cells were used and stimulated with resveratrol. The proliferation of MCF-7 breast cancer cells was determined using MTT assay. The changes in proliferation rate were also observed in cells co-stimulated with PD98059, an ERK1/2 inhibitor, and resveratrol. The effects of resveratrol expression on ERK1/2, p-ERKl/2, AKT, and p-AKT in the MCF-7 cancer cells were determined using immunoblotting. Results: The proliferation of MCF-7 breast cancer cells was obviously inhibited by resveratrol in a concentration-dependent manner. The inhibitory action of resveratrol on the MCF-7 cells was overtly repressed by PD98059. At the same time, resveratrol apparently increased p-ERKl/2 protein expression and decreased p-AKT protein expression. However, there was no change in the level of ERK1/2 and AKT protein expression after the resveratrol stimulation. Conclusion: Resveratrol effectively inhibits the proliferation of MCF-7 breast cancer cells, and its inhibitory action is through the regulation of the ERK1/2 and AKT signal pathway.%目的:研究白藜芦醇对MCF-7乳腺癌细胞抑制效应及其作用机制.方法:以人MCF-7乳腺癌细胞株为研究对象,利用MTT方法研究白藜芦醇抑制MCF-7乳腺癌细胞的生物学效应;观察在ERK1/2抑制剂PD98059预处理情况下,白藜芦醇抑制MCF-7乳腺癌细胞增殖效应的改变;利用免疫印迹方法观察白藜芦醇对MCF-7乳腺癌细胞中ERK1/2与AKT信号分子的蛋白表达.结果:白藜芦醇能够明显降低MCF-7乳腺癌细胞增殖能力,该作用呈一定的浓度依赖性关系.在ERK1/2抑制剂PD98059预处理情况下,白藜芦醇对MCF-7乳腺癌细胞增殖抑制效应能明显抑制,PD98059可明显减轻该效应.同时,白藜芦醇明显增加p-ERK1/2蛋白表达,降低p-AKT表达水平,但对ERK1/2与AKT蛋白

  20. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    KAUST Repository

    Sagar, Sunil

    2014-01-31

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  1. Antioxidant capacity of food mixtures is not correlated with their antiproliferative activity against MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan; Meckling, Kelly A; Marcone, Massimo F

    2013-12-01

    Combining different foods may produce additive, synergistic, or antagonistic interactions that may modify certain physiological effects (i.e., anticancer properties). For investigating these interactions and potential synergetic combinations, thirteen foods from three categories, including fruits (raspberries, blackberries, apples, grapes), vegetables (broccoli, tomatoes, mushrooms, purple cauliflowers, onions), and legumes (soy beans, adzuki beans, red kidney beans, black beans), were evaluated for their inhibitory activity against MCF-7 breast cancer cells. Grape, onion, and adzuki bean showed maximal growth inhibition of MCF-7 from the fruit, vegetable, and legume groups, respectively. When these three foods were combined in pairs, unique interactions were observed that were not seen when individual extracts were used. Combining onion and grape resulted in a synergistic antiproliferative effect (APE) against MCF-7 compared with either onion or grape treatment alone. In contrast, combining grape and adzuki bean resulted in an antagonistic interaction. Additionally, four antioxidant assays (total phenolic contents, ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl, and oxygen radical absorbance capacity) were further used to evaluate the antioxidant capacities (AC) of individual foods and their combinations. Combining raspberry and adzuki bean extracts demonstrated synergistic AC in all four assays, but they did not show synergistic APE against the MCF-7 cells. Combining broccoli and soy produced antioxidant antagonism, but did not have an antagonistic APE against MCF-7. The synergistic or antagonistic AC of food mixtures did not correlate with the synergistic or antagonistic APE against MCF-7. Further investigation is to determine the mechanisms of these interactions and to predict and enhance the therapeutic benefits of foods and food components through strategic food combinations.

  2. Koenimbin, a natural dietary compound of Murraya koenigii (L Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low: an in vitro study

    Directory of Open Access Journals (Sweden)

    Ahmadipour F

    2015-02-01

    Full Text Available Fatemeh Ahmadipour,1 Mohamed Ibrahim Noordin,1 Syam Mohan,2 Aditya Arya,1 Mohammadjavad Paydar,3 Chung Yeng Looi,3 Yeap Swee Keong,4 Ebrahimi Nigjeh Siyamak,4 Somayeh Fani,1 Maryam Firoozi,5 Chung Lip Yong,1 Mohamed Aspollah Sukari,6 Behnam Kamalidehghan1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia; 3Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 4UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 5Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 6Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia Background: Inhibition of breast cancer stem cells has been shown to be an effective therapeutic strategy for cancer prevention. The aims of this work were to evaluate the efficacy of koenimbin, isolated from Murraya koenigii (L Spreng, in the inhibition of MCF7 breast cancer cells and to target MCF7 breast cancer stem cells through apoptosis in vitro. Methods: Koenimbin-induced cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release were observed using high-content screening. Cell cycle arrest was examined using flow cytometry, while human apoptosis proteome profiler assays were used to investigate the mechanism of apoptosis. Protein expression levels of Bax, Bcl2, and heat shock protein 70 were confirmed using Western blotting. Caspase-7, caspase-8, and caspase-9 levels were measured, and nuclear factor kappa B (NF-κB activity was assessed using a high-content screening assay. Aldefluor™ and mammosphere formation assays were used to evaluate the effect of koenimbin on MCF7

  3. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  4. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  5. Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Wallis Natalie K

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor gamma (PPARγ is a member of the nuclear hormone receptor superfamily and is highly expressed in many human tumors including breast cancer. PPARγ has been identified as a potential target for breast cancer therapy based on the fact that its activation by synthetic ligands affects the differentiation, proliferation, and apoptosis of cancer cells. However, the controversial nature of current studies and disappointing results from clinical trials raise questions about the contribution of PPARγ signaling in breast cancer development in the absence of stimulation by exogenous ligands. Recent reports from both in vitro and in vivo studies are inconsistent and suggest that endogenous activation of PPARγ plays a much more complex role in initiation and progression of cancer than previously thought. Results We have previously demonstrated that an increase in expression of PPARγ1 in MCF-7 breast cancer cells is driven by a tumor-specific promoter. Myc-associated zinc finger protein (MAZ was identified as a transcriptional mediator of PPARγ1 expression in these cells. In this study, using RNA interference (RNAi to inhibit PPARγ1 expression directly or via down-regulation of MAZ, we report for the first time that a decrease in PPARγ1 expression results in reduced cellular proliferation in MCF-7 breast cancer cells. Furthermore, we demonstrate that these changes in proliferation are associated with a significant decrease in cell transition from G1 to the S phase. Using a dominant-negative mutant of PPARγ1, Δ462, we confirmed that PPARγ1 acts as a pro-survival factor and showed that this phenomenon is not limited to MCF-7 cells. Finally, we demonstrate that down-regulation of PPARγ1 expression leads to an induction of apoptosis in MCF-7 cells, confirmed by analyzing Bcl-2 expression and PARP-1 cleavage. Conclusion Thus, these findings suggest that an increase in PPARγ1 signaling

  6. Reversal Effect of Silymarin on Drug Resistant Breast CancerCell MCF-7/ADM%水飞蓟素逆转人乳腺癌耐药细胞株MCF-7/ADM耐药性实验研究

    Institute of Scientific and Technical Information of China (English)

    陆一丹; 徐良额; 裘嘉琪; 毛丹漪; 刘晓谷; 王大维

    2016-01-01

    Objective To investigate the effect of silymarin on drug resistance of breast cancer cell line MCF-7/ADM. Methods The toxicant effect of adriamycin to MCF-7/S(sensitive strain) and MCF-7/ADM(drug-resistant strain) was measured by CCK-8 in vitrofor resistant index. Silymarin was screened in advance and the dose of 10μg/ml was nontoxicant to MCF- 7/ADM, then MCF- 7/ADM was treated with this dose of silymarin (10μg/ml) to observe the reversal effect of silymarin. Results IC50 of adriamycin to MCF-7/S and MCF-7/ADM were 1.773 μg/ml and 43.812μg/ml, respectively. Drug-resistant index of MCF-7/ADM was 24.7. Silymarin increased cell toxic ef-fect of adriamycin. After treated with 10μg/mlsilymarin (inhibition rate was 2.0%) combining with adriamycin for 48h, IC50of adriamycine declined to 7.798μg/ml, and the reversal index was 5.6 (P<0.01). Conclusion Silymarin could partly reverse drug-resistance of MCF- 7/ADMto adriamycinein vitro.%目的 观察水飞蓟素(Silymarin,Sily)对人乳腺癌耐药细胞株MCF-7/ADM的逆转耐药作用.方法 以CCK-8法测定阿霉素(Adm)对人乳腺癌敏感细胞株MCF-7/S和耐药细胞株MCF-7/ADM的毒性作用,计算出耐药倍数.以无细胞毒性的Sily(10μg/mL)作为逆转耐药剂,联合Adm观察其对耐药细胞株MCF-7/ADM的逆转耐药作用,计算得逆转倍数.结果 (1)Adm对MCF-7/S和MCF-7/ADM的半数抑制浓度(IC50)分别为1.773μg/mL和43.812μg/mL,耐药倍数为24.7倍.(2) Sily能够增强ADM对MCF-7/ADM的细胞毒作用.以10μg/mL(抑制率为2.0%)的Sily联合Adm作用于MCF-7/ADM 48h后,耐药细胞株的IC50降至7.798μg/mL,逆转倍数为5.6倍(P<0.01).结论 Sily能够逆转人乳腺癌耐药细胞株MCF-7/ADM的耐药性.

  7. Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells.

    Science.gov (United States)

    Sun, Kai; Duan, Xiaoyi; Cai, Hui; Liu, Xiaohong; Yang, Ya; Li, Min; Zhang, Xiaoyun; Wang, Jiansheng

    2016-02-01

    Breast cancer generally shows poor prognosis because of its invasion and metastasis. Lysophosphatidic acid (LPA) induces and aggravates cancer invasion and metastasis by activating its downstream signal pathways. RhoA/ROCK/MMP signaling was found one of the LPA-induced pathways, which may be involved in invasion of breast cancer. Furthermore, we investigated whether this pathway was involved in curcumin's effect against LPA-induced invasion. LPA incubation was used to enhance invasion of MCF-7 breast cancer cells. RhoA expression was knocked-down by siRNA technique. MTT assay was used to evaluate the proliferation. Transwell assay was utilized to investigate the invasion ability of MCF-7 cells. Real-time PCR and Western blotting were used to assess the expressions of RhoA, ROCK1, ROCK2, MMP2 and MMP9 at both translational and transcriptional levels. The RhoA and ROCK activities were also evaluated. LPA incubation significantly boosted invasion rate of MCF-7. RhoA silencing by siRNA dramatically inhibited LPA-enhanced invasion. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by RhoA siRNA transfection. In order to avoid influence of cytotoxicity of curcumin, concentrations below 45 μmol/L were selected to further investigate the mechanism of curcumin's anti-invasion effect. Invasion of LPA-incubated MCF-7 cells was impaired by curcumin in a concentration-dependent manner. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by curcumin in a concentration-dependent manner. In conclusion, RhoA/ROCK/MMPs pathway activation is involved in LPA-induced invasion in MCF-7 cells; curcumin inhibited LPA-induced invasion in MCF-7 cells by attenuating RhoA/ROCK/MMPs pathway.

  8. Regulation of SAHA on cell proliferation induced by leptin in breast cancer cell line MCF-7%SAHA在Leptin诱导的乳腺癌MCF-7细胞增殖过程中的调控作用

    Institute of Scientific and Technical Information of China (English)

    冯秀艳; 韩翰; 周伟强

    2016-01-01

    To clarify the molecular mechanism of SAHA in the cell proliferation of ER-positive breast cancer cell line MCF-7 induced by leptin. Methods Human breast cancer cell MCF-7 was incubated with SAHA and/or leptin, and cell viability, apoptosis and cell cy-cle of MCF-7 cells were detected by Muse Cell Analy-zer. The expression of proteins related with apoptosis was determined by apotosis antibody array. Results Real-time cell proliferation assays indicated that the in-duction effect of leptin for MCF-7 cells reached the peak at a concentration of 0. 625 nmol · L-1 . SAHA reduced the viability of MCF-7 cells, induced G0/G1 phase arrest in the cell cycle, and triggered the apopto-sis. Meanwhile, SAHA significantly induced the pro-tein expressions of some apoptotic factors, including Bax, Caspase-3, TRAIL DR5, p21CIP1, and inhibited the expressions of Claspin, Clusterin, x-linked inhibi-tor of apoptosis protein(XIAP) and survivin. Howev-er, leptin had reverse effects on the related expression of the proteins. Conclusion The effects of cell prolif-eration by leptin and SAHA treatment in breast cancer ER positive cell line MCF-7 may involve in the activa-tion of apoptosis pathway, in particular with releasing of Caspase-3 trigged by endogenous mitochondrial ap-optosis pathway.%目的:为了阐明SAHA调控Leptin诱导的乳腺癌ER+细胞系MCF-7细胞增殖的分子机制,我们采用实时无标记细胞分析系统,动态监测Leptin对MCF-7细胞生长状况的影响。方法通过自动细胞分析仪Muse Cell Analyzer分析Leptin和SAHA对MCF-7细胞活力、细胞凋亡以及细胞周期产生的影响,并应用细胞凋亡抗体芯片测定Leptin和SAHA两种处理因素作用MCF-7细胞后相关凋亡通路分子表达变化的情况。结果低浓度Leptin对MCF-7细胞生长有诱导作用,其浓度为0.625 nmol·L-1时作用效果最明显。细胞分析结果表明, SAHA能明显抑制Leptin诱导的MCF-7细胞增殖,经SAHA处理后MCF-7细胞活力明

  9. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Meng-Wong Taing

    2015-01-01

    Full Text Available The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW, Nam Doc Mai (NDM, and Kensington Pride (KP, differentially affect proliferation, extracellular signal-regulated kinase (ERK activity, and intracellular calcium ([Ca2+]I signalling in MCF-7 human breast cancer cells. Mango flesh extracts from all three cultivars did not inhibit cell growth, and of the peel extracts only NDM reduced MCF-7 cell proliferation. Mango cultivar peel and flesh extracts did not significantly change ERK phosphorylation compared to controls; however, some reduced relative maximal peak [Ca2+]I after adenosine triphosphate stimulation, with NDM peel extract having the greatest effect among the treatments. Our results identify mango interfruit and intrafruit (peel and flesh extract variability in antiproliferative effects and [Ca2+]I signalling in MCF-7 breast cancer cells and highlight that parts of the fruit (such as peel and flesh and cultivar differences are important factors to consider when assessing potential chemopreventive bioactive compounds in plants extracts.

  10. Anti-proliferation effects of benzimidazole derivatives on HCT-116 colon cancer and MCF-7 breast cancer cell lines.

    Science.gov (United States)

    Al-Douh, Mohammed Hadi; Sahib, Hayder B; Osman, Hasnah; Abd Hamid, Shafida; Salhimi, Salizawati M

    2012-01-01

    Benzimidazoles 1-4 were obtained using modified synthesis methods and studied for their ability to inhibit cell proliferation of colon cancer cell HCT-116 and breast cancer cell MCF-7 using MTT assays. In the HCT-116 cell line, benzimidazole 2 was found to have an IC50 value of 16.2 ± 3.85 μg/mL and benzimidazole 1 a value of 28.5 ± 2.91 μg/mL, while that for benzimidazole 4 was 24.08 ± 0.31 μg/mL. In the MCF-7 cell line, benzimidazole 4 had an IC50 value of 8.86 ± 1.10 μg/mL, benzimidazole 2 a value of 30.29 ± 6.39 μg/mL, and benzimidazole 1 a value of 31.2 ± 4.49 μg/mL. Benzimidazole 3 exerted no cytotoxicity in either of the cell lines, with IC50 values >50 μg/mL. The results suggest that benzimidazoles derivatives may have chemotherapeutic potential for treatment of both colon and breast cancers.

  11. Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis.

    Science.gov (United States)

    Oh, S; Xiaofei, E; Ni, D; Pirooz, S D; Lee, J-Y; Lee, D; Zhao, Z; Lee, S; Lee, H; Ku, B; Kowalik, T; Martin, S E; Oh, B-H; Jung, J U; Liang, C

    2011-03-01

    The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.

  12. Effects of soy isoflavones on 17beta-estradiol-induced proliferation of MCF-7 breast cancer cells.

    Science.gov (United States)

    Imhof, Marianne; Molzer, Sylvia; Imhof, Martin

    2008-09-01

    Based on the results of in vitro-experiments in practically estrogen-free media and in the absence of estrogen-beta receptors, soy isoflavones have been suspected to enhance proliferation of MCF-7 breast cancer cells. In this study the effects of soy isoflavones on MCF-7 cells were investigated in the presence and absence of estrogen, directly and in a metabolized form by testing sera of postmenopausal women supplemented with isoflavones. First, three concentrations of isoflavones (0.1, 1 and 10 mumol/l) were tested at increasing levels of 17-beta-estradiol (20 pM, isoflavones both tested directly and indirectly (metabolized) revealed significant anti-proliferative effects as well as in the proliferation and the gene chip assay. These findings emphasize the reported advantageous properties of isoflavones for postmenopausal women.

  13. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  14. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  15. Inactivated Sendai Virus Strain Tianjin Induces Apoptosis in Breast Cancer MCF-7 Cells by Promoting Caspase Activation and Fas/FasL Expression

    Science.gov (United States)

    Han, Zhe; Li, Xiao-Xia; Li, Mei; Han, Han; Chen, Jun; Zang, Sitao

    2015-01-01

    Abstract Virotherapy represents a promising new approach for treating cancer. Here the authors have analyzed the effect of ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human breast cancer MCF-7 cells in vitro and in vivo. In vitro, UV-Tianjin inhibited the proliferation of MCF-7, MDA-MB-231, and T47D breast cancer cell lines, although MCF-7 cells were most susceptible to UV-Tianjin treatment. Hoechst staining and flow cytometric analysis of UV-Tianjin-treated MCF-7 cells revealed that UV-Tianjin induced apoptosis in a dose-dependent manner. Moreover, UV-Tianjin treatment resulted in reductions in the mitochondria membrane potential of MCF-7 cells and regulated the levels and activities of Bcl-2, Bax, cyt c, caspases, Fas, and Fas ligand (FasL). In vivo, UV-Tianjin inhibited the growth of MCF-7 tumors in nude mice and increased tumor cell apoptosis compared with saline-treated controls. In addition, the percentage of tumor cells positive for cleaved versions of caspase-7, caspase-8, and caspase-9 was higher in UV-Tianjin-treated tumors than in saline-treated controls. In summary, UV-Tianjin exhibited the antitumor activity in human breast cancer MCF-7 cells both in vitro and in vivo. The UV-Tianjin treatment seemed to induce apoptosis by activating both the mitochondrial and death receptor apoptotic pathways. PMID:25517620

  16. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, Mayson H., E-mail: mhalkhatib@kau.edu.sa; AlBishi, Hayat M. [College of Science, King Abdulaziz University, Department of Biochemistry (Saudi Arabia)

    2013-03-15

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  17. Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer.

    Science.gov (United States)

    Nooshinfar, Elaheh; Bashash, Davood; Safaroghli-Azar, Ava; Bayati, Samaneh; Rezaei-Tavirani, Mostafa; Ghaffari, Seyed H; Akbari, Mohammad Esmaeil

    2016-10-01

    Arsenic trioxide (ATO), a traditional Chinese medicine, has long been of biomedical interest and is largely used for treatment of a broad spectrum of cancers. Melatonin, a naturally occurring indoleamine synthesized in the pineal gland, has been considered as a biomarker for endocrine-dependent tumors, particularly breast cancer. An increasing number of studies indicate that melatonin could be an attractive candidate for combined therapy due to its anti-oxidant and cytotoxic activities. The aim of this study was to investigate the potentiating effect of melatonin on ATO-induced apoptosis in estrogen receptor (ER)-positive breast cancer cell line, MCF-7. Our data highlighted for the first time that pre-treating MCF-7 cells with physiological concentration of melatonin substantially augmented the cytotoxic effects of ATO as compared with either agent alone. Real-time PCR analysis revealed that apoptosis induction by the drugs combination was associated with increased p53 transcriptional activity followed by the elevated molecular ratio of Bax/Bcl-2. Moreover, induced p21, subsequent G1 cell cycle arrest and transcriptional suppression of survivin-mediated c-Myc and hTERT expression may contribute in the enhanced growth suppressive effect of ATO-plus-melatonin. Due to the safety profile of melatonin, our study suggests that using melatonin in combination with ATO might provide insight into a novel adjuvant therapy and may confer advantages for breast cancer treatment.

  18. 乳腺癌MCF-7细胞系中侧群细胞分选及其生物学特性%Sorting of side population cells from breast cancer MCF-7 cell line and its biological characteristics

    Institute of Scientific and Technical Information of China (English)

    孙鑫; 李平; 张梅; 陈娇

    2012-01-01

    Objective To separate the side population cells(SP) from breast cancer MCF-7 cell line,and observe its biological characteristics.Methods Flow cytometry and Hcechst 33342 dye efflux assay were used to isolate SP cells and non-SP cells from the MCF-7 cell line of human breast cancer.Tumorigenicity of the two subpopulations was observed by a soft agar cloning method.Results The results of FACS analysis indicated that (6.5 ± 0.4 ) %of the MCF-7 cells were SP cells;The vitro colony formation rate of SP cells was(38.5 ±9.4)%,and higher than that of non-SP cells ( 8.4 ± 2.6 ) % ( t =5.34,P < 0,05 ).Concluslon The SP cells sorted from MCF-7 cell line enriched tunor stem cells,which exhibited high tumorigenicity.It indicated that SP cells should play a principal role in breast cancer.%目的 分离乳腺癌MCF-7细胞系中的侧群细胞(SP)并观察其生物学特性.方法 利用流式细胞荧光分选法将乳腺癌MCF-7细胞系分成SP和非SP细胞两个亚群.对两个亚群细胞采用软琼脂克隆形成实验观察其增殖能力.结果 MCF-7细胞株中分选出SP细胞占(6.5±0.4)%;SP细胞的体外克隆形成率为(38.5±9.4)%,高于非SP细胞的(8.4±2,6)%(t=5.34,P<0.05).结论 乳腺癌MCF-7细胞中的SP细胞富集了乳腺癌于细胞,其增殖能力强于非SP细胞,表明SP表型的肿瘤细胞在乳腺癌的生长中具有重要的地位.

  19. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  20. Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling

    Directory of Open Access Journals (Sweden)

    Gleiter Christoph H

    2007-11-01

    Full Text Available Abstract Background Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer. Results Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines. 13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, N2,N2,7-trimethylguanosine, N6-methyl-N6-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells. Conclusion The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible

  1. The effect of anastrozole on mRNA expression of oestrogen related gene in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    SONG Zhang-jun; WU Yi; MA Qing-yong

    2006-01-01

    Objective: To look for additional markers of molecular biology response to anastrozole, a new aromatase inhibitor, on the growth and mRNA expression level of MCF-7 cell. Methods: We investigated the effect of anastrzole on growth and gene expression in the human breast cancer cell line MCF-7and compared with the most widely used antiestrogen tamoxifen. We chose 4 genes to examine regulation of gene expression of estrogen regulated genes: PR A, PR B, ErbB-2 and cyclin D1. Results: Compared with the tamoxifen, a statistically significant growth inhibition was observed with anastrozole. The PRA,PR B and cyclin D1 mRNA level in anastrozole treated cells was sigificantly below the level in tamoxifen treated cells (P<0. 05). They had agonistic effect on ErbB gene (P>0.05). Conclusion: The third generation of aromatase inhibitors anastrozole exert more inhibit function in some expression of estrogen regulated genes than tomoxifen in MCF-7 cell line.

  2. Effects of exogenous human leptin on heat shock protein 70 expression in MCF-7 breast cancer cells and breast carcinoma of nude mice xenograft model

    Institute of Scientific and Technical Information of China (English)

    XUE Rong-quan; GU Jun-chao; YU Wei; WANG Yu; ZHANG Zhong-tao; MA Xue-mei

    2012-01-01

    Background It is important to identify the multiple sites of leptin activity in obese women with breast cancer.In this study,we examined the effect of exogenous human leptin on heat shock protein 70 (HSP70) expression in MCF-7 human breast cancer cells and in a breast carcinoma xenograft model of nude mice.Methods We cultured MCF-7 human breast cancer cells and established nude mice bearing xenograffs of these cells,and randomly divided them into experimental and control groups.The experimental group was treated with human leptin,while the control group was treated with the same volume of normal saline.A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay was developed to quantify the mRNA expression of HSP70 in the MCF-7 human breast cancer cells and in tumor tissues.Western blotting analysis was applied to quantify the protein expression of HSP70 in the MCF-7 cells.Immunohistochemical staining was done to assess the positive rate of HSP70 expression in the tumor tissues.Results Leptin activated HSP70 in a dose-dependent manner in vitro:leptin upregulated significantly the expression of HSP70 at mRNA and protein levels in MCF-7 human breast cancer cells (P <0.001).There was no significant difference in expression of HSP70 mRNA in the implanted tumors between the leptin-treated group and the control group (P>0.05).Immunohistochemical staining revealed no significant difference in tumor HSP70 expression between the leptin-treated group and the control group (P>0.05).Conclusions A nude mouse xenograft model can be safely and efficiently treated with human leptin by subcutaneous injections around the tumor.HSP70 may be target of leptin in breast cancer.Leptin can significantly upregulate the expression of HSP70 in a dose-dependent manner in vitro.

  3. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Science.gov (United States)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; da Silva, André Romero

    2013-09-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly( d, l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 μmol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  4. Salinomycin suppresses TGF-β1-induced epithelial-to-mesenchymal transition in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Zhang, Chunying; Lu, Ying; Li, Qing; Mao, Jun; Hou, Zhenhuan; Yu, Xiaotang; Fan, Shujun; Li, Jiazhi; Gao, Tong; Yan, Bing; Wang, Bo; Song, Bo; Li, Lianhong

    2016-03-25

    Epithelial-to-mesenchymal transition (EMT) is the major cause of breast cancer to initiate invasion and metastasis. Salinomycin (Sal) has been found as an effective chemical compound to kill breast cancer stem cells. However, the effect of Sal on invasion and metastasis of breast cancer is unclear. In the present study, we showed that Sal reversed transforming growth factor-β1 (TGF-β1) induced invasion and metastasis accompanied with down-regulation of MMP-2 by experiments on human breast cancer cell line MCF-7. Sal was able to inhibit TGF-β1-induced EMT phenotypic transition and the activation of key signaling molecules involved in Smad (p-Smad2/3,Snail1) and non-Smad (β-catenin, p-p38 MAPK) signals which cooperatively regulate the induction of EMT. Importantly, in a series of breast cancer specimens, we found strong correlation among E-cadherin expression, β-catenin expression, and the lymph node metastatic potential of breast cancer. Our research suggests that Sal is promised to be a chemotherapeutic drug by suppressing the metastasis of breast cancer.

  5. IFNB1/interferon-ß-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Ejlerskov, Patrick; Liu, Yawei

    2013-01-01

    differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B/LC3 and SQSTM1/p62. The induction......IFNB1/interferon (IFN)-ß belongs to the type I IFNs and exerts potent antiproliferative, proapoptotic, antiangiogenic and immunemodulatory functions. Despite the beneficial effects of IFNB1 in experimental breast cancers, clinical translation has been disappointing, possibly due to induction...... of survival pathways leading to treatment resistance. Defects in autophagy, a conserved cellular degradation pathway, are implicated in numerous cancer diseases. Autophagy is induced in response to cancer therapies and can contribute to treatment resistance. While the type II IFN, IFNG, which in many aspects...

  6. Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Ci-hui YAN; Ya-ping YANG; Zheng-hong QIN; Zhen-lun GU; Paul REID; Zhong-qin LIANG

    2007-01-01

    Aim: To investigate the role of crotoxin (CrTX)-induced autophagy in the death of MCF-7 cells, a caspase-3-deficient, human breast cancer cell line. Methods: Cul-tured MCF-7 cells were treated with various doses of CrTX, a phospholipase A2(PLA2) isolated from the venom of the South American rattlesnake, Crotalus durissus terrificus. The cytotoxicity of CrTX in the presence and absence of caspase inhibitors was measured with methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) leakage assays. The activation of autophagy was determined with transmission electron microscope and monodansylcadaverin(MDC) labeling. The upregulation of lysosomal enzymes, the release of cyto-chrome c (cyto-c), and the nuclear translocation of the apoptosis inducing factor(AIF) were examined by immunoblotting and immunofluorescence. Results: CrTX inhibited the viability of MCF-7 cells in a dose- and time-dependent manner. CrTX-activated autophagy was revealed by punctuate MDC labeling, and an increase in the formation of autophagosomes as well as apoptosis, as evidenced by nuclear condensation and fragmentation. The activation of cathepsin B, D, and L, in addition to the release of cytochrome c and the relocation of AIF into nuclei, were observed after CrTX treatment. Autophagy inhibitors 3-methyladenine (3-MA),NH4Cl, and the pan-caspase inhibitor, Z-Val-Ala-Asp-fluoromethylketone (Z-Vad-fmk), attenuated CrTX-induced cell death. Conclusion: An autophagic mecha-nism contributes to the apoptosis of MCF-7 cells induced by CrTX.

  7. Investigation of the apoptotic pathway induced by benzimidazole-oxindole conjugates against human breast cancer cells MCF-7.

    Science.gov (United States)

    Lakshma Nayak, Vadithe; Nagaseshadri, Bobburi; Vishnuvardhan, M V P S; Kamal, Ahmed

    2016-07-15

    In our previous studies, benzimidazole-oxindole conjugates were synthesized and evaluated by National Cancer Institute (NCI) for their cytotoxic activity and the new molecules like 5c and 5p were considered as potential leads. These conjugates arrested the cell cycle at G2/M phase and inhibited tubulin polymerization. These observations prompted us to investigate the apoptotic mechanism induced by these lead molecules against human breast cancer cells (MCF-7). Studies like measurement of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species (ROS) and Annexin V-FITC assay revealed that these compounds induced mitochondrial mediated (intrinsic apoptotic pathway) apoptosis in human breast cancer cells. It was further confirmed by western blot analysis of pro apoptotic protein Bax, anti apoptotic protein Bcl-2, cytochrome c release, caspase-9 activity and cleavage of PARP.

  8. Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin

    Institute of Scientific and Technical Information of China (English)

    Rifki Febriansah; Dyaningtyas Dewi PP; Sarmoko; Nunuk Aries Nurulita; Edy Meiyanto; Agung Endro Nugroho

    2014-01-01

    Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells (MCF-7/Dox) in cytotoxicity apoptosis and P-glycoprotein (Pgp) expression in combination with doxorubicin. Methods:The cytotoxic properties, 50%inhibition concentration (IC50) and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin (MCF-7/Dox) cells were determined using MTT assay. Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange. Immunocytochemistry assay was performed to determine the level and localization of Pgp. Results: Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC50 value of 11 µmol/L. Thus, combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect (CI>1.0). Hesperidin did not increase the apoptotic induction, but decreased the Pgp expressions level when combined with doxorubicin in low concentration. Conclusions: Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC50 of 11 µmol/L. Hesperidin did not increased the apoptotic induction combined with doxorubicin. Co-chemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.

  9. Transcriptional effects of Organochlorine o,p′-DDT and its Metabolite p,p′-DDE in Transfected MDA-MB 231 and MCF-7 Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ehsan zayerzadeh

    2015-04-01

    Conclusion: In conclusion, our results revealed that o,p’-DDT has not estrogenic activity in a classical mechanism in transfected MDA-MB 231 breast cancer cells while has estrogenic activity in a classical mechanism in transfected MCF-7 human breast cancer cell line.

  10. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7Cells.

    Science.gov (United States)

    Yulianto, Wahid; Andarwulan, Nuri; Giriwono, Puspo Edi; Pamungkas, Joko

    2016-12-15

    The objective of this study was to identify the active compounds in Plectranthus amboinicus (Lour.) Spreng which play a role to inhibit viability of breast cancer MCF-7 cells using HPLC-based metabolomics approach. Five fractions of the plant extract were observed including ethanol, hexane, chloroform, ethyl acetate and water fraction. There were 45 HPLC chromatograms resulted from 5 fractions with 3 replications and 3 wavelengths detection. The chromatograms were compared to the data of IC50 from MTT assay of each fraction against human breast cancer MCF-7 cells using metabolomics. The OPLS analysis result promptly pointed towards a chloroform fraction at retention time of 40.16-41.28min that has the greatest contribution to the cytotoxic activity. The data of mass spectra indicated that an abietane diterpene namely 7-acetoxy-6-hydroxyroyleanone was the main compound that contributed to the cytotoxic activity. This metabolomics application method can be used as a quick preliminary guideline to uncover the most dominant compound related to the bioactivity.

  11. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  12. Mechanism of Shenyi Capsule Concomitant with Endostar and Chemotherapy on the Growth and Apoptosis of MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Shao Mingwen; Qiu Jinrong; Wu Hao; Liu Yiqian; Liu Lianke

    2014-01-01

    Objective:To observe the effect of Shenyi Capsule concomitant with Endosatr and chemotherapy in improving the proliferative activity and apoptosis of MCF-7 breast cancer cells. Methods:The cultured cells were randomly divided into control group, 5-Fu group, combination group 1, combination group 2 and combination group 3. The morphological changes were observed under inverted microscope, activity inhibition rate was calculated by methyl thiazolyl tetrazolium (MTT) method and lfuorescence microscope was applied to observe the apoptotic cells. Results: There were different degrees of morphological changes and functions of inhibiting cellactivity and improving apoptosis in each group except control group, which were the most signiifcant in combination group 3. Conclusion: Shenyi Capsule concomitant with endostar can be an optimal choice for the treatment of breast cancer.

  13. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  14. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  15. Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells

    OpenAIRE

    Tan, Chao; Han, Li; Zou, Lili; Luo, Chunhua; Liu, Aihua; SHENG, XIEJING; XI, DEE

    2015-01-01

    The aim of the present study was to investigate the effects of P2X7R short hairpin (sh)RNA on the proliferation and apoptosis of MCF-7 cells, and to detect the expression of P2X7R in breast cancer and MCF-7 cells. In order to detect the expression of P2X7R in normal breast and breast cancer tissues, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot analysis and immunohistochemistry were performed. A P2X7-targeted shRNA sequence and a scrambled sequence were ...

  16. A Variant of Human Estrogen Receptor-α, hER-α36 Weakens Docetaxel Drug Efficacy against Human Breast Cancer Cell Line MCF-7

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Peng Shen

    2009-01-01

    Objective: hER-α36 is a variant of estrogen receptor-α, identified and cloned by a team of American. This research is to determine whether hER-α36 can enhance or weaken chemosensitivity to docetaxel in breast cancer cell line MCF-7(ERα66 positive).Methods: RT-PCR was used to detect the expressions of ERα66 and ERα36 in the two human breast cancer cell lines MCF-7(MCF-7/ERα66)and MCF-7 transfected with ERα36(MCF-7/ERα36). The two cell lines were treated with docetaxel(0~100μmol/L), and cell growth and apoptosis were evaluated using MTT (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide) assay (using adriamycin (0~50μmol/L)as the control) and flowcytometry. Western blot analysis was used to measure the effect of docetaxel on phosphor-ERK1/2 expression in the two cell lines.Results: The expressions of ERα36 and ERα66 were detectable in both MCF-7/ERα66 and MCF-7/ERα36 cell lines, while the expression of ERα36 in MCF-7/ER36 cells was higher. Both docetaxel and adriamycin inhibited the proliferation of both cells lines in a dose and time dependent manner. In comparison with MCF-7/ERα36 cell line, the MCF-7/ERα66 cells produced greater growth inhibition and apoptosis after treatment with docetaxel, but there was no significant difference in growth inhibition between the two cell lines treated with adriamycin; The MCF-7/ERα36 cell line resulted in a significant activation (phosphorylation) of ERK1/2 after treatment with docetaxel in a dose-dependent manner, but in the MCF-7/ERα66 cell line , a decrease in the level of phosphor- ERK1/2 expression was observed as the dose of docetaxel increased.Conclusion: ERα36 may be an agent that weakens chemosensitivity to docetaxel in breast cancer, probably by activating the expression of ERK1/2.

  17. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zelmina Lubovac-Pilav

    Full Text Available Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12, this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc. and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.. Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  18. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Science.gov (United States)

    Lubovac-Pilav, Zelmina; Borràs, Daniel M; Ponce, Esmeralda; Louie, Maggie C

    2013-01-01

    Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12), this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc.) and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.). Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  19. Cadmium modulates H-ras expression and caspase-3 apoptotic cell death in breast cancer epithelial MCF-7 cells.

    Science.gov (United States)

    Petanidis, Savvas; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-04-01

    Cadmium (Cd) is a well-known metal carcinogen associated with tumor formation and carcinogenesis. It has been shown to induce cancer through various cellular mechanisms involving inhibition of DNA repair, abnormal gene expression, induction of oxidative stress, and triggering apoptosis. It is well-established that the H-ras oncogene is involved in the process of carcinogenesis with direct effects on cellular proliferation and tumorigenesis. Given the biotoxicity of cadmium and its association with carcinogenesis, the effect of that metal ion (Cd(II)) was investigated, in a concentration-dependent fashion, on cell viability, cell proliferation, caspase-3 mediated apoptosis and H-ras gene expression in human breast cancer epithelial MCF-7 cells transfected with the H-ras oncogene (wild type and G12V mutation). The findings show a significant modulation effect of cadmium on H-ras gene expression accompanied by up-regulation of caspase-3-related apoptosis in the concentration range of 100-1000 nΜ cadmium. Concurrently, there is a decrease in MCF-7 proliferation. Collectively, the results a) indicate an interplay of cadmium with H-ras(wt and G12V), with cadmium exhibiting a significant concentration-dependent effect on the modulation of H-ras expression, cell viability and proliferation, and b) project distinctly interwoven roles for both cadmium and H-ras in aberrant physiologies in cancer cells.

  20. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs

    OpenAIRE

    HERTZ, EVERALDO; CADONÁ, FRANCINE CARLA; Machado, Alencar Kolinski; Azzolin, Verônica; HOLMRICH, SABRINA; ASSMANN, CHARLES; LEDUR, PAULINE; RIBEIRO, EULER ESTEVES; DE SOUZA FILHO, OLMIRO CEZIMBRA; MÂNICA-CATTANI, MARIA FERNANDA; DA CRUZ, IVANA BEATRICE MÂNICA

    2014-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the trea...

  1. Fenugreek, a naturally occurring edible spice, kills MCF-7 human breast cancer cells via an apoptotic pathway.

    Science.gov (United States)

    Khoja, Kholoud K; Shaf, Gowhar; Hasan, Tarique N; Syed, Naveed Ahmed; Al-Khalifa, Abdrohman S; Al-Assaf, Abdullah H; Alshatwi, Ali A

    2011-01-01

    There is growing use of anticancer complementary and alternative medicines worldwide. Trigonella foenum graecum (Fenugreek) is traditionally applied to treat disorders such as diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Fenugreek is also reported to have anticancer properties due to its active beneficial chemical constituents. The mechanism of action of several anticancer drugs is based on their ability to induce apoptosis. The objective of the study was to characterize the downstream apoptotic genes targeted by FCE in MCF-7 human immortalized breast cells. FCE effectively killed MCF-7 cells through induction of apoptosis,confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and RT-PCR assays. When cells were exposed to 50 μg/mL FCE for 24 hours, 23.2% apoptotic cells resulted, while a 48-hour exposure to 50 μg/mL caused 73.8% apoptosis. This was associated with increased expression of Caspase 3, 8, 9, p53, Fas, FADD, Bax and Bak in a time-and dose-dependent manner, as determined by real- time quantitative PCR. In summary, the induction of apoptosis by FCE is effected by its ability to increase the expression of pro-apoptotic genes and the spice holds promise for consideration in complementary therapy for breast cancer patients.

  2. Investigation of anticancer effect of Xanthoceraside in vitro and the mechanism of Xanthoceraside-induced human breast cancer MCF-7 cell death

    Institute of Scientific and Technical Information of China (English)

    JI Xue-fei; XIA Ming-yu; CHI Tian-yan; WANG Li-hua; YANG Bai-zhen; ZOU Li-bo

    2008-01-01

    Objective To investigate the anticancer effect of xanthoceraside in vitro and the possible mechanisms involved in the potent antiproliferative effect on human breast cancer MCF-7 cell. Methods The inhibition rate of different tumor cells and human peripheral blood lymphocyte cells was investigated by MTT assay. AO/EB double fluorescent dye staining was used to investigate the morphology changes of MCF-7. The DNA agarose gel electrophoresis was further used to observe the DNA Fragmentation. Flow eytometry was employed to investigate the volume changes, the cell cycle distribution and the mitoehondrial membrane potential of MCF-7. The antioxidant N-acetylcysteine (NAC) was chosen to detect the influence on oxidantstress system of MCF-7 cells. Necrostatin-1 was next chosen to detect the influence on antiproliferative effect of xanthoceraside-treated MCF-7 cells. Results Xanthoceraside could inhibit the proliferation of tumor cells significantly in a dose-dependent manner and it has no eytotoxie effects on human peripheral blood lymphocyte cells in vitro. Cytoplasm vacuole was observed but no significant condense of nuclear ehromatin was found, meanwhile, MCF-7 cells were bigger and smear was observed by agarose gel electrophoresis after MCF-7 cells were exposed to xanthoceraside. The cell cycle distribution of MCF-7 was greatly changed after exposure to xanthoceraside with an obvious G1 arrest. The mitochondrial membrane potential showed significant decrease. NAC attenuate the antiproliferative effect of xanthoceraside-treated MCF-7 cells but necrostatin-1 had no effects. Conclnsions Xanthoceraside-indueed necrosis might be dependent of mitochondria, meanwhile reactive oxygen species (ROS) participated in it. The xanthoceraside-indueed MCF-7 cell death might not be the cell necrosis which initiated by Fas/TNFR and must be through RIP1 kinase.

  3. Steroid metabolism in the hormone dependent MCF-7 human breast carcinoma cell line and its two hormone resistant subpopulations MCF-7/LCC1 and MCF-7/LCC2

    DEFF Research Database (Denmark)

    Jørgensen, L; Brünner, N; Spang-Thomsen, M

    1998-01-01

    Androgen and estrogen metabolism was investigated in the hormone-dependent human breast cancer cell line MCF-7 and its two hormone-resistant sublines MCF-7/LCC1 and MCF-7/LCC2. Using the product isolation method, the activity of aromatase, 5alpha-reductase, 3alpha/beta-hydroxysteroid oxidoreductase......, and preincubation with cortisol had no effect on the enzyme activity. With [14C]T as the substrate, the metabolized level of DHT was very similar in the three cell lines, though MCF-7/LCC1 and MCF-7/LCC2 utilized the substrate to a much lesser extent. The amount of DHT and 4-AD produced were comparable in the two...... hormone-resistant cell lines, while the amount of 4-AD was significantly higher in MCF-7 cells. No differences in enzyme activity were found in the three cell lines when [14C]4-AD was used as the substrate. This study showed an altered androgen metabolism in the MCF-7/LCC1 and MCF-7/LCC2 sublines compared...

  4. Down-regulation of CXCR4 expression by tamoxifen is associated with DNA methyltransferase 3B up-regulation in MCF-7 breast cancer cells.

    Science.gov (United States)

    Kubarek, Ł; Kozłowska, A; Przybylski, M; Lianeri, M; Jagodzinski, P P

    2009-09-01

    The CXCR4 chemokine receptor is a seven transmembrane G protein-coupled receptor present on the surface of various cells including cancer cells. The CXCR4 receptor contributes to the induction of several intracellular signalling pathways that enhance survival, proliferation, and migration of malignant cells. We observed that tamoxifen (Tam) reduced the CXCR4 transcript and protein levels in MCF-7 breast cancer cells. However, we did not see a Tam effect on CXCR4 transcript and protein levels in MCF-7(LVMT3B) cells with RNA interference-mediated knockdown of DNMT3B. We also observed that Tam significantly increased, for several hours, the expression of enzymatically active DNMT3B splice variants in MCF-7 cells. However, there was no Tam effect on these DNMT3B splice variants' expression in MCF-7(LVMT3B) cells. Bisulfite sequencing suggests that Tam may reduce CXCR4 expression via increased methylation of cytosine in the cytosine-guanosine (CpG) dinucleotide island of the CXCR4 promoter of MCF-7 breast cancer cells. Our findings suggest that Tam induces an increase in DNMT3B expression that is associated with the increase of CpG dinucleotide methylation in the CXCR4 promoter and significant reduction of CXCR4 gene expression in MCF-7 cells.

  5. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism.

    Science.gov (United States)

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-05-05

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.

  6. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Directory of Open Access Journals (Sweden)

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  7. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Ganesh Kumar, V. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Prabhu, D.; Arulvasu, C. [Department of Zoology, University of Madras, Guindy campus, Chennai 600 025 (India); Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India)

    2016-05-15

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G{sub 0}/G{sub 1} to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  8. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

    Science.gov (United States)

    McGowan, Eileen M; Alling, Nikki; Jackson, Elise A; Yagoub, Daniel; Haass, Nikolas K; Allen, John D; Martinello-Wilks, Rosetta

    2011-01-01

    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the

  9. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

    Directory of Open Access Journals (Sweden)

    Eileen M McGowan

    Full Text Available Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex, FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle

  10. Evaluation of imatinib mesylate(Gleevec) on KAI1/CD82 gene expression in breast cancer MCF-7 cells using quantitative real-time PCR

    Institute of Scientific and Technical Information of China (English)

    Seyed Ataollah Sadat Shandiz; Marjan Khosravani; Sepideh Mohammadi; Hassan Noorbazargan; Amir Mirzaie; Davoud Nouri Inanlou; Mojgan Dalirsaber Jalali; Hamidreza Jouzaghkar; Fahimeh Baghbani-Arani; Behta Keshavarz-Pakseresht

    2016-01-01

    Objective: To evaluate the effect of imatinib mesylate on cell viability, anti cancer effect through modulation of KAI1/CD82 gene expression in breast cancer MCF-7 cell line.Methods: The effects of imatinib mesylate on cell viability in MCF-7 cell line were assessed using MTT assay and IC50 value was determined. GAPDH and KAI1/CD82 were selected as reference and target genes, respectively. Quantitative real time PCR technique was applied for investigation of KAI1/CD82 gene expression in human breast cancer MCF-7 cells. Subsequently, the quantity of KAI1 compared to GAPDH gene expressions were analyzed using the formula; 2-DDCt.Results: Imatinib was showed to have a dose-dependent inhibitory effect on the viability of MCF-7 cells. CD82/GAPDH gene expression ratios were 1.322 ± 0.030(P > 0.05),2.052 ± 0.200(P < 0.05), 2.151 ± 0.270(P < 0.05) for 10, 20 and 40 mmol/L of imatinib concentrations.Conclusions: Based on the present data, imatinib mesylate might modulate metastasis by up-regulating KAI1/CD82 gene expression in human breast MCF-7 cancer cell line.

  11. Transcriptional regulation of bidirectional gene pairs by 17-β-estradiol in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    S.A.B. Garcia

    2011-02-01

    Full Text Available Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER. Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5’flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17β-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17β-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.

  12. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  13. Oxidative stress-mediated apoptosis induced by ethanolic mango seed extract in cultured estrogen receptor positive breast cancer MCF-7 cells.

    Science.gov (United States)

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Rasedee, Abdullah; Mirghani, Mohamed Elwathig Saeed

    2015-02-05

    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.

  14. Oxidative Stress-Mediated Apoptosis Induced by Ethanolic Mango Seed Extract in Cultured Estrogen Receptor Positive Breast Cancer MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Al-Shwyeh Hussah Abdullah

    2015-02-01

    Full Text Available Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7 cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX, p53, cytochrome c and caspases (7, 8 and 9 in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.

  15. The correlation between telomerase activity and Bax/Bcl-2 ratio in valproic acid-treated MCF-7 breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Zahra Vafaiyan

    2015-07-01

    Conclusion: Our study demonstrated that cell viability of MCF-7 cells was decreased after treatment with VPA, probably through a reduction of telomerase activity and an increase in Bax/bcl-2 ratio. Therefore, it could be concluded that VPA is a potent anti-cancer agent for breast cancer cells through inhibition of telomerase activity and induction of apoptosis.

  16. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  17. The Cytotoxic Effects of Low Intensity Visible and Infrared Light on Human Breast Cancer (MCF7 cells

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  18. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper.

  19. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Ali NM

    2016-06-01

    Full Text Available Norlaily Mohd Ali,1 M Nadeem Akhtar,2 Huynh Ky,3 Kian Lam Lim,1 Nadiah Abu,4 Seema Zareen,2 Wan Yong Ho,5 Han Kiat Alan-Ong,1 Sheau Wei Tan,6 Noorjahan Banu Alitheen,4 Jamil bin Ismail,2 Swee Keong Yeap,6 Tunku Kamarul7 1Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 2Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Pahang, Malaysia; 3Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, CanTho City, Vietnam; 4Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 5School of Biomedical Sciences, The University of Nottingham Malaysia Campus, 6Institute of Bioscience, Universiti Putra Malaysia, Selangor, 7Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia Abstract: Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E-1-(2'-Hydroxy-4',6'-dimethoxyphenyl-3-(4-methylthiophenylprop-2-ene-1-one (FLS was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 µM at 48 hours against normal breast cell MCF-10A (no IC50 detected up to 180 µM at 72 hours. Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cell treated with 36 µM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell

  20. Rational design of multifunctional micelles against doxorubicin-sensitive and doxorubicin-resistant MCF-7 human breast cancer cells

    Science.gov (United States)

    Hong, Wei; Shi, Hong; Qiao, Mingxi; Gao, Xiang; Yang, Jie; Tian, Chunlian; Zhang, Dexian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Even though a tremendous number of multifunctional nanocarriers have been developed to tackle heterogeneous cancer cells, little attention has been paid to elucidate how to rationally design a multifunctional nanocarrier. In this study, three individual functions (active targeting, stimuli-triggered release and endo-lysosomal escape) were evaluated in doxorubicin (DOX)-sensitive MCF-7 cells and DOX-resistant MCF-7/ADR cells by constructing four kinds of micelles with active-targeting (AT-M), passive targeting, pH-triggered release (pHT-M) and endo-lysosomal escape (endoE-M) function, respectively. AT-M demonstrated the strongest cytotoxicity against MCF-7 cells and the highest cellular uptake of DOX due to the folate-mediated endocytosis. However, AT-M failed to exhibit the best efficacy against MCF-7/ADR cells, while endoE-M exhibited the strongest cytotoxicity against MCF-7/ADR cells and the highest cellular uptake of DOX due to the lowest elimination of DOX from the cells. This was attributed to the carrier-facilitated endo-lysosomal escape of DOX, which avoided exocytosis by lysosome secretion, resulting in an effective accumulation of DOX in the cytoplasm. The enhanced elimination of DOX from the MCF-7/ADR cells also accounted for the remarkable decrease in cytotoxicity against the cells of AT-M. Three micelles were further evaluated with MCF-7 cells and MCF-7/ADR-resistant cells xenografted mice model. In accordance with the in vitro results, AT-M and endoE-M demonstrated the strongest inhibition on the MCF-7 and MCF-7/ADR xenografted tumor, respectively. Active targeting and active targeting in combination with endo-lysosomal escape have been demonstrated to be the primary function for a nanocarrier against doxorubicin-sensitive and doxorubicin-resistant MCF-7 cells, respectively. These results indicate that the rational design of multifunctional nanocarriers for cancer therapy needs to consider the heterogeneous cancer cells and the primary function needs

  1. Inhibitory effect of substituted dextrans on MCF7 human breast cancer cell growth in vitro.

    Science.gov (United States)

    Morere, J F; Letourneur, D; Planchon, P; Avramoglou, T; Jozefonvicz, J; Israel, L; Crepin, M

    1992-12-01

    Substituted dextrans can reproduce some of the properties of heparin and can thus be used to alter cellular growth. We studied the effect of heparin (H108), dextran (D), carboxymethylbenzylamide dextran (CMDB) and carboxymethylbenzylamide sulfonate dextran (CMDBS) on the growth of human mammary cells of the MCF7 tumor line. The cells were cultured in minimum Eagle's medium containing 2% fetal calf serum without biopolymer, or with increasing concentrations of H108, D, CMDB or CMDBS. Growth curves were accurately based on cell counting using a Coulter counter. Cell distribution in the various phases of the cycle was analyzed by flow cytometry. Dose-dependent growth inhibitory effects (400-4000 micrograms/ml) were observed. The effect on MCF7 tumor cells was most apparent with CMDBS. The percentage of cells in the S phase decreased with preferential blocking in the G0/G1 phase. Pre-clinical studies can be anticipated as there is an absence of in vivo toxicity.

  2. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    Science.gov (United States)

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10(-6)M) or E2 (10(-9)M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10(-8)M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan.

  3. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

    Directory of Open Access Journals (Sweden)

    Tahereh Komeili-Movahhed

    2015-05-01

    Full Text Available Objective(s:Multidrug resistance (MDR of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer

  4. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

    Science.gov (United States)

    Komeili-Movahhed, Tahereh; Fouladdel, Shamileh; Barzegar, Elmira; Atashpour, Shekoufeh; Hossein Ghahremani, Mohammad; Nasser Ostad, Seyed; Madjd, Zahra; Azizi, Ebrahim

    2015-01-01

    Objective(s): Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY) to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX) chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer. PMID:26124933

  5. Radiosensitizing effect of conjugated linoleic acid in MCF-7 and MDA-MB-231 breast cancer cells; Effet radiosensibilisateur de l'acide linoleique conjugue chez les cellules cancereuses de sein MCF-7 et MDA-MB-231

    Energy Technology Data Exchange (ETDEWEB)

    Drouin, G.; Douillette, A. [Univ. de Sherbrooke, Dept. de medecine nucleaire de radiobiologie, Faculte de medecine, Sherbrooke, Quebec (Canada); Lacasse, P. [Centre de recherche et development sur le bovin laitier et le porc, Lennoxville, Quebec (Canada); Paquette, B. [Univ. de Sherbrooke, Dept. de medecine nucleaire de radiobiologie, Faculte de medecine, Sherbrooke, Quebec (Canada)]. E-mail: benoit.paquette@USherbrooke.ca

    2004-02-01

    Apoptotic pathways in breast cancer cells are frequently altered, reducing the efficiency of radiotherapy. Conjugated linoleic acid (CLA), known to trigger apoptosis, was tested as radiosensitizer in breast cancer cells MCF-7 and MDA-MB-231. The CLA-mix, made up of the isomers CLA-9cis 11trans and CLA-10trans 12cis, was compared to three purified isomers, i.e., the CLA-9cis 11cis, CLA-9cis 11trans, and CLA-10trans 12cis. Using the apoptotic marker YO-PRO-1, the CLA-9cis 11cis at 50 {mu}mol/L turned out to be the best apoptotic inducer leading to a 10-fold increase in MCF-7 cells and a 2,5-fold increase in MDA-MB-231 cells, comparatively to the CLA-mix. Contrary to previous studies on colorectal and prostate cancer cells, CLA-10trans 12cis does not lead to an apoptotic response on breast cancer cell lines MCF-7 and MDA-MB-231. Our results also suggest that the main components of the CLA-mix (CLA-9cis 11trans and CLA-10trans 12cis) are not involved in the induction of apoptosis in the breast cancer cells studied. A dose of 5 Gy did not induce apoptosis in MCF-7 and MDA-MB-231 cells. The addition of CLA-9cis 11cis or CLA-mix has allowed us to observe a radiation-induced apoptosis, with the CLA-9cis 11cis being about 8-fold better than the CLA-mix. CLA-9cis 11cis turned out to be the best radiosensitizer, although the isomers CLA-9cis 11trans and CLA-10trans 12cis have also reduced the cell survival following irradiation, but using a mechanism not related to apoptosis. In conclusion, the radiosensitizing property of CLA-9cis 11cis supports its potential as an agent to improve radiotherapy against breast carcinoma. (author)

  6. Transfer of p14ARF gene in drug-resistant human breast cancer MCF-7/Adr cells inhibits proliferation and reduces doxorubicin resistance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To elucidate the effect of p14ARF gene on multidrug-resistant tumor cells. Methods: We transferred a p14ARF cDNA into p53-mutated MCF-7/Adr human breast cancer cells. Results: In this report we demonstrated for the first time that p14ARF expression was able to greatly inhibit the MCF-7/Adr cell proliferation. Furthermore, p14ARF expression resulted in decreases in MDR1 mRNA and P-glycoprotein production, which linked with the reducing resistance of MCF-7/Adr cells to doxorubicin. Conclusion: These results imply that drug resistance might be effectively reversed with the wild-type p14ARF expression in human breast cancer cells.

  7. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Science.gov (United States)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  8. Effect of nomegestrol acetate on estrogen biosynthesis and transformation in MCF-7 and T47-D breast cancer cells.

    Science.gov (United States)

    Shields-Botella, J; Chetrite, G; Meschi, S; Pasqualini, J R

    2005-01-01

    Although ovaries serve as the primary source of estrogen for pre-menopausal women, after menopause estrogen biosynthesis from circulating precursors occurs in peripheral tissues by the action of several enzymes, 17beta-hydroxysteroid dehydrogenase 1 (17beta-HSD1), aromatase and estrogen sulfatase. In the breast, both normal and tumoral tissues have been shown to be capable of synthesizing estrogens, and this local estrogen production can be implicated in the development of breast tumors. In these tissues, estradiol (E(2)) can be synthesized by three pathways: (1) estrone sulfatase transforms estrogen sulfates into bioactive estrogens, (2) 17beta-HSD1 converts estrone (E(1)) into E(2), (3) aromatase which converts androgens into estrogens is also present and contributes to the in situ synthesis of active estrogens but to a far lesser extent than estrone sulfatase. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. Breast tissue also possesses the estrogen sulfotransferase involved in the conversion of estrogens into their sulfates that are biologically inactive. In the present review, we summarized the action of the 19-nor-progestin nomegestrol acetate (NOMAC) on the sulfatase, 17beta-HSD1 and sulfotransferase activities in the hormone-dependent MCF-7 and T47-D human breast cancer cell lines. Using physiological doses of substrates NOMAC blocks very significantly the conversion of E(1)S to E(2). It inhibits the transformation of E(1) to E(2). NOMAC has a stimulatory effect on sulfotransferase activity in both cell lines, with a strong stimulating effect at low doses but only a weak effect at high concentrations. The effects on the three enzymes are always stronger in the progesterone-receptor rich T47-D cell line as compared with the MCF-7 cell line. Besides, no effect is found for NOMAC on the transformation of

  9. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines.

    Science.gov (United States)

    Bradshaw, Michael J; Saviola, Anthony J; Fesler, Elizabeth; Mackessy, Stephen P

    2016-08-01

    Snake venoms are mixtures of bioactive proteins and peptides that exhibit diverse biochemical activities. This wide array of pharmacologies associated with snake venoms has made them attractive sources for research into potentially novel therapeutics, and several venom-derived drugs are now in use. In the current study we performed a broad screen of a variety of venoms (61 taxa) from the major venomous snake families (Viperidae, Elapidae and "Colubridae") in order to examine cytotoxic effects toward MCF-7 breast cancer cells and A-375 melanoma cells. MTT cell viability assays of cancer cells incubated with crude venoms revealed that most venoms showed significant cytotoxicity. We further investigated venom from the Red-bellied Blacksnake (Pseudechis porphyriacus); venom was fractionated by ion exchange fast protein liquid chromatography and several cytotoxic components were isolated. SDS-PAGE and MALDI-TOF mass spectrometry were used to identify the compounds in this venom responsible for the cytotoxic effects. In general, viper venoms were potently cytotoxic, with MCF-7 cells showing greater sensitivity, while elapid and colubrid venoms were much less toxic; notable exceptions included the elapid genera Micrurus, Naja and Pseudechis, which were quite cytotoxic to both cell lines. However, venoms with the most potent cytotoxicity were often not those with low mouse LD50s, including some dangerously venomous viperids and Australian elapids. This study confirmed that many venoms contain cytotoxic compounds, including catalytic PLA2s, and several venoms also showed significant differential toxicity toward the two cancer cell lines. Our results indicate that several previously uncharacterized venoms could contain promising lead compounds for drug development.

  10. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juanjuan, E-mail: jwu32@emory.edu [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Williams, Devin [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Walter, Grant A. [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Thompson, Winston E. [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Sidell, Neil [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States)

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  11. Efficiency of photodynamic therapy using indocyanine green and infrared light on MCF-7 breast cancer cells in vitro

    Science.gov (United States)

    Ruhi, Mustafa K.; Ak, Ayşe.; Gülsoy, Murat

    2016-03-01

    Cancer is one of the main reasons of death in all around the world. The main treatments of cancer include surgical intervention, radiation therapy and chemotherapy. These treatments can be applied separately or in a combined manner. Another therapeutic method that is still being researched and recently has started to be used in clinical applications is Photodynamic Therapy (PDT). Most photosensitizers currently being investigated are sensitive to red light. However, it is known that infrared light has a better penetration into the skin or tissue. Indocyanine Green (ICG), which is used in this study, is sensitive to infrared light. The aim of this in vitro study is to investigate the effect of PDT on breast cancer cells by using different doses of ICG and infrared light irradiation. 25, 50 and 100 μM ICG concentrations and 25 and 50 J/cm2 laser energy doses were applied to MCF-7 cell lines. MTT analyses were performed on 24, 48 and 72 hours following the treatments. As a result, inhibition of cell viability was observed in a time and dose dependent manner. It can be concluded that ICG-PDT application is a good alternative to conventional radiation therapy and chemotherapy for breast cancer treatment.

  12. Insulin-like growth factor-1 signaling regulates miRNA expression in MCF-7 breast cancer cell line.

    Directory of Open Access Journals (Sweden)

    Elizabeth C Martin

    Full Text Available In breast carcinomas, increased levels of insulin-like growth factor 1 (IGF-1 can act as a mitogen to augment tumorigenesis through the regulation of MAPK and AKT signaling pathways. Signaling through these two pathways allows IGF-1 to employ mechanisms that favor proliferation and cellular survival. Here we demonstrate a subset of previously described tumor suppressor and oncogenic microRNAs (miRNAs that are under the direct regulation of IGF-1 signaling. Additionally, we show that the selective inhibition of either the MAPK or AKT pathways prior to IGF-1 stimulation prevents the expression of previously described tumor suppressor miRNAs that are family and cluster specific. Here we have defined, for the first time, specific miRNAs under the direct regulation of IGF-1 signaling in the estrogen receptor positive MCF-7 breast cancer cell line and demonstrate kinase signaling as a modulator of expression for a small subset of microRNAs. Taken together, these data give new insights into mechanisms governing IGF-1 signaling in breast cancer.

  13. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified "cellular movement, connective tissue development and function, tissue development" and "cell-to-cell signaling and interaction, cell death and survival, cellular development" as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.

  14. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Sung-Bin Park

    Full Text Available Cold atmospheric plasma (plasma has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05 by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified "cellular movement, connective tissue development and function, tissue development" and "cell-to-cell signaling and interaction, cell death and survival, cellular development" as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.

  15. MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression is positively correlated with survival in luminal A type breast cancer patients, but not in luminal B type breast cancer patients. In addition, the levels of IL-8 mRNA and protein expression were significantly increased in tamoxifen-resistant (TamR) cells compared to tamoxifen-sensitive (TamS) cells. To determine the regulatory mechanism of IL-8 expression in TamR cells, we analyzed the activities of signaling molecules. Our results showed that the phosphorylation levels of MEK and Akt were markedly increased in TamR cells, but there was no change in the phosphorylation level of p38 MAPK. On the contrary, we observed that elevated IL-8 mRNA expression was suppressed by a specific MEK1/2 inhibitor, UO126, but not by the specific PI-3K inhibitor LY294002, in TamR cells, whereas, we found that overexpression of constitutively active-MEK (CA-MEK) significantly increased the levels of IL-8 mRNA expression in TamS cells. Finally, we investigated the effect of the specific CXCR1/2 inhibitor SB225002 on anchorage-independent growth of TamR cells, and found that the growth was completely suppressed by SB225002. Taken together, our results demonstrate that IL-8 expression is regulated through a MEK/ERK-dependent pathway in TamR cells, suggesting that IL-8 and its receptors may be promising therapeutic targets for overcoming tamoxifen resistance.

  16. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  17. Sialylation of E-cadherin does not change the spontaneous or ET-18-OMe-mediated aggregation of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Steelant, W F; Recchi, M A; Noë, V T; Boilly-Marer, Y; Bruyneel, E A; Verbert, A; Mareel, M M; Delannoy, P

    1999-05-01

    We have investigated the role of sialylation on cell-cell adhesion mediated by E-cadherin. Two MCF-7 human breast cancer cell variants were studied: MCF-7/AZ cells showed a spontaneous cell-cell adhesion in the fast and slow aggregation assay. whereas the adhesion deficient MCF-7/6 cell variant failed to form larger aggregates, suggesting that E-cadherin was not functional under the conditions of both assays. We measured the sialyltransferase activities using Galbeta1-3GalNAcalpha-O-benzyl and Galbeta1-4GlcNAcalpha-O-benzyl as acceptor substrates as well as mRNA levels of four sialyltransferases, ST3Gal I, ST3Gal III, ST3Gal IV, ST6Gal I, using multiplex RT-PCR in MCF-7 cell variants. The alpha2-6 and alpha2-3 sialylation of E-cadherin was investigated by immuno-blot using Sambucus nigra agglutinin and Maackia amurensis agglutinin. Compared to the adhesion-proficient MCF-7/AZ cells, the adhesion-deficient MCF-7/6 cell line apparently lacks ST6Gal I mRNA, has a lower ST3Gal I mRNA, a lower ST3Gal I sialyltransferase activity, and no alpha2-3 linked sialic acid moieties on E-cadherin. The potential anti-cancer drug 1-O-octadecyl-2-O-methylglycero-3-phosphocholine (ET-18-OMe, 48 h, 25 microg/ml) belonging to the class of alkyllysophospholipids restored the E-cadherin function in the adhesion-deficient MCF-7/6 cells as evidenced by an increased aggregation. ET-18-OMe caused loss of ST6Gal I mRNA in MCF-7/AZ cells but no changes of sialyltransferase activities or sialic acid moieties on E-cadherin could be observed. We conclude that Ca2+-dependent, E-cadherin-specific homotypic adhesion of MCF-7/AZ or MCF-7/6 cells treated with ET-18-OMe was not affected by sialylation of E-cadherin.

  18. Inhibitory effects of polyphenol-enriched extract from Ziyang tea against human breast cancer MCF-7 cells through reactive oxygen species-dependent mitochondria molecular mechanism

    Directory of Open Access Journals (Sweden)

    Wenfeng Li

    2016-07-01

    Full Text Available A polyphenol-enriched extract from selenium-enriched Ziyang green tea (ZTP was selected to evaluate its antitumor effects against human breast cancer MCF-7 cells. In ZTP, (−-epigallocatechin gallate (28.2% was identified as the major catechin, followed by (−-epigallocatechin (5.7% and (−-epicatechin gallate (12.6%. ZTP was shown to inhibit MCF-7 cell proliferation (half maximal inhibitory concentration, IC50 = 172.2 μg/mL by blocking cell-cycle progression at the G0/G1 phase and inducing apoptotic death. Western blotting assay indicated that ZTP induced cell-cycle arrest by upregulation of p53 and reduced the expression of CDK2 in MCF-7 cells. ZTP-caused cell apoptosis was associated with an increase in Bax/Bcl-2 ratio, and activation of caspase-3 and -9. MCF-7 cells treated with ZTP also showed an overproduction of reactive oxygen species, suggesting that reactive oxygen species played an important role in the induction of apoptosis in MCF-7 cells. This is the first report showing that ZTP is a potential novel dietary agent for cancer chemoprevention or chemotherapy.

  19. Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression.

    Science.gov (United States)

    Blanquer-Rosselló, M Mar; Oliver, Jordi; Valle, Adamo; Roca, Pilar

    2013-12-01

    Xanthohumol (XN) and 8-prenylnaringenin (8PN) are hop (Humulus lupulus L.) polyphenols studied for their chemopreventive effects on certain cancer types. The breast cancer line MCF-7 was treated with doses ranging from 0.001 to 20 µM of XN or 8PN in order to assess the effects on cell viability and oxidative stress. Hoechst 33342 was used to measure cell viability and reactive oxygen species (ROS) production was determined by 2',7'-dichlorofluorescein diacetate. Catalase, superoxide dismutase, and glutathione reductase enzymatic activities were determined and protein expression of sirtuin1, sirtuin3, and oxidative phosphorylation system (OXPHOS) were done by Western blot. Treatments XN 0.01, 8PN 0.01, and 8PN 1 µM led to a decrease in ROS production along with an increase of OXPHOS and sirtuin expression; in contrast, XN 5 µM gave rise to an increase of ROS production accompanied by a decrease in OXPHOS and sirtuin expression. These results suggest that XN in low dose (0.01 µM) and 8PN at all assayed doses (0.001-20 µM) presumably improve mitochondrial function, whereas a high dose of XN (5 µM) worsens the functionality of this organelle.

  20. MiR-133a Is Functionally Involved in Doxorubicin-Resistance in Breast Cancer Cells MCF-7 via Its Regulation of the Expression of Uncoupling Protein 2.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    Full Text Available The development of novel targeted therapies holds promise for conquering chemotherapy resistance, which is one of the major hurdles in current breast cancer treatment. Previous studies indicate that mitochondria uncoupling protein 2 (UCP-2 is involved in the development of chemotherapy resistance in colon cancer and lung cancer cells. In the present study we found that lower level of miR133a is accompanied by increased expression of UCP-2 in Doxorubicin-resistant breast cancer cell cline MCF-7/Dox as compared with its parental cell line MCF-7. We postulated that miR133a might play a functional role in the development of Doxorubicin-resistant in breast cancer cells. In this study we showed that: 1 exogenous expression of miR133a in MCF-7/Dox cells can sensitize their reaction to the treatment of Doxorubicin, which is coincided with reduced expression of UCP-2; 2 knockdown of UCP-2 in MCF-7/Dox cells can also sensitize their reaction to the treatment of Doxorubicin; 3 intratumoral delivering of miR133a can restore Doxorubicin treatment response in Doxorubicin-resistant xenografts in vivo, which is concomitant with the decreased expression of UCP-2. These findings provided direct evidences that the miR133a/UCP-2 axis might play an essential role in the development of Doxorubicin-resistance in breast cancer cells, suggesting that the miR133a/UCP-2 signaling cohort could be served as a novel therapeutic target for the treatment of chemotherapy resistant in breast cancer.

  1. 5-Azacytidine Induces Anoikis, Inhibits Mammosphere Formation and Reduces Metalloproteinase 9 Activity in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsueh-Wei Chang

    2014-03-01

    Full Text Available Cancer stem cells are a subset of cancer cells that initiate the growth of tumors. Low levels of cancer stem cells also exist in established cancer cell lines, and can be enriched in serum-free tumorsphere cultures. Since cancer stem cells have been reported to be resilient to common chemotherapeutic drugs in comparison to regular cancer cells, screening for compounds selectively targeting cancer stem cells may provide an effective therapeutic strategy. We found that 5-azacytidine (5-AzaC selectively induced anoikis of MCF-7 in suspension cultures with an EC50 of 8.014 µM, and effectively inhibited tumorsphere formation, as well as the migration and matrix metalloproteinases-9 (MMP-9 activity of MCF-7 cells. Furthermore, 5-AzaC and radiation collaboratively inhibited MCF-7 tumorsphere formation at clinically relevant radiation doses. Investigating the underlying mechanism may provide insight into signaling pathways crucial for cancer stem cell survival and pave the way to novel potential therapeutic targets.

  2. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer.

  3. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    Directory of Open Access Journals (Sweden)

    Alina Uifălean

    2016-08-01

    Full Text Available Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7 and estrogen non-responsive breast cancer cells (MDA-MB-231, using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention.

  4. Convolvulus galaticus, Crocus antalyensis, and Lilium candidum extracts show their antitumor activity through induction of p53-mediated apoptosis on human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Tokgun, Onur; Akca, Hakan; Mammadov, Ramazan; Aykurt, Candan; Deniz, Gökhan

    2012-11-01

    Conventional and newly emerging treatment procedures such as chemotherapy, catalytic therapy, photodynamic therapy, and radiotherapy have not succeeded in reversing the outcome of cancer diseases to any drastic extent, which has led researchers to investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. It has been reported that several members of the Convolvulaceae, Iridaceae, and Liliaceae families have antitumor activity against some tumor cell lines. Here we first report that Convolvulus galaticus, Crocus antalyensis, and Lilium candidum species have cytotoxic activity on human breast cancer cell line MCF-7 cells. Plant samples were collected and identified, and their cytotoxic effects on the MCF-7 cell line were examined at different concentrations of methanol extracts. We found that all three plants have cytotoxic effects on MCF-7 cells but that C. galaticus has the strongest cytotoxic effect even in the lowest extract concentration tested (0.32 μg/mL). Our results indicate that these plant extracts have cytotoxic effects on human breast carcinoma cell line MCF-7 cells and that this cytotoxic effect comes from p53-mediated stimulation of apoptosis.

  5. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    Science.gov (United States)

    Uifălean, Alina; Schneider, Stefanie; Gierok, Philipp; Ionescu, Corina; Iuga, Cristina Adela; Lalk, Michael

    2016-01-01

    Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7) and estrogen non-responsive breast cancer cells (MDA-MB-231), using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR) profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention. PMID:27589739

  6. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Jen-Hwey Chiu

    2014-01-01

    Full Text Available Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.

  7. Synthesis of an anthraquinone derivative (DHAQC and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Yeap SK

    2015-02-01

    Full Text Available SweeKeong Yeap,1 Muhammad Nadeem Akhtar,2 Kian Lam Lim,3 Nadiah Abu,4,5 Wan Yong Ho,6 Seema Zareen,2 Kiarash Roohani,1 Huynh Ky,4 Sheau Wei Tan,1 Nordin Lajis,7 Noorjahan Banu Alitheen1,4 1Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia; 3Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor Darul Ehsan, Malaysia; 4Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Bright Sparks Unit, University of Malaya, Kuala Lumpur, Malaysia; 6School of Biomedical Sciences, University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia; 7Scientific Chairs Unit, Taibah University, Medina, Saudi Arabia Abstract: Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2-carboxylic acid (DHAQC (2 was synthesized with 32% yield through the Friedel–Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2 in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that DHAQC (2 exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2 showed a slightly higher IC50 (inhibitory concentration with 50% cell viability value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2 was 2.3 and 1.7 for damnacanthal. The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2 for 48 hours showed that DHAQC (2 arrested MCF-7 cell line at the G2/M phase in association with an

  8. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuenong; Wei, Han; Liu, Ziwei; Yuan, Qianying [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Wei, Anhua [Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Du; Yang, Xian [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Ruan, Jinlan, E-mail: jinlan8152@163.com [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2013-07-15

    Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.

  9. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway.

    Science.gov (United States)

    Glorieux, Christophe; Auquier, Julien; Dejeans, Nicolas; Sid, Brice; Demoulin, Jean-Baptiste; Bertrand, Luc; Verrax, Julien; Calderon, Pedro Buc

    2014-05-15

    Catalase is an antioxidant enzyme that catalyzes mainly the transformation of hydrogen peroxide into water and oxygen. Although catalase is frequently down-regulated in tumors the underlying mechanism remains unclear. Few transcription factors have been reported to directly bind the human catalase promoter. Among them FoxO3a has been proposed as a positive regulator of catalase expression. Therefore, we decided to study the role of the transcription factor FoxO3a and the phosphatidylinositol-3 kinase (PI3K) signaling pathway, which regulates FoxO3a, in the expression of catalase. To this end, we developed an experimental model of mammary breast MCF-7 cancer cells that acquire resistance to oxidative stress, the so-called Resox cells, in which catalase is overexpressed as compared with MCF-7 parental cell line. In Resox cells, Akt expression is decreased but its phosphorylation is enhanced when compared with MCF-7 cells. A similar profile is observed for FoxO3a, with less total protein but more phosphorylated FoxO3a in Resox cells, correlating with its higher Akt activity. The modulation of FoxO3a expression by knockdown and overexpression strategies did not affect catalase expression, neither in MCF-7 nor in Resox cells. Inhibition of PI3K and mTOR by LY295002 and rapamycin, respectively, decreases the phosphorylation of downstream targets (i.e. GSK3β and p70S6K) and leads to an increase of catalase expression only in MCF-7 but not in Resox cells. In conclusion, FoxO3a does not appear to play a critical role in the regulation of catalase expression in both cancer cells. Only MCF-7 cells are sensitive and dependent on PI3K/Akt/mTOR signaling.

  10. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding.

    Science.gov (United States)

    Park, Eun Young; Woo, Youngwoo; Kim, Seong Jin; Kim, Do Hyun; Lee, Eui Kyung; De, Umasankar; Kim, Kyeong Seok; Lee, Jaewon; Jung, Jee H; Ha, Ki-Tae; Choi, Wahn Soo; Kim, In Su; Lee, Byung Mu; Yoon, Sungpil; Moon, Hyung Ryong; Kim, Hyung Sik

    2016-01-01

    The sirtuins (SIRTs), a family of NAD(+)-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells.

  11. REVERSAL EFFECTS OF MIFEPRISTONE ON MULTIDRUG RESISTANCE(MDR) IN DRUG-RESISTANT BREAST CANCER CELL LINE MCF7/ADR IN VITRO AND IN VIVO

    Institute of Scientific and Technical Information of China (English)

    李大强; 潘丽华; 邵志敏

    2004-01-01

    Objective: To explore the reversal effect of mifepristone on multidrug resistance (MDR) in drug-resistant human breast cancer cell line MCF7/ADR and its mechanisms. Methods: Expression of MDR1 and MDR-associated protein(MRP) mRNA in MCF7/ADR cells was detected using reverse transcription- polymerase chain reaction(RT-PCR). Western blotting was used to assay the protein levels of P-glycoprotein (P-gp) and MRP. Intracellular rhodamine 123 retention and [3H]vincristine (VCR) accumulation were measured by flow cytometry and liquid scintillation counter, respectively. MTT reduction assay was used to determine the sensitivity of cells to the anticancer agent, adriamycin (ADR). Additionally, a MCF7/ADR cell xenograft model was established to assess the reversal effect of mifeprisone on MDR in MCF7/ADR cells in vivo. Results: Miferpristone dose-dependently down- regulated the expression of MDR1 and MRP mRNA in MCF7/ADR cells, accompanied by a significant decrease in the protein levels of P-gp and MRP. After exposure to 5, 10, and 20 μmol/L mifepristone, MCF7/ADR cells showed a 3.87-, 5.81-, and 7.40-fold increase in the accumulation of intracellular VCR(a known substrate of MRP), and a 2.14-, 4.39-, and 5.53-fold increase in the retention of intracellular rhodamine 123(an indicator of P-gp function), respectively. MTT analysis showed that the sensitivity of MCF7/ADR cells to ADR was enhanced by 7.23-, 13.62-, and 20.96-fold after incubation with mifepristone as above-mentioned doses for 96 h. In vivo, mifepristone effectively restored the chemosensitivity of MCF7/ADR cells to ADR. After 8 weeks of administration with ADR(2 mg·kg-1·d-1) alone or in combination with mifepristone(50 mg·kg-1·d-1), the growth inhibitory rate of xenografted tumors in nude mice was 8.08% and 37.25%, respectively. Conclusion: Mifepristone exerts potent reversal effects on MDR in MCF7/ADR cells in vitro and in vivo through down- regulation of MDR1/P-gp and MRP expression and inhibition of P

  12. Characterization of a novel small molecule subtype specific estrogen-related receptor alpha antagonist in MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Michael J Chisamore

    Full Text Available BACKGROUND: The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor alpha (ERalpha. An endogenous ligand has not been found. Novel ERRalpha antagonists that are highly specific for binding to the ligand binding domain (LBD of ERRalpha have been recently reported. Research suggests that ERRalpha may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z-3-(4,5-dihydro-1,3-thiazol-2-yl-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRalpha specific antagonist. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate this ERRalpha ligand inhibits ERRalpha transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERalpha (ESR1 mRNA levels were not affected upon treatment with the ERRalpha antagonist, but other ERRalpha (ESRRA target genes such as pS2 (TFF1, osteopontin (SPP1, and aromatase (CYP19A1 mRNA levels decreased. In vitro, the ERRalpha antagonist prevents the constitutive interaction between ERRalpha and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRalpha protein degradation via the ubiquitin proteasome pathway is increased by the ERRalpha-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRalpha protein is decreased when cells are treated with the ligand. Knocking-down ERRalpha (shRNA led to similar genomic effects seen when MCF-7 cells were treated with our ERRalpha antagonist. CONCLUSIONS/SIGNIFICANCE: We report the mechanism of action of a novel ERRalpha specific antagonist that inhibits transcriptional activity of ERRalpha, disrupts the constitutive

  13. Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Norliyana Amran

    2016-01-01

    Full Text Available Background: The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. Objective: This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7 and its antioxidant activities. Materials and Methods: Total antioxidant activities of extracts were assayed using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC, and total phenolic content (TPC were determined using aluminum chloride colorimetric method and Folin-Ciocalteu′s reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT assay. Results: B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC 50 ] 15.26 ± 1.25 μg/mL and ί-carotene bleaching assay (I% 98.13 ± 1.83%. B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively. In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC 50 57.61 ± 2.24 μg/mL compared to H. sabdariffa. Conclusion: The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use.

  14. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  15. Nuclear estrogen receptor targeted photodynamic therapy: selective uptake and killing of MCF-7 breast cancer cells by a C17alpha-alkynylestradiol-porphyrin conjugate.

    Science.gov (United States)

    Swamy, Narasimha; Purohit, Ajay; Fernandez-Gacio, Ana; Jones, Graham B; Ray, Rahul

    2006-10-15

    We hypothesized that over-expression of estrogen receptor (ER) in hormone-sensitive breast cancer could be harnessed synergistically with the tumor-migrating effect of porphyrins to selectively deliver estrogen-porphyrin conjugates into breast tumor cells, and preferentially kill the tumor cells upon exposure to red light. In the present work we synthesized four (4) conjugates of C17-alpha-alkynylestradiol and chlorin e6-dimethyl ester with varying tether lengths, and showed that all these conjugates specifically bound to recombinant ER alpha. In a cellular uptake assay with ER-positive MCF-7 and ER-negative MDA-MB 231 human breast cancer cell-lines, we observed that one such conjugate (E17-POR, XIV) was selectively taken up in a dose-dependent and saturable manner by MCF-7 cells, but not by MDA-MB 231 cells. Furthermore, MCF-7 cells, but not MDA-MB 231 cells, were selectively and efficiently killed by exposure to red light after incubation with E17-POR. Therefore, the combination approach, including drug and process modalities has the potential to be applied clinically for hormone-sensitive cancers in organs where ER is significantly expressed. This could potentially be carried out either as monotherapy involving a photo-induced selective destruction of tumor cells and/or adjuvant therapy in post-surgical treatment for the destruction of residual cancer cells in tissues surrounding the tumor.

  16. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by a new series of substituted-1,3,4-oxadiazole derivatives.

    Science.gov (United States)

    Kumar, Akhilesh; D'Souza, Saritha S; Gaonkar, S L; Rai, K M L; Salimath, Bharathi P

    2008-10-01

    The multiple pharmacological actions of unique synthetic compounds are a prerequisite for classifying a drug as highly efficacious, because the multiple pharmacological actions offer the possibility of treating various diseases like cancer. 1,3,4-Oxadiazoles are an important class of heterocyclic compounds with broad spectrum of biological activities. In this study we focused on the ability of these derivatives to induce apoptosis in cultured MCF-7 breast cancer cells. Treatment of MCF-7 cells with varying concentrations of the different derivatives resulted in dose and time dependent sequence of events marked by apoptosis, as shown by loss of cell viability, chromatin condensation, internucleosomal DNA fragmentation and sub G(0) phase accumulation. Furthermore, apoptosis in MCF-7 cell was induced by upregulation of proto-oncoprotein Bax and activation of Caspase-3 activated DNase. Although the derivatives induced apoptosis was associated with Bax protein levels, negligible Bcl-2 reduction was observed. Analysis of the data suggests that the substituted oxadiazole derivatives exert antiproliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties valuable for application in drug products.

  17. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis*

    Science.gov (United States)

    Liu, Shu-min; Ou, Shi-yi; Huang, Hui-hua

    2017-01-01

    In order to study the molecular mechanisms of green tea polyphenols (GTPs) in treatment or prevention of breast cancer, the cytotoxic effects of GTPs on five human cell lines (MCF-7, A549, Hela, PC3, and HepG2 cells) were determined and the antitumor mechanisms of GTPs in MCF-7 cells were analyzed. The results showed that GTPs exhibited a broad spectrum of inhibition against the detected cancer cell lines, particularly the MCF-7 cells. Studies on the mechanisms revealed that the main modes of cell death induced by GTPs were cell cycle arrest and mitochondrial-mediated apoptosis. Flow cytometric analysis showed that GTPs mediated cell cycle arrest at both G1/M and G2/M transitions. GTP dose dependently led to apoptosis of MCF-7 cells via the mitochondrial pathways, as evidenced by induction of chromatin condensation, reduction of mitochondrial membrane potential (ΔΨ m), improvement in the generation of reactive oxygen species (ROS), induction of DNA fragmentation, and activations of caspase-3 and caspase-9 in the present paper. PMID:28124838

  18. The role of captopril and losartan in prevention and regression of tamoxifen-induced resistance of breast cancer cell line MCF-7: an in vitro study.

    Science.gov (United States)

    Namazi, Soha; Rostami-Yalmeh, Javad; Sahebi, Ebrahim; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Hosseini, Ahmad

    2014-06-01

    Innate and acquired tamoxifen (TAM) resistance in estrogen receptor positive (ER+) breast cancer is an important problem in adjuvant endocrine therapy. The underlying mechanisms of TAM resistance is yet unknown. In the present study, we evaluated the role of renin-angiotensin system (RAS) in the acquisition of TAM resistance in human breast cancer cell line MCF-7, and the potential role of captopril and captopril+losartan combination in the prevention and reversion of the TAM resistant phenotype. MCF-7 cells were continuously exposed to 1 μmol/L TAM to develop TAM resistant cells (TAM-R). MTT cell viability assay was used to determine the growth response of MCF-7 and TAM-R cells, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess angiotensin I converting enzyme (ACE), angiotensin II receptor type-1 and type-2 (AGTR1 and AGTR2) mRNA expressions. Preventive and therapeutic effects of RAS blockers - captopril and losartan - were examined on MCF-7 and TAM-R cells. Based on qRT-PCR, TAM-R cells compared to MCF-7 cells, had a mean ± SD fold increase of 319.1 ± 204.1 (P = 0.002) in production of ACE mRNA level, 2211.8 ± 777.9 (P = 0.002) in AGTR1 mRNA level, and 265.9 ± 143.9 (P = 0.037) in production of AGTR2 mRNA level. The combination of either captopril or captopril+losartan with TAM led to the prevention and even reversion of TAM resistant phenotype.

  19. Expression and significance of Shh and Gli-1 in drug-resistant cell strain of human breast cancer MCF-7%Shh和Gli-1在人乳腺癌MCF-7耐药细胞株中的表达及意义∗

    Institute of Scientific and Technical Information of China (English)

    刘瑞娟; 臧传鑫; 孙月; 韩娜娜; 孙长岗

    2016-01-01

    Objective To investigate the expression of Shh,Gli-1 in human breast cancer resistant cell line and discuss the relationship between Hedgehog signaling pathway and drug resistance of breast cancer. Methods Drug-resistant strains of human breast cancer MCF-7 was established by high concentration intermittent induction. Paclitaxel( PTX) to half maximal inhibitory concen-tration( IC50 ) on MCF-7 and MCF-7/PTX cells was determined by MTT. QPCR was used to detect the mRNA expression of Shh, Gli-1 in MCF-7 and MCF-7/PTX cells. Protein expression of Shh, Gli-1 in MCF-7 and MCF-7/PTX cells was detected by Western blotting. Results IC50 of PTX for MCF-7 cells was ( 0. 10+0. 02) mg/L, and for MCF-7/PTX cell was ( 5. 30+0. 01) mg/L. The drug resistance index was 53. 0. The expression of Shh mRNA in MCF-7 and MCF-7/PTX cells was 0. 78 ± 0. 12 and 1. 45 ± 0. 56(P<0. 01), and the expression levels of Gli-1 mRNA was 1. 86±0. 02 and 3. 56±0. 26(P<0. 01). The expression level of Shh protein in MCF-7 and MCF-7/PTX cells was 0. 58 ±0. 06 and 1. 03 ± 0. 22(P<0. 01). Gli-1 protein expression in MCF-7 and MCF-7/PTX cells was 1. 17±0. 12 and 2. 78±0. 09(P<0. 01). Conclusion Shh, Gli-1 are highly expressed in MCF-7/PTX cells, indicating that chem-otherapy may guide drug resistance of breast cancer by up-regulating the protein and gene of hedgehog signaling pathway. The target to hedgehog signaling pathway may be a new direction to overcome drug resistance.%目的:研究Shh和Gli-1在人乳腺癌耐药株中的表达情况,探讨Hedgehog信号通路与乳腺癌耐药的关系。方法高浓度间歇诱导法建立人乳腺癌耐药细胞株MCF-7/PTX,MTT法检测紫杉醇( PTX)对MCF-7MCF-7/PTX细胞的半数抑制浓度(IC50)。实时定量PCR(QPCR)检测MCF-7MCF-7/PTX细胞中Shh、Gli-1 mRNA的表达。 Western blotting检测MCF-7MCF-7/PTX细胞中Shh、Gli-1蛋白的表达。结果 PTX 对 MCF-7细胞的IC50为(0.10±0.02

  20. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells.

  1. p53 Response to Ultrasound: Preliminary Observations in MCF7 Human Breast Cancer Cells

    Science.gov (United States)

    Burns, Janis M.; Campbell, Paul A.

    2011-09-01

    Mutated p53 can be found in approximately half of all human cancers. Strategies which seek to restore, or at least exercise a level of external control over, p53 functionality are thus potentially useful as adjuncts to therapy. Here, we report our preliminary measurements in this area, and demonstrate that short-burst pulsed ultrasound can indeed affect p53 activity. Specifically, we have observed that expression of the p53 protein can be regulated in the period immediately following low intensity short pulse (millisecond) ultrasound exposure, and that altered activity levels return to basal levels over a 24 hour period post-insonation.

  2. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes.

    Science.gov (United States)

    Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin

    2013-07-25

    A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.

  3. Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.

    Directory of Open Access Journals (Sweden)

    Wenbo Wang

    Full Text Available The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3 as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1.

  4. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Science.gov (United States)

    Barzegar, Elmira; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Atashpour, Shekoufeh; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, flow cytometry analysis was performed to evaluate the cell cycle alteration and apoptosis induction in these cell lines following exposure to berberine and doxorubicin alone and in combination. Results: The IC50 of berberine was determined to be 25 µM after 48 hr of treatment in both cell lines but for doxorubicin it was 250 nM and 500 nM in T47D and MCF-7 cell lines, respectively. Co-treatment with berberine and doxorubicin increased cytotoxicity in T47D cells more significantly than in MCF-7 cells. Flow cytometry results demonstrated that berberine alone or in combination with doxorubicin induced G2/M arrest in the T47D cells, but G0/G1 arrest in the MCF-7 cells. Doxorubicin alone induced G2/M arrest in both cell lines. Furthermore, berberine and doxorubicin alone or in combination significantly induced apoptosis in both cell lines. Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer. PMID:26019795

  5. Pleurotus eous polysaccharides suppress angiogenesis and induce apoptosis via ROS-dependent JNK activation and mitochondrial mediated mechanisms in MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Jin-Kai Xu

    2015-03-01

    Full Text Available Breast cancer is one of the most prevalent cancers among women worldwide. Chemotherapy generally leads to drug resistance and severe side effects thus making it crucial to identify and develop highly efficient chemotherapeutic agents. Recently, edible mushrooms have been strongly investigated owing to their nutritional values and bioactive compounds with health benefits. The present study investigates the effects of polysaccharides isolated from the fruiting bodies of oyster mushroom, Pleutorus eous on MCF-7 human breast cancer cells. Viability of MCF-7 following exposure to P. eous polysaccharides (PEP (50 - 250 µg/mL were markedly decreased. A raise in the levels of Reactive Oxygen Species (ROS and apoptotic cell counts were observed following PEP treatment. Futhermore, PEP down-regulated VEGF and Bcl-2 and raised caspase-3, caspase-9, Bax, phospho-JNK expressions and as well caused a significant decrease in mitochondrial membrane potential of MCF-7 cells. Thus, PEP effectively suppressed angiogenesis by down-regulating VEGF, and induced apoptosis.

  6. Study on nude mice bearing human breast cancer of MCF-7%MCF-7细胞系乳腺癌裸鼠模型病理学特点及生物学性状的研究

    Institute of Scientific and Technical Information of China (English)

    刘建中; 谷俊朝; 俞巍

    2010-01-01

    目的 探讨荷人乳腺癌裸鼠移植模型的病理学特点及生物学性状,为乳腺癌病因学、发病学研究提供可靠的工具.方法 在裸鼠右侧腋窝注射人乳腺癌MCF-7细胞悬液0.1 mL(5×10~8个/mL),建立乳腺癌裸鼠动物模型.混合干预组小鼠,肿瘤接种部位旁皮下注射瘦素0.2 mL(15×10~4 ng/mL)和雌激素0.2 mL(0.15 mg/mL),每天1次;雌激素组注射雌激素0.2 mL(O.15 mg/mL);瘦素组注射瘦素0.2 mL(15×10~4ng/mL);空白组注射0.9%氯化钠溶液,每日观察肿块生长情况及肿瘤体积变化.宰杀取材,观察肿瘤组织学特征.结果 (1)空白组肿瘤移植成功率为33.3%(10/30),瘦素组为46.7%(14/30),模型失败.混合干预组肿瘤移植成功率为96.7%(29/30),雌激素组为93.3%(28/30),两组间无明显差异(P>0.05);(2)混合干预组裸鼠平均肿瘤最长径明显优于雌激素组,差异具有统计学意义(PMCF-7裸鼠模型的成功建立,需体外补充雌激素.(2)瘦素有增强雌激素刺激MCF-7细胞在裸鼠体内增生的作用;(3)移植的肿瘤细胞保持了人乳腺癌肿瘤细胞的部分病理学特点及生物学特性,可以为病因学、发病学、临床治疗及疗效判断提供可靠的工具.%Objective We established a model of human breast cancer in nude mice, to discuss the feature of pathology and biology of breast cancer,and give help to establish tools of pathogen research. Methods Human breast cancer cells MCF-7 were subcutaneously injected into the right armpit of nude mice to establish human breast cancer models.The mice were divided into composite group, estrogen group, leptin group and the blank group (30 in each). In the composite group,estrogen and leptin were injected into peripheral region of the tumor daily.In the estrogen group,estrogen was injected.In the leptin group, leptin was

  7. Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway.

    Science.gov (United States)

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Zheng, Xiaowei; Hu, Sasa; Pang, Chengsen; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-10-15

    Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.

  8. Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell

    Science.gov (United States)

    Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung

    2016-07-01

    Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.

  9. Mechanistic studies of antiproliferative effects of Salvia triloba and Salvia dominica (Lamiaceae) on breast cancer cell lines (MCF7 and T47D).

    Science.gov (United States)

    Abu-Dahab, Rana; Abdallah, Maha R; Kasabri, Violet; Mhaidat, Nizar M; Afifi, Fatma U

    2014-01-01

    Ethanol extracts obtained from two Salvia species, S. triloba and S. dominica, collected from the flora of Jordan, were evaluated for their antiproliferative activity against MCF7 and T47D breast cancer cell lines by the sulforhodamine B assay. The ethanol extracts were biologically active with IC50 values of (29.89 ±0.92) and (38.91 ±2.44) μg/mL for S. triloba against MCF7 and T47D cells, respectively, and (5.83 ±0.51) and (12.83 ±0.64) μg/mL for S. dominica against MCF7 and T47D cells, respectively. Flow cytometry analysis and the annexinV-propidium iodide (PI) assay revealed apoptosismediated, and to a lesser extent necrosis-induced, cell death by the S. triloba and S. dominica ethanolic extracts in T47D cells. The mechanism of apoptosis was further investigated by determining the levels of p53, p21/WAF1, FasL (Fas ligand), and sFas (Fas/APO-1). The extract from S. triloba induced a more pronounced enrichment in cytoplasmic mono- and oligonucleosomes than that from S. dominica (p Salvia spp. did not enhance p53 levels, and apoptosis induced by them was not caspase-8- or sFas/FasL-dependent. Thus, our findings indicate that S. triloba and S. dominica ethanolic extracts may be useful in breast cancer management/treatment via proapoptotic cytotoxic mechanisms.

  10. Snail促进乳腺癌MCF-7细胞移植瘤对多柔比星的耐药及其机制%Snail increases resistance of breast cancer MCF-7 cell transplanted tumors to doxorubicin and its mechanism

    Institute of Scientific and Technical Information of China (English)

    王琳; 李洪利; 赵修世; 赵云; 赵一诺; 李文通; 张式暖

    2011-01-01

    Objective: To study the effect of Snail on resistance of breast cancer MCF-7 cell transplanted tumors to doxorubicin and its possible mechanism. Methods: Snail eukaryotic expression vector pcDNA3. l-Snail was constructed and transfected into MCF-7 cells, and MCF-7 cells with stable Snail expression ( MCF-7/Snail cells ) were screened.MCF-7 cells transfected with blank pcDNA3. 1 ( MCF-7/pcDNA cells) were used as control. MCF-7/Snail- and MCF-7/pcDNA-cell transplanted tumor models were established. After doxorubicin injection, the growth of transplanted tumors was observed, and the inhibitory rate of doxorubicin was calculated. The expressions of Snail, MDR-1 and MMP-9 in transplanted tumor tissues were examined by immunohistochemistry. Results: pcDNA3.1-Snail expression vector was successfully constructed, and MCF-7/Snail and MCF-7/pcDNA cells were obtained. After doxorubicin therapy, the transplanted tumor weight in MCF-7/Snail group was significantly higher than that in the MCF-7/peDNA group ( [ 1. 413 ±0. 674 ] g vs [ 1. 257 ± 0. 576 ] g, P < 0. 05 ), and the inhibitory rate of doxorubicin was significantly lower ( 18.42% vs 30.18%, P < 0. 05). The expressions of Snail, MDR-1 and M MP-9 in transplanted tumor tissues were significantly high er than those in MCF-7/pcDNA group (408.08 ± 20.39 vs 67.67 ± 16.56,363.50 ± 26.56 vs 55.08 ± 1 2.23,396.25 ± 16.03 vs 56.92 ± 7.35, ail P < 0. 05 ). and the expression of Snail was positively correlated with that of MDR-1 and MMP-9 (r1 = 0.89, P < 0. 01; r2 = 0.81, P < 0.01 ). Conclusion: Snail can increase resistance of breast cancer MCF-7 cell transplanted tumors to doxorubicin, which might be related with the increased expressions of MDR-1 and MMP-9 in breast cancer MCF-7 transplanted tumors.%目的:探讨Snail在乳腺癌MCF-7细胞移植瘤对多柔比星耐药中的作用及其可能的机制.方法:构建Snail基因真核表达载体pcDNA3.1-Snail,转染至MCF-7细胞,筛选稳定表达Snail的MCF

  11. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Zhou, Zhenxian [Nanjing Second Hospital, Nanjing 210083 (China); Yuan, Liang [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)

    2013-07-25

    Graphical abstract: -- Highlights: •Aptamer–cell affinity interaction was employed for selective collection and detection of MCF-7. •CdTe QDs and aptamer were coated on SiO{sub 2} NPs for bio-labeling. •Good sensitivity was achieved due to the signal amplification of SiO{sub 2} NPs. -- Abstract: A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO{sub 2} NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO{sub 2}), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL{sup −1} by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.

  12. Protein tyrosine kinase, JNK, and ERK involvement in p seudolaric acid B-induced apoptosis of human breast cancer MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Jing-hua YU; Hong-jun WANG; Xiang-ru LI; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2008-01-01

    Aim:To investigate the apoptotic mechanism ofpseudolaric acid B (PAB) in hu-man breast cancer MCF-7 cells. Methods: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide analysis and morphological changes were applied to detect apoptosis. The percentage of apoptotic and necrotic cells were calculated by the lactate dehydrogenase activity-based cytotoxicity assay, and the protein expression was examined by Western blot analysis. Results: PAB and/or the mitogen-activated protein kinases, including p38, c-Jun-N-terrninal kinase (JNK) and extracellular signal-regulated kinase (ERK), did not participate in necrosis. P38 had no obvious function on apoptosis after 4 μmol/L PAB treatment for 36 h, but PAB induced JNK phosphorylation and inhibited ERK phosphorylation in the apoptotic process. In this study the inhibitor of protein tyrosine kinase (PTK) genistein inverted the inhibitory effect of PAB, instead promoting the survival of MCF-7 cells. Like genistein, another PTK inhibitor AG1024 had a similar ef-fect on PAB-treated MCF-7 cells, indicating that PAB activated PTK to induce apoptosis. Together with PAB, genistein increased the expression of p-ERK, and decreased the expressions of JNK and p-JNK in PAB-treated MCF-7 cells at 36 h. And it is considered that the p-ERK and p-JNK were active patterns of ERK and JNK, respectively. Conclusion: PTK were upstream of ERK and JNK, and PTK induced apoptosis through activating JNK and inactivating ERK in PAB-treated MCF-7 cells.

  13. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Roy K

    2015-12-01

    Full Text Available Kislay Roy,1,* Yogesh S Patel,1,* Rupinder K Kanwar,1 Rangam Rajkhowa,2 Xungai Wang,2 Jagat R Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, Centre for Molecular and Medical Research (C-MMR, School of Medicine (SoM, Faculty of Health, 2Institute for Frontier Materials (IFM, Deakin University, Waurn Ponds, VIC, Australia *These authors contributed equally to this work Abstract: This study used the Eri silk nanoparticles (NPs for delivering apo-bovine lactoferrin (Apo-bLf (~2% iron saturated and Fe-bLf (100% iron saturated in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR-positive MDA-MB-231 cells, while transferrin receptor (TfR and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+ cells when compared to MCF-7 (EGFR- cells. The expression of a prominent anti-cancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. Keywords: breast

  14. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism.

    Science.gov (United States)

    Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  15. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2 and human breast (MCF7 cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  16. Measuring the biomechanical properties of the actin in MCF-7 breast cancer cell with a combined system of AFM and SIM

    Science.gov (United States)

    You, Minghai; Chen, Jianling; Wang, Yuhua; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Biomechanics of cell plays an important role in the behavior and development of diseases, which has a profound influence on the health, structural integrity, and function of cells. In this study, we proposed a method to assess the biomechanical properties in single breast cancer cell line MCF-7 by combining structured illumination microscopy (SIM) with atomic force microscopy (AFM). High resolution optical image of actin in MCF-7 cell and its elastography were obtained. The result shows that the quantitative resolution was improved by SIM, with 490 nm of conventional fluorescence image and 285 nm of reconstructed SIM image, which could give a precise location for AFM measurement. The elasticity of actin is about in the range of 10 1000 kPa. The proposed methods will be helpful in the understanding and clinical diagnosis of diseases at single cell level.

  17. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Ji Hyun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Kong, Bokyung [Corning Precision Materials (Korea, Republic of); Kim, Dongheun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Graham, Lauren M. [University of Maryland, Department of Chemistry and Biochemistry (United States); Choi, Joon Sig [Chungnam National University, Department of Biochemistry (Korea, Republic of); Lee, Sang Bok, E-mail: slee@umd.edu [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of)

    2015-01-15

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  18. Melatonin down-regulates hTERT expression induced by either natural estrogens (17beta-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Martínez-Campa, Carlos M; Alonso-González, Carolina; Mediavilla, Maria D; Cos, Samuel; González, Alicia; Sanchez-Barcelo, Emilio J

    2008-09-18

    The goal was to evaluate whether melatonin (Mel) down-regulates hTERT expression induced by 17beta-estradiol (E(2)) or cadmium (Cd) in breast cancer cells. We found that: (a) Mel inhibits E(2) or Cd-induced hTERT transcription in hTERT-Luc transfected MCF-7 cells, (b) Mel significantly reduces E(2)- and Cd-mediated hTERT transactivation triggered by ERalpha in transfected HeLa cells, (c) Mel inhibits hTERT expression induced by E(2) or Cd in MCF-7 cells. Melatonin inhibition of telomerase activity supports a possible role in treatment of estrogen-dependent tumors or carcinogenesis by environmental or occupational exposure to xenoestrogens.

  19. Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P.

    Science.gov (United States)

    Bassett, Tyler; Harpur, Brock; Poon, Ho Y; Kuo, Kuo-Hsing; Lee, Chow H

    2008-12-01

    Syntaxin18 (Stx18) is an endoplasmic reticulum (ER)-membrane bound SNARE protein involved in membrane trafficking between the ER and Golgi as well as in phagocytosis. Stx18 has also been shown to physically interact with proteins involved in the cell cycle and apoptosis. These findings suggest the possible role of Stx18 in regulating cell growth. In this study, we used theoretically designed external guide sequence molecule which utilizes RNase P to cleave Stx18 mRNA and down-regulate Stx18 levels in MCF-7 human breast cancer cells. We showed that down-regulation of Stx18 leads to significant enhancement of growth in MCF-7 cells. Consistent with this finding was the observation that over-expression of Stx18 using the CMV promoter led to suppression of cell growth. Over-expressing Stx18 had no effect on c-myc mRNA expression and half-life, suggesting that the mechanism does not involve control at the transcriptional and post-transcriptional level of the c-myc gene. Finally, we showed that Stx18 is over-expressed in clinical human breast cancer. Overall, this study showed that Stx18 plays a role in the growth of human breast cancer cells and provided the basis for further investigation in determining whether it can be used as a prognostic marker and as a molecular target in the treatment of breast cancer.

  20. Apoptosis-mediated antiproliferative activity of friedolanostane triterpenoid isolated from the leaves of Garcinia celebica against MCF-7 human breast cancer cell lines

    Science.gov (United States)

    SUBARNAS, ANAS; DIANTINI, AJENG; ABDULAH, RIZKY; ZUHROTUN, ADE; NUGRAHA, PATRIA A.; HADISAPUTRI, YUNI E.; PUSPITASARI, IRMA M.; YAMAZAKI, CHIHO; KUWANO, HIROYUKI; KOYAMA, HIROSHI

    2016-01-01

    The leaves of Garcinia celebica strongly inhibit the proliferation of MCF-7 human breast adenocarcinoma cell lines. The present study focused on investigating the active anticancer and antiproliferative compound from the G. celebica leaves and assessing its mechanism of action. Ethanol extracts of G. celebica were fractionated based on their polarity using n-hexane, ethyl acetate and water. The antiproliferative properties were tested in vitro against MCF-7 human breast cancer cell lines using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The active compound was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. The characterized compound was also tested for its antiproliferative properties and the mechanism by which it induces apoptosis in MCF-7 cells by western blot analysis of the activated apoptotic proteins. This resulted in the isolation of a friedolanostane triterpenoid, which was determined to be methyl-3α, 23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat. This compound inhibited MCF-7 cell proliferation in a time- and dose-dependent manner with IC50 values of 82 and 70 µM for the 24 and 48 h treatments, respectively. Furthermore, the western blot analysis suggested that the compound exerted its anticancer activities by promoting apoptosis through the inhibition of the oncogenic protein Akt, thereby increasing the expression of poly (ADP-ribose) polymerase (PARP) protein. These results suggest that methyl-3α,23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat is the anticancer compound found in G. celebica, providing a basis for its potential use in cancer disease management. PMID:26870339

  1. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    2013-01-01

    Full Text Available Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as cell cycle modifications in MDA-MB-231 and MCF-7 cells. FE enhanced apoptosis in cancer cells that responded to treatment with three chemotherapeutic drugs with downregulation of the anti-apoptotic proteins Bcl-xL and Mcl-1. The combination treatments led to an obvious decrease in the phosphorylation of ERK and Akt in MDA-MB-231 cells, but increased the phosphorylation of ERK in MCF-7 cells. In addition, we observed that combination treatments enhanced intracellular ROS levels and reduced glutathione (GSH levels in breast cancer cells, suggesting that induction of oxidative stress was an important event in the cell death induced by the combination treatments.

  2. Anti-proliferative effect of an extract of the root of Polygonum multiflorum Thunb. on MCF-7 human breast cancer cells and the possible mechanisms.

    Science.gov (United States)

    Chen, Hong-Sheng; Liu, Yan; Lin, Luo-Qiang; Zhao, Jin-Lu; Zhang, Chun-Peng; Jin, Jun-Chao; Wang, Lei; Bai, Ming-Han; Wang, Yi-Chong; Liu, Ming; Shen, Bao-Zhong

    2011-01-01

    The root of Polygonum multiflorum Thunb. (PM) is utilized to treat many diseases associated with aging. Research also indicates that PM inhibits the proliferation of certain types of cancer cells. The aim of the present study was to evaluate the inhibitory effect of PM extract (PME) on the proliferation of MCF-7 cells and to investigate the underlying mechanisms. Inhibition of the proliferation of MCF-7 cells was determined by the MTT assay. Cell cycle distribution and apoptotic rates were evaluated by flow cytometry, and cell cycle and apoptosis-related protein expression was assessed by Western blotting. Apoptotic characteristics of MCF-7 cells were detected by transmission electron microscopy. The present study showed that PME at doses of 100, 150, 200 and 250 µg/ml significantly inhibited proliferation of MCF-7 cells in a time- and dose-dependent manner. Flow cytometry showed that the cell apoptotic rates were 9.1 ± 1.67 and 17.7 ± 2.93% after treatment with 100 and 200 µg/ml PME for 48 h, respectively. The proportions of cells in the G2/M phase were 37.9 ± 1.47 and 42.0 ± 1.71% after treatment with 100 and 200 µg/ml PME for 24 h, respectively. Western blot analysis showed that PME down-regulated the protein expression of Cdc25B and Cdc25C phosphatases accompanied by an increase in phospho-Cdk1, and PME promoted cytochrome c release from mitochondria into the cytosol to activate caspase-9. The present study demonstrated that PME inhibited MCF-7 cell proliferation by inducing cell cycle arrest in the G2/M phase and promoting cell apoptosis. The effects of PME on MCF-7 cells were associated with the modulation of the expression levels of proteins involved in the cell cycle and apoptosis. These data suggest that PME has promise as a treatment against breast cancer by inhibiting the proliferation of cancer cells.

  3. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  4. Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin.

    Science.gov (United States)

    Kim, Kwang-Youn; Kim, Sang-Hun; Yu, Sun-Nyoung; Park, Suel-Ki; Choi, Hyeun-Deok; Yu, Hak-Sun; Ji, Jae-Hoon; Seo, Young-Kyo; Ahn, Soon-Cheol

    2015-08-01

    Salinomycin is a monocarboxylic polyether antibiotic, which is widely used as an anticoccidial agent. The anticancer property of salinomycin has been recognized and is based on its ability to induce apoptosis in human multidrug resistance (MDR). The present study investigated whether salinomycin reverses MDR towards chemotherapeutic agents in doxorubicin-resistant MCF-7/MDR human breast cancer cells. The results demonstrated that doxorubicin-mediated cytotoxicity was significantly enhanced by salinomycin in the MCF-7/MDR cells, and this occurred in a dose-dependent manner. This finding was consistent with subsequent observations made under a confocal microscope, in which the doxorubicin fluorescence signals of the salinomycin-treated cells were higher compared with the cells treated with doxorubicin alone. In addition, flow cytometric analysis revealed that salinomycin significantly increased the net cellular uptake and decreased the efflux of doxorubicin. The expression levels of MDR-1 and MRP-1 were not altered at either the mRNA or protein levels in the cells treated with salinomycin. These results indicated that salinomycin was mediated by its ability to increase the uptake and decrease the efflux of doxorubicin in MCF-7/MDR cells. Salinomycin reversed the resistance of doxorubicin, suggesting that chemotherapy in combination with salinomycin may benefit MDR cancer therapy.

  5. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  6. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  7. Effects and Potential Mechanisms of Danzhi Xiaoyao Pill(丹栀逍遥丸) on Proliferation of MCF-7 Human Breast Cancer Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIAO Hui; Linda K Banbury; David N Leach

    2008-01-01

    Objective:To investigate the effects of 50% ethyl alcohol(EtOH)extracts from Danzhi mechanisms.Methods:ATP-Lite assay was performed to test the proliferation of the MCF-7 breast cancer cell line;and antioxidant activity was measured by the oxygen radical absorbance capacity (ORAC).The effects of DXP on nitric oxide(NO)production were tested by lipopolysaccharide(LPS)-stimulated RAW 264.7 murine macrophages using the Griess reaction.Results:The 50% EtOH DXP extracts displayed a cytotoxic response on MCF-7 cells at 0.10,0.25 and 0.50 mg/mL dosedependently with the proliferation inhibited by more than 85%.The ORAC value of the DXP was 820 μ moL Trolox equivalent/g.about 40% of the vitamin C value.DXP extracts had significant inhibitory effect on NO production at the concentration from 0.0625 mg/mL to 0.5 mg/mL(P<0.05,P<0.01).Conclusion:The extracts of DXP could significantly inhibit the proliferation of MCF-7 cells,with the effect possibly related to its antioxidant activity and the inhibition of NO production.

  8. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Milczarek, Magdalena; Chodyński, Michał; Filip-Psurska, Beata; Martowicz, Agnieszka; Krupa, Małgorzata; Krajewski, Krzysztof; Kutner, Andrzej; Wietrzyk, Joanna

    2013-10-31

    Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201) and tacalcitol (PRI-2191) were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  9. Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells.

    Science.gov (United States)

    Suberu, John O; Romero-Canelón, Isolda; Sullivan, Neil; Lapkin, Alexei A; Barker, Guy C

    2014-12-01

    In parts of Africa and Asia, self-medication with a hot water infusion of Artemisia annua (Artemisia tea) is a common practice for a number of ailments including malaria and cancer. In our earlier work, such an extract showed better potency than artemisinin alone against both chloroquine-sensitive and -resistant parasites. In this study, in vitro tests of the infusion in MCF7 cells showed high IC50 values (>200 μM). The combination of artemisinin and 3-caffeoylquinic acid (3CA), two major components in the extract, was strongly antagonistic and gave a near total loss of cytotoxicity for artemisinin. We observed that the interaction of 3CAs with another cytotoxic compound, cisplatin, showed potentiation of activity by 2.5-fold. The chelation of cellular iron by 3CA is hypothesized as a possible explanation for the loss of artemisinin activity.

  10. Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells

    Science.gov (United States)

    Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws

    2016-07-01

    We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1–10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV–3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.

  11. P53-mediated cell cycle arrest and apoptosis through a caspase-3-independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Qiao CUI; Jing-hua YU; Jin-nan WU; Shin-ichi TASHIRO; Satoshi ONODERA; Mutsuhiko MINAMI; Takashi IKEJIMA

    2007-01-01

    Aim: To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. Methods: The viability of oridonin-treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleoso-mal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated Dnase (ICAD) protein expressions were detected by Western blot analysis. Results: Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pan-caspase inhibitor Z-VAD-fmk and calpain inhibitor Ⅱ both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of △ψmit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by capase-3. Conclusion: DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.

  12. Iodine Alters Gene Expression in the MCF7 Breast Cancer Cell Line: Evidence for an Anti-Estrogen Effect of Iodine

    Directory of Open Access Journals (Sweden)

    Frederick R. Stoddard II, Ari D. Brooks, Bernard A. Eskin, Gregg J. Johannes

    2008-01-01

    Full Text Available The protective effects of iodine on breast cancer have been postulated from epidemiologic evidence and described in animal models. The molecular mechanisms responsible have not been identified but laboratory evidence suggests that iodine may inhibit cancer promotion through modulation of the estrogen pathway. To elucidate the role of iodine in breast cancer, the effect of Lugol's iodine solution (5% I2, 10% KI on gene expression was analyzed in the estrogen responsive MCF-7 breast cancer cell line. Microarray analysis identified 29 genes that were up-regulated and 14 genes that were down-regulated in response to iodine/iodide treatment. The altered genes included several involved in hormone metabolism as well as genes involved in the regulation of cell cycle progression, growth and differentiation. Quantitative RT-PCR confirmed the array data demonstrating that iodine/iodide treatment increased the mRNA levels of several genes involved in estrogen metabolism (CYP1A1, CYP1B1, and AKR1C1 while decreasing the levels of the estrogen responsive genes TFF1 and WISP2. This report presents the results of the first gene array profiling of the response of a breast cancer cell line to iodine treatment. In addition to elucidating our understanding of the effects of iodine/iodide on breast cancer, this work suggests that iodine/iodide may be useful as an adjuvant therapy in the pharmacologic manipulation of the estrogen pathway in women with breast cancer.

  13. IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-05-01

    Full Text Available Abstract Introduction TGF-β signaling has been extensively studied in many developmental contexts, amongst which is its ability to induce epithelial to mesenchymal transitions (EMT. EMTs play crucial roles during embryonic development and have also come under intense scrutiny as a mechanism through which breast cancers progress to become metastatic. Interestingly, while the molecular hallmarks of EMT progression (loss of cell adhesion, nuclear localization of β-catenin are straightforward, the cellular signaling cascades that result in an EMT are numerous and diverse. Furthermore, most studies describing the biological effects of TGF-β have been performed using high concentrations of active, soluble TGF-β, despite the fact that TGF-β is produced and secreted as a latent complex. Methods MCF-7 breast cancer cells treated with recombinant IGF-1 were assayed for metalloproteinase activity and invasiveness through a matrigel coated transwell invasion chamber. IGF-1 treatments were then followed by the addition of latent-TGF-β1 to determine if elevated levels of IGF-1 together with latent-TGF-β1 could cause EMT. Results Results showed that IGF-1 - a molecule known to be elevated in breast cancer is a regulator of matrix metalloproteinase activity (MMP and the invasive potential of MCF-7 breast cancer cells. The effects of IGF-1 appear to be mediated through signals transduced via the PI3K and MAPK pathways. In addition, increased IGF-1, together with latent TGF-β1 and active MMPs result in EMT. Conclusions Taken together our data suggest a novel a link between IGF-1 levels, MMP activity, TGF-β signaling, and EMT in breast cancer cells.

  14. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase.

    Science.gov (United States)

    Ishibashi, Y; Matsui, T; Takeuchi, M; Yamagishi, S

    2013-05-01

    Metformin use has been reported to decrease breast cancer incidence and mortality in diabetic patients. We have previously shown that advanced glycation end products (AGEs) and their receptor (RAGE) interaction stimulate growth and/or migration of pancreatic cancer and melanoma cells. However, effects of metformin on AGEs-RAGE axis in breast cancers remain unknown. We examined here whether and how metformin could block the AGEs-induced growth and vascular endothelial growth factor (VEGF) expression in MCF-7 breast cancer cells. Cell proliferation was measured with an electron coupling reagent WST-1 based colorimetric assay. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. AGEs significantly increased cell proliferation of MCF-7 cells, which was completely prevented by the treatment with 0.01 or 0.1 mM metformin or anti-RAGE antibodies. Furthermore, metformin at 0.01 mM completely suppressed the AGEs-induced upregulation of RAGE and VEGF mRNA levels in MCF-7 cells. An inhibitor of AMP-activated protein kinase, compound C significantly blocked the growth-inhibitory and RAGE and VEGF suppressing effects of metformin in AGEs-exposed MCF-7 cells. Our present study suggests that metformin could inhibit the AGEs-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing RAGE gene expression via AMP-activated protein kinase pathway. Metformin may protect against breast cancer expansion in diabetic patients by blocking the AGEs-RAGE axis.

  15. An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells

    Science.gov (United States)

    Purvis, Jeremy E.

    2016-01-01

    Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. In response to estrogen, ERα stimulates a dynamic transcriptional program including both coding and noncoding RNAs. We generate a fine-scale map of expression dynamics by performing a temporal profiling of both messenger RNAs (mRNAs) and microRNAs (miRNAs) in MCF-7 cells (an ER+ model cell line for breast cancer) in response to estrogen stimulation. We identified three primary expression trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis of mRNA and miRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that overexpression of miR-503 suppresses MCF-7 cell proliferation. Moreover, the levels of ZNF217 and miR-503 are associated with opposite outcomes in breast cancer patient cohorts, with high expression of ZNF217 associated with poor survival and high expression of miR-503 associated with improved survival. Overall, these data indicate that miR-503 acts as a potent estrogen-induced candidate tumor suppressor miRNA that opposes cellular proliferation and has promise as a novel therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression. PMID:27539783

  16. Assessment of Cellular Responses to Oxidative Stress using MCF-7 Breast Cancer Cells, Black Seed (N. Sativa L. Extracts and H2O2

    Directory of Open Access Journals (Sweden)

    Ibrahim O. Farah

    2005-12-01

    Full Text Available Black seed (N. Sativa L is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example to aqueous and alcohol extracts and in combination with H2O2 as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE and ethanol (AE extracts of N. sativa and H2O2 was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 Bg/ml in descending potency for H2O2+AE to the mix of 3. In contrast, H2O2 alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H2O2, WE+H2O2, AE+WE, and WE+AE+H2O2. Mixtures other than AE+H2O2 showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the field of cancer

  17. All-trans retinoic acid (ATRA)-induced apoptosis is preceded by G1 arrest in human MCF-7 breast cancer cells.

    Science.gov (United States)

    Mangiarotti, R; Danova, M; Alberici, R; Pellicciari, C

    1998-01-01

    In this study the effects of all-trans retinoic acid (ATRA) on cell cycle and apoptosis of MCF-7 human breast cancer cells were investigated to elucidate the mechanisms underlying the antineoplastic potential of this retinoid in breast cancer. The antiproliferative effect of ATRA was evaluated by DNA content measurements and dual-parameter flow cytometry of bromodeoxyuridine (BrdU) incorporation and of the expression of cell cycle-related proteins (Ki-67 as proliferation marker and statin as quiescence marker) vs DNA content. Apoptosis was also studied by flow cytometry of either DNA content or Annexin V labelling. After 10(-6) M ATRA treatment, the fraction of S-phase cells decreased significantly, and cells accumulated in the G0/G1 range of DNA contents. Dual-parameter flow cytograms showed a decrease in the percentage of Ki-67-labelled cells (after 10 days, only 20% of the cells were still positive for Ki-67 compared with 95% in controls), while the fraction of statin-positive cells increased slightly. From 3 days of treatment onwards, apoptosis was found to occur. These results show that ATRA-induced inhibition of MCF-7 cell growth is related to two mechanisms, i.e. the block of cell proliferation, mostly in a pre-S phase, and the induction of apoptosis. These results should be taken into account when attempting to design treatment programmes that associate ATRA with antineoplastic compounds of different cell cycle specificity.

  18. Wortmannin induces MCF-7 breast cancer cell death via the apoptotic pathway, involving chromatin condensation, generation of reactive oxygen species, and membrane blebbing

    Directory of Open Access Journals (Sweden)

    Akter R

    2012-07-01

    Full Text Available Rozina Akter,1 Md. Zakir Hossain,2 Maurice G Kleve,3 Michael A Gealt31Applied Biosciences Emphasis, Department of Applied Science, 2Graduate Institute of Technology, 3Department of Biology, College of Science and of Mathematics, University Arkansas at Little Rock, Little Rock, AR, USABackground: Apoptosis can be used as a reliable marker for evaluating potential chemotherapeutic agents. Because wortmannin is a microbial steroidal metabolite, it specifically inhibits the phosphatidyl inositol 3-kinase pathway, and could be used as a promising apoptosis-based therapeutic agent in the treatment of cancer. The objective of this study was to investigate the biomolecular mechanisms involved in wortmannin-induced cell death of breast cancer-derived MCF-7 cells.Methods and results: Our experimental results demonstrate that wortmannin has strong apoptotic effects through a combination of different actions, including reduction of cell viability in a dose-dependent manner, inhibition of proliferation, and enhanced generation of intracellular reactive oxygen species.Conclusion: Our findings suggest that wortmannin induces MCF-7 cell death via a programmed pathway showing chromatin condensation, nuclear fragmentation, reactive oxygen species, and membrane blebbing, which are characteristics typical of apoptosis.Keywords: wortmannin, human breast adenocarcinoma, apoptosis, reactive oxygen species, flow cytometry

  19. TGF-β1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells.

    Science.gov (United States)

    Singh, Rajshri; Shankar, Bhavani S; Sainis, Krishna B

    2014-07-01

    Macrophages in the tumor microenvironment play an important role in tumor cell survival. They influence the tumor cell to proliferate, invade into surrounding normal tissues and metastasize to local and distant sites. In this study, we evaluated the effect of conditioned medium from monocytes and macrophages on growth and migration of breast cancer cells. Macrophage conditioned medium (MϕCM) containing elevated levels of cytokines TNF-α, IL-1β and IL-6 had a differential effect on non-invasive (MCF7) and highly invasive (MDA-MB-231) breast cancer cell lines. MϕCM induced the secretion of TGF-β1 in MCF7 cells. This was associated with apoptosis in a fraction of cells and generation of reactive oxygen and nitrogen species (ROS and RNS) and DNA damage in the remaining cells. This, in turn, increased expression of cAMP response element binding protein (CREB) and vimentin resulting in migration of cells. These effects were inhibited by neutralization of TNF-α, IL-1β and IL-6, inhibition of ROS and RNS, DNA damage and siRNA mediated knockdown of ATM. In contrast, MDA-MB-231 cells which had higher basal levels of pCREB were not affected by MϕCM. In summary, we have found that pro-inflammatory cytokines secreted by macrophages induce TGF-β1 in tumor cells, which activate pCREB signaling, epithelial-mesenchymal-transition (EMT) responses and enhanced migration.

  20. A comparative study of protein patterns of human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines.

    Science.gov (United States)

    Flodrova, Dana; Toporova, Lucia; Macejova, Dana; Lastovickova, Marketa; Brtko, Julius; Bobalova, Janette

    2016-07-01

    In the present study, we analyzed the cell lysates of human tumour cell lines representing two major clinically different types of breast cancer. Our main goal was to show the differences between them on proteomic level. Gel electrophoresis followed by MALDI-TOF MS analysis was used for proteins determination. Exactly 98 proteins were unequivocally identified and 60 of them were expressed differentially between MDA-MB-231 and MCF-7 cell lines. Among the proteins reported here, some well-known breast cancer markers (e.g., annexin A1, annexin A2 and vimentin) were identified in the MDA-MB-231 cell line and thus we were able to distinguish both cell lines sufficiently.

  1. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  2. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  3. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells.

    Science.gov (United States)

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2015-08-01

    The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-β estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.

  4. 塞来昔布联合紫杉醇对人乳腺癌MCF-7/Taxol耐药细胞株多药耐药的逆转作用及机制的探讨%Effect of Combination of Taxol and Celecoxib on Reversing Multidrug Resistance Human Breast Cancer Cells (MCF-7/ Taxol) and Explore Its Underlying Mechanism

    Institute of Scientific and Technical Information of China (English)

    柳青; 刘雪娟; 陈玉娟; 汪静

    2011-01-01

    Objective To investigate the reversal effect of Celecoxib and Taxol on multidrug resistance (MDR) human breast cancer cells (MCF-7/Taxol) and its underlying mechanism.Methods After establishing the resistance cell lines of human breast cancer on Taxol (MCF-7/Taxol), the effects of the drugs on the toxicity of MCF-7/Taxol cells and the reversal effect of Celecoxib on MDR were determined by CCK-8 assay.The cells were divided into seven groups (A: MCF-7; B: MCF-7/Taxol; C: MCF-7/Taxol+ 0.03 μg/mL Taxol; D: MCF-7/Taxol+0.03 μg/mL Taxol+3 μg/mL Celecoxib; E: MCF-7/Taxol+0.03 μg/mL Taxoll6 μg/mL Celecoxib; F:MCF-7/Taxol+3 μg/mL Celecoxib; G: MCF-7/Taxol +6 μg/mL Celecoxib).The mRNA levels of MDR1 and BCRP in these treated cells were also determined by reverse transcription-polymerase chain reaction (RT-PCR), the protein levels of P-gp and BCRP in these treated cells were also determined by Western blot method.Results Compared with the Taxol control, the cytotoxicity effects was obviously increased by combination of Taxol and Celecoxib (P<0.05).Compared with the vehicle control, Taxol up-regulated mRNA and protein levels of P-gp,whereas Celecoxib down-regulated mRNA and protein levels of P-gp and BCRP (P<0.05).Conclusion Celecoxib has reversal effect on MDR in MCF-7/Taxol cells, it's possible mechanism might be related to reduce the protein expression of COX-2, the inhibition of P-gp, BCRP mRNA and protein overexpression.%目的 观察环氧化酶-2(COX-2)选择性抑制剂塞来昔布(Celecoxib)联合紫杉醇(Taxol)对人乳腺癌MCF-7/Taxol耐药细胞多药耐药(multiple drug resistance,MDR)的逆转作用,并初步探讨其作用机制.方法 体外诱导建立人乳腺癌MCF-7/Taxol耐药细胞株,CCK-8法检测Taxol、塞来昔布对MCF-7/Taxol细胞的毒性作用及塞来昔布对MCF-7/Taxol细胞多药耐药的逆转作用.实验分为:同步传代的MCF-7细胞组(A组),MCF-7/Taxol细胞阴性对照组(B组),单用Taxol无毒剂量的MCF-7/Taxol细

  5. Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness

    Directory of Open Access Journals (Sweden)

    Eloy Andres Pérez-Yépez

    2012-01-01

    Full Text Available Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1β stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1β stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel invasion, E-cadherin mRNA expression and protein localization were determined in these cells and in MCF-7 parental cells under the stimulus of IL-1β. Selected MCF-7A3 cells showed a uniform response to IL-1β stimulation increasing features of invasive cells such as scattering, colony formation, proliferation, chemokinesis and invasion. Basal expression of E-cadherin mRNA was higher, and IL-1β stimulus had no further effect at early times of cytokine exposure. Total E-cadherin levels remained unchanged in parental cells, whereas levels decreased, as MCF-7A3 cells became fibroblastoid or scattered. Triton X-100 soluble/insoluble E-cadherin ratios were highly increased in these cells, while, in MCF-7pl cells, ratios could not be correlated with morphology changes. MCF-7A3 cells uniform response to IL-1β allowed characterization of changes induced by the cytokine that had not been assessed when using heterogeneous cell lines.

  6. The Kinetic Signature of Toxicity of Four Heavy Metals and Their Mixtures on MCF7 Breast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Isoken Tito Aighewi

    2013-10-01

    Full Text Available This study evaluated the kinetic signature of toxicity of four heavy metals known to cause severe health and environmental issues—cadmium (Cd, mercury (Hg lead (Pb arsenic (As—and the mixture of all four metals (Mix on MCF7 cancer cells, in the presence and absence of the antioxidant glutathione (GSH. The study was carried out using real time cell electronic sensing (RT-CES. RT-CES monitors in real time the electrical impedance changes at the electrode/culture medium interface due to the number of adhered cells, which is used as an index of cell viability. Cells were seeded for 24 h before exposure to the metals and their mixtures. The results showed that in the presence and absence of cellular glutathione, arsenic was the most cytotoxic of all five treatments, inducing cell death after 5 h of exposure. Lead was the least cytotoxic in both scenarios. In the presence of cellular GSH, the cytotoxic trend was As > Cd > MIX > Hg > Pb, while in the absence of GSH, the cytotoxic trend was As > Hg > MIX > Cd > Pb. The findings from this study indicate the significance of glutathione-mediated toxicity of the metals examined—particularly for mercury—and may be clinically relevant for disorders such as autism spectrum disorder where decreased glutathione-based detoxification capacity is associated with increased mercury intoxication.

  7. Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1 in MCF7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Dipti Ranjan Mishra

    Full Text Available Cytosolic inorganic pyrophosphatase plays an important role in the cellular metabolism by hydrolyzing inorganic pyrophosphate (PPi formed as a by-product of various metabolic reactions. Inorganic pyrophosphatases are known to be associated with important functions related to the growth and development of various organisms. In humans, the expression of inorganic pyrophosphatase (PPA1 is deregulated in different types of cancer and is involved in the migration and invasion of gastric cancer cells and proliferation of ovarian cancer cells. However, the transcriptional regulation of the gene encoding PPA1 is poorly understood. To gain insights into PPA1 gene regulation, a 1217 bp of its 5'-flanking region was cloned and analyzed. The 5'-deletion analysis of the promoter revealed a 266 bp proximal promoter region exhibit most of the transcriptional activity and upon sequence analysis, three putative Sp1 binding sites were found to be present in this region. Binding of Sp1 to the PPA1 promoter was confirmed by Electrophoretic mobility shift assay (EMSA and Chromatin immunoprecipitation (ChIP assay. Importance of these binding sites was verified by site-directed mutagenesis and overexpression of Sp1 transactivates PPA1 promoter activity, upregulates protein expression and increases chromatin accessibility. p300 binds to the PPA1 promoter and stimulates Sp1 induced promoter activity. Trichostatin A (TSA, a histone deacetylase (HDAC inhibitor induces PPA1 promoter activity and protein expression and HAT activity of p300 was important in regulation of PPA1 expression. These results demonstrated that PPA1 is positively regulated by Sp1 and p300 coactivates Sp1 induced PPA1 promoter activity and histone acetylation/deacetylation may contribute to a local chromatin remodeling across the PPA1 promoter. Further, knockdown of PPA1 decreased colony formation and viability of MCF7 cells.

  8. Effects of Ganoderma lucidum (Higher Basidiomycetes) Extracts on the miRNA Profile and Telomerase Activity of the MCF-7 Breast Cancer Cell Line.

    Science.gov (United States)

    Gonul, Oyku; Aydin, Hikmet Hakan; Kalmis, Erbil; Kayalar, Husniye; Ozkaya, Ali Burak; Atay, Sevcan; Ak, Handan

    2015-01-01

    Ganoderma lucidum is a medicinal higher Basidiomycetes mushroom that exerts anticancer effects through several different mechanisms. This study investigated the effects of G. lucidum on the telomerase activity and microRNA (miRNA) profiles of MCF-7 cells. According to the cytotoxicity results, the G. lucidum ether extract exhibits the highest cytotoxic potency; therefore it was chosen for the subsequent telomerase activity assay and miRNA profiling. The telomerase activity observed in the cells treated with a half-maximal inhibitory concentration of G. lucidum ether extract (100 µg/mL in dimethyl sulfoxide) was 32.2% lower than that of the control cells treated with 1% dimethyl sulfoxide. Among 1066 miRNAs, the most downregulated miRNA was hsa-miR-27a* (4.469-fold), and the most upregulated miRNA was hsa-miR-1285 (10.462-fold). A database search revealed the predicted miRNAs that target the catalytic subunit of the telomerase enzyme telomerase reverse transcriptase, and only miR-3687 (upregulated 2.153-fold) and miR-1207-5p (upregulated 2.895-fold) were changed by at least 2-fold. The miRNA profile changes demonstrated in this study provide a data set regarding their effects on the pathways that regulate telomerase activity in MCF-7 breast cancer cells treated with G. lucidum. These data should aid the development of novel cancer treatment strategies.

  9. Effects of solanine on microtubules system of human breast cancer MCF-7 cells%龙葵碱对乳腺癌MCF-7细胞微管系统的影响

    Institute of Scientific and Technical Information of China (English)

    季宇彬; 刘家源; 高世勇

    2012-01-01

    Objective To investigate the effects of solanine on tnicrotubular system in MCF-7 cell line. Methods Proliferation inhibition of MCF-7 cell line was evaluated by MTT assay. Cell cycle of MCF-7 cells was analyzed and the changes of a-tubulin protein and microtubule-associated protein 2 (MAP-2) protein were detected by flow cytometry. Results The IC50 of MCF-7 cells was 22.08 ng/mL. Solanine could induce MCF-7 cells arrested in S phaseand increase the levels of a-tubulin and MAP-2 in MCF-7 cell line. Conclusion Solanine could inhibit the MCF-7 cell proliferation by increasing a-tubulin and MAP-2 expression and inducing MCF-7 cells arrested in S phase.%目的 研究龙葵碱对乳腺癌MCF-7细胞微管系统的影响.方法 MTT法检测龙葵碱对人乳腺癌MCF-7细胞增殖的抑制作用,流式细胞仪分析龙葵碱对MCF-7细胞周期的影响以及细胞内α-微管蛋白及微管相关蛋白(MAP-2)的变化.结果 龙葵碱对MCF-7细胞的IC50为22.08 μg/mL,能够将MCF-7细胞阻滞于S期;能够增加MCF-7细胞内α-微管蛋白和MAP-2的量.结论 龙葵碱通过升高MCF-7细胞内的微管蛋白及MAP-2的表达,将MCF-7细胞阻滞于S期,从而抑制乳腺癌MCF-7细胞的生长.

  10. Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D

    Directory of Open Access Journals (Sweden)

    Nasrollah Erfani

    2015-01-01

    Full Text Available Background: Seaweeds have proven to be a promising natural source of bioactive metabolites for drug development. Objective: This study aimed to monitor the ethanol extract of ten algae from the Persian Gulf and Oman Sea, for their in vitro cytotoxic activity on three human breast cancer cell lines. Materials and Methods: Three human breast cancer cell lines including MDA-MB-231(ER− , MCF-7(ER + , and T-47D (ER + were treated by different concentrations of total ethanol (90% algae extracts and the cytotoxic effects were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Doxorubicin (Ebewe, Austria was used as a positive control. After 72 h of incubation, the cytotoxic effect of the algae was calculated and presented as 50%-inhibitory concentration (IC 50 . Results: The results indicated Gracilaria foliifera and Cladophoropsis sp. to be the most active algae in terms of cytotoxic effects on the investigated cancer cell lines. The IC 50 values against MDA-MB-231, MCF-7, and T-47D cells were, respectively, 74.89 ± 21.71, 207.81 ± 12.07, and 203.25 ± 30.98 mg/ml for G. foliifera and 66.48 ± 4.96, 150.86 ± 51.56 and >400 mg/ml for Cladophoropsis sp. The rest of the algal extracts were observed not to have significant cytotoxic effects in the concentration range from 6.25 mg/ml to 400 mg/ml. Conclusion: Our data conclusively suggest that G. foliifera and Cladophoropsis sp. may be good candidates for further fractionation to obtain novel anticancer substances. Moreover, stronger cytotoxic effects on estrogen negative breast cancer cell line (MDA-MB-231(ER− in comparison to estrogen positive cells (MCF-7 and T-47D suggest that the extract of G. foliifera and Cladophoropsis sp. may have an estrogen receptor/progesterone receptor-independent mechanism for their cellular growth inhibition.

  11. The role of cancer stem cells in the acquired resistance to Taxol of human breast cancer cell line MCF-7%肿瘤干细胞在人乳腺癌细胞株MCF-7耐紫杉醇效应中的作用

    Institute of Scientific and Technical Information of China (English)

    韩娜; 穆永慧; 张庆

    2014-01-01

    目的 观察肿瘤干细胞(CSC)在人乳腺癌细胞株MCF-7对紫杉醇(Taxol)产生获得性耐药中的作用.方法 采用低浓度加量(起始浓度为0.005 mg/L)持续诱导法诱导产生人乳腺癌耐Taxol细胞株MCF-7/T=ol,噻唑蓝(MTT)法检测MCF-7/Taxol对Taxol的敏感性.实时定量聚合酶链反应(Real-time PCR)检测三磷酸腺苷结合转运蛋白G超家族成员2(ABCG2)和性别决定区Y框蛋白-2(SOx-2)的表达.结果 亲本株和耐药株细胞对Taxol的半数抑制浓度(IC5o)值分别为0.05 mg/L和4.2 mg/L,耐药指数为84.0.20 mg/L的As2O3降低了耐药株对Taxol的耐药性,逆转倍数为3.82,相对逆转效率为74.7%.耐药株细胞ABCG2和SOX-2的表达显著升高(P<0.01).As2O3处理后,ABCG2和SOX-2的表达显著下降(P<0.05).结论 CSC有可能是人乳腺癌细胞株MCF-7对Taxol产生耐药的机制之一.%Objective To investigate the role of cancer stem cells (CSC) in the acquired resist ance to Taxol of human breast cancer cell line MCF-7.Methods Taxol-resistant MCF-7 (MCF-7/Taxol) was established in vitro by exposure to low concentration (0.005 mg/L) and subsequently the gradually increased dose of Taxol.The proliferation and sensitivity to Taxol of MCF-7/Taxol before and after application of As2O3 were tested using methyl thiazol tetrazolium (MTT) assay.Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to investigate the expression of ATP-binding cassette subfamily G member 2 (ABCG2) and sex determining region Y-box 2 (SOX-2) in wild type MCF-7 and MCF-7/Taxol cells.Results In the presence of Taxol (0.5 mg/L),the growth rate of MCF-7/ Taxol was significantly higher than the wild type MCF-7 cells (P < 0.01).It was also demonstrated that MCF-7/Taxol ceils treated by Taxol developed similar proliferation to wild type MCF-7 cells in the absence of Taxol (P > 0.05).The 50% inhibitory dose (IC50) of wild type MCF-7 and MCF-7/Taxol cells to Taxol was about 0.05 mg/L and 4.2 mg

  12. Promoting effect of 3'-daidzein sulfonate sodium on apoptosis of human breast cancer cell line MCF-7%3'-大豆苷元磺酸钠对人乳腺癌细胞MCF-7的促凋亡作用

    Institute of Scientific and Technical Information of China (English)

    康杰芳; 李焘; 李燕; 王喆之; 张尊听

    2011-01-01

    目的 研究3′-大豆苷元磺酸钠促进人乳腺癌细胞MCF-7凋亡的作用.方法 3 种人乳腺癌细胞系(MCF-7、MDA-MB-231和SK-BR-3)与不同浓度的3′-大豆苷元磺酸钠共孵育 24 h,MTT法检测细胞存活率,流式细胞术和Hoechst 33258 染色检测细胞凋亡.结果 3′-大豆苷元磺酸钠能够抑制 3 种人乳腺癌细胞系的生长,3′-大豆苷元磺酸钠对MCF-7、MDA-MB-231 和SK-BR-3 细胞的IC50分别为 656、798、735 μmol/L.Hoechst 33258 荧光染色与流式细胞术分析MCF-7细胞的结果一致,656、900 μmol/L 3′-大豆苷元磺酸钠诱导MCF-7细胞凋亡率分别为(16.4%±3.2%)和(38.0%±4.1%).结论 3′-大豆苷元磺酸钠抑制乳腺癌细胞MCF-7增殖并可诱导其凋亡.%Objective To study the promoting effect of 3'-daidzein sulfonate sodium on apoptosis of human breast cancer cell line MCF-7. Methods Three breast cancer cell lines ( MCF-7, MDA-MB-231 and SK-BR-3 ) were incubated with 3'-daidzein sulfonate sodium of different concentrations for 24 hours.The cell viability was detected by using MTr assay and apoptosis was detected by applying flow cytometry and Hoechst 33258 staining. Results The growth of three breast cancer cell lines ( MCF-7, MDA-MB-231 and SK-BR-3 ) were inhibited by 3'-daidzein sulfonate sodium and IC50 were, respectively, 656 μmol/L, 798 μmol/L and 735 μmol/L. The analysis on MCF-7 by Hoechst 33258 staining and flow eytometry showed the same results. The apoptosis rates of MCF-7 induced by 3'-daidzein sulfonate sodium in the concentrations of 656 μmol/L and 900 μmol/L) were, respectively, ( 16. 4% ± 3.2% ) and (38.0% ± 4. 1% ). Conclusion 3'-daidzein sulfonate sodium can inhibit the proliferation of human breast cancer cell line MCF-7 and induce its apoptosis.

  13. REVERSION OF MULTIDRUG RESISTANCE IN THE P-GLYCOPROTEIN POSITIVE BREAST CANCER CELL LINE(MCF-7/ADR) BY INTRODUCTION OF HAMMERHEAD RIBOZYME

    Institute of Scientific and Technical Information of China (English)

    袁亚维; 张积仁; K.J.Scanlon; 陆长德; 祁国荣

    1998-01-01

    A hammerhead ribozyme which slte-specifically cleaved the GUC position in codon 880 of the mdrl mRNA was designed. The target site was chosen between the two ATP binding sites, which may be impottant for the function of the P-C-p as an ATPodependent pump. A DNA sequence encoding the riboxyme gene was then incorporated into a eukaryotic expression vector (pH 0 Apt-1 neo) and transfeeted into the breast cancer cell line MCF-7/Adr, which is resistant to adrlamycin and expresses the MDR phenmype. The ribozyme was stably expressed in the cell line by the RNA dot blotting assay. The result of Northern blot assay showed that the expressed ribozyme could decrease the level of mdrl mRNA expression by 83.5%; and the expressed ribozyme could inhiblte the formation of P-glycoprotein detected by immuno-cytochemistry assay and could reduce the cell''s resistance to adrimycin; this means that the resistant cells were 1 000-fold mcre resistant than the parental cell line(MCF-7), whereas those cell clones that showed ribozyme expression were only 6-fold more resistant than the parental cell line. These results show that a potentially useful tool is at hand which may inactivate MDR1 mRNA and revert the multidrug resistance phenotype.

  14. The Acetone Extract of Sclerocarya birrea (Anacardiaceae Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7

    Directory of Open Access Journals (Sweden)

    Nicoline Fri Tanih

    2013-01-01

    Full Text Available Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation. The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy.

  15. Effect of GEN1 interference on the chemosensitivity of the breast cancer MCF-7 and SKBR3 cell lines

    OpenAIRE

    Wu, Yunlu; Qian,Ying; ZHOU, GUOZHONG; Lv, Juan; Yan, Qiuyue; Dong, Xuejun

    2016-01-01

    Chemotherapy is a notable method for the treatment of breast cancer. Numerous genes associated with the sensitivity of cancer to chemotherapy have been found. In recent years, evidence has suggested that a particular structure termed Holliday junction (HJ) plays a crucial role in cancer chemosensitivity. Targeting HJ resolvases, such as structure-specific endonuclease subunit SLX4 (Slx4) and MUS81 structure-specific endonuclease subunit (Mus81), significantly increases the chemosensitivity of...

  16. Influence of Zedoray Turmeric Oil on Expression of Bcl- 2/Bax in Human Breast Cancer MCF-7 Cells%莪术油对人乳腺癌MCF-7细胞凋亡及Bcl-2、Bax表达的影响

    Institute of Scientific and Technical Information of China (English)

    杨丽华; 姜杰

    2010-01-01

    目的:观察中药提取物莪术油(zedoray turmeric oil)对人乳腺癌(human breast cancer)细胞系MCF-7的凋亡诱导作用.方法:用不同浓度的莪术油对体外培养的MCF-7细胞进行干预.分别采用MTT、细胞免疫组织化学染色、流式细胞仪检测等方法,观察其对MCF-7细胞增殖的抑制和凋亡诱导作用,并对凋亡相关Bcl-2与Bax蛋白的表达变化进行定性检测.结果:经不同浓度的莪术油处理后的MCF-7细胞,其生长受到明显的抑制,细胞凋亡指数随药物浓度增加而明显增加;莪术油作用后,细胞中Bax蛋白表达明显高于对照组.结论:一定浓度的莪术油能抑制MCF-7细胞增殖,促进其凋亡;其机制可能与调控Bcl-2、Bax 表达有关.

  17. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX.

  18. IFNB1/interferon-ß-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Ejlerskov, Patrick; Liu, Yawei;

    2013-01-01

    IFNB1/interferon (IFN)-ß belongs to the type I IFNs and exerts potent antiproliferative, proapoptotic, antiangiogenic and immunemodulatory functions. Despite the beneficial effects of IFNB1 in experimental breast cancers, clinical translation has been disappointing, possibly due to induction of s...

  19. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  20. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    Science.gov (United States)

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion.

  1. pcDNA3.1(+)/caveolin-1真核表达质粒的构建及其在MCF-7乳腺癌细胞株中的表达%Construction of pcDNA3.1 (+)/caveolin-1 eukaryotic expression plasmid and its expression in MCF-7 breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    马小斌; 康华峰; 包兴; 代志军; 刁岩; 闵卫利; 王西京

    2013-01-01

    Objective To identify the expression of caveolin-1 in human breast cancer cell line MCF-7 and normal tissues, construct pcDNA3. 1( + )/caveolin-1 expression plasmid and detect its expression. Methods The gene amplification of caveolin-1 in 9 kinds of normal tissues and MCF-7 was detected by RT-PCR; the protein expression of caveolin-1 in MCF-7 cells was detected by Western blotting. Caveolin-1 gene was amplified by RT-PCR with its special primer; PCR products and pcDNA3. 1( + ) plasmid were digested and recycled by EcoR I + Xba I endonuclease, and then pcDNA3. 1 ( + )/caveolin-l recombinant expression plasmid was constructed. The single colonies of pcDNA3. l( + )/caveolin-l were selected and transfected into competent bacteria for PCR identification. Positive colonies were selected and cultured, and restriction endonuclease and sequence identification were carried out. Western blotting was used to detect the protein expression of caveolin-1 in transient transfected MCF-7 cells. Results ① There were gene amplifications of caveolin-1 in all the 9 kinds of normal tissues, but none in MCF-7 cells, so was protein expression. ② When pcDNA3. 1 ( + )/caveolin-1 recombinant expression plasmids were transfected into MCF-7 cells, the caveolin-1 protein was expressed well. Conclusion The pcDNA3. 1( + )/ caveolin-1 recombinant expression plasmid was successfully constructed, and the caveolin-1 protein was expressed stably in transient transfected MCF-7 cells.%目的 明确正常组织和人乳腺癌细胞株MCF-7中caveolin-1的表达情况,构建pcDNA3.1( +)/caveolin-1表达质粒,并鉴定其表达.方法 RT PCR法检测9种正常人体组织及人乳腺癌细胞株MCF-7中caveolin-1基因的扩增情况;Western blotting法检测MCF-7细胞中caveolin-1蛋白的表达情况.设计克隆引物和表达引物,RT-PCR法扩增caveolin-1基因,用EcoRⅠ+XbaⅠ内切酶消化回收PCR产物和质粒pcDNA3.1(+),连接后构建pcDNA3.1(+)/caveolin-1重组表达质粒.挑

  2. The study on the role of salinomycin in the proliferation and epithelial-mesenchymal transition of breast cancer MCF-7 mammosphere cells%盐霉素对乳腺癌MCF-7球囊细胞增殖与上皮间质转化作用的研究

    Institute of Scientific and Technical Information of China (English)

    马赫遥; 付婴子; 何苗; 颜媛媛; 江茜; 孙也之; 魏敏杰

    2016-01-01

    Objective To investigate the effects of salinomycin on the cell proliferation and epithelial-mesenchymal transition (EMT) of MCF-7 mammosphere (MCF-7 MS). Methods Breast cancer MCF-7 cells were cultured in suspension in serum-free medium to obtain MCF-7 MS. The cell viability of MCF-7 MS cells treated with serial concentrations of 0, 10, 30, 100, 300, 1 000, 3 000 and 10 000 nmol/L of salinomycin for 24 hours were detected by CCK-8 assay. The half maximal inhibitory concentration (IC50) was calculated. Western blot analysis was performed to detect the expression levels of E-cadherin and Snail in MCF-7 MS cells treated with 30 nmol/L and 60 nmol/L salinomycin. The same capacity of DMSO was added to MCF-7 MS as control group. The xenograft tumors from MCF-7 MS transplant mice were divided into control group (the same capacity of normal saline) and salinomycin group (5 mg/kg salinomycin), then the expressions of E-cadherin and Snail were dectected by immunohistochemical staining. Results With the increased concentration of salinomycin, the cell survival rate of MCF-7 MS cells decreased (P<0.05). The IC50 after 24 h-treatment was 989 nmol/L. Both 30 and 60 nmol/L of salinomycin increased the expression of E-cadherin and decreased the expression of Snail compared with control group. In addition, 60 nmol/L treatment group showed more significant effect (P<0.05). In xenograft tumors from MCF-7 MS transplant mice, the expression of Snail decreased, and E-cadherin increased in salinomycin treatment group compared with control group (P<0.01). Conclusion Salinomycin can inhibit the cell proliferation and EMT in MCF-7 MS cells, which is a potential drug to target cancer stem cells.%目的:探讨盐霉素(Salinomycin)对MCF-7球囊(MCF-7 MS)细胞的增殖与上皮间充质转化(EMT)的作用。方法通过乳腺癌MCF-7细胞无血清悬浮培养富集乳腺癌干细胞(BCSCs)得到MCF-7 MS;CCK-8 assay检测0、10、30、100、300、1000、3000及10000

  3. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation.

  4. Lentivirus-mediated RNA interference targeting the ObR gene in human breast cancer MCF-7 cells in a nude mouse xenograft model

    Institute of Scientific and Technical Information of China (English)

    XUE Rong-quan; GU Jun-chao; DU Song-tao; YU Wei; WANG Yu; ZHANG Zhong-tao; BAI Zhi-gang; MA Xue-mei

    2012-01-01

    Background There is a significant association between obesity and breast cancer,which is possibly due to the expression of leptin.Therefore,it is important to clarify the role of leptin/ObR (leptin receptor) signaling during the progression of human breast cancer.Methods Nude mice with xenografts of MCF-7 human breast cancer cells were administered recombinant human leptin subcutaneous via injection around the tumor site.Mice in the experimental group were intratumorally injected with ObR-RNAi-lentivirus,while negative control group mice were injected with the same dose of negative-lentivirus.Tumor size was blindly measured every other day,and mRNA and protein expression levels of ObR,estrogen receptor α(ERα),and vascular endothelial growth factor (VEGF) for each group were determined.Results Knockdown of ObR-treated xenografted nude mice with a high leptin microenvironment was successfully established.Local injection of ObR-RNAi-lentivirus significantly suppressed the established tumor growth in nude mice.ObR level was significantly lower in the experimental group than in the negative control group,while the amounts of ERα and VEGF expression were significantly lower in the leptin group than in the control group (P <0.01 for all).Conclusions Inhibition of leptin/ObR signaling is essential to breast cancer proliferation and possible crosstalk between ObR and ERα,and VEGF,and may lead to novel therapeutic treatments aiming at targeting ObR in breast cancers.

  5. 膜雌激素对乳腺癌MCF-7细胞生长的调控及其对其表皮生长因子受体表达水平的影响%The effects of EGFR expression and proliferation of breast cancer MCF-7 cells regulated by membrane estrogen

    Institute of Scientific and Technical Information of China (English)

    李丹; 高黎黎; 艾媛; 武兆忠; 陈辰

    2013-01-01

    Objective To investigate the proliferation and the possible molecular mechanisms of the breast cancer cell regulated by membrane estrogen continuously. Method The MTT method was used to measure the the growth effects of breast cancer MCF-7 cell regulated by the different concentration of membrane estrogen. The MTT method and RT-PCR method were used respectively to analyze the breast cancer MCF-7 cell growth and the EGFR mRNA expression level regulated by membrane estrogen. Results The sustained action of membrane estrogen on the final concentration from 10-7M to 10-12M can induce breast cancer MCF-7 cell growth. The suramin(G protein-coupled receptor inhibitor) and AG-1478(EGFR inhibitor) can down-regulate the effect of MCF-7 cell growth stimulated by membrane estrogen. Suramin and AG-1478 can down-regulate the EGFR mRNA expression stimulated by membrane estrogen in the MCF-7 cell. Conclusion The continuous estrogen membrane effect can stimulate the proliferation of breast cancer cells, it is through the membrane G protein coupling receptor and EGFR pathway.%目的:探讨膜雌激素持续作用对乳腺癌细胞生长调控的影响及其可能的分子机制。方法采用MTT法测不同浓度的膜雌激素对乳腺癌细胞MCF-7生长的影响。分别采用MTT法和RT-PCR法分析不同的信号抑制剂调控后,膜雌激素对乳腺癌细胞MCF-7生长及其EGFR mRNA表达水平的影响。结果终浓度为10-7M和10-12M的膜雌激素持续作用能诱导乳腺癌MCF-7细胞的增殖。膜G蛋白藕联受体阻断剂苏拉明和EGFR阻断剂AG-1478能明显抑制膜雌激素对MCF-7细胞生长的诱导作用。苏拉明和AG-1478能抑制膜雌激素持续作用上调MCF-7细胞中EGFRmRNA表达的作用。结论雌激素膜持续效应能刺激乳腺癌细胞的增殖,这一作用是通过膜G蛋白藕联受体和EGFR通路来完成的。

  6. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Directory of Open Access Journals (Sweden)

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  7. Salinomycin对乳腺癌阿霉素耐药细胞株MCF-7/DOX的增殖抑制作用及机制%Anti-proliferative effect of salinomycin on doxorubicin-resistant human breast cancer MCF-7/DOX cells

    Institute of Scientific and Technical Information of China (English)

    刘浩; 卢敏莹; 贺智敏

    2015-01-01

    Aim To investigate the anti-proliferative effect of salinomycin on doxorubicin-resistant human breast cancer MCF-7 /DOX cells.Methods MCF-7 and MCF-7 /DOX cells were treated or untreated with salinomycin.Cell viability was detected by MTS assay. Cell apoptosis was detected by Annexin V-FITC /PI as-say.Reactive oxygen species (ROS)was measured by DCFH-DA staining.Mitochondrial membrane potential was measured by JC-1 assay.The expression of apopto-sis related proteins BAX, BCL-2, caspase-3, and caspase-9 were evaluated by Western blot analysis. Results The cell viability was significantly reduced by salinomycin treatment in a dose-dependent manner. The flow cytometry results showed that salinomycin in-duced MCF-7 /DOX cell apoptosis,increased ROS pro-duction,and decreased mitochondrial membrane poten-tial.Furthermore,salinomycin decreased the expres-sion of BCL-2,and increased the expression of BAX, cleaved caspase-3,and cleaved caspase-9.Moreover, the antioxidant N-acetylcysteine (NAC ) markedly blocked the above effects.Conclusions Our results suggest that salinomycin-induced apoptosis in MCF-7 /DOX is associated with induction of ROS production, and activation of mitochondria apoptosis pathway, which may become a potential chemotherapeutic agent for the therapy of doxorubicin resistant breast cancer.%目的:本研究旨在探讨 Salinomycin 对乳腺癌阿霉素耐药细胞株 MCF-7/DOX 增殖和凋亡的影响及可能作用机制。方法MTS 实验检测 Salinomycin 对 MCF-7/DOX 细胞增殖的影响;Annexin V-FITC /PI 染色检测 Salinomycin 对MCF-7/DOX 耐药细胞凋亡的影响;DCFH-DA 染色检测 Sali-nomycin 对 MCF-7/DOX 耐药细胞活性氧(reactive oxygen species,ROS)产生的影响;JC-1法测定细胞线粒体膜电位;Western blot 法检测细胞凋亡相关蛋白 BAX、BCL-2、caspase-3和 caspase-9的表达变化。结果Salinomycin 能明显抑制MCF-7/DOX 耐药细胞增殖,且具有浓度

  8. Notch-1 gene silencing promotes phosphorylations of JNK1 and p53 in human breast cancer MCF-7 cells%沉默Notch1基因促进人乳腺癌MCF-7细胞JNK1和p53磷酸化

    Institute of Scientific and Technical Information of China (English)

    袁磊; 陈旭东; 范文娟; 杨旭光; 王建国

    2013-01-01

    目的:探究沉默Notch1基因对人乳腺癌MCF-7细胞JNK1和p53磷酸化的影响.方法:选取人乳腺癌MCF-7细胞作为研究对象,构建shRNA-Notch1真核表达质粒用于转染MCF-7细胞使Notch1基因沉默.采用Western blotting方法检测MCF-7细胞Notch1、Hes-1、PUMA和NOXA蛋白的表达,JNK1和p53蛋白磷酸化水平以及caspase-3活化水平的改变.应用流式细胞术检测细胞凋亡和线粒体膜电位的变化.结果:人乳腺癌MCF-7细胞Notch1基因被沉默后,Notch1和Hes-1蛋白表达量明显减少(P<0.01),细胞凋亡率显著升高(P<0.01),JNK1和p53的磷酸化水平明显高于对照组(P<0.01),PUMA和NOXA表达量显著升高(P<0.05),cleaved caspase-3蛋白明显多于对照组(P<0.01),线粒体膜电位明显下降(P<0.05).结论:沉默Notch1基因可能通过激活JNK1信号通路活化p53,促进PUMA和NOXA蛋白表达,进而通过线粒体途径导致人乳腺癌MCF-7细胞凋亡.%AIM:To investigate the effect of Notch1 gene silencing on phosphorylations of JNK1 and p53 in human breast cancer MCF-7 cells.METHODS:shRNA-Notch1 eukaryotic expression plasmid was constructed and transfected into MCF-7 cells.The expression of Notch1 and Hes-1 was observed by Western blotting after transfction.Apoptosis and mitochondrial membrane potential were detected by flow cytometry.Western blotting was also used to determine the protein levels of p-JNK1,p-p53,PUMA,NOXA and cleaved caspase-3 after Notch1 silencing was performed in MCF-7 cells.RESULTS:Silencing of Notch1 significantly reduced the expression of Notch1 and Hes-1 in MCF-7 cells (P <0.01).In shNotch1 group,the number of apoptotic cells was much higher (P < 0.01) and mitochondrial membrane potential was much lower (P < 0.05) than those in shControl group.The protein levels of p-JNK1,p-p53,PUMA,NOXA and cleaved caspase-3 increased obviously after silencing of Notch1 was performed in MCF-7 cells (P < 0.05).CONCLUSION:Notch1 silencing induces apoptosis of

  9. The Na+/H+ exchanger NHE1, but not the Na+, HCO3- cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2

    DEFF Research Database (Denmark)

    Lauritzen, Gitte; Stock, Christian-Martin; Lemaire, Justine;

    2012-01-01

    We and others have shown central roles of the Na(+)/H(+) exchanger NHE1 in cell motility. The aim of this study was to determine the roles of NHE1 and of the Na(+), HCO(3)(-) cotransporter NBCn1 in motility of serum-starved MCF-7 breast cancer cells expressing constitutively active ErbB2 (¿NErbB2...

  10. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  11. The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells.

    Science.gov (United States)

    Berrak, Özge; Akkoç, Yunus; Arısan, Elif Damla; Çoker-Gürkan, Ajda; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin

    2016-02-01

    Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis.

  12. Effects of PRL-3 gene on the proliferation and apoptosis of breast cancer MCF-7 cells%PRL-3基因沉默对乳腺癌MCF-7细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    钟琰; 吴爱国; 纪术峰; 沈三弟

    2011-01-01

    目的:观察短发夹状小干扰RNA(shRNA)沉默PRL-3基因对人乳腺癌MCF-7细胞增殖、凋亡的影响.方法:构建PRL-3基因特异性shRNA表达载体,使用脂质体法将PRL-3-shRNA表达载体转染入MCF-7细胞.采用实时荧光定量PCR和蛋白免疫印迹法检测转染后MCF-7细胞PRL-3基因mRNA和蛋白的表达;运用MTT法检测转染后MCF-7细胞的增殖水平,流式细胞仪检测细胞凋亡情况.结果:酶切鉴定和测序分析证实PRL-3-shRNA表达载体成功构建.转染成功后,PRL-3-shRNA组PRL-3基因mRNA 和蛋白表达水平明显降低.MTT结果显示MCF-7细胞转染PRL-3-shRNA后细胞增殖水平降低;流式细胞仪检测显示,PRL-3-shRNA转染后,MCF-7细胞凋亡率明显增高.结论:沉默PRL-3基因表达可抑制MCF-7细胞的增殖,促进其凋亡.%Objective: To study the effects of short hairpin RNA (shRNA) targeting PRL-3 gene on the proliferation and apoptosis of breast cancer MCF-7 cells.Methods: The PRL-3 specific shRNA expression vector was constructed and confirmed by sequencing analysis.PRL-3-shRNA expression vector was transfected into MCF-7 cells via lipofectamineTM 2000, and the expression levels of PRL-3 mRNA and protein compared with those nontransfected cells were determined by real-time fluorescent quantitative PCR and western blotting.Flow cytometry and MTT assay were performed to assess the effects of PRL-3-shRNA on the proliferation and apoptosis of MCF-7 cells, respectively.Results: PRL-3 -shRNA expression vector was confirmed correct by restriction enzyme digestion and sequencing.After transfection, PRL-3 mRNA and protein expression levels were decreased significantly.MTT results showed that the proliferation of MCF-7 cells was markedly suppressed, and flow cytometry results indicated that the apoptotic rate of MCF-7 cells was significantly increased.Conclusion: Silencing the expression of PRL-3 gene by shRNA not only inhibits the proliferation of MCF-7 cells, but also promotes its

  13. Molecular mechanism of proliferation of human breast cancer cell MCF-7 inhibited by ElA gene%ElA抑制乳腺癌MCF-7细胞增殖及其分子机制

    Institute of Scientific and Technical Information of China (English)

    陈嘉; 申良方; 钟美佐; 朱虹; 曾珊

    2008-01-01

    目的:本研究将ElA基因转染HER-2表达阳性的乳腺癌细胞系MCF-7,并研究ElA对MCF-7细胞增殖的抑制作用及其分子机制.方法:利用基因转染技术检测MCF-7细胞中ElA的表达,RT-PCR和Western杂交检测ElA基因对HER-2 mRNA和蛋白表达水平的调控,MTT法检测ElA对MCF-7细胞增殖的押制作用,软琼脂集落法检测ElA对MCF-7细胞集落形成的影响,并利用流式细胞术检测ElA对MCF-7细胞凋亡的调控.结果:MCF-7细胞无内源性的ElA表达,ElA在MCF-7细胞内的表达显著性地降低了细胞中HER-2 mRNA和蛋白表达水平,诱导MCF-7细胞发生凋亡.细胞增殖曲线显示ElA基因显著性抑制MCF-7细胞增殖和细胞集落形成能力.结论:ElA基因能降低人乳腺癌细胞MCF-7的HER-2表达,诱导细胞发生凋亡,从而抑制细胞的增殖和细胞集落形成能力.

  14. p14ARF post-transcriptional regulation of nuclear cyclin D1 in MCF-7 breast cancer cells: discrimination between a good and bad prognosis?

    Directory of Open Access Journals (Sweden)

    Eileen M McGowan

    Full Text Available As part of a cell's inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation, and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late

  15. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  16. Influence of the Calmodulin Antagonist EBB on Cyclin B1 and Cdc2-p34 in Human Drug-resistant Breast Cancer MCF-7/ADR Cells

    Institute of Scientific and Technical Information of China (English)

    Xu Shi; Huifang Zhu; Yanhong Cheng; Linglin Zou; Dongsheng Xiong; Yuan Zhou; Ming Yang; Dongmei Fan; Xiaohua Dai; Chunzheng Yang

    2008-01-01

    OBJECTIVE To investigate the influence of O-(4-ethoxyl-butyl)-berbamine (EBB) on the expression of cyclin B1 and cdc2-p34 in the human drug-resistant breast cancer MCF-7/ADR cell line.METHODS The MTT assay was used to assess the cytotoxicity of EBB. Different levels of EBB were added to different cell lines at series of time points solely or combined with doxorubicin (DOX)to detect the effect on the expression of cyclinB1 and cdc2-p34 by Western blots, cdc2-p34 tyrosine phosphorylation was detected by immunoprecipitation. In addition, apoptosis and cytoplastic Ca2+concentrations were systematically examined by laser scanning confocal microscopy (LSCM).RESULTS EBB showed little inhibitory activity on human umbilical vein endothelial cells (ECV304), whereas EBB inhibited cell growth (IC50 range, 4.55~15.74 μmol/L) in a variety of sensitive and drug-resistance cell lines. EBB also down-regulated the expression of cyclin B1 and cdc2-p34 in a concentration and time dependent manner, which was an important reason for the G2/M phase arrest. EBB was shown to induce apoptosis of MCF-7/ADR cells while increasing the level of cytoplastic Ca2+.CONCLUSION The low cytotoxicity of EBB suggests it may be useful as a rational reversal agent. The effect of EBB on cell cycle arrest and related proteins, apoptosis, and cytoplastic Ca2+ concentration may be involved in reversing multidrug resistance.

  17. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells.

    Science.gov (United States)

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2014-09-01

    Parabens are alkyl esters of p-hydroxybenzoic acid used widely as antimicrobial preservatives in consumer products, including pharmaceuticals, foods and cosmetics. We showed previously that methyl-, butyl- and propylparaben parabens, even at low doses, stimulate the proliferation of MCF-7 breast cancer cells and non-transformed MCF-10A breast epithelial cells. The present study was undertaken to determine whether this represents a direct effect on cell cycle and apoptotic gene expression. MCF-7 and MCF-10A cells were exposed to methyl, butyl- and propylparaben (20 nm) or 17β-estradiol (10 nm). Cell cycle and apoptotic gene expression were evaluated by real-time polymerase chain reaction and protein expression by Western blot. 17β-estradiol upregulated G1 /S phase genes and downregulated cell cycle progression inhibitors in both MCF-7 and MCF-10A. Upregulation of Bcl-xL and downregulation of caspase 9 was observed in MCF-7, while upregulation of Bcl-xL, BCL2L2 and caspase 9 was noted in MCF-10A. Cyclins in MCF-7 cells were not affected by any of the parabens. Methyl- and butylparaben had no effect on the expression of selected apoptotic genes in MCF-7. In MCF-10A, all parabens tested increased the expression of G1 /S phase genes, and downregulated cell cycle inhibitors. Methylparaben increased pro-survival gene. Butylparaben increased BCL2L1 gene, as did 17β-estradiol, while propylparaben upregulated both the extrinsic and intrinsic apoptotic pathways. There are differences in cell cycle and apoptosis gene expression between parabens and 17β-estradiol in MCF-7 cells. In MCF-10A cells, most of the genes activated by parabens were comparable to those activated by 17β-estradiol.

  18. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Varghese

    2014-11-01

    Full Text Available Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i in breast cancer cells (MCF-7. Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM with a strong negative correlation (r = −0.713 to viability. Pharmacological modulators 2-APB (50 μM, Nimodipine (10 μM, Caffeine (10 mM, SKF 96365(20 μM were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.

  19. 银杏叶聚戊烯醇同系物体外抑制乳腺癌MCF-7细胞株增殖作用及机制研究%Growth-inhibiting Effect and its Molecular Mechanism of Polyprenols from ginkgo biloba on Breast Cancer Cells MCF-7 in vitro

    Institute of Scientific and Technical Information of China (English)

    丁香; 黄小芳; 张应辉

    2012-01-01

    Objective: To study the growth-inhibiting effect of polyprenols from Ginkgo biloba on breast cancer cells MCF-7 in vitro and the related molecular mechanism. Method: Polyprenols were extracted by preparative Reversed-phase high-performance liguid chromatography ( RP-HPLC ) . The growth-inhibiting effect of polyprenols from Ginkgo biloba on breast cancer cells MCF-7 was evaluated in vitro. The polyprenols with best antiproliferative effect was screened and figured out. The influence of polyprenol P3 (5, 10, 20 mg ·L-1 ) on mitotic cycle and apoptosis of MCF-7 cells was analyzed with flow cytometry. Result: Ten polyprenol monomers were obtained by preparative RP-HPLC, and were orderly named PI , P2, P3……P10. The best effective growth-inhibiting on MCF-7 cells was P3 with IC50 of 10. 32 mg ·L-1 . At low concentration, its mechanism appeared to be delaying on G2/M of mitotic cycle, and at high concentration to be inducing cell apoptosis. Conclusion: Polyprenol P3 from Ginkgo biloba could inhibit growth of breast cancer MCF-7 cells in vitro. Its molecular mechanism is linked with delaying on mitotic phase ( G2/M ) and inducing cell apoptosis.%目的:研究银杏叶聚戊烯醇同系物体外抑制MCF-7细胞增殖的作用并初步探讨作用机制.方法:经制备反相高效液(RT-HPLC)获得银杏叶聚戊烯醇同系物,MTT法检测其对MCF-7细胞增殖的影响,选取抑制细胞增殖作用强的同系物P3,用流式细胞仪检测5,10,20 mg·L-1 P3对MCF-7细胞周期、细胞凋亡的影响.结果:经提取分离获得10个银杏叶聚戊烯醇同系物,依次命名为P1,P2,P3……P10,其中P3对MCF-7细胞株增殖的抑制作用最强,IC50为10.32 mg·L-1,其作用机制低浓度时以阻滞细胞周期于G2/M期为主,高浓度可诱导凋亡.结论:银杏叶聚戊烯醇同系物P3为银杏叶提取物抑制MCF-7增殖的活性成分,其作用机制与阻滞细胞周期,诱导细胞凋亡有关.

  20. 胡椒碱对乳腺癌阿霉素耐药细胞株 MCF -7/ADM 细胞的逆转作用%Reversal Effect of Piperine on Adriamycin - Resistant MCF - 7/ADM Cells of Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    赖艳; 温悦; 卢来春

    2014-01-01

    Objective To explore the reversal effect and mechanism of piperine on the multidrug adriamycin(ADM) - resistance cell line MCF - 7 / ADM of human breast cancer. Methods The effect of piperine combined with ADM on growth and proliferation of drug - re-sistant MCF - 7 / ADM cells were observed by using the CCK - 8 assay. The expression levels of P - glycoprotein (P - gp) in MCF - 7 / ADM cells treated with piperine were detected by Western blot. Results The drug resistance reversal fold in the experimental groups with 60,80,100 μmol / L of piperine was 1. 62,2. 08,3. 78 times respectively. Piperine could significantly inhibit the expression of P - gp on the cytomembrane of MCF - 7 / ADM cells and enhanced the cellular sensitivity to ADM. Conclusion Piperine and adriamyci co - acting on MCF - 7 / ADM cells can increase the cellular sensitivity to ADM. Piperine can partially induce the reversal of drug resistance of MCF - 7 / ADM cells, its mechanism may be related with the down - regulation of the P - gp expression.%目的:探讨胡椒碱对人乳腺癌阿霉素(ADM)耐药细胞株 MCF -7/ ADM 的逆转作用及其机制。方法采用 CCK -8法观察胡椒碱联合阿霉素(ADM)对乳腺癌耐药株 MCF -7/ ADM 细胞生长增殖的影响;应用免疫印迹技术(Western - blot)测定胡椒碱联合 ADM 对MCF -7/ ADM 细胞表面 P -糖蛋白(P - gp)表达的影响。结果60,80,100μmol / L 胡椒碱试验组细胞耐药逆转倍数分别为1.62,2.08,3.78倍,差异有统计学意义( P ﹤0.05)。胡椒碱能显著抑制 MCF -7/ ADM 细胞膜 P - gp 蛋白的表达,其作用随浓度的增加而增强。结论胡椒碱与 ADM 共同作用于 MCF -7/ ADM 细胞,可使细胞对 ADM 的敏感性增强。胡椒碱具有部分逆转 MCF -7/ ADM 细胞耐药的作用,其逆转作用机制可能与通过下调 P - gp 的表达有关。

  1. Synthesis of new cis-fused tetrahydrochromeno[4,3-b]quinolines and their antiproliferative activity studies against MDA-MB-231 and MCF-7 breast cancer cell lines.

    Science.gov (United States)

    Nagaiah, K; Venkatesham, A; Srinivasa Rao, R; Saddanapu, V; Yadav, J S; Basha, S J; Sarma, A V S; Sridhar, B; Addlagatta, A

    2010-06-01

    New cis-fused tetrahydrochromeno[4,3-b]quinolines have been synthesized by intramolecular [4+2] imino-Diels-Alder reactions of 2-azadienes derived in situ from aromatic amines and 7-O-prenyl derivatives of 8-formyl-2,3-disubstituted chromenones in the presence of 20mol% Yb(OTf)(3) in acetonitrile under reflux conditions in good to excellent yields. The structures were established by spectroscopic data and further confirmed by X-ray diffraction analysis. These compounds were evaluated for their antiproliferative activity against MDA-MB-231 and MCF-7 breast cancer cells. The results showed that compounds 3e, 3f, and 3k exhibit significant antiproliferative activity against MCF-7 breast cancer cells and low inhibitory activity against MDA-MB-231 breast cancer cell lines. Compound 3h displayed activity as comparable to tamoxifen on both the cell lines.

  2. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    OpenAIRE

    Anna Wawruszak; Luszczki, Jarogniew J; Aneta Grabarska; Ewelina Gumbarewicz; Magdalena Dmoszynska-Graniczka; Krzysztof Polberg; Andrzej Stepulak

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interactio...

  3. 细胞代谢组学用于木犀草素抑制MCF-7细胞的机制研究%Metabonomics Study on Luteolin Intervention of Breast Cancer MCF-7 Cells

    Institute of Scientific and Technical Information of China (English)

    史栋栋; 王桂明; 况媛媛; 彭章晓; 王彦; 谷雪; 阎超

    2014-01-01

    The metabolic profiles of control and MCF-7 cells treated with luteolin were analyzed separately using gas chromatography/mass spectrometry ( GC/MS ) to study the mechanism of the luteolin treatment on MCF-7 cells. Cell viability assays showed that luteolin had inhibition effect on MCF-7 cells. Partial least square discriminant analysis ( OPLS-DA) was used to process the metabolic data. Since cells in phase of S were increased significantly, we speculated that luteolin had a blocking effect on pentose phosphate pathway of MCF-7 cells, which contributed to its inhibition effect on proliferation of MCF-7 cells.%基于气相色谱质谱联用(GC-MS)技术将代谢组学的方法结合细胞周期的实验,研究木犀草素作用于MCF-7细胞的作用机理。细胞活性实验验证,木犀草素对MCF-7细胞有抑制作用,GC-TOF/MS对加药细胞和未加药细胞代谢物进行指纹图谱分析,并进一步应用偏最小二乘判别分析( OPLS-DA)对代谢组学数据进行多维统计分析。结合木犀草素将细胞周期抑制在S期( Synthesis),推测木犀草素通过阻碍核酸代谢中的磷酸戊糖途径抑制MCF-7细胞的增殖。

  4. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  5. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Wen Tan

    2015-01-01

    Full Text Available Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  6. Diverse effects of two kinds of PI3K inhibitors on drug-resistant human breast cancer MCF-7/MIT cells%两种常用PI3K抑制剂对人乳腺癌耐药细胞株MCF-7/MIT耐药性的不同影响

    Institute of Scientific and Technical Information of China (English)

    肖洋炯; 张萍; 黄明辉; 陈菲; 陈季武; 覃文新

    2009-01-01

    Objective:To investigate the reversing effect of phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002(LY) and wortmannin (Wort), on the drug resistance of mitoxantrone (MIT)-resistant human breast cancer MCF-7/MIT cells. Methods:Drug-resistant MCF-7/MIT cells were treated with LY or Wort combined with MIT. Cell viability and proliferation were measured using the MTT assay and morphological changes were recorded by microscopy. Intracellular accumulation of MIT in MCF-7/MIT cells was detected by flow cytometry. Mitochondrial membrane potential was determined by rhodamine 123 staining. Cell cycle was examined by propidium iodide staining. Results:LY significantly enhanced the cytotoxicity of MIT to MCF-7/MIT cells. In LY and MIT cotreated cells, the percentage of cells arrested at S and G2/M phases and the mitochondrial membrane potential decreased significantly compared with single LY- or MIT-treated cells. The mechanism was related with increased accumulation of MIT in MCF-7/MIT cells induced by LY. While Wort, another PI3K inhibitor, did not significantly enhance the cytotoxic effects of MIT.Conclusion: The PI3K inhibitor significantly enhances the sensitivity of MCF-7/MIT cells to MIT.%目的:探讨磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)抑制剂LY294002(LY)和wortmannin(Wort)对米托蒽醌(mitoxantrone, MIT)耐药的人乳腺癌细胞株MCF-7/MIT耐药性的逆转作用.方法:LY或Wort与MIT联合作用耐药细胞株MCF-7/MIT后,在光学显微镜下记录细胞生长状况,MTT法检测细胞增殖和细胞活性.FCM法检测细胞内MIT的积聚.罗丹明123(rhodamine 123, Rh123)染色法检测细胞线粒体膜电位.碘化丙啶(propidium iodide, PI)染色法检测细胞周期.结果:LY和MIT联合作用可显著增强MIT引起的MCF-7/MIT细胞增殖抑制作用、由MIT引起的线粒体膜电位下降以及细胞周期S和G2/M期阻滞,其作用机制与LY增加MIT在MCF-7/MIT细胞内的积聚有关;Wort对MIT的药效无明

  7. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  8. EFFECTS OF SOY ISOFLAVONES ON THE INVASION AND METASTASIS OF HUMAN BREAST CANCER MCF-7 CELLS AND ITS CORRELATION WITH PPAR γ%大豆异黄酮对人乳腺癌MCF-7细胞侵袭转移能力的影响及其与PPAR γ的关系研究

    Institute of Scientific and Technical Information of China (English)

    周静; 韦红梅; 戎嵘; 朱俊东

    2012-01-01

    MCF-7 cells was damaged after treatment/with GEN or DAI alone. However,the above effects induced by GEN or DAI were significantly attenuated by GW9662. Conclusion Soy isoflavones inhibit the invasion and metastasis of breast cancer MCF-7 cells in vitro by activating PPAR y signal pathway, down-regulating FAK and uPA expression.and affecting the cytoskeletal structure.

  9. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    María J Tenorio

    Full Text Available Golgi phosphoprotein 3 (GOLPH3 has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.

  10. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231

    Science.gov (United States)

    Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V.; Ehrenfeld, Pamela; Mardones, Gonzalo A.

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  11. Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7)

    Science.gov (United States)

    Sathishkumar, Gnanasekar; Gobinath, Chandrakasan; Wilson, Arockiyasamy; Sivaramakrishnan, Sivaperumal

    2014-07-01

    Fabrication of metal nano scale particles through environmentally acceptable greener route has been focused with much interest in the present scenario. In this study aqueous leaf extract of mistletoe Dendrophthoe falcata (L.f) Ettingsh was successfully employed as a reducing and stabilizing agent to fabricate nanosilver particles (AgNPs) for biomedical applications. Various reactions conditions such as temperature, pH, concentration of metal ion, incubation time and stoichiometric proportion of the reaction mixture were optimized to attain narrow size range particles with maximum synthesis rate. Fabricated crystalline AgNPs with spherical structure (5-45 nm) were characterized with UV-Visible spectroscopy, Field emission scanning electron microscope (FESEM), High resolution transmission electron microscope (HRTEM) and Selected area diffraction pattern (SEAD). Further the fabricated AgNPs were studied for their stability and surface chemistry through Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDAX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Moreover, fabricated AgNPs and aqueous leaf extract were assessed for their cytotoxicity effect against human breast carcinoma cell line (MCF-7). It is concluded that colloidal AgNPs can be developed as an imminent candidature for cancer therapy.

  12. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7.

    Science.gov (United States)

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-05

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.

  13. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells.

    Science.gov (United States)

    Karmakar, Alokita; Bratton, Stacie M; Dervishi, Enkeleda; Ghosh, Anindya; Mahmood, Meena; Xu, Yang; Saeed, Lamya Mohammed; Mustafa, Thikra; Casciano, Dan; Radominska-Pandya, Anna; Biris, Alexandru S

    2011-01-01

    A gene delivery concept based on ethylenediamine-functionalized single-walled carbon nanotubes (f-SWCNTs) using the oncogene suppressor p53 gene as a model gene was successfully tested in vitro in MCF-7 breast cancer cells. The f-SWCNTs-p53 complexes were introduced into the cell medium at a concentration of 20 μg mL(-1) and cells were exposed for 24, 48, and 72 hours. Standard ethidium bromide and acridine orange assays were used to detect apoptotic cells and indicated that a significantly larger percentage of the cells (approx 40%) were dead after 72 hours of exposure to f-SWCNTs-p53 as compared to the control cells, which were exposed to only p53 or f-SWCNTs, respectively. To further support the uptake and expression of the genes within the cells, green fluorescent protein-tagged p53, attached to the f-SWCNTs was added to the medium and the complex was observed to be strongly expressed in the cells. Moreover, caspase 3 activity was found to be highly enhanced in cells incubated with the f-SWCNTs-p53 complex, indicating strongly induced apoptosis. This system could be the foundation for novel gene delivery platforms based on the unique structural and morphological properties of multi-functional nanomaterials.

  14. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7

    Science.gov (United States)

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-01

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.

  15. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7.

    Science.gov (United States)

    García-Solís, Pablo; Yahia, Elhadi M; Morales-Tlalpan, Verónica; Díaz-Muñoz, Mauricio

    2009-01-01

    We evaluated the antiproliferative effect of aqueous extracts of 14 plant foods consumed in Mexico on the breast cancer cell line MCF-7. The plant foods used were avocado, black sapote, guava, mango, prickly pear cactus stems (called nopal in Mexico, cooked and raw), papaya, pineapple, four different cultivars of prickly pear fruit, grapes and tomato. β-Carotene, total phenolics and gallic acid contents and the antioxidant capacity, measured by the ferric reducing/antioxidant power and the 2,2-diphenyl-1,1-picrylhydrazyl radical scavenging assays, were analyzed in each aqueous extract. Only the papaya extract had a significant antiproliferative effect measured with the methylthiazolydiphenyl-tetrazolium bromide assay. We did not notice a relationship between the total phenolic content and the antioxidant capacity with antiproliferative effect. It is suggested that each extract of plant food has a unique combination of the quantity and quality of phytochemicals that could determine its biological activity. Besides, papaya represents a very interesting fruit to explore its antineoplastic activities.

  16. Artemisinic acid exhibits antitumor activity in MCF-7 breast cancer cells through the inhibition of angiogenesis, VEGF, m-TOR and AKT signalling pathways

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-09-01

    Full Text Available The aim of the present study was to evaluate the antitumor and anti-angiogenic effects of artemisinic acid in MCF-7 human breast cancer cells. Various cell signalling pathways (VEGF, m-TOR and AKT signalling pathways and MTT assay were used. The in vivo antitumor activity of artemisinic acid was evaluated by means of tumor xenograft mouse model. Transwell cell migration assay was used to examine the chemotactic motility of the human umbilical vascular endothelial cells (HUVECs, while as endothelial cell capillary-like tube formation assay was used to evaluate the effect of artemisinic acid on the tube formation in HUVECs. We found that artemisinic acid considerably reduced both the volume and weight of concrete tumors and reduced angiogenesis in a xenograft mouse tumor model in vivo. Further, artemisinic acid suppressed the VEGF-induced cell migration and capillary-like tube formation of HUVECs in a dose-dependent manner. Artemisinic acid was found to suppress the VEGF-induced phosphorylation of VEGFR2 and also the activity of AKT and m-TOR.

  17. Nandrolone and stanozolol upregulate aromatase expression and further increase IGF-I-dependent effects on MCF-7 breast cancer cell proliferation.

    Science.gov (United States)

    Sirianni, Rosa; Capparelli, Claudia; Chimento, Adele; Panza, Salvatore; Catalano, Stefania; Lanzino, Marilena; Pezzi, Vincenzo; Andò, Sebastiano

    2012-11-05

    Several doping agents, such as anabolic androgenic steroids (AAS) and peptide hormones like insulin-like growth factor-I (IGF-I), are employed without considering the potential deleterious effects that they can cause. In addition, androgens are used in postmenopausal women as replacement therapy. However, there are no clear guidelines regarding the optimal therapeutic doses of androgens or long-term safety data. In this study we aimed to determine if two commonly used AAS, nandrolone and stanozolol, alone or in combination with IGF-I, could activate signaling involved in breast cancer cell proliferation. Using a human breast cancer cell line, MCF-7, as an experimental model we found that both nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and, consequently, estradiol production. Moreover, when nandrolone and stanozolol were combined with IGF-I, higher induction in aromatase expression was observed. This increase involved phosphatidylinositol 3-kinase (PI3K)/AKT and phospholipase C (PLC)/protein kinase C (PKC), which are part of IGF-I transductional pathways. Specifically, both AAS were able to activate membrane rapid signaling involving IGF-I receptor, extracellular regulated protein kinases 1/2 (ERK1/2) and AKT, after binding to estrogen receptor (ER), as confirmed by the ability of the ER antagonist ICI182, 780 to block such activation. The estrogenic activity of nandrolone and stanozolol was further confirmed by their capacity to induce the expression of the ER-regulated gene, CCND1 encoding for the cell cycle regulator cyclin D1, which represents a key protein for the control of breast cancer cell proliferation. In fact, when nandrolone and stanozolol were combined with IGF-I, they increased cell proliferation to levels higher than those elicited by the single factors. Taken together these data clearly indicate that the use of high doses of AAS, as occurs in doping practice, may increase the risk of breast cancer. This

  18. Effects of Phytoestrogen Extracts Isolated from Elder Flower on Hormone Production and Receptor Expression of Trophoblast Tumor Cells JEG-3 and BeWo, as well as MCF7 Breast Cancer Cells

    Science.gov (United States)

    Schröder, Lennard; Richter, Dagmar Ulrike; Piechulla, Birgit; Chrobak, Mareike; Kuhn, Christina; Schulze, Sandra; Abarzua, Sybille; Jeschke, Udo; Weissenbacher, Tobias

    2016-01-01

    Herein we investigated the effect of elderflower extracts (EFE) and of enterolactone/enterodiol on hormone production and proliferation of trophoblast tumor cell lines JEG-3 and BeWo, as well as MCF7 breast cancer cells. The EFE was analyzed by mass spectrometry. Cells were incubated with various concentrations of EFE. Untreated cells served as controls. Supernatants were tested for estradiol production with an ELISA method. Furthermore, the effect of the EFE on ERα/ERβ/PR expression was assessed by immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production was inhibited in all cells in a concentration-dependent manner. EFE upregulated ERα in JEG-3 cell lines. In MCF7 cells, a significant ERα downregulation and PR upregulation were observed. The control substances enterolactone and enterodiol in contrast inhibited the expression of both ER and of PR in MCF7 cells. In addition, the production of estradiol was upregulated in BeWo and MCF7 cells in a concentration dependent manner. The downregulating effect of EFE on ERα expression and the upregulation of the PR expression in MFC-7 cells are promising results. Therefore, additional unknown substances might be responsible for ERα downregulation and PR upregulation. These findings suggest potential use of EFE in breast cancer prevention and/or treatment and warrant further investigation. PMID:27740591

  19. Highexpression of Snail leads to the P-gp modulateds MDR in breast cancer cell MCF-7%Snail增强乳腺癌细胞MCF-7中P-gp介导的多药耐药

    Institute of Scientific and Technical Information of China (English)

    刘传亮; 王辉; 陈伟娟; 王晓杰; 李洪利; 赵修世; 李文通

    2010-01-01

    目的 探讨乳腺癌细胞中Snail过表达与P-gp之间的关系,揭示EMT对乳腺癌细胞多药耐药的影响.方法 构建Snail真核表达载体pCDNA3.1-Snail,将载体转染人乳腺癌细胞MCF-7后用阿霉素对细胞进行诱导.利用细胞毒性实验(MTT)、阿霉素外排实验对耐药细胞系的耐药状况进行评价;通过流式细胞术和Real-time PCR分别测量耐药细胞系中P-gp和MDR1 mRNA,Snail mRNA的表达.结果 由细胞毒性实验和阿霉素外排实验的结果显示,MCF-7/Snail细胞经阿霉素诱导后相对耐药指数升高至109.2,细胞内荧光强度降至7.1(P<0.05);Real-time PCR显示相对于MCF-7,MCF-7/Snail细胞中的MDR1 mRNA,Snail mRNA的表达明显升高与流式细胞术显示的P-gp升高相一致.结论 转染Snail真核表达载体后,MCF-7/Snail细胞的耐药性较MCF-7细胞明显升高.

  20. 细胞代谢组学用于羽扇豆醇干预人乳腺癌细胞 MCF-7的机理探究%Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics

    Institute of Scientific and Technical Information of China (English)

    史栋栋; 况媛媛; 王桂明; 彭章晓; 王彦; 阎超

    2014-01-01

    应用基于气相色谱-质谱联用(GC-MS)的代谢组学方法结合细胞周期实验,研究羽扇豆醇体外抑制人乳腺癌细胞 MCF-7增殖的作用机理。代谢组学的研究结果表明:通过正交偏最小方差判别分析( OPLS-DA)可以很好地区分羽扇豆醇作用的 MCF-7细胞代谢谱与对照组细胞代谢谱,模型参数为:R 2 Ycum =0.988,Q 2 Ycum =0.964。VIP(variable importance in the projection)值大于1的差异代谢物进一步用 t 检验进行单位分析,选择 t﹤0.05(VIP﹥1)的代谢物作为羽扇豆醇作用组的生物标志物,得到琥珀酸、磷酸、亮氨酸、异亮氨酸等11种代谢差异物。结合羽扇豆醇将细胞周期抑制在 G1期这一现象,推测羽扇豆醇可能是主要抑制了三羧酸循环中的琥珀酰辅酶 A 的生成和底物磷酸化生成 ATP 的反应来抑制 MCF-7细胞的增殖。本实验从代谢组学角度为乳腺癌抗肿瘤机制提供新的线索。%The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells,and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry(GC-MS)was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then,orthogonal partial least squares discriminant analysis(OPLS-DA)was used to process the metabolic data and model parameters of OPLS-DA were as fol-lows:R2 Ycum = 0. 988,Q 2 Ycum = 0. 964,which indicated that these two groups could be distin-guished clearly. The metabolites( VIP( variable importance in the projection)﹥ 1)were ana-lyzed by t-test,and finally,metabolites( t﹤0. 05)were identified to be biomarkers. Eleven metabolites such as butanedioic acid,phosphoric acid,L-leucine and isoleucine which had a significant contribution to classification were selected and preliminarily identified due to the

  1. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca{sup 2+}]{sub i}) in MCF-7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Elizabeth; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha (Qatar)

    2014-11-06

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca{sup 2+}]{sub i}) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca{sup 2+}]{sub i} in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca{sup 2+}]{sub i}. Overall, elevation of [Ca{sup 2+}]{sub i} by Auranofin might be crucial for triggering Ca{sup 2+}-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca{sup 2+}]{sub i} should be considered as a crucial factor for the induction of cell death in cancer cells.

  2. Metabolic profiling reveals sphingosine-1-phosphate kinase 2 and lyase as key targets of (phyto- estrogen action in the breast cancer cell line MCF-7 and not in MCF-12A.

    Directory of Open Access Journals (Sweden)

    Nadja Engel

    Full Text Available To search for new targets of anticancer therapies using phytoestrogens we performed comparative metabolic profiling of the breast cancer cell line MCF-7 and the non-tumorigenic breast cell line MCF-12A. Application of gas chromatography-mass spectrometry (GC-MS revealed significant differences in the metabolic levels after exposure with 17ß-estradiol, genistein or a composition of phytoestrogens within a native root flax extract. We observed the metabolites 3-(4-hydroxyphenyl-lactic acid, cis-aconitic acid, 11-beta-hydroxy-progesterone, chenodeoxycholic acid and triacontanoic acid with elevated levels due to estrogen action. Particularly highlighted were metabolites of the sphingolipid metabolism. Sphingosine and its dihydro derivate as well as ethanolaminephosphate were significantly altered after exposure with 1 nM 17ß-estradiol in the cell line MCF-7, while MCF-12A was not affected. Treatment with genistein and the flax extract normalized the sphingosine concentrations to the basic levels found in MCF-12A cells. We could further demonstrate that the expression levels of the sphingosine metabolizing enzymes: sphingosine-1-phosphate kinase (Sphk and lyase (S1P lyase were significantly influenced by estrogens as well as phytoestrogens. The isoform Sphk2 was overexpressed in the tumorigenic cell line MCF-7, while S1P lyase was predominantly expressed in the non-tumorigenic cell line MCF-12A. Importantly, in MCF-7 the weak S1P lyase expression could be significantly increased after exposure with 10 µM genistein and 1 µg/ml root flax extract. Here, we present, for the first time, an analysis of metabolic response of phytoestrogens to breast cancer cell lines. The contrasting regulation of sphingolipid enzymes in MCF-7 and MCF-12A render them as preferred targets for future anticancer strategies.

  3. The Cytotoxicity of Indirubin Derivative PHⅡ-7 against Human Breast Cancer MCF-7 Cells and Its Mechanisms%靛玉红衍生物PHⅡ-7对人乳腺癌细胞株MCF-7的杀伤效应及其机制

    Institute of Scientific and Technical Information of China (English)

    师锐赞; 胡晓玲; 彭洪薇; 范俊强; 吕志杰; 郭芬芬; 熊冬生

    2012-01-01

    目的 观察靛玉红衍生物PH Ⅱ-7对人乳腺癌癌细胞株MCF-7的杀伤作用并探讨其初步机制.方法 四唑蓝(MTT)比色法检测细胞的增殖活性;Annexin V/PI双染法检测细胞凋亡率;PI染色结合流式细胞术检测细胞周期分布;DCFH-DA染色检测细胞内活性氧(reactive oxygen species,ROS)生成变化;RT-PCR法、Western blot法检测原癌基因c-fos基因及蛋白表达水平.结果 不同浓度的PH Ⅱ-7对MCF-7细胞的增殖抑制率为43.13 % ~ 90.90 %,抑制效应随着浓度增加而增强(P<0.05);各实验浓度的PH Ⅱ-7均能诱导细胞凋亡,1.25、2.5、5.0 μmol/L PH Ⅱ-7作用24 h后,MCF-7细胞的早期凋亡率分别为(1.43 ± 0.02) %,(9.14 ± 0.36) %,(45.79 ± 8.46)%,具有浓度依赖性; PH Ⅱ-7处理MCF-7后致其G0/G1期和S期细胞比例下降,G2/M 期细胞比例明显上升;PH Ⅱ-7作用于MCF-7细胞2 h后,细胞内ROS水平显著增高;PH Ⅱ-7处理MCF-7后,原癌基因c-fos mRNA和蛋白表达呈浓度依赖性下调.结论 PH Ⅱ-7对MCF-7具有明显的体外杀伤作用,其作用机制可能与细胞周期阻滞、改变细胞氧化还原平衡状态及下调原癌基因表达有关.%Objective To observe the cytotoxicity of indirubin derivative PHII-7 against human breast cancer MCF-7 cells and to study its primary mechanisms. Methods The proliferation of MCF-7 cells was detected using MTT colorimetry. Annexin V/PI double staining was applied to detect the apoptosis rate of MCF-7 cells. The distribution of cell cycles was detected using PI staining and flow cytometry (FCM). The levels of reactive oxygen species (ROS) in MCF-7 cells were detected by DCFH-DA staining. The mRNA and protein levels of c-fos were detected using RT-PCR and Western blot analysis. Results PHH-7 at different concentrations inhibited the proliferation of MCF-7 cells in a concentration-dependent manner, with the inhibitory rate ranging from 43.13% to 90. 90% (P<0. 05). The inhibition was strengthened along with

  4. Effect of ROS on Apoptosis of Human Breast Cancer MCF-7 Cells Induced by Cadmium Chlorid%ROS对氯化镉诱导的人乳腺癌MCF-7细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    周筱轩; 陆伟; 钟玲盈; 钱爱东; 周培

    2014-01-01

    为研究活性氧(ROS)对氯化镉(CdCl2)诱导的人乳腺癌MCF-7细胞凋亡的影响,本文采用荧光探针DHR检测CdCl2诱导的MCF-7细胞内ROS的变化水平;分别采用MTT法和DNALadder法检测CdCl2对细胞的毒性作用和细胞DNA的凋亡情况;通过加入自由基清除剂LNAC抑制细胞内的ROS水平,从而研究ROS对细胞凋亡的影响.结果显示,1.00×10-3 mol/L的CdCl2处理MCF-7细胞6h,细胞内ROS水平为对照组的2.04倍,细胞存活率为26.54%,DNA出现片段化分解.用CdCl2+LNAC复合处理MCF-7细胞6h,细胞内ROS水平为对照组的1.25倍,细胞存活率为61.17%,DNA不出现凋亡条带.因此,由CdCl2所导致的MCF-7细胞凋亡和DNA片段化分解,与细胞内ROS水平的升高有关.

  5. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Young-Rae Lee

    2013-04-01

    Full Text Available Sulforaphane [1-isothiocyanato-4-(methylsulfinyl-butane] is anisothiocyanate found in some cruciferous vegetables, especiallybroccoli. Sulforaphane has been shown to displayanti-cancer properties against various cancer cell lines. Matrixmetalloproteinase-9 (MMP-9, which degrades the extracellularmatrix (ECM, plays an important role in cancer cell invasion.In this study, we investigated the effect of sulforaphane on12-O-tetradecanoyl phorbol-13-acetate (TPA-induced MMP-9expression and cell invasion in MCF-7 cells. TPA-inducedMMP-9 expression and cell invasion were decreased bysulforaphane treatment. TPA substantially increased NF-κB andAP-1 DNA binding activity. Pre-treatment with sulforaphaneinhibited TPA-stimulated NF-κB binding activity, but not AP-1binding activity. In addition, we found that sulforaphanesuppressed NF-κB activation, by inhibiting phosphorylation ofIκB in TPA-treated MCF-7 cells. In this study, we demonstratedthat the inhibition of TPA-induced MMP-9 expression and cellinvasion by sulforaphane was mediated by the suppression ofthe NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4:201-206

  6. Bisacylimidoselenocarbamates cause G2/M arrest associated with the modulation of CDK1 and Chk2 in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Lamberto, Iranzu; Plano, Daniel; Moreno, Esther; Font, María; Palop, Juan Antonio; Sanmartín, Carmen; Encío, Ignacio

    2013-01-01

    Bisacylimidoselenocarbamate derivatives (BSC) are potent anticancer agents with a strong cytotoxic activity against different types of tumour cells. Based in phosphatidylserine exposure on the cell membranes we show that BSC treatment resulted in enhanced cell death in leukaemia CCRF-CEM cells. DNA fragmentation detection in breast adenocarcinoma MCF-7 cells showed that BSC triggered cell death is concentration and time dependent. We also show that two of these compounds, BSC 3g and 3n, cause cell-cycle arrest in the late G2/M in MCF-7 cells. Consistent with this, a reduction in CDK1 and CDK2 expression with no change in cyclin A an B1 was observed in this cell line. Activation of caspase-2 was also detected. However, the involvement of the caspase-dependent pathway in the process of cell death induced by either BSC 3g or 3n is discarded since cell death could not be prevented by pretreatment with the pancaspase inhibitor z-VAD-fmk. Moreover, since reduced levels of p21(CIP1) and Chk2 proteins but no change in p53 levels could be detected in MCF-7 cells after BSC 3g or 3n treatment our results suggest that BSC treated cells die from lethal mitosis.

  7. Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation, in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Martin, Keith R; Wooden, Alissa

    2012-11-01

    Consumption of polyphenol-rich fruits, for example, tart cherries, is associated with a lower risk of cardiovascular disease and cancer. This is due, in large part, to the diverse myriad bioactive agents, that is, polyphenol anthocyanins, present in fruits. Anthocyanin-rich tart cherries purportedly modulate numerous cellular processes associated with oncogenesis such as apoptosis, cellular proliferation (CP), and cell cycle progression, although the effective concentrations eliciting these effects are unclear. We hypothesized that several dose-dependent effects over a large concentration range of 100% tart cherry juice (TCJ) would exist and affect these processes differentially with the potential for cellular protection and cellular death either by apoptosis or by necrosis. In this in vitro study, we tested the dose response of TCJ on CP and cell death in MCF-7 human breast cancer cells. TCJ was added at 0.03-30% (v/v) to cells and incubated overnight with the medium alone or with increasing TCJ. Bromodeoxyuridine incorporation was significantly reduced by 20% at ≥10% (v/v) TCJ and associated with necrosis, but was not different between the control and treatment groups at <10% TCJ. MTT reduction was also significantly reduced by 27% and 80% at 10% and 30% TCJ, respectively, and associated with necrosis. Apoptosis, but not necrosis, was increased ∼63% at 3% TCJ (∼307 nM monomeric anthocyanins), yet significantly decreased (P<.05) by 20% at 1% TCJ (920 nM) both of which were physiologically relevant concentrations of anthocyanins. The data support a biphasic effect on apoptosis and no effect on proliferation.

  8. Ethylenediamine functionalized-single-walled nanotube (f-SWNT-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Karmakar A

    2011-05-01

    Full Text Available Alokita Karmakar2, Stacie M Bratton1, Enkeleda Dervishi2, Anindya Ghosh3, Meena Mahmood2, Yang Xu2, Lamya Mohammed Saeed2, Thikra Mustafa2, Dan Casciano2, Anna Radominska-Pandya1, Alexandru S Biris21Biochemistry Department, University of Arkansas for Medical Sciences; 2Nanotechnology Center, Applied Science Department; 3Department of Chemistry, University of Arkansas, Little Rock, AR, USAAbstract: A gene delivery concept based on ethylenediamine-functionalized single-walled carbon nanotubes (f-SWCNTs using the oncogene suppressor p53 gene as a model gene was successfully tested in vitro in MCF-7 breast cancer cells. The f-SWCNTs-p53 complexes were introduced into the cell medium at a concentration of 20 µg mL-1 and cells were exposed for 24, 48, and 72 hours. Standard ethidium bromide and acridine orange assays were used to detect apoptotic cells and indicated that a significantly larger percentage of the cells (approx 40% were dead after 72 hours of exposure to f-SWCNTs-p53 as compared to the control cells, which were exposed to only p53 or f-SWCNTs, respectively. To further support the uptake and expression of the genes within the cells, green fluorescent protein-tagged p53, attached to the f-SWCNTs was added to the medium and the complex was observed to be strongly expressed in the cells. Moreover, caspase 3 activity was found to be highly enhanced in cells incubated with the f-SWCNTs-p53 complex, indicating strongly induced apoptosis. This system could be the foundation for novel gene delivery platforms based on the unique structural and morphological properties of multi-functional nanomaterials.Keywords: carbon nanotubes, gene delivery, cancer cells, p53 oncogene suppressor

  9. Antiproliferative effect of Phytosome complex of Met hanolic extact of Terminalia Arjuna bark on Human Breast Cancer Cell Lines (MCF-7

    Directory of Open Access Journals (Sweden)

    Sharma Shalini 1

    2015-03-01

    Full Text Available Methanolic extract of Terminalia arjuna Roxb of family combretaceae is rich in flavonoids content which are responsible for its antiproliferative activity but these bioactive constituents have poor oral and topical absorption either due to the large molecular weight or poor miscibility with lipids. These poorly soluble herbal extracts can be converted into lipid compatible molecular complexes called phytosomes by binding individual constituents of the herbal extractto phosphatidylcholine. Phytosomes are known to show improved oral and topical absorption followed by enhanced activity as compared to pure herbal extracts. This study was aimed at preparing methanolic extract of Terminalia arjuna bark and Terminalia arjuna bark Extract Phytosome and investigating their antiproliferative activity on human MCF-7 cell line by MTT assay. Comparison of the antiproliferative activity was done with with quercetin and its phytosomes. IC50of methanolic extract of Terminalia arjuna bark and Terminalia arjuna bark Extract Phytosome against cancer cell lines MCF-7 was found to be 25μg/ml and 15μg/ml respectively whereas that of quercetin and its phytosomes was found to be 2μg/ml and 0.7μg/ml respectively. The results suggests that Terminalia arjuna bark Extract Phytosome & quercetin phytosomes are active pharmacologically and exerts more antiproliferative effect on MCF-7 cells as compared to pure methanolic extract of plant and pure quercetin respectively.

  10. RIP3基因重组质粒构建及其表达对MCF7细胞死亡方式的影响%Construction of Recombinant Plasmid of Human RIP3 Gene and Its Effects on the Death of Breast Cancer MCF7 Cells

    Institute of Scientific and Technical Information of China (English)

    路灿; 徐惠君; 贾勇圣; 佟仲生

    2014-01-01

    目的:建立稳定过表达RIP3基因的乳腺癌细胞株,并证实融合蛋白在细胞内的表达、定位及对MCF7细胞死亡方式的影响。方法逆转录聚合酶链反应(RT-PCR)检测4种乳腺癌细胞及正常乳腺上皮细胞中RIP3 mRNA的表达。以正常乳腺上皮细胞MCF10A cDNA为模板,PCR扩增RIP3基因cDNA全长,将合成的RIP3编码区序列,克隆入mCherry载体的N末端,构建重组质粒mCherry-RIP3,对重组质粒进行酶切鉴定及DNA测序。钙法转染293T细胞,收集病毒感染MCF7细胞,杀稻瘟菌素(4 mg/L)维持筛选,构建稳定表达细胞株。Western blot、荧光显微镜等检测目的基因表达效率及蛋白定位。显微镜下观察肿瘤坏死因子(TNF)-α及Caspase抑制剂Z-VAD-FMK处理下mCherry-RIP3-MCF7细胞的死亡形态及比例。结果 RIP3 mRNA在乳腺癌细胞中普遍低表达。RIP3基因成功克隆入载体。过表达mCherry-RIP3基因的MCF7细胞可见红色荧光蛋白表达,定位于胞质。目的基因RIP3在转染细胞中为过表达。mCherry-RIP3转染后增强MCF7细胞对TNF-α联合Z-VAD-FMK诱导的细胞坏死的敏感性。结论成功构建RIP3基因过表达重组质粒,获得外源性RIP3稳定过表达的乳腺癌MCF7细胞株,mCherry-RIP3定位于胞质,并在TNF-α介导的程序性坏死中起作用。%Objective To construct the recombinant RIP3 over-expressed plasmids and transfect them in breast cancer MCF7 cells, and identify the expression and localization of fusion protein, as well as its effect on the death way of MCF7 cells. Methods The expression levels of RIP3 mRNA in four breast cancer cell lines and normal mammary epithelial cells were detected by reverse transcription polymerase chain reaction (RT-PCR). The RIP 3 coding sequence was amplified by polymerase chain reaction and subcloned into mCherry vector to construct recombinant plasmids. The plasmids were transfected into MCF7 cells by lentivirus after DNA

  11. Genistein Plays Antitumor Role through Cell Cycle and Apotosis Pathways in Human Breast Cancer Cell Line MCF-7/ADM in vitro%三羟异黄酮对人乳腺癌MCF-7/ADM细胞体外抑瘤效应、细胞周期及凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    王耕; 黄韬; 薛家鹏; 王明华; 惠震

    2011-01-01

    Objective To study the antitumor effect of genistein (Genistein GEN) in cultured drug-resistant breast cancer cell line of MCF-7/ADM in vitro, and influences of genistein to cell cycle and apoptosis. Methods Inhibitory effect of GEN alone or combined with doxorubicin on the cultured MCF-7/ADM was detected by MTT assay; the accumulative effect of GEN on doxorubicin in MCF-7/ADM was detected by fluorescence spectrophotometry; and cell cycle and apoptosis rate was detecced by flow cytometry (FCM). Results Significant inhibitory effect on cultured MCF-7/ADM in vitro was not observed under GEN alone or combined with Doxorubicin 48 h later GEN treated alone, the inhibition increased gradually in time-dependent model. When the concentration of GEN reached 60 μg/ml, inhibition effect was markedly increased (P<0. 01). When Doxorubicin was added, the inhibition rate was significant increased compared with the control group (P<0. 01), and the inhibition strengthened with the increasing concentration of GEN, concentration of intracellular doxorubicin was also increased. Compared with the control group, the cell cycle were both blocked at G2/M phase, apoptosis was found to be the highest percentage in the combination group (P< 0. 01), typical hypodiploid apoptotic peak was detected before the G1 phase. Conclusion GEN alone and combined with Doxorubicin had an inhibitory and additive effect on cultured human breast cancer cell line MCF-7/ ADM in vitro, it could increase the intracellular accumulation of Doxorubicin and arrest cell cycle at phase G2/ M, as well as in inducing significant apoptosis of MCF-7/ADM cells, which may be one of its molecular mechanisms of the reversal of multidrug resistance.%目的 探讨三羟异黄酮(Genistein GEN)对体外培养人乳腺癌耐药细胞MCF-7/ADM抑瘤作用、细胞周期及细胞凋亡的影响.方法 采用MTT法检测GEN单独及联合阿霉素对体外培养人乳腺癌MCF-7/ADM细胞的抑制作用;荧光分光光度法检测GEN对阿霉素在MCF

  12. Cathepsin G Induces Cell Aggregation of Human Breast Cancer MCF-7 Cells via a 2-Step Mechanism: Catalytic Site-Independent Binding to the Cell Surface and Enzymatic Activity-Dependent Induction of the Cell Aggregation

    Directory of Open Access Journals (Sweden)

    Riyo Morimoto-Kamata

    2012-01-01

    Full Text Available Neutrophils often invade various tumor tissues and affect tumor progression and metastasis. Cathepsin G (CG is a serine protease secreted from activated neutrophils. Previously, we have shown that CG induces the formation of E-cadherin-mediated multicellular spheroids of human breast cancer MCF-7 cells; however, the molecular mechanisms involved in this process are unknown. In this study, we investigated whether CG required its enzymatic activity to induce MCF-7 cell aggregation. The cell aggregation-inducing activity of CG was inhibited by pretreatment of CG with the serine protease inhibitors chymostatin and phenylmethylsulfonyl fluoride. In addition, an enzymatically inactive S195G (chymotrypsinogen numbering CG did not induce cell aggregation. Furthermore, CG specifically bound to the cell surface of MCF-7 cells via a catalytic site-independent mechanism because the binding was not affected by pretreatment of CG with serine protease inhibitors, and cell surface binding was also detected with S195G CG. Therefore, we propose that the CG-induced aggregation of MCF-7 cells occurs via a 2-step process, in which CG binds to the cell surface, independently of its catalytic site, and then induces cell aggregation, which is dependent on its enzymatic activity.

  13. In vitro cytotoxic effects of modified zinc oxide quantum dots on breast cancer cell lines (MCF7), colon cancer cell lines (HT29) and various fungi

    Science.gov (United States)

    Fakhroueian, Zahra; Dehshiri, Alireza Mozafari; Katouzian, Fatemeh; Esmaeilzadeh, Pegah

    2014-07-01

    An important ideal objective of this study was to perform surface functionalization of fine (1-3 nm) ZnO quantum dot nanoparticles (QD NPs) in order to inhibit decomposition and agglomeration of nanoparticles in aqueous media. Polymers, oily herbal fatty acids, PEG (polyethylene glycol), and organosilanes are the main reagents used in these reactions, because they are completely soluble in water, and can be used as biological probes in nanomedicine. Vegetable fatty acid-capped ZnO (QD NPs) was fabricated by dissolving at a suitable pH after sol-gel method in the presence of nonionic surfactants as efficient templates with a particular HLB (hydrophilic-lipophilic balance) value (9.7 and 8.2). In the present research, we focused on the cellular toxicity of fine zinc oxide QD NPs containing particular blue fluorescence for targeted delivery of MCF7 and HT29 cancer cell lines. The IC50 values were determined as 10.66 and 5.75 µg/ml for MCF7 and HT29, respectively. These findings showed that ZnO QDs have low toxicity in normal cells (MDBK) and can display potential application in cancer chemotherapy in the near future. These properties could result in the generation of a promising candidate in the field of nanobiomedicine. The robust-engineered ZnO QD NPs showed their antibacterial and antifungal activities against Bacillus anthracis, Staphylococcus aureus, Klebsiella pneumonia, and Staphylococcus epidermidis bacteria and also different fungi such as Microsporum gypseum, Microsporum canis, Trichophyton mentagrophytes, Candida albicans, and Candida tropicalis, compared with the standard antibiotic agents like Gentamicin and Clotrimazol.

  14. Noxa基因转染乳腺癌MCF-7细胞的增殖抑制和促凋亡作用%Noxa Gene Inhibited Proliferation and Induced Apoptosis in Human Breast Cancer Cell Line MCF-7

    Institute of Scientific and Technical Information of China (English)

    赵志; 吴爱国; 沈三弟

    2010-01-01

    目的 探讨Noxa基因转染乳腺癌MCF-7细胞的增殖抑制和促凋亡作用.方法 利用脂质体将真核表达载体pIRES2-EGFP-Noxa瞬时转染至乳腺癌MCF-7细胞,通过RT-PCR检测转染后Noxa基因mRNA的表达,Western blot检测转染后蛋白的表达,MTT比色法测定细胞增殖的抑制,流式细胞仪检测细胞的凋亡和细胞周期的变化,Hoechst 33342染色检测细胞的凋亡情况.结果 Noxa基因转染后在乳腺癌MCF-7细胞中成功表达.转染后tuRNA及蛋白表达持续上升,其转染后24h、48h、72hmRNA的相对灰度值分别为(0.347±0.031)、(0.703±0.041)、(1.044±0.033),差异具有统计学意义(P<0.05).转染24h、48h、72h后蛋白表达的相对灰度值为(1.171±0.086)、(1.013±0.088)、(0.886±0.063),差异具有统计学意义(P<0.05).Noxa基因的表达使得乳腺癌MCF-7细胞出现增殖抑制,其24h、48h、72h抑制率分别为(23.9±4.2)%、(36.6±3.0)%、(47.0±3.3)%,差异具有统计学意义(P<0.05).流式细胞仪检测显示MCF-7细胞DNA合成受到抑制,细胞周期主要抑制在G0/G1期.其转染24h、48h、72h的G0/G1,期分别为(68.1±2.5)%、(72.6±1.5)%、(75.6±0.9)%,与阴性对照组相比,差异具有统计学意义(P<0.05);其24h、48h、72h凋亡率分别为(11.5±0.9)%、(19.6±0.8)%、(25.4±0.7)%,组间差异有统计学意义(P<0.05).Hoechst 33342染色显示Nora基因转染后细胞出现凋亡,其24h、48h、72h凋亡率分别为(7.3±4.1)%、(16.8±3.3)%、(23.8±2.3)%,与阴性对照组相比,其差异具有统计学意义(P<0.05).结论 NOXB基因转染乳腺癌MCF-7细胞后能够抑制细胞增殖并促进其凋亡.

  15. Experimental study on reversal of drug-resistance of human breast cancer cell line MCF-7 by Hua-ier fungi extract in vitro%槐耳清膏体外逆转人乳腺癌细胞MCF-7耐三苯氧胺的研究

    Institute of Scientific and Technical Information of China (English)

    薛丹青; 凌立君; 肇毅; 刘晓安; 王水; 查小明

    2010-01-01

    目的 探讨槐耳清膏体外逆转人乳腺癌细胞MCF-7耐三苯氧胺(TAM)的作用及其机制.方法 使用噻唑蓝(MTT)比色法测定不同药物处理对耐TAM的乳腺癌细胞株MCF-7/R的抑制率,流式细胞仪检测不同处理后MCF-7/R的凋亡情况和细胞周期变化.Western blot检测MCF-7/R不同处理后各组Phospho-P44/42MAPK(ERK1/2)及P44/42MAPK(ERK1/2)表达的差异.结果 MTT实验结果显示MCF-7/R的联合用药组抑制率(45.99±6.06)%和单药组抑制率(40.20±5.54)%分别与TAM对照组比较,差异有统计学意义(P<0.05);流式细胞检测结果显示与TAM对照组比较,MCF-7/R的联合用药组和单药组G1期峰前出现显著的凋亡峰,且联合用药组的凋亡率(20.03%)与单药组的凋亡率(11.06%)与TAM对照组(2.15%)比较作用显著;Western blot检测蛋白表达经灰度分析显示,药物作用12 h后Phospho-P44/42MAPK(ERK1/2)蛋白在联合用药组的表达(0.3153±0.0179)和单药组的表达(0.5362±0.0030)分别与TAM对照组(0.9752±0.0034)比较均有下降,差异有统计学意义(P<0.05),且联合组与单药组比较,差异有统计学意义(P<0.05).结论 槐耳清膏具有体外逆转MCF-7/R细胞对TAM的耐药作用,逆转机制可能与下调MAPK通路磷酸化蛋白ERK1/2的表达水平相关,提示槐耳清膏是一种有意义的耐药逆转剂.%Objective To investigate the effect and primary mechanism of Huaier fungi extract on reversal of tamoxifen-resistance of human breast cancer cell line MCF-7 in vitro. Methods Tamoxifen resistant cell line MCF-7/R cells were treated with the combination of Huaier fungi extract and Tamoxifen or separately, then the cell proliferation inhibition rates were determined by methyl thiazol tetrazolium (MTT)assay. The ratios of cells apoptosis and the change of cell cycle were also observed by flow cytometry. Protein expression of Phospho-P44/42MAPK(ERK1/2) and P44/42MAPK(ERK1/2) in each group were detected using Western blotting. Results It

  16. Influence of Src kinase inhibitor ZD6474 on breast cancer MCF-7 cells and its mechanism%Src 激酶抑制剂 ZD6474 对乳腺癌 MCF-7细胞增殖的影响及机制

    Institute of Scientific and Technical Information of China (English)

    赵玉涛; 杨迎花; 赵剑平

    2015-01-01

    Objective To investigate the effects of Src kinase inhibitor ZD 6474 on the proliferation of human breast cancer MCF-7 cells and its mechanism .Methods MCF-7 cells in logarithmic phase were treated with different concentra-tions of Src kinase inhibitor ZD6474 (1 ×10 -6 mol/L, 1 ×10 -5 mol /L, 1 ×10 -4 mol /L, 1 ×10 -3 mol /L and 1 ×10 -2 mol /L) .The cell growth inhibition rate was calculated by MTT method .Transwell assay was used to detect the invasion a-bility of MCF-7 cells in vitro.Western blotting was used to detect the protein expression of Src , E-cadherin andβ-catenin. The activity of Snail promoter was detected by reporter gene technology .Real-time PCR was used to detect the mRNA ex-pression of E-cadherin and β-catenin.Results When the MCF-7 cells were treated with ZD6474 at the concentrations of 1 ×10 -5 mol/L and 1 ×10 -4 mol/L, the inhibition rates were 12.2% and 27.5%.The invasion ability of MCF-7 cells in vitro was significantly decreased after being treated with ZD 6474 .The invasion abilities of MCF-7 cells treated with 1 × 10 -6 mol/L, 1 ×10 -5 mol/L,1 ×10 -4 mol/L,1 ×10 -3 mol/L and 1 ×10 -2 mol/L ZD6474 were 8.3%, 14.2%, 32.6%, 51.4%and 76.5%, respectively.Src tyrosine kinase inhibitor significantly up-regulated the expression of E-cad-herin at protein and mRNA levels , and down-regulated the expression of β-catenin at protein and mRNA levels as well as promoter activity of Snail .Conclusion Src kinase inhibitor ZD6474 could inhibit the proliferation of breast cancer cells , up-regulate the activity of E-caherin, down-regulate the expression of β-catenin and decrease the activity of Snail promoter , and thus it inhibits the invasion and metastasis of breast cancer cells .%目的 探讨Src激酶抑制剂ZD6474对乳腺癌MCF-7细胞增殖的影响及机制. 方法 取对数生长期的MCF-7细胞,分别加入1 ×10 -6 mol/L、1 ×10 -5 mol/L、1 ×10 -4 mol/L、1 ×10 -3 mol/L、1 ×10 -2 mol/L的Src激酶抑制剂ZD6474. 采

  17. Evidence of a Genomic Biomarker in Normal Human Epithelial Mammary Cell Line, MCF-10A, That Is Absent in the Human Breast Cancer Cell Line, MCF-7

    Directory of Open Access Journals (Sweden)

    Brian H. Crawford

    2006-01-01

    MCF-7 cells, it was transfected into MCF-7 cells. There were observable changes in the morphology of the transfected cells. These changes included an increase in cell elongation and a decrease in cell aggregation.

  18. 他莫昔芬对乳腺癌 MCF-7细胞侵袭能力、MMP-9活性和表达的影响及机制%Effects of tamoxifen on invasion,activity and expression of MMP-9 in breast cancer MCF-7 ceIIs

    Institute of Scientific and Technical Information of China (English)

    陈妍; 王婧; 徐旖旎; 洪端阳; 潘迪; 沈祥春

    2016-01-01

    Objective To explore the effects of tamoxifen (TAM)on the invasion,activity and expression of matrix met-alloproteinase-9 (MMP-9)in breast cancer MCF-7 cells,meanwhile to discuss the role of inhibiting G-protein-coupled receptor 30 (GPR30)in these effects.Methods MCF-7 cells in the logarithmic phase were pre-cultured for 24 h in phenol red (PR)-free medium without serum to remove endogenous estrogen before the indicated treatments.MCF-7 cells were seeded in the six-well plates and incubated over night to let them adhere on the plate.The control group was continued to cultivate in PR-free me-dium without serum for 24 h.The TAMgroup was treated with 1 μmol/L TAMin PR-free medium without serum for 24 h.And the TAM+G15 group was pretreated with G15 (1 μmol/L)for 30 min before treatment with TAM(1 μmol/L)for 24 h in PR-free medium without serum.After treatment,cell invasion was detected by Transwell assay.The activity of MMP-9 in culture me-dium was tested by Gelatin zymography assay.The MMP-9 protein expression was analyzed by Western blotting.The mRNA ex-pression of MMP-9 was tested by real-time RT-PCR.Results Compared with control group,the cell invasion was increased, the protein and mRNA expression level of MMP-9 was up-regulated,and the activity of MMP-9 in MCF-7 cells was increased in the TAMgroup (all P <0.05).Furthermore,compared with the TAMgroup,the above indexes of the TAM+G15 group were all decreased (all P <0.05).Conclusions TAMpromotes the cell invasion ability and up-regulates the activity and expression of MMP-9.Meanwhile,the effects may be suppressed by G15 pretreatment.%目的:观察他莫昔芬(TAM)对乳腺癌MCF-7细胞侵袭能力、基质金属蛋白酶9(MMP-9)活性、MMP-9蛋白表达、MMP-9 mRNA 表达的影响,并探讨抑制 G 蛋白偶联受体30(GPR30)对上述作用的影响。方法取对数生长期乳腺癌 MCF-7细胞,用无血清无酚红高糖 DMEM培养基培养24 h 耗竭内源性雌激素。将 MCF-7

  19. 龙葵碱通过线粒体途径诱导人乳腺癌MCF-7细胞凋亡%Solanine Induces Human Breast Cancer MCF-7 Apoptosis Through Mitochondrial Pathway

    Institute of Scientific and Technical Information of China (English)

    张新红; 朱佳; 徐水凌

    2014-01-01

    目的 研究龙葵碱对人乳腺癌MCF-7细胞凋亡的影响并探讨相关机制.方法 采用四甲基偶氮唑蓝(MTT)法观察不同浓度龙葵碱对人乳腺癌MCF-7细胞的生长抑制作用;4,6-二脒基-2-苯基吲哚(DAPI)染色荧光显微镜进行细胞凋亡核形态学观察;DNA琼脂糖凝胶电泳进行DNA片段化分析,FITC-Annexin V/PI荧光标记流式细胞术检测细胞凋亡率,荧光显微镜结合Fluo-8/Am法、流式细胞术和分光光度比色法分别检测胞内Ca2+浓度、线粒体膜电位(△Ψm)和caspase-3,caspase-8活性变化.结果 四甲基偶氮唑蓝法结果显示,龙葵碱对人乳腺癌MCF-7细胞有生长抑制作用.10.0 mmol.L-1龙葵碱处理2d,4,6-二眯基-2-苯基吲哚染色可见核浓缩及边缘现象,DNA电泳出现特征性的凋亡条带.10.0 mmol.L-1龙葵碱处理1,2,3d的细胞凋亡率分别为(20.9±7.3)%、(42.6±8.8)%和(74.9±12.8)%;细胞内Ca2+荧光强度分别为35.6±2.9、52.3±5.6和27.2±2.2;线粒体膜电位(△Ψm)值分剐下降7.7%、33.2%和46.9%;caspase-8活性在ld达最高(1.85±0.09)U·μg-1,caspase-3活性则在2d达最高(2.18±0.09)U·μg-1,与对照组相比均有统计学显著性差异(P<0.05).结论 龙葵碱可诱导人乳腺癌MCF-7细胞凋亡,其诱导凋亡的机制可能与胞内Ca2+浓度升高、线粒体膜电位降低和caspase-3、8活化有关.

  20. 乳腺癌MCF-7细胞Alu甲基化水平的MSRE-qPCR法检测%Detection of Alu methylation in MCF-7 breast cancer cells by MSRE-qPCR

    Institute of Scientific and Technical Information of China (English)

    徐酩; 吕京澴; 孙玉洁

    2010-01-01

    目的:寻找简单、可靠、经济并适合大批量检测肿瘤组织标本和肿瘤细胞系中Alu甲基化水平的实验方法.方法:用对甲基化敏感的限制性内切酶联合定量PCB(methylation-sensitive restriction endonuclease digestion and quantitative PCR,MSREqPCR)法检测乳腺癌细胞系MCF-7中Alu序列的甲基化水平,并与常用的亚硫酸氢盐修饰结合测序法(bisulfite-sequencing PCR,BSP)进行比较.结果:MSRE-qPCR显示Alu甲基化水平在BstU I酶切位点约为33.7%,在HpaⅡ酶切位点约为56.1%,与BSP法比较,两种方法都显示BstU I位点甲基化水平较低,而HpaⅡ位点甲基化水平较高,趋势一致,并提示MCF-7细胞的Alu甲基化水平明显低于正常细胞(84.6%或者更高).结论:MSRE-qPCR法简单、可靠、经济,适合用于大批量检测Alu甲基化水平.

  1. Metastasis of Human Breast Cancer Cells MCF-7 in Radiation-Treated SCID Mice%人乳腺癌MCF-7细胞在放射线处理的SCID小鼠中转移的实验研究

    Institute of Scientific and Technical Information of China (English)

    叶丽虹; 吴莲英; 张晓东; 朱惠芳; 王洪辉

    2005-01-01

    目的建立人乳腺癌MCF-7细胞SCID(Severe combined immunodeficiency,SCID)小鼠转移动物模型.方法采用人乳腺癌细胞株MCF-7细胞悬液,分别接种于5只经放射线处理的SCID小鼠腋背部皮下.记录肿瘤生长情况,处死荷瘤鼠并做病理切片,观察各脏器转移情况.结果接种SCID小鼠后6~10 d成瘤,成瘤率为5/5只,潜伏期平均(7.4±1.3)d.接种后5只鼠分别于第60~68天拉颈处死,检测荷瘤,平均直径为(26.6±2.2)mm,平均重量为5.28 g.病理学检查,转移脏器有3个部位,出现肺转移的为4/5只、骨转移的为3/5只和淋巴结转移的为1/5只.结论建立了人乳腺癌SCID小鼠转移动物模型,该模型可为肿瘤转移研究提供重要的实验工具.

  2. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  3. Exogenetic Overexpression of ST3Gal Ⅰ Increases the Ability of Adhesion and Invasion to ECM in Breast Cancer MCF-7 Cells%过表达外源ST3Gal Ⅰ增加MCF-7细胞与胞外基质粘附和侵袭能力

    Institute of Scientific and Technical Information of China (English)

    崔红霞; 岳丽玲; 刘吉成

    2011-01-01

    cytometry.The ability of adhesion and invasion of MCF-7 cells to Matrigel was analyzed by using adhesion assay and transwell assay.The results suggested that fluorescence was observed in whole cell in P, whereas that is in the cytoplasm in ST3.The exogenetic expression levels of ST3Gal Ⅰ mRNA, protein and the amount of α 2,3-sialic acids on cell surface in ST3 group were significantly increased compared with that in the M group and P group ( P < 0.05 ).The abilities of adhesion and invasion of the cells in ST3 group were markedly higher than those in the other 2 groups (P < 0.05 ).The technology of transfection can effectively enhance the exogenetic expression of ST3 Gal Ⅰ and increase cell adhesion, migration and invasion to Matrigel in MCF-7 cells and can promote tumor metastasis.This may be meaningful for seeking novel target for therapeutic approaches in breast cancer.

  4. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Monalisa M Avelar

    2012-01-01

    Full Text Available Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO 2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC 50 . Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells, after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development.

  5. Probing micro-environment of lipid droplets in a live breast cell: MCF7 and MCF10A

    Science.gov (United States)

    Ghosh, Catherine; Nandi, Somen; Bhattacharyya, Kankan

    2017-02-01

    Local environment of the lipid droplets inside the breast cancer cells, MCF7 and in non-malignant breast cells, MCF10A is monitored using time-resolved confocal microscopy. For this study, a coumarin-based dye C153 has been used. The local polarity and the solvation dynamics indicate that a cytoplasmic lipid droplet is less polar and displays slower solvation dynamics compared to the cytosol. Significant differences in terms of number of lipid droplets, polarity and solvation dynamics are observed between the cancer cell (MCF7) and its non-malignant cell (MCF10A).

  6. 人参多糖与他莫昔芬联合对人乳腺癌MCF-7细胞凋亡的影响及其机制研究%The effect and mechanism of ginseng polysaccharide on tamoxifen-induced apoptosis in human breast cancer MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    刘文娟; 高鹏; 王大海

    2013-01-01

    OBJECTIVE: To study the effect and mechanism of ginseng polysaccharide (GPS) on tamoxifen (TAM)-induced apoptosis in human breast cancer cells. METHODS:Human breast cancer cells MCF-7 were treated with different doses of GPS for 48 h. MTT assay was used to evaluate the minimal effective GPS dose. Then cells were treated with GPS at minimal effective dose combined with different doses of TAM. Bürgi formula was used to assess the synergy effect between GPS and TAM. Cellular mitosis was detected by Giemsa staining assay. Apoptosis was studied by DAPI staining analysis and flow cytometer. The expression of Fas,Caspase-9 and Parp was measured by Western blot. RESULTS:GPS at 40μg/mL was the minimal effective dose on MCF-7 cells. Combined treatment of GPS at 40μg/mL and TAM at 1 μg/mL showed the best effect in cell growth inhibition (q=1.82). Combination of GPS and TAM synergistically enhanced apoptosis of MCF-7 in comparison with GPS or TAM alone (q=2.19,P<0.05). Combinated treatment of GPS and TAM significantly inhibited cellular mitosis compared with GPS or TAM alone (P<0.05). Treatment of GPS+TAM induced increased level of Fas as well as cleavage of Caspases-9 and Parp. CONCLUSION:Combined treatment of GPS and TAM induced apoptosis in MCF-7 cell through Fas signal in a synergetic manner.%目的:探讨人参多糖(ginseng polysaccharide,GPS)与他莫昔芬(tamoxifen,TAM)联合对人乳腺癌MCF-7细胞凋亡的影响及其机制。方法:以不同浓度(0、20、40、80和160μg/mL)GPS作用于人乳腺癌MCF-7细胞株48 h,以MTT法检测细胞增殖抑制情况,以GPS的最小有作用剂量与不同浓度(0、0.5、1、2和4μg/mL)TAM联合处理细胞48 h,以金氏公式筛选出协同抑制作用最明显的联合剂量,以该联合剂量处理MCF-7细胞48 h后,用DAPI染色法、流式细胞术检测细胞凋亡情况;用Giemsa染色检测细胞有丝分裂指数;用Western blot检测细胞中Fas、Caspase-9以及Parp的表达情况。

  7. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production.

    Science.gov (United States)

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P

    2015-10-01

    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

  8. Studies on mechanism of cis9,trans11-CLA and trans10,cis12-CLA inducing apoptosis of human breast cancer cell line MCF-7

    Institute of Scientific and Technical Information of China (English)

    Xianzi Wan; Xianlin Yuan; Xiangling Yang; Yichen Li; Ling Zhong

    2010-01-01

    Objective:The aim of the study was to explore the activities of cis9,trans11-CLA (C9,t11-CLA) and trans10,cis12-CLA (t10,c12-CLA)inhibiting tumor,and investigate their relationships with PPARy and apoptotic proteins,and mechanism of anti-cancer.Methods:The inhibitory rate,cell growth curve and apoptotic morphological observation of MCF-7 cells were obtained by MTT assay,trypan blue staining and Hoechst33342 fluorescence staining.The apoptotic rate and cell cycle were detected with flow cytometry.Transcriptional level of genes was detected with RT-PCR semi-quantitative method,and Western blot was performed to detect proteins levels.Results:The two CLA isomers could reduce cell proliferation (P<0.05),increase apoptotic rate (P<0.05),and increase obviously the transcriptional and protein levels of PPARy (P<0.01).The synchronism and correlation between the effects of CLA to PPARy and apoptotic proteins Bax,Bcl-2,Caspase 3 changes were found with the dose-and time-dependent manners.There was cooperative relation between the levels of PPARy and the rates of Bax/Bcl-2,Caspase 3 (small fragment) by experiments of PPARy inhibitor GW9662 and ligand Rosiglitazone.Conclusion:The apoptotic pathway of PPARy-Bcl-2-Caspase 3 signaling was found.The C9,t11-CLA and t10,c12-CLA could inhibit MCF-7 cell proliferation and promote apoptosis via activating PPARy-Bcl-2-Caspase 3 pathway.CLA may be a kind of activator of PPARy.

  9. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Science.gov (United States)

    Wawruszak, Anna; Luszczki, Jarogniew J; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  10. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    Science.gov (United States)

    Wawruszak, Anna; Luszczki, Jarogniew J.; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers. PMID:26580554

  11. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Directory of Open Access Journals (Sweden)

    Anna Wawruszak

    Full Text Available Histone deacetylase inhibitors (HDIs are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA, vorinostat, alone or in combination with cisplatin (CDDP on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  12. 重组凋亡素腺病毒基因诱导人类乳腺癌细胞MCF-7凋亡的作用%Recombinant vp3 gene adenovirus-induced apoptosis in human breast cancer MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    李悦; 李珍; 于雁

    2010-01-01

    Objective To construct recombinant vp3 gene adenovirus pAD-vp3 and study its apoptosis inducing effect on human breast cancer MCF-7 cells. Methods vp3 gene was cloned and recom-bined into adenovirus vector pLP-AD-vp3 (pAD-vp3) at loxP site according to homologous recombination principle. pAD-vp3 was transformed into package cell line 293A and then into NIH3T3 cells for titer assay. The MCF-7 cells were transfected with pAD-vp3.Western blotting was used to detect the Apoptin protein expression. MTT assay was adopted to measure cellular proliferation and vp3 gene expression. Forty-eight h after transfection, flow cytometry (FCM) was used to examine apoptosis, and surface enhanced laser de-sorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS) was used to assay protein profile. Nude mice model of MCF-7 cells was set up to observe the tumor inhibition rate of pAD-vp3, and real-time PCR and TUNEL assay were used to detect vp3 gene and apoptosis respectively. Results Recombinant adenovirus vector pAD-vp3 was successfully constructed. Virus titer was 3 x 108 pfu/ml in the 293A culture supernatant. Forty-eight h after transfection, cellular inhibition rate was 63.3% in MTT assay, higher than that in blank control (P 0.05). Conclusion Recombinant adenovirus bearing vp3, pAD-vp3, was set up successfully. vp3 could induce apoptosis in MCF-7 cells in vivo and in vitro.%目的 构建重组vp3基因腺病毒pAD-vp3,观察其体内外对人乳腺癌细胞MCF-7的诱导凋亡作用.方法 克隆vp3基因,loxP法同源重组构建重组腺病毒载体pLP-AD-vp3(pAD-vp3),转染293A细胞进行病毒包装,然后NIH3T3细胞测定病毒滴度;将腺病毒感染人乳腺癌细胞MCF-7,蛋白免疫印迹(Western blot)检测Apoptin蛋白表达,噻唑蓝(MTT)比色法检测细胞增殖抑制,48 h后流式细胞仪(FCM)法检测肿瘤细胞的凋亡,并应用表面增强激光解析电离-蛋白质飞行时间质谱仪(SELDI-TOF-MS)检测乳腺癌细胞MCF-7标志蛋白变化.建立乳腺癌细胞MCF

  13. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  14. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P

    2017-02-16

    This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells.

  15. Effect of 5-FU,ADM combined with X-ray irradiation on livin expression and apoptosis of breast cancer cell line MCF-7%5-FU、ADM联合X线外照射对乳腺癌MCF-7细胞Livin表达及凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    周涛琪; 张幸平; 程丽; 蒋骞; 饶明月

    2011-01-01

    目的:观察抗肿瘤药物氟尿嘧啶(5-fluorouracil,5-FU)、阿霉素(Adriamycin,ADM)联合X线外照射对人乳腺癌MCF-7细胞Livin基因表达的干扰效应及对细胞凋亡的影响.方法:用MTT法分别测定5-FU、ADM 2种药物作用MCF-7细胞72 h的半数抑制浓度(Half maximal inhibitory concentration of a substance,IC50).实验分为空白对照组、单纯照射组、5-FU+照射组、ADM+照射组.通过免疫组化法及RT-PCR法检测各组细胞Livin蛋白及mRNA的表达,同时应用流式细胞术检测细胞的凋亡率.结果:与空白对照组比较,单纯照射组、5-Fu+照射组、ADM+照射组的Livin蛋白、mRNA的表达均减少而凋亡率增加(P<0.05),5-FU+照射组、ADM+照射组的Livin蛋白、mRNA的表达较单纯照射组减少明显,且前2组细胞的凋亡率增加,差异具有统计学意义(P<0.05).结论:5-FU、ADM联合X线外照射可提高乳腺癌MCF-7细胞的凋亡率,具有放射增敏作用,其作用机制可能与下调Livin基因的表达有关.%Objective:To observe 5-FU, ADM combined with X-ray irradiation on intefferring gene expression of Livin and apeptosis of human breast cancer cell line MCF-7. Methods :The IC50 of 5-FU, ADM were detected by MTT in the time of 72 h. The experiment had four groups: blank control group, irradiation group, 5-FU + irradiation group, ADM + irradiation group. The Immunohistochemistry and RT-PCR were used to evaluate the Livin protein and mRNA expression,the apoptosis rate was analysed by flow cytometry. Results: Compare the blank control group with other groups, the Livin protein and mRNA expression of irradiation group ,5-FU + irradiation group, ADM + irradiation group were reduced,and apoptosis rate increased (P<O.O5).While the effect of 5-FU, ADM combined with irradiation inhibited Livin protein, mRNA expression significantly compared with the irradiation group, and the apoptosis rate were increased, the differences were statistically significant (P<O.O5

  16. Oxidative Stress-Mediated Apoptosis Induced by Ethanolic Mango Seed Extract in Cultured Estrogen Receptor Positive Breast Cancer MCF-7 Cells

    OpenAIRE

    Al-Shwyeh Hussah Abdullah; Abdulkarim Sabo Mohammed; Abdullah Rasedee; Mohamed Elwathig Saeed Mirghani

    2015-01-01

    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract...

  17. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  18. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    Science.gov (United States)

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.

  19. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells.

    Science.gov (United States)

    O'Shea, M; Devery, R; Lawless, F; Murphy, J; Stanton, C

    The relationship between growth and the antioxidant enzyme defence system in human MCF-7 (breast) cancer cells treated with bovine milk fat enriched with conjugated linoleic acid (CLA) was studied. Milk enriched in CLA was obtained from cows on pasture supplemented with full fat rapeseeds and full fat soyabeans (1). Cell number decreased up to 90% (p milk fat yielding CLA concentrations between 16.9 and 22.6 ppm. Growth suppression and prooxidant effects of milk fat CLA were independent of the variable composition of the milk fat samples, suggesting that CLA was the active ingredient in milk fat responsible for the cytotoxic effect. Mixtures containing isomers of CLA (c9, t11-, t10, c12-, c11, t13- and minor amounts of other isomers) and linoleic acid (LA) at similar concentrations to the milk fat samples were as effective at inhibiting growth and stimulating peroxidation of MCF-7 cells as the milk fatty acids. Incubation of the cells with the c9, t11 CLA isomer (20 ppm) or the mixture of CLA isomers (20 ppm) for 8 days resulted in a 60% decrease (p milk fat than the c9, t11 synthetic CLA isomer. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities were induced in MCF-7 cells exposed to milk fat (containing 16.9-22.6 ppm CLA) over 8 days. The data indicate that milk fat triglyceride-bound CLA, consisting primarily of the c9, t11 isomer, was cytotoxic towards MCF-7 cells.

  20. Effect of all trans-retinoic acid combined with suberoylanilide hydroxamic acid on breast cancer cells MCF-7%全反式维A酸联合辛二酰苯胺异羟肟酸对乳腺癌MCF-7细胞的作用

    Institute of Scientific and Technical Information of China (English)

    薛文潮; 李光; 张妮娜; 何涛

    2016-01-01

    Objective Induction and differentiation of tumor cells is a new therapy of cancer. Nowadays, differentiation inducing agents were widely used in treatment of acute lymphoblastic leukemia, therefore it is imperative to develop the investigation in vitro of solid tumors. This study was to combine all trans-retinoic acid (ATRA) and suberoylanilide hydroxamic acid (SAHA) on the proliferation of MCF-7 to investigate whether the combination of the two drugs have synergistic effect.Methods Human breast cancer cell line MCF-7 was culturedin vitro. When the cells entered the logarithmic growth phase, a certain concentration of ATRA (or) SAHA were added into the petri dishes. Morphological changes of cells were observed under inverted microscope, the anti-proliferative effect was measured by MTT assay. Absorbance value and inhibition rate were compared by repeated measurement data, using LSD for multiple comparison.Results Inverted microscope observation showed that, morphological changes of cells in ATRA combined with SAHA group was obvious than ATRA or SAHA group, and with the extension of time the effect was more remarkable. The absorbance value of A1 and B1 group was not statistically significant compared with the control group at 24 h (P=0.092). Compared with the control group, the B1 group had no statistical significance at 48 h (P=1.243). The average absorbance of each experimental group was less than that of the control group at 72 h, 96 h, 120 h (groups:F=320.648, P=0.000; different time-point:F=219.245,P=0.000; interaction:F=117.962,P=0.000). The proliferation inhibition rate of single drug group was higher than that of the control group, and the ATRA combined with SAHA group was significantly higher than that in the single drug group (groups:F=462.792, P=0.000; different time-point:F=315.024,P=0.000; interaction:F=179.682,P=0.000); q values in A1+B1 group and A2+B1 group of combined effects of two drugs at 24 h and 48 h were greater than 1.15, performed as

  1. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia [Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China); Wan, Lei [Department of Pharmacology, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China); Wang, Xudong, E-mail: xdwang@gmc.edu.cn [Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China)

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI.

  2. gef Gene Expression in MCF-7 Breast Cancer Cells is Associated with a Better Prognosis and Induction of Apoptosis by p53-Mediated Signaling Pathway

    Science.gov (United States)

    Boulaiz, Houria; Álvarez, Pablo J.; Prados, Jose; Marchal, Juan; Melguizo, Consolación; Carrillo, Esmeralda; Peran, Macarena; Rodríguez, Fernando; Ramírez, Alberto; Ortíz, Raúl; Aránega, Antonia

    2011-01-01

    Breast cancer research has developed rapidly in the past few decades, leading to longer survival times for patients and opening up the possibility of developing curative treatments for advanced breast cancer. Our increasing knowledge of the biological pathways associated with the progression and development of breast cancer, alongside the failure of conventional treatments, has prompted us to explore gene therapy as an alternative therapeutic strategy. We previously reported that gef gene from E. coli has shown considerable cytotoxic effects in breast cancer cells. However, its action mechanism has not been elucidated. Indirect immunofluorescence technique using flow cytometry and immunocytochemical analysis were used to detect breast cancer markers: estrogen (ER) and progesterone (PR) hormonal receptors, human epidermal growth factor receptor-2 proto-oncogene (c-erbB-2), ki-67 antigen and p53 protein. gef gene induces an increase in ER and PR expressions and a decrease in ki-67 and c-erbB-2 gene expressions, indicating a better prognosis and response to treatment and a longer disease-free interval and survival. It also increased p53 expression, suggesting that gef-induced apoptosis is regulated by a p53-mediated signaling pathway. These findings support the hypothesis that the gef gene offers a new approach to gene therapy in breast cancer. PMID:22174609

  3. Luteolin 8-C-β-fucopyranoside inhibits invasion and suppresses TPA-induced MMP-9 and IL-8 via ERK/AP-1 and ERK/NF-κB signaling in MCF-7 breast cancer cells.

    Science.gov (United States)

    Park, Su-Ho; Kim, Jung-Hee; Lee, Dong-Hun; Kang, Jeong-Woo; Song, Hyuk-Hwan; Oh, Sei-Ryang; Yoon, Do-Young

    2013-11-01

    Matrix metalloproteinase 9 (MMP-9) and interleukin-8 (IL-8) play major roles in tumor progression and invasion of breast cancer cells. The present study was undertaken to investigate the inhibitory mechanism of cell invasion by luteolin 8-C-β-fucopyranoside (named as LU8C-FP), a C-glycosylflavone, in human breast cancer cells. We investigated whether LU8C-FP would inhibit MMP-9 activation and IL-8 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. LU8C-FP suppressed TPA-induced MMP-9 and IL-8 secretion and mRNA expression via inhibition of the MAPK signaling pathway and down-regulation of nuclear AP-1 and NF-κB. TPA-induced phosphorylation of ERK 1/2 was suppressed by LU8C-FP, whereas JNK and p38 MAPK phosphorylation were unaffected. In addition, LU8C-FP blocked the ERK 1/2 pathways following expression of MMP-9 and IL-8. These results suggest LU8C-FP may function to suppress invasion of breast cancer cells through the ERK/AP-1 and ERK/NF-κB signaling cascades.

  4. Low milli-ampere electrochemical therapy reverses multidrug resistance and induces apoptosis on breast cancer MCF-7/adriamycin cell line%低毫安电化学疗法诱导人乳腺癌耐药株MCF-7/阿霉素细胞凋亡及逆转多药耐药的研究

    Institute of Scientific and Technical Information of China (English)

    周炳刚; 沈义军; 魏昌晟; 杨涛; 张智; 余生林; 余建军

    2015-01-01

    Objective To explore the mechanism of reversing mutidrug reisistance and inducing apoptosis on human breast cancer MCF-7/adriamycin (ADR) cell line by electrochemical therapy (ECT).Methods Methyl thiazol tetrazolium (MTT) assay,Annexin V assay and confocal laser scanning microscope were used to measure the inhibitory rate an the change of apoptosis.Fluorospectrophotometry was usd to measure the change of the concertration of ADR in the cells.Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blotting were used to evaluate the mRNA and protein expression levels of multidrug resistance 1 gene (MDR1),phosphatase and tensin homologue deleted on chromosometen (PTEN),protein kinase B (Akt) and Caspase-3 in MCF-7/ADR cells.Results ECT could inhibit growth obviously of the MCF-7/ADR cells,and the apoptosis rate of cells was increased obviously in the treated group as compared with that in the control group (P < 0.05).5 C ECT could obviously increase the intracellular concentration of ADR 4.61 times.With the increases in the power of electricity,the expression of PTEN and cleaved Caspase-3 was obviously higher than in the control group,but the protein expression of Permeability glycoprotein (P-gp) (0.293 ± 0.013),and p-Akt (0.397 ± 0.020) in 5 C ECT group (P < 0.01) was reduced gradually with the increases in the power electricity.Conclusion ECT can inhibit the proliferation of MCF-7/ADR cells,induce apoptosis and reverse MDR probably by inhibiting PI3K/Akt signal pathway.%目的 探讨低毫安电化学疗法(ECT)对人乳腺癌耐药株MCF-7/阿霉素(ADR)细胞诱导凋亡及逆转多药耐药(MDR)的作用机制.方法 电化学处理细胞后继续培养6h和24h,用噻唑蓝(MTT)法、膜联蛋白V(Annexin V)染色、激光共聚焦显微镜观察ECT对肿瘤细胞的生长抑制、凋亡变化;荧光分光光度法检测细胞内ADR的浓度;实时定量聚合酶链反应(Real-time PCR)法、Western blot法检测多药耐药基因(MDR1

  5. The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2011-07-01

    Full Text Available Abstract Background CD44, a hyaluronan (HA receptor, is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. The CD44 gene contains 20 exons that are alternatively spliced, giving rise to many CD44 isoforms, perhaps including tumor-specific sequences. Methods Reverse transcriptase polymerase chain reaction (RT-PCR and Western blotting were used to detect CD44st mRNA and CD44 protein in sensitive MCF-7, Lovo, K562 and HL-60 cell lines as well as their parental counterparts, respectively. The full length cDNA encoding CD44st was obtained from the total RNA isolated from MCF-7/Adr cells by RT-PCR, and subcloned into the pMD19-T vector. The CD44st gene sequence and open reading frame were confirmed by restriction enzyme analysis and nucleotide sequencing, and then inserted into the eukaryotic expression vector pcDNA3.1. The pcDNA3.1-CD44st was transfected into MCF-7 cells using Lipofectamine. After transfection, the positive clones were obtained by G418 screening. The changes of the MMP-2 and MMP-9 genes and protein levels were detected by RT-PCR and gelatin zymography, respectively. The number of the cells penetrating through the artificial matrix membrane in each group (MCF-7, MCF-7+HA, MCF-7/neo, MCF-7/neo+HA, MCF-7/CD44st, MCF-7/CD44st+HA and MCF-7/CD44st+Anti-CD44+HA was counted to compare the change of the invasion capability regulated by the CD44st. Erk and P-Erk were investigated by Western blotting to approach the molecular mechanisms of MMP-2 and MMP-9 expression regulated by the CD44st. Results Sensitive MCF-7, Lovo, K562 and HL-60 cells did not contain CD44st mRNA and CD44 protein. In contrast, the multidrug resistance MCF-7/Adr, Lovo/Adr, K562/Adr and HL-60/Adr cells

  6. The role of milk thistle extract in breast carcinoma cell line (MCF-7 apoptosis with doxorubicin.

    Directory of Open Access Journals (Sweden)

    Hussein Rastegar

    2013-09-01

    Full Text Available Breast cancer is the most commonly diagnosed invasive malignancy and first leading cause of cancer-related deaths in Iranian women. Based on silymarin's unique characteristics, its application in chemotherapy combined with doxorubicin can be effective to enhance the efficacy together with a reduced toxicity on normal tissues. The present study focus on evaluate the efficacy of silymarin in combination with doxorubicin, on viability and apoptosis of estrogen-dependent breast carcinoma cell line (MCF-7. After being cultured, MCF-7 cells were divided into 8 groups and treated as follows: 1st group received 75 μg silymarin, groups 2, 3, and 4 were treated with 10, 25, and 50 nM doxorubicin, respectively, and groups 5, 6, and 7 respectively received 10, 25, and 50 nM doxorubicin as well as 75 μg silymarin. Viability percentage and apoptosis of the cells were assessed with Trypan Blue staining after 16, 24, and 48 hours. Silymarin has a synergistic effect on the therapeutic potential of doxorubicin. Use of silymarin in combination with doxorubicin can be more effective on the therapeutic potential of doxorubicin and decreases its dose-limiting side effects.

  7. Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells

    Science.gov (United States)

    Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun

    2017-01-01

    We were employing nanotechnology to improve the targeting ability of (−)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo.

  8. 索拉非尼联合蒽环类化疗药对乳腺癌MCF-7细胞增殖周期的影响%Affect of the Coadministration of Sorafenib and anthracycline chemother-apy drug on the cell cycle of breast cancer MCF-7 cell

    Institute of Scientific and Technical Information of China (English)

    胡燕; 吴冰; 张钧; 王亮和; 戈伟; 罗荣城

    2014-01-01

    目的:探讨索拉非尼联合蒽环类化疗药表阿霉素对乳腺癌MCF-7细胞增殖周期的作用。方法细胞做四甲基偶氮唑盐实验,绘制细胞增殖曲线。实验分为4组:对照组、索拉非尼单药组、表阿霉素单药组、联合组(索拉非尼+表阿霉素)。用聚酰亚胺染色后,经流式细胞仪检测各组细胞增殖周期的变化。结果细胞增殖曲线可见细胞传代后开始增殖,4~5d达到峰值,后随着时间的延长,细胞增殖受抑越来越明显。流式细胞仪检测细胞周期结果显示,索拉非尼单药组使MCF-7细胞阻滞于G0/G1期[(62.837±0.511)%]与对照组[(49.250±0.826)%]比较,差异有统计学意义(P<0.05);表阿霉素单药组使细胞阻滞于S期[(24.976±0.409)%],与对照组[(23.473±1.009)%]比较,差异有统计学意义(P<0.05);联合组G0/G1期细胞比率[(64.373±0.429)%]高于对照组及表阿霉素单药组[(50.980±0.403)%],差异均有统计学意义(均P<0.05)。结论索拉非尼和表阿霉素的联合应用可以使乳腺癌MCF-7细胞明显阻滞于G0/G1,可以为乳腺癌的联合化疗提供一定的理论±据。%Objective To investigate the affect of Sorafenib combined with anthracycline chemotherapy Epirubicin on the proliferation of breast cancer MCF-7 cell cycle. Methods Cells growth curve were drawn after the MTT experiment. Four different groups were set up: control group, Sorafenib group, EPI group and Sorafenib+EPI (combination) group. The change of cell cycles were detected by PI single staining and flow cytometry. Results Cell growth curve showed, passaged cells began to proliferate, and reached the peak after 4-5 days, with the prolongation of time, cell prolifera-tion was inhibited more and more obvious. The cell cycle by flow cytometry showed that, the Sorafenib group [(62.837±0.511)%] induced G0/G1 phase mitosis arrest, compared with control group [(49.250±0.826)%], the difference was statis-tically significant

  9. MicroRNA-125b Induces Metastasis by Targeting STARD13 in MCF-7 and MDA-MB-231 Breast Cancer Cells

    OpenAIRE

    Feng Tang; Rui Zhang; Yunmian He; Meijuan Zou; Le Guo; Tao Xi

    2012-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and t...

  10. First Evidence that Ecklonia cava-Derived Dieckol Attenuates MCF-7 Human Breast Carcinoma Cell Migration

    Directory of Open Access Journals (Sweden)

    Eun-Kyung Kim

    2015-03-01

    Full Text Available We investigated the effect of Ecklonia cava (E. cava-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6′-biecko, and 2,7″-phloroglucinol-6,6′-bieckol were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1–100 µM was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP-9 and vascular endothelial growth factor (VEGF. On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol.

  11. The Study on the Anti-tumor Activity of Tanshinone I and Dihydrotan-shinone I on MCF-7 Human Breast and MGC-803 Gastric Cancer Cell Lines%丹参酮 I 和二氢丹参酮 I 对人胃癌细胞 MGC-803、乳腺癌细胞MCF-7的抗肿瘤活性研究

    Institute of Scientific and Technical Information of China (English)

    宋烨

    2015-01-01

    目的::比较研究丹参酮 I 和二氢丹参酮 I 对人胃癌细胞 MGC-803、乳腺癌细胞 MCF-7的抗肿瘤活性。方法:从白花丹参中分离、纯化丹参酮 I 和二氢丹参酮 I 成分,采用 MTT 法测定对肿瘤细胞的生长抑制作用,同时采用流式细胞仪检测细胞周期的改变以及凋亡情况。结果:丹参酮 I、二氢丹参酮 I 对 MCF-7几乎没有生长抑制作用,对 MGC-803有很明显的生长抑制作用,同时可明显阻滞人胃癌细胞 MGC-803的细胞周期,使细胞核裂解呈现碎片状而产生凋亡小体,且其凋亡率成明显的上升趋势。结论:丹参酮 I、二氢丹参酮 I 通过诱导细胞凋亡,对 MGC-803肿瘤细胞具有很好的抑制作用,而对 MCF-7几乎没有活性。%Objective:To investigate the anti-tumor activity of tanshinone I and dihydrotanshinone I on the MCF-7 human breast cancer cell line and MGC-803 Gastric cancer cell line.Methods:Tanshinone I and di-hydrotanshinone I were isolated from Salviamiltiorrhiza Bunge.The anti-tumor activity of the compounds was evaluated by MTT tests.The apoptosis case was observed during the whole experiment with the optimal dosing concentration by fowctometry technology.Results:There was no inhibited effect in MCF-7 human breast cancer cell line and MGC-803 Gastric cancer cell line treated with tanshinone I and dihydrotanshinone I.On the contrary,the two compounds can significantly suppressed the grow of MGC-803 cell line by leading to the cell cycle arrest in MGC-803 cell line,and the cleavage of the nucleus to pruduceapoptotic bodies.The apoptosis rates showed a significant upward trend.Conclusion:Tanshinone I and dihydrotanshinone I can in-duced apoptosis to display potent anti-tumor activity in human MGC-803 Gastric cancer cell line.

  12. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Craig E Barcus

    Full Text Available Breast cancers that express estrogen receptor alpha (ERα+ constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL, may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2 activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.

  13. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  14. MART-10, a New Generation of Vitamin D Analog, Is More Potent than 1α,25-Dihydroxyvitamin D3 in Inhibiting Cell Proliferation and Inducing Apoptosis in ER+ MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kun-Chun Chiang

    2012-01-01

    Full Text Available Hormone antagonist therapy for estrogen receptor positive (ER+ breast cancer patients post radical surgery and radiation therapy has a poor prognosis and also causes bone loss. 1α,25-dihydroxyvitamin D3 [1α,25(OH2D3] is a potent antitumor agent in pre-clinical studies, but caused hypercalcemia when its effective antitumor doses were used. Therefore, we investigated the effects of a less-calcemic 1α,25(OH2D3 analog, 19-nor-2α-(3-hydroxypropyl-1α,25-dihydroxyvitamin D3 (MART-10, on ER+MCF-7 cells. We demonstrate that MART-10 is 500- to 1000-fold more potent than 1α,25(OH2D3 in inhibiting cell growth in a dose- and time-dependent manner. MART-10 is also much more potent in arresting MCF-7cell cycle progression at G0/G1 phase as compared to 1α,25(OH2D3, possibly mediated by a greater induction of p21 and p27 expression. Moreover, MART-10 is more active than 1α,25(OH2D3 in causing cell apoptosis, likely through a higher BAX/Bcl expression ratio and the subsequent cytochrome C release from mitochondria to cytosol. Based on our in vitro findings, MART-10 could be a promising vitamin D analog for the potential treatment of breast cancer, for example, ER+ patients, to decrease the tumor relapse rate and the side effect on bone caused by antihormone regimens. Thus, further in vivo animal study is warranted.

  15. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    Science.gov (United States)

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  16. Product of aromatase activity in intact LNCaP and MCF-7 human cancer cells.

    Science.gov (United States)

    Castagnetta, L A; Granata, O M; Bellavia, V; Amodio, R; Scaccianoce, E; Notarbartolo, M; Follari, M R; Miceli, M D; Carruba, G

    1997-04-01

    We investigated conversion rates of androgens to estrogens in cultured, hormone-responsive prostate (LNCaP) and breast (MCF-7) human cancer cells. For this purpose, we adopted an intact cell analysis, whereby cells were incubated for different incubation times in the presence of close-to-physiological (1 nM) or supraphysiological (1 microM) concentrations of labelled androgen precursors, i.e. testosterone (T) and androstenedione (delta4Ad). The aromatase activity, as measured by estrogen formation, was detected in LNCaP cells (0.5 pmol/ml), even though to a significantly lower extent than in MCF-7 cells (5.4 pmol/ml), using 1 microM T after 72 h incubation. Surprisingly, LNCaP cells displayed a much higher aromatase activity when T was used as a substrate with respect to delta4Ad. In either cell line, T transformation to delta4Ad was relatively low, attaining only 2.8% in LNCaP and 7.5% MCF-7 cells. However, T was mostly converted to conjugates (over 95%), glucuronides and some sulphates, in LNCaP cells, whereas it was only partly converted to sulphates (<10%) in MCF-7 cells. Aromatase activity seems to be inconsistent in LNCaP cells, being strongly affected by culture conditions, especially by fetal calf serum (FCS). Further studies should assess the regulation of aromatase expression by serum or growth factors in different human cancer cells, also using anti-aromatase and/or anti-estrogen compounds, in different culture conditions.

  17. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... cytometric DNA analysis and percentage of labeled mitosis investigations revealed no significant differences in the proliferation kinetics of TAM-treated and control tumors. Calculating the cell loss factor demonstrated an increase from 69% in control tumors to 107% in TAM-treated tumors. These experiments...

  18. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jozan, S.; Faye, J.C.; Tournier, J.F.; Tauber, J.P.; David, J.F.; Bayard, F.

    1985-11-27

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combined treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.

  19. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Feng Tang

    Full Text Available MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay, adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2 was a direct target of miR-125b by Target-Scan analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot was used to observe the variation of Vimentin and α-SMA in breast cancer cells. In summary, our study provided new insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in pro-metastasis by targeting STARD13.

  20. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Tang, Feng; Zhang, Rui; He, Yunmian; Zou, Meijuan; Guo, Le; Xi, Tao

    2012-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay, adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2) was a direct target of miR-125b by Target-Scan analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot was used to observe the variation of Vimentin and α-SMA in breast cancer cells. In summary, our study provided new insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in pro-metastasis by targeting STARD13.

  1. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sá-Júnior, Paulo Luiz de [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Pasqualoto, Kerly Fernanda Mesquita [Biochemistry and Biophysical Laboratory, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Ferreira, Adilson Kleber [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Tavares, Maurício Temotheo; Damião, Mariana Celestina Frojuello Costa Bernstorff [Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Prof. Lineu Prestes Avenue, 580, Postal Code: 05508-000, Sao Paulo (Brazil); Azevedo, Ricardo Alexandre de [Biochemistry and Biophysical Laboratory, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Câmara, Diana Aparecida Dias; Pereira, Alexandre; Madeiro de Souza, Dener [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Parise Filho, Roberto, E-mail: roberto.parise@usp.br [Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Prof. Lineu Prestes Avenue, 580, Postal Code: 05508-000, Sao Paulo (Brazil)

    2013-02-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.

  2. In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Preetam, Raj J. P.; Purushothaman, M; Khusro, Ameer; Panicker, Shirly George [PG Biotechnology, Tamil Nadu (India)

    2016-02-15

    Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.

  3. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    Science.gov (United States)

    Sawant, V. J.; Bamane, S. R.; Shejwal, R. V.; Patil, S. B.

    2016-11-01

    The functionalization and surface engineering of CoFe2O4 and ZnFe2O4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV-vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids.

  4. Inhibition of human MCF-7 breast cancer cells and HT-29 colon cancer cells by rice-produced recombinant human insulin-like growth binding protein-3 (rhIGFBP-3.

    Directory of Open Access Journals (Sweden)

    Stanley C K Cheung

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-3 (IGFBP-3 is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I to form a complex (IGF-I/IGFBP-3 that can treat growth hormone insensitivity syndrome (GHIS and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3 in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively and HT-29 colon cancer cells (65.14 ± 3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively when compared with wild type rice. CONCLUSION/SIGNIFICANCE: These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future.

  5. Effects of c-fos Down-regulation via shRNA on P-gp-mediated Multidrug Resistance in Human Breast Cancer MCF-7/ADR Cells%shRNA抑制c-fos表达对P-gp介导的乳腺癌多药耐药的影响

    Institute of Scientific and Technical Information of China (English)

    师锐赞; 胡晓玲; 范彦英

    2012-01-01

    多药耐药(multidrug resistance,MDR)是导致化疗失败的重要原因,多药耐药基因(multidrug resistance gene,mdr1)产物P-糖蛋白(P-glycoprotein,P-gp)过表达是最主要的耐药机制.原癌基因c-fos在肿瘤MDR中的作用渐受重视.主要选用人乳腺癌敏感株MCF-7和阿霉素(adriamycin,ADR)筛选的、mdr1/P-gp高表达的耐药株MCF-7/ADR,探讨c-fos在P-gp介导的乳腺癌MDR中的作用.相对于MCF-7,c-fos在MCF-7/ADR高表达.采用shRNA法下调c-fos表达后,MCF-7/ADR对ADR的敏感性大大增强,且mdr1/P-gp表达减少、P-gp外排功能降低.c-fos表达下调可逆转对P-gp介导的乳腺癌MDR的实验结果,为c-fos成为逆转肿瘤耐药诊断和治疗的新靶标,对实现耐药乳腺癌的分子靶向治疗提供了理论基础.%Multidrug resistance (MDR) is the main reason of chemotherapy failure. The overexpression of P-glycoprotein (P-gp) , encoded by the multidrug resistance (mdrl) gene, is thought to be the major cause of MDR phenotype. Since much attention has been paid to the role of proto-oncogene c-fos in MDR, adriamycin (ADR)-selected resistant breast cancer cells (MCF-7/ADR) with mdrl/P-gp overexpression and parental drug-sensitive cells ( MCF-7) were chosen to analyze the role of c-fos in P-gp-mediated MDR. Elevated c-fos expression is observed in MCF-7/ADR compared to MCF-7 cells. Down-regulation of c-fos expression via shRNA resulted in sensitization of MCF-7/ADR cells to ADR and decreased the expression of mdrl/P-gp and efflux function of P-gp. Based on these results, c-fos may represent a potential molecular target for resistant cancer therapy, and suppressing c-fos gene expression may therefore be an effective means for targeted molecular therapy.

  6. Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7 and Cervical Cancer Cell Lines (HeLa and SiHa

    Directory of Open Access Journals (Sweden)

    Wei Keat Ng

    2015-01-01

    Full Text Available Thymoquinone (TQ has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7 and cervical cancer cell lines (HeLa and SiHa. TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P<0.05. TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.

  7. Study on calcium homeostasis disorders of adriamycin resistant human breast cancer cells MCF-7/ADM and its mechanism%耐阿霉素人乳腺癌细胞MCF-7/ADM钙稳态失调及其机制研究

    Institute of Scientific and Technical Information of China (English)

    蔡燕飞; 陈蕴; 朱瑞宇; 马鑫; 姚晓强; 金坚

    2013-01-01

    目的 探讨耐阿霉素人乳腺癌细胞MCF-7/ADM钙稳态失调及其机制.方法 转染指示钙离子质粒GECO1.2,检测野生型和耐药型细胞中的[Ca2+]含量;通过Western blot检测瞬时受体电位离子通道(transient receptor potential channel)蛋白TRPC1、TRPC3、TRPC4、TRPC5和TRPC6在两种细胞中的表达情况;运用钙离子通道抑制剂2-APB(100μmol·L-1)抑制耐药细胞中高表达的TRPC5活性后,检测耐药细胞中的[Ca2+]含量.结果 耐药细胞中的[Ca2+]含量明显上调,并检测到TRPC5蛋白在耐药细胞中发生高表达,其活性被抑制后,耐药细胞中的[Ca2+]浓度发生下调.结论 与野生型细胞相比,耐药细胞中钙稳态失调,其原因可能是由于耐药细胞中TRPC5表达上调引起耐药细胞中[Ca2+]内流所致.提示钙稳态失调与肿瘤细胞的耐药发生有着密切关系.%Aim To investigate the calcium homeostasis disorders of adriamycin-resistant human breast cancer cells MCF-7/ADM and its mechanism. Methods Detect the ( [ Ca2+ ] ) content of wild-type and drug-resistant cells by the transformation of calcium indicator plasmid GEC01.2; Detect the expression of transient receptor potential ion channel protein TRPC1 , TRPC3 , TRPC4 , TRPC5 and TRPC6 in these two cells by Western blot; Suppress the TRPC5 activity with calcium channel inhibitor 2-APB (100 μmol · L-1 ), and then detect the ( [ Ca2+] ) content in the drug-resistant cells. Results The result shows that the significantly up-regulation of ( [ Ca2+ ] ) content in resistant cells,and the TRPC5 protein shows over-expression, but the ( [ Ca2+] ) concentration became to decrease after the inhibition of its activity. Conclusion Compared with the wild-type cells, the calcium in resistant cells became homeostasis disorder, maybe the underlying mechanism is the up-regulation of TRPC5 caused [ Ca2+ ] entry into the resistant cells. This study suggests that there must be a close relationship between calcium homeostasis

  8. Genome-wide ChIP-seq analysis of human TOP2B occupancy in MCF7 breast cancer epithelial cells

    Directory of Open Access Journals (Sweden)

    Catriona M. Manville

    2015-11-01

    Full Text Available We report the whole genome ChIP seq for human TOP2B from MCF7 cells. Using three different peak calling methods, regions of binding were identified in the presence or absence of the nuclear hormone estradiol, as TOP2B has been reported to play a role in ligand-induced transcription. TOP2B peaks were found across the whole genome, 50% of the peaks fell either within a gene or within 5 kb of a transcription start site. TOP2B peaks coincident with gene promoters were less frequently associated with epigenetic features marking active promoters in estradiol treated than in untreated cells. Significantly enriched transcription factor motifs within the DNA sequences underlying the peaks were identified. These included SP1, KLF4, TFAP2A, MYF, REST, CTCF, ESR1 and ESR2. Gene ontology analysis of genes associated with TOP2B peaks found neuronal development terms including axonogenesis and axon guidance were significantly enriched. In the absence of functional TOP2B there are errors in axon guidance in the zebrafish eye. Specific heparin sulphate structures are involved in retinal axon targeting. The glycosaminoglycan biosynthesis–heparin sulphate/heparin pathway is significantly enriched in the TOP2B gene ontology analysis, suggesting changes in this pathway in the absence of TOP2B may cause the axon guidance faults.

  9. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, V.J., E-mail: v11131@rediffmail.com [Department of Chemistry, Smt.K.W.College, Sangli, MS 416416 (India); Bamane, S.R. [Department of Chemistry, Raja Shripatrao Bhagwantrao College, Aundh, Satara, MS (India); Shejwal, R.V. [L.B.S. College, Satara, MS (India); Patil, S.B. [A.Birnale College of Pharmacy, Sangli, MS (India)

    2016-11-01

    The functionalization and surface engineering of CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  10. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7

    Directory of Open Access Journals (Sweden)

    R.R. Remya

    2015-12-01

    Full Text Available A single step protocol to produce biofunctionalized silver nanoparticles (AgNPs using the aqueous extract of Cassia fistula flower as “natural factory” was investigated. The reaction between silver ions and aqueous flower extract after the bioreduction process has resulted in the formation of reddish brown color colloidal solution. XRD pattern showed the face centered cubic crystalline structure of AgNPs and exhibited spherical morphology as characterized by FE-SEM. FTIR studies identified different functional groups involved in effective capping of AgNPs. The zeta potential affirmed the phytoreduced AgNPs possess good stability and the size of the particle was measured by DLS. The synthesized AgNPs displayed effective cytotoxic potential against MCF7 and the inhibitory concentration (IC50 was recorded at 7.19 μg/mL. The apoptotic effects of the AgNPs were also confirmed by AO/EB staining. The investigation presents preliminary evidence that biosynthesized AgNPs can be used in the development of novel anticancer drugs.

  11. Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root.

    Science.gov (United States)

    Dong, Sijun; Inoue, Akio; Zhu, Yun; Tanji, Masao; Kiyama, Ryoiti

    2007-12-01

    Glycyrrhiza glabra root is one of the common traditional Chinese medicines and used as flavoring and sweetening agents for tobaccos, chewing gums, candies, toothpaste and beverages. While glycyrrhizin is one of the main components in the extract of G. glabra root and has been characterized, the other components have not been well characterized. The mechanism of growth activation of breast cancer MCF-7 cells, including the activation of Erk1/2 and Akt, and the transcriptional regulation of estrogen-responsive genes, was examined by means of sulforhodamine B, luciferase reporter gene, real-time RT-PCR and Western blotting assays after the induction of the cells with the extract of G. glabra root. The extract has similar activity to that induced by 17beta-estradiol (E(2)), although glycyrrhizin did not show such an activity. Moreover, the estrogen receptor alpha-dependent neurite outgrowth induced by the extract was similar to that by E(2), whereas glycyrrhizin had no effect. Furthermore, the expression profile examined by cDNA microarray assay using a set of 120 estrogen-responsive genes, which were related to proliferation, transcription, transport, enzymes and signaling, showed a statistically significant correlation (R=0.47, Pglabra root. Furthermore, the extract had estrogenic activity and a distinguishable profile of gene expression, suggesting the presence of potentially useful components other than glycyrrhizin in G. glabra root for hormone and anti-cancer therapies.

  12. 金雀异黄素对DDT类农药诱导乳腺癌细胞增殖效应的抑制作用%Inhibition effects of genistein on DDT analogs-induced proliferation of MCF-7 breast cancer cell line

    Institute of Scientific and Technical Information of China (English)

    郭婧婧; 那晓琳; 张明; 杨洋; 付政海; 易成

    2012-01-01

    Objective To study the inhibition effects of genistein (Gen) and DDT analogs on the proliferation of MCF-7 breast cancer line. Methods Using the MCF-7 human breast carcinoma cell line in logarithmic growth phase, the alone exposure group (100 μmol/L genistein and 0.1μmol/Lo, p'-DDT, 0.1 μmol/Lp, p'-DDT, 10 μmol/Lp, p'-DDE) was set, and 100 μmol/L Gen+0.1 μmol/L o, p' -DDT, 100 μmol/L Gen+0.l μmol/Lp, p'-DDT, 100 μmol/L Gen+10 μmol/Lp, p' -DDE were added to the medium, then a solvent control group (0.1% ethanol) and an estrogen control (10-3 μmol/L E2) were set After 48 h of treatment, the effects of MCF-7 cell proliferation were observed by MTT test. Results 100 μmol/L genistein could decrease the proliferation rate of MCF-7 cells, 0.1 μmo/L o, p'-DDT could improve the proliferation rate of MCF-7 cells,which had statistically significant difference compared with the solvent control group (P<0.05). Compared with the corresponding DDT, the combination of Gen and o, p' -DDT or p, p' -DDT can decrease the MCF-7 cells proliferatio rate, which had statistically significant difference (P<0.05). Conclusion Genistein can inhibit the proliferation effects of MCF-7 cells induced by DDT analogs.%目的 探讨金雀异黄素( genistein,Gen)与DDT类有机氯农药(o,p’-DDT,p,p’-DDT和p,p’-DDE)联合作用对乳腺癌(MCF-7)细胞增殖效应的抑制作用.方法 取处于对数生长期的MCF-7细胞,分别加入含100 μmol/Gen 和0.1 μmol/L o,p’-DDT、0.1μmol/Lp,p’-DDT、10 μmol/Lp,p’-DDE单独作用组以及100 μmol/L Gen +0.1 μmol/Lo,p’-DDT、100 μmol/L Gen +0.1 μmol/Lp,p’-DDT、100 μmol/L Gen+10 μmol/LP,p’-DDE的培养基,并设溶剂对照(0.1%无水乙醇)组和雌激素对照(10-3 μmol/L雌二醇)组.培养48 h后,采用噻唑蓝(MTT)实验检测MCF-7细胞的增殖情况.结果 与溶剂对照相比,100 μmol/L的Gen作用组MCF-7细胞的增殖率下降,0.1 μmo/L的o,p’-DDT作用组MCF-7细胞的增殖率升高,

  13. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    hydrophobic interaction is main force in the binding of the complex to BSA. Moreover, to evaluate the anticancer properties, the cytotoxicity of the complex has been tested against the human breast adenocarcinoma (MCF-7) cell lines using the MTT assay. The results indicate that the parent complex displays cytotoxicity against human breast cancer cell lines (MCF-7) with an IC50 value of 10.44 μM. It is remarkable that the complex can introduce as a potential anticancer drug.

  14. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine.

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    the hydrophobic interaction is main force in the binding of the complex to BSA. Moreover, to evaluate the anticancer properties, the cytotoxicity of the complex has been tested against the human breast adenocarcinoma (MCF-7) cell lines using the MTT assay. The results indicate that the parent complex displays cytotoxicity against human breast cancer cell lines (MCF-7) with an IC50 value of 10.44μM. It is remarkable that the complex can introduce as a potential anticancer drug.

  15. Delayed cell cycle progression from SEPW1 depletion is p53- and p21-dependent in MCF-7 breast cancer cells

    Science.gov (United States)

    Selenium (Se) is an essential redox-active element with close connections to cancer. Most of Se’s biological functions have been attributed to the antioxidant properties of Se-containing proteins. The relative contribution of selenoproteins and small Se compounds in cancer protection is a matter of ...

  16. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    Science.gov (United States)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  17. Methylation Level of Alu Elements is Closely Associated with Metastasis Ability of Breast Cancer Cell Lines MCF7 and MDA-MB-435S%Alu序列甲基化水平与两种乳腺癌细胞系转移能力高度相关

    Institute of Scientific and Technical Information of China (English)

    吕京澴; 徐酩; 谭建新; 王宗丹; 韩晓; 孙玉洁

    2009-01-01

    目的 探讨Alu序列甲基化与乳腺癌转移潜能的关系.方法 用亚硫酸氢盐修饰联合限制性内切酶分析法(combined bisulfite restriction analysis,COBRA)、亚硫酸氢盐修饰结合直接测序法(bisulfite sequencing,BSP)检测两株转移能力不同的乳腺癌细胞系MCF7和MDA-MB-435S中Alu甲基化状态,每个样品挑取10个克隆测序.结果 MCF7和MDA-MB-435S中Alu甲基化水平均明显低于报道的正常人体细胞Alu甲基化水平,但MCF7中Alu的甲基化水平明显高于MDA-MB-435S.同时,Alu甲基化位点在基因组中分布不均匀.结论 乳腺癌的转移潜能可能与Alu序列的去甲基化以及去甲基化位点的分布相关,值得进一步探讨.%Objective To determine the relationship between methylation level of Alu elements and breast cancer metastasis.Method COBRA and BSP were employed to detect the methylation level of Alu elements in two breast cancer cell lines (MCF7 and MDA-MB-435S) with significant different metastasis potential. For BSP analysis, ten clones of each sample were analyzed.Result The methylation level of Alu in MDA-MB-435S cells was lower than that in MCF7 cells, although the Alu methylation levels in both MCF7 and MDA-MB-435S cells were lower than those in normal tissue cells reported previously. Moreover, the methylated Alu sequences were non-uniform distributed in the genome.Conclusion Demethylation of Alu elements may be involved in breast cancer metastasis. The correlation between methylation status of Alu and breast cancer metastasis deserves further investigation.

  18. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells.

    Science.gov (United States)

    García, Enrique P; Tiscornia, Inés; Libisch, Gabriela; Trajtenberg, Felipe; Bollati-Fogolín, Mariela; Rodríguez, Ernesto; Noya, Verónica; Chiale, Carolina; Brossard, Natalie; Robello, Carlos; Santiñaque, Federico; Folle, Gustavo; Osinaga, Eduardo; Freire, Teresa

    2016-05-01

    Mucins participate in cancer progression by regulating cell growth, adhesion, signaling, apoptosis or chemo-resistance to drugs. The secreted mucin MUC5B, the major component of the respiratory tract mucus, is aberrantly expressed in breast cancer, where it could constitute a cancer biomarker. In this study we evaluated the role of MUC5B in breast cancer by gene silencing the MUC5B expression with short hairpin RNA on MCF-7 cells. We found that MUC5B-silenced MCF-7 cells have a reduced capacity to grow, adhere and form cell colonies. Interestingly, MUC5B knock-down increased the sensitivity to death induced by chemotherapeutic drugs. We also show that MUC5B silencing impaired LPS-maturation of DCs, and production of cytokines. Furthermore, MUC5B knock-down also influenced DC-differentiation and activation since it resulted in an upregulation of IL-1β, IL-6 and IL-10, cytokines that might be involved in cancer progression. Thus, MUC5B could enhance the production of LPS-induced cytokines, suggesting that the use of MUC5B-based cancer vaccines combined with DC-maturation stimuli, could favor the induction of an antitumor immune response.

  19. Expression and inducibility of UDP-glucuronosyltransferase 1As in MCF-7 human breast carcinoma cells.

    Science.gov (United States)

    Hanioka, Nobumitsu; Iwabu, Hiroyuki; Hanafusa, Hiroyuki; Nakada, Shintaro; Narimatsu, Shizuo

    2012-03-01

    UDP-glucuronosyltransferases (UGTs) are conjugation enzymes, which are regulated in a tissue-specific manner by endogenous and environmental factors. In this study, we focused on UGT1A isoforms broadly expressed in hepatic and extrahepatic tissues and examined the expression and inducibility of UGT1As (UGT1A1 and UGT1A3-1A10) in MCF-7 cells (human breast carcinoma cell line). Reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated that UGT1A1, UGT1A6 and UGT1A9 mRNAs as well as the mRNAs of transcriptional regulators (AhR, aryl hydrocarbon receptor; Arnt, AhR nuclear translocator; ERα, oestrogen receptor α; ERβ, oestrogen receptor β; and GR, glucocorticoid receptor) are expressed in MCF-7 cells. UGT1A6 mRNA level in MCF-7 cells was significantly increased to 1.9 times by β-naphthoflavone (BNF), whereas UGT1A1 and UGT1A9 mRNA levels were not affected by BNF. There were no significant changes in the mRNAs of UGT1A1, UGT1A6 and UGT1A9 in MCF-7 cells by treatment with phenobarbital (PB) and dexamethasone (DEX) in MCF-7 cells. The kinetics of 7-ethyl-10-hydroxycamptothecin (SN-38), 5-hydroxytryptamine (5-HT) and 4-methylumbelliferone (4-MU) glucuronidation by microsomes from control and BNF-treated MCF-7 cells fitted with the Michaelis-Menten model, and the V(max) and CL(int) values were significantly increased to 7.5-8.5 times and 5.9-10.4 times by BNF treatment, respectively. These findings suggest that BNF induces UGT1A6 in MCF-7 cells and that the increase may be mediated by AhR but not pregnane X receptor (PXR)/constitutive androstane receptor (CAR). The information gained in this study should help predict and assess the toxicity of environmental chemicals.

  20. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay.

    Science.gov (United States)

    Deman, J J; Van Larebeke, N A; Bruyneel, E A; Bracke, M E; Vermeulen, S J; Vennekens, K M; Mareel, M M

    1995-09-01

    MCF-7 human breast cancer cells express E-cadherin and show, at least in some circumstances, E-cadherin-dependent cell-cell adhesion (Bracke et al., 1993). The MCF-7/AZ variant spontaneously displays E-cadherin-dependent fast aggregation; in the MCF-7/6 variant, E-cadherin appeared not to be spontaneously functional in the conditions of the fast aggregation assay, but function could be induced by incubation of the suspended cells in the presence of insulinlike growth factor I (IGF-I) (Bracke et al., 1993). E-cadherin from MCF-7 cells was shown to contain sialic acid. Treatment with neuraminidase was shown to remove this sialic acid, as well as most of the sialic acid present at the cell surface. Applied to MCF-7/AZ, and MCF-7/6 cells, pretreatment with neuraminidase abolished spontaneous as well as IGF-I induced, E-cadherin-dependent fast cell-cell adhesion of cells in suspension, as measured in the fast aggregation assay. Treatment with neuraminidase did not, however, inhibit the possibly different, but equally E-cadherin-mediated, process of cell-cell adhesion of MCF-7 cells on a flat plastic substrate as assessed by determining the percentage of cells remaining isolated (without contact with other cells) 24 h after plating.

  1. Tamoxifen enhances the abilities of migration and invasion of breast cancer MCF-7 cells via external secretion of CXCL16 from CAF cells mediated by GPR30%他莫昔芬通过GPR30介导CAF外分泌CXCL16促进乳腺癌MCF-7细胞迁移及侵袭

    Institute of Scientific and Technical Information of China (English)

    吴晓安; 郭林英; 杜燕娥; 柳满然; 涂刚

    2016-01-01

    目的:探讨他莫昔芬(tamoxifen,TAM)通过雌激素G蛋白偶联受体30(estrogen G-protein-coupled receptor 30,GPR30)介导肿瘤相关成纤维细胞(cancer-associated fibroblast,CAF)外分泌CXC型趋化因子配体16(CXC-chemokine ligand 16,CXCL16)对乳腺癌MCF-7细胞迁移和侵袭的影响.方法:TAM和TAM联合GPR30特异性抑制剂G15分别处理CAF后,通过基因芯片检测2组细胞差异表达的基因,并从中挑选出CXC 16,应用实时荧光定量PCR和蛋白质印迹法进行验证,应用ELISA法检测细胞上清液中CXCL16的浓度.用TAM和TAM联合G15处理后的CAF上清液、不做任何处理的CAF上清液、添加CXCL16或CXCL16中和抗体的培养液分别培养MCF-7细胞,采用MTT法、划痕愈合实验和Transwell小室法检测细胞的增殖、迁移和侵袭能力.结果:与TAM联合G15处理组相比,TAM处理组CAF中2 358个基因表达上调,2 178个基因表达下调;TAM处理组CAF中CXCL16 mRNA和蛋白的表达水平及上清液中CXCL16的浓度均显著上调(P值均<0.01),且该效应可被G15阻断(P值均<0.01).TAM处理组CAF上清液和添加CXCL16培养液培养的MCF-7细胞,其迁移和侵袭能力均增强(P值均<0.05),而增殖能力则无显著变化(P值均>0.05).结论:CAF经TAM处理后CXCL16分泌增多,该效应由GPR30介导,而外分泌的CXCL16可促进乳腺癌MCF-7细胞的迁移和侵袭能力.

  2. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    Science.gov (United States)

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  3. The Chemopreventive Effect of Tanacetum Polycephalum Against LA7-Induced Breast Cancer in Rats and the Apoptotic Effect of a Cytotoxic Sesquiterpene Lactone in MCF7 Cells: A Bioassay-Guided Approach

    Directory of Open Access Journals (Sweden)

    Hamed Karimian

    2015-06-01

    Full Text Available Background: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE using in in vivo and in vitro models. Methods and Results: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC. Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. Conclusion: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

  4. IL-8通过上调Bcl-2的表达和下调caspase-3的表达抑制MCF-7乳腺癌细胞凋亡%IL-8 inhibits the apoptosis of MCF-7 human breast cancer cells by up-regulating Bcl-2 and down-regulating caspase-3

    Institute of Scientific and Technical Information of China (English)

    庞雪利; 李矿发; 魏兰; 黄云秀; 苏敏; 王林; 曹红; 陈婷梅

    2015-01-01

    目的 探讨白细胞介素8(IL-8)对乳腺癌细胞MCF-7凋亡的影响及其机制.方法 Westem blot法检测MCF-7细胞IL-8受体CXC趋化因子受体1(CXCR1)、CXCR2的表达;反转录PCR、Western blot法检测(0、20、40、80、160) ng/mL IL-8对MCF-7细胞Bcl-2、caspase-3表达的影响;CCK-8法检测(0、40、80) ng/mL IL-8对MCF-7细胞增殖的影响;相差显微镜下观察80 ng/mL IL-8处理MCF-7后细胞形态的变化;Western blot法检测80 ng/mL IL-8联合信号通路抑制剂10 μmol/L PD980590、10 μmol/L LY294002或50 μmol/L AG490[分别为丝裂原活化蛋白激酶/细胞外调节蛋白激酶(MAPK/ERK)、磷酸肌醇-3激酶/蛋白激酶B(PBK/AKT)、Janus激酶/信号转导子和转录激活子(JAK/STAT)信号通路抑制剂],共同处理MCF-7细胞后,细胞内Bcl-2蛋白表达的变化;Western blot法检测(0、20、40、80、160) ng/mL IL-8对MCF-7细胞磷酸化p-AKT表达的影响;流式细胞术、反转录PCR以及Westem blot法分别检测80 ng/mL IL-8联合10 μmol/L LY294002共同处理MCF-7细胞后,细胞凋亡以及细胞内Bcl-2、caspase-3表达的变化.结果 IL-8受体CXCR1、CXCR2在MCF-7细胞中均有表达;在IL-8的作用下,MCF-7细胞Bcl-2表达升高,caspase-3表达下降,抗凋亡能力明显增强;IL-8能显著上调MCF-7细胞中p-AKT的表达;PBK/AKT信号通路抑制剂LY294002能显著抑制IL-8抗MCF-7细胞凋亡的作用,且减少Bcl-2并增加caspase-3的表达.结论 IL-8可显著抑制MCF-7细胞的凋亡,其机制可能与IL-8激活PI3K/AKT信号通路而上调Bcl-2、下调caspase-3的表达有关.

  5. 4-Hydroxytamoxifen-stimulated activation of ezrin is mediated via G-protein-coupled receptor 30 and promotes human breast cancer MCF-7 cell migration%4-羟基他莫昔芬通过雌激素受体GPR30激活ezrin蛋白促进人乳腺癌MCF-7细胞迁移

    Institute of Scientific and Technical Information of China (English)

    游昕超; 王庭槐

    2014-01-01

    目的:观察4-羟基他莫昔芬(OHT)对人乳腺癌细胞株MCF-7迁移的影响并探讨其机制.方法:贴壁培养雌激素受体阳性人乳腺癌细胞株MCF-7,细胞划痕愈合实验观察OHT对MCF-7细胞迁移的影响,Western blotting检测c-Src/p-Src和ezrin/p-ezrin蛋白的表达.结果:(1)与对照组相比,单独给予MCF-7细胞雌二醇(E2)和OHT都能促进细胞迁移,OHT不能抑制E2对MCF-7细胞的促迁移效应.(2)OHT促进MCF-7细胞迁移最大效应浓度约为5 μmol/L,在6h即能观察到明显促迁移效用.(3)OHT和雌激素受体G蛋白偶联受体30 (GPR30)激动剂G1都能明显增加p-Src和p-ezrin蛋白表达.(4)分别用G15和PP2阻断GPR30和Src后,OHT激活ezrin作用都能被阻断.结论:OHT可能通过结合GPR30后激活Src蛋白,进而磷酸化激活ezrin,介导细胞骨架重构并促进MCF-7细胞迁移.

  6. Apoptosis-promoting effect of resveratrol combined with 5-FU on human breast cancer cell line MCF7%白藜芦醇联合5-FU对人乳腺癌细胞系MCF7的促凋亡作用

    Institute of Scientific and Technical Information of China (English)

    李燕; 邢克飞; 李福洋; 汪云; 药立波; 刘新平

    2006-01-01

    目的:研究白藜芦醇联合5-FU促进人乳腺癌细胞MCF7凋亡的作用. 方法:4种人乳腺癌细胞系(MCF7,MDA-MB-231,SK-BR-3和Bcap-37)与不同浓度的白藜芦醇或/和5-FU共孵育48 h,MTT法检测细胞存活率,并用相差显微镜观察细胞形态学改变. 用流式细胞术(检测细胞凋亡相关指标Annexin V/PI)和Hoechst33258染色检测细胞凋亡. 结果:白藜芦醇能够不同程度地抑制4种人乳腺癌细胞系(MCF7, MDA-MB-231,SK-BR-3和Bcap-37)的生长. 白藜芦醇对MCF7,MDA-MB-231,SK-BR-3和Bcap-37细胞的IC50(半数抑制浓度)分别为65,207,139和213 μmol/L. 单用5-FU对MCF7细胞的IC50为13 μmol/L,联合使用5-FU和白藜芦醇的IC50分别为9 μmol/L和3 μmol/L. 与单用组相比,65 μmol/L白藜芦醇和13 μmol/L 5-FU联合使用后,MCF7细胞Annexin V水平升高. Hoechst33258荧光染色和流式细胞术分析MCF7细胞的结果一致. 结论:白藜芦醇与5-FU合用可协同促进MCF7细胞凋亡,提示白藜芦醇可能用作治疗乳腺癌的二线化疗药.

  7. Quercetin-loaded PEG-PE micelles reverse drug resistance of MCF-7 ADRr human breast cancer cells%载有槲皮素的PEG-PE胶束对乳腺癌细胞耐药性的逆转效应

    Institute of Scientific and Technical Information of China (English)

    吴金花; 段金虹; 许海燕; 杨先达

    2015-01-01

    Objective To explore whether quercetin-loaded PEG-PE micelles(M-Q) can synergize the growth-in-hibitory activity of adriamycin prepared ( ADR) by reversing the drug resistance of MCF-7 ADRr breast cancer cells in vitro.Methods M-Q was prepared by adding saline to lipid film containing quercetin and PEG-PE.The size of M-Q was characterized by dynamic light scattering ( DLS) .The inhibition of MCF-7 ADRr cells was evaluated by MTS assay after incubation with M-Q and ADR.Results The incorporation efficiency of quercetin by the micelles was above 74%.The average size of M-Q was 11.11 nm.Compared with the quercetin dissolved in ethanol , M-Q more effectively reversed the drug resistance of MCF-7 ADRr cells in vitro.Conclusions PEG-PE micelles may potentially deliver quercetin to cancer cells for reversal of drug resistance .%目的:探索载有槲皮素的PEG-PE聚合物胶束( M-Q)能否在体外逆转耐阿霉素人乳腺癌细胞( MCF-7 ADRr)的耐药性。方法将PEG-PE聚合物与槲皮素混合制备脂膜,加0.9%氯化钠注射液形成胶束,用动态光散射粒径仪表征其尺寸分布,并将其和阿霉素与MCF-7 ADRr细胞共孵育72 h,用MTS方法检测对肿瘤细胞的杀伤率。结果PEG-PE聚合物胶束能有效运载槲皮素,其包封率高达74%以上,平均粒径为11.11 nm左右,与游离槲皮素相比, M-Q能在体外更大程度地逆转MCF-7 ADRr细胞对于阿霉素的耐药性( P<0.05),且PEG-PE胶束自身对靶细胞无明显杀伤作用。结论载有槲皮素的PEG-PE胶束在逆转肿瘤耐药性方面具有应用潜能。

  8. Conjugated linoleic acid isomers induced apoptosis of human breast cancer cell line MCF-7%共轭亚油酸单体诱导乳腺癌细胞MCF-7凋亡及其作用机制的研究

    Institute of Scientific and Technical Information of China (English)

    袁贤琳; 陈青; 杨湘玲; 钟翎

    2009-01-01

    目的:研究2种共轭亚油酸(conjugated linoleic acid,CLA)单体--顺9,反11-CLA(cis 9,trans11-CLA, c 9,t11-CLA)和反10,顺12- CLA(trans10,cis12-CLA, t10,c12-CLA) 诱导乳腺癌细胞MCF-7凋亡及其作用机制.方法:采用MTT法检测CLA对MCF-7细胞的生长抑制作用,锥虫蓝染色绘制CLA作用后MCF-7细胞的生长曲线;荧光显微镜观察及FCM检测MCF-7细胞的凋亡和细胞周期的改变;RT-PCR和Western印迹法检测MCF-7细胞PPARγ、Bcl-xL和Bcl-xS mRNA以及PPARγ、Bcl-2、Bax和caspase-3的蛋白表达.结果:2种CLA单体均可抑制MCF-7细胞增殖并诱导细胞凋亡,与对照组相比差异有统计学意义(P<0.05);RT-PCR和Western印迹法检测结果显示,2种CLA单体均可以提高PPARγ、Bcl-xS mRNA和PPARγ、Bax、caspase-3蛋白的表达,降低Bcl-xL mRNA和Bcl-2蛋白的表达,与对照组比较差异有统计学意义(P<0.05);且2种CLA单体对PPARγ与凋亡相关蛋白Bax、Bcl-2和caspase-3的表达影响呈剂量和时间依赖性及同步相关性.结论:c 9,t11-CLA和t10,c12-CLA对乳腺癌MCF-7细胞具有抑制生长和促凋亡的作用,CLA可能作为PPARγ的配体通过激活PPARγ-Bcl-2-caspase-3细胞凋亡信号通路而实现抑制肿瘤细胞生长的作用.

  9. Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF-7 cancer cell line.

    Science.gov (United States)

    Mohamed, Lamia W; Taher, Azza T; Rady, Ghada S; Ali, Mamdouh M; Mahmoud, Abeer E

    2016-10-04

    A new series of benzothiazole has been synthesized as cytotoxic agents. The new derivatives were tested for their cytotoxic activity toward the human breast cancer MCF-7 cell line against cisplatin as the reference drug. Many derivatives revealed good cytotoxic effect, whereas four of them, 4, 5c, 5d, and 6b, were more potent than cisplatin, with IC50 values being 8.64, 7.39, 7.56, and 5.15 μm compared to 13.33 μm of cisplatin. The four derivatives' cytotoxic activity was accompanied by regulating free radicals production, by increasing the activity of superoxide dismutase and depletion of intracellular reduced glutathione, catalase, and glutathione peroxidase activities, accordingly, the high production of hydrogen peroxide, nitric oxide, and other free radicals causing tumor cell death as monitored by reduction in the synthesis of protein and nucleic acids. Most of the tested compounds showed potent to moderate growth inhibitory activity; in particular, compound 6b exhibited the highest activity suggesting it is a lead compound in cytotoxic activity.

  10. In vitro cytotoxic activity of Aesculus indica against breast adenocarcinoma cell line (MCF-7) and phytochemical analysis.

    Science.gov (United States)

    Bibi, Yamin; Nisa, Sobia; Zia, Muhammad; Waheed, Abdul; Ahmed, Sabbir; Chaudhary, M Fayyaz

    2012-01-01

    Aesculus indica (Linn.) (Sapindaceae) is an ethanobotanically important plant specie traditionally used against rheumatism, skin and vein complaints. Cytotoxic potential of Aesculus indica crude leaf extract and its fractions was investigated against MCF-7 cell line. Crude extract of Aesculus indica was prepared in methanol by maceration technique. Crude extract was fractionated into four organic and one aqueous fraction on polarity basis. MTT assay was used to evaluate the reduction of viability of MCF-7 breast cancer cell line. Cell viability was inhibited by Aesculus indica crude extract in a dose dependent manner ranging from 34.2% at 10 μg/ml to 94% at 500μg/ml. Activity was found in an ascending order from hexane showing 29.8% inhibition to aqueous fraction indicating maximum inhibition, 60%. Phytochemical analysis of crude and fractionated extracts revealed presence of flavonoids, saponins, coumarins and tannins upto varying degrees. Methanol and aqueous fraction of methanol extract of Aesculus indica can be good source of cytotoxic compounds.

  11. 组蛋白去乙酰化酶抑制剂丙戊酸联合姜黄素对MCF-7R乳腺癌细胞增殖抑制的影响%Inhibitory effect of HDACi VPA combined with CUR on proliferation of breast cancer MCF-7R cells

    Institute of Scientific and Technical Information of China (English)

    楼亚玲; 曹恒斌

    2016-01-01

    目的 探讨丙戊酸(VPA)联合姜黄素(CUR)对人乳腺癌耐药细胞MCF-7R增殖抑制的影响及其作用机制.方法 分别用100、10、1、0.1、0.01μg/mL阿霉素(ADR)作用于MCF-7R细胞和敏感株细胞MCF-7细胞72 h后,MTT法测定ADR对各组细胞的抑制率,计算半数抑制浓度(IC50),判定MCF-7R细胞的耐药情况;用20、10、5、2.5、1.25、0.625、0.3125 mmol/L VPA、空白对照及320、160、80、40、20、10、5μmol/L CUR、空白对照分别作用于MCF-7R细胞24、48及72 h,用MTT法分析细胞增殖抑制率;将VPA 0.625 mmol/L分别与10、20、40μmol/L CUR联合作用于MCF-7R细胞24、48及72 h后,用MTT法分析联合用药细胞增殖抑制率及Q值;将VPA 0.625 mmol/L与10 μmol/L CUR联合作用于MCF-7R细胞48 h后,高倍显微镜下观察细胞形态及数量变化.结果 MCF-7R与MCF-7细胞IC50分别为(60.30±20.30)、(5.59±1.87) μg/mL,MCF-7R细胞耐药倍数约为10.8倍.不同浓度VPA或VPA处理对数生长期MCF-7R细胞24、48及72 h后,结果提示对VPA或VPA对MCF-7R细胞的抑制作用与药物浓度和时间相关(P<0.05);联合用药结果显示,在相同作用时间下,CUR浓度越高,抑制率越高(P<0.05).金正均Q值法判断两药联用结果显示,0.625 mmol/L VPA与10 μmol/L CUR联合作用48 h时两药有明确的相加作用(P<0.05),而其他联合用药及作用时间表现出两药拮抗作用,其中各联合用药组作用48、72 h时的Q值比较,差异有高度统计学意义(P< 0.01),而作用24 h时Q值比较,差异无统计学意义(P>0.05).单用0.625 mmol/LVPA见少量细胞减少;10 μmol/L CUR也可导致较多细胞死亡,两药物联用时较单独用药细胞数量减少明显.结论 VPA及CUR在低剂量联用时存在相加作用,高剂量联用时两者呈现拮抗作用.

  12. Optical Measurement of Cell Viability Inhibited by Curcumin-loaded Nanoparticles in Breast Cancer Cell Line MCF-7%姜黄素纳米粒子抑制乳腺癌细胞MCF-7活性的光学检测

    Institute of Scientific and Technical Information of China (English)

    罗志慧; 杨洪钦; 何逸鹏; 彭亦如; 李晖; 谢树森

    2014-01-01

    采用纳米材料两亲嵌段共聚物聚乙二醇-聚已内酯(MPEG-PCL)将姜黄素包裹形成一种新型姜黄素纳米粒子.然后基于光学显微成像技术,比较姜黄素和姜黄素纳米粒子抑制乳腺癌细胞MCF-7的活性.通过激光共焦显微成像观察和检测姜黄素在细胞中的荧光强度比较MCF-7细胞系对姜黄素和姜黄素纳米粒子的摄取效率.结果表明姜黄素纳米粒子抑制癌细胞活性效果比较明显(P<0.01),MCF-7细胞系对姜黄素纳米粒子的摄取量大约为未包裹姜黄素的4倍,研究结果有助于促进纳米药物的研发及其在癌症治疗中的应用.

  13. Study on Oridonin for Antitumor Based on Restraining Wnt Signal Pathway in Breast Cancer MCF-7 Cells%基于Wnt信号通路抑制的冬凌草甲素抗乳腺癌研究

    Institute of Scientific and Technical Information of China (English)

    岳静; 陈如意; 洪姣; 贵志芳; 张婷; 任军; 许健

    2014-01-01

    Objective] To explore the effects of oridonin on the growth and Wnt signal pathway in MCF-7 cel s;. [Methods] Cel viability of MCF-7 cel s was evaluated by MTT assay. Cel cycle and apoptosis were measured by flow cytometry. Expression of the proteins related to Wnt signal pathway was detected by Western Blot. [Result] Oridonin inhibited the proliferation of MCF-7 cel s in a manner as dose- and time-dependence. MCF-7 cel s were arrested in G2/M by oridonin. The expressions of Wnt4, GSK3βandβ-catenin were down-regulated by oridonin. [Conclusion] Oridonin could inhibit the proliferation of MCF-7 cel s, and influence the Wnt signal pathway.%[目的]探究冬凌草甲素对乳腺癌MCF-7细胞生长及Wnt信号通路的影响。[方法] MTT法检测冬凌草甲素对乳腺癌MCF-7细胞活度的影响,流式细胞术检测冬凌草甲素对乳腺癌MCF-7细胞周期、细胞凋亡的影响,免疫蛋白印记法检测冬凌草甲素对乳腺癌MCF-7细胞Wnt通路相关蛋白Wnt4、GSK3β和β-catenin表达的影响。[结果]冬凌草甲素对乳腺癌MCF-7细胞的增殖抑制作用呈时间依赖性、浓度依赖性;冬凌草甲素阻滞MCF-7细胞于G2/M期,且可诱导其凋亡;冬凌草甲素可下调Wnt4、GSK3β、β-catenin的表达。[结论]冬凌草甲素可抑制乳腺癌MCF-7细胞的增殖,且影响了Wnt信号通路。

  14. Synthesis of Hexagonal ZnO-PQ7 Nano Disks Conjugated with Folic Acid to Image MCF - 7 Cancer Cells.

    Science.gov (United States)

    Sureshkumar, S; Jothimani, B; Sridhar, T M; Santhosh, Arul; Venkatachalapathy, B

    2017-01-01

    Surface modified ZnO nanomaterial is widely used in the field of bioimaging worldwide due to its optical properties, electronic characteristics and biocompatibility. Fluorescent enhanced, Polyquaternium-7(PQ7) capped, ZnO hexagonal nano disks (ZnO-PQ7) were synthesised by simple wet chemical method. The structural and optical properties of ZnO-PQ7 hexagonal nano disks were characterized using XRD, UV-Visible, Fluorescence, HRTEM, EDAX and FTIR studies. The size of synthesised ZnO-PQ7 were around 30-45 nm as confirmed by HRTEM studies. Fluorescence emission intensity increased with increase in PQ7 concentration. ZnO-PQ7 was further conjugated with folic acid (FA) to target human breast cancer cell line (MCF-7) via EDC/NHS coupling chemistry. Conjugation of folic acid with ZnO-PQ7 was confirmed by FTIR studies. The cell viability study using Methyl thiazolyltetrazolium(MTT) assay has demonstrated that the ZnO-PQ7 conjugated FA composites (ZnO-PQ7-FA) exhibit low toxicity towards MCF-7 up to a concentration of 125 μg/mL. Confocal laser scanning microscopic images confirmed the uptake of ZnO-PQ7-FA nanoparticles by MCF-7 cells. This study reveals ZnO-PQ7-FA nano disks as a potential imaging agent for detection of cancer cells. The synthesis route reported in this article is simple and easy to follow for the synthesis of ZnO-PQ7-FA in bulk quantities with high purity.

  15. 乳腺癌肿瘤细胞(MCF-7)对白蛋白包覆壳聚糖纳米颗粒体外细胞应答效应研究%In vitro response of breast cancer cells (MCF-7) to albumin coated chitosan nanoparticles

    Institute of Scientific and Technical Information of China (English)

    郑玲

    2013-01-01

    目的 探索稳定壳聚糖纳米颗粒(chitosan nanoparticles,CS-NP)的方法,研究MCF-7细胞对白蛋白修饰后的壳聚糖纳米粒(bovine serum albumin chitosan nanoparticles,BSA-CS-NP)的体外应答效应.方法 采用静电吸附的方法,在壳聚糖纳米粒子(CS-NP)表面包覆白蛋白,研究CS-NP修饰前后粒径、电位、稳定性的变化,并通过MTT法检测修饰前后CS-NP对MCF-7细胞毒性的影响.结果 BSA-CS-NP荷负电荷,稳定性提高,肿瘤抑制效应增强.结论 白蛋白修饰后抗肿瘤作用增强.原因可能是白蛋白修饰后提高了壳聚糖纳米粒的稳定性,诱发了肿瘤细胞的内吞效应,抑瘤作用增强.

  16. 格列卫与多西紫杉醇联合对人乳腺癌细胞株MCF-7及其裸鼠移植瘤的作用%Effect by Gleevec Combines with Docetaxel in Human Breast Cancer MCF-7 Cell and Xenograft in Nude Mice

    Institute of Scientific and Technical Information of China (English)

    李娟; 李晓明; 李平; 李延团; 曹诚

    2009-01-01

    目的:探讨分子靶向药物格列卫与多西紫杉醇联合对人乳腺癌细胞株MCF-7的凋亡及其裸鼠皮下移植瘤生长的影响.方法:采用流式细胞检测仪检测MCF-7细胞在格列卫与多西紫杉醇单独处理及共同处理条件下的凋亡率;建立人乳腺癌细胞株MCF-7裸鼠皮下移植瘤模型,观察格列卫与多西紫杉醇单独治疗组及联合治疗组移植瘤的生长,计算抑瘤率.结果:MCF-7细胞在格列卫与多西紫杉醇共同处理条件下的凋亡率(50.86%)远高于多西紫杉醇单独处理(22.06%)及同剂量格列卫组单独处理(8.13%)条件下的凋亡率;高剂量多西紫杉醇与格列卫联合组肿瘤质量与单独多西紫杉醇组比较,差异虽然没有显著性,但联合组抑瘤率高达99.55%,高于多西紫杉醇组(97.43%),q值为1.014;中剂量多西紫杉醇与格列卫联合组肿瘤质量与单独多西紫杉醇组比较,差异有高度显著性,联合组抑瘤率达96.53%,高于多西紫杉醇组(92.01%),q值为1.02;低剂量多西紫杉醇与格列卫联合组肿瘤质量与单独多西紫杉醇组比较,差异有高度显著性,联合组抑瘤率达68.20%,高于多西紫杉醇组(58.40%),q值为1.004.结论:格列卫与凋亡诱导剂多西紫杉醇共同处理MCF-7细胞能达到协同诱导凋亡的效果;高、中、低剂量的多西紫杉醇与格列卫联合对人乳腺癌细胞株MCF-7裸鼠移植瘤增殖的抑制具有相加作用.

  17. Gold nanoparticle-lignan complexes inhibited MCF-7 cell proliferation in vitro: a novel conjugation for cancer therapy.

    Science.gov (United States)

    Bakar, Filiz; Caglayan, Mehmet G; Onur, Feyyaz; Nebioglu, Serpil; Palabiyik, Ismail M

    2015-01-01

    Nanoparticles, including gold nanoparticles (AuNP), have been used in imaging in cancer treatment and as therapeutic agents and drug delivery vehicles. Particularly lignans, also called phytoestrogens, have strong effects on the treatment of carcinomas due to their antiestrogenic, antiangiogenic and proapoptotic mechanism. The aim of this study is to investigate the antiproliferative effects of three lignans-AuNP conjugates, pinoresinol (PINO), lariciresinol (LARI) and secoisolariciresinol (SECO), on the MCF-7 cell lines. For this purpose, first, thiolated β-cyclodextrin (β-CD) was synthesized to achieve a surface modification of AuNP, and then the β-CD modified AuNP was characterized using the transmission electron microscopy (TEM), UV-Visible and Nuclear Magnetic Resonance (NMR) spectroscopy. Then, the selected lignans were conjugated to the β-CD-modified AuNP, and the antiproliferative effect of these conjugates was monitored. The results suggest that when compared to their non-conjugated forms, the AuNP-bound lignan conjugates prevented the proliferation of the MCF-7 cells significantly. Therefore, these AuNP-conjugated derivatives can be new candidate agents for breast cancer therapy.

  18. 金雀异黄素对人乳癌细胞MCF-7增殖和凋亡的影响%The inhibiting effect of genistein on the growth of human breast cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    张艳; 田庆伟; 李亚义

    2005-01-01

    目的:采用离体细胞培养的方法,研究大豆异黄酮的主要成分金雀异黄素(GEN)对人乳腺癌MCF-7细胞的增殖抑制作用及其作用机理.方法:MCF-7细胞接受不同浓度的GEN处理,MTT比色法测定GEN抑制MCF-7细胞的量效关系;细胞分裂指数试验用于评价GEN对该细胞的恶性增殖的抑制作用;细胞形态学观察及原位细胞凋亡检测法(TUNEL)用于检测细胞凋亡.结果:GEN的IC30与IC50分别为17.5μmol/L及32.0 μmol/L,GEN对MCF-7具有明显的抑制作用,且该抑制作用呈剂量反应关系;各剂量GEN均可抑制MCF-7细胞分裂并且呈剂效关系;细胞形态学观察及TUNEL检测发现GEN处理48 h及96 h后有明显的凋亡细胞出现,并呈现剂效关系,而本次实验未发现其时效关系.结论:GEN可抑制离体培养MCF-7细胞的增殖,其作用机理可能与GEN诱导细胞凋亡的途径有关.

  19. A novel [Mn2(μ-(C6H5)2CHCOO)2(bipy)4](bipy)(ClO4)2 complex loaded solid lipid nanoparticles: synthesis, characterization and in vitro cytotoxicity on MCF-7 breast cancer cells.

    Science.gov (United States)

    Guney Eskiler, G; Cecener, G; Dikmen, G; Kani, I; Egeli, U; Tunca, B

    2016-09-01

    Manganese (Mn)-based complexes have been drawing attention due to the fact that they are more effective than other metal complexes. However, the use of Mn(II)-based complexes in medicine remains limited because of certain side effects. The aim of this study was to investigate the cytotoxic and apoptotic effects of a novel Mn(II) complex [Mn2(μ-(C6H5)2CHCOO)2(bipy)4](bipy)(ClO4)2 and Mn(II) complex loaded solid lipid nanoparticles (SLNs) on MCF-7 and HUVEC control cells. The average diameter of Mn(II) complex was about 1120 ± 2.43 nm, while the average particle size of Mn(II) complex-SLNs was ∼340 ± 2.27 nm. The cytotoxic effects of Mn(II) complex and Mn(II)-SLNs were 86.8 and 66.4%, respectively (p complex (39.25%) and Mn(II)-SLNs (38.05%) induced apoptosis and increased the arrest of G0/G1 phase. However, Mn(II) complex exerted toxic effects on the HUVEC control cell (63.4%), whereas no toxic effects was observed when treated with Mn(II)-SLNs at 150 μM. As a consequence, SLNs might be potentially used for metal-based complexes in the treatment of cancer due to reducing size and toxic effects of metal-based complexes.

  20. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells

    NARCIS (Netherlands)

    Zanden, van J.J.; Geraets, L.; Wortelboer, H.M.; Bladeren, van P.J.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2004-01-01

    The objective of this study was to investigate the structural requirements necessary for inhibition of glutathione S-transferase P1-1 (GSTP1-1) and GS-X pump (MRP1 and MRP2) activity by structurally related flavonoids, in GSTP1-1 transfected MCF7 cells (pMTG5). The results reveal that GSTP1-1 activi

  1. Expression of estrogen receptor and sensitivity to endocrine therapy of MCF-7 human breast cancer cells cultured in stem cell culture in vitro%乳腺癌MCF-7细胞体外干细胞培养条件下雌激素受体表达与治疗敏感性初探

    Institute of Scientific and Technical Information of China (English)

    张斌; 张霞; 张改容; 刘越坚; 张阳

    2012-01-01

    目的 通过比较观察激素敏感的MCF-7细胞在体外干细胞培养和常规培养条件下雌激素受体(ER)变化及对内分泌治疗药物的敏感性变化,初步探讨肿瘤干细胞与内分泌耐药的关系.方法 分别于常规培养及干细胞培养条件下(悬浮球培养)培养激素敏感的MCF-7细胞株,流式细胞仪检测分子表型CD44+CD24–/low 与CD44+CD24+亚群细胞比例变化,免疫细胞化学法测定Erα和Erβ的表达变化,MTT法检测细胞对他莫西芬的敏感程度.分别以t检验、卡方检验、方差分析进行统计分析.结果 干细胞培养条件下CD44+CD24–/low亚群细胞的比例为(1.60±0.08)%,比常规培养条件下的(0.27±0.08)%显著增加(t=-12.10,P=0.00),而CD44+CD24+亚群细胞比例由(5.59±0.88)%增至(30.63±4.40)%(t=-5.58,P=0.00).干细胞培养条件培养下Erα和Erβ表达率较常规培养下调,分别由85.27%和90.53%降至69.43%和73.20%,差异有统计学意义(χ2=214.64,P=0.00;χ2=303.58,P=0.00),且对他莫西芬的敏感性降低,IC50值由(9.82±0.31)μmol/L升至(16.46±0.50)μmol/L,再次诱导分化后ER并未出现上调,对他莫西芬的敏感性仍旧降低(F=113.63,P=0.00).结论 与常规培养相比较,体外干细胞培养条件下可以培养出含高比例具有干细胞特性的CD44+CD24–/low与CD44+CD24+亚群细胞的微球囊,其ER仍为阳性表达,但对他莫昔芬治疗敏感性减低,推测其可能是乳腺癌内分泌耐药的原因.%Objective To explore estrogen receptor( ER) expression and endocrine resistance of horn one- sensitive MCF-7 cells in nomal culture or in sten cell culture in vitro. M ethods The MCF-7 cells were cultured in nomal culture or in sten cell culture in vitro ( suspension sphere). The proportion of CE44+ CEB4~/low phenotype and CE44+ CEB4+ phenotype cells were detemined using flow cytanetry ( FCM). The Era and Erp expression was detected using immunohistochanical method. The susceptibility to tamoxifen

  2. c9,t11-CLA-PTX与t10,c12-CLA-PTX对MCF-7细胞的体内外抗肿瘤作用%The anti-tumor efficacy of c9, t11-CLA-PTX and t10, c12-CLA-PTX on MCF-7 breast cancer cells: in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    杨科; 李星火; 李丹; 柯曦宇; 张烜; 张强

    2014-01-01

    在前期研究中,CLA-mixture-PTX展现出了对黑色素瘤与脑胶质瘤一定的抗肿瘤作用.本研究旨在探索c9,t11-CLA-PTX与t10,c12-CLA-PTX对人源乳腺癌MCF-7细胞的体内外抗肿瘤作用.研究中考察了c9,t11-CLA-PTX与t10,c12-CLA-PTX的体外细胞摄取、细胞毒、细胞凋亡,以及细胞周期作用.用荷瘤BALB/c裸鼠研究了c9,t11-CLA-PTX与t10,c12-CLA-PTX的体内抗肿瘤作用.体外细胞毒研究结果表明:t10,c12-CLA-PTX的IC50为(0.17±0.02) μM,显著优于CLA-mixture-PTX(1.08±0.15) μM (P<0.01),后者显著优于c9,t11-CLA-PTX (6.50±1.20)μM (P<0.01).与空白对照组相比,c9,t11-CLA-PTX与t10,c12-CLA-PTX均可使细胞总凋亡比例增加(P<0.01);和CLA-mixture-PTX组相比,t10,c 12-CLA-PTX可使细胞总凋亡比例增加(P<0.01),c9,t11-CLA-PTX则使细胞总凋亡比例降低(P<0.01).与空白对照组相比,c9,t11-CLA-PTX与t10,c12-CLA-PTX均将细胞周期阻滞于S期与G2-M,与CLA-mixture-PTX相同.t10,c12-CLA-PTX的细胞摄取量显著高于CLA-mixture-PTX (P<0.01),后者的细胞摄取量显著高于c9,t11-CLA-PTX (P<0.01).体内抗肿瘤药效研究结果显示,t10,c12-CLA-PTX的抗肿瘤活性显著高于空白对照组和CLA-mixture-PTX组(P<0.01),而c9,t11-CLA-PTX的抗肿瘤活性仅高于空白对照组(P<0.01).上述结果表明,t10,c12-CLA-PTX对MCF-7细胞有显著体内外抗肿瘤作用,可以作为CLA-mixture-PTX的替代药物进行后续研究.

  3. Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable microemulsion-templated nanocapsules.

    Science.gov (United States)

    Wilk, Kazimiera A; Zielińska, Katarzyna; Pietkiewicz, Jadwiga; Skołucka, Nina; Choromańska, Anna; Rossowska, Joanna; Garbiec, Arnold; Saczko, Jolanta

    2012-07-01

    Searching for photodynamic therapy-effective nanocarriers which enable a photosensitizer to be selectively delivered to tumor cells with enhanced bioavailability and diminished dark cytotoxicity is of current interest. We have employed a polymer-based nanoparticle approach to encapsulate the cyanine-type photosensitizer IR-780 in poly(n-butyl cyanoacrylate) (PBCA) nanocapsules. The latter were fabricated by interfacial polymerization in oil-in-water (o/w) microemulsions formed by dicephalic and gemini saccharide-derived surfactants. Nanocarriers were characterized by SEM, AFM and DLS. The efficiency of PBCA nanocapsules as a potential system of photosensitizer delivery to human breast cancer cells was established by dark and photocytotoxicity as the function of the cellular mitochondria. The photodynamic effect of cyanine IR-780 was determined by investigation of oxidative stress markers. The nanocapsules were the main focus of our studies to examine their cellular uptake and dark and photocytotoxicity as the function of the cellular mitochondria as well as oxidative stress markers (i.e., lipid peroxidation and protein damage) in MCF-7/WT cancer cells. The effects of encapsulated IR-780 were compared with those of native photosensitizer. The penetration of the nanocapsules into cancer cells was visualized by CLSM and their uptake was estimated by FACS analysis. Cyanine IR-780 delivered in PBCA nanocapsules to MCF-7/WT cells retains its sensitivity upon photoirradiation and it is regularly distributed in the cell cytoplasm. The intensity of the photosensitizer-generated oxidative stress depends on IR-780 release from the effective uptake of polymeric nanocapsules and seems to remain dependent upon the surfactant structure in o/w microemulsion-based templates applied to nanocapsule fabrication.

  4. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2010-04-01

    Full Text Available Ten essential oils, namely, mint (Mentha spicata L.,Lamiaceae, ginger (Zingiber officinaleRosc.,Zingiberaceae, lemon (Citrus limon Burm.f.,Rutaceae, grapefruit (Citrus paradisi Macf., Rutaceae, jasmine (Jasminum grandiflora L.,Oleaceae, lavender (Mill.,Lamiaceae, chamomile (Matricaria chamomilla L., Compositae, thyme (Thymus vulgaris L., Lamiaceae, rose (Rosa damascena Mill.,Rosaceae and cinnamon (Cinnamomum zeylanicumN. Lauraceae were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 ± 1.2 mm, 33.5 ± 1.5 mm and 16.5 ± 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v, 0.016% (v/v and 0.031% (v/v, respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v, and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC50 values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v, 0.011% (v/v and 0.030% (v/v, respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3 was significantly stronger than on human lung carcinoma (A549 and human breast cancer (MCF-7 cell lines.

  5. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7.

    Science.gov (United States)

    Staubach, Simon; Razawi, Hanieh; Hanisch, Franz-Georg

    2009-05-01

    Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.

  6. Chemopreventive Activity of Ferulago angulate against Breast Tumor in Rats and the Apoptotic Effect of Polycerasoidin in MCF7 Cells: A Bioassay-Guided Approach.

    Science.gov (United States)

    Karimian, Hamed; Fadaeinasab, Mehran; Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Razavi, Mahboubeh; Safi, Sher Zaman; Ameen Abdulla, Mahmood; Mohd Ali, Hapipah; Ibrahim Noordin, Mohamad

    2015-01-01

    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against